
Reconstructing the Cryptanalytic Attack behind the Flame Malware

MSc Thesis (Afstudeerscriptie)

written by

Fillinger, Maximilian Johannes
(born March 22nd, 1988 in Wuppertal, Germany)

under the supervision of Dr. Marc Stevens and Dr. Christian Schaffner, and submitted to
the Board of Examiners in partial fulfillment of the requirements for the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:
September 30, 2013 Dr. Alexandru Baltag

Dr. Marc Stevens
Dr. Christian Schaffner
Dr. Benne de Weger
Prof. Dr. Ronald de Wolf

Abstract

Flame was an advanced malware, used for espionage, which infected computers running a Microsoft Windows
operating system. Once a computer in a local network was infected, Flame could spread to the other
computers in the network via Windows Update, disguised as a security patch from Microsoft. Windows
Update relies on digital signatures to ensure that updates originate from Microsoft. Using an attack on the
cryptographic hash function MD5, the attackers forged a Microsoft signature for a certificate which allowed
them to produce signed updates accepted by Windows Update. Using a technique from [25] dubbed counter-
cryptanalysis, it was found that the certificate was generated by a chosen-prefix collision attack on MD5, i.e.,
an attack that extends two prefixes P and P ′ with suffixes S and S′ such that P‖S and P ′‖S′ have the same
hash value: a collision. Although the attack seems to be based on the same principles as published collision
attacks, such as the attack by Wang et al. from [29] and the attack by Stevens et al. from [26], it has not
been published before.

The hash function MD5 splits its input into 512-bit blocks. MD5 processes these blocks with a so-called
compression function while updating an intermediate hash value. The intermediate hash value after the
whole input has been processed is the output of MD5. The Flame chosen-prefix collision attack, like other
attacks of this type, consists of the following steps: It begins with a so-called Birthday Search which extends
the chosen prefixes such that the difference in the intermediate hash values has a specific form. Then, a series
of near-collision blocks is constructed such that after these blocks have been processed, the intermediate hash
value difference is 0. Thus, a collision is achieved. The construction of these blocks is based on differential
paths, systems of equations that specify ways in which input differences in the compression function can
propagate. In chosen-prefix attacks, it is necessary to algorithmically generate such differential paths.

The goal of this thesis is to work towards a reconstruction of the collision attack that generated the
Flame authors’ certificate, based on the differential paths of the near-collision blocks in the certificate, which
were extracted by Stevens. Our main contribution is an attempt at reconstructing the possible end-segments
of the differential paths used in the attack. These end-segments allow us to infer the cost of constructing the
near-collision blocks. Also, we can infer what intermediate hash value differences the attackers looked for in
the Birthday Search. This allows us to give an estimate of the Birthday Search cost as well. We prove that,
assuming our reconstruction is correct, the expected cost of the attack was equivalent to at least 246.6 calls
to the MD5-compression function. We also show that, using the right parameters, this cost can be achieved.
In comparison, the attack by Stevens et al. has an expected cost of 244.55 for suitably chosen parameters
when we require that, as in the Flame attack, only four near-collision blocks can be used. We argue that
it is very likely that the expected cost of the Flame attack exceeds our lower bound. A likely reason for
this higher cost is that the attackers optimized the attack for speed on massively parallel architectures, not
for theoretical cost. The Birthday Search is more cost-effective to parallelize than the construction of the
near-collision blocks and it is possible to decrease the cost of constructing near-collision blocks by increasing
the Birthday Search cost.

Furthermore, we analyzed the connection step of the Flame attack: The most expensive part of the
differential path construction algorithm is the connection of an upper and a lower differential path. Not all
pairs of upper and lower paths can be connected. Compared to the attack by Stevens et al., the number of
pairs that have to be examined increases by a factor of 213.

So-called tunnels are an important technique for increasing the speed of the near-collision block con-

struction algorithm. The speed-up that a tunnel offers is determined by its strength. As Stevens shows in

[25], tunnels were used in the collision attack, but their strengths were not maximized. As an explanation,

he proposes that the attackers used tunnels when they were available, but did not actively try to increase

their strength. We show that this explanation does not account for the observed tunnel strengths and of-

fer an alternative hypothesis. Unfortunately, this hypothesis is less straightforward and impossible to test

conclusively with only one output sample of the attack.

Contents

Contents 1

1 Introduction 3
1.1 Outline . 3
1.2 Hash Functions in Cryptography . 3

1.2.1 Cryptography . 3
1.2.2 Cryptographic Hash Functions . 5
1.2.3 Digital Signatures and the Hash-And-Sign Paradigm 7
1.2.4 Collision Resistance and Chosen-Prefix Attacks 8

1.3 The Hash Function MD5 . 9
1.3.1 The Merkle-Damg̊ard Construction . 9
1.3.2 Outline of MD5 . 10
1.3.3 The Compression Function . 11
1.3.4 Inverting the MD5 Compression Function . 12

1.4 Cryptanalysis of MD5 . 13
1.4.1 Types of Collision Attacks . 13
1.4.2 Generic Collision Attacks by Birthday Search 13
1.4.3 A Short History of MD5-Cryptanalysis . 14
1.4.4 Differential Cryptanalysis . 16
1.4.5 Binary Signed Digit Representation . 17
1.4.6 Differential Paths . 18
1.4.7 Rotations of Arithmetic Differentials . 19
1.4.8 Bitconditions . 23
1.4.9 Representing Differential Paths with Bitconditions 24
1.4.10 A Basic Algorithm for Solving Differential Paths 27
1.4.11 Trivial Differential Steps . 28

2 Attacks on MD5 32
2.1 The Identical-Prefix Attack by Wang et al. 32
2.2 The Chosen-Prefix Attack by Stevens et al. 33

2.2.1 Outline of the Attack . 33
2.2.2 Elimination Strategy . 33
2.2.3 Birthday Search . 35
2.2.4 Extending Partial Differential Paths . 40
2.2.5 Extending a Path Forward . 40

1

2.2.6 Extending a Path Backward . 41
2.2.7 Connecting Upper and Lower Paths . 42
2.2.8 Tunnels . 43
2.2.9 Solving Differential Paths . 46
2.2.10 Cost of the Attack . 46

2.3 Counter-Cryptanalysis: Detecting Collision Attacks 48
2.3.1 Counter-Cryptanalysis . 48
2.3.2 Collision Detection in MD5 . 48

3 The Collision Attack for Flame 51
3.1 The Flame Collision Attack . 51

3.1.1 About Flame . 51
3.1.2 The Rogue Certificate . 52

3.2 Hypotheses . 54
3.3 Analysis of the Differential Paths . 55

3.3.1 Some Features of the Near-collision blocks . 55
3.3.2 Connection Steps . 57
3.3.3 Estimating the Success Probability . 58

3.4 Tunnels . 59
3.4.1 Tunnel Strengths in the Near-collision Blocks 59
3.4.2 Explanation Attempts . 61

3.5 Differential Path Family . 63
3.5.1 Overview . 63
3.5.2 Reconstructing the End Segments . 65
3.5.3 Arguments for the Reconstruction . 71
3.5.4 Birthday Search . 73

3.6 Estimating the Cost of Constructing Message Blocks 73
3.6.1 A Formula for the Expected Cost . 73
3.6.2 Estimating the Expected Number of Attempts at Solving the End-Segment . 76
3.6.3 Total Cost . 81

3.7 Summary . 83

A Flame Differential Paths 84

B Expected Number of Attempts at Solving the End-Segments 89

Bibliography 93

2

Chapter 1

Introduction

1.1 Outline

This thesis is about collision attacks on the cryptographic hash function MD5. In particular, we
attempt to reconstruct details about a collision attack that enabled spreading a spyware called
Flame within local networks via Windows Update. Although similar attacks have already been
published in the scientific literature, the variant that the Flame authors used was not known
previously. In Chapter 1, we first explain what cryptographic hash functions are, what purpose
they serve in cryptography, what it means to attack such a function and what practical goals such
an attack might achieve. We then give a definition of MD5 and explain differential cryptanalysis
which has been the most successful approach for attacking MD5 and similar hash functions.

In Chapter 2, we describe two attacks on MD5 from the scientific literature which serve as
a starting point for understanding the Flame attack. In Chapter 3, we give some background
information about Flame and attempt to reconstruct details about the Flame collision attack.

1.2 Hash Functions in Cryptography

1.2.1 Cryptography

Originally, cryptography could be described as the art of inventing and breaking ciphers, i.e., meth-
ods to encode messages in a way that is supposed to make them hard to decode for everyone except
the intended recipient. During the second half of the 20th century, considerable changes took place.
Cryptography was transformed from a practical art to a science with strong ties to mathematics
and computer science and its scope widened considerably. Nevertheless, the most basic example of
a cryptographic task is still secret communication. Suppose that one person, let us call her Alice,
wants to send another person, say Bob, a message.1 The information in the message is sensitive, so
Alice and Bob do not want an eavesdropper to read the message. Using a secret piece of informa-
tion, e.g., a randomly selected string of bits, called a key, it is possible for Alice to “scramble” the
message in such a way that only someone who knows the key can “unscramble” it again. Thus, if
Alice and Bob have agreed on a key, say in a private meeting, they can use public communication

1In actual applications, one or both of Alice and Bob may not be a person at all, but, for example, an organization
or a computer program.

3

channels to send private messages. The scenario where the communicating parties share a common
key is dealt with in private-key or symmetric cryptography.

However, with cheap worldwide communication available, two people who want or need to
communicate securely will often not be able to establish a key beforehand. Public-key cryptography,
which was introduced by Whitfield Diffie and Martin Hellman in their 1976 paper [4], helps to
overcome this problem. In the public-key setting, Bob has both a public key and a secret key. As
the names imply, the public key is meant to be available to anyone who wants to communicate
with Bob while the secret key must not be known to anyone else. The public key allows anyone to
encrypt a message so that only Bob can decrypt it, using his secret key. In contrast to the private-
key setting, it is impossible to achieve unconditional secrecy. We have to make assumptions about
the computing power of adversaries and about the hardness of certain mathematical problems, such
as the factoring or discrete logarithm problem.

But there is more to secure communication than just secrecy. Verifying the authenticity of
messages is important as well. For example, a bank needs to make sure that a transfer from
an account was indeed requested by the bank account holder, not by a scammer impersonating
him. Also, the bank needs to make sure that the recipient and the amount of money were not
altered en route. Therefore, cryptography also encompasses the study of methods to verify the
authenticity of messages. Cryptographic primitives for message authentication are called message
authentication codes (MAC) in the private-key setting and digital signatures in the public-key
setting. Cryptographic hash functions, which will be described in the next section, are important
building blocks for these tools.

Other fields of research in modern cryptography include zero-knowledge proofs, secure multiparty
computation and quantum cryptography. Zero-knowledge proofs are protocols by which a prover
can demonstrate (beyond reasonable doubt) to a verifier that he has some piece of information
without disclosing that information. Secure multiparty computation deals with protocols by which
a group of people who each hold some data can jointly compute a function on their data without
disclosing it to the others. These protocols should also allow the honest parties to detect when some
other people in the group do not follow the protocol. Quantum cryptography deals with ways to
use quantum effects for cryptographic purposes. In short, modern cryptography can be described
as the study of protocols for communication and computation that are secure even in the presence
of adversaries where the exact definition of security and the assumptions about the adversaries’
capabilities may vary depending on the research area and intended application.

There are multiple approaches in cryptography. Each has different strengths and weaknesses and
each has its use for practice. The information-theoretic approach demands the strongest security
guarantees: We do not assume any limits on the computing power of the adversary. This branch
of cryptography was founded by Claude Shannon, the inventor of information theory. However,
information-theoretic cryptography faces some severe limitations. In particular, it can be proved
that it is impossible for public-key schemes to meet its security demands. Furthermore, for (private-
key) encryption schemes, the key must have at least as many bits of entropy as the message and
each key can only be used once; otherwise, there is no information-theoretic security anymore. An
example of an information-theoretically secure encryption scheme is the one-time pad which was
developed in 1882 by Frank Miller and reinvented and patented by Gilbert Vernam in 1917. Thus,
it predates modern cryptography, although it was not proven to be secure at the time. The one-time
pad encrypts an n-bit message m under an n-bit key k as C(k,m) = m⊕k, the bitwise exclusive-or of
m and k. The encrypted message C(k,m) is decrypted by computing C(k,m)⊕k = m⊕k⊕k = m.

4

If the key k is selected uniformly at random then the ciphertext C(k,m) becomes a uniformly
distributed random variable that is statistically independent of the message. Thus, an adversary
who does not have any information about k can gain no information about the content of message
m observing C(k,m). However, an adversary can still learn that some message was sent and also
how many bits were sent.

The complexity-theoretic approach divides algorithms into efficient and non-efficient ones where
the class of efficient algorithms is usually taken to be the class of algorithms whose worst-case
running time is polynomial in the input length. In the complexity-theoretic model, we only consider
efficient algorithms as relevant, i.e., we require that the cryptographic algorithms are efficient and
we only view efficient attacks against them as a threat. Cryptographic algorithms in this model
have a security parameter n and we allow them running time polynomial in n. An attack on a
scheme must be able to break the scheme with non-negligible probability2 in time polynomial in
n. Even though this approach to cryptography is less demanding than the information-theoretic
approach, there are no schemes for which an unconditional security proof in the sense of complexity-
theoretic cryptography has been found.3 However, cryptographic schemes in this approach are
proven secure under computational hardness assumptions, i.e., under the assumption that there
exists no efficient algorithm to solve a given computational problem. We say that a scheme reduces
to some computational problem if the existence of an efficient attack on the scheme implies the
existence of an efficient algorithm that solves the problem. If the problem is a well-studied one
for which no efficient algorithms have been found, this gives us confidence that the cryptographic
scheme based on it is secure. A disadvantage of this approach is that it is asymptotic and thus a
proof of security in this model does not necessarily give us any information about how we have to
choose the parameter in order to achieve a desired level of security.

The system-based approach is concerned with the cost in time and money required to implement
the best known attack on a cryptographic scheme. This can give us relatively precise estimates
on the real-world security of our schemes, but progress in computer hardware and cryptanalysis
can quickly make them obsolete. Cryptographic schemes designed with this approach in mind are
designed to be fast and to avoid known attacks but are often not based on any precise computational
assumptions. However, even schemes that reduce to some computational problem need the system-
based approach in order to find out how the security parameter should be chosen.

The hash function MD5 adheres to the system-based approach and hence the complexity of
attacks on it has to be analyzed in the system-based context too. To make our complexity estimates
independent of the speed of the computer that executes the attack, we specify the complexity of
attacks in terms of the cost of the MD5 compression function (see Section 1.3). To give an example,
we might say that the complexity of some attack is equivalent to 216 evaluations of the compression
function.

1.2.2 Cryptographic Hash Functions

The purpose of a cryptographic hash function is to provide a fixed-length “fingerprint” for files
of arbitrary length. More formally, we can define them as follows. Let {0, 1}∗ be the set of all
finite bit-strings. Let K be some finite set. We call a function H : K × {0, 1}∗ → {0, 1}l a keyed

2A function f is called negligible if it is asymptotically smaller than every inverse polynomial, i.e., if f(n) = O(n−c)
for every positive integer c.

3Except for schemes that already are information-theoretically secure.

5

function and for k ∈ K, we write hk : {0, 1}∗ → {0, 1}l, x 7→ H(k, x). Both l and K may depend
on a security parameter n. For a cryptographic hash function, we require that H can be computed
efficiently relative to the input size and the security parameter n and that the following properties
hold (according to [20]).

• Pre-image Resistance: For k ∈ K and h ∈ Range(hk) selected uniformly at random, it is
infeasible to find x with hk(x) = h when given k and h. There are two stronger variants of
this property. A keyed function is everywhere pre-image resistant if it is infeasible for an
adversary to find input x with hk(x) = h when h is chosen by the adversary and, after that,
k is selected uniformly at random. It is called always pre-image resistant if it is infeasible
to find x with hk(x) = h when k is chosen by the adversary and then h is selected as in the
definition of pre-image resistance.

• Second Pre-image Resistance: Given a random k ∈ K and a random input y from a
large finite subset of the domain (e.g., {0, 1}n), it is not feasible to find x 6= y such that
hk(x) = hk(y). Similar to pre-image resistance, we can define stronger versions everywhere
second pre-image resistance where the adversary may choose y and always second pre-
image resistance where the adversary may choose k.

• Collision Resistance: Given a random k ∈ K, it is not feasible to find distinct x and y such
that hk(x) = hk(y).

Here, “infeasible” can be understood in the sense of complexity-theoretic or system-based cryptog-
raphy. In the former sense, it means that every probabilistic polynomial-time algorithm has only
negligible probability to solve the described task. In the latter sense, it means that the cost to run
the best known algorithm for solving this problem is prohibitively high. Obviously, the latter is a
somewhat vague notion, depending on the current state of computer hardware and cryptanalysis
and on what exactly one considers a prohibitively high cost.

Informally, these security definitions mean that it is practically impossible for an adversary to
construct an input that has the same hash value as another input. Then, we can also expect that
any two pieces of data that we compare in everyday life will not have the same hash value by
chance. We can thus assume for all practical purposes that two pieces of data that have the same
hash value are identical, even when they are deliberately constructed by a malicious adversary.

Usually, collision resistance is the first security property to be broken. Note that collision
resistance is already broken if there is an efficient algorithm for finding any collision; we do not
require that it produces collisions that are useful for some malicious purpose. One reason for
defining it that way is that it is difficult to say whether or not a given collision attack is dangerous
to any possible application of the hash function. Another reason is that any collision attack should
be seen as a warning sign that more practical ones might exist too. Nevertheless, if a collision
attack allows us some control over the collisions that it produces, it is more dangerous.

In practice, most hash functions are not keyed functions, but simply functions (i.e., |K| = 1) and
l is a fixed constant. This causes a problem with our definition of collision resistance which is known
as the foundations-of-hashing dilemma. If the domain of a function has a higher cardinality than
its range, it is certain that collisions exist. When the hash function is not keyed, then this implies
that there also exists a very efficient attack: It simply outputs some values x and y that collide.
However, as long as no collisions are actually known, such attacks only exist as mathematical objects
– we can not implement them. Thus, we consider collision resistance to be broken if an efficient

6

algorithm for generating a collision is known. This is quite vague and hard to formalize; for an
attempt, see Phillip Rogaway’s paper [19]. Rogaway tries to avoid this problem as follows: When
we base the security of a cryptographic protocol Π on the collision-resistance of an (unkeyed) hash
function h, we would like to claim that the existence of an efficient adversary breaking Π implies
the existence of an efficient algorithm for finding collisions in h. However, such a collision-finding
algorithm always exists, at least in the mathematical sense. Rogaway modifies this reduction as
follows: When we base the security of Π on the collision-resistance of h, we should give an explicit
reduction that transforms an adversary for Π into an equally efficient collision attack on h. That
way, when an attack on Π is known, a collision attack on h is known too. Conversely, as long
as there are no known collision attacks on h, there can be no known attack on Π. Rogaway calls
this paradigm the human-ignorance or explicit-reduction approach. Note that Rogaway does not
attempt to give a formal definition of collision-resistance for unkeyed hash functions. Rather, he
proposes a formal definition of what it means to base the security of a protocol on the collision
resistance of a hash function, while still using the intuitive definition of collision resistance.

Since the attacks that we consider in this thesis have been actually carried out, the informal
definition is acceptable for our purposes.

Let us look at some applications for hash functions. Cryptographic hash functions can be used
to quickly compare data and verify data integrity. Consider the case that two servers store copies of
some program, together with the corresponding hash value. Alice downloads the program from one
server, but she is concerned that her copy might be corrupted, e.g., due to an error on the server
or due to an adversary that got access to the server and replaced the program with malware. She
could download another copy from the second server and compare both copies. If they match, she
concludes that the copy is not corrupted: An adversary would have had to break into both servers
to achieve this and that the exact same error happens on both servers is unlikely.4 Depending on
the amount of data and the speed of the connection to the servers, this procedure might take a
long time. With a cryptographic hash function, she could instead compute the hash of her copy
and then download the hash from the second server and compare the hashes. This would be much
faster and – if the function indeed satisfies the requirements for a cryptographic hash function –
just as good.

However, adversaries now have more ways to attack than before. Instead of trying to break
into both servers, they could try to attack the hash function instead. Suppose that an adversary
somehow creates a corrupted copy that has the same hash value as the correct program. Then,
they could fool the procedure described in the previous paragraph. To avoid this attack, we want
cryptographic hash functions to be second pre-image resistant.

1.2.3 Digital Signatures and the Hash-And-Sign Paradigm

Digital signatures is another area where hash functions are applied. In digital communication, it is
relatively easy to impersonate someone else. E-mail headers can be forged to display a false sender
address and an ordinary signature appended to a mail can simply be copied. Without a solution
for this problem, online banking and online purchases would be completely insecure. However,
digital signatures can overcome this difficulty. Suppose that Alice wants to allow other people to
verify that some message m was indeed written by her. A digital signature scheme consists of three

4Note that if the two copies differ, she does not know which one is correct but only that at least one of them was
altered. If copies are stored on three or more servers, this problem can be addressed too.

7

(randomized) algorithms, KeyGen, Sign and Verify. Using KeyGen, Alice generates a pair of bit
strings (sk, pk). Here, sk stands for “secret key”, so called because it must not be known to anyone
but Alice, and pk stands for “public key”; as the name implies, it is meant to be available to anyone.
Alice might publish pk on her homepage or in some public listing, similar to a phone book. But
note that we have a chicken-and-egg problem here: How can we verify that this public key indeed
belongs to Alice and not to someone who is impersonating her? This problem will be discussed
in Section 1.2.4, so we will not concern ourselves with solutions here. To sign the message m, she
computes m′ = Sign(sk,m) and appends m′ to m. Computing Verify(pk,m,m′) allows to verify
whether m′ is indeed a valid signature for m generated with key sk. Of course, we require that it
is infeasible to create a valid signature without the secret key. We will not give a formal security
definition here since it is not our main concern in this thesis. A thorough and formal treatment of
digital signatures can be found, for example, in [8, Chapter 12].

Signing large messages in a straightforward way using, for example, the RSA signature scheme
is a slow process and the signatures are as long as the messages themselves. A way around this
problem is the hash-and-sign paradigm. Instead of directly signing m, Alice computes a hash h(m)
and signs it instead. Given that both the hash function and the signature scheme are secure, this
method is secure as well. Intuitively, it seems that an attacker would have to overcome either
the signature scheme or the hash function. If we assume both to be secure, it follows that this
is not feasible. For a mathematical proof of this statement and for more information about the
hash-and-sign paradigm, we refer again to [8]. However, as in our example in the previous section,
a weak hash function opens up another way for an adversary to break the scheme.

1.2.4 Collision Resistance and Chosen-Prefix Attacks

Given our previous examples, it is clear why second pre-image resistance is an important property.
We now show why we want a cryptographic hash function to satisfy the stronger requirement
of collision resistance. The crucial difference between second pre-image resistance and collision
resistance is that in an attack on the second pre-image resistance, the adversary is given y and has
to construct x 6= y with h(x) = h(y) while in an attack on the collision resistance, the adversary
can construct both x and y simultaneously.

To see why attacks on the collision resistance are relevant, recall the problem of verifying that
a public key indeed belongs to Alice. One way this can be solved is by a certification authority
(CA) that is universally trusted. When Alice generates her public key, she fills in a certificate that
includes fields for her name, her public key and some further fields (e.g., validity period) and sends
it to the CA. The CA verifies Alice’s identity and then signs the certificate. Alice can now put the
signed certificate on her homepage or a public listing. If someone else, say Bob, wants to check
whether the public key pk indeed belongs to Alice, he can use the public key of the CA (which he
trusts) to check whether the signature on the certificate is valid. In practice, the root certificates of
about 50 CAs are distributed with most web browsers. Thus, these CAs are implicitly (and often
unknowingly) trusted by almost every internet user.

If the CA uses the hash-and-sign approach for its signatures and the hash function does not offer
collision resistance, an adversary, let us call him Charles, might be able to generate two certificates
C1 and C2 with the same hash value where the first one contains his real name and the second
one contains Alice’s name. Charles could then ask the CA to sign certificate C1. If the name and
other identifying information in that certificate is correct, the CA would have no reason to refuse.

8

However, since h(C1) = h(C2), the signature on C1 is also valid for C2.5 Thus, Charles could
now impersonate Alice. In general, whenever someone signs a message that is partly or completely
determined by someone else, collision attacks become a concern. As another example, consider the
case that Alice digitally signs a contract written by Charles, using the hash-and-sign method. With
a collision attack on the hash function, Charles might be able to craft a pair of contracts with the
same hash value such that Alice would accept the first contract, but not the second. But when
Alice signs the first contract, Charles can simply paste her signature to the second one.

Of course, these abuse scenarios require that Charles’s collision attack gives him sufficient control
over the collision that it produces. An attack that just produces some random-looking collision will
not help him. In this thesis, two kinds of collision attacks are described that allow the attacker
some control over the result. The first kind is identical-prefix attacks which take input P and
produce distinct suffixes S and S′ such that P‖S and P‖S′ collide. The second, more dangerous,
kind is chosen-prefix attacks which take input (P, P ′) and produce suffixes (S, S′) such that P‖S
and P ′‖S′ collide. A chosen-prefix attack could be useful for Charles’s attempt to fool the CA:
The certificates might contain some comment field at the end that is not read by the CA. He could
make one certificate with his name and one certificate with Alice’s name and hide away the suffixes
in the comment fields. For practical examples of such applications of chosen-prefix attacks, see
Sections 3.1 and 1.4.4.

1.3 The Hash Function MD5

1.3.1 The Merkle-Damg̊ard Construction

The Merkle-Damg̊ard construction is a general method for designing cryptographic hash functions.
It was developed independently by Ivan Damg̊ard and Ralph Merkle in [1] and [15]. It allows to
construct a hash function on domain {0, 1}∗ from a compression function Compress : {0, 1}n ×
{0, 1}k → {0, 1}n in such a way that a collision attack on the hash function implies a collision
attack on the compression function. Thus, the collision resistance of the hash function reduces to
the collision resistance of the compression function which is easier to analyze. Given a compression
function and an initial value IV ∈ {0, 1}n, we construct a hash function as follows: Given input M ∈
{0, 1}∗, we first append some unambiguous padding6 to M so that its length is a multiple of k; let Mi

denote the ith k-bit block of the padded input (with i starting from 0). Then, we compute a sequence
of intermediate hash values (IHV): We set IHV0 = IV, IHV1 = Compress(IHV0,M0), IHV2 =
Compress(IHV1,M1), . . . until we reach the end of M . The final IHV is the output of the function.
See Figure 1.1 for a visual representation of the Merkle-Damg̊ard construction. A proof that shows
how a collision attack on the hash function is transformed to a collision attack on the compression
function can be found, for example, in [8, Section 4.6.4].

5In practice, CAs fill in fields that contain the validity period and a serial number of the certificate. This makes
the task of the adversary more difficult but it remains feasible if the content of the fields is sufficiently predictable
and multiple attempts are possible in a short time.

6By unambiguous padding, we mean that the padded versions of two distinct messages remain distinct. For
example, simply padding the input with zeros allows for trivial collision attacks: Let M be an arbitrary message of
length l with k - l and let i be the least integer with l < i ·k. Then, for any j ≤ i ·k− l, the padded versions of M and
M‖0j will be identical. Hence, these messages have the same hash value. One way to create unambiguous padding
is to first append a ‘1’ and then ‘0’s and/or to use the length of the message in the padding, like MD5 does.

