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Chapter 1

Introduction

Among the literature in belief revision, we can roughly classify it between

two main approaches[6]. The classical approach represented in the work done

by [2] and called the AGM theory, based on a first order logic, suitable for

static revision of factual information. The DEL approach, originated on the

work of [22, 19, 18], and appropriate for multi-agent learning actions, and

revision of higher order beliefs.

A fusion of the above mentioned theories, can be found in the Baltag and

Smets approach. The advantages of the previous approaches, is taken into

account here, systematizing several fine-grained distinctions into a unified

framework, and the changes induced by the learning actions are emphasized.

One of the advantages of having a unified systematic framework is that it

sheds light over the specific needs of the logic we want to work with, both at

the syntactic and the semantic level. Two of them are the need of taking into

account infinitary logics, and the consideration of non-well founded orders in

the models used.
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Infinitary examples of belief revision are not unusual. The Consecutive

numbers puzzle[26] and others are a sample of this. Belief revision seen as

a learning method requires non- well founded orders[20]. However, non of

these features have received enough attention.

A non-well founded set semantics seems to us a suitable mean to create

a framework which take care of these aspects. Moreover, the links between

modal logics and non-well founded sets have received few attention, notwith-

standing, the research in this field ([10],[11],[4],[15],[18]) has shown it is an

area worthy to keep studying.

In this thesis we give a non-well founded set semantics for the logic LK◻

and L∞K◻
developed by Baltag and Smets[6]. It is structured as follows.

In Chapter 2 we present the needed background in set theory as well as

important results that will be used in the following chapters, and we settle

the conventions in the notation used, most of it standard.

In Chapter 3 we give all the details for the static logic LK◻ and L∞K◻
.

We remark some of the differences in expressiveness among these languages,

provide the standard results for the logic. We show also how in this setting

we can have tighter results than just identifying a class of models for the

sentences that true on it, but we can go here also the other way around,

which is not possible in the usual semantics.

Chapter 4 deals with the definition of the three base operations used

in belief revision: update, radical upgrade and conservative upgrade. We

explained in detail the requirements for the definition of such operations in

this setting in order to preserve the desired range of them. For the content of

the definitions of this chapter, we preserve properties of the usual semantics,
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as well as the same difficulties.

Chapter 5 presents the generalization of the above operations, into the

concepts of Questions and Answers. We preserve the advantages of functional

composition while we have a more intricate behavior of the iteration of the

operations defined when dealing with infinitary formulas. Notwithstanding,

we have a suitable framework to get a further generalization of these model

transformers seen as a learning methods, as is illustrated. Finally, we present

some conclusions and future work.
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Chapter 2

Background in Set-Theory

Non-well founded Set Theory forms part of the contemporary development

of mathematics (or, if you want, of its recent history). It arose as an alter-

native system in which the Axiom of Foundation (AF ) was given up from

the Zermelo-Fraenkel axiomatization with the axiom of choice, and the now

called Anti-foundation Axiom was added. The set of axioms resulting from

giving up AF is usually denoted by ZFC−. The reader should recall that it

consists of the following axioms:

Axiom 2.1. Extensionality (∀x)(∀y)[∀zz ∈ x↔ z ∈ y]→ x = y

Axiom 2.2. Pair (∀x)(∀y)[∃zx ∈ z ∧ y ∈ z]

Axiom 2.3. Union (∀x)(∃y)(∀z ∈ x)(∀w ∈ z)w ∈ y

Axiom 2.4. Power Set (∀x)(∃y)(∀z)[z ⊆ x↔ z ∈ y]

Axiom 2.5. Infinity (∃x)(∅ ∈ x ∧ (∀y)[y ∈ x→ (∃z ∈ x) ∧ z = y ∪ {y}])

Axiom 2.6. Replacement

(∀x)(∀y ∈ x)(∃z)ϕ(y, z)→ (∃w)(∀y ∈ x)(∃z ∈ w)ϕ(y, z)
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6 2. BACKGROUND IN SET-THEORY

Axiom 2.7. Subset Selection (∀x)(∃y)(∀z)(z ∈ y↔ z ∈ x ∧ ϕ(z))

Axiom 2.8. Choice (∀x)(∃y)[y is a well order of x]

where ϕ is a FOL formula with ∈ as a relation symbol.

It is usually stated [21] that the Anti-foundation axiom was introduced

by Marco Forti and Furio Honsell in their 1983 article [17]. However, some

variants were already introduced since 1926. As a matter of fact, the axiom

became widespread known until the publication of the by now classical Aczel’s

book [1]. Since then, the axiom has been called AFA, and thus the name

of the different variants mentioned was coined: SAFA, (Scott’s AFA) due to

Dana Scott [24]; FAFA due to Paul Finsler [16]; and BAFA, due to Maurice

Boffa[13]. Later, one of the firsts text-books on Set Theory in including

information about non-well founded sets was [14] (just in its second edition).

To achieve an extension of the kind of sets we will deal with, it is need a

different representation of them. Aczel’s representation[1] is given by means

of graphs. Barwise and Moss’ representation[12] is given by means of equa-

tions. We can transit between both representations.

Here, we will work within the framework favored by Barwise and Moss.

This means not only to work with equations but also to include entities that

are not sets within our objects. The class of those entities is denoted by U ,

and are called urelements. This leads to the need of adding an special axiom

for them:

Axiom 2.9. Urelements (∀x)(∀y)[U(x)→ ¬(y ∈ x)]

Here U is used as a predicate. The way these elements intervene in the

construction of sets can be seen in the following definitions
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Definition 2.1. Given a set s, its transitive closure is denoted by TC, and

can be defined by:

TC(s) = ⋃{⋃∗ s}

The urelements involved in the formation of a set are given by its support.

Definition 2.2. Given any set s, its support is the set TC(s) ∩ U . We will

denote it by spp(s).

To have an idea of how much of such elements we can have, it is needed

an axiom. A version assuring that for any cardinality, we can find that much

(fresh) urelements:

Axiom of Plenitude For every set s ,there is an injective function

f ∶ s→ Uso that f[s] ∩ s = ∅.

is not enough. We may need a proper class as well. This is guaranteed by

the following stronger version:

Axiom 2.10. Strong Axiom of Plenitude

There is an operation new(s, A) so that

• For all sets s, and for all A ⊆ U , new(s,A) ∈ U ∖ s.

• For all s ≠ s′, and all A ⊆ U , new(s,A)≠ new(s’,A)

and this is the axiom added in the frame of work of [12] due to the need of

it in defining class operators.

An special subclass of U is the class of indeterminates. Sets of indetermi-

nates will be denoted by Z,Y,X, . . ., and members of them by the low case

letters z, y, x . . .. Indeterminates will allow us to define systems of equations.

Sets of urelements will be denoted by A,B,C, . . .. Elements of these classes
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will be denoted by the low case letters p, q, r, . . .. Whenever we refer to the

universe of pure sets it will be denoted by Vafa, and the universe of all sets

with urelements by Vafa [U]. In general, whenever we have any A ⊆ U , it is

denoted by Vafa[A] the class of all sets constructed over A.

Also, as customary, for sets s, t such that s ⊆ t we denote by s the set

t ∖ s. By st the set of all functions from t to s, i.e. st = {f ∣ f ∶ t → s} The

cardinality of a set will be denoted by ∣s∣, and dom(f), rng(s) will denote

the domain and the range of a function respectively.

Before we can give the first version of AFA we will work with, we need

to introduce some concepts. The first one is the concept of a system of

equations.

Definition 2.3. A flat system of equations is a tuple E = ⟨X,A, e⟩ where

X and A are sets so that A ⊆ U , and X ∩ A = ∅; and e is a function

e ∶X → ℘(X ∪A)

Given a system of equations we want to have a solution to it.

Definition 2.4. A solution to a flat system of equations E = ⟨X,A, e⟩ is a

function ¯s :X → Vafa[A] such that

¯s(x) = { ¯s(y) ∣ y ∈ e(x)} ∪ (e(x) ∩A) for all x ∈X

Flat systems of equations may be a bit unpractical, but are very useful

in theory. A general, more handy (and equivalent) version of the above

definitions will be given latter. However, this version allows to present a first

formulation of AFA

Axiom 2.11. The Solution Lemma formulation of AFA Every flat

system of equations E has a unique solution
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The solution set of any system E = ⟨X,A, e⟩ will be denoted by sol − set

and can be defined over the justification of this form of the axiom as:

sol − set(E) = { ¯s(y) ∣y ∈X}

To realize that every set has a representation of this kind, we need a slight

generalization in the above version of this lemma. A generalized flat system

is a tuple E = ⟨X,A, e⟩ where X and A are any sets so that X ∩A ≠ ∅ and e

is as before.

With this change we can have a canonical representation for any set s

as a system of equations, taking X = TC(s), A = spp(s) and e = IdX . The

solution lemma assure us that whenever we have a system of the kind defined,

we know that it represents a set, and it is unique.

So far, all sets in V are represented. However, we have included as well

the solution to the system E = ⟨X,A, e⟩ with X = {x}, A = ∅, and e(x) = {x}.

This solution is denoted Ω.

The addition of the axiom AFA, and the lack of FA leads also to some

changes into customary tools we work with. The extensionality axiom needs

to be strengthened. The way this stronger form is required to work needs of

the following definitions.

Definition 2.5. Let A ⊆ U , and E = ⟨X,A, e⟩, E ′ = ⟨X ′,A, e′⟩ two generalized

flat systems.

• A relation R ⊆X ×X ′ so that

– If xRx′, then ∀y ∈ x ∩ e(x), ∃y′ ∈ x′ ∩ e(x′) such that yRy′

– If xRx′, then ∀y′ ∈ x′ ∩ e(x′), ∃y ∈ x ∩ e(x), so that yRy′

– If xRx′, then A ∩ e(x) = A ∩ e(x′)
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is called an A-bisimulation between E and E ′

• Two systems E , E ′ are A-bisimilar, denoted by E ≡ E iff there exists an

A-bisimulation between them so that

– ∀x ∈X ∃x′ ∈X ′ so that xRx′

– ∀x′ ∈X ′ ∃x ∈X so that xRx′

The following theorem

Theorem 2.1. Let E and E ′ be two generalized flat systems over A, then E

and E ′ have the same solution set iff E ≡ E ′

allows us to directly apply the relation of bisimulation to sets:

Definition 2.6. Given two sets s, t and a binary relation R so that if sRt,

then

• ∀s′ ∈ s ∃ t′ ∈ t so that s′Rt′

• ∀t′ ∈ t ∃ s′ ∈ s so that s′Rt′

• s ∩ U = t ∩ U

we say that s and s are bisimilar s ≡ t iff there exists a bisimulation R so

that sRt.

and then have a stronger form of the extensionality axiom:

Theorem 2.2. Strong Extensionality For all s, t ∈ Vafa [U], we have

that s = t iff s ≡ t

of which the axiom of extensionality is a particular case.