9

Figure 1.1: The Merkle-Damg̊ard construction

1.3.2 Outline of MD5

The hash function MD5 was designed by Ronald Rivest in 1991 and published 1992 in [18]. It
takes as input a bit string M of arbitrary length and outputs a string consisting of 128 bits. The
function follows the Merkle-Damg̊ard-construction, based on a compression function which we will
call MD5Compress. This function will be described in detail later on. It takes as input a 512-bit
message block and an intermediate hash value IHVin = (a, b, c, d) of four 32-bit words and returns
as output a tuple IHVout of the same kind. A 32-bit word is a sequence X = (X[i])31

i=0 of bits.
It represents the number

∑31
i=0X[i] · 2i in Z232 = Z/232Z and we identify the word X with that

number. Thus, if X is a 32-bit word, it can occur in arithmetic operations modulo 232, in bitwise
Boolean functions and in bit-rotation functions. For 32-bit words X and Y , we use X + Y and
X ·Y to denote addition and multiplication modulo 232 and ∧, ∨, ⊕ and · (an overline) to denote
the bitwise Boolean and, or, exclusive-or and negation, respectively.

There are two main standards for representing 32-bit words. The most straightforward way is
to store a 32-bit word X as the bit string X[31]X[30] . . . X[0], i.e., ordering the bits from most to
least significant. This standard, which is called big endian, is how we write 32-bit words in this
thesis. A less straightforward standard is little endian which is, for example, used in the x86 CPU
architecture. The little endian representation can be derived from the big endian representation by
reversing the order of the bytes, i.e., 8-bit blocks. That is, X is stored as

X[7]X[6] . . . X[0]X[15]X[14] . . . X[8] . . . X[31]X[30] . . . X[24].

We will also sometimes write numbers or bit-strings in the hexadecimal system with digits 0, 1,
. . . , 9, a, b, . . . , f. We will write hexadecimal numbers with 16 as a subscript. In bit-strings, a
hexadecimal digit denotes the 4-bit representation of the digit, sorted from most to least significant.

The computation of MD5Compress involves arithmetic modulo 232, bit-wise Boolean operations
and bit-rotation. The intention behind combining all these different kinds of operations is to create
complex dependencies between each input and output bit which cannot be easily solved in one
unified calculus. Viewing MD5Compress as a black box for now, MD5 looks as follows:

1. First, M is padded by appending a ‘1’ and as many ‘0’s as are necessary to make the length
equivalent to 448 mod 512. Then, the length of the original message M is appended as a
64-bit little-endian integer. After padding, M has bit length 512 ·N for some integer N .

2. For i = 0, . . . , N − 1, we let Mi denote the ith 512-bit block of M . We let

IV = IHV0 = (6745230116, efcdab8916, 98badcfe16, 1032547616)

10

which is the bit-string 0123456789abcdeffedcba987654321016 split up into four 32-bit blocks
which are then read as 32-bit words using the little endian standard.7

3. For i = 1, . . . , N , we let IHVi = MD5Compress(IHVi−1,Mi−1).

4. The output of MD5 is the concatenation of the elements of IHVN converted back from their
little-endian representation.

1.3.3 The Compression Function

Let us now have a look at the inner workings of the compression function. We let B denote the
512-bit message block and IHVin = (a, b, c, d) the tuple that forms the input of MD5Compress. We
partition B in 16 consecutive 32-bit strings m0, . . . ,m15 which we call the message words. The
compression function is computed in 64 steps numbered 0 to 63; each step updates a and then
rotates (a, b, c, d) one place to the right, i.e., d becomes the new a, a becomes the new b and so on.
We let a0 = a, b0 = b, c0 = c, d0 = d and successively compute (a1, b1, c1, d1), . . . , (a64, b64, c64, d64).
For t = 0, . . . , 63, we have an addition constant ACt, a rotation constant RCt, a bitwise Boolean
function ft on three 32-bit words and a 32-bit word Wt ∈ {m0, . . . ,m15}. The t-th step function
Stept on input (A,B,C,D) is computed as follows:

1. Compute Ft = ft(B,C,D) and Tt = A+ Ft +ACt +Wt.

2. Set A′ = B+RL(Tt, RCt) where RL(Tt, n) denotes the rotation of Tt n bits to the left. More
precisely, we define RL(Tt, n) to be the 32-bit word with RL(Tt, n)[i] = Tt[i + n mod 32] for
i = 0, . . . , 31.

3. Output (D,A′, B, C).

For each t = 0, ..., 63, we let (at+1, bt+1, ct+1, dt+1) = Stept(at, bt, ct, dt). The output of MD5Compress
is obtained by adding IHVin to (a64, b64, c64, d64). That is, we let

IHVout = (a0 + a64, b0 + b64, c0 + c64, d0 + d64).

To complete our description, it now suffices to list the addition and rotation constants, the Boolean
functions and the words denoted by Wt.

The addition constants are ACt = b232 · | sin(t+ 1)|c. The rotation constants are given by

(RCt, RCt+1, RCt+2, RCt+3) =


(7, 12, 17, 22) for t = 0, 4, 8, 12

(5, 9, 14, 20) for t = 16, 20, 24, 28

(4, 11, 16, 23) for t = 32, 36, 40, 44

(6, 10, 15, 21) for t = 48, 52, 56, 60

and the Boolean functions are

ft(X,Y, Z) =


(X ∧ Y)⊕ (X ∧ Z) for 0 ≤ t ≤ 15

(Z ∧X)⊕ (Z ∧ Y) for 16 ≤ t ≤ 31

X ⊕ Y ⊕ Z for 32 ≤ t ≤ 47

Y ⊕ (X ∨ Z) for 48 ≤ t ≤ 63

7The choice of the initial value is essentially arbitrary. This particular value was chosen to make it obvious that
there is nothing special about it, i.e., it is a so-called “nothing-up-my-sleeve number”. The choice of the addition
constants in MD5Compress is motivated similarly.

11

The words Wt are defined by

Wt =


mt for 0 ≤ t ≤ 15

m(1+5t) mod 16 for 16 ≤ t ≤ 31

m(5+3t) mod 16 for 32 ≤ r ≤ 47

m(7t) mod 16 for 48 ≤ t ≤ 63

We can give an equivalent formulation of MD5Compress as follows:

1. Let Q−3 = a, Q−2 = d, Q−1 = c and Q0 = b.

2. For t = 0, . . . , 63, compute

Ft = ft(Qt, Qt−1, Qt−2)

Tt = Ft +Qt−3 +ACt +Wt

Rt = RL(Tt, RCt)

Qt+1 = Qt +Rt

3. Output IHVout = (Q61 + a,Q64 + b,Q63 + c,Q62 + d).

The Qt are called working states. They, and the other intermediate variables in the algorithm above
play an important role in the attacks on MD5.

1.3.4 Inverting the MD5 Compression Function

Pre-image resistance requires that it is infeasible to find for a given intermediate hash value
IHVout an intermediate hash value IHVin together with a message block B such that IHVout =
MD5Compress(IHVin, B). There are still no practical attacks against the pre-image resistance of
MD5, but it is possible to invert MD5Compress in a different sense that is important not for pre-image
attacks but for collision attacks. For fixed IHVin, there is an easily computable one-to-one corre-
spondence between the message block B and the working states Q1, . . . , Q16 in the computation
of MD5Compress(IHVin, B). This correspondence allows us to choose the outcomes of the first 16
steps of a computation of MD5Compress(IHVin, ·) and then obtain a message block B that makes
these outcomes happen.

Proposition 1.1. For given IHV = (Q−3, Q0, Q−1, Q−2) and working states Q1, . . . , Q16, there is
exactly one message block B = m0‖ . . . ‖m15 such that these Qt are the first working states in the
computation of MD5Compress on the input (IHV,B). It is given by the following formula:

mt = RL(Qt+1 −Qt, 32−RCt)− ft(Qt, Qt−1, Qt−2)−Qt−3 −ACt for t = 0, . . . , 15.

Proof. For t < 16, we have Wt = mt. By definition of Tt,

Wt = Tt −Qt−3 − Ft −ACt

and Ft is defined as ft(Qt, Qt−1, Qt−2). We have Rt = RL(Tt, RCt). Since Rt and Tt are 32-
bit words, this holds if and only if Tt = RL(Rt, 32 − RCt). Because Qt+1 = Qt + Rt, we have
Rt = Qt+1 −Qt. Taking all this together gives the formula.

12

1.4 Cryptanalysis of MD5

1.4.1 Types of Collision Attacks

In this section, we describe different types of attacks on compression functions and hash func-
tions derived from them using the Merkle-Damg̊ard construction. Let Compress be some compres-
sion function. Technically, any two distinct inputs (IHV,B) and (IHV ′, B′) to Compress with
Compress(IHV,B) = Compress(IHV ′, B′) are a collision of the compression function. However,
when IHV 6= IHV ′, the inputs are usually called a pseudo-collision while the name collision is
reserved for colliding inputs with IHV = IHV ′.

An algorithm that outputs a (pseudo-)collision of Compress is called a (pseudo-)collision attack.
While (pseudo-)collision attacks on Compress in general do not lead to collision attacks on a hash
function constructed from that compression function, they can undermine it in two ways. Firstly,
if there are known (pseudo-)collision attacks on Compress, then Compress is not collision resistant
and we cannot invoke the guarantee of the Merkle-Damg̊ard construction to argue for the collision-
resistance of the derived hash function. Secondly, some (pseudo-)collision attacks could play a part
in collision attacks on the hash function.

A collision attack on a hash function h is an algorithm that outputs some messages M and M ′

with h(M) = h(M ′). However, some types of collision attacks give the attacker some control over
the generated collision. In this thesis, we are interested in two types of collision attacks.

Definition 1.2 (Identical-prefix attack). Let h be a cryptographic hash function. We say that an
algorithm is an identical-prefix collision attack on h if, given some bit-string P (the prefix) as input,
the algorithm outputs P‖S and P‖S′ such that S 6= S′ and h(P‖S) = h(P‖S′). That is, it produces
colliding messages with an identical prefix chosen by the attacker.

Definition 1.3 (Chosen-prefix attack). Let h be a cryptographic hash function. An algorithm is a
chosen-prefix collision attack if, given input bit-strings P and P ′, it outputs P‖S and P ′‖S′ such
that h(P‖S) = h(P ′‖S′). That is, it extends two prefixes chosen by the attacker in such a way that
a collision results.

1.4.2 Generic Collision Attacks by Birthday Search

Before looking at more sophisticated collision attacks on MD5, let us establish a baseline against
which these attacks can be compared. The attack that we are about to describe is generic in the
sense that it works on any hash function. If n is the number of output bits, the attack requires an
expected number of O(2n/2) evaluations of the hash function or, if the hash function follows the
Merkle-Damg̊ard construction, of the compression function. Thus, when designing a hash function,
one must make sure that the number of output bits is large enough to make this attack infeasible.

Birthday Search is a method to search for a collision in a function f where the running time
of the search can be estimated using an analogue of the Birthday Theorem. Intuitively, it seems
unlikely that two people in a small group have the same birthday, but assuming that birthdays are
uniformly distributed throughout the year8 and disregarding leap-years, we already have a chance
of over 50% in a group of 23 people. This fact is called the Birthday Paradox and it holds because
the number of pairs grows quadratically with the number of people in the group. More generally,

8This is not actually true, but the actual distribution makes a birthday collision even more likely.

13

if we select elements uniformly at random from a finite set A, we can expect to select roughly√
π · |A|/2 elements until the same element is selected twice. Thus, we can find a collision of a

(pseudo-)random function f : {0, 1}k → {0, 1}n evaluating f an expected number of O(2n/2) times:
We first select a random input x0 and store (x0, f(x0)) in a list. Then, for i = 1, 2, 3, . . . , we select
a random input xi and check whether the value of f(xi) is already in our list. If yes, we have found
a collision (assuming that xi does not already occur in the list). Otherwise, we append (xi, f(xi))
to the list and continue. A problem that this algorithm faces in practice is that maintaining the
list consumes a lot of memory. Since Birthday Search also is a building block for the attack by
Stevens et al. and also for the Flame attack, we describe a variant of the Birthday Search method
developed by van Oorschot and Wiener in [28] which avoids this problem in Section 2.2.3. We will
also give a proof for the expected running time in that section.

For MD5, this means that there is an attack that requires an expected number of
√
π ·263.5 ≈ 264.3

evaluations of MD5Compress. To find a collision, we can simply perform a Birthday Search on
the function f = MD5Compress(IV, ·). This is easily adapted to an identical-prefix attack: We
can replace IV with the intermediate hash value after MD5 has processed the prefix. A chosen-
prefix attack is possible as well, although its complexity is a bit higher. Appending some padding
if necessary, we can assume without loss of generality that the two chosen prefixes P and P ′

have the same length and that their length is a multiple of 512. Let IHV and IHV ′ be the
intermediate hash values after MD5 has processed P and P ′, respectively. We define the function
f : {0, 1}512 → {0, 1}128 by

f(x) =

{
MD5Compress(IHV, x) if x is even

MD5Compress (IHV ′, x) if x is odd

We can expect to find a collision of f after 264.3 evaluations. But not every collision of f gives us
a valid output for a chosen-prefix attack. We get a valid output if and only if one of the colliding
inputs is even and the other is odd. We call such collisions useful. Assuming that f is pseudo-
random, the probability that a collision is useful is 1/2. In Section 2.2.3, we will see that if p is the
probability that a collision is useful, then the expected cost of finding a useful collision is

√
1/p

times higher than the cost of finding an arbitrary collision. Thus, in a chosen-prefix collision attack
on MD5 by Birthday Search we can expect to compute MD5Compress

√
2 · 264.3 = 264.8 times.

1.4.3 A Short History of MD5-Cryptanalysis

A weakness in MD5Compress was found already in 1992. In [3], den Boer and Bosselaers present a
pseudo-collision attack on MD5Compress that, given an arbitrary IHV = (a, b, c, d), efficiently finds
a message block B such that for

IHV ′ =
(
a+ 231 mod 232, b+ 231 mod 232, c+ 231 mod 232, d+ 231 mod 232

)
we have MD5Compress(IHV,B) = MD5Compress(IHV ′, B). A collision attack on MD5Compress was
found in 1996 by Dobbertin and presented in [5] and [6]. Because of this attack, Dobbertin advised
against the continued use of MD5 in digital signature schemes.

The first collision in MD5 was found by Wang, Feng, Lai and Yu and presented 2004 in the
CRYPTO rump session. They generated the collision with an identical-prefix attack, published
in their 2005 paper [29]. It has an expected running time equivalent to 239 computations of

14

MD5Compress and takes ca. 15 minutes on an IBM P690. In [7], Hawkes, Paddon and Rose
attempted to reconstruct the attack before Wang et al. published it. We will give a short overview
of the attack in Section 2.1. On the first look, it might seem impossible to generate any meaningful
collision with their attack. To generate each of the two colliding messages, the prefix P is extended
with two random-looking 512-bit blocks. One might think that we should always be able to detect
random strings that appear inside otherwise meaningful data. However, we must not forget that
randomness can be meaningful too, for example as cryptographic keys. Exploiting this fact, Lenstra,
Wang and de Weger created two X.509 certificates9 that are identical except that they contain
different public keys (see [13] and [12]). It is also possible to create a pair of programs that have
the same hash value but behave very differently by making the program flow dependent on which
collision blocks are in the program. As an example, Daum and Lucks created two Postscript10 files
that display very different messages but have the same MD5-hash (see [2]). When either of these
files is opened in a text editor, the Postscript code can be read directly. Then, both messages are
revealed and a string of random characters can be seen, indicating that something is strange about
that document. However, the documents resulting from the code look innocuous and give no cause
to inspect the code.

After the breakthrough by Wang et al., many improved identical-prefix attacks have been found.
In [10], Klima describes a modification of the original attack that finds collisions on an ordinary
notebook PC in about eight hours; an attack by Yajima and Shimoyama in [31] also takes several
hours on a PC. In 2006, Klima discovered an attack that finds collisions in under a minute on
a PC, using a technique that he calls tunnels, published in [11]. Tunnels are also used in later
identical- and chosen-prefix attacks. In [23], Stevens published techniques to speed up the attack
by controlling the bit-rotations. An identical-prefix attack by Stevens et al., published in [24,
Section 6.4] can find collisions with a theoretical cost of 216 calls to MD5Compress. This is currently
the lowest cost among published attacks, but in [30], Xie and Feng claim, to have found message
block differences that, under a certain cost estimation function, might lead to an attack with a cost
of 210. An attack that they publish in that paper has an expected theoretical cost of 220.96 and
takes only seconds on a PC.

The first chosen-prefix attack on MD5 was found in 2007 by Stevens, Lenstra and de Weger and
published in [26]. It has a cost equivalent to approximately 250 MD5Compress-calls. The paper
discusses several abuse scenarios for the attack. They show that colliding certificates with different
distinguished names can be generated, with the collision-causing blocks again hidden inside the
public keys. Also, chosen-prefix attacks allow to create colliding executables or documents that do
not rely on using the collision blocks for program flow and thus look less suspicious. The collision-
causing blocks can be hidden at the end of the program or inside images in various document
formats. In their 2009 paper [27] Stevens, Sotirov, Appelbaum, Lenstra, Molnar, Osvik and de
Weger published an improved attack with a theoretical cost of 239.1. They used this attack to
establish a rogue certification authority. The CA was deliberately made harmless by setting the
expiration date of its certificate in the past, but setting the validity period in the present would
not have been any more difficult. We describe the collision attack in Section 2.2 of this thesis.

In 2012, the malware Flame was discovered and it was found that it could spread via Windows
Update. To make this possible, the attackers had to obtain a certificate with code-signing rights,

9X.509 is a widespread standard for certificates in the context of public-key cryptography.
10Postscript is a programming language for instructing printers and document viewer software to print or display

documents.

15

signed by Microsoft. This certificate was obtained with the help of a chosen-prefix collision attack.
A preliminary analysis of the attack was done by Stevens and published in [25]. In Chapter 3, we
give more background about Flame and attempt to reconstruct the collision attack.

All these attacks and applications indicate that MD5 should not be relied on when collision
attacks are a concern. Hash functions from the SHA-2 family are a safer alternative.

1.4.4 Differential Cryptanalysis

The most successful approach for finding collisions in MD5 and similar hash functions is differential
cryptanalysis and all the identical- and chosen-prefix attacks mentioned in the previous subsection
utilize it. In this approach, it is analysed how differences in the message block and intermediate
hash value propagate through the intermediate variables in the computation of the compression
function. There are three ways of representing these differences. The first is the bitwise XOR and
the second one is the arithmetic difference modulo 232, also called the modular difference. The third
way is the binary signed digit representation (BSDR). What makes the BSDR useful is that, as we
will see in Section 1.4.5, it encodes information about both bitwise differences and the modular
difference.

Let us begin with an outline of how attacks on MD5 in the framework of differential cryptanalysis
operate. Suppose that we have two messages M and M ′ of length k · 512 for some integer k. Let
Mi and M ′i be the ith 512-bit block of M and M ′, respectively, and let IHV0 = IHV ′0 = IV ,

IHV1 = MD5Compress(IHV0,M0), . . . , IHVk = MD5Compress(IHVk−1,Mk−1)

and
IHV ′1 = MD5Compress(IHV ′0 ,M

′
0), . . . , IHV ′k = MD5Compress(IHV ′k−1,M

′
k−1).

We call

δIHVk = IHV ′k − IHVk = (a′, b′, c′, d′)− (a, b, c, d) = (a′ − a, b′ − b′, c′ − c, d′ − d)

the intermediate hash value differential. Our goal is to construct 512-bit message blocks Mk,M
′
k

that cause a certain target value for δIHVk+1. In the cases we are interested in, this target
value for δIHVk+1 will be part of some collision attack. We construct these blocks with the help of
differential paths. A differential path can be viewed as a set of differential equations for the working
states and other intermediate variables in the computation of MD5Compress. We say that a pair of
MD5Compress-inputs (IHV,B), (IHV ′, B′) solves a differential path if the differences between the
variables in the computations of MD5Compress(IHV ′, B′) and MD5Compress(IHV,B) are the same
as the differentials given in the path.

If we have a differential path such that any solutions of the path give rise to our target δIHVk+1

and if we have an efficient algorithm to find Mk,M
′
k such that (Mk, IHVk), (M

′
k, IHV

′
k) solves the

differential path, then we can construct the required message blocks. A more formal definition of
differential paths will be given in Section 1.4.6. As an example, let us look at a very brief outline
of the identical-prefix collision attack by Wang et al. from [29]. We start from M = M ′ since the
attack is an identical-prefix attack and thus we have δIHVk = 0. Wang et al. designed a differential
path that can take us from δIHVk = 0 to δIHVk+1 = (231, 231 + 225, 231 + 225, 231 + 225) and
another differential path to take us from this value of δIHVk+1 back to δIHVk+2 = 0. Using their
first differential path, their identical-prefix attack finds Mk,M

′
k such that IHVk+1 and IHV ′k+1

16

instantiate the differential δIHVk+1 given above. When we append Mk and M ′k to M and M ′

respectively, we introduce a difference in the two messages. To complete the identical-prefix attack,
we then use the second differential path to compute Mk+1 and M ′k+1 such that the difference
between IHVk+2 and IHV ′k+2 is 0 again. When we append these new blocks to M and M ′, the
two messages have the same hash value and we have generated an MD5-collision.

The algorithms for solving differential paths used by Wang et al. and by Stevens et al.
work roughly as follows: Given input IHVk and IHV ′k and a differential path, we select val-
ues for Q1, . . . , Q16 and Q′1, . . . , Q

′
16 that are compatible with the differential path. From these

working states, we derive message blocks Mk and M ′k using Proposition 1.1. We then compute
MD5Compress(IHV ′k,M

′
k) and MD5Compress(IHVk,Mk) and check if these inputs solve the differ-

ential path. If yes, we have found appropriate message blocks. If not, we try different values for
Q1, . . . , Q16 and Q′1, . . . , Q

′
16.

This algorithm might seem inefficient: We just take care of the first 16 working states and, as far
as the remaining 48 working states are concerned, we just hope for the best. For most differential
paths it is indeed inefficient, but it is possible to design differential paths such that once the
working states Q1, . . . , Q16 and Q′1, . . . , Q

′
16 are fixed in accordance with the differential path, there

is a relatively high probability that the remaining working states will also match the differential
path. The key to constructing such differential paths are so-called trivial differential steps. Trivial
differential steps are special sequences of differentials that occur with a relatively high probability
or even with certainty when certain preconditions are met. Appropriately designed differential
paths make collision attacks on MD5 possible that are fast enough to be carried out in practice.

1.4.5 Binary Signed Digit Representation

A BSDR Z is a sequence Z = (Z[i])31
i=0 in {−1, 0, 1}. We say that Z is a BSDR of

σ(Z) =
31∑
i=0

Z[i] · 2i ∈ Z232 .

We let w(Z) be the weight of Z, i.e., the number of signed digits that are non-zero. A number
X ∈ Z232 has no unique BSDR, but there is a normal form: We say that a BSDR is in non-adjacent
form (NAF), if Z[i] 6= 0 only holds if Z[i − 1] = Z[i + i] = 0. This NAF is still not unique since
231 ≡ −231 mod 232, but we can make it unique by requiring Z[31] ∈ {0, 1}. This normal form
can be computed as

NAF(X)[i] = (X + Y)[i]− Y [i] for Y = 0X[31]X[30] . . . X[1].

The NAF of X has minimal weight among the BSDRs of X. We denote the modular difference
between two numbers X,X ′ ∈ Z232 as δX = X ′ −X mod 232 and we let ∆X = (X ′[i]−X[i])31

i=0

be the BSDR differential. Then ∆X is a BSDR of δX, so ∆X encodes information about the
modular differential. Also, if ∆X[i] = 0, we know that X[i] = X ′[i], if ∆X[i] = 1, then X[i] = 0
and X ′[i] = 1 and if ∆X[i] = −1, we have X[i] = 1 and X ′[i] = 0.

A convenient shorthand notation for BSDRs with many zeros is to give a list of the non-zero
digits and write the (−1)-digits with an overline. Thus, we write the BSDR (Z[i])i with Z[i] = 1
for i = 1, 17, 21 and Z[i] = −1 for i = 2, 13, 15 and Z[i] = 0 otherwise as (21, 17, 15, 13, 2, 1).

For a 32-bit word X, we call w(NAF(X)) the NAF-weight of X. This is a more appropriate
measure for the weight of an arithmetic differential than the ordinary Hamming-weight since the

17

NAF-weight of δX is a lower bound on the number of bit positions where X and X ′ with X ′−X =
δX differ. The Hamming-weight might be much larger: Suppose that δX = X ′−X = −1 ≡

∑32
i=0 2i

mod 232. Then δX has a Hamming-weight of 32, but X and X ′ might only differ in a single bit
which is reflected in the NAF-weight of 1. Low-weight BSDR-differentials are more likely than
higher-weight ones in the sense that if we fix some δX, choose X at random and let X ′ = X + δX,
lower-weight ∆X occur with higher probability: The probability that the BSDR-differential is ∆X
is 2−w(∆X).

1.4.6 Differential Paths

As said previously, a differential path is a system of differential equations on the working states
and intermediate variables of MD5Compress. Let

(IHV,m0‖ . . . ‖m15) and (IHV ′,m′0‖ . . . ‖m′15)

be two inputs to MD5Compress. We denote the working states and other intermediate variables of
the computation on the first input as Qt, Ft, Wt, etc. as in Section 1.3.3. Their counterparts in the
computation on the second input are denoted by Q′t, F

′
t , W

′
t , etc. For A,A′ a pair of such variables,

we define the arithmetic differential δA = A′−A mod 232 and the BSDR differential ∆A given by
∆A[i] = A′[i]−A[i].

Definition 1.4 (Differential Path). A partial differential path for steps t = t0, t0+1, . . . , t1 consists
of the following information:

• ∆Qt for t = t0 − 2, . . . , t1, δQt0−3 and δQt1+1.

• ∆Ft for t = t0, . . . , t1.

• δm0, . . . , δm15 from which δW0, . . . , δW63 can be derived.

• δTt and δRt for t = t0, . . . , t1.

We say that MD5Compress-inputs (IHV,B) and (IHV ′, B′) (or the computations of MD5Compress

on these inputs) solve steps t′0, . . . , t
′
1 of the differential path if B′ − B = (δm0, . . . , δm15) and for

t = t′0, . . . , t
′
1, the working states and intermediate variables of the computations on (IHV,B) and

(IHV ′, B′) solve the differentials given by the path for t = t′0, . . . , t
′
1 and, additionally, the working

state differentials δQt′0−3, ∆Qt′0−2, ∆Qt′0−1 and δQt′1+1. They are said to solve the path up to step
t′1 if they solve steps t0, . . . , t

′
1 and they are said to simply solve it if they solve steps t0, . . . , t1.

A partial differential path is called valid if there is a pair of inputs for MD5Compress that solves
it. A partial differential path is called a full differential path if t0 = 0 and t1 = 63.

The reason that the BSDR is given for the differences in Qt is that they occur in arithmetic and
in Boolean operations, so we are interested in both their arithmetic differences and their bitwise
differences. For the Ft, BSDRs are given because we want to use bitconditions to fix the differentials
δFt. But using bitconditions, it is not possible to fix δFt without fixing ∆Ft. All variables other
than the Qt only occur in arithmetic operations, except for the bitwise rotations. The rotations
are taken care of probabilistically: Given a difference δTi, there are (at most) four possible values
for the arithmetic difference in the rotated value Ri. We can easily calculate these differences and

18

with what probability they happen and choose a high probability rotation for δRi (see Lemma 1.6).
Thus, we only need the arithmetic differences for these variables.