Now, as we do not have FA in the axiomatization we will work with, we

need an alternative to the induction principle (which still works restricted to

well-founded sets).
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A classical construction by recursion is that of naturals, which are the

finite ordinals. In general, we will denote ordinals by α,β . . . The principle

of induction should be used in a weaker form:

Principle 2.1. ∈ −Induction on Well-founded Sets Let ϕ be a prop-

erty such that for all s ∈ V , if ϕ(t) for all t ∈ s, then also ϕ(s), then you can

conclude that for all s ∈ V ϕ(s)

The alternative we are looking for is given by a principle of co-induction.

Also, to define functions or operations on proper classes we need a principle

of co-recursion. To define these principles we need to recall some concepts.

We will understand by an operator Γ ∶ Vafa [U] → Vafa [U] a transforma-

tion form sets into sets. We say that Γ is monotone if ∀s, t ∈ Vafa [U] so

that s ⊆ t we have Γ(s) ⊆ Γ(t) We say that a class C is a fixed point of Γ

if C = Γ(C). We say that a class C is the greatest (respectively least) fixed

point of Γ iff for every fixed point G of Γ we have that G ⊆ C (respectively

C ⊆ G)

Example, for a fixed A ⊆ U the operator

Γ(s) = {t ∣ t ⊆ s ∩A, tisfinite}

has as a fixed point the class of all hereditarily finite sets over A. We can

characterize that class a such a fixed point, Also we can have at hand the

following definition:

Definition 2.7. Let A ⊆ U . A set is hereditarily finite over A if every set

t ∈ TC({b}) is finite and spp(t) ⊆ A

this class is denoted by HF 1[A]. In general, whenever we talk of a set whose

elements and elements of elements have the property X, we say that they
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conform the class of hereditarily X sets, and will be denoted by HX

Every monotone operator Γ has a greatest (respectively least) fixed point

denoted Γ∗ (Γ∗), and it can be characterized as the greatest (least) class such

that Γ(C) ⊆ C (C ⊆ Γ(C)).

One thing the reader should be aware of is that under this axiomatization,

the least and greatest fixed points do not have to coincide. Consider the

following examples[12]:

Γ(s) = {t ∣ t ⊆ s, t ∈ t}

we have that in ZFC Γ∗ = ∅ = Γ∗. While, under this axiomatization we have

that Γ∗ = ∅ while Γ∗ = Ω.

A clearer illustration is the operator

Γ(s) = ℘(s)

Observe that this Γ under ZFC has as its least and greatest fixed point the

class of all well-founded sets WF , while under this axiomatization, Γ∗ =WF

and Γ∗ = Vafa

We can define now the principles we have mentioned

Principle 2.2. Coinduction Principle For a given Γ monotone operator,

to prove that s ∈ Γ∗, prove that s ⊆ Γ(s)

Principle 2.3. Corecursion Principle For a given Γ, monotone, given

a function π ∶ C → Γ(C) there exists a unique function F ∶ C → Γ∗ such that

F (C) = F [π(C)] ∪ (C ∩A)
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An example of the kind of functions we can construct with this principle

are the following. Consider an operation skl which takes a set s ∈ Vafa [U]

and takes away its urelements, returning just its structure. Such an operation

can be defined as follows.

Let Γ(s) = {TC({s}) ∖ U}. This operator is monotone. Its fixed point

is the class Vafa Now let π ∶ Vafa [U] → Vafa defined as follows: π(s) =

TC({s})∩Vafa [U]. Then, there exists a unique function sk ∶ Vafa [U]→ Vafa

such that

sk(s) = sk[π(s)] (2.1)

returning the skeleton of a set.

Also, we can present now a general version of the Flat Solution Lemma.

First, the generalization of the notion of a system of equations is as follows:

Definition 2.8. A general system of equations is a tuple E = ⟨X,A, e⟩ where

X,A ⊆ U , and X ∩A = ∅, and e ∶X → Vafa[X ∪A]

To generalize the notion of solution we need to introduce the notion of

a substitution. A substitution is a function ¯s which has as a domain a set

of urelements. For l ∈ U ∪ Vafa [U], it will be denoted by l[¯s] the result of

substituting the urelements in l by ¯s(l)
The formal definition is given as follows

Let S be the class of all substitutions, define

π ∶ S×(U ∪ Vafa [U])→ U ∪ Vafa [U]

as follows:
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π(⟨¯s, l⟩) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l[¯s] if l ∈ dom(¯s)
l if l ∈ U ∖ dom(¯s)
¯s’ (l) if l ∈ Vafa [U]

where ¯s’ is the solution to the system E = ⟨X,A, e⟩ with

X = (TC({l}) ∪ rng(¯s)) ∖ U
A = (TC({l}) ∪ rng(¯s)) ∩ U
e(z) = {x[¯s] ∣ x ∈ z ∩ dom(¯s)} ∪ {x ∣ x ∈ z ∩ (A ∖ dom(¯s))} ∪ (z ∩X)

Then, sub(⟨¯s, b⟩) = sub[π(⟨¯s, b⟩)]. To avoid cumbersome notation we will

keep using ¯s for a substitution, which will be clearly specified when used with

the squared brackets.

Definition 2.9. A solution to a general system of equations E = ⟨X,A, e⟩ is

a function ¯s with domain X and such that

¯s(x) = e(x)[¯s]

the general version of the axiom is given by this theorem:

Theorem 2.3. Every general system of equations E has a unique solution ¯s

A further useful step may allow us to use operators in the definition of the

equations of our systems. This should be done under the some restrictions

given by the following definitions.

Definition 2.10. A set X ⊆ U is new for an operator Γ if for all substitutions

¯s ∶X → Vafa [U] and for all sets s we have that

Γ(s[¯s]) = Γ(s)[¯s]
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Definition 2.11. An operator Γ has the property that almost all urelements

are new for Γ if there is a set XΓ ⊆ U so that for all Y ⊆ U with Y ∩X = ∅,

Y is new for Γ. Such a set XΓ is called the avoidance set for Γ

Definition 2.12. An operator Γ is proper if for all s we have that Γ(s) ⊆

Vafa [U]

Then we can use an operator Γ in defining our equations if Γ

• Is proper

• Is monotone

• almost all urelements are new for Γ

• Its use is guarded by set brackets (i.e. its application comes within a

set in the form {Γ(s)}),

We will call any such operator Γ an appropriate operator

The last restriction comes from the fact that certain equations may not

have a solution. Consider for instance:

e(x) = ℘(x)

which cannot have a solution due to Cantor’s theorem. The third restriction

comes form the fact that omitting it may lead to lack of uniqueness in the

solution of the systems so defined.

The quid to define what a solution for such a system of equations is lies

in the interaction that a substitution function will have with the operator.

We will talk then about a Γ − term, to be an expression of the kind Γ(x),

with x either a set or an urelement. Then the required interaction with these

expressions is given by the following functions.
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Proposition 2.1. Let ¯s be a substitution, and Γ an appropriate operator.

Then, there exists a unique operation [¯s]Γ so that for all sets s

s[¯s]Γ = {Γ(s′[¯s]Γ) ∣ ∀s′ ∈ s, s′Γ − term} ∪ {s′[¯s]Γ ∣ ∀s′ ∈ s, s′not a Γ − term}

Given a system of equations E where e is defined by means of an appro-

priate operator Γ, a solution ¯s to E is a function ¯s ∶X → Vafa [U] so that

¯s(x) = e(x)[¯s]Γ

We can have as well then a version of the solution lemma that we can

apply to work with the above definitions:

Theorem 2.4. Let Γ be an appropriate operator. Then every equation system

using Γ to define its equations has a unique ¯s Γ solution

As in this setting we can have properties that are not present in the

common Kripke semantics, to have an illustration of it we also will refer to

some results from [3] that involve the use of modal logic.

Recall its syntax for a fixed set A ⊆ U :

p ∣ ¬ϕ ∣ ⋀Φ ∣ ◻ϕ

where p ∈ A, Φ is a set of formulas, and we define the special constant ⋀∅ = ⊺

and ¬◻¬ =◇ the dual of the box. When we do restrict Φ to finite sets we talk

about the finitary fragment denoted by L◻(A), and the infinitary fragment

by L∞◻(A). In this setting we will always refer to a language depending on

a fixed set A. To keep the simplest possible the notation we will avoid that

reference, and we will specify it whenever it may lead to confusion.

The following results show to us the classes of sets that we are able to

characterize in agreement with the language we use
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Theorem 2.5. Let s, t ∈ Vafa[A]. If s, t satisfy the same sentences of L∞(A),

then s ≡ t

Theorem 2.6. Let s, t ∈HF 1[A]. If s, t satisfy the same sentences of L(A),

then s ≡ t

This alert us of the differences in expressiveness that we will have, and also

of the nice features of modal logic as a tool for doing set theory. Even more,

we can have more precise results:

Definition 2.13. Let s ∈ Vaffa[A], and ϑ a sentence in L(A) or L∞(A).

We say that ϑ characterizes s in Vafa[A] if for any t ∈ Vafa[A] we have that

t ∈ JϑKt iff t = s

and in fact we have such a property for any set:

Theorem 2.7. Every set s ∈ Vafa[A] is characterizable in Vafa[A] by some

sentence ϑs of L∞(A)

Of course, the technical problem is to specify such a sentence. In order to do

that, the following sentence will play a special role:

Definition 2.14. For any set Φ of sentences, △Φ is the following sentence:

⋀
ϕ∈Φ

◇ϕ ∧◻ ⋁
ϕ∈Φ

ϕ

and here there is the first step in the definition of the characteristic sentence

of a set:
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Definition 2.15. Let A ⊆ U , fixed. For each s ∈ Vafa[A] it is defined by

recursion a transfinite sequence ϕsα of formulas in L∞(A) as follows:

ϕs0 = ⋀
p∈A∩s

p ∧ ⋀
p∈A∖s

¬p

ϕsα+1 = ϕs0 ∧△{ϕs0
α ∣ s0 ∈ s}

ϕsλ = ⋀
α<λ

ϕsα λlimit ordinal

the only ingredient missing to complete its definition is a specific ordinal

which depends on each set:

Theorem 2.8. For every set s ∈ Vafa[A], there exists an ordinal α so that

ϕsα characterizes s

Definition 2.16. For any s ∈ Vafa[A] the degree of s is the least ordinal α

such that ϕsα characterizes s. It is denoted by deg(s)

Finally, we will also make use or the following proposition:

Proposition 2.2. Let W be transitive on sets. Then, the set of all infinitary

sentences ϕ such that modelsWϕ is closed under necessitation.

Let T be some set or class of infinitary sentences closed under the rule

of necessitation, and let W = {a ∈ Vafa[A]∣a ⊧ T}. Then, W is transitive on

sets.

Let’s proceed.



Chapter 3

Static Logic

In this chapter we present the static logic that will be at the base of the

dynamic modalities for belief revision. First we present the class of sets

that will constitute the semantics for the logics presented. We proceed then

to give its syntax and semantics. Standard validity of the relevant axioms,

soundness and completeness, as well an application of the characterization

results mentioned in the previous chapter are included.

3.1 Plausibility-set Models

In this section we will construct the class of sets that will constitute the

semantics for the logics we will work with. We want to express it as the

greatest fixed point of a monotone operator to be able to use the principles

presented in the previous chapter. Thus, the aim of this section is to show

that the class of sets we will work with can be obtained in such a way. Recall

that we denote by R,T and C the class of reflexive, transitive and connected

19
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sets respectively.

Let A ⊆ U , fixed, and s ∈ Vafa. Consider the operator:

Φ(s) = {y ⊆ s ∪A ∣ y ∈ C,∧y ⊆ (R ∩ T ) ∪A}

It is easy to see that Φ is monotone, thus it has a greatest fix point. Denote

it by Φ∗.

Proposition 3.1.

Φ∗ = {y ∣ spp(y) ⊆ A, y ∈HC,∧∀z ∈ y, z ∈HRT}

Let‘s verify our affirmation. First, we need to show that Φ∗ ⊆ Φ(Φ∗).

Let c ∈ φ∗. Then, spp(c) ⊆ A. Let x ∈ c, in particular x ∈ HC and ∀y ∈ x,

y ∈HRT . Thus x ∈ Φ∗. Then c ⊆ Φ∗ ∪A.

Second, as c ∈ Φ∗, then c ∈ C, and ∀x ∈ c, x ∈ RT . Then c ∈ Φ(Φ∗).

Now, letW be such thatW ⊆ Φ(W ). Let w ∈W . Then w ∈ Φ(W ) implies

that x ⊆W ∪A, w ∈ C, and ∀y ∈ w y ∈ RT.

Let x ∈ w, and let x1, x2 ∈ x. As x ∈ T , x1, x2 ∈ w, then either x1 ∈ x2 or

x2 ∈ x1 by connectedness of w. Then x is connected. As those elements were

arbitrary we can see that w ∈HC.

Now, take x ∈ w and x1 ∈ x. As x ∈ T , then x1 ∈ w thus x1 ∈ R. As those

elements were arbitrary we can conclude that x ∈HR.

Finally, by an analogous reasoning as before, we can see that x ∈ HT .

Therefore w ∈ Φ∗

We can now use the principle of coinduction and corecursion for this operator.
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Definition 3.1. Plausibility-Set Models

For any A ⊆ U , fixed, letM = Φ∗∩T ∩Vafa[A]. We defineM as the class

of sets that will constitute our models.

Observe that

M =HTC ∩ ℘(HR) ∩ Vafa[A]

Claim 3.1. For any A fixed, M ⊆ Φ∗

Let x ∈ Φ∗ ∩T ∩Vafa[A]. We want to show x ⊆ Φ(x). Let x′ ∈ x. Observe

that x′ ⊆ x∪A because x ∈ Φ∗ implies that spp(x) ⊆ A, and as x is transitive,

x′ ⊆ x. Also, x ∈ Φ∗ implies that x′ ∈ HRTC, thus in particular, x′ is

connected and ∀x′′ ∈ x′, x′′ ∈HTR. Hence x′ ∈ Φ(x).

3.2 The logics LK◻ and L∞K◻

Ww now proceed to present the static logics we will work with. The logic

LK◻ (and L∞K◻
) were created by Baltag and Smets in their article [6]. There,

K is the normal operator of knowledge, and ◻ is the operator called “safe

belief”. Conceptually, it was introduced by Stalnaker [25]. The idea encoded

by this operator is that any formula guarded by it is a formula that will not

be revised under truthful information. This is why is a belief safe to hold.

It is called also an operator of knowledge as ◻ is the box for the ∈ relation.

In the order given by the ∋ relation, we want to specify the following special

cases. Its strict version is present when s ∋ t but t ∌ s then we will denote

it by >. Also, we say that two sets are equiplausible s ≃ t iff s ∋ t and t ∋ s.
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Given c ∈ M, we define bests(c) = Min∋{t ∣ t ∈ c} A relation ∋ is called

“quasi-well-founded”when the strict > relation is converse well-founded.

3.2.1 Syntax

Now we will present the syntax for these logics.

ϕ ∶= p ∣ ¬ϕ∣ ⋀Φ∣ Kϕ∣ ◻ ϕ

where Φ is any set of formulas. Whenever we refer to the finitary fragment

of the logic, we restrict ⋀Φ to any finite set Φ. It will be denoted by LK◻.

The full infinitary language will be denoted by L∞K◻
.

As usual the defined connectives and constant are:

⊺ ∶=⋀∅

⋁Φ ∶=¬ ⋀
ϕ∈Φ

¬ϕ

K̂ϕ ∶=¬K¬ϕ

◇ϕ ∶=¬ ◻ ¬ϕ

3.2.2 Semantics

For c ∈M, we have the following semantics:

JpKc = {t ∈ c ∣ p ∈ t}

J¬ϕKc = c ∖ JϕKc

Jϕ ∧ ψKc = JϕKc ∩ JψKc

J⋀
ϕ∈Φ

ϕKc = ⋂
ϕ∈Φ

JϕKc
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J◻ϕKc = c ∩ ℘(JϕKc)

JKϕKc =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

c if JϕKc = c

∅ else

Proposition 3.2. .

J⊺Kc = c

Jϕ→ ψKc = JϕKc ∪ JψKc

J⋁ΦKc = ⋂ϕ∈Φ JϕKc

JK̂ϕKc =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

c if JϕKc ≠ ∅

∅ else

J◇ϕKc = {t ∈ c∣ t ∩ JϕKc ≠ ∅}

One of the nice features of this logic is that we can have as derived

operators the belief operators as follows:

Bψϕ = K̂ψ → K̂(ψ ∧ ◻(ψ → ϕ))

Bϕ = B⊺ϕ

Proposition 3.3.

JBϕKc =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

c if ∃t ∈ c so that t ⊆ JϕKc

∅ else
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JBψϕKc =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

c if ∃t ∈ c,with t ∩ JψKc ≠ ∅, and t ∩ JψKc ⊆ JϕKc

∅ else

For a sentence ϕ ∈ LK◻ or in L∞K◻
we say that

• ϕ is satisfied for a set t ∈ c with c ∈M iff t ∈ JϕKc. We can also denote

such relation by t ⊧M ϕ

• ϕ is valid with respect to the classM iff ∀c ∈M we have that JϕKc ≠ ∅.

We denote this notion by ⊧M ϕ

• ϕ is a consequence of the set of sentence Φ iff JψKc ⊆ JϕKc,∀c ∈ M.

This is also denoted Φ ⊧M ϕ

whenever no superscript is present, we refer to the relation as holding for any

class of sets. As well whenever we have any other class thanM as superscript

we refer to this notions as holding for that particular class.

Standard models are those sets c ∈ M in which the > relation is well

founded. This is, there are no infinite descending sequences:

c0 > c1 > c2 > . . .

Any c ∈M where > is not well founded will be called non-standard. The

finitary language is blind to this difference.

Consider the following example, which is a modification of an example

offered in [12, 3].

Example 3.1. Consider the set ω. By the axiom of plenitude, we can have

a set X of indeterminates such that X ∼ ω. Now, considering the set X, by

the strong axiom of plenitude we can have a set A ⊆ U so that X ∩A = ∅. Let

e ∶X → Vafa[A] given as follows:
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e(xi) = {xj}j≤i ∪ {pj}j≤i

Let E denote such system of equations, and s its solution, and denote by

cω = sol = set(E). Observe that cm ∈M and that > are well founded. This is,

it is an example of an standard model.

Now, consider the system of equations E+ with X+ = X ∪ {xω}, A+ = A

and

e+(xi) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

X+ ∪A+ if xi = xω

{xj}j≥i ∪ {pj}j≥i else

As before, let ¯s be its solution, and denote by c+ω = sol − set(E+) Observe

that c+ω ∈M and that in this case we do have infinite descending > sequence

of elements in c+ω.

Proposition 3.4. cω and c+ω satisfy the same sentences in LK◻

Now, we will give a sentence ϑ ∈ L∞K◻
in which they differ. Consider the

following sequence of formulas.

τ0 = p0 ∧⋀0<i ¬pi

τn+1 = ◇τn ∧⋀i≤n+1 pn+1 ∧⋀n+1<j ¬pj

then, define the following sentence:

ϑ ∶= ◇⋀
n∈N

τn

we have that c+ω ⊧ ϑ while cω ⊭ ϑ



26 3. STATIC LOGIC

3.3 Soundness and Completeness issues

As was noted in the previous chapter, we can characterize in infinitary modal

languages infinite sets. We will return to this in the last section of this

chapter. In particular, for the language L∞K◻
means that correspondence of

classes of sets and modal logics can be established at the level of models.

This correspondence for axioms in LK◻ can only hold at the level of

“frames”. Let’s illustrate the known results for these logics.

3.3.1 Known results on frame correspondance for LK◻

Given any set, the operation sk defined in 2.1 returns the structure of such

a set. Having the skeleton of a set, we can have the class of all sets that we

can form out of that skeleton by adding the desired urelements from a fixed

A ⊆ U . An instance of such a class will be given by an operation val taking

an skeleton or frame and returning a set in Vafa[A].

In a general form, we can refer to a skeleton as a system E = ⟨X,e⟩ Then,

a valuation val depending on a set of urelements A ⊆ U will return a set

sv = sol − set(Eval) where Eval = ⟨Xv,A, ev⟩ with Xv =X, and

ev(x) = e(x) ∪ val(x)

and val(x) ⊆ A

We can abstract away the conditions that the skeleton of a set must have

in order to ensure that an axiom scheme can be valid on the class of sets

that we can obtain by adding different urelements to it. These conditions

are given as follows:
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Definition 3.2. ∈e −Memebership

Given a system E = ⟨X,A, e⟩ we define the relation ∈e, with e the equation

function of E as follows

x ∈e y⇔ x ∈ e(y)

Then, the conditions to ensure validity of the scheme axioms are the following

Class Defining Property Axiom

Re x ∈e x ◻ϕ→ ϕ

Tra ∀x1, x2, x3 ∈X, x1 ∈e x2 ∈e x3 ⇒ x1 ∈e x3 ◻ϕ→ ◻ ◻ ϕ

Sym ∀x1, x2 ∈X if x1 ∈e x2, then x2 ∈e x1 ϕ→ ◻ ◇ ϕ

Con ∀x1, x2 ∈X x1 ∈e x2 or x2 ∈e x1 ◻(◻ϕ ∧ ¬ψ) ∨ ◻(◻ψ ∧ ¬ϕ)

Denote by Re,Tra,Sym and Con the class of sentences that are instances

of the axiom ◻ϕ → ϕ, ◻ϕ → ◻ ◻ ϕ, ϕ → ◻♢ϕ and ◻(◻ϕ ∧ ¬ψ) ∨ ◻(◻ψ ∧ ¬ϕ)

respectively. We can proof then standard validity of the axioms we want.