Let us summarize in what ways an input pair that solves a valid differential path up to step
t − 1 can deviate from the path in step t. Suppose we have a valid differential path and inputs
(IHV,B) and (IHV ′, B′) that solve the differential path up to step t− 1. Thus, the value for δQt
agrees with the differential path. But the differential path specifies a value for ∆Qt and, unless
δQt = 0, there are multiple ∆Qt that are compatible with δQt. Thus, it is possible that the ∆Qt
of our computation deviates from the differential path. The likelihood of this event depends on the
weight of ∆Qt. For an illustration, suppose that we have δQt = 2k for some k < 31 and that Qt
is uniformly distributed. If Qt[k] = 0, we have Q′t[k] = (Qt + δQt)[k] = 1 and Q′t[i] = Qt[i] for all
i 6= k. Hence, ∆Qt = (k). The probability of Qt[k] = 0 is 1/2. If Qt[k + 1] = 0 and Qt[k] = 1,
which happens with probability 1/4, we have ∆Qt = (k + 1, k). With probability 1/8, we have
Qt[k+ 2] = 0, Qt[k+ 1] = 1 and Qt[k] = 1 so that ∆Qt = (k+ 2, k + 1, k), and so on. In differential
paths for collision attacks, it is therefore generally preferable to have low-weight values for ∆Qt.
The NAF is optimal, but in the attack by Stevens et al. it is necessary to generate a large number
of differential paths which is done by varying the values for ∆Qt.

Suppose now that our computation agrees with the value for ∆Qt from the differential path.
This does not guarantee that it agrees with ∆Ft. Using bitconditions, which we will introduce
in Section 1.4.8, we can easily see whether Qt−2, Qt−1 and Qt are compatible with ∆Ft just by
inspecting them individually. Now assume that our inputs agree with ∆Ft. If our differential path
is valid, the value for δTt in our computation agrees with the path since δTt = δQt−3 +δFt+δWt. In
δRt, our inputs can again deviate from the path since Rt is a rotation of Tt and a given arithmetic
input difference in the rotation can result in several different output differences. If our inputs agree
with δTt but not with δRt from the path, we say that an incorrect rotation happened at step t. We
will show in Section 1.4.7 that this problem can be managed probabilistically. If our inputs agree
with δRt from the path, it follows that they must also agree with δQt+1 since δQt+1 = δQt + δRt.
Thus, the rotation was the last obstacle for our inputs to solve one more step of the differential
path.

1.4.7 Rotations of Arithmetic Differentials

Let us now summarize the possible effects of rotations on arithmetic differentials. Let X and X ′

be 32-bit words and δX = X ′ −X. One might expect that RL(X ′, n) − RL(X,n) = RL(δX, n),
but this equation does not always hold which is due to possible carries when adding δX to X. This
equation might fail in three different ways, as we will prove shortly:

• The carries introduced by adding δX to X overflow the (32 − n)-bit boundary. Then,
RL(X ′, n)−RL(X,n) = RL(δX, n) + 1.

• The carries introduced by adding δX to X overflow the 32-bit boundary. Then, RL(X ′, n)−
RL(X,n) = RL(δX, n)− 2n.

• The carries overflow both boundaries. Then, RL(X ′, n)−RL(X,n) = RL(δX, n)− 2n + 1.

Before giving a proof, let us illustrate the first two cases with examples. The third case is essentially
just a combination of the first two cases. Suppose we have δX = 225 and n = 5. We start with a

19

value for X where no boundary is overflown. Suppose that

X = 11000‖000 . . . 0
⇒ X ′ = 11000‖010 . . . 0

where the ‘‖’ marks the (32 − n)-bit boundary. Rotating these words by n swaps the part before
the ‘‖’ with the part after the ‘‖’. Thus,

RL(X,n) = 000 . . . 0‖11000
RL(X ′, n) = 010 . . . 0‖11000

and the difference is RL(X ′, n) − RL(X,n) = 230 = RL(δX, n), as expected. Now consider the
following value for X.

X = 11000‖110 . . . 0
⇒ X ′ = 11001‖000 . . . 0

The rotated words are

RL(X,n) = 110 . . . 0‖11000
RL(X ′, n) = 000 . . . 0‖11001

which gives us RL(X ′, n)−RL(X,n) = −231−230 + 1 ≡ 230 + 1 mod 232. To illustrate the second
case, consider δX = 228 and

X = 11110‖110 . . . 0
⇒ X ′ = 00000‖110 . . . 0

where the ‘‖’ again indicates the (32− n)-bit boundary. The rotated words are

RL(X,n) = 110 . . . 0‖11110
RL(X ′, n) = 110 . . . 0‖00000

which gives RL(X ′, n) − RL(X,n) = −24 − 23 − 22 − 2 = −25 + 2 and we have RL(δX, n) =
228+5 mod 32 = 2.

Let us now proceed to the proof.

Definition 1.5. Let δX ∈ Z232 be an arithmetic differential and n ∈ {1, . . . , 31}. We define the
set of rotated differentials as

dRL(δX, n) = {RL (X + δX, n)−RL(X,n) | X ∈ Z232} .

We can easily compute the elements of dRL(δX, n) and with what probability they occur, as
the following lemma shows.

Lemma 1.6 ([24, Lemma 5.4]). For every δX ∈ Z232 and every n ∈ {1, . . . , 31}, the set dRL(δX, n)
contains at most four elements D1, . . . , D4. These elements and the probabilities

pi = PrX∈Z232

[
RL

(
X + δX mod 232, n

)
−RL(X,n) = Di

]
20

can be computed as follows. Let Xlow =
∑31−n

i=0 δX[i] · 2i and Xhigh =
∑31

i=32−n δX[i] · 2i. Then, the
Di and pi are given by the formulas

i Di pi
1 RL(δX, n) 2−64+n · (232−n −Xlow) · (232 −Xhigh)

2 RL(δX, n)− 2n 2−64+n · (232−n −Xlow) ·Xhigh

3 RL(δX, n) + 1 2−64+n ·Xlow · (232 −Xhigh − 232−n)

4 RL(δX, n)− 2n + 1 2−64+n ·Xlow · (Xhigh + 232−n)

Proof. For a BSDR differential ∆X, we can easily determine the BSDR differential after the rota-
tion: This is simply (∆Xi+n mod 32)31

i=0. Two BSDRs ∆X1 and ∆X2 of δX give rise to the same
rotated differential if and only if

31−n∑
i=0

∆X1[i] · 2i =
31−n∑
i=0

∆X2[i] · 2i and
31∑

i=32−n
∆X1[i] · 2i =

31∑
i=32−n

∆X2[i] · 2i.

We define a partition of δX as a pair of integers (α, β) such that |α| < 231−n, |β| < 231, 231−n|β
and α+ β ≡ δX mod 232. For all k1, . . . , k31 ∈ {−1, 0, 1} such that

α =
31−n∑
i=0

ki · 2i and β =
31∑

i=32−n
ki · 2i,

(ki)
31
i=0 is a BSDR of δX since α+ β ≡ δX mod 232. Conversely, every BSDR of δX gives rise to

a partition of δX and two BSDRs result in the same partition (α, β) if and only if they result in
the same rotated differential

RL((α, β), n) = 2n · α+ 2−32+n · β.

Let us determine the possible partitions. We define the function φ : Z32 → {0, . . . 232 − 1} as
the function that maps elements of Z32 to their unique representative in the set {0, . . . , 232 − 1}.
For fixed α, it is clear that, since α+ β ≡ δX mod 232, we must have β ≡ δX − α mod 232. Due
to the restriction that |β| < 232, there are at most two possible values for β: The first one is

β0 = (φ(δX)− α) mod 232

and the second one is
β1 = β0 − 232

which is only available if β0 6= 0.
Since 232−n divides β, it follows that δX − α mod 232 is divided by 232−n. Which values for α

with |α| < 232−n achieve this? We must have

δX − α ≡ 0 mod 232−n ⇔ α ≡ δX mod 232−n

and |α| < 232−n. There are at most two values for α that satisfy these constraints, namely α0 = Xlow

and, if Xlow 6= 0, also α1 = Xlow − 232−n.

21

In total, we thus have at most four possibilities:

α = Xlow, β = Xhigh

α = Xlow, β = Xhigh − 232

α = Xlow − 232−n, β = (Xhigh + 232−n) mod 232

α = Xlow − 232−n, β = (Xhigh + 232−n) mod 232 − 232

These correspond to the rotated differentials D1 = RL(δX, n), D2 = RL(δX, n) − 2n, D3 =
RL(δX, n) + 1 and D4 = RL(δX, n)− 2n + 1, respectively.

To compute the probabilities of these rotations, let

p(α,β) = PrX [RL((α, β), n) = RL(X + δX, n)−RL(X,n)]

and count the X ∈ Z232 such that the BSDR ((X + δX)[i] −X[i])i induces partition (α, β). This
occurs if and only if

α =
31−n∑
i=0

((X + α+ β)[i]−X[i]) · 2i and β =
32∑

i=32−n
((X + α+ β)[i]−X[i]) · 2i.

Since 232−n|β, the first equation simplifies to

α =

31−n∑
i=0

((X + α)[i]−X[i]) · 2i

which implies that (X + α)[i] = X[i] for i > 31− n, so the second equation simplifies to

β =
31∑

i=32−n
((X + β)[i]−X[i]) · 2i.

These equations hold if and only if

0 ≤ α+
31−n∑
i=0

X[i] · 2i < 232−n and 0 ≤ β +
31∑

i=32−n
X[i] · 2i < 232.

There are 232−n − |α| possible choices for the first 32− n bits of X such that the first equation is
satisfied and 2n− |β| · 2−32+n possible choices for the remaining bits such that the second equation
is satisfied. This gives us

p(α,β) =
232−n − |α|

232−n · 2n − |β| · 2−32+n

2n
=

232−n − |α|
232−n · 232 − |β|

232

= 2−64+n
(
232−n − |α|

) (
232 − |β|

)
and inserting the four possible values for α and β given before into this formula gives us the formulas
for the probabilities of the different rotations.

22

1.4.8 Bitconditions

To help in finding message blocks that solve a given path, Wang et al. gave “sufficient conditions”
or bitconditions on the bits in the working states. It turned out that these conditions are not
actually sufficient: A pair of inputs might satisfy the conditions up to some step but fail to solve
the next step of the path, due to possible incorrect rotations. Nevertheless, with high probability
the correct rotations happen. We can also use bitconditions to specify a differential path itself.
Below, we give tables with symbols for the various bitconditions and their meanings. There are
two kinds: Differential bitconditions that determine the values of the ∆Qt and Boolean function
bitconditions that determine the ∆Ft. The differential bitconditions are summarized in Table 1.1
and the Boolean function bitconditions in Table 1.2.

We write bitconditions on a pair of working states Qt, Q
′
t as a tuple of 31 bitconditions qt

where the ith element qt[i] is the condition on the ith bits of Qt and Q′t, counted from least to
most significant. When listing bitconditions, we write the tuples qt from right to left, i.e., as
qt[31] . . . qt[0], to reflect the significance of the bits.

Symbol Condition ∆Qt[i]

. Qt[i] = Q′t[i] 0
+ Qt[i] = 0 ∧Q′t[i] = 1 +1
- Qt[i] = 1 ∧Q′t[i] = 0 −1

Table 1.1: Differential bitconditions

Symbol Condition Type Direction

. Qt[i] = Q′t[i] direct
0 Qt[i] = Q′t[i] = 0 direct
1 Qt[i] = Q′t[i] = 1 direct
^ Qt[i] = Q′t[i] = Qt−1[i] indirect backwards
v Qt[i] = Q′t[i] = Qt+1[i] indirect forwards

! Qt[i] = Q′t[i] = Qt−1[i] indirect backwards

y Qt[i] = Q′t[i] = Qt+1[i] indirect forwards
m Qt[i] = Q′t[i] = Qt−2[i] indirect backwards
w Qt[i] = Q′t[i] = Qt+2[i] indirect forwards

Qt[i] = Q′t[i] = Qt−2[i] indirect backwards

h Qt[i] = Q′t[i] = Qt+2[i] indirect forwards
? Qt[i] = Q′t[i] ∧ (Qt[i] = 1 ∨Qt−2[i] = 0) indirect backwards
q Qt[i] = Q′t[i] ∧ (Qt[i] = 1 ∨Qt+2[i] = 0) indirect forwards

Table 1.2: Boolean function bitconditions

Wang et al. used bitconditions as a tool to check whether computations of MD5Compress follow
a given differential path. It is easy to see how the differential bitconditions enforce certain values

23

for ∆Qt: If a pair of working states Qt, Q
′
t satisfies qt, then we have

∆Qt[i] = Q′t[i]−Qt[i] =


1 if qt[i] = +

−1 if qt[i] = -

0 otherwise

However, in Section 1.4.9, we will see how bitconditions can also be used as replacements for
differential paths: All valid differential paths (and some invalid ones) can be completely specified
by bitconditions. For every BSDR ∆Qt, the tuple of differential bitconditions qt specified by

qt[i] =


+ if ∆Qt[i] = 1

- if ∆Qt[i] = −1

. if ∆Qt[i] = 0

(1.1)

is satisfied by working statesQt, Q
′
t if and only if they solve the differential ∆Qt. Given bitconditions

qt and qt+1 on Qt, Q
′
t and Qt+1, Q

′
t+1 respectively, the values of δQt and δQt+1 are fixed. Then,

the only value for δRt that can occur in a valid differential path is δRt = δQt+1 − δQt. However,
∆Ft remains a source of ambiguity, as the following example shows:

Suppose we have bitconditions (-, -, .) on Qt[i], Qt−1[i], Qt−2[i] for some t ≤ 15. Then we have
Qt[i] = Qt−1[i] = 1, Q′t[i] = Q′t−1[i] = 0 and Qt−2[i] = Q′t−2[i] ∈ {0, 1}. It follows that

∆Ft[i] =

{
((0 ∧ 0)⊕ (0 ∧ 0))− ((1 ∧ 1)⊕ (1 ∧ 0)) = 0− 1 = −1 if Qt−2[i] = Q′t−2[i] = 0

((0 ∧ 0)⊕ (0 ∧ 1))− ((1 ∧ 1)⊕ (1 ∧ 1)) = 1− 1 = 0 if Qt−2[i] = Q′t−2[i] = 1

so ∆Ft[i] is undetermined. We can resolve this ambiguity by replacing ‘.’-bitconditions with
Boolean function bitconditions. In this case, replacing the . by 0 or 1 resolves the ambiguity.

1.4.9 Representing Differential Paths with Bitconditions

In this subsection, we will prove the following theorem which states that every valid differential
path can be completely specified in terms of bitconditions. The proof is constructive in the sense
that we give an algorithm to extract appropriate bitconditions from the path. Many of the concepts
we introduce for this proof will reappear later when we describe the chosen-prefix collision-attack
by Stevens et al.

Theorem 1.7 (Bitconditions as Differential Paths). For each valid differential path on steps
t0, . . . , t1, there is a sequence of bitconditions qt0−2, . . . , qt1 such that inputs (IHV,B) and (IHV ′, B′)
solve the differential path if and only if

• Qt0−3 and Q′t0−3 satisfy δQt0−3 from the differential path.

• Qt1+1 and Q′t1+1 satisfy δQt1+1 from the differential path.

• Qt0−2, . . . , Qt1 and Q′t0−2, . . . , Q
′
t1 satisfy the bitconditions.

• R′t −Rt = δRt for every t = t0, . . . , t1.

Such bitconditions can be found by an efficient algorithm.

24

Remark 1.8. The bitconditions from this theorem together with δQt0−3, δQt1+1 and δm0, . . . , δm15

are a complete representation of the differential path. Therefore, we identify the bitconditions
together with these arithmetic differentials with the differential path itself. We can also encode
δQt0−3 and δQt1+1 as bitconditions by computing bitconditions from their NAFs using Equation
(1.1).

Computing the bitconditions is accomplished by first translating all ∆Qt from the differential
path into bitconditions using Equation (1.1) and then replacing ‘.’-bitconditions by Boolean func-
tion bitconditions so that the ∆Ft from the path are enforced. To prove that this is possible in a
way that does not exclude any sequence of (Qt, Q

′
t) which satisfy the path, we need the following

definitions and a lemma.

Definition 1.9 (Forward and backward bitconditions). We say that a bitcondition on a bit in
working state Qt is forward if it involves a bit of Qt+1 or Qt+2. We call a bitcondition backward if
it involves Qt−1 or Qt−2. If a bitcondition is neither forward nor backward we say that it is direct.
The forward bitconditions are v, y, w, h and q; the backward bitconditions are ^, !, m, # and ?.

Definition 1.10. For a tuple (a, b, c) = (qt[i], qt−1[i], qt−2[i]) of bitconditions such that a is not
forward, b is at most one step forward or backward and c is not backward, we define the set Uabc as
the set of tuples (

x, x′, y, y′, z, z′
)

=
(
Qt[b], Q

′
t[b], Qt−1[b], Q′t−1[b], Qt−2[b], Q′t−2[b]

)
that satisfy the bitconditions a, b, c.

Let L be the set of triples (a, b, c) of bitconditions as described above with Uabc 6= ∅. We call
the elements of L the local triples of bitconditions. A triple (d, e, f) ∈ L strengthens another triple
(a, b, c) ∈ L if Udef ⊆ Uabc.

We define

Vt,abc =
{
ft(x

′, y′, z′)− ft (x, y, z) |
(
x, x′, y, y′, z, z′

)
∈ Uabc

}
⊆ {−1, 0, 1}

as the set of values for ∆Ft[b] that are consistent with (a, b, c).
A triple (d, e, f) ∈ L is called a solution for step t, if it fixes ∆Ft, i.e., if |Vt,def| = 1. We let St

be the set of solutions for step t. For (a, b, c) ∈ L and g ∈ Vt,abc, we let St,abc,g be the set of solutions
for step t that strenghten (a, b, c) and that have Vt,def = {g}. Formally, this can be expressed as

St,abc,g = {(d, e, f) ∈ St | Udef ⊆ Uabc and Vt,def = {g}} .

For any (a, b, c) ∈ L and any g ∈ Vt,abc, it holds that St,abc,g 6= ∅ because for any (x, x′, y, y′, z, z′) ∈
Uabc with ft (x′, y′, z′) − ft (x, y, z) = g, we can simply replace .-bitconditions by 0 or 1 so that
only (x, x′, y, y′, z, z′) satisfies the resulting bitconditions. However, doing this will in most cases
exclude many sequences of working states that satisfy the differential path. The bitconditions are
designed in such a way that there are (d, e, f) ∈ St,abc,g that pick out exactly those elements of Uabc

which give the correct value for ∆Ft[b].

Lemma 1.11. For every (a, b, c) ∈ L and every g ∈ Vt,abc, there are bitconditions (d, e, f) ∈ St,abc,g
such that the indirect bitconditions in d, e, f are all forward (all backward) and

Udef =
{(
x, x′, y, y′, z, z′

)
∈ Uabc | ft

(
x′, y′, z′

)
− ft (x, y, z) = g

}
(1.2)

25

The proof of this lemma is by “brute force”. We only give one example here. Let us find
(d, e, f) for the Boolean function F of the first round, g = 0 and all (a, b, c) ∈ L consisting only of
differential bitconditions. We have

∆Ft = F
(
x′, y′, z′

)
− F (x, y, z) = 0⇔

(
x = 0 ∧ x′ = 0 ∧ z = z′

)
∨
(
x = 0 ∧ x′ = 1 ∧ z = y′

)
∨
(
x = 1 ∧ x′ = 0 ∧ y = z′

)
∨
(
x = 1 ∧ x′ = 1 ∧ y = y′

)
Suppose first that a = ., so that x = x′. Then, b = . or c = ., for otherwise ∆Ft = 0 is not
consistent with these bitconditions. If b = c = ., we do not need to add any further bitconditions
to fix ∆Ft. If b 6= ., we have y 6= y′ and thus, we have ∆Ft = 0 if and only if x = x′ = 0. Thus, we
set (d, e, f) = (0, b, c). If c 6= ., we have z 6= z′, so we have ∆Ft = 0 if and only if x = x′ = 1. Thus,
we choose d = 1, e = b and f = c.

Now assume that a = +, so that x = 0 and x′ = 1. Then, ∆Ft = 0 if and only if z = y′. If
b = c ∈ {+, -}, this condition can not be fullfilled. Suppose that b = +. If we also have c = -, we can
not impose any additional conditions, so we have (d, e, f) = (a, b, c). Otherwise, we must have c = .

and we must set (d, e, f) = (a, b, 1) to satisfy z = y′. The case b = - can be handled analogously.
If b = . and c = +, we have to set (d, e, f) = (a, 0, c) and if c = -, we set (d, e, f) = (a, 1, c). If
b = c = ., we must have y = y′ = z = z′. To enforce this, we need indirect bitconditions. We set

(d, e, f) =

{
(+, ., v) if we want only forward bitconditions

(+, ^, .) if we want only backward bitconditions

This makes sure that y = y′, z = z′ and y = z. Conversely, every tuple (0, 1, y, y′, z, z′) where
y = y′ = z = z′ satisfies these bitconditions and thus Udef = Uabc. The case a = - is treated
analogously to a = +.

If there are multiple (d, e, f) that fullfil Condition (1.2), we prefer direct bitconditions over
indirect ones and among the indirect ones, we prefer the “closer” conditions ^v!y that only reach
one position backward/forward over mw#h?q that reach two positions backward/forward. We denote
the choice of d, e, f with only forward bitconditions by FC(t, abc, g) and the choice with backward
bitconditions by BC(t, abc, g). With these functions, which can be implemented using exhaustive
search or lookup tables, we are ready to prove the theorem.

Proof (Theorem 1.7). For every step t ∈ {t0, . . . , t1}, we let qt be the differential bitconditions
corresponding to ∆Qt according to Equation (1.1). Then, a sequence of working states will satisfy
the bitconditions if and only if it solves the ∆Qt from the differential path. For t = t0, . . . , t1 and
i = 0, . . . , 31, we replace bitconditions (qt[i], qt−1[i], qt−2[i]) by FC(t, qt[i]qt−1[i]qt−2[i],∆Ft[i]).

We now need to show two things: That FC is indeed defined on every input it receives in this
process and that our differential path is satisfied by precisely those working states that occur for
inputs which solve the differential path. To this end, we prove the following.

Claim. For each t ∈ {t0, . . . , t1}, the bitcondition triple (qt[i], qt−1[i], qt−2[i]) before replacement
is local for every i and after the replacement has been carried out, the working state sequences
that satisfy the bitconditions up to step t are exactly those that solve δQt0−3,∆Qt0−2, . . . ,∆Qt and
∆Ft0 , . . . ,∆Ft from the differential path.

26

This statement implies Theorem 1.7 because if the computations on (IHV,B) and (IHV ′, B′)
satisfy the ∆Qt and ∆Ft in the differential path and B,B′ satisfy the message block differences,
then they must satisfy the δTt of the differential path. The δRt must be satisfied because δRt =
σ(∆Qt+1)− σ(∆Qt).

We prove the claim by induction. For t = t0, the bitcondition triple (qt[i], qt−1[i], qt−2[i])
is local since initially, all bitconditions are direct. Working states Qt0−3, . . . , Qt0 , Q′t0−3, . . . , Q

′
t0

satisfy the bitconditions up to step t0 before replacement if and only if their differentials agree
with those of the differential path. Since the differential path is valid, there must be some
working states that satisfy the bitconditions and solve ∆Ft0 from the differential path. Thus,
FC(t0, qt0 [i]qt0−1[i]qt0−2[i],∆Ft[i]) is defined. After replacement, the working states that satisfy
the bitconditions up to step t0 are exactly those that satisfied them before replacement and have
the same ∆Ft as the differential path because of Lemma 1.11.

Suppose that our claim holds up to step t − 1 for some t > t0. We show that this implies
that it is also true for step t. The triple of bitconditions (qt−1[i], qt−2[i], qt−3[i]) after step t − 1
has been performed must be local and all bitconditions in it must be forward by definition of the
function FC. It follows that qt−2[i] is direct or one step forward and that qt−1[i] is direct. Since
qt[i] has not been replaced yet, it is direct, too. This shows that (qt[i], qt−1[i], qt−2[i]) is local. By
induction hypothesis, Qt0−2, . . . , Qt and Q′t0−2, . . . , Q

′
t satisfy the bitconditions up to step t if and

only if they solve δQt0−3,∆Qt0−2, . . . ,∆Qt and ∆Ft0 , . . . ,∆Ft−1 from the differential path. Since
the differential path is valid, FC(t0, qt0 [i]qt0−1[i]qt0−2[i],∆Ft[i]) must be defined and Lemma 1.11
ensures that sequences of working states satisfy the new bitconditions if and only if they solve
δQt0−3,∆Qt0−2, . . . ,∆Qt and ∆Ft0 , . . . ,∆Ft from the differential path.

Remark 1.12. Instead of replacing the bitconditions in ascending order using FC we can also
replace them in descending order using BC. This results in different but equivalent bitconditions. In
Section 2.2, we show how to use FC and BC to extend (bitcondition representations of) differential
paths forward and backward.

When the differential path is given by bitconditions, it makes sense to redefine the notion of
partially solving the differential path.

Definition 1.13. Suppose that we have a differential path for steps t0, . . . , t1 specified by bitcondi-
tions. We say that a pair of inputs solves steps t′0, . . . , t

′
1 for t0 ≤ t′0 ≤ t′1 ≤ t1 if the working states

Qi, Q
′
i for i = t′0 − 2, . . . , t′1 satisfy their respective bitconditions and the values for Qt′0−3, Q

′
t′0−3

and Qt′1+1, Q
′
t′1+1 agree with the values for δQt′0−3 and δQt′1+1 as derived from the path. A pair of

inputs solves the path up to step t if it solves steps t0, . . . , t of the path.

This new definition differs from Definition 1.4 because the bitconditions qt for t < t1 depend on
∆Ft+1 and ∆Ft+2 but in the old definition, ∆Ft+1 and ∆Ft+2 play no role in deciding whether a
differential path is solved up to step t.

1.4.10 A Basic Algorithm for Solving Differential Paths

A simple algorithm for solving differential paths, given by bitconditions, works as follows: Suppose
we are given a differential path and intermediate hash values

IHV = (Q−3, Q0, Q−1, Q−2), IHV ′ =
(
Q′−3, Q

′
0, Q

′
−1, Q−2

)
27

that agree with q−3, . . . , q0 of the differential path. Our goal is to find message blocks B and B′

such that (IHV,B) and (IHV ′, B′) solves the differential path.

1. Without loss of generality, suppose the differential path is given by direct and backward
bitconditions. Randomly select Q1, . . . , Q16 that agree with the bitconditions.

2. Computem0, . . . ,m15 from the selected working states and then computeQ17, . . . , Q64. Check
if these agree with their respective bitconditions.

3. If they do, letB = m0‖ . . . ‖m15, B′ = m0+δm0‖ . . . ‖m15+δm15, IHV = (Q−3, Q0, Q−1, Q−2)
and IHV ′ = (Q−3 + δQ−3, Q0 + δQ0, Q−1 + δQ−1, Q−2 + δQ−2) and output (IHV,B) and
(IHV ′, B′) as an input pair that follows the differential path. If not, start over at step 1.

This algorithm works because for any ∆Qt, if Qt agrees with ∆Qt in the sense that

• Qt[i] = 0 if ∆Qt[i] = 1, and

• Qt[i] = 1 if ∆Qt[i] = −1

then for Q′t = Qt + δQt, the differential ∆Qt is solved by Qt and Q′t. Thus, if the Qt agree with
the bitconditions then the Q′t = Qt + δQt (where the δQt are read off from the bitconditions) also
agree with the bitconditions. Since all bitconditions except ‘.’ put some constraints on the Qt, it
is generally advantageous for differential paths to have as many ‘.’-bitconditions as possible.11

This algorithm only serves as an illustration; it leaves a lot of room for improvement. We can
also use so-called tunnels or message modification to speed up the computation. We will see a more
sophisticated algorithm in Section 2.2.9. For an algorithm like that to be effective, we need long
sequences of so-called trivial differential steps which we will discuss in Section 1.4.11.

In the case of Wang et al.’s identical prefix collision attack, the differential paths were con-
structed “by hand”. This was possible because for identical prefix attacks, the difference in the
input intermediate hash value is known. In a chosen-prefix attack, this is not possible because it
needs to accommodate a large number of input differences to be useful. The paths need to be
constructed algorithmically during the attack. We will describe the algorithmic construction for
the attack by Stevens et al. in Section 2.2.