We show this just for transitivity as an example.

Proposition 3.5. A skeleton E = ⟨X,e⟩ is transitive iff ◻ϕ → ◻ ◻ ϕ is valid

on it.

⇒

Let E = ⟨X,e⟩ be a transitive frame. Let val be any valuation such that for

sv with sv = sol − set(Eval = ⟨X,A, e⟩) we have that sv = J◻ϕKsv . This means

that sv = JϕKsv Let x, y such that y ∈ x ∈ sv. By assumption of transitivity,

we have that y ∈ sv. Thus, y ∈ JϕKsv . We have then that y ∈ J◻ ◻ ϕKsv . But

x, y were arbitrary, then, sv ∈ J◻ ◻ ϕKsv
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⇐

Let E = ⟨X,e⟩ be a frame such that ◻ϕ → ◻ ◻ ϕ is valid on it. Suppose

that E is not transitive. Then there exists x1, x2x3 ∈ X so that x1 ∈e x2 ∈e x3

but x1 ∉e x3. The consider a valuation over the set A = {p} returning the

system Eval = ⟨Xv,A, eV ⟩ where:

ev(xi) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

e(xi) = e(x) ∪ p if xi ∈ x3

e(x) else

let ¯s be its solution. Then

¯s(x3) ∈ J◻pKsv but ¯s(x3) ∉ J◻◻pKsv contradicting our assumption. Hence,

E should be transitive.

Definition 3.3. Given any plausibility model M = ⟨W,≥, V ⟩, consider the

following flat system EM = ⟨X,A, e⟩ with X = W , A = dom(V ) and e(x) =

{y ∣ x ≥ y}∪V (x) Let cM = sol = set(E), we call EM the canonical equational

representation of M , and to cM the canonical set associated with M

Let PC be the class of plausibility models then we have that for any

M ∈ PC, cm ⊧ Tra ∧Con, and for any c′m ∈ cm c′m ⊧ Re ∧ Tra ∧Con

Let K◻K◻K◻ be the system with axioms and rules 1-6, and K◻∞K◻∞K◻∞ the whole

set of axioms and rules from 1-11. See[6, 3]

1. Necessitation Rules for K and ◻

2. Modus Ponens
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3. The S5−axioms for K

4. The S4−axioms for ◻

5. Kϕ→ ◻ϕ

6. ◻(◻ϕ ∧ ¬ψ) ∨ ◻(◻ψ ∧ ¬ϕ)

7. From any countable set Φ infer ⋀Φ

8. ⋀α<β ϕα → ϕα

9. ⋁i∈I ⋀j∈J ϕi,j → ⋀f∈JI ⋁i∈I ϕi,f(i)
10. K⋀α<β ϕα → ⋀α<βKϕα
11. ◻⋀α<β ϕα → ⋀α<β ◻ϕα

Definition 3.4. A sentence ϕ is provable in K◻K◻K◻ (or in K◻∞K◻∞K◻∞) if it is in the

smallest set of sentences containing all the instances of the axioms inK◻K◻K◻ (or

K◻∞K◻∞K◻∞) and closed under MP and necessitation of K and ◻. It is denoted by

⊢K◻ ϕ if ϕ is provable in K◻K◻K◻, respectively this relation will be denoted with

⊢K◻∞K◻∞K◻∞ for the system K◻∞K◻∞K◻∞ In general, ϕ is provable from a set T if there are

ψi ∈ T so that ⋀ψi → ϕ. Then, this is denoted by T ⊢K◻ ϕ (respectively with

the subscript K◻∞K◻∞K◻∞ for that system)

Proposition 3.6. Soundness.- For ϕ ∈ L∞K◻
, we have that if T ⊢K◻∞ ϕ, then

⊧M ϕ

It is easy to see that the axioms are valid with respect toM. Thus, if ϕ

is an instance of them we have directly that ⊧M ϕ. If ϕ was obtained by MP

from a set of sentences {ψ → ϕ,ψ} assumed valid. Suppose that ⊭M ϕ, then

∃c ∈M so that ⊭M ϕ. As c ∈M then c ⊧M ψ → ϕ and c ⊧M ψ, but then

c ⊭M ψ → ϕ, which is a contradiction. Hence we should have ⊧M ϕ If ϕ was

obtained by necessitation of either K or ◻ by proposition 2.2, we have that
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⊧M ϕ Finally, if ϕ was obtained by the rule of infinitary conjunction, form a

set Φ assumed to be valid, then we directly have has well that ⊧M ϕ

Proposition 3.7. The class M is closed under equational representation

Then we can apply the following theorem from Barwise and Moss[12]

Theorem 3.1. Let C be a complete semantics for a theory T , and closed

under equational representation, then for all ϕ ∈ LK◻ we have that

If T ⊧HCP ϕ then T ⊢K◻ ϕ

It has been shown [6, 3] that the class of connected preorders CP is a

complete semantics for K◻K◻K◻. Thus for ϕ ∈ LK◻ we have that

If T ⊧HPC ϕ then T ⊢K◻K◻K◻ ϕ

Then,M is a complete semantics for LK◻.

Conjecture 3.1. The logic L∞K◻
is complete with respect to the calculusK◻K◻K◻∞

3.4 Characterizing Formulas

In this section we want to clarify how we can apply the results due to Baltag

[3] mentioned in the previous chapter about the construction of a character-

istic formula in our setting.

Thus, the first thing we need to do is tho have an analogous base sentence:

Definition 3.5. Let A ⊆ U , fixed. For each s ∈ m ∈ M it is defined by

recursion on On a transfinite sequence ϕsα of formulas in L∞K◻
(A) as follows:
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ϕs,m0 = ⋀
p∈A∩s

p ∧ ⋀
p∈A∖s

¬p

ϕs,mα+1 =ϕ
s,m
0 ∧△K{ϕt,mα ∣ t ∈m}

. ∧△◻ {ϕt,mα ∣ t ∈ s}

ϕs,mλ = ⋀
α<λ

ϕs,mα λlimit ordinal

where △⊙Φ is the following sentence:

⋀
ϕ∈Φ

¬ ⊙ ¬ϕ ∧ ⊙ ⋁
ϕ∈Φ

ϕ

for ⊙, in {K,◻}

We need the following analogous lemma.

Lemma 3.1. For A ⊆ U , s ∈m ∈M and s′ ∈m′ ∈M with α,β ∈ On we have:

1. s′ ∈ Jϕs,m0 Km′ iff s′ ∩A = s ∩A

2. s ∈ Jϕs,mα Km

3. α ≥ β ⇒⊧ ϕs,mα → ϕs,mβ

4. ϕs,mα , ϕs
′,m′

α jointly satisfiable ⇒ ϕs,mα = ϕs
′,m′

α

5. ϕs,mα = ϕs
′,m′

α ⇒ ϕs,mβ = ϕs,mβ ∀β < α

We will see the first two cases. Part 1. is direct as s′ ∈ Jϕs,m0 Km′ iff

∀p, p ∈ s ∩A⇒ p ∈ s′ and ∀p, p ∈ A ∖ s ∩A⇒ ¬p ∈ s′ iff s′ ∩A = s ∩A.

Part 2. Is proved by induction on α ∈ On. α = 0 is direct

Assume that s ⊧ ϕs,mβ for some β ∈ On. We want to prove that s ⊧ ϕs,mα for

α = β + 1.

It is clear that s satisfies the first conjunct. Then, let’s see that

s ⊧△K{ϕt,mβ ∣t ∈m}
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as s ⊧ ϕs,mβ , for γ ≤ β we have s ⊧ △K{ϕt,mγ ∣ t ∈ m}, This means that

for t ∈ m there exists st ∈ s so that st ⊧ △{ϕt,mβ ∣t ∈ m}. This means that

s ⊧△K{ϕt,mβ ∣ t ∈m}

an analogous reasoning applies for ◻

Now let α ∶= λ for λ limit ordinal.

Suppose s ⊭ ⋀β<λϕs,mβ then, there exists γ ∈ On so that s ⊭ ϕs,mγ but this

means that s ⊭ ϕs,mξ for ξ ≤ γ. Then s ⊭ ϕs,m0 , but this is a contradiction.

Hence s ⊧ ⋀β<γ ϕs,mβ

We want the have the analogue of theorem 2.8 for our setting.

Theorem 3.2. For any set s ∈m ∈M we will always have an ordinal α such

that ϕs,mα characterizes m.

This will follow by the analogous of Baltag’s lemma:

Let κ be a regular cardinal, then we define the relation R on Vafa[A]

xRy iff ∃z ∈Hκ[A] so that ϕs,xκ = ϕs,zκ = ϕs,yκ

The proof of these statements is also analogous as the original proof.

3.5 Correspondence

The aim of this section is to show that in this setting, we can have the

traditional correspondence frame results not only at the level of frames as in

the finitary case, but at the level of models due to the results mentioned in

the previous section.
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Definition 3.6. A set S is closed under ◻ if whenever ϕ ∈ S, we have ◻ϕ ∈ S

Let the following sets:

• RRR and RRR∞

• TTT and TTT∞

• CCC and TTT∞

be the closure under necessitation of all the instances of the axioms ◻ϕ→ ϕ

◻ϕ→ ◻◻ϕ and ◻(◻ϕ∧¬ψ)∨◻(◻ψ ∧¬ϕ), respectively, where ϕ ∈ LK◻ when

no subscript is present, and ϕ ∈ L∞K◻
when we have the ∞ subscript. Then,

we have the following theorem

Theorem 3.3. For any set s ∈ Vafa[A] in each case, affirmations i and ii

are equivalent
i. − s ∈HR i. − s ∈HT i. − s ∈HC

ii. − s ⊧RRR∞ ii. − s ⊧ TTT∞ ii. − s ⊧CCC∞

as well as the finitary cases.

We will prove as an example the second case. i ⇒ ii Let s ∈ HT , by

proposition 2.2 it is enough to prove that s ⊧ ◻ϕ → ◻ ◻ ϕ ∀ϕ ∈ L∞K◻
. Thus,

assume s ⊧ ◻ϕ and let s0, s1 ∈ s so that s0 ∈ s1 ∈ s. By transitivity of s, we

have that s0 ∈ s, hence s0 ⊧ ϕ. As s0, s1 were arbitrary, thus s ⊧ ◻ϕ→ ◻ ◻ ϕ

ii.⇒ i.