1.4.11 Trivial Differential Steps

Trivial differential steps are working state differences that, under certain conditions, replicate them-
selves in the next step. For MD5, such sequences are caused by four occurrences of δQt = 0 in a row
or four occurrences of δQt = 231 in a row. If δQt = 0 occurs four times in a row, the difference
δQt = 0 will repeat in all further steps until we hit δWt 6= 0. The case where δQt = 231 occurs four
times in a row is somewhat less smooth, but there still is a good probability that the next step has
δQt = 231 as well. The reason why these trivial steps exist is that, for δQt ∈ {0, 231}, the number
of possible values for ∆Qt and ∆Ft is very small and, in most cases, we have δTt = 0 which has
only one rotation, δRt = 0.

Theorem 1.14 (Trivial differential steps). The following statements about working state differences
in MD5Compress hold:

11Technically, a ’.’-bitcondition on bit i of working state t imposes the constraint that Qt[i] = Q′t[i], but since we
first compute the Qt and then the appropriate Q′t, this does not act as a constraint in our algorithm.

28

1. Suppose that, for some t, δQt−3, δQt−2, δQt−1, δQt = 0 and δWt = 0. Then the next working
state difference will be δQt+1 = 0. It follows that if four consecutive working state differences
are 0, the working state differences that follow them will be 0 too until a non-zero message
word difference δWi occurs.

2. Suppose that for some t with 16 ≤ t < 32, it holds that δQt−3, . . . , δQt = 231 and either

• ∆Qt = ∆Qt−1 and δWt = 0, or

• ∆Qt 6= ∆Qt−1 and δWt = 231.

Then, the next working state difference will be δQt+1 = 231.

3. Suppose that for t with 32 ≤ t < 48, we have δQt−3, δQt−2, δQt−1, δQt = 231 and δWt = 0.
Then, the next working state difference will be δQt+1 = 231.

4. Suppose that for some t with 48 ≤ t < 64, we have δQt−3, . . . , δQt = 231 and either

• ∆Qt = ∆Qt−2 and δWt = 0, or

• ∆Qt 6= ∆Qt−2 and δWt = 231.

Then, the next arithmetic working state difference will be δQt+1 = 231.

Proof. Item 1 is easy to see: The bitwise Boolean function at step t is evaluated on Qt, Qt−1, Qt−2

and Q′t, Q
′
t−1, Q

′
t−2. Thus, δQt = δQt−1 = δQt−2 = 0 implies that Ft = F ′t , i.e., δFt = 0. If

δWt = δQt−3 = 0, then also δTt = δQt−3 + δFt + δWt = 0. The only possible rotation of δTt = 0
is δRt = 0. Therefore, we get δQt+1 = δQt + δRt = 0 for the next working state as long as the
previous three working states and the message blocks Wt,W

′
t have difference 0.

To prove the remaining statements, we will show again that δTt = 0. We will use the fact
that there are only two BSDRs for 231, namely (31) and (31). This implies that the values of the
Boolean functions evaluated on Qt, Qt−1, Qt−2 and on Q′t, Q

′
t−1, Q

′
t−2 can differ only in the most

significant bit when δQt−2, . . . , δQt = 231. Let us now find necessary and sufficient conditions for
the most significant bits to be different. Let X, Y and Z denote the most significant bits of Qt,
Qt−1 and Qt−2. Since ∆Qt−2, . . . ,∆Qt ∈ {(31), (31)}, the most significant bits of Q′t, Q

′
t−1 and

Q′t−2 are X, Y and Z, respectively.
For t ∈ {16, . . . , 31}, we then have

∆Ft[31] = (Z ∧X)⊕ (Z ∧ Y)− (Z ∧X)⊕ (Z ∧ Y)

which is non-zero if and only if Y = X. Since the only BSDRs for 231 are (31) and (31), the most
significant bits of Qt and Qt−1 are identical if and only if we have ∆Qt = ∆Qt−1. Thus, we have

δFt =

{
231 if ∆Qt = ∆Qt−1

0 otherwise

This shows that statement 2 holds: If ∆Qt = ∆Qt−1 and δWt = 0, then δTt = δQt−3 +δFt+δWt =
2 · 231 ≡ 0. If ∆Qt 6= ∆Qt−1 and δWt = 231, then we again have δTt = 2 · 231 ≡ 0. Thus, δTt = 0
holds in either case. As in the proof of item 1., if follows that δQt+1 = δQt, but in this case, this
means that δQt+1 = 231.

29

For t ∈ {32, . . . , 47}, and X, Y and Z as before, we have

∆Ft[31] = X ⊕ Y ⊕ Z −X ⊕ Y ⊕ Z

and since A⊕B = A⊕B = A⊕B, we have

X ⊕ Y ⊕ Z = X ⊕ Y ⊕ Z = X ⊕ Y ⊕ Z.

It follows that ∆Ft[31] is always non-zero and hence, δFt = 231. Together with δQt−3 = 231 and
δWt = 0, this gives us δTt = 0 again and thus, statement 3 holds.

For t ∈ {48, . . . , 63} and X,Y, Z as before, we have

∆Ft[31] = Y ⊕ (X ∨ Z)− Y ⊕ (X ∨ Z) = Y ⊕ (X ∨ Z)− Y ⊕ (X ∨ Z)

= Y ⊕X ∨ Z − Y ⊕ (X ∨ Z)

and thus, ∆Ft[31] is non-zero if and only if

(X ∨ Z) = (X ∨ Z)⇔ X = Z.

Analogously to the proof of statement 2, we can show that δTt = 0 if either ∆Qt = ∆Qt−2 and
δWt = 0 or ∆Qt 6= ∆Qt−2 and δWt = 231. This proves item 4.

Remark 1.15. It is possible to prove a statement similar to 2 – 4 for t ∈ {0, . . . , 15}, but this is
not useful since we choose the working states on these steps when we solve a differential path.

We can express Theorem 1.14 as follows in terms of bitconditions:

Corollary 1.16. Suppose we have a valid differential path given by message word differentials
δm0, . . . , δm15 and bitconditions qt0 , . . . , qt1. The following statements hold:

1. Suppose that for some t, t′, we have

qt−3, . . . , qt′+1 =

and δWt, . . . , δWt′ = 0. Then, all input pairs that solve the differential path up to step t − 1
also solve it up to step t′.

2. Suppose that for some t with 16 ≤ t < 32, we have

qt−3, . . . , qt+1 = X.......

where X can be either + or - (X does not have to stand for the same bitcondition in each q).
Suppose further that qt−1[31] = qt[31] and δWt = 0 or qt−1[31] 6= qt[31] and δWt = 231. Then,
all input pairs that satisfy the differential path up to step t − 1 and, additionally, ∆Qt also
satisfy the differential path up to step t.

3. Suppose that for some t with 32 ≤ t < 48, we have bitconditions qt−3, . . . , qt as in part 2 and
δWt = 0. Then, all input pairs that satisfy the differential path up to step t − 1 and also
satisfy ∆Qt solve the path up to step t.

30

4. Suppose that, for t with 48 ≤ t < 64, we have qt−3, . . . , qt as in step 2 and either qt[31] =
qt−2[31] and δWt = 0 or qt[31] 6= qt−2[31] and δWt = 231. If an input pair satisfies the path
up to step t− 1 and ∆Qt, then it solves the path up to step t.

The fact that a useful differential path must have such trivial differential steps can be exploited
to detect that a message was constructed by a collision attack even when only one message of the
colliding pair is known. Marc Stevens describes such counter-measures in [24, Chapter 8]. These
techniques were also used in retrieving the differential path of the Flame collision attack. We will
say more about this topic in Section 2.3. Concrete examples of full differential paths, expressed as
bitconditions, can be found in Appendix A which lists the differential paths of the Flame collision
attack. These differential paths follow the design principles we mentioned in this section: A large
number of bitconditions is concentrated on the first 16 working states. They then thin out and are
followed by sequences of trivial differential steps so that the differential path can be solved quickly.
The final four working states are the “payload” of the differential path and cause a target δIHV
to occur.

Note that by displaying the differential paths in terms of bitconditions, we do not mean to imply
that the attackers used differential paths and bitconditions in the exact same way as we defined
them here, although the near-collision blocks were definitely crafted using differential paths of some
form. We do not know how exactly the near-collision blocks were constructed, but we attempt to
reconstruct details of their attack in Chapter 3.

31

Chapter 2

Attacks on MD5

2.1 The Identical-Prefix Attack by Wang et al.

This section gives a rough outline of the identical prefix attack by Wang et al. in [29]. The input for
the attack is a pair of messages M and M ′ such that, for some k, they both have length 512 ·N and
such that the computations of MD5 on M and M ′ have the same intermediate hash value IHVk. The
easiest way to satisfy this condition is to takeM = M ′. The attack algorithm appends 512-bit blocks
B0 and B1 to M and different blocks B′0 and B′1 to M ′ such that MD5(M‖B0‖B1) = MD5(M ′‖B′0‖B′1).
That is, the algorithm produces a collision of MD5 where the colliding messages have identical (or
already colliding) prefixes, hence the name. Due to the incremental nature of MD5, the resulting
messages can then be extended with identical suffixes or further instances of the collision attack
while maintaining the collision.

The attack is based on two “hand-crafted” differential paths. The path associated with the
blocks B0, B

′
0 starts with δIHVk = IHV ′k − IHVk = (0, 0, 0, 0) and ends with

δIHVk+1 = (δa, δb, δc, δd) = (231, 231 + 225, 231 + 225, 231 + 225)

which is produced by the following differentials in δB0 = (δm0, . . . , δm15):

δm4 = 231, δm11 = 215, δm14 = 231 and δmi = 0 for all other mi.

The path associated with B1, B
′
1 begins with δIHVk+1 as above and ends with δIHVk+2 = (0, 0, 0, 0)

which is brought about by negating the message block differences from before, i.e.,

δm4 = 231, δm11 = −215, δm14 = 231 and δmi = 0 for all other mi.

We use an algorithm similar to the one in Section 1.4.9 to find inputs that solve the differential
paths and generate the blocks B0, B1, B

′
0, B

′
1 that cause the messages to collide. Two tricks speed

up the algorithm for solving the paths: The first one is message modification. If we have a solution
of the path up to a certain step, we can use message modification to generate a large number of
solutions up to that step. We can then check for each of these solutions whether it solvers the
further steps. This is similar to the tunnels discussed in Section 2.2.8. The second trick is early
abort. As soon as we see that a condition is not satisfied and that no message modification is
possible to solve this problem, we abort the attempt and start over. On average, the algorithm by
Wang et al. can generate the collision blocks with cost equivalent to roughly 239 MD5Compress-calls.

32

2.2 The Chosen-Prefix Attack by Stevens et al.

2.2.1 Outline of the Attack

We begin with a high-level overview of the chosen-prefix attack by Stevens et al. as described in
[24]. The input is a pair of prefixes P and P ′ that we wish to extend with suffixes S and S′ such
that MD5(P‖S) = MD5(P ′‖S′). As a first step, we pad the prefixes so that for some integer n, their
lengths are both equal to 512 · n− 64− k where 0 ≤ k ≤ 32 is a parameter of the algorithm. From
now on, we assume without loss of generality that P and P ′ both already have the appropriate
length.

The next step is a Birthday Search to find strings of 64 + k “Birthday Bits” Sb, S
′
b for each

message such that the intermediate hash value after processing P‖Sb and P ′‖S′b belongs to a certain
set of intermediate hash values that we are prepared to eliminate. We then construct sequences of
near-collision blocks that successively reduce the NAF-weight, i.e., the weight of the non-adjacent
forms, of the intermediate hash value differentials until there is no difference left. Constructing
each near-collision blocks requires the following steps.

• Construct a full differential path from two partial differential paths: The upper path which is
dictated by the previous intermediate hash value and the lower path which causes a certain
change in the intermediate hash value differential. This is achieved by algorithms to

– extend the upper path forward,

– the lower path backward, and

– combine the partial differential paths into one when they meet.

• Solve the differential path to obtain a message block that achieves the target intermediate
hash value.

The lower paths were “hand-crafted” by Stevens et al. and consist of a long middle segment that
contain many trivial differential steps as described in Section 1.4.11 and an end-segment which
causes the required changes in the intermediate hash value.

In the next section, we describe the set of intermediate hash value differentials that the near-
collision blocks can eliminate, what changes an individual near-collision block can make, and the
elimination strategy, i.e., the process of selecting the lower paths for the near-collision blocks. We
then describe the Birthday Search, the construction of the full differential paths and the algorithm
for solving them.

2.2.2 Elimination Strategy

Our goal in the Birthday Search is to find bit-strings Sb and S′b of length 64 + k such that, for
IHVn the intermediate hash value after processing P‖Sb and IHV ′n the intermediate hash value
after processing P ′‖S′b, the arithmetic differential δIHVn = IHV ′n − IHVn is of the form

δIHVn = (δa, δb, δc, δd) = (0, δb, δc, δc)

where δb and δc are such that δb − δc ≡ 0 mod 2k. This condition implies that, on average, the
NAFs of δb and δc differ in (32− k)/3 positions. In this section, we explain how these differences
can be eliminated.

33

Let us first give some more details about the end-segments of the differential paths from which
we construct the near-collision blocks. For each constant w < 32, each r with 0 ≤ r < 32 and each
tuple (s0, . . . , sw′) ∈ {−1, 0, 1}w′+1 where w′ = min(w, 31 − r), there is a lower differential path
with δQ61 = 0, δQ62 = δQ63 = ±2r and δQ64 = 2r +

∑
λ=0 sλ · 2r+21+λ mod 32. We explain below

how these values are brought about. The following table displays the differentials in the various
intermediate variables.

i δQi δFi δWi δTi RCi δRi
61 0 0 ±2r−10 mod 32 ±2r−10 mod 32 10 ±2r

62 ±2r 0 0 0 15 0

63 ±2r
∑w′

λ=0 sλ · 2r+λ 0 δFi 21
∑w′

λ=0 sλ · 2r+21+λ mod 32

64 ±2r + δR63

These values are brought about as follows: The differential paths have message block differentials
δm11 = ±2r−10 mod 32 and δmi = 0 for i 6= 11. Step 61 is the last in a sequence of trivial differential
steps with δQi = 0. We have δF61 = 0, since the previous three steps are trivial with δQi = 0.
Thus, δT61 = δW61 = δm11 = 2r−10 mod 32. The rotation constant is RC61 = 10. Provided that the
right rotation happens, we have δR61 = δQ62 = ±2r.12 Then, a likely value for ∆Q62 is (r) or (r),
respectively. If Q60[r] = Q′60[r] = 0, we have δF62 = 0. Also, δWt = 0. It follows that δQ63 = δQ62.
It is then possible to have ∆Q63[r], . . . ,∆Q63[r +w′] 6= 0 which allows for ∆F63[r + λ] = sλ. After
rotation with RC63 = 21, we may get the value for δQ64 given above. Below, we give an example
of a differential path end-segment with w = 4, δQ62, δQ63 = 211 and δQ64 = 211 − 24 + 22:

61 10101...

62 1.0.+...

63 +----...

64+... ...-.+..

If we have a pair of near-collision blocks based on a differential path with these values for
δQ61, . . . , δQ64 and if δIHV = (δa, δb, δc, δd) is the intermediate hash value before this pair of
near-collision blocks, then the intermediate hash value after the new pair of near-collision blocks
will be (

δa, δb± 2p +
w′∑
λ=0

sλ2r+21+λ mod 32, δc± 2r, δd± 2r

)
.

We use such near-collision blocks to successively eliminate δc and δd and as much of δb as possible.
The remainder of δb is eliminated by introducing a difference in δc and δd and removing it again
while making use of the si to eliminate differences in δb.

Let us now make the strategy for eliminating the IHV -difference more precise. Let δIHV =
(0, δb, δc, δc) be the intermediate hash value after the Birthday Search. Fix some parameter w < 32.
Let (xi)

31
i=0 be the NAF of δb − δc and (yi)

31
i=0 the NAF of δc = δd. In phase 1 of the elimination

process, we want to reduce δc to 0. Until δc = 0, repeat the following process:

12If we make the idealizing assumption that T61 is random, there is a probability of 1/2 that T61[r] = 0. In that
case, adding δT61 to T61 causes no carries, so we have RL(T ′61, RC61)−RL(T61, RC61) = RL(δT61, RC61). Thus, the
correct rotation happens with a probability of at least 1/2.

34

1. Pick some r ∈ {0, . . . , 31} such that yr 6= 0.

2. Let w′ = min(w, 31− r).

3. For λ = 0, . . . , w′, let sλ = −xr+21+λ mod 32.

4. Construct a pair of near-collision blocks from a differential path with δQ61 = 0, δQ62 =
δQ63 = −yr · 2r and δQ64 = −yr · 2r −

∑w′

λ=0 sλ · 2r+21+λ mod 32.

5. Append the constructed message block pair to the initial messages and update δIHV to the
intermediate hash value after the new near-collision blocks.

Each iteration reduces the NAF-weight of δc by one. When δc has reached 0, we can write δIHV =
(0, δb, 0, 0). We now proceed with the second phase of the elimination strategy. Let (li)

31
i=0 be the

NAF of δb. Until δb = 0, repeat the following steps:

1. Pick i ∈ {0, . . . , 31} such that li−21 mod 32 6= 0 and r = i − 21 mod 32 is minimal. Let
w′ = min(w, 31− r).

2. For λ = 0, . . . , w′, let sλ = −lr+21+λ mod 32 = −li+λ mod 32.

3. Construct a pair of near-collision blocks from a differential path with δQ61 = 0, δQ62 =
δQ63 = 2r and δQ64 = 2r +

∑w′

λ=0 sλ · 2r+21+λ mod 32 = 2r +
∑w′

λ=0 sλ · 2i+λ mod 32.

4. Append the resulting pair of message blocks.

5. Construct a pair of near-collision blocks with δQ61 = 0 and δQ62 = δQ63 = δQ64 = −2r and
append this pair. Update δIHV accordingly.

Each iteration reduces the NAF-weight of δb by at least one. The other words in δIHV remain
0; the contributions of the first and second pair to these differentials cancel each other. Once δb
reaches 0, the collision attack is complete. The second phase is more expensive than the first since
we need to construct two pairs of near-collision blocks per iteration of the loop. A high value of w
reduces the average number of iterations in phase 2, but the differential paths require more non-
constant bitconditions (i.e., bitconditions other than ‘.’) when w is higher. Thus, the parameter w
enables trade-offs between the cost of constructing an individual message block and the expected
number of message blocks we need to construct.

In the next section, we discuss how to find the Birthday Bits that produce a δIHV to which
we can apply the elimination strategy. After that, we show how to construct full differential paths
and how to solve them.

2.2.3 Birthday Search

Framework

As mentioned in Section 2.2.1, we set aside 64+k bits for a Birthday Search to find message blocks
that induce a difference in the intermediate hash values of a particular form. However, simply
generating random Birthday Bits until a suitable pair of intermediate hash values is found is not
practical due to the memory requirements. To avoid having to store too many values and in order

35

to make use of parallelism, the framework by van Oorschot and Wiener in [28] is used. Below, we
will give a description of that framework and apply it to our problem.

Suppose we have a deterministic function f on some search space S with |S| = n and we
want to find a collision of f , i.e., distinct elements x, y ∈ S such that f(x) = f(y). If we make
the additional assumption that f is pseudo-random – which should be the case for a compression
function of a cryptographic hash function – we can make the idealizing assumption that for x
selected at random, the sequence x, f(x), f(f(x)), . . . is a random walk. Since it is impractical
to store the whole random walk, we choose some subset D of S whose elements have some easily
recognizable property (e.g., a certain bit pattern) and we end a random walk once it enters D.
We call the elements of this set the distinguished points. For several random x ∈ S we compute
f(x), f(f(x)), . . . until we reach an element of D, storing only the starting points x, the end points
dx ∈ D and the lengths lx of the walks.

Let θ = |D|/n be the fraction of distinguished points. Let X be the random variable that
gives the length of a random walk. Then X is distributed geometrically with mean 1/θ, i.e.,
Pr[X = k] = θ(1 − θ)k−1 under the idealizing assumption that the walks are truly random. This
holds because a random walk of length k would have to first pick k − 1 elements outside of D,
which happens with probability (1− θ)k−1 and then pick one element inside D which happens with
probability θ.

When two walks intersect, a collision has occurred and since f is deterministic, they will both
end at the same distinguished point dx. Thus, we can detect that a collision has occurred by
comparing the values of dx. As we will see, the more distinguished points we have, the less time
our computation will take. However, we will also need to store more data when there are many
distinguished points. Thus, the parameter θ allows us to make a time-memory trade-off.

We can then use the stored information about the two walks to recompute the collision. We
can use multiple processors in parallel to compute sequences xi, f(xi), . . . for multiple randomly
chosen x1, . . . , xm. The final results of the walks, xi, lxi , dxi are all stored in a common list; once a
processor is finished, it selects a new random x to start another walk.

One problem that might occur with this approach is that a walk might never reach D because
it loops outside of D. When this happens, the processor that computes the walk would stop
contributing to our Birthday Search. This problem can be solved by abandoning walks that are too
long. The probability that a random walk goes on for 20/θ steps is circa e−20, so we will not loose
much by abandoning walks longer than 20/θ. Another problem is that dx = dy also occurs when x
lies on the walk of y or the other way around. This unlikely case is called a “Robin Hood”13 and
does not yield a collision of f .

When we have found distinct x, y ∈ S such that dx = dy, we know that f lx(x) = dx = dy =
f ly(y). Since we have stored the starting points x and y of these walks and also their lengths, we
can search for kx < lx and ky < ly such that fkx(x) 6= fky(y), but fkx+1(x) = fky+1(y). If lx ≤ ly,
we set kx = ly − lx and ky = 0. Then, we increase kx and ky until fkx+1(x) = fky+1(y). If ly < lx
we do the same with kx = 0 and ky = lx − ly. Assuming that no “Robin Hood” occurred, fkx(x)
and fky(y) is a collision of f . This computation can be split up among two processors.

We now calculate the number of expected steps until a collision occurs. Under our assumption
that x, f(x), f(f(x)), . . . are random walks, it suffices to calculate the expected number of elements
that we need to select at random from S until the same element is selected twice. Let Y be the

13In archery, a shot where the arrow hits the end of another arrow sticking in the target is called a “Robin Hood”.
Here, the two random walks play the role of the arrows.

36

random variable that counts the number of elements selected uniformly at random from S until the
same element is selected twice. By [28, Appendix A],

Pr[Y > k] =

(
1− 1

n

)(
1− 2

n

)
· · · · ·

(
1− k − 1

n

)
≈ e−k2/(2n)

and

E[Y] =

∞∑
k=0

k · Pr[Y = k] =

∞∑
k=1

k · (Pr[Y > k − 1]− Pr[Y > k]) =

∞∑
k=0

Pr[Y > k]

≈
∫ ∞

0
e−k

2/(2n) dk

=
√
πn/2

Thus we expect to compute roughly
√
πn/2 steps until a collision has occurred. If we distribute

this work on m processors, it requires
√
πn/2/m steps on each. Once a collision has occurred in

some walk, it takes an expected number of 1/θ steps until the walk reaches a distinguished point
and it is detected.

In some applications of Birthday Searches, not every collision is useful. Unfortunately, our
application is one of them. Let us therefore consider the case that a random collision of f is useful
with some probability p. How many times can we expect to compute f until a useful collision is
found? To simplify the analysis, we assume that for every F ∈ Range(f), there is at most one pair
(x, y) that collides in F . Thus, we can label the collision value F itself as useful or useless and
every collision value is useful with probability p. This simplification is justified by the fact that it
is relatively unlikely that the same value occurs three times in a random walk.14

We model our search for a useful collision as follows: Let S ′ be the set of useful collision
values in S, so |S ′| = n · p. At each step, with probability p we select a random element of S ′
and with probability 1 − p, we do nothing which simulates selecting a useless value. When we
have selected the same element of S ′ twice, we stop. We want to calculate the expectation of the
number of steps until we stop. By the analysis for the case where every collision is useful it follows
that we can expect to select

√
πnp/2 elements from S ′ until we find a repetition. We expect

to make 1/p steps in order to select one element of S ′. Thus, the expected number of steps is√
πnp/2/p =

√
πnp/(2p2) =

√
πn/(2p), an increase by a factor

√
1/p compared to the case where

every collision is useful.
By this analysis, we need to compute f an expected number of

Ctr =

√
πn

2p

times until a useful collision occurs. Whenever a collision occurs (useful or not), we can expect to
compute f another 2/θ times until it is detected.15 Then, we expect to compute f 2/θ times to

14For F ∈ S, let XF,k be the random variable counting the number of times that F occurs in a random walk
x1, . . . , xk ∈ S. Then, the distribution of XF,k is the binomial distribution B(k, 1/n) and the Chernoff bound gives
us Pr[XF,k ≥ 3] ≤ k · (n− 1)/(4n2) ≈ k/(4n).

15The fact that both the expected length and the expected length after a collision occurred are 1/θ seems para-
doxical, but this is no actual paradox since longer walks are more likely to contain collisions.

37

recompute the collision and check whether it is useful. Therefore,

Ccoll =
4

θ

is the expected number of steps to detect and recompute a collision after it has occurred. We can
expect to go through this process 1/p times. Thus, the overall complexity is16

Ctr +
Ccoll
p

=

√
πn

2p
+

4

θp

Application

For the purpose of searching Birthday Bits Sb, S
′
b to bring about the differences in the intermediate

hash values that we require, we let S = Z232 × Z232 × Z2k . For B and B′ the last 512− 64− k bits
of P and P ′ respectively and for IHV and IHV ′ the intermediate hash values before these blocks,
we let

f(x, y, z) =
(
a, c− d, b− c mod 2k

)
where (a, b, c, d) =

{
MD5Compress (IHV,B‖x‖y‖z) if x ≡ 0 mod 2

MD5Compress (IHV ′, B′‖x‖y‖z) if x ≡ 1 mod 2

However, as said before, not every collision we find is useful. We need one sequence of Birthday
Bits to append to P and one to append to P ′, so we want to find a collision where one colliding
element has x ≡ 0 mod 2 and the other one has x ≡ 1 mod 2. Furthermore, we want the differences
δc and δb to be such that they can be removed with r collision blocks with parameter w. The
probability that a collision satisfies all these requirements is denoted as pr,k,w. Thus, we need to
evaluate f an expected number of

Ctr(r, k, w) =

√
π · |S|

2 · pr,k,w

times until a collision occurs.
Suppose that we want to allow the algorithm to use an expected number M of memory bytes.

The data for a walk can be stored in 28 bytes (3 · 32 = 96 bits for the start and end point each; 32
bits for the length). Thus, if we want to allow an expected number of M bytes, we need to make
sure that the expected number of walks that are generated until a useful collision is found is (at
most) M/28. Since 1/θ is the expected length of a walk, the expected number of walks that have
to be generated until a useful collision is found is Ctr · θ. That means, we must choose θ such that
Ctr · θ = M/28, i.e., θ = M/(28Ctr). Then, the cost for detecting and finding a collision after it has
occurred is

Ccoll(r, k, w,M) =
4 · 28 · Ctr(r, k, w)

M
=

112 · Ctr(r, k, w)

M

16This formula differs somewhat from the one given by van Oorschot and Wiener in [28] because they calculate the
time requirement with multiple processors instead of the complexity and because they seem to assume that we can
decide whether a collision is useful without recomputing it.

38

evaluations of f . The total complexity is

C(r, k, w,M) = Ctr(r, k, w) +
Ccoll(r, k, w,M)

pr,k,w
=

(
1 +

112

M · pr,k,w

)
· Ctr(r, k, w)

=

(
1 +

112

M · pr,k,w

)
·

√
π · |S|

2 · pr,k,w

The value of pr,k,w is hard to compute exactly. Empirical estimates for various parameter
settings are given by Stevens in [24, Table 6-6 and Appendix D]. For example, setting k = 0, w = 3
and r = 6 gives pr,k,w ≈ 2−18.14. Then,

Ctr(6, 0, 3) =

√
π · 264

2−17.14
=
√
π · 281.14 ≈ 241.40.