Let W = {s∣s ⊧ TTT∞} Let x ∈ W , and z ∈ y ∈ x. Then, we have that

⊧ ϑx → ◇ϑy, and ⊧ ϑy → ◇ϑz. But then, by transitivity of → we have that

⊧ ϑx → ◇ϑz, thus z ∈ x, i.e. x is transitive. The same reasoning applies for

any element y ∈ x. Thus as HT is the largest class with this property, then

x ∈HT .
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Corollary 3.1. For a fixed A, c ∈M iff c ⊧ TTT∞ ∧CCC∞ and for all c′ ∈ c we

have c′ ⊧RRR∞



Chapter 4

Doxastic Upgrades

First introduced by [23], update, radical upgrade and conservative upgrade

are operations on pointed models which make us revise our information, with

different degrees of trust in the source of information.

An infallible source corresponds to an update, in which we erase the

worlds that do not satisfy the formula announced. A radical upgrade corre-

sponds to a highly trusted source, but not know to be infallible, so we make

the worlds satisfying the announced formula more plausible than the ones

not satisfying it.

Finally, a conservative upgrade corresponds to a source in which we barely

trust. There, we make only the most plausible world satisfying the sentence

announced the most plausible overall. The general term to refer to any of

these model transformers is doxastic upgrades[7, 9, 6].

In this chapter we will define those transformations over M. We will

proceed by giving first some extra conditions that we need in the functions

we will work with, so we can remain within the range we want. Later we

35
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will propose the π functions needed to define a base function for doxastic

upgrades. Finally we will give some relevant examples of their properties

4.1 General Requirements

Recall operator Φ defined in the previous section and the classM of models

we are working on. Recall also the principle of corecursion for Φ

Principle 4.1. Let c ∈ Φ∗, and π ∶ c → Φ(c), then, there exists a unique

function Fπ ∶ c→ Φ∗ such that

Fπ(x) = Fπ[π(x)] ∪ (x ∩A) ∀x ∈ c

In this section, we want to establish some properties that will ensure that

the range of the functions we will define,is the one we need. These properties

or restrictions will be proposed for the pump functions we will use for the

functions we define by corecursion. For these functions, we want them to

have as range ⋃M.

Observe that for a fixed A ⊆ U

⋃M =HTCR ∩ Vafa[A]

That will be the range of our base functions. Recall that we remain in

Φ∗ as (M ∩R) ⊆ Φ∗.

The restrictions we need to impose then, are encoded in the following

properties.

Definition 4.1. π −Membership. Given any π ∶D → Vafa we define
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x ∈π y iff x ∈ π(y)

Definition 4.2. Let D be any class and π ∶D → Vafa [U] so that

∀x ∈D ∩R we have that x ∈π x

then, we say that π has the Rπ property

Definition 4.3. Let D be any class and π ∶D → Vafa [U] so that

∀x, y, z ∈D ∩ T, if x ∈π y ∈π z, then x ∈π z

then, we say that π has the Tπ property.

Theorem 4.1. Let π ∶ c → Φ(c) for c ∈M so that π satisfies the Rπ and Tπ
properties. Then, there exists a unique function Fπ ∶ c→ (Φ∗ ∩T )∩R so that

Fπ(x) = Fπ[π(x)] ∪ (x ∩A) ∀x ∈ c

Existence and uniqueness follow from the principle of corecursion for Φ.

This also means that by construction Fπ(x) ∈ Φ∗. Let x ∈ c for c ∈ M.

This means that x ∈ R then, by Rπ, we have that x ∈ π(x). Thus Fπ(x) ∈

F [π(x)] = Fπ(x), i.e. Fπ(x) ∈ R Finally let x ∈ c, and y, z so that y ∈ Fπ(x)

and z ∈ y. Observe that Fπ(x) ∈ Φ∗ implies that y, z ∈ T . Now, y ∈ Fπ(x)

implies ∃xy ∈ π(x) so that y = Fπ(xy). Analogously, z ∈ y implies ∃xz ∈ π(xy)

so that z = Fπ(xz) By Tπ we have that xz ∈ π(x). Hence z ∈ Fπ(x)

We can now characterize the kind of functions we will work with.
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Corollary 4.1. Assume that ∀c ∈ M, there exists πc ∶ c → Φ(c) satisfying

the Rπ and Tπ properties. Then, there exists a unique G ∶M→M such that

G(c) = Fπc[c] ∀c ∈M

Existence and uniqueness of these functions follows by the existence and

uniqueness of the base Fϕ. Now, we have to prove that we have the desired

range for the functions of the kind of G.

Claim 4.1. For c ∈M, G(c) ∈M

First, we need to show that for a fixed A ⊆ U , we have G(c) ∈ Φ∗.

By coinduction it is enough to prove that G(c) ⊆ Φ(G(c)).

• We need to show that any x ∈ G(c) is so that x ⊆ G(c) ∩A.

Let x ∈ G(c), then there exists cx so that x = Fπc(cx) then by definition

of Fπc we have spp(x) ⊆ A

Let y ∈ x. This means that there exists cy ∈ cx so that y = Fπc(cy).

By transitivity of c we have that cy ∈ c. Thus y ∈ G(c). Therefore

x ⊆ G(c) ∪A

• We will show that x is connected. Let y, z ∈ x = Fπc[cx], i.e. there

exists cy, cz ∈ cx such that y = Fπc(cy), z = Fπc(cz). Observe that cx ∈ c

implies that cx is connected. As cy, cz ∈ cx, then either cy ∈ cz, or

cz ∈ cy. Assume cy ∈ cz, then y = Fπc(cy) ∈ Fπc(cz) = z. the other case

is analogous.

• We need to show that any y ∈ x is HRT Observe that ∀y ∈ x, y =

Fπc(cy). Then, by 4.1, we know that y ∈ R and y ∈ T . Moreover, as

Fπc[c] ⊆ Φ∗ then, any z ∈ y is reflexive and transitive. Thus, we know

that y ∈HRT . Therefore x ∈ Φ(G(c))
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Second, let’s see thatG(c) is transitive.

Let y,w be such that y ∈ w ∈ G(c) = Fπc[c], i.e. there exists cw ∈ c

such that w = Fπc(cw), and there exists cy ∈ cw such that y = Fπc(cy). By

transitivity of c, cy ∈ c, thus y ∈ G(c)

Therefore G(c) ∈M

4.2 Upgrades

We will define basic doxastic upgrades overM. In all cases we will proceed as

follows. First, we give the π functions for each case and check they fulfill the

required properties. Second, we define by corecursion base functions that

will be used to define the final functions that will constitute our doxastic

upgrades.

4.2.1 Pump functions

Definition 4.4. Given any ϕ ∈ LK◻, c ∈M, for a fixed A ⊆ U , consider the

following functions π ∶ c→ Φ(c)

π!ϕ(t) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

(JϕKc ∩ t) ∪ (t ∩A) if JϕKc ≠ ∅and t ∈ JϕKc

↑ else
(4.1)

π⇑ϕ(t) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

(JϕKc ∩ t) ∪ (t ∩A) if t ∈ JϕKc

(JϕKc ∪ t) ∪ (t ∩A) if t ∈ c ∖ JϕKc
(4.2)
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π↑ϕ(t) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

(⋂JϕKc ∩ t) ∪ (t ∩A) if t ∈ ⋂JϕKc

(⋂JϕKc ∪ t) ∪ (t ∩A) if t ∈ c ∖⋂JϕKc
(4.3)

Proposition 4.1. For π defined in equations (4.1),(4.2) and (4.3) above,

π(c) ∈ Φ(c)∀c ∈M

In order to prove the above proposition we need to observe that in all

cases JϕKc ⊆ c and ∀x ∈ c implies that spp(JϕKc), spp(x) ⊆ A. Then, in all

cases spp(π(x)) ⊆ A.

1. We will prove this for π!ϕ

First let’s prove that π!ϕ(c) ⊆ c ∪ A Let x ∈ π!ϕ(c), whenever π!ϕ

is defined we have that x ∈ JϕKc by definition of π!ϕ. As JϕKc ⊆ c,

then x ∈ c and we already noted that it has the right support. Thus

π!ϕ(c) ⊆ c ∪A

Second ∀x ∈ π!ϕ(c) we have that x ∈ c (as we note in the previous

part) This means that x ∈ R and x ∈ T

Finally, we need to show that π!ϕ(c) is connected. Let y, z ∈ π!ϕ(c).

Then as before, we have that y, z ∈ JϕKc and then y, z ∈ c. By con-

nectedness of c we have that either y ∈ z or z ∈ y. Thus π!ϕ(c) is

connected.

Therefore π!ϕ ∈ Φ(c)

2. We will prove now π⇑ϕ(c) ∈ Φ(c)

As before let’s see first that π⇑ϕ ⊆ Φ(c) Let x ∈ π⇑ϕ, then either x ∈

JϕKc ∩ t for some t ∈ c or x ∈ JϕKc ∪ t for some t ∈ c. In both cases we

can see that x ∈ c. Thus π⇑ϕ(c) ⊆ Φ(c)
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Second, as in the previous case it follows directly that for x ∈ π⇑ϕ(x),

in any of the two cases for this function, x ∈ c. Thus, x ∈ R and x ∈ T

Finally, we need to check that π⇑ϕ(c) is connected. Let y, z ∈ π⇑ϕ(c).

Then we have two cases.

• y, z ∈ JϕKc ∩ x for some x ∈ c with x ∈ JϕKc.

Observe that x ∈ c implies that x is connected. Also, ∀y, z ∈ JϕKc,

y, z ∈ c. Thus y ∈ z or z ∈ y. Hence JϕKc is connected, thus JϕKc∩x

is connected. Thus, for y, z ∈ JϕKc ∩ x either y ∈ z or z ∈ y.

• y, z ∈ JϕKc ∪ x for some x ∈ c ∖ JϕKc.

Note that if y, z ∈ JϕKc, or y, z ∈ x, then by connectedness of

those sets we are done. If y ∈ JϕKc and z ∈ x ∖ JϕKc, as JϕKc ⊆ c,

then y ∈ c. Also, as x ∈ c ∖ JϕKc, then z ∈ c by transitivity of c

Thus, either z ∈ y or y ∈ z by connectedness of c. The other case

is analogous. Therefore π⇑ϕ(c) is connected

Therefore π⇑ϕ(c) ∈ Φ(c)

3. The case for π↑ϕ is analogous to the case for π⇑ϕ considering ⋂JϕKc

instead of JϕKc.

Proposition 4.2. The functions π defined in 4.1, 4.2 and 4.3 above satisfy

the properties Rπ and Tπ

As before, we make a a general remark valid for all cases, namely, that

x ∈ c implies that x ∈ R and x ∈ T .

1. The case for π!ϕ

• We will show that π!ϕ has the Rπ property Let x ∈ c. Note that
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whenever π!ϕ is defined x ∈ JϕKc. Also, x ∈ R implies that x ∈ x

Thus x ∈ JϕKc ∩ x. Then, x ∈π!ϕ x by definition of π!ϕ.

• Let’s see that π!ϕ has the Tπ property Let y, z be such that

z ∈π!ϕ y and y ∈π!ϕ x for some x ∈ JϕKc. Then, y ∈ JϕKc ∩ x and

z ∈ JϕKc ∩ y by definition of π!ϕ. In particular, we have z ∈ y ∈ x.

By transitivity of x, we have z ∈ x. Thus z ∈ JϕKc ∩x this means

that z ∈π!ϕ x again by definition of π!ϕ

2. Now, we will prove those properties for π⇑ϕ

• π⇑ϕ has the Rπ property Let x ∈ c. If x ∈ JϕKc, then, x ∈ JϕKc ∩x,

thus by definition of π⇑ϕ x ∈π⇑ϕ x. If x ∈ c ∖ JϕKc, then π⇑ϕ(x) =

(JϕKc ∪ x) ∪ (x ∩A), then it is direct that x ∈π⇑ϕ x

• We will prove now that π⇑ϕ has the Tπ property.

Let x, y, z be so that z ∈π⇑ϕ y ∈π⇑ϕ x We have the following cases:

– x ∈ JϕKc. Then, by definition of π⇑ϕ y ∈ JϕKc ∩ xs, and this

implies that z ∈ JϕKc ∩ y because y ∈ JϕKc and by definition of

π⇑ϕ. Observe that in this case we have that z ∈ y ∈ x. Hence

by transitivity of x, we have z ∈ x, and also z ∈ JϕKc ∩ x. By

definition of π⇑ϕ this means that z ∈π⇑ϕ x.

– x ∈ c∖JϕKc. Then y ∈π⇑ϕ x implies that y ∈ JϕKc∪x by definition

of π⇑ϕ. We have the following sub-cases:

∗ y ∈ JϕKc. Then z ∈π⇑ϕ y implies that z ∈ JϕKc ∩ y. This

means that z ∈ cap implies that z ∈ ∩ ∪ x and then z ∈π⇑ϕ x

by definition of π⇑ϕ.

∗ y ∈ x ∖ JϕKc Then, z ∈π⇑ϕ y means that z ∈ JϕKc ∪ y If

z ∈ JϕKc, then as in the previous case we have that z ∈π⇑ϕ x.
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If z ∈ y ∖ JϕKc, then by transitivity of x, we have that z ∈ x.

Then, z ∈ JϕKc ∩ x, i.e. z ∈π⇑ϕ x by definition of π⇑ϕ

3. The case for π↑ϕ is totally analogous to the case in (2), by considering

⋂JϕKc instead of JϕKc

4.2.2 Upgrades

We have already verified that all the proposed pump functions satisfy the

requirements we need Now, we will define some base functions by corecursion.

1. Considering π!ϕ defined in 4.1, by the corecursion principle for Φ, we

have unique function !ϕ ∶ c→M, such that

!ϕ(x) =!ϕ[π!ϕ(x)] ∪ (x ∩A) (4.4)

2. Analogously, with π⇑ϕ defined in 4.2, we have unique function⇑ϕ∶ c →

M such that

⇑ϕ (t) =⇑ϕ [π⇑ϕ(t)] ∪ (t ∩A) (4.5)

3. Finally, by means of π↑ϕ defined in 4.3, we have unique function ↑ϕ∶

c→M such that

↑ϕ (t) =↑ϕ [π↑ϕ(t)] ∪ (t ∩A) (4.6)

Observe that in each case of the above functions, its definition is inde-

pendent of the c taken. Then we may assume we can have any such function

∀c ∈M. Now, considering in each case, the functions defined above, we can

have our final functions as follows
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1. Consider ∀c ∈ M functions !cϕ as defined in 4.4. Then, we have a

unique function !ϕ ∶M→M such that:

!ϕ(c) =⇑cϕ [c] ∀c ∈M (4.7)

2. Now, take ∀c ∈M functions ⇑cϕ as defined in 4.2. Then, we have a

unique function ⇑ ϕ ∶M→M such that

⇑ ϕ(c) =⇑cϕ [c] ∀c ∈M (4.8)

3. Finally ∀c ∈M take functions ↑cϕ as defined in 4.3. Then, we have a

unique function ↑ ϕ ∶M→M such that

↑ ϕ(c) =↑cϕ [c] ∀c ∈M (4.9)

Proposition 4.3. Existence and uniqueness of functions defined in 4.7, 4.8

and 4.9 can be derived from corollary 4.1

We can add now the dynamic modality ⟨†ϕ⟩ψ for † ∈ {!,⇑, ↑}.

J⟨†ϕ⟩ψKc = †ϕ(c)−1[JψK]c

where †ϕ(c)−1 means the pre-image of the transformation applied to the set

in question.

4.3 Preserving Properties

During the proofs in the previous section, we have been suggesting a known

property of the conservative upgrade, namely that it is a particular case of
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the radical upgrade. We can verify that it is the case for the functions we

just defined. Take bests to be a function such that bests(c) = ⋂ c, then:

Proposition 4.4. For all c ∈M, andA ⊆ U we have that ↑ ϕ(c) =⇑ bests(JϕKc)(c)

Let c ∈ MandA ⊆ U . We want to show that ↑ ϕ(c) =⇑ bests(JϕKc)(c).

Consider the following relation:

xRy iff ∃c′ ∈ c so that x =↑cϕ (c′) and y =⇑c
bests(JϕKc)

(c′)

we claim that R is a bisimulation for the sets in question.

Let x ∈↑ ϕ(c) and y ∈⇑ bests(JϕKc)(c) so that xRy. This means that there

exists c′ ∈ c so that x =!cϕ(c′) and y =⇑c
bests(JϕKc)

(c′).

Then we have that x∩A = c′∩A = y∩A by definition of ↑cϕ and ⇑c
bests(JϕKc)

(c′) respectively.

Now, let x′ ∈ x. We have two cases:

• Case 1. c′ ∈ bests(JϕKc)

Then, we have that ∃c′x ∈ c′∩⋂JϕKc so that x′ =↑cϕ (c′x) by definition of

π↑ϕ and ↑cϕ. Then, this means that c′x ∈ c′∩bests(JϕKc) by definition of

bests. Let y′ =⇑c
bests(JϕKc)

(c′x). Thus we have that y′ ∈ y by definition

of ⇑c
bests(JϕKc)

, also that x′ ∩A = c′x ∩A = y′ ∩A by definition of π↑ϕ and

rup and x′Ry′ by our definition of R. The back condition is proved in

an analogous way.

• Case 2. c′ ∈ c ∖ ⋂JϕKc Then, we have that x = π↑ϕ[c′ ∪ ⋂JϕKc] and

y =⇑c
bests(JϕKc)

(c′)[c′ ∪ bests(JϕKc)] Then let x′ ∈ x This means that

∃c′x ∈ c′ ∪ ⋂JϕKc so that x′ = π↑ϕ(c′x). If c′x ∈ c′ then we have that

c′x ∈ c
′ ∪ bests(JϕKc) and by reasoning analogous to the previous case
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we have that y′ =⇑c
bests(JϕKc)

(c′)(c′x) satisfies that y′ ∈ y and x′Ry′.

The same follows if c′x ∈ ⋂JϕKc. The back condition holds also by an

analogous reasoning.

Then, we have ↑ ϕ(c) =⇑ bests(JϕKc)(c). As c was arbitrary, we have

proved our proposition.

It should be noted that here, we used in a direct way a set in the place

where we had been taken a formula as a parameter of our transformation.

This “sloppy”use will not hurt. We should think of a formula as a function

from a model to its satisfaction set. We should formalize this notion in the

next chapter.

Closure under composition of doxastic upgrades is not always possible.

Doxastic updates have this closure property, and we can verify that indeed

we preserve that property as well.

Proposition 4.5. For all c ∈M we have that J[!ϕ][!ψ]Kc = J[!(ϕ ∧ [!ϕ]ψ)]

Let c ∈M. We want to prove that J[!ϕ][!ψ]Kc = J[!(ϕ ∧ [!ϕ]ψ)]

Consider the following relation:

xRy iff x, y ∈ Jϕ ∧ ψKc

We will show that this is a bisimulation for J[!ϕ][!ψ]Kc and J[!(ϕ∧[!ϕ]ψ)]

First observe that x ∈ J[!ϕ][!ψ]Kc implies that

i x ∈ J[!ψ]K!ϕ(c) and also that this means that

ii x ∈!ψ(JψK!ϕ(c))

On the other hand, y ∈ J[!(ϕ ∧ [!ϕ]ψ)] implies that
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i’ y ∈!(ϕ ∧ [!ϕ]ψ)(c), this means

ii’ y ∈!(ϕ ∧ [!ϕ]ψ)(JϕKc ∩ J[!ϕ]Kψ)

Thus, let x ∈ J[!ϕ][!ψ]Kc and y ∈ J[!(ϕ ∧ [!ϕ]ψ)] so that xRy.

Now, let x′ ∈ x. As x ∈ JϕKc, and x ∈!ϕ(c), this means that x′ ∈ JϕKc

by definition of !ϕ. Also, as x ∈ JψKc this means that x′ ∈ JψK!ϕ(c) by ii

and definition of !ψ. This means that x′ ∈ JϕKc ∩ J[!ϕ]ψKc Then, let y′ =

!(ϕ∧ [!ϕ]ψ)(x′). By ii′ we have that y′ ∈ y, and by definition of the updates

involved we have that y ∈ Jϕ ∧ ψKc thus, x′Ry′

Now, let y′ ∈ y. By ii′ this means that there exist c′y ∈ JϕKc ∩ J[!ϕ]ψJc so

that y′ =!(ϕ ∧ [!ϕ]ψ)(c′y) Then, as c′y ∈ JϕKc, we know that c′y ∈ JψK!ϕ(c) for

otherwise it would not belong to J[!ϕ]ψKc Thus, x′ =!ψ(c′y) is so that x′ ∈ x

and x′Ry′ by ii and definition of !ψ

Hence,J[!ϕ][!ψ]Kc = J[!(ϕ ∧ [!ϕ]ψ)] as we wanted. As c was arbitrary, we

have prove our proposition

4.4 Preserving Difficulties

However neither for radical nor conservative upgrades we have this closure,

and we inherited that feature. Consider the following variation of a scenario

from [9, 26] A researcher is wondering whether it is raining or whether it is

sunny in Amsterdam. He believes that it is more likely that it is raining and

that it is not sunny, and that if it is sunny it is more likely that it is not

raining than both things at the time. Take as symbols for raining;= r, and

sunny ∶= s
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The model for this scenario is given by the following set c = sol − set(E)

where E = ⟨X,A, e⟩ and X = {x, y, z}, A = {s, r} and

e(x) = {x, r}

e(y) = {y, x, s}

e(z) = {z, y, x, r, s}

A radical upgrade with the least plausible scenario is given by ⇑ (r∧s)(c)