When we use enough memory, we can bring the actual cost of the collision search arbitrarily
close to this value. Suppose that we allow our algorithm to have an expected memory use of
20 GB ≈ 234.22 bytes.17 Then, the Birthday Search has a total complexity of about(

1 +
112

234.22 · 2−18.14

)
· 241.40 =

(
1 + 112 · 2−16.08

)
· 241.40 ≈ 20.00 · 241.40 = 241.40.

Birthday Search for a Single Block Collision

There also exists a family of differential paths that can eliminate differences from some set D with
|D| = 223.3 of intermediate hash value differentials δIHV that have the property that δIHV =
(δa, δb, δc, δd) is of the form δa = −25, δd = −25 + 225 and δc ≡ −25 mod 220. Thus, we can
generate a collision with only one pair of collision blocks if we can find an appropriate δIHV using
Birthday Search. To do this, we use search space S = {0, 1}84. Let B,B′ be the last pair of message
blocks of our prefix and IHV and IHV ′ the intermediate hash values after these blocks have been
processed. Define a function f : S → S by

f(x) =

{
φ
(
MD5Compress(IHV,B‖x) + δÎHV

)
if τ(x) = 0

φ (MD5Compress (IHV ′, B′‖x)) if τ(x) = 1

where τ : S → {0, 1} is some balanced selector function, δÎHV = (−25, 0,−25,−25 + 225) and
φ(a, b, c, d) = a‖d‖c mod 220. When we find some collision x, y with τ(x) = 0 and τ(y) = 1, then it
follows that, for (a, b, c, d) = MD5Compress(IHV,B‖x) and (a′, b′, c′, d′) = MD5Compress(IHV ′, B′‖y),
we have δa = a′ − a = −25, δd = −25 + 225 and δc ≡ −25 mod 220.

There are 2128−84 = 244 pairs of intermediate hash values that instantiate this difference. Since
|D| = 223.30, the probability that a collision x, y with τ(x) 6= τ(y) is useful is 223.3/244 = 2−20.7.
Since τ is balanced, the probability that any given collision is useful is p = 2−20.70/2 = 2−21.70.
Plugging p and |S| in our formula for Ctr, we get

Ctr =

√
π · 284

2 · 2−21.70
=
√
π · 2104.70 ≈ 253.18

17In practice, it is of course necessary to make more than just the expected amount of memory available.

39

and allowing the algorithm an expected memory use of 140 GB ≈ 237.03 bytes, we get a total
complexity of (

1 +
112

237.03 · 2−21.70

)
· 253.18 ≈ 253.18.

2.2.4 Extending Partial Differential Paths

When constructing a differential path for the chosen prefix attack, we start with message block
differentials δm0, . . . , δm15 for the path that we want to build which fixes δW0, . . . , δW63 and
with given intermediate hash values. This fixes Q−3, . . . , Q0 and Q′−3, . . . , Q

′
0, so we already have

∆Q−3, . . . ,∆Q0 and corresponding bitconditions q−3, . . . , q0 where each qt[i] is either +, -, 0 or
1. Thus, we have the beginning of a differential path. We also have a “hand-crafted” ending of a
differential path that leads to the difference in the output intermediate hash values that we want
to achieve. We choose some step t̂ at which we want to connect these two partial paths. A good
choice is t̂ = 11, since this will help us in making use of the “tunnels” described in Section 2.2.8. As
described below in detail, we extend our initial segment of a path forward until we have q−2, . . . , qt
and δQ−3, δQt+1. We also extend the other end of the part backward until we have qt+3, . . . , q64

and δQt+2, δQ64. Then we select additional bitconditions so that these partial paths fit together.
We call the differential path that extends forward from the input intermediate hash value the upper
path and the path that extends backwards from the desired end segment the lower path.

Given a valid partial differential path that fixes the values for ∆Ft, we want to be able to
algorithmically extend it forward and backward such that it remains valid and for each step t, only
one value for ∆Ft is compatible with the path.

2.2.5 Extending a Path Forward

A partial differential path is extended forward by the following method. Suppose that for some step
t, we are given δQt−3, δQt, bitconditions qt−2, qt−1, and possibly qt. Extending the path forward
one step means doing the following:

• Select bitconditions qt on working state Qt that enforce δQt.

• Select a Boolean function differential ∆Ft and, if necessary, replace ‘.’-bitconditions by
Boolean function bitconditions to enforce it.

• Compute δTt and the value for δQt+1 that is based on the most likely rotation of it.

Suppose further that for every i ∈ {0, . . . , 31}, the following invariant holds:

qt[i] and qt−1[i] are both direct and if qt−2[i] is indirect, it only involves Qt−1[i]. (2.1)

This is the case for t = 0 (since initially, q−3, . . . , q0 are all direct) and we will see that the algorithm
carries this condition over to the next step. The algorithm works as follows:

1. For step t = 0, q0 is already given. In the later steps, we select some BSDR (Z[i])31
i=0 of δQt

with low weight. A possible choice is the non-adjacent form, but we can vary the choice of
the BSDR in order to create a large number of paths which is necessary since not every pair
of upper and lower paths can be connected.

40

2. When we have chosen the BSDR, we let

qt[i] =


- if Z[i] = −1

. if Z[i] = 0

+ if Z[i] = 1

so that ∆Qt[i] = Z[i]. The lower the weight of (Z[i])31
i=0 is, the more freedom we have in the

choice of Qt when solving the path.

3. To determine ∆Ft, we do the following for i = 0, . . . 31.

(a) We let (a, b, c) = (qt[i], qt−1[i], qt−2[i]). Since qt−2[i] involves at most Qt−1[i], qt−1[i]
is direct and qt[i] is a differential bitcondition, we have (a, b, c) ∈ L, the set of local
bitconditions as defined in Section 1.4.9.

(b) If Vt,abc, as defined in Section 1.4.9, is a singleton, ∆Ft[i] is already determined by (a, b, c)
and we proceed to the next i.

(c) Otherwise, we select an arbitrary g ∈ Vt,abc,t and let (d, e, f) = FC(t, abc, g) ∈ L. We
then replace (qt[i], qt−1[i], qt−2) by (d, e, f). Similar to the choice of the BSDR in step 1,
we can vary g to generate a large number of differential paths.

4. Since the message block differences δm0, . . . , δm15 are already given, we now can compute
δTt = δQt−3 + δWt + δFt and select the most likely δRt ∈ dRL(δTt, RCt).

5. We compute δQt+1 = δQt + δRt.

After that, we have extended our path one step forward. It remains to show that the invariant
(2.1) holds for step t+ 1 if it held for step t. The bitconditions qt+1 are not given, so they do not
need to concern us – we choose a tuple of differential (and hence direct) bitconditions in step 1 of
the algorithm. For every i = 0, . . . , 31, (qt[i], qt−1[i], qt−2[i]) is in L. Thus, we know that if qt−1[i]
is indirect, it may only involve Qt−2[i] or Qt[i]. If qt−1 was replaced during the algorithm it must
be direct or forward since the replacement is done using the function FC. If it was not replaced,
then it is direct because we assumed that (2.1) holds for step t. Thus, if qt−1[i] is indirect, it only
involves Qt[i]. Likewise, qt[i] must be either direct or forward. But since (qt[i], qt−1[i], qt−2[i]) is
local, it can not be forward and thus it must be direct.

2.2.6 Extending a Path Backward

Suppose that for some step t, we are given qt, qt−1 and the differences δQt+1 and δQt−2. We want
to extend the differential path backwards by giving bitconditions qt−2, changing ‘.’-bitconditions
in qt, qt−1 to Boolean function bitconditions if necessary and giving a modular differential δQt−3.
We assume that the conditions in qt−1 are direct and that the indirect conditions in qt only involve
Qt−1. This condition is carried over to the next step t− 1.

The algorithm is similar to the one for forward extension. We first choose a low-weight
BSDR for δQt−2, e.g., NAF(δQt−2), and select qt−2 accordingly. Then we replace for every i =
0, . . . , 31 the triple (qt[i], qt−1[i], qt−2[i]) by BC(t, qt[i]qt−1[i]qt−2[i], g) for some g ∈ Vt,qt[i]qt−1[i]qt−2[i]

41

if (qt[i], qt−1[i], qt−2[i]) do not fix ∆Ft[i] yet. For δRt = δQt+1−δQt, we choose a high-probability18

δTt ∈ dRL(δRt, 32−RCt). This allows us to compute δQt−3 = δTt−δFt−δWt and we have finished
our step backwards.

2.2.7 Connecting Upper and Lower Paths

To merge a upper and lower differential path at step t, we extend the upper path forward up to step
t and the lower part backward up to t+5. From the forward extension, we get q−2, . . . , qt and δQ−3

and δQt+1. From the backwards extension, we get qt+3, . . . , q63 and differentials δQt+2 and δQ64.
Since the bitconditions are computed with the forward and backward extension algorithms, we can
assume that all bitconditions in qt are direct, that the indirect bitconditions in qt−1 only involve
Qt, that the bit conditions in qt+3 are direct and that all indirect bit conditions in qt+4 only involve
Qt+3. Our goal is now to find bitconditions that are compatible with our previous bitconditions
and that fix ∆Qt+1, ∆Qt+2, ∆Ft+1, ∆Ft+2, ∆Ft+3 and ∆Ft+4 so that a valid complete differential
path results. To this end, we use an algorithm that computes these BSDRs in a bitwise manner.
Not all combinations of upper and lower paths can be connected. Therefore, it is necessary to
generate a large number of upper and lower paths by varying the ∆Qt and ∆Ft in the forward and
backward extension.

For the connection algorithm, we first find suitable values for δFt+1, . . . , δFt+4:

For i = t+ 1, . . . , t+ 4,

1. Compute δRi = δQi+1 − δQi.

2. Choose a high-probability rotation difference δTi from dRL(δRi, 32−RCi).

3. Let δFi = δTi − δQi−3 − δWi.

For i = 1, . . . , 32, let Ui be the set of tuples (q1, q2, f1, f2, f3, f4) where the qj and fk are
32-bit words with qj ≡ fk ≡ 0 mod 2i such that for l = 0, . . . , i − 1, there exist bitconditions
qt−1[l], . . . , qt+4[l] compatible with our previous bitconditions which determine ∆Qt[l], ∆Qt+1[l]
and ∆Ft[l], . . . ,∆Ft+4[l] such that

δQt+j = qj +

i−1∑
l=0

2l ·∆Qt+j [l] for j = 1, 2

δFt+k = fk +

i−1∑
l=0

2l ·∆Ft+k[l] for k = 1, 2, 3, 4

Clearly, U0 = {(δQt+1, δQt+2, δFt+1, δFt+2, δFt+3, δFt+4)} and U32 is either empty or contains only
(0, 0, 0, 0, 0, 0). If it is non-empty, it follows that there are bitconditions that enforce the required
values for the ∆Qi and ∆Fi. Below, we give an algorithm for computing Ui+1 from Ui. If we
reach a Ui = ∅ then there are no bitconditions for connecting the two partial differential paths. We

18The probabilities are computed according to Lemma 1.6. This assumes that Tt is distributed uniformly at
random. In general, this is not true, especially when there are many bitconditions (see Appendix A). Nevertheless,
choosing the highest theoretical probability here helps us to avoid rotations that are particularly bad – or impossible
– in practice.

42

have to select a new combination of upper and lower path and start over. Otherwise, there exist
bitconditions that ensure the required differences.

Given Ui for 0 ≤ i ≤ 31, we compute Ui+1 as follows.

Algorithm 2.1: Compute Ui+1 from Ui
Initialize Ui+1 as ∅;
a = qt+4[i], b = qt+3[i], e = qt[i] and f = qt−1[i];
for (q1, q2, f1, f2, f3, f4) ∈ Ui do

for c ∈

{
{.} if q1[i] = 0

{+, -} if q1[i] = 1
and d ∈

{
{.} if q2[i] = 0

{+, -} if q2[i] = 1
do

Let q′1 = 0, 1 or −1 if c = ., + or -, respectively;
Let q′2 = 0, 1 or −1 if d = ., + or -, respectively;
for f ′1 ∈ {−f1[i], f1[i]} ∩ Vt+1,def do

Let (d′, e′, f′) = FC(t+ 1, def, f ′1);
for f ′2 ∈ {−f2[i], f2[i]} ∩ Vt+2,cd′e′ do

Let (c′, d′′, e′′) = FC(t+ 2, cd′e′, f ′2);
for f ′3 ∈ {−f3[i], f3[i]} ∩ Vt+3,bc′d′′ do

Let (b′, c′′, d′′′) = FC(t+ 3, bc′d′′, f ′3);
for f ′4 ∈ {−f4[i], f4[i]} ∩ Vt+4,ab′c′′ do

Let (a′, b′′, c′′′) = FC(t+ 4, ab′c′′, f ′4);
insert the element(
q1 − q′1 · 2i, q2 − q′2 · 2i, f1 − f ′1 · 2i, f2 − f ′2 · 2i, f3 − f ′3 · 2i, f4 − f ′4 · 2i

)
into Ui+1;

Running this algorithm for i = 0, . . . , 31 allows us to determine whether U32 6= ∅. But if U32 6= ∅,
we also want to find the bitconditions that fix ∆Qt,∆Qt+1 and ∆Ft, . . . ,∆Ft+4. After we have
found that U32 6= ∅, we run the algorithm again, but this time we store with each element we insert
into Ui+1 the tuples (a′, b′′, c′′′, d′′′, e′′, f′) of bitconditions and a pointer to the previous element that
lead us to insert it. Backtracking from (0, . . . , 0) ∈ U32, we find bitconditions for every bit that
make the differences ∆Qt+1,∆Qt+2 and ∆Ft+1, . . . ,∆Ft+4 happen.

2.2.8 Tunnels

The algorithm for solving differential paths uses tunnels to find collisions more quickly. Recall
our basic algorithm from Section 1.4.10. We want to find a pair of message blocks that solves a
given differential path. We randomly select working states Q1, . . . , Q16 that satisfy the beginning
of our differential path. These fix the message block m0, . . . ,m15 and the remaining working states
Q17, . . . , Q64. We check if the remainder of our differential path is satisfied. If yes, our next block is
m0‖ . . . ‖m15. If not, we have to select new working states. However, using tunnels, we often do not
have to start over from scratch. A tunnel T specifies some Qk, a list of working states Qi1 , . . . , Qim ,
a list of message block words mj1 , . . . ,mjn and some bitconditions such that for every b = 0, . . . , 31,
if the bitconditions of the tunnel are satisfied for b, we can change the bit Qk[b] without affecting

43

any Qk′ or mk′ not listed by the tunnel. Typically, the list of affected working states is of the form
Ql, . . . , Q64 for some l > 16. Tunnels in MD5 have been described by Vlastimil Klima in [11].

We use eight tunnels, labeled T1, . . . , T8, which are described in Table 2.1. To see an example of
how tunnels can help us and why they work, let us look at T8. Tunnel T8 states the following: Given
that Q10[b] = 0 and Q11[b] = 1, we can change Q9[b] and only affect working states Q25, . . . , Q64

and message words m8, m9 and m12.
To see why T8 is useful, suppose that we have selected working states Q1, . . . , Q16 that satisfy

the beginning of our differential path. We compute further working states Q17, . . . , Qk for some
k ≥ 24 which satisfy the path as well. Suppose that the next working state Qk+1 does not satisfy our
differential path. We then need to choose new Q1, . . . , Q16. If we just choose them at random, we
have to recompute all the message words and all the working states and our previous computation
is completely wasted. However, for every index b such that Q10[b] = 0, Q11[b] = 1, q9[b] = . and
Q9[b] is not referenced by any indirect bitcondition, we may flip Q9[b] and still reuse Q1, . . . , Q24

and all message words except m8, m9 and m12. The number k of indices b for which this is possible
is called the strength of T8. If we have Q1, . . . , Q24 that agree with our differential path and T8

has strength k, we can easily generate 2k different sequences of working states that all satisfy our
differential path up to step 24.

We now show why T8 works. Let us first see which parts of the message block m0, . . . ,m15 are
affected. Clearly, m0, . . . ,m7 remain unchanged. The word W8, i.e., m8 must be changed so that
Q9[b] is flipped. To ensure that Q10 remains unchanged, m9 must be altered. However, for Q11 no
change is made: The change in Q9[b] can affect Q11 only through F10[b]. But

F10[b] = (Q10[b] ∧Q9[b])⊕ (Q10[b] ∧Q8[b]) = Q8[b]

since Q10[b] = 0 is a condition of the tunnel. The working state Q12 does not require a change in
the message block for the same reason. We have

F11[b] = (Q11[b] ∧Q10[b])⊕ (Q11[b] ∧Q9[b]) = Q10[b]

since the conditions for the tunnel require that Q11[b] = 1. To ensure that Q13 remains unchanged,
we need to alter m12 because the change in Q9 affects T12. Since the computation of each working
state Qt+1 only uses working states Qt−3, . . . , Qt, the change in Q9[b] does not directly affect any
other working states. However, the changes in m8, m9 and m12 will affect later working states. We
calculate the earliest t > 16 such that the computation of Qt involves one of these words. We have
Wt = m1+5t mod 16 for t ∈ {16, . . . , 31}. The least integer t > 16 such that 1+5t mod 16 ∈ {8, 9, 12}
is t = 24 and thus none of these words are reused before we compute Q25. This shows that if the
bitconditions of the tunnel hold for b, we can flip the bit Q9[b] without having to recompute any
working state before Q25 and any message word except for m8, m9 and m12.

Table 2.1 gives a complete description of the tunnels. We call Qk[b] free if qk[b] = . and Qk[b]
is not referenced by any indirect bitcondition. When using tunnels to satisfy a differential path, we
may only change bits that are free. The additional bitconditions only apply to the Qi, not to the
Q′i. For example, the condition Qt[b] = 0 is also satisfied when we have ∆Qt[b] = 1. We say that a
working state bit is active for a tunnel Ti when it is free and the conditions of the tunnel are met
for that bit. The expression Q3[b] = Q14[b] in the “Change bit” column for T3 means that the bits
Q3[b] and Q14[b] can be changed but have to be equal before and after the change for the tunnel to
work. Similarly, Q8[b] = RR(Q12, 22)[b] for T6 means that the bits Q8[b] and Q12[b + 22 mod 32]
can be changed, but only if they have the same value before and after the change.

44

Tunnel Change bit Additional bitconditions Affected states Affected message words

T1 Q4[b] Q5[b] = Q6[b] = 1 Q21, . . . , Q64 m3,m4,m5,m7

T2 Q5[b] Q6[b] = 0 Q21, . . . , Q64 m4,m5,m7,m8

T3 Q3[b] = Q14[b] Q15[b] = Q16[b] Q21, . . . , Q64 m2, . . . ,m6,m13,m14,m15

T4 Q9[b] Q10[b] = Q11[b] = 1 Q22, . . . , Q64 m8,m9,m10,m12

T5 Q10[b] Q11[b] = 0 Q22, . . . , Q64 m9,m10,m12,m13

T6 Q8[b] = RR(Q12, 22)[b] Q10[b] = 1 Q23, . . . , Q64 m7,m8,m9,m12, . . . ,m15

T7 Q4[b] Q5[b] = 0, Q6[b] = 1 Q24, . . . , Q64 m3,m4,m7

T8 Q9[b] Q10[b] = 0, Q11[b] = 1 Q25, . . . , Q64 m8,m9,m12

Table 2.1: Tunnels of MD5Compress

Let us now, as more difficult examples, verify that T3 and T6 work. Suppose the additional
bitconditions for T3 are satisfied for some b, that we have Q3[b] = Q14[b] and that we flip these bits.
We let a = −2b if we flip them from 0 to 1 and we let a = 2b if we flip from 1 to 0 so that our new
Q3[b] is Q3[b] − a and likewise for Q14. In order to flip the bit Q3[b], we have to change m2. We
then change m3, . . . ,m6 so that no changes occur in the working states Q4, . . . , Q7. For our further
analysis, the change we have to make in m6 is important: Our change in Q[3] can affect Q[7] only
through the variable T6 = Q3 +F6 +m6 +RC6. To ensure that T6 remains unchanged, we just add
a to m6. From now on, our change in Q3 can have no direct influence on working states. Similarly,
we change m13 to flip Q14[b] and then change m14 and m15 to avoid changes in Q15 and Q16. Our
change in Q14[b] can affect Q17 only through the Boolean function, but it holds that

F16[b] = (Q14[b] ∧Q16[b])⊕ (Q14[b] ∧Q15[b])

which is independent of Q14[b] under the condition that Q15[b] = Q16[b]. The final working state
that Q14 can affect is Q18. But we have T17 = Q14 +F17 +AC17 +W17 with W17 = m6, so there is
no change in T17: The changes in Q14 and in m6 cancel each other. The first time that any of the
changed messages are reused after that is step 20.

Suppose the additional bitconditions for T6 are satisfied, Q8[b] = RR(Q12, 22)[b] and that we
flip these bits. If we flip from 0 to 1, let z = 0. Otherwise, let z = 1. Clearly, m7 must be changed
to bring about the bit flip in Q8[b]. This bit flip changes the value of Q8 to Q̃8 = Q8 + (−1)z · 2b.
Next, m8 and m9 are changed so that no changes occur in Q9 and Q10. Our bitcondition Q10[b] = 1
prevents that the change in Q8[b] affects Q11 through the Boolean function as follows. We have

F10[b] = (Q10[b] ∧Q9[b])⊕ (Q10[b] ∧ Q̃8[b]) = Q9[b]

since Q10[b] = 1. The new value for Q12 is Q̃12 = Q12 + (−1)z · 2b+22 mod 32 which one can see as
follows: For T̃11 = W11 +AC11 + F11 + Q̃8, we have

Q̃12 = Q11 +RL(T̃11, 22)

= Q11 +RL(T11, 22) + (−1)z · 2b+22 mod 32

= Q12 + (−1)z · 2b+22 mod 32.

Given our assumption that Q8[b] and RR(Q12, 22)[b] are equal before we make our change, this
change means that the bit RR(Q12, 22)[b] is flipped. We then alter the message words m12, . . . ,m15

45

to make sure that the change in Q12 does not affect the working states Q13, . . . , Q16. From then
on, the changes in the working states do not have any direct effects, so it remains to check when
the altered message words are reused. The first step at which this happens is step 24 which reuses
the word m15.

2.2.9 Solving Differential Paths

Algorithm 2.2 shows in detail how we can solve a full valid differential path with the help of
tunnels. The key differences to the simplified version described at the beginning of this subsection
are as follows: We do not compute the whole message block right after choosing the working states
Q1, . . . , Q16. Instead, we compute the individual words in the block as they are needed. This
allows us most of the time to change tunnel bits and only recompute one message word. Also,
we do not check whether the bitconditions q25, . . . , q64 are actually met because most of them are
trivial bitconditions with δQi = 0 and because the bitconditions do not need to be solved exactly
to yield a useful output. Thus, we only check if δQ61, . . . , δQ64 have the values that we want. We
use q1, . . . , q16 to select Q1, . . . , Q16. With the help of tunnels T1, . . . , T7, we modify our working
states so that they also solve the steps given by the bitconditions q17, . . . , q24. We can then vary
the bits of tunnel T8 to generate many sequences of working states that all satisfy q1, . . . , q24. For
all these working state sequences, we check whether they cause the right δIHV . We also do not
check whether the rotations of the first 16 steps are correct because they change frequently due
to our use of tunnels. It is possible to bring the rotation probabilities very close to 1 by adding
bitconditions. This is described in more detail in [24, Section 6.3].

2.2.10 Cost of the Attack

For suitable parameters, the chosen-prefix attack has a total cost equivalent to 239.1 MD5Compress-
calls, using 8 near-collision blocks. A collision with only 3 blocks can be achieved with a cost of 249

(see [24, Section 6.5.3]). The single-block chosen-prefix collision has a total cost of 253.2 (see [24,
Section 6.5.4]).

46

Algorithm 2.2: Solving a differential path

Convert all forward bitconditions in the path to backward bitconditions using BC.;
For every tunnel, check if its conditions can be met and if yes, add these bitconditions to the differential path.
Replace the ‘.’-bitconditions on the change bits by 0;
/* this restriction will only be imposed on the first set of working states we choose */

while no output has been produced do
Select Q1, Q2, Q13, . . . , Q16 that meet bitconditions q1, q2, q13, . . . , q16;
Compute W16 = m1 and Q17;
if Q17 does not satisfy q17 or the correct rotation does not occur at step 16 then

go to the next loop iteration;

Store the set Z of all pairs (Q̃1, Q̃2) of working states that satisfy q1 and q2, result in the same message
word m1 as Q1, Q2, and have the same bits as Q1 and Q2 in the places that are relevant to q3;
for all Q3, . . . , Q7 that satisfy q3, . . . q7 do

Compute W17 = m6 and Q18;
if Q18 does not satisfy q18 or the wrong rotation occurs at step 17 then

go to the next loop iteration

for all Q8, . . . , Q12 meeting q8, . . . , q12 do
Compute W18 = m11 and Q19;
if Q19 does not meet its bitconditions or the rotation was incorrect then

go to the next loop iteration;

for every pair (Q1, Q2) ∈ Z do
Compute W19 = m0 and Q20;
if Q20 does not meet q20 or an incorrect rotation occurs at step 19 then

go to the next loop iteration;

for every available bit of tunnels T1, T2, T3 do
Compute W20 = m5 and Q21;
if Q21 does not meet its bitconditions or an incorrect rotation happened then

go to the next loop iteration;

for every available bit of tunnels T3 and T4 do
Compute W21 = m10 and Q22;
if Q22 does not meet q22 or an incorrect rotation happens then

go to the next loop iteration;

for every available bit of tunnel T6 do
Compute W22 = m15 and Q23. if Q23 does not meet its bitconditions or an
incorrect rotation happens then

go to the next loop iteration;

for every available bit of tunnel T7 do
Compute W23 = m4 and Q24;
if Q24 does not meet q24 or an incorrect rotation happens then

go to the next loop iteration;

for every available bit of T8 do
Compute W24 = m9 and Q25;
if Q25 does not meet q25 or an incorrect rotation happens then

go to the next loop iteration

Compute the message block words that have not been computed yet,
the working states Q26, . . . , Q64 and Q′1, . . . , Q

′
64;

if for t = 61, . . . , 64, the differences δQt = Q′t −Qt agree with
bitconditions qt, then

return B = m0‖m1‖ . . . ‖m15 and
B′ = m0 + δm0‖m1 + δm1‖ . . . ‖m15 + δm15

47

2.3 Counter-Cryptanalysis: Detecting Collision Attacks

2.3.1 Counter-Cryptanalysis

When a hash function is broken, ideally, its users would replace it with a more secure one. However,
in many cases, this will require a lot of time and effort so that the hash function will have to remain
in use for a long time after the decision to switch was made. For example, a certification authority
might switch to another signature scheme after a collision attack appears, but the certificates that
it has signed using the old hash function will still be valid. Tracking down all the certificates and
asking their owners to replace them would not be practical. This also shows that it is sensible to
start replacing cryptographic hash functions as soon as the first weaknesses start to appear – even
if they are not considered practically relevant yet. In [24, Chapter 8], techniques are introduced
to detect whether a given message was constructed via a collision attack on MD5 or SHA1 based on
differential cryptanalysis without knowing the precise attack algorithm and the counterpart of the
message. These techniques also allow to extract the differential paths of the colliding messages. This
approach is called counter-cryptanalysis by Stevens in [25] since it uses cryptanalytic techniques to
detect cryptanalytic attacks. We will describe the detection algorithm for MD5 here, since it was
used to extract the differential paths for the Flame collision attack from the rogue certificate.

2.3.2 Collision Detection in MD5

The collision detection algorithm is based on the following assumptions about the near-collision
blocks.

• The differential path contains trivial steps, i.e., a sequence of at least four working states that
all have arithmetic differential 0 or all have the differential 231.

• The set of message block differences that allow for feasible collision attacks is known and not
too large.