Observe that Jr ∧ sKc = ¯s(z), Then,

⇑ (r ∧ s)(c) = ⇑r∧s [π⇑r∧s(c)]

= {⇑cr∧s (¯s(x)) =⇑cr∧s [¯s(x) ∪ ¯s(z)] ∪ {r}

⇑cr∧s (¯s(y)) =⇑cr∧s [¯s(y) ∪ ¯s(z)] ∪ {s}

⇑cr∧s (¯s(z)) =⇑cr∧s [¯s(z) ∩ ¯s(z)] ∪ {s, r}}

note that we have the following order:

⇑cr∧s [¯s(y)] ∋⇑cr∧s [¯s(x)] ∋⇑cr∧s [¯s(z)]

not showing the reflexive and transitive relations. A second radical upgrade

with the formula s, is obtained by ⇑ s(⇑ (s∧r)(c)): Observe that JsK⇑s∧r(c) =

{⇑cs∧r (¯s(y)) ⇑cs∧r (¯s(z))}. To simplify the exposition of this example denote

by s1 =⇑cr∧s [¯s(x)], s2 =⇑cr∧s [¯s(y)] and s3 =⇑cr∧s [¯s(z)]
Then we have that
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⇑ s(⇑ (s ∧ r)(c)) =⇑
⇑(s∧r)(c)
s [π¬s(⇑ (s ∧ r)(c))]

={⇑
⇑(s∧r)(c)
s (s1) =⇑

⇑(s∧r)(c)
s [s1 ∪ JsK⇑s∧r(c)] ∪ {r},

⇑
⇑(s∧r)(c)
s (s2) =⇑

⇑(s∧r)(c)
s [s2 ∩ JsK⇑s∧r(c)] ∪ {s},

⇑
⇑(s∧r)(c)
s (s3) =⇑

⇑(s∧r)(c)
s [s3 ∩ JsK⇑s∧r(c)] ∪ {s, r}}

now we have the following order:

⇑
⇑(s∧r)(c)
s [s1] ∋⇑

⇑(s∧r)(c)
s [s2] ∋⇑

⇑(s∧r)(c)
s [s3]

without denoting the reflexive and transitive part. This was an application of

two radical upgrades that, notwithstanding, cannot be expressed as a single

radical upgrade (i.e. an upgrade that lead us from c to ⇑ s(⇑ (s ∧ r)(c))

directly)

Finally, we want to emphasize the above remarks. It can be seen that in

order to have a study of the iteration of these operations, it should be found

a way to have a composition of them. Also that in so doing, it will be also

necessary to have a new way to conceptualize formulas in LK◻ when used as

parameters of these transformations. These remarks are incorporated into

the general framework of Questions given in the next chapter.
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Chapter 5

Generalization and

Applications

In this chapter we will present a natural generalization of the above formal-

ized operations in the notion of a Question. Also related applications like

iterated upgrades and its relation with Learning Theory. By means of the

last illustration we want to show the pertinence of this kind of semantics.

5.1 Questions

The first step in generalizing the operations defined in the previous chapter,

is to take any formula ϕ ∈ LK◻ (or L∞K◻
) as a function ϕϕϕ ∶ c → ℘(c) in the

following way. For c ∈ M ppp(c) = JpKc, (¬ϕϕϕ)(c) = c ∖ JϕKc (⋀α<βϕαϕαϕα)(c) =

⋀α<β(ϕαϕαϕα)(c) (Kϕϕϕ)(c) =Kϕϕϕ(c) (◻ϕϕϕ)(c) = ◻ϕϕϕ(c)

Given in this way we will refer to them as doxastic propositions Whenever

we refer to the image of such function applied to a given c ∈M we will denote

51
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it by ϕϕϕc.

Definition 5.1. A question Q is finite non-empty family of doxastic propo-

sitions

Q = {ϕϕϕ1, . . . ,ϕϕϕn}

such that
n

⋁
i=1
ϕϕϕi = ⊺

and ϕϕϕi ∧ϕϕϕj = � for i ≠ j

In this setting, for any c ∈M we want to refer to a distinguished element

c∗ ∈ c which represents the real world. The correct answer to a question Q

in c ∈M is the unique ϕϕϕi such that c∗ ∈ ϕϕϕic.

Learning with certainty the answer of a questionQ in a model c is modeled

by an action !ϕϕϕ(c), which corresponds to the function !ϕ(c).

Learning uncertain information corresponds to a belief upgrade. Given

a question Q = {ϕϕϕ1, . . . ,ϕϕϕn} a belief upgrade is a subset A ⊆ {ϕϕϕ1, . . . ,ϕϕϕn}

together with an order ≥ we want to create on a given c. Such upgrade will

be denoted by α = ⟨A,≥⟩ Intuitively, this action will correspond to learn that

the answer to a Question Q = {ϕϕϕ1, . . . ,ϕϕϕn} is in a subset A ⊆ {ϕϕϕ1, . . . ,ϕϕϕn}

and that there are some answers more plausible than others.

Proposition 5.1. For every α = ⟨A,≤⟩, there exists an equivalent upgrade

α′ = ⟨A,<⟩

Such upgrade will be called standard and the special notation for it will

be (ϕϕϕ1 . . .ϕϕϕn) for ϕϕϕi ∈ A
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A sequence of doxastic propositions [ϕϕϕ1, . . . ,ϕϕϕn] induces a standard up-

grade given by:

(ϕϕϕ1,¬ϕϕϕ1 ∧ϕϕϕ2, . . . ⋀
1≤i≤n−1

¬ϕϕϕi ∧ϕϕϕn)

Let’s give the function for this action step by step. Given a question

Q = {ϕϕϕ1, . . . ,ϕϕϕn}, and an answer α = ⟨A,>⟩ consider the following pump

πα ∶ c → Φ(c), with A = spp(c) and defined in each case when the condition

EX ∶= J⋁ni=1AKc ≠ ∅ is satisfied for ϕi ∈ A:

πα(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x ∩ϕϕϕ1
c) ∪ (x ∩A) if x ∈ ϕϕϕ1

c , and EX

(x ∩ϕϕϕic) ∪⋃{ϕϕϕ
j
c}j<i ∪ (x ∩A) if x ∈ ϕϕϕic ∖⋃{ϕϕϕ

j
c}j<iand EX

↑ else

(5.1)

Claim 5.1. For c ∈M and A ⊆ U we have that πα(c) ∈ Φ(c)

Observe that in the first case, when πα(x) = (x∩ϕϕϕ1
c)∪(x∩A) we are in the

particular case of the function π!ϕ for ϕ ∶= ϕ1, and we have already seen in the

previous chapter that for this function we have the desired property. Now, for

the remaining cases we have seen that for each i with 1 ≤ i ≤ n x∩ϕϕϕic ∈ Φ(c).

Also that for any j with j < i, ϕϕϕjc ∈ Φ(c), then (x ∩ϕϕϕic) ∪⋃{ϕϕϕ
j
c}j<i ∈ Φ(c)

Moreover, we have as well that for any c ∈M πα has the Rπ and the Tπ
property given the fact that each defined case is a special case of the pump

functions involved in the previous actions and that we had already checked.

Then, by our corecursion theorem, for any Q = {ϕϕϕ1, . . . ,ϕϕϕn}, α = ⟨A,>⟩

and c ∈M we have a function γπα ∶ c→M so that

γπα(x) = γπα[πα(x)] ∪ (x ∩A)
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Corollary 5.1. Assume that for any c ∈M a given question Q = {ϕϕϕ1, . . . ,ϕϕϕn}

and answer α = ⟨A,>⟩ we have functions γcπα defined as above. Then, we have

a unique function α ∶M→M such that:

α(c) = γcπα[c] ∀ c ∈M

existence and uniqueness follow by corollary 4.1

The dynamic modality associated with this operation has the following

semantics:

J[α]ϕϕϕKc = ϕϕϕα(c)

We preserve as well the properties for the previous defined operations †ϕ

with † ∈ {!,⇑, ↑} For instance, being a particular case of an answer.

Proposition 5.2. .

• !ϕ = [ϕϕϕ]

• ⇑ ϕ = [ϕϕϕ,¬ϕϕϕ]

• ↑ ϕ = [⋂ϕϕϕ,¬⋂ϕϕϕ]

Let’s prove the second case. Denote by α = (ϕϕϕ,¬ϕϕϕ) Let A ⊆ U fixed and

take c ∈M We want to show that ⇑ ϕ(c) = α(c)

Consider the following relation:

xRy iff ∃c′ ∈ c so that x =⇑cϕ (c′) and y = γcπα(c′)

We will prove that R is a bisimulation. Consider x ∈⇑ ϕ(c) and y ∈ α(c) so

that xRy This means that there exists c′ ∈ c so that x =⇑cϕ (c′) and y = γcπα(c′).

Then we have two cases:
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• Case 1. c′ ∈ ϕϕϕc
Then, x =⇑cϕ [c′ ∩ϕϕϕc] and y = γcπα[c′ ∩ϕϕϕc] by definition of ⇑cϕ and γcπα .

Let x′ ∈ x, then ∃c′x ∈ c′ ∩ϕϕϕc so that x′ =⇑cϕ (c′x). Let y′ = γcπα(c′x), then

y′ ∈ y, x′ ∩A = c′x ∩A = y′ ∩A and x′Ry′. The back condition follows

by an analogous reasoning.

• Case 2. c′ ∈ c ∖ϕϕϕc
In this case we have that

x =⇑cϕ [c′ ∪ϕϕϕc] and y = γcπα[c′ ∩ (c′ ∖ϕϕϕc) ∪ϕϕϕc] by definition of ⇑cϕ and

ans. Let x′ ∈ x, then ∃c′x ∈ c′ ∪ ϕϕϕc so that x′ =⇑cϕ (c′x). If c′x ∈ c′

then c′x ∈ c′ ∩ (c′ ∖ ϕϕϕc) thus let y′ = γcπα(c′x). We have that x′ ∩ A =

c′x ∩A = y′ ∩A and x′Ry′. If c′x ∈ ϕϕϕc, we also have that y′ = γcπα(c′x) ∈ y

x′ ∩A = c′x ∩A = y′ ∩A and x′Ry′.

The back condition follows by an analogous reasoning.