Thus, the algorithm might be bypassed by collision attacks that use a completely different method-
ology or a message block difference that was not considered useful for collision attacks before.
However, since there has been done a lot of research into cryptanalysis of MD5, both of these pos-
sibilities seem unlikely. Moreover, the algorithm can easily be updated when more message block
differences that allow a collision are discovered. In this respect, the algorithm has some similarity
to anti-virus software that regularly updates its malware definitions. The collision detection should
not be viewed as a fix to MD5 but as a transitional safety measure until MD5 can be replaced by a
more secure hash function.

The collision detection algorithm is based on an algorithm for detecting whether the kth 512-bit
block Mk of message M is the final near-collision block of a collision attack. If that is the case,
the intermediate hash value differential after Mk is processed should be 0. By testing each block
of the message, we can determine whether the message was constructed using a collision attack.
This can be done in tandem with computing the hash of a message: To check if Mk is the final
near-collision block, we need the intermediate hash value IHVk and we compute IHVk+1. Thus,
since IHV0 = IV is fixed, we can check if M0 is the final near-collision block and obtain IHV1

in the process. Then we can check if M1 is the final near-collision block and obtain IHV2 in the
process, and so on until we reach the end of the message. The last IHV that we obtain is the
output of MD5.

48

Let M be the set of tuples (δm0, . . . , δm15, i, δQi) for which it is suspected that there might
be a feasible differential path based on message block differences δm0, . . . , δm15 with a sequence
of four trivial steps with difference δQi starting at step i. Algorithm 2.3 allows to check whether
the kth 512-bit block Mk in message M is the final near-collision block. It works as follows: We
first compute IHVk+1 = MD5Compress(IHVk,Mk), storing the working states Q−3, . . . , Q64. Every
element of M allows us to compute a candidate M ′k for the kth block of the colliding message and
four working states Q′i, . . . , Q

′
i+3. From these working states, we can compute the working states

Q′i−1, . . . , Q−3 by computing the steps of MD5Compress backwards and Q′i+4, . . . , Q
′
64 by computing

them forwards. From these working states, we obtain IHV ′k+1 and check if IHVk+1 = IHV ′k+1. If
yes, we conclude that M was constructed with a collision attack.

Algorithm 2.3: Detect final near-collision block

Compute IHVk+1 = MD5Compress(IHVk,Mk) and store the working states Q−3, . . . , Q64;
for (δm0, . . . , δm15, i, δQi) ∈M do

Let M ′k = m0 + δm0‖ . . . ‖m15 + δm15;
Compute working states Q′i = Qi + δQi, . . . , Q

′
i+3 = Qi+3 + δQi;

/* Compute MD5Compress backwards */

for t = i− 1, . . . ,−3 do
Let R′t+3 = Q′t+4 −Q′t+3;
Let T ′t+3 = RR(R′, RCt+3);
Let F ′t+3 = ft+3(Q′t+3, Q

′
t+2, Q

′
t+1);

Let Q′t = T ′t+3 − F ′t+3 −W ′t+3 −ACt+3;

Compute Q′i+4, . . . , Q
′
64 using the step-function of MD5Compress;

Determine IHV ′k from Q′−3, . . . Q
′
0 and IHV ′k+1 from IHV ′k and Q′61, . . . Q

′
64;

if IHVk+1 = IHV ′k+1 then
return “Collision detected”

return “No collision detected”, IHVk+1

If the message block Mk was indeed constructed using a differential path whose characteristics
are contained inM, the algorithm will detect that. The cost of computing this algorithm on every
block of the message while computing MD5(M) is roughly |M| + 1 times the cost of computing
MD5(M). Whether this can be improved by early abort is currently investigated. The probability
of a false positive is lower bounded by |M| · 2−128. Most known differential paths for near-collision
blocks have a large number of non-constant bitconditions, so it is improbable that a block Mk will
match such a differential path by accident. Since MD5 is designed to be pseudo-random, we can
assume that, as long as Mk was not constructed in a collision attack, the values for IHV ′k+1 that we
compute are random. If all differential paths were like that, the probability for a false positive would
be around |M| · 2−128. However, there is at least one relevant differential path which has very few
bitconditions, namely the one used in the pseudo-collision attack by den Boer and Bosselaers in [3].
This path has δQi = 231 for i = −3, . . . , 64, no message block differences and no Boolean function
bitconditions. Thus, it eliminates a difference of δIHV = (231, 231, 231, 231). When the collision
detection algorithm suggests that this path has been used, we apply the collision detection algorithm
on the previous block, checking for δIHV = (231, 231, 231, 231) rather than δIHV = (0, 0, 0, 0).

49

Let us now see how this detection algorithm can be used as a forensic tool to extract the
differential paths of all near-collision blocks. Suppose we have found that for some tuple in M,
IHVk+1 = IHV ′k+1. In the detection algorithm, we computed Q−3, . . . , Q64 and Q′−3, . . . , Q

′
64 from

which we can determine the differential path for the final near-collision block. We also computed
IHV ′k in the algorithm. Now we repeat the detection algorithm on message block Mk−1 except

that instead of checking for IHVk = IHV ′k we check whether the ÎHV ′k that we compute agrees
with the value for IHV ′k that we already have. Iterating this procedure for k− 2, k− 3, . . . , we find
the working states for all near-collision blocks and hence we can reconstruct the differential paths.

When we reach a block Ml for which no element of M yields the correct ÎHV ′, we conclude that
Ml+1 was the first near-collision block. The data on which Section 3 is based was derived by Marc
Stevens using this algorithm.

50

Chapter 3

The Collision Attack for Flame

3.1 The Flame Collision Attack

3.1.1 About Flame

Flame is a highly advanced malware, used for espionage, that attacked computers running a Mi-
crosoft Windows operating system. Among other things, one of its mechanisms for spreading within
local computer networks is noteworthy. Disguising itself as a security update for Windows, it spread
locally via Windows Update, even though Windows Update requires that the updates it installs
carry a valid digital signature from a certificate that chains to the Microsoft Root Authority cer-
tificate.19 To circumvent this security measure, the authors of Flame used a previously unknown
chosen-prefix collision attack on the hash function MD5 to obtain a certificate that allowed them to
sign code in the name of Microsoft. The collision attack is not part of Flame itself but had to be
carried out once in order to allow the malware to abuse Windows Update. The aim of this section
is to give some background about Flame and to give references to detailed descriptions. After that,
we go into some more details about the collision attack.

According to the technical report [21] by CrySyS Lab at the Budapest University of Technol-
ogy and Economics and the blog post [9] by Kaspersky Labs, Flame gathers information such as
keyboard inputs, screen content and, if available, input from microphones or cameras. It consists
of various modules that can be downloaded after the initial infection. Its size, when fully deployed,
is over 20 MB which is unusually large for malware. Flame could spread within networks using
Windows Update and also infect flash drives to cross “air gaps”. As described in [22], when Flame
infected a computer in a network, it used WPAD (Web Proxy Auto-Discovery Protocol) to register
itself as a proxy for the domain update.windows.com and served a fake security update to the other
computers that installed Flame. Flame was not spread wildly – only a small number of computers
were infected, most of them in the Middle East. It was first found by an Iranian Computer Emer-
gency Response Team (see [14]) in May 2012. According to [9], it was active since at least 2010,
but the CrySyS Lab report states that a file named WAVESUP3.DRV, which is the name of a dynamic
link library used in Flame, was found as early as 2007 by the computer security enterprise Webroot.
This might mean that Flame or a preliminary version thereof was already active at that time. The
vast majority of infections occurred in Iran. There seems to be no clear pattern for the targets of

19A certificate C chains to a certificate D if and only if C is signed by D or it is signed by a certificate C′ that
chains to D.

51

Flame. Among the targets were government-related organizations, private companies, educational
institutions and specific individuals. The Washington Post article [16] states that Flame, like the
similar malware Stuxnet, was developed jointly by the USA and Israel.

3.1.2 The Rogue Certificate

The signature on the rogue certificate that was used to sign the fake security update was obtained
from a certificate for Microsoft’s Terminal Services Licensing Server. Terminal Services (now called
Remote Desktop Services) allows a user to log in remotely via a network to another computer
running Windows. This process requires a license. In businesses where many users need to access
some server, a Terminal Services Licensing Server can be used as a license management system.
Upon activation, a Licensing Server generates a public and secret key and automatically requests
an X.509 certificate from Microsoft. These certificates chained to the Microsoft Root Authority
certificate and could therefore be used to sign code in the name of Microsoft which was presumably
not the intention of the developers. This chaining could have allowed attackers to exploit Windows
Update for malicious purposes without any collision attack at all. Luckily, the certificates contain
an extension which is marked critical that could not be “understood” by Windows Update. On
Windows Vista and Windows 7, when a critical certificate extension is not recognized, the certificate
is rejected so that, inadvertently, a simple attack on Windows Update was prevented.20 After the
rogue certificate was discovered in June 2012, Microsoft revoked the certificate chain for Terminal
Services (see the blog post [17]).

During the analysis of Flame, the rogue certificate was uncovered and sent to Marc Stevens
via private communication. Using methods described in [24, Chapter 8] and [25], he verified that
it was constructed by a chosen-prefix collision attack and reconstructed the underlying differential
paths of the collision attack. The legitimate counterpart of the rogue certificate is supposedly lost.

We will now give a description of the two colliding certificates, according to [22]. A graphical
representation from [22] follows in Figure 3.1. A certificate for a Terminal Services Licensing Server
consists of the following parts:

1. A serial number, composed of the number of milliseconds since boot, a constant CA index of
8 bits and a sequential 32-bit number

2. The validity period of the certificate

3. The Common Name (CN) “Terminal Services LS”

4. A 4072-bit RSA public key

5. The certificate extensions, including the one that prevents code signing for Windows Update

6. An MD5-based signature by the Certification Authority

The rogue certificate, on the other hand, has the following parts:

1. A serial number

20This does not hold for Windows XP which simply ignores extensions that it does not recognize, even if they are
marked critical. If the Flame authors had been content with attacking Windows XP, they would not have needed
the collision attack.

52

2. The validity period

3. The Common Name “MS”

4. A 2048-bit RSA public key

5. A certificate extension called “issuerUniqueID” which is not used by Microsoft and ignored
in Windows

6. An MD5-based signature

Figure 3.1: A schematic representation from [22] of the colliding certificates constructed for Flame.

The colliding certificates were constructed as follows: On the side of the legitimate certificate,
the serial number, validity period, common name and the beginning of the RSA key form the chosen
prefix; on the side of the rogue certificate, it is the serial number, validity period, a full RSA public
key and the beginning of the “issuerUniqueID”-field. Since the serial number and validity period
in the legitimate certificate are filled in by the CA, the attackers had to guess these values. On
the side of the legitimate certificate, the collision blocks are contained in the field for the RSA key
– this is a good place to hide them since a cryptographic key is supposed to look random. Due to
the incremental nature of MD5, it is possible to append identical suffixes to the legitimate and the
rogue certificate after the collision has been achieved. The attackers then appended the required
certificate extensions to both certificates. In the rogue certificate, they are hidden away in the
“issuerUniqueID”-field, so that the critical extension does not take effect.

53

Guessing the sequential number in the serial number is relatively easy: The attackers could have
submitted several legitimate certificates and observed the differences in the sequential numbers to
estimate how many certificates the CA will sign in a given period of time. Furthermore, they could
have submitted additional requests just before the targeted request time to advance the sequential
number to the guessed value. The validity period depends only on the second in which the certificate
is received by the CA. But since the serial number also contains the milliseconds since the boot of
the signing computer, the CA had to receive the certificate in the exactly right millisecond for the
attackers to succeed. Therefore, with near certainty the attackers had to make a large number of
attempts.

It is worth noting that this attack could have been stopped at several different levels: Of course,
a more secure hash-function could have been used. But also some non-cryptographic measures
could have prevented the attack. Instead of accepting signatures from every certificate with code
signing rights that chains to the Root Authority, Windows Update could have used a public key
infrastructure (PKI) of its own that is isolated from other PKIs. The certificates from the Terminal
Services chain could have been given an extension so that all certificates in the chain are prevented
from code-signing. The serial numbers of the certificate could have included random bits to make
guessing the right serial number for the chosen-prefix attack prohibitively hard.

3.2 Hypotheses

The differential paths that were reconstructed by Stevens (see Appendix A) clearly show that the
certificates described in Section 3.1.2 were crafted using a collision attack, consisting of a Birthday
Search and a sequence of near-collision blocks to eliminate the resulting δIHV . The message block
differences are identical to the differences used by Wang et al. However, the differential paths do
not match any previously published attacks on MD5. In the remainder of this chapter, we try to
reconstruct details about this collision attack, in particular about the differential path construction,
the family of lower differential paths that were used, the cost of the Birthday Search and the cost
of the message block construction. We show that – under our stated assumptions – the expected
cost of the attack was equivalent to at least 246.6 calls to MD5Compress. We use several different
methods to achieve our results: inspection of the differential paths, calculations (under idealizing
assumptions based on the pseudo-randomness of MD5), and empirical estimates. In the remainder
of this section, we state our hypotheses about the collision attack.

The Flame collision attack is overall similar to the attack by Stevens et al., in that it starts with
a Birthday Search to find a suitable value for δIHV , followed by a series of near-collision blocks.
Similar to the attack by Stevens et al., the differential paths seem to be constructed from an upper
and lower part with the upper part obtained from the input δIHV and the lower part designed to
provide a certain output δIHV . However, the process of constructing full differential paths seems
to be different.

Hypothesis 3.1. The upper parts of the differential paths are constructed in a brute force way
instead of a forward-extension algorithm.

Hypothesis 3.2. The connection of the upper and lower parts is done by brute force. The upper
and lower paths are connected at working states Q5, Q6, Q7 and Q8.

We will argue for these conclusions in Section 3.3.1. In Section 3.3.2, we give an estimate of the

54

complexity of connecting the upper and lower parts, in comparison to the method used by Stevens
et al.

It seems that the four blocks can be grouped into two pairs of blocks: The first and second
block form a pair, and the third and fourth. In each of the pairs, the first block uses the message
block differences of the first near-collision block in the identical-prefix attack by Wang et al. and
the second block uses the difference of the second near-collision block in that attack.

In Section 3.4, we investigate to what extent the attackers used tunnels to solve differential
paths. It appears that tunnel T8 was used, but not to the maximal extent that was possible given
the differential paths. However, we were unable to determine how exactly this tunnel was used. We
discuss several possible methods how they could have used the tunnel and show why these methods
do not explain the observed tunnel strengths.

To determine the complexity of the Birthday Search and of the message block construction
algorithm, we describe a family of possible end-segments of the differential path for each of the four
near-collision blocks. We believe that the elimination strategy is as follows:

Hypothesis 3.3. The differentials δa and δd in δIHV are constant. δb and δc consist of variable
and constant parts. The purpose of the first pair of near-collision blocks is to eliminate δc (except
for a constant term) from the input δIHV = (δa, δb, δc, δd), while making some mostly random
changes to δb in the process. The purpose of the second pair is to eliminate δb, including the
random changes from the previous pair.

We compute the complexity of the Birthday Search and the complexity of the algorithm for
generating near-collision blocks on the basis of our reconstruction of the end-segments. Our main
result can be summarized as follows:

Theorem 3.4. Under plausible assumptions (the hypotheses in this section and the assumptions
stated in Section 3.5.1), the Flame collision attack has an expected cost equivalent to at least 246.6

calls to the function MD5Compress.

We will prove this result in Section 3.6.3 and also show how the parameters in our reconstruction
of the attack must be chosen to achieve this lower bound. However, while this parameter choice is
consistent with the observed differential paths, it seems likely that the Flame attack used different
parameters. The expected full cost of the attack seems to be higher; a likely explanation is that
the attack was optimized for speed on massively parallel architectures21, not for theoretical cost.

3.3 Analysis of the Differential Paths

3.3.1 Some Features of the Near-collision blocks

In this section, we list several observations about the Flame near-collision blocks that are relevant
to our analysis.

Observation 3.5. The first and third near-collision blocks of the Flame collision attack use the
message block differences from the first differential path of Wang et al.’s identical-prefix attack,
δm4 = δm14 = 231, δm11 = 215 and δmi = 0 for i 6= 4, 11, 14. The second and fourth block use
the differences from the second differential path of the identical prefix attack, δm4 = δm14 = 231,
δm11 = −215 and δmi = 0 for i 6= 4, 11, 14.

21e.g., graphic processing units (GPUs).

55

Observation 3.6. For steps i = 25, . . . , 32, all four near-collision blocks have the trivial working
state differences δQi = 0. For steps i = 35, . . . , 59, they have the trivial working state differences
δQi = 231, like the differential paths used in the attack by Wang et al.

Observation 3.7. The working state differences ∆Q6 are maximal in all four near-collision blocks,
i.e., for every i = 0, . . . , 31, we have ∆Q6[i] 6= 0. For t = 6, . . . , 32, the first and third differential
path have the same value for ∆Qt. Likewise, the second and fourth paths have the same value for
∆Qi with only one exception: In the second block, we have ∆Q22[31] = −1 and in the fourth path,
we have ∆Q22[31] = 1. However, this still gives us the same value for δQ22. In contrast, the values
of δQi for i < 6 are different in all four paths.

Observation 3.8. In the first and third near-collision block, the values of ∆F9, . . . ,∆F35 are
identical. In the second and fourth block, the values for ∆F11, ∆F12, ∆F13, ∆F15, . . . ,∆F22 and
∆F24, . . . ,∆F35 are equal. Also, δF14 and δF23 are equal in the second and fourth block, and the
values for ∆F23 only differ in bit position 31 where the sign does not matter modulo 232.

Proof. In the first and third differential paths, all the bitconditions on working states Q9, . . . , Q32

are identical. This implies that ∆F11, . . . ,∆F32 are identical for the first and third block. To see
that the values for ∆F9 and ∆F10 are identical, first recall that qi[j], qi−1[j], qi−2[j] 6∈ {+, -} implies
∆Fi[j] = 0. Thus, it remains to inspect the positions where one of the relevant bitconditions is +

or -. At all these places, the bitconditions in the first and third path are the same. Finally, the
bitconditions q35[31]q34[31]q33[31] in those two paths cause the same ∆F35[31].

In the second and fourth path, the bitconditions on Q9, Q10, Q11, Q14, . . . , Q21 and Q23, . . . , Q31

are identical. This shows that the values for ∆F11, ∆F16, . . . ,∆F21 and ∆F25, . . . ,∆F31 are identical
in those two blocks. Also, ∆F12 and ∆F13 have the same values in both blocks because there are
no ‘+’- or ‘-’-bitconditions involved. The values for ∆F14 are different, but the values for δF14 are
still the same in the two blocks. The values for ∆F15 are the same. The bitconditions on steps
20, 21, 22 still produce the same ∆F22. The values for ∆F23 are different but due to 231 ≡ −231

mod 232, we have the same values for δF23. The values for ∆F24 are equal again.

Observation 3.9. The probabilities for the correct rotations of δTt for 11 ≤ t ≤ 61 in all four
blocks, as given by the formulas in Lemma 1.6, are optimal, i.e., the rotations in the observed path
have the highest probability among all alternatives. The conditional estimates are quite similar to
the computed probabilities at these steps.

However, on steps with many bitconditions, the formulas for the probabilities in Lemma 1.6 are
less meaningful and the first 8 steps of the Flame differential paths have more bitconditions than
the later steps. The conditional estimates and the computed probabilities may differ drastically, as
can be seen, for example, in the second and third block at step 4 which has a computed probability
of roughly 0.1 while the conditional estimate is 1.0. Thus, we should also take a closer look at the
conditional estimates:

Observation 3.10. The following table summarizes the estimated conditional probabilities for the
rotations in steps 0 to 10 of all four near-collision blocks. For the specified ranges for the probability
p, it lists for each near-collision blocks the steps where the rotation probability falls in the given
range, followed by the total number of such steps.

56

Probability p 1st block 2nd block 3rd block 4th block Sum

0.05 < p < 0.06 8 8 2

0.10 ≤ p < 0.15 10 10 2

0.15 ≤ p < 0.20 2, 8 2

0.25 ≤ p < 0.50 1, 2 2 3

0.50 ≤ p < 0.75 1, 9 5, 8, 9 9 1, 6, 7, 9 10

0.75 ≤ p < 1.00 0, 3, 10 1 2, 10 6

p = 1.00 0, 3, . . . , 7 4, 6, 7 0, 3, . . . , 7 0, 3, 4, 5 19

Thus, we can see that the probabilities are mostly rather large.

These observations do not match the attack by Stevens et al. The observations support Hy-
pothesis 3.1 as follows. They show that the four blocks all have a common structure: Up to and
including step 5, the differences δQt vary among all four blocks. Then, there is a maximal difference
in step 6. After that, the values for ∆Qt and ∆Ft are mostly identical in the first and third and
in the second and fourth blocks, leading up to long sequences of trivial steps. The final five steps
again differ greatly among all four blocks. We thus conclude that, similar to the attack by Stevens
et al., a lower part based on the input IHV s and an upper part were generated separately and
then combined.

The conclusion that the upper differential paths are generated by “brute force” while the lower
paths are not is supported by Observations 3.9 and 3.10. It is noteworthy that in all the steps
from 11 to 61, all four blocks use the highest-probability rotation of δTt as δRt. Of course, in the
trivial steps, there is only one possible rotation. However, the non-trivial steps 11 up to 25 use the
highest probabilities while the steps before sometimes use rotations with smaller probability. As
already said, the formulas for the probabilities in Lemma 1.6 are quite inaccurate when there are
many bitconditions. The conditional rotation probabilities are mostly quite high, but a few steps
have low rotation probabilities. This indicates a brute force approach: For random working states
Q1, . . . , Q10 and Q′1, . . . , Q

′
10, we would expect to see mostly high-probability rotations, but also

some low-probability ones. When extending a differential path deliberately, on the other hand, one
would choose high-probability rotations.

In the following subsection, we take a closer look at the steps in the differential paths where we
believe that the connection between the upper and lower part occurred. Our findings corroborate
the second part of Hypothesis 3.2. We believe that the connection takes place over working states
Q5, Q6, Q7 and Q8 because of Observations 3.7 and 3.8: ∆Q6, ∆Q7 and ∆Q8 appear to belong
to the lower differential paths, but ∆F7 and ∆F8 vary in all four differential paths, so they do not
belong to the lower paths. This makes it seem likely that ∆F7 and ∆F8 are varied to achieve the
appropriate values for ∆Q7, ∆Q8 and ∆Q9. To achieve maximal control over ∆F7, we need to
include steps Q5 and Q6 in the connection step. Having maximal differences in ∆Q6 aids in having
many possible alternatives for δF6 available.

3.3.2 Connection Steps

For analyzing the connection step, we experimented with the algorithm from Section 2.2.7 on the
Flame differential paths. Using the C++ library libhashutil5 from the HashClash project22, we

22https://code.google.com/p/hashclash

57

https://code.google.com/p/hashclash

first removed all Boolean function bitconditions from the Flame differential paths and added them
back in for steps 1 to 4 and steps 9 to 64. We reimplemented the connection algorithm from Section
2.2.7 so that it allows to choose if the bitconditions on Q6 should be taken from the input lower
differential path or if multiple bitconditions that are compatible with δQ6 should be tried, as in
the connection algorithm by Stevens et al. First, we used the values for the δFi from the original
differential paths and compared in how many ways the upper and lower paths could be connected
when the bitconditions for Q6 are taken from the original path and when multiple bitconditions for
the working state Q6 are tried. The results are summarized in Table 3.1.

Q6 fixed Q6 not fixed

Block 8 2 18

Block 9 2 30

Block 10 8 12

Block 11 12 96

Table 3.1: Number of different possible full differential paths based on the upper and lower paths
of the Flame near-collision blocks. The values for the δFi are taken from the differential paths.

Next, we checked what happens if we compute the δFi according to Section 2.2.7 instead of
taking them from the differential paths. Choosing the δFi based on the δTi with the highest
probabilities did not allow to connect the upper and lower paths except for block 10.

We then proceeded to check which of the possible choices for the δFi allow to connect the upper
and lower paths and what their corresponding probabilities are, taking the bitconditions on Q6

from the differential paths. Our results are summarized in Table 3.2.
In blocks 9, 10 and 11, the rotation probabilities are optimal in the sense that it is impossible

to choose δFi with higher rotation probabilities and still connect the upper and lower paths. In the
eighth block, δF5, δF6 and δF7 are optimal while δF8 has a very low probability. This supports
the first part of Hypothesis 3.2. If we select random working states for the connection step, we
would expect that most but not all of the rotations that occur have high probabilities, but if the
connection was done in a more systematic way, we would expect the rotation probabilities to be
optimized.

Choices for δFis Optimal probabilities Actual probabilities

Block 8 4 δT5 : .2292, δT6 : .4248, δT7 : .8380, δT8 : .4375 δT8 : .0625

Block 9 32 δT5 : .3989, δT6 : .4580, δT7 : .9607, δT8 : .4683 Optimal

Block 10 4 δT5 : .7759, δT6 : .5137, δT7 : .8380, δT8 : .4375 Optimal

Block 11 8 δT5 : .7489, δT6 : .5181, δT7 : .9607, δT8 : .0317 Optimal

Table 3.2: The number of possible choices for the δFi in the connection step and the optimal and
observed rotation probabilities for each near-collision block.

3.3.3 Estimating the Success Probability

In order to get an estimate on the number of upper parts that the authors of Flame needed to try
until they found one that would connect to the lower path, we experimentally determined what
impact fixing the Q6 bitconditions has on the connection algorithm by Stevens et al. Memory

58

limitations did not allow us to use the Flame lower differential paths for this since we could not
generate enough upper paths.

We used libhashutil5 to generate 2 million upper paths up to step 4 starting from the inter-
mediate hash value differences before the first near-collision block. We note that these differential
paths are not based on brute force and are designed to have relatively few bitconditions. This could
make them somewhat easier to connect than the upper paths in the Flame collision attack. For
estimating the success probability when Q6 is determined by the algorithm, we generated 100000
lower paths down to step 9 from step 18 of the Flame lower path for block 8 and counted how
many pairs would connect without Q6 fixed. For estimating the success probability when Q6 is
fixed, we generated roughly 100000 “Flame-like” lower paths as follows. First, we generated 200000
lower paths using libhashutil5 and fixed the bitcondition in Q6 so that they induce the maximal
difference in the working states by executing the following algorithm on every path:

1. If δQ6 is even, throw the path away.

2. For i = 0, . . . , 31, do the following steps.

3. Set the ith bitcondition on Q6 to +.

4. If the ith bit of δQ6 is 0, set the (i− 1)th bitcondition on Q6 to -.

Clearly, after this algorithm, every bitcondition on Q6 is + or -. To see that the bitconditions
induce the correct δQ6, note that 2k− 2k−1 = 2k−1. This algorithm left 100074 paths. For the case
that Q6 is not fixed, 9312 out of 2 ·1011 combinations were successful which corresponds to a success
probability of 2−24. In the case that Q6 is fixed, no combination was successful, so we needed a
larger set of inputs to estimate the probability. We generated 10 million upper paths and 2 million
lower ones. After executing the algorithm for making the differences in Q6 maximal, roughly one
million was left over. We shuffled the lower paths and the upper paths and split up the lower paths
into chunks of size 100000. Processing the first few chunks resulted in 24 successful connections
out of 3.44 · 1012 combinations. This corresponds to a success probability of approximately 2−37.
Thus, if the bitconditions on Q6 are fixed to create maximal differences, we can expect to check
roughly 213 times as many lower parts compared to the case where the bitconditions are selected
as part of the connection algorithm.

3.4 Tunnels

3.4.1 Tunnel Strengths in the Near-collision Blocks

To estimate the complexity of the Flame collision attack, it is important to know to what extent
the attackers used tunnels. The tunnels T4, T5 and T8 are the most useful in the differential paths;
the others can only have very low strength.23 Let us recall these three tunnels. If Q9[i] is free, i.e.,
q9[i] = . and Q9[i] is not referenced by any indirect bitcondition, and if we have Q10[i], Q11[i] = 1,
tunnel T4 allows us to flip the bit Q9[i] without changing any message words or working states other
than Q22, . . . , Q64 and m8, . . . ,m10,m12. If we have Q10[i] = 0 and Q11[i] = 1 instead, tunnel T8

allows us to flip Q9[i] without changing anything besides Q25, . . . , Q64 and m8,m9,m12. If Q10[i]

23While we can not exclude with certainty that the attackers discovered previously unknown tunnels, the amount
of research into the cryptanalysis of MD5 makes it seem unlikely that more tunnels exist.

59

is free and Q11[i] = 0, we can use tunnel T5 to flip Q10[b] without changing anything except for
Q22, . . . , Q64 and m9,m10,m12,m13.

The Flame authors used tunnel T8, but not to the maximal extent that is possible given the
differential paths. This was found by Stevens by inspecting the working states Q9, Q10 and Q11

derived from the blocks of the rogue certificate. It is unclear whether tunnels T4 and T5 were used.
How exactly T8 was used is unclear as well.

Observation 3.11 ([25, Section 3.3]). In the near-collision blocks of the rogue certificate, the
strength of the tunnel T8, in comparison to the maximal strength that is possible in the differential
path and the average strength is described in the table below. For the average strength, we assume
that in a solution of the differential path, ‘.’-bitconditions are with equal probability solved by a 0
or a 1. Thus, it is one quarter of the maximal strength.

Near-collision Block Observed strength Maximal strength Average strength

1 7 17 4.25
2 13 18 4.5
3 10 17 4.25
4 9 18 4.5

Furthermore, we summarize the tunnel strengths of T4 and T5:

Observation 3.12. The strength of tunnel T4 is given in the following table. We again assume
that .-bitconditions are solved by 0 or 1 with equal probability. In the first and third block, the 24th
bit of Q9 is always active for T4 since the Boolean function bitconditions force Q10[24], Q11[24] = 1.
Furthermore, in the second and fourth block, we have q11[18] = ^ and q10[18] = ., so Q9[18] is
active for T4 with probability 1/2. In all other positions i that could be active for T4, we have
q10[i], q11[i] = ., so these are active with probability 1/4.

Near-collision Block Observed strength Maximal strength Average strength

1 4 19 5.5
2 3 20 5.25
3 2 19 5.5
4 3 20 5.25

The strength of T5 is summarized below. In the second and fourth block, the bitconditions force
Q11[29] = 0 and thus, Q10[29] is always active for T5. In all other positions i that could be active
for T5, we have q11[i] = ., so they are active with probability 1/2.

Near-collision Block Observed strength Maximal strength Average strength

1 8 19 9.5
2 5 20 10.5
3 7 19 9.5
4 10 20 10.5

It is clear that the tunnel T8 has been used since the observed tunnel strengths are much larger
than the average. The smaller-than-average tunnel strength for T4 and T5 can be explained by the

60

fact that these three tunnels have conflicting preconditions; we can not conclude that T4 and T5

were not used. In our estimate of the complexity, we assume the strengths of these three tunnels
to be the average over all four blocks and that all of these three tunnels were used. That is, we
assume that tunnel T4 has strength 3, T5 has strength 7.5 and T8 has strength 9.75.

It is unclear how these tunnel strengths were brought about since they are neither average
nor maximised. Reconstructing the method would be interesting and could lead to more precise
complexity estimates. However, we were not able to find a definitive explanation for the observed
tunnel strengths. In the next section, we will describe some attempts at explaining the observed
tunnel strengths.

3.4.2 Explanation Attempts

An explanation for Observation 3.11 proposed in [25] is that the Flame authors did not actively try
to maximize the tunnel strength but used tunnels in their message block construction algorithm to
the extent that they were available. In that case, the algorithm is more likely to output a solution
with a higher-than-average tunnel strength. If we have a partial solution up to step 24 and T8

has strength k in that partial solution, it gives rise to 2k candidates for a complete solution if we
use tunnel T8. If we do not use tunnels at all, every partial solution has the same chance of being
extended to a full solution, independent of the tunnel strength. However, the expected tunnel
strength of this method is still too low to explain the observed tunnel strength, as we show below.

Let us estimate the expected tunnel strength of T8 that would result if the Flame authors indeed
used tunnels when they were available, but did nothing to improve tunnel strengths. Let m be the
maximal tunnel strength for T8 that is possible with the differential path. Let the random variable
strength be the tunnel strength of T8 in a randomly selected solution for the first 24 steps of the
differential path. Let solve be the event that a random solution for the first 24 steps gives rise
to a solution for the whole path. We assume that Pr[solve | strength = k] ≈ 2k · p for some p
independent of k. Furthermore, we assume that

Pr[strength = k] =

(
m

k

)
·
(

1

4

)k
·
(

3

4

)m−k
.

We have Pr[solve] =
∑m

i=0 Pr[strength = i] · Pr[solve | strength = i] and it follows that

Pr[solve] ≈
m∑
i=0

(
m

i

)
·
(

1

4

)i
·
(

3

4

)m−i
· 2ip.

Using Bayes’ Theorem, we conclude that a solution to the full path has strength k with probability

Pr[strength = k | solve] =
Pr[strength = k]

Pr[solve]
· Pr[solve | strength = k]

≈ Pr[strength = k]∑m
i=0 Pr[strength = i] · 2i−k

.

The expected value of the tunnel strength of a solution for m = 17 is 6.8 and for m = 18 it is 7.2.
The standard deviation, given by

σ =

√
E[strength2]− (E[strength])2

61

is 2.0 or 2.1, respectively. Although our sample size is very limited, this result makes the above
explanation seem unlikely since the observed tunnel strength is always larger than the expected
value and, in the case of the second and third block, exceeds the expected value by 2.7 or 1.6
standard deviations, respectively.

However, inspection of the working states in the computation of MD5 on the rogue certificate
revealed that in the first and third block, only seven bits in working states Q10 are ‘1’, and in the
second and fourth, only 11 bits are ‘1’. Possibly, the attackers selected the working states Q10 like
that to improve the chance of bits in Q9 being active for T8. Let α be the probability that a bit
which could be active for tunnel T8 is indeed active, so that

Pr[strength = k] =

(
m

k

)
· αk · (1− α)m−k.

We searched for values of α such that the observed values are close to the expectation (in terms
of multiples of the standard deviation). To be more precise, we searched for a value of α that
minimizes

f(α) = max
i∈{1,...,4}

(|(Ei − si)/σi|)

where Ei is the expected tunnel strength in the ith near-collision block, σi is the standard deviation
of the tunnel strength in the ith block and si is the observed tunnel strength. By choosing α = 0.40,
we can minimize f(α). For this value of α, all observed tunnel strengths are within 1.3 standard
deviations. We summarize the results below:

Block Expectation Standard deviation (σ) Observed strength Distance from expectation

1 9.7 2.0 7 1.3 · σ
2 10.3 2.1 13 1.3 · σ
3 9.7 2.0 10 0.2 · σ
4 10.3 2.1 9 0.6 · σ

It is also possible that the first and third block have a different probability than the second and
fourth. Let α1 be the probability for the first and third block and α2 the probability for the second
and fourth. We searched for α1 and α2 that minimize

f1(α1) = max(|(E1 − s1)/σ1|, |(E3 − s3)/σ3|) and

f2(α2) = max(|(E2 − s2)/σ2|, |(E4 − s4)/σ4|)

For α1, the value 0.33 minimizes f1(α1); the observed strengths in the first and third block are
within 0.8 standard deviations from the expected value. For α2, the value 0.44 minimizes f2(α2).
With this probability, the observed strengths in the second and fourth block are within 1.0 standard
deviations from the expectation. The results of the calculation are summarized below:

Block Expectation Standard deviation (σ) Observed strength Distance from expectation

1 8.4 2.1 7 0.7 · σ
2 11.0 2.1 13 1.0 · σ
3 8.4 2.1 10 0.8 · σ
4 11.0 2.1 9 1.0 · σ

62

Thus, we make the following tentative conjecture which is unfortunately impossible to test
conclusively with only one output sample of the attack.

Conjecture 3.13. In the first and third block, a bit of Q9 which could be active for tunnel T8 is
active with probability 0.33. In the second and fourth block, the corresponding probability is 0.44.

Another possible explanation, which is also difficult to test, is that the attackers set some
tunnel bits to be active by imposing further bitconditions in the differential paths, but they did
not maximise the tunnel strength because they also added some other bitconditions to bring the
rotation probabilities close to 1. But in that case, it would seem likely that the same tunnel bits
are active in the first and third and the second and fourth block which is not the case. In each
block, different tunnel bits are active.

3.5 Differential Path Family

3.5.1 Overview

In this section, we attempt to reconstruct the family of differential paths that was used for the
Flame collision attack. The difference between the intermediate hash values at the beginning of
the first near-collision block for the rogue certificate is δIHV = (δa, δb, δc, δd) with

δa = −25

δb = +230 − 221 − 219 − 217 + 212 − 22

δc = −227 − 220 + 214 + 212 − 25

δd = +29 − 25

But for a chosen-prefix attack, the attackers must have been prepared to eliminate any δIHV
from some large set. First, a Birthday Search was used to find a value for δIHV that could
be eliminated; then, the near-collision blocks were constructed. By reconstructing the family of
differential paths and the strategy used for eliminating δIHV , we can get information about the
complexity of solving the differential paths. Furthermore, we find out what differences the attackers
could eliminate which allows us to give an estimate of the Birthday Search complexity. For our
reconstruction attempt, we make the following assumptions:

• The attack uses no more than four near-collision blocks. This assumption is justified because
the space where the collision blocks were hidden was strictly limited (see 3.1.2 and [22]) so
that the collision had to be achieved in four blocks.

• Each differential path for the first (second, third, fourth) near-collision block in the family is
similar to the observed differential path for the first (second, . . .) near-collision block. It is
possible that the attackers had also prepared some differential paths that are very different
from the observed paths, but obviously we could not say anything about these paths. Let us
now make the similarities we assume more precise: We assume that, for each near-collision
block in the family, the bitconditions on Q60, . . . , Q64 are the same except for:

– Boolean function bitconditions in steps 61 to 63.

63

– Carries (e.g., stretching + to +---)

– Rotations

– Interchanging ‘+’ and ‘-’ in qt[31] for t = 62, 63.

• δa and δd are fixed constants; δa = −25 and δd = 29 − 25. That is, in the Birthday Search,
the attackers looked for exactly these differences in δa and δd. We make this assumption
because these steps have an extremely low NAF-weight.

In our reconstruction attempt, we describe a family of end segments for near-collision blocks by
differential paths. We do not claim that the Flame authors described differential paths in the way
they are specified here themselves. But we do not know their actual methods and we need some
“language” to represent this family of end segments. Also note that our reconstruction remains
somewhat speculative since we only have one output of the attack.

Before beginning with the reconstruction, let us examine the δIHV s after each near-collision
block. After the first block, we have

δa = 231 − 25

δb = −230 + 225 − 222 + 220 + 217 + 29 − 22

δc = 231 − 227 + 225 − 220 + 29 − 25

δd = 231 + 225 + 29 − 25

After the second block,

δa = 0

δb = −230 − 224 − 220 + 217 − 214 + 25 + 20

δc = −224

δd = 0

After the third block, the differences are

δa = 231

δb = 225 + 214 + 29 + 25 − 23 + 20

δc = 231 + 225

δd = 231

and after the fourth block, δa, δb, δc, δd = 0. These IHVs again show a symmetry between the first
pair and the second pair of near-collision blocks. After the first pair, δa and δd are 0 and δc only
has a NAF-weight of 1. The NAF-weight of δb increases to 7; before the first near-collision block,
it was 6. This leads us to believe that the purpose of the first pair is to eliminate δc except for a
constant term. The second pair then eliminates δb and the remaining constant terms.

64

3.5.2 Reconstructing the End Segments

We begin with an outline of what we assume to be the elimination strategy. The differences in δc are
eliminated by the first two blocks, but a difference of −224 is introduced which is then eliminated
in the final two blocks. For δb, matters are more complicated. We assume that the changes to δb
in the first two blocks are mostly random and that the elimination of differences in δb really starts
at the third near-collision block. This assumption is justified as follows: Most of the bits in δb that
can be affected by the first two blocks can also be affected by the second pair of differential paths.
Thus,

• most deliberate changes to δb that are possible with the first and second block can just as well
be done in the third and fourth, and

• most random changes to δb that are possible in the first two near-collision blocks can be
undone in the third and fourth.

It is therefore for the most part unnecessary to control δQ64 in the first two blocks which allows
for faster message block construction.

The differential paths eliminate the differences in the IHVs by varying Boolean function bitcon-
ditions. In Table 3.3, we summarize several important tuples of bitconditions and the corresponding
differences ∆F [i]. These bitconditions are taken from [24, Table C-4]. The most important obser-
vation from the table is the following:

Observation 3.14. If qi[j]qi−1[j]qi−2[j] = +.. or -.. then we can achieve any ∆Fi[j] ∈ {−1, 1, 0}
by replacing the ‘.’s with appropriate Boolean function bitconditions.

qi[j]qi−1[j]qi−2[j] ∆Fi[j] qi[j]qi−1[j]qi−2[j] ∆Fi[j]

+.0 0 +++ +1
+01 +1 ++- 0
+11 −1 +-+ +1
-.0 0 +-- 0
-01 −1 -++ 0
-11 +1 -+- −1
0+1 +1 --+ 0
?+. −1 --- +1
0-1 −1 +-0 +1
?-. +1 +-1 0
-+0 −1 -+1 0
++0 −1 ++1 0
--0 +1 --1 0

Table 3.3: Several tuples of bitconditions and their associated values for ∆F with respect to the
Boolean function over rounds 48-64 of MD5Compress.

We now begin with our reconstruction attempt. For each block, we give both a template of a
differential path end segment and a description of how it is used to eliminate differences. In Section
3.5.3, we argue that the family we describe is the one used for the Flame attack, based on our

65

assumptions. The end segment templates are split into a constant part and a variable part. For
the variable parts, we use the following additional symbols:

• D: A variable differential bitcondition, i.e., qt[i] ∈ {., +, -}.

• B: A variable Boolean function bitcondition. Precisely which bitconditions are relevant at a
given position varies, but in general, we have qt[i] ∈ {., 0, 1, ?}.

• X: A non-constant bitcondition, i.e., qt[i] ∈ {+, -}.

• *: A (for now) irrelevant differential bitcondition.

• A: The same differential as above, qt[i] = qt−1[i].

Note that, since we ultimately only care about the δIHV that a near-collision block causes, the
paths of the observed near-collision blocks may differ somewhat from the templates. Adjacent
differential bitconditions can in some cases be stretched or shortened by carries: For example, + and
+--- cause the same arithmetic difference. Consider the bitconditions q63[30]q62[30]q61[30] = +BB

in the template for the first near-collision block (Table 3.4). The purpose of the ‘B’s is to make
∆F63[30] variable. But if we need ∆F63[30] = 0, we might as well change these three bitconditions
to ... and q63[29] to +, as it is the case in the observed first near-collision block. Since we have
only one output of the collision attack, we do not know how many carries the attackers would have
maximally relied on.

In our templates, we are generous with carries, but in testing the performance, we will use the
maximal number of carries as a parameter that might be reduced. These parameters allow us to
trade off Birthday Search complexity versus the complexity of solving the path. For example, if we
choose not to use the carries in step 62 of the first near-collision block from position 25 to 30, but
only to 29, we will not be able to affect position 13 in Q63, so we must require that c[13] = c′[13]
in the Birthday Search. Thus, one problem with estimating the Birthday Search complexity of the
Flame attack is that we do not know whether the attackers decided not to rely on that carry or
whether it just so happened that they did not need it for the δIHV that their Birthday Search
produced; similar problems arise in the following blocks. Hence, we will have to estimate the
complexity for several parameter choices. We can, however, obtain a lower bound on the cost of
the Birthday Search and of the message block construction. We can also find a parameter setting
that allows for an optimal trade-off between these two costs.

In the first and third block, the carries begin close to position 31. Since they cannot proceed
past that point, we include all the carries up to that position in our templates. In the other two
blocks, the carries start far away from that position. Since we estimate the complexity of solving
the differential paths with Monte Carlo-simulations, we limit the number of carries to what we were
able to simulate in reasonable time. In all cases, the maximal number of carries in our templates
is larger than the number observed in the observed differential paths. We calculate the Birthday
Search complexity under the assumption that all the carries in the template are relied on. It is
easy to compute the Birthday Search complexity for a lower number of carries: For each carry that
is dropped, the complexity increases by a factor of 20.5. In Section 3.6.2, we use Monte Carlo-
simulations to estimate the complexity of solving the differential paths. There, we parametrize the
complexity in terms of the carries that are relied on.

Also, some of the Boolean function bitconditions adjacent to variable bitconditions might change
in the observed near-collision blocks. The first near-collision block can again serve as an example.

66

In the template, we have q62[26]q61[26]q60[26] = -11 so that we have ∆F62[26] = 1 and hence
∆Q63[9] = 1. But we could also achieve the correct δQ63 by putting ∆F62[26] = ∆F62[27] = −1
and ∆Q63[28] = 1, as it happens in the observed near-collision block.

Below each end segment, we write the change that this block is supposed to make to δc and δb
where we color the variable part of this change in blue and underline them. In the first two blocks,
we do not write down the possibilities for the random changes to δb. For i = 0, . . . , 31, we let Bi
and Ci be variables that may have values in {−1, 1, 0}. Their values are determined by the variable
bitconditions. Note also that when we talk about solving the end segments, we are more lax than
in other places: We require only the δQi to be correct.

Block 1 (Table 3.4)

Steps Bitconditions

59 +.......

60 +BBBB1B.

61 +BBBB1B.

62 X+-----.

63 X.....+.DDDDD+D

64 ***...+. ...***** ***AAA+A****

δc : +231 + 225 + 29 + C14 · 214 +

8+w1∑
i=8

Ci · 2i

δb : +225 + 29 +

min(w1,12)∑
i=8

Ci · 2i

where w1 is the number of carries from position 25 in step 62 that we rely on and the
Ci ∈ {0, 1,−1} are variables.

Table 3.4: End segment of the first near-collision block.

The purpose of this block is to eliminate the differences in ∆c at positions 8, . . . , 8 + w1 for a
parameter w1 ∈ {1, . . . , 5}. In the static part, we introduce +231 + 225 + 29 to δc. These static
differences are eliminated by the static parts of the following blocks. We have δQ61 = 231 and
δQ62 = 231 + 225. The term 225 is introduced via δW61 = δm14 = 215 which is rotated by
RC61 = 10. At the next step, we aim for a difference of δQ63 = 231 + 225 +

∑8+w1
i=8 Ci · 2i + 29

where the Ci are variable. This difference can be achieved as follows: 231 + 225 comes from δQ62.
The term

∑8+w1
i=0 Ci · 2i + 29 is produced by δF62 and the rotation of δT62 as follows. Since we have

the summand 225 in δQ62, we can have ∆Q62[25], . . . ,∆Q62[30] 6= 0 and since ∆Q61 and ∆Q60 are
0 at these positions, we can get any value for ∆F62 at these positions, as Observation 3.14 shows.
Finally, if we have ∆Q62[31] = ∆Q60[31], we get ∆F62[31] = ±1 and otherwise 0. We thus have
δT62 = δQ59 + δW62 + δF62 = 231 +

∑31
i=25 ∆F62[i] · 2i. The rotation with constant RC62 = 15 then

might give us the desired δQ63. The static term +29 is added to eliminate the −29 that will be
introduced in the next block. For the most part, we do not aim for any specific difference in δQ64.

67

The static +225 and +29 will be eliminated as they are for δc. All differences introduced at the
positions marked with * can be eliminated later on.

However, a few differential paths that conform to this template are unsolvable. This is due to
the constant term 29 in δQ63. Consider the case where C9, . . . , C8+w1 = 1 and C8 ≥ 0. Then, we
have 29 +

∑8+w1
i=8 Ci · 2i ≥ 2w+1 and thus, we need one more carry in step 62 to solve the path.

But if w1 = 5, C9, . . . , C14 = 1 and C8 ≥ 0, the path is impossible to solve. There are several ways
around this: We can drop the variable term C9 · 29 or we just do not use w = 5. But in both of
these cases, we lose one bit of freedom in the Birthday Search. We might instead check during the
Birthday Search whether the result will force us to take C9 = · · · = C14 = 1 and, if yes, search for
a new result. This increases the Birthday Search complexity somewhat, but not as much as losing
one bit of freedom.

Furthermore, we might want to reduce the number of irrelevant bitconditions at q64[0], . . . , q64[3]
because a higher number forces a higher parameter value in the fourth near-collision block to
eliminate the random differences. For i = 0, . . . , 4, we can set q61[i − 21 mod 232] = 0 to ensure
that ∆Q64[i] = 0. Let v1 be the maximal number ≤ 4 such that we allow ∆Q64[v1] 6= 0. We will
estimate the solution complexity depending on this parameter.

In the observed near-collision block, we have three carries from position 25 in ∆Q63. Assuming
that the template was followed strictly, the parameter choice in the attack must have been w1 ≥ 4
since 4 is the smallest value for w1 with which we can achieve the correct δQ63. In the observed
path, we have δQ63 = 231 + 225 − 214 − 212 + 29. Thus, we need C8, . . . , C11 = 0. To achieve the
term −212, we need at least C12 to be non-zero. But depending on how exactly the Birthday Search
was handled, the attackers might have relied on only 2 carries since −212 + 29 = −211 − 210 − 29.
The ∆Q64 of the observed path does not conform to our template, but only the underlying δQ64 is
relevant and it can be represented by a ∆̂Q64 which does conform to the template. The parameter
v1 in the Flame collision attack is at least 1.

Block 2 (Table 3.5)

We have δQ61 = 231 + 25. The 25 comes from δT60 = 231 and rotation constant RC60 = 6. In the
next step, δQ62 = 231 − 225 − 29 + 25. Here, −225 is introduced via δm14 = −215 and −29 comes
from δT61 = 231 and rotation constant RC61 = 10. This allows us to have ∆Q62[i] 6= 0 for i ≥ 5.
Potentially, having carries up to position 25 could provide useful variations in δQ63. It is, however,
very unlikely that that many carries occur. In our template, we have three carries from position
5 and six from position 9 which is the maximal value for which we did Monte Carlo-simulations.
Next, we have δQ63 = 231 +

∑24+w2
i=20 Ci · 2i − 226 + 225 − 29 + 25. The constant terms −226 + 224

are derived from combining the term −29 in δF62 (rotated to −224) and −225 in δQ62. We can
choose C20, . . . , C24+w2 from the set {−1, 1, 0} using the variable Boolean function bitconditions at
positions 5, . . . , 9 + w2. For δQ64, most bitconditions are either constant, irrelevant or inherited
from Q63. We have some choice over positions 20, 27, 28 and 29. Namely, ±220 might be added
due to different rotations and we can adjust the Boolean function bitconditions at positions 6, 7
and 8 to manipulate positions 27, 28 and 29. This might require introducing additional carries to
the differential bitconditions q63[5] and q63[6]. Also, for i = 20, . . . 23, if q63[i] 6= ., we require that
q61[i] = 0. The purpose of this is to avoid any differences in positions 10, 11 and 12 since we are
unable to make any corrections at these positions in the later blocks. The positions marked with
a * can be corrected in later blocks. We again parametrize the number of irrelevant bitconditions

68

Steps Bitconditions

59 +.......0.....

60 +....... BBBBBB1B BBB.....

61 -....... 0000.... BBBBBB1B BB+.....

62 +.....-. -+++++++ ---.....

63 XDDDD-D+ DDDD....-B B+-.....

64 **DDD-A+ AAAD**** ***...-. ..+*****

δc : +231 − 226 + 224 − 29 + 25 +

24+w2∑
i=20

Ci · 2i

δb : −226 + 224 − 29 + 25 +

min(24+w2,28)∑
i=20

Ci · 2i +
29∑
i=27

Bi · 2i +B20 · 220

where w2 is the number of carries from position 9 in step 62.

Table 3.5: End segment of the second near-collision block.

starting at position 0. We let v2 be the maximal number ≤ 4 such that we allow ∆Q64[v2] 6= 0.
Strictly following the template, the δQ63 of the observed differential path requires w2 ≥ 3. We

have δQ63 = 231+227−226+224+220−29+25 and thus we need C24, C26 = 0 and C27 6= 0. However,
it could be possible that the attack relied on only two carries since 227 − 224 = 226 + 225 + 224.

After these two blocks, we want to have δc = −224. That is, we want to essentially eliminate δc
with the first two blocks – the −224 is cancelled in the constant parts of the next two blocks. Let
us now move on to eliminate δb.

Block 3 (Table 3.6)

We have δQ59 = δQ60 = δQ61 = 231, δW61 = m11 = 215 and ∆F61 = (). This results in
δT61 = 231 + 215. With rotation constant RC61 = 10, we can aim for δQ62 = 231 + 225 + 29. The
static bitconditions give us δF62 = 29. Thus, δT62 = 231 + 29. Rotating with RC62 = 15, we can
get δR62 = −214 + 224. Hence,

δQ63 = δQ62 + δR62 = 231 + 225 + 224 − 214 + 29 = 231 + 226 − 224 − 214 + 29.

We can have up to 4 carries from position 26. Let w3 be the number of carries we rely on. In the
next step, the variable Boolean function bitconditions allow us to control positions 13 to 15 + w3

in δQ64. Due to the static bitconditions, we also get 230 + 226 − 224 − 214 + 29 − 23.
If we have B14, . . . , B15+w3 = 1 and B13 ≤ 0, we have −214 +

∑15+w3
i=13 Bi · 2i ≤ −215+w3+1. To

solve this, we need one more carry from position 26. In the case of w3 = 4, this is not possible,
but we can introduce a term 220 via the rotation to eliminate this problem. For the δQ64 of the
observed path, we need w3 = 4. Note, however that in the observed near-collision block, a lesser
number of carries occurred: The correct result was achieved with the help of a term 220 from the
rotation. The variable portion of δQ63 takes on the value 219 +218 +217 +216−214 = 220−216−214.
However, such a reduction of the number of carries can only occur for specific values of the Bi: It

69

Steps Bitconditions

59 +.......

60 -.....0.1.

61 +BBBBBBB1....0.

62 +BBBBB+B0....+.

63 X+----B--....+.

64 .+...+.-DDDD D-D...+.-...

δc : +231 + 226 − 224 − 214 + 29

δb : +230 + 226 − 224 + 29 − 23 +

15+w3∑
i=13

Bi · 2i

where w3 is the number of carries from position 26 in step 63.

Table 3.6: End segment of the third near-collision block.

is only possible when Bj = Bj+1 = · · · = B19 for some j < 19. But the parameter w3 must be fixed
before the Birthday Search and we do not know beforehand which values for Bi the result of the
Birthday Search will require.

Block 4 (Table 3.7)

Steps Bitconditions

59 -.......

60 +.....0.0.

61 +.....1. ...BBBBB 11BBBBB.

62 -.....-. ...BBBBB 00BBBB-.

63 X.....-. ...+---- ---++++.

64 DD....-.+....-D DD-D+DDD

δc : +231 + 224

δb : −224 + 214 − 29 − 25 + 23 +

min(u4,1)∑
i=30

Bi · 2i +

u4−2∑
i=0

Bi · 2i +

3+w4∑
i=3

Bi · 2i

where w4 is the number of carries from position 14 in step 63 and u4 is the number of carries from
position 9.

Table 3.7: End segment of the fourth near-collision block.

As in the previous block, we have δQ59 = δQ60 = δQ61 = 231. With δW61 = m11 = −215 and
δF = 231, we can get δQ62 = 231 − 225 − 29. The static bitconditions give us δF62 = 231 and
hence we can get δQ63 = 231 − 224 + 214 − 29. We can thus have ∆Q63[9], . . . ,∆Q63[14 + w4] 6= 0.

70

Note that carries up to position 23 could be useful. We limited the carries to position 20 since
this is the maximal value for which we could perform Monte Carlo-simulations in reasonable time.
The variable bitconditions and the possible +1-term from the rotation allow us to affect positions
0, . . . , 3 + w4, 30, 31 in ∆Q64. From static bitconditions, we get −224 + 214 − 29 − 25 + 23. We
parametrize the number of carries from position 9 and 14 separately. The parameter u4 has to
be large enough to allow us to remove the differences from the Birthday Search and the random
differences from the first two blocks; that is, if max(v1, v2) ≤ 2, we must have u4 ≥ max(v1, v2) + 2
and otherwise, u4 = 4. We need at least two carries from position 14 for the constant terms
−25 + 23 = −24 − 23. In the observed near-collision block, there are only two carries from position
9. The parameter u4 used in the attack must be at least 3, even though in the end, one carry
sufficed. Also, in the observed differential path, the carries occur in step 62 rather than 63, but the
same value for δQ64 can be achieved either way.

Comparison with Stevens et al.

The differential paths used in the attack by Stevens et al., are quite different: They always target
δb, δc and δd, but the differences in ∆Q62, . . . ,∆Q64 are very local in the sense that for most i,
∆Qt[i] = 0 and indices i with ∆Qt[i] 6= 0 lie in a small window of width w, were w is a parameter
of the attack. Also, by using a variety of possible message block differences, they are more flexible
in the δIHV that they can eliminate. The downside is that we either need a large number of
differential paths – which was not an option in the Flame attack – or we need to find a low-weight
δIHV in the Birthday Search. Nevertheless, it appears that the attack by Stevens et al. has a
lower cost when the right parameters are used; see Section 3.6.3.

3.5.3 Arguments for the Reconstruction

We will now argue for each block how the template derives from our assumptions and the observed
differential paths.

Block 1

Given our constraints, the first opportunity to deviate from the observed differential path is in step
62. We have ∆Q62 = 231 + 225. The bitconditions from position 25 have 4 carries in the observed
differential path and there can be at most one more. We included this additional carry in the
template. The bitconditions above q62[25], . . . , q62[30] can then be varied to achieve different values
for δF62 and hence for δQ63. Since there are no other differential bitconditions, imposing Boolean
function bitconditions anywhere else in steps 61 and 62 is useless. Varying the Boolean function
bitconditions, the bitcondition q62[31] and the two possible rotations24, we can get precisely those
values for δQ63 that we give in the template (except for the rare impossible case, when w1 = 5 and
C9 = . . . C14 = 1). We assume that the positions marked with a * are irrelevant because we can
compensate any differences in these positions in later blocks, for appropriate parameter choices.

24Since we have, in the terminology of Lemma 1.6, T62,low = 0, only two rotations have non-zero probability. We
have δR62 ∈ {RL(δT62, RC62), RL(δT62, RC62)− 2RC62}.

71

Block 2

Here, the first opportunity to deviate from the observed path is again in step 62. We have δQ62 =
231−225−29 +25. It makes no sense to use any carries from position 25 since we already used them
in the previous block. Anything we could do with the help of these carries we could have done in
the previous block. We have 2 carries from position 5 in the observed path. In our template, we
rely on one more carry, bridging the gap to position 9. The number of carries from position 9 in
the observed path is 3. We rely on at most 6 carries from position 9. The number of carries in
the template is probably larger than the number of carries the Flame authors relied on. We use
the number of carries from this position as a parameter when estimating the complexity. These
carries allow us to achieve any of the values for δQ63 given in the template. Since we already
handled position 14 of δc in the first block, we do not need to vary q62[31]. In contrast to the first
block, we can get an additional +1-term due to the rotation. However, we did not include this in
our template since it would not be possible to get a −1-term. The positions in step 64 that are
marked with a * can take on differential bitconditions, but are irrelevant because we can handle
them in the following blocks. We set q61[i] = 0 for i = 20, . . . , 24 so that no changes in δb happen at
positions 9, . . . , 12. We could possibly use variable bitconditions to alter these positions, but we do
not do this in the template for two reasons: First, this would require that we have a non-constant
bitcondition at, e.g., q63[20]. Second, the term 212 appears both in the observed value for δb and δc.
No other terms 2i appear in the NAF of both δb and δc. This might indicate that in the Birthday
Search target, δb and δc are supposed to be identical at this position.

Block 3

In the template, we assume that after Block 2, we have essentially eliminated δc except for the
constant term −224. Thus, our templates do not allow any variable differential bitconditions in step
63. This assumption is justified because everything we could do in Block 3 to affect δc can also be
done in one of the previous blocks. In step 63, we expanded the number of carries from position 26
to the maximum. We did not add any carries from position 14. Such carries occur in the observed
path for Block 4, but not in Block 3 and thus, we assume that the strategy was to use these carries
only in Block 4. It does not make sense to use them in two blocks. Using variable Boolean function
bitconditions over positions 24 to 30 and varying q63[31] allows us to make the changes to δb given
in the template. We assume that the bitconditions above position 13 are constant. They add the
term −23 to δb. In Block 4, −24 − 23 = −25 + 23 will be added so that the constant term 25 from
Block 2 is eliminated.

Block 4

Here, our template differs from the observed path in step 62: The carry from position 9 in the
observed path could be replaced with a carry from that position in the next step and achieve
a larger set of possible values for δQ64. Thus, we assume that the carry in step 62 is just a
coincidence and that a carry in step 63 was intended instead. But as long as the correct result is
achieved, it does not matter if the differential path is followed exactly. We again allow for some
more carries in step 63 than there are in the additional path. We assume that there is a constant
term −24 − 23 = −25 + 23 to cancel the term 25 from Block 2 together with 23 from Block 3.

72

3.5.4 Birthday Search

Given the elimination strategy, we can now specify the Birthday Search target. We require that
there are fixed differences in δa and δd and that for those bit positions i that we can not manipulate
in our four near-collision blocks, we need c[i] = c′[i] or b[i] = b′[i] (modulo some constants). The
Birthday Search looks for a collision of the function

f(x) = (a, b̃10, . . . , b̃13, b̃21, . . . , b̃26, c0, . . . , c7, c15, . . . , c19, c31, d)

where (a, b, c, d) =

{
MD5Compress(IHV,B‖x) +

(
−25, 0,−25, 29 − 25

)
if x is even

MD5Compress (IHV ′, B′‖x) if x is odd

and b̃ = b− c

with IHV and IHV ′ the intermediate hash values after processing the two chosen prefixes. Since
the range of f has 88 bits, we can expect to find a collision after

√
π · 288/2 ≈ 244.3 calls to the

compression function. Not every collision is useful, of course. The probability p that a collision is
useful is upper bounded by 1/2 since we require that one part of a useful collision is even and the
other is odd. It is unlikely that p is much lower than 1/2 since the only other source for useless
collisions appears to be the impossible differential paths for the first block. Thus, the expected
number of compression function calls until a useful collision is found is√

π · 288

2 · p
≈
√
π · 244 ≈ 244.8.

Even if p is much lower, 244.8 is a lower bound on the Birthday Search cost.
As we already mentioned, we can choose not to rely on some of the carries in the templates so

that the differential paths are solved more quickly. For every carry we do not rely on, we introduce
another bit position where b and b′ or c and c′ may not differ, increasing the Birthday Search
complexity by a factor of 20.5. This allows us to trade off Birthday Search complexity against
complexity in the message block construction.

The Birthday Search in the attack by Stevens et al. is different from our reconstruction of the
Flame attack. In the attack by Stevens et al., we do not inspect individual bits in δIHV , but
instead, we only require that δa = 0, δc = δd and possibly that δb − δc mod 2k = 0 for some
parameter k. It is not important which bits in c and c′ or b and b′ are different; it is important
whether we can eliminate all the differences using a given number r of near-collision blocks. Thus,
the probability p contributes the majority of the cost. This probability and the resulting cost
depend on many different parameters. If we allow r = 4 near-collision blocks, like in the Flame
attack, w = 5 and allow an expected memory use of 2 GB, we can achieve a cost of 244.55.

In contrast, the Flame Birthday Search requires specific positions to have no difference. This
contributes the majority of the cost, while the probability p that a collision is useful is 1/2, or
slightly smaller if we have to avoid the impossible differential paths in the first near-collision block.

3.6 Estimating the Cost of Constructing Message Blocks

3.6.1 A Formula for the Expected Cost

We now estimate the cost of generating a near-collision block. Since the bitconditions are concen-
trated on the first 16 working states and the tunnel T8 is used, we assume that the algorithm can

73

be broken down into the following steps:

1. Generate a full differential path/generate a set of initial working states that connects to the
lower differential path.

2. Select Q1, . . . , Q16 according to the path and according to tunnel requirements.

3. Try to obtain a solution up to step 2425 with the help of tunnels T4 and T5. Return to step 2
of this algorithm and choose different Qi if it is not possible to obtain a solution. Use early
abort to reduce the cost of this step. The message words are computed as needed, like in the
attack by Stevens et al.

4. Attempt to generate a solution for the whole path from our solution up to step 24 using
tunnel T8. We use early abort to some extent. We do not try to solve the differential
path exactly since we only care about the values of δQ61, . . . , δQ64, but we check whether
δQ35 = · · · = δQ60 = 231 and we abort if that is not the case.

5. Check if the values for δQ61, . . . , δQ64 are correct. If yes, we have found a solution, if not, we
have to continue searching.

We will estimate the expected number of calls to the Step-function of MD5Compress that the
algorithm makes. Dividing this number by 64 gives us the equivalent cost in terms of MD5Compress-
calls. Let Cpath be the cost of generating the full differential path. We do not know the exact value
of Cpath, but we can estimate the costs that the other steps of the message block construction
algorithm contribute.

In step 2, we can choose working states Qi without computing the step-function. But we also
need to verify whether the rotations in these steps are correct. Since we do not know how the states
Q1, . . . , Q16 are selected – maybe the attackers introduced additional bitconditions to improve the
rotation probabilities, as in the attack by Stevens et al. (see Section 2.2.9 and [24, Section 6.3.3])
– we assume that this cost is negligible compared to the cost of the other parts. For each t such
that 16 ≤ t ≤ 24, we estimate the expected cost Ct of generating a solution up to step t. Let pt
be the probability that a solution up to step t is a solution up to step t+ 1. For bt the number of
bitconditions on step t+ 1 and rt the rotation probability of step t+ 1, we have pt = 2−bt · rt. We
let st be the combined strength of the tunnels that are applicable to step t, i.e., the tunnels that
only change working states Qt+1, . . . , Q64. The expected amortized cost for generating a solution
up to step t is

C′t =
Ct + 2st − 1

2st

which can be seen as follows: Using the tunnels, if we have one solution up to step t, we can generate
2st solutions up to step t. But for each solution beyond the initial one, we have to recompute one
message word.26 The cost of this recomputation per message word is equivalent to the cost of Step.
Thus, we can generate 2st solutions up to step t at an expected cost of Ct + 2st − 1 and therefore

25Recall that we say that a pair of inputs solves a path up to step t if it agrees with the bitconditions q−3, . . . , qt
and with the δQt+1 from the differential path.

26We have to recompute only one word because we compute the message words as they are needed. The other
words that might be changed by the tunnel are not computed at this point.

74

the above formula for the expected amortized cost holds. If there are no applicable tunnels, we
have st = 0 and C′t = Ct. We estimate the expected cost of finding a solution up to step t as

Ct =


0 for t = 16

1
pt−1
·
(
C′t−1 + 2

)
for 16 < t ≤ 32

1
pt−1
·
(
C′t−1 + 1

)
for t > 32

This estimate is justified as follows: We have a probability of pt−1 that a solution up to step t−1 is
a solution up to step t. Thus, we expect that we need to examine 1/pt−1 solutions up to step t− 1
until we find a solution up to step t. The expected amortized cost of generating a solution up to
step t− 1 is C′t−1. We need to compute one additional step of MD5Compress to determine whether
a solution up to step t− 1 is a solution up to step t. For t ≤ 32, we need to compute one additional
message word in order to do this. After step 32, we already have the whole message block. The
cost of computing a message word is equivalent to one execution of Step.

The probabilities p16, . . . , p23 are roughly equal for each of the four differential paths. They are
given in the following table.

t 16 17 18 19 20 21 22 23

pt 2−6.0 2−3.0 2−2.2 2−2.0 2−3.0 2−2.0 20.0 2−1.0

Furthermore, averaging over the tunnel strengths in all four observed near-collision blocks, we
have s21 ≈ 10.8, s24 ≈ 9.8 and st = 0 for all t 6= 21, 24. Thus, we have

C17 = C′17 ≈ 27.0

C18 = C′18 ≈ 210.0

C19 = C′19 ≈ 212.2

C20 = C′20 ≈ 214.2

Then, C21 ≈ 217.2. The amortized cost is C′21 ≈ 26.4. Continuing on towards step 24, we have

C22 = C′22 ≈ 28.5

C23 = C′23 ≈ 28.5

and C24 ≈ 29.5. The amortized cost is C′24 ≈ 20.9.
Since we have only trivial bitconditions with δQi = 0 from step 24 to step 33, we have C′33 =

C33 = C′24 + 17 ≈ 24.2. In the next step, we have one non-constant bitcondition and a rotation
probability of 1/2, so we get C34 = C′34 ≈ 26.4. Then, there is a sequence of trivial steps with
δQi = 231. From now on, we relax our definition of solving a differential path. We require only that
the δQi are correct. By Theorem 1.14, part 3, we have δQi = 231 with certainty up to i = 47. Thus,
C47 = C′47 = C34 + 13 ≈ 26.6. For the steps after that, Theorem 1.14, part 4, tells us that δQi = 231

implies δQi+1 = 231 as long as ∆Qi[31] = ∆Qi−2[31] and δWt = 0 or ∆Qi[31] 6= ∆Qi−2[31] and
δWt = 231. We assume that the condition of Theorem 1.14, part 4, holds with probability 1/2.
This is justified as follows: Assuming that Qi is selected uniformly at random and Q′i = Qi + 231,
we have ∆Qi[31] = 1 or −1 with probability 1/2 each and exactly one of these two alternatives
satisfies the condition of Theorem 1.14, part 4. We thus get Ci+1 = 2 · (Ci + 1) for 47 ≤ i < 59.

75

That gives us C59 = 219.6. If the path is solved up to step 59 (modulo the sign in ∆Qi[31]), we
have δQ57 = · · · = Q60 = 231. Let the random variable attempts be the number of input pairs
with δQ57 = · · · = δQ60 = 231 that we need to evaluate until we find an input pair that has the
desired values for δQ61, . . . , δQ64. The expected cost of finding a solution with the correct values
for δQ61, . . . , δQ64 is then E[attempts] · (C60 + 4) ≈ E[attempts] · 219.6. In terms of calls to
MD5Compress, the complexity of generating a near-collision block is

Cblock = Cpath + E[attempts] · 213.6

since MD5Compress consists of 64 = 26 steps. We will estimate E[attempts] in the next section
using Monte Carlo-simulations.

3.6.2 Estimating the Expected Number of Attempts at Solving the End-Segment

In this section, we want to estimate the expected number of input pairs with δQ57 = · · · = δQ60 =
231 we have to generate until an input pair with the right value for δQ61, . . . , δQ64 is found – we
will call this value the target of the differential path and we will call input pairs with δQ57 = · · · =
δQ60 = 231 admissible input pairs. Of course, some targets are easier than others. Therefore,
we estimate the expected number of attempts required for a target sampled uniformly at random
from the set of targets that a given template from Section 3.5.2 allows. We estimate E[attempts]
separately for each of the four templates and several parameter values.

Let target be the random variable that gives the target of our differential path. We assume
that for every possible target τ there is a probability pτ such that each admissible input pair that
we generate hits the target τ with probability pτ , independent of the others. Let attemptst be the
random variable that counts the number of admissible inputs we have to generate until target τ is
solved. Then, attemptsτ is distributed geometrically with Pr[attemptsτ = k] = Pr[attempts =
k | target = τ] = (1 − pτ)k−1pτ and E[attemptsτ] = E[attempts | target = t] = p−1

τ . By the
law of total probability, we can sample attempts by first sampling τ ← target and then sampling
attemptsτ .

To save time in our simulations, we do not generate admissible inputs as in Section 3.6. Instead,
we select working states Q57, . . . , Q60 and message words m0, . . . ,m15 at random and compute
Q′57, . . . , Q

′
60 and m′0, . . . ,m

′
15 by applying the appropriate arithmetic differentials. Proceeding like

this requires the assumption that the probability for hitting the target with random Q57, . . . , Q60

and message words is the same as hitting the target when proceeding according to the method in
Section 3.6. This assumption is justified by the pseudo-randomness of MD5.

As a first step, we estimate the distribution of ∆Q57[31], . . . ,∆Q60[31] given that the differential
path is followed up to step 30 using the following algorithm.

1. Choose random values for Q31 = Q′31, . . . , Q34 = Q′34 and m0, . . . ,m15.

2. Let m′i = mi + δmi where δmi are taken from the Flame differential paths. That is, δm4 =
δm14 = 231, δm11 = ±215 and δmi = 0 for i 6∈ {4, 11, 14}.

3. Compute the MD5 step function up to step 60.

4. Check if we have δQ57, . . . , δQ60 = 231. If not, return ⊥ and exit.

5. Return ∆Q58[31], . . . ,∆Q60[31].

76

We ran this procedure (with δm11 = 215) until every possible result of step 5 occurred at
least 20000 times and took the relative frequency of these results as our probability estimate. We
then repeated this with δm11 = −215. In both cases, we observed that the distributions were
roughly uniform. Table 3.8 lists our results. We say that a run was successful if it did not end
in step 4. We represent the outputs of the algorithm as the bitconditions q58[31]q59[31]q60[31] ∈
{+++, ++-, +-+, . . . , ---}. The relative frequency of successes is 2−13 which is consistent with our
estimate that each of the trivial differential steps from step 48 to 60 are successful with probability
1/2.

δm11 = 215 δm11 = −215

Runs 1328850000 1317580000

Successful 162716 161044

+++ 20255 20124
++- 20506 20055
+-+ 20560 20140
+-- 20458 20052
-++ 20304 20154
-+- 20000 20321
--+ 20307 20198
--- 20326 20000

Table 3.8: Outcomes of the Monte Carlo simulation to find the distribution of
∆Q58[31], . . . ,∆Q60[31].

In the experiment for estimating E[attempts], we run Algorithm 3.1 until a fixed number
SUCCESSES of targets is solved.

Algorithm 3.1: Monte Carlo-simulation

s = 0;
trials = 0;
while s < SUCCESSES do

Sample τ ← target;
repeat

trials = trials + 1;
Randomly select 32-bit words Q57, . . . , Q60 and m0, . . . ,m15;
for i = 57, . . . , 60 do

Q′i = Qi + 231

for i = 0, . . . , 15 do
m′i = mi + δmi

Compute Q61, . . . , Q64 and Q′61, . . . , Q
′
64 according to MD5Compress;

for i = 61, . . . , 64 do
δQi = Q′i −Qi

until δQ61, . . . , δQ64 solve target τ ;
s = s+ 1;

return trials/SUCCESSES

77

Every iteration of the repeat-until-loop in this algorithm corresponds to a sampling of at-
tempts. Thus, for large values of SUCCESSES, the output of this algorithm approximates E[attempts]
with high probability.

Block 1

The target differences for the first near-collision block with parameters 1 ≤ w1 ≤ 5 and −1 ≤ v1 ≤ 3
are

δQ61 = 231

δQ62 = 231 + 225

δQ63 = 231 + 225 + 29 +

8+w1∑
i=8

Ci · 2i

δQ64 − δQ63 =
31∑
i=29

Xi · 2i +
20∑
i=14

Xi · 2i +
v∑
i=0

Xi · 2i

where the Ci are selected randomly and the Xi may take on any value. That is, we sample a
target by selecting the Ci uniformly at random and we say that a target is solved if there exist
Xi ∈ {−1, 0, 1} such that δQ61, . . . , δQ64 agree with the values above. The parameter w1 is the
number of carries from position 25 in step 62 that we rely on. We set 1 as a lower bound for w1

since we need at least one carry to achieve the constant term 29 in δQ63. We use v1 to parametrize
the number of irrelevant bitconditions that we allow.

We summarize the results of Algorithm 3.1 with these targets for the most important parameter
values in Table 3.9. For the other parameter values, see Table B.1 in Appendix B. The column
“Birthday Factor” gives the factor by which the Birthday Search complexity has to be multiplied
for the given parameter choice.

Parameters Trials Successes Trials/Success Birthday factor

w1 = 1, v1 = −1 14284746 10000 210.5 22.0

w1 = 1, v1 = 0 14284746 13199 210.1 22.0

w1 = 1, v1 = 1 14284746 14182 210.0 22.0

w1 = 1, v1 = 2 14284746 15637 29.8 22.0

w1 = 1, v1 = 3 14284746 22535 29.3 22.0

w1 = 4, v1 = 1 777345731 23470 215.0 20.5

w1 = 4, v1 = 2 777345731 32195 214.6 20.5

w1 = 4, v1 = 3 777345731 42718 214.2 20.5

w1 = 5, v1 = 1 1112515535 22639 215.6 1
w1 = 5, v1 = 2 1112515535 30735 215.1 1
w1 = 5, v1 = 3 1112515535 40538 214.7 1

Table 3.9: Results of the Monte Carlo simulation for the end segment of the first near-collision
block.

78

We deal with the issue of unsolvable paths mentioned in Section 3.5.2 as follows: For w1 =
1, . . . , 4, we just accept that with a small probability, we have to use one more carry. For w1 = 5,
where we can have no additional carry, we discard targets with C9, . . . , C15 = 1 and C8 ≥ 0. To
achieve the δQ63 of the observed path, we need w1 ≥ 4. Also, we have v1 ≥ 1. Thus, the expected
number of attempts until a target is solved in the attack lies between 214.2 and 215.6. The expected
cost of constructing the first block is therefore between 227.8 and 229.2. Since the first template has
the lowest complexity of all, it seems reasonable to maximize w1.

Block 2

The target differences with parameters 1 ≤ w2 ≤ 6 and −1 ≤ v2 ≤ 4 are

δQ61 = 231 + 25

δQ62 = 231 − 225 − 29 + 25

δQ63 = 231 − 226 + 224 +

24+w2∑
i=20

Ci · 2i − 29 + 25

δQ64 − δQ63 =

31∑
i=30

Xi · 2i +

30∑
i=27

Bi · 2i +B20 · 220 +

19∑
i=13

Xi · 2i +

v2∑
i=0

Xi · 2i

where the Ci and Bi are selected randomly and the Xi may take on arbitrary values. The parameter
w2 is the number of carries from position 9 in step 62 that we rely on. The most important results
are given in Table 3.10. For all the results, see Table B.2 in the appendix. The second near-collision
block has the highest complexity and thus, for higher values of w2, we could only finish a small
number of simulations. The attackers used a parameter w2 ≥ 3. This gives a lower bound of 224.2

on the expected number of attempts and a lower bound of 237.8 on the expected cost of constructing
the second near-collision block.

Block 3

The target differences, given parameter 0 ≤ w3 ≤ 4, are

δQ61 = 231

δQ62 = 231 + 225 + 29

δQ63 = 231 + 226 − 224 − 214 + 29

δQ64 = 230 + 226 − 224 − 214 +
15+w∑
i=13

Bi · 2i + 29 − 23

where the Bi are random and w3 is the number of carries from position 26 in step 63 that we rely
on. The results of the Monte Carlo-simulation are summarized in Table 3.11. With w3 = 0, the
expected number of attempts is 218.7 and with w3 = 4, the expected number is 224.7. The attackers
used w3 = 4. Thus, the expected number of attempts is 224.7 and the expected cost of constructing
the third near-collision block is 238.3.

79

Parameters Trials Successes Success probability Birthday factor

w2 = 0, v2 = −1 37689927528 10000 221.8 23.0

w2 = 0, v2 = 0 37689927528 16042 221.2 23.0

w2 = 0, v2 = 1 37689927528 17263 221.1 23.0

w2 = 0, v2 = 2 37689927528 17695 221.0 23.0

w2 = 0, v2 = 3 37689927528 17847 221.0 23.0

w2 = 0, v2 = 4 37689927528 17932 221.0 23.0

w2 = 3, v2 = 0 270004515480 2206 226.9 21.5

w2 = 3, v2 = 1 270004515480 3066 226.4 21.5

w2 = 3, v2 = 2 270004515480 3576 226.2 21.5

w2 = 3, v2 = 3 270004515480 3755 226.1 21.5

w2 = 3, v2 = 4 270004515480 3806 226.1 21.5

w2 = 5, v2 = 2 10415440989433 5008 231.0 20.5

w2 = 5, v2 = 3 10415440989433 6463 230.6 20.5

w2 = 5, v2 = 4 10415440989433 7365 230.4 20.5

w2 = 6, v2 = 2 7392736230494 565 233.6 1
w2 = 6, v2 = 3 7392736230494 760 233.2 1
w2 = 6, v2 = 4 7392736230494 990 232.8 1

Table 3.10: Results of the Monte Carlo simulation for the second near-collision block.

Parameters Trials Successes Trials/Success Birthday factor

w3 = 0 4231476891 10000 218.7 22.0

w3 = 1 16564888766 10000 220.7 21.5

w3 = 2 70906580486 10000 222.8 21.0

w3 = 3 243313360982 10000 224.5 20.5

w3 = 4 275529380806 10000 224.7 1

Table 3.11: Monte Carlo-simulation results for the third near-collision block.

Block 4

Our target differences are, given parameters 0 ≤ u4 ≤ 4 and 1 ≤ w4 ≤ 6,

δQ61 = 231

δQ62 = 231 − 225 − 29

δQ63 = 231 − 225 + 214 − 29

δQ64 =

30+min(u4,1)∑
i=30

Bi · 2i − 225 + 214 − 29 + 25 − 23 +

3+w4∑
i=3

Bi · 2i +

u4−2∑
i=0

Bi · 2i

where the Bi are chosen randomly. The parameter u4 is the number of carries from position 9 in
step 63 that we rely on and the parameter w is the number of carries from position 14. We use a
minimum of 1 for w since this is required to achieve the constant term 25−23. The most important
results are summarized in Table 3.12. For all the results, we refer to Table B.4 in the appendix.
Note that the parameter u4 must be large enough to eliminate the random changes to δb that are

80

made in Blocks 1 and 2. That is, if max(v1, v2) ≤ 2, we need u4 ≥ max(v1, v2) + 2 and otherwise,
we need u4 = 4. The attackers must have used u4 ≥ 3 and w4 ≥ 1. Thus, the expected number of
attempts is at least 224.6, so the expected cost of constructing the fourth near-collision block is at
least 238.2.

Parameters Trials Successes Trials/Success Birthday factor

w4 = 1, u4 = 0 14986221886 10000 220.5 24.5

w4 = 1, u4 = 1 12080362522 10000 220.2 24.0

w4 = 1, u4 = 2 40666946131 10000 222.0 23.5

w4 = 1, u4 = 3 259469948224 10000 224.6 23.0

w4 = 1, u4 = 4 350239928299 10000 225.1 22.5

w4 = 5, u4 = 2 4223606267373 10000 228.7 21.5

w4 = 5, u4 = 3 221260468157 100 231.0 21.0

w4 = 5, u4 = 4 254345380301 100 231.2 20.5

w4 = 6, u4 = 2 105022546473 100 230.0 21.0

w4 = 6, u4 = 3 1228561139591 120 233.3 20.5

w4 = 6, u4 = 4 2419872905855 120 234.2 1

Table 3.12: Results of the Monte Carlo-simulation for the fourth near-collision block

3.6.3 Total Cost

Let us now combine our estimates for the cost of solving the paths for different parameter choices
with the Birthday Search complexity. We will calculate the following costs:

• Cmsg, the expected cost when we minimize the cost of constructing