This general definition was created to have functional composition. We

preserve this property in our setting as well. Composition of two belief

upgrades is given as follows. Let α = [ϕϕϕ1, . . .ϕϕϕn] and β = [ψψψ1, . . . ,ψψψm] then

α;β = [ϕϕϕ1 ∧ [α]ψψψ1, . . .ϕϕϕn ∧ [α]ψψψ1, . . . , . . .ϕϕϕ1 ∧ [α]ψψψm, . . .ϕϕϕn ∧ [α]ψψψm]

The immediate question that arises is what happens when we iterate these

operations. The interest has been focussed on investigate the properties of

their fixed points. Thus the first thing we need to check is whether the

operations already mentioned are monotone.

Proposition 5.3. !ϕϕϕ is a monotone operation.

Let c, c′ ∈M so that c ⊆ c′. We want to show that !ϕϕϕ(c) ⊆!ϕϕϕ(c′). We will
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work with its equivalent update form. Let x ∈!ϕ(c). Then, ∃cx ∈ c so that

x =!cϕ(cx). As c ⊆ c′ then cx ∈ c′. Let x′ =!c′ϕ(cx).

Claim x ≡ x′

We propose a bisimulation as before, considering

xRy iff ∃c∗ ∈ c so that x =!cϕ(c∗) and y =!c′ϕ(c∗)

Observe that x ∩A = cx ∩A = x′ ∩A, and also that xRx′. Let y ∈ x, then

∃cy ∈ cx so that y =!cϕ(cy). By transitivity of c′ we know that cy ∈ c′ Let

y′ =!c′ϕ(cy). Then we can see that y′ ∈ x′ y ∩A = cy ∩A = y′ ∩A and yRy′.

Now, for the back condition, let y′ ∈ x′, thus ∃c′y ∈ cx so that !c′ϕ(c′y) Again

by transitivity of c we have c′y ∈ c Let y =!cϕ(c′y). Then it is direct that y ∈ x

y ∩A = c′y ∩A = y′ ∩A, and yRy′. Thus x ≡ x′, therefore x ∈!cϕ(c′)

However, this does not happen with the rest of the transformations for-

malized. Consider the following example. Let c = sol − set(E) and c′ =

sol − set(E ′) with E = ⟨X,A, e⟩ and E ′ = ⟨X ′,A′, e′⟩ as follows: X = {x, y, z},

X ′ = {x′, y′, z′,w′}, A = {p} = A′ and e, e′ given by the tables:
e(x) = {x} e′(x) = {x}

e(y) = {y, x, p} e′(y) = {y, x, p}

e(z) = {z, y, x,} e′(z) = {z, y, x,}

e(w) = {w, z, y, x, p}

let ¯s be the solution to E , and ¯s’ the solution to E ′ Then, c ⊆ c′. However

consider ⇑ ppp(c), and ⇑ ppp(c′). γcπppp(¯s(x)) ∈⇑ ppp(c) but γcπppp(¯s(x)) ∉⇑ ppp(c)
This means that we do not have warranty about the existence of a fixed

point for this operator, and neither for the conservative one. Thus, it has
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come into the agenda of the logics of belief revision to study the conditions

under which those operators reach a fixed point.

To study the properties of their iteration, we need then avoid some trivial

conditions that will deviate the operator from reaching a fixed a point or to

reach it in a trivial way like by telling lies.

5.2 Iterated Upgrades

The minimum conditions to avoid the cases above mentioned are those of

correctness and truthfulness.

Definition 5.2. A standard upgrade α = (ϕϕϕ1, . . . ,ϕϕϕn) is said to be correct

with respect to a model c ∈M if its most plausible answer (ϕϕϕ1) is correct, i.e.

if for c∗ ∈ c we have c∗ ∈ ϕϕϕ1
c

Definition 5.3. We say that †ϕϕϕ are truthful with respect to a c ∈M if we

have that †ϕϕϕ(c) ≠ ∅

Whenever they are met we have assured an interesting study of the itera-

tion of the transformations defined. This study is done by means of iterated

upgrades. There, we can characterize intermediate stages between reaching

a fixed point and not reaching it, like reaching a stable set of knowledge,

beliefs or conditional beliefs.

Definition 5.4. An upgrade stream ααα is an infinite sequence of upgrades

(αn)n∈N

A particular case is the one of a repeated upgrade which is nothing but an
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upgrade steam (αn)n∈N where αn = α ∀n ∈ N. Any upgrade stream ααα induces

a function mapping every c ∈M into a sequence :

c0 = c and cn+1 = αn(cn) if αn is executable on cn

An upgrade steam ααα is executable (correct) on a model c if every αn is

executable (correct) on cn. We will be concerned now with upgrade streams

consisting only of one of the † operations defined, thus we will call those

streams truthful in an analogous way to the previous concepts.

The behavior of these streams is characterized by the following cases: an

upgrade stream ααα

• Stabilizes a model c if ∃n ∈ N so that cn = cm ∀m > n.

• Stabilizes a knowledge set on c if ∃n ∈ N so that cn ⊧Kϕ iff cm ⊧Kϕ

∀m > n and ∀ϕϕϕ ∈ LK◻

• Stabilizes a belief set on c if ∃n ∈ N so that cn ⊧ Bϕ iff cm ⊧ Bϕ ∀m > n

and ∀ϕϕϕ ∈ LK◻

• Stabilizes a conditional belief set on c if ∃n ∈ N so that cn ⊧ Bψψψϕ iff

cm ⊧ Bψψψϕ ∀m > n and ∀ϕϕϕ,ψψψ ∈ LK◻

A natural question in this setting is whether we preserve the results ob-

tained by [8]. We can be sure that we preserve the results on stabilization of

any model by any update stream due to its monotonicity.

However, it seems that for ααα with ϕϕϕ ∈ L∞K◻
we do not preserve theorem 7

of that article, namely:

Theorem 5.1. Baltag and Smets Every correct upgrade stream stabilizes

the agent’s beliefs.
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First, observe that countably many iterations will not be enough for this

theorem to hold with ϕ ∈ L∞K◻
consider the first model of example 3.1, the

model cω. Consider the upgrade stream (αn)n∈N, with

αn = ⋀i≤n pi

this upgrade stream will stabilize cω after countably many iterations. How-

ever, observe that c1 ⊧ Bα1 but c0 ⊭ Bα1 (recall that c0 = cω), and so on, for

each n ∈ N we have that cn ⊭ Bαn+1 and cn+1 ⊧ Bαn+1

Now, observe that if we allow transfinite-many iterations, the theorem

will hold for this example. However, we can construct the same example

for any β ∈ On. This is, for any β we can construct an analogous model

with a set of indeterminates X so that ∣X ∣ = β and its correspondent set of

urelements A of the same cardinality, and do the analogous stream upgrade

of size β.

In general, we can expect that most results concerning the behavior of

iterated upgrades for ϕ ∈ L∞K◻
may not hold.

5.3 Belief Revision Methods

Belief revision methods, can be seen properly speaking as a learning method.

Following the course of methods studying language acquisition, belief revision

methods had been studied as a learning method in [20, 5].

Roughly speaking, a learning method is a function that given any set and

some data sequence, outputs in finite time an index of an hypothesis. In this

setting it can be seen as a function L that for any set s ∈ Vafa [U] and any



60 5. GENERALIZATION AND APPLICATIONS

positive data sequence σ = (σ0, . . . , σn) associates some “belief set”so that

L(s;σ0. . . . , σn) ⊆ s.

In this case the hypothesis is a subset which depends on things known in

s and the stream σ received.

In what follows we want to illustrate some of the results obtained by

[20, 5]. The aim here is to learn which is the real world, to come to know for

c∗ ∈ c the set c∗ ∩A for A ⊆ U .

In this particular shape, one is concerned in learning positive data. This

reflects in the type of stream upgrades that one work with. For a fixed A ⊂ U ,

upgrades streams consist only of positive ontic facts i.e. are the particular

case in which the upgrade stream †ϕn is so that ϕn ∈ A.

These streams are a particular kind of “texts”or presentations of a set, and

will thus be denoted in a particular way by ε. They can contain repetitions,

thus set(ε) = {pn∣ pn ∈ ε ∀n ∈ N}

Given a set c∗ ∈ c a positive data stream ε is sound with respect to c∗ iff

set(ε) ⊆ c∗ ∩ A. It is complete with respect to c∗ iff c∗ ∩ A ⊆ set(ε) These

conditions can be seen as the analogous for the correctness and truthfulness

conditions above defined.

In general, for a fixed A ⊆ U a set s ∈ Vafa[A] is identified in the limit

by a learning method L if for every world s∗ ∈ s and every ε sound and

complete with respect to s∗, there exists a finite stage after which L outputs

only worlds s so that s ∩A = s∗ ∩A. A set s is identifiable if there exists a

learning method L that identifies it.

A belief revision method is a function R that given any c ∈M and any

stream σ it returns a new model R(c, σ) = cσ
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A belief revision method together with a prior plausibility set model (that

we can take to be generated out of an e function) generates a learning method

LR(s, σ) =min≤es(c, σ)

where c = sol − set(Es) with Xs = {xsn ∣ sn ∈ s} A = ⋃n sn, and es a function

fulfilling ∈e − reflexivity, transitivity and connectedness; ≤es the order induced

by es with x ≤ y iff x ∈es y, and min≤es(c, σ) is the minimum of the model

generated by es if it exists or c otherwise.

In the particular case of a belief revision method R, a set s is identified in

the limit if there exists a prior plausibility assignment ≥s so that the induced

learning method identifies s in the limit.

A set s is standardly identified if ≥S creates a prior standard model. It is

non-standard if it creates a prior non-standard model.

A learning method is universal if it can identify in the limit every set that

is identifiable. Also, is called standardly universal if it can identify standardly

in the limit every set that is identifiable. Then the most interesting feature

for us here is that belief revision methods are no-standard.

Consider the following base of set E with X ∼ ω, and A ∩X = ∅ so that

A ∼ ω. Consider sets

sn = {pk∣ k ≥ n}

for all n ∈ N. Take s = {sn∣ n ∈ N}. and consider the prior plausibility model

given by the following e:

e(xn) = {xn} ∪ {xj}j≥n ∪ sn
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sol−set(E) ∈M is a non-standard model, and there does not exists any prior

standard model under which any belief revision method can identify such a

set.



Conclusions

The study of the properties and or differences that we have within the in-

finitary language in this setting is far from being exhausted in the work we

have done. However, we expect we have shown so far that we preserve most

of the properties we may want to preserve form the finitary logics.

Notwithstanding, we win also worthy features. The most obvious is its

expressiveness. But not only, we have pointed out some important theoretical

features that are embraced within this semantics like the conceptualization

of these models transformers as learning methods.

Also, so far, we have seen that the possible drawback will be a more

intricate behavior of the iterated upgrades. However, we still need to look at

the properties that we may win within this framework as so far we restricted

to check what we can preserve.

This points out that we have a long agenda for future work. This includes

the need to extend this work to the multi-agent setting, and an exhaustive

study of the behavior of iterated upgrades. Notwithstanding, we expect to

have shown some advantages of this semantics.
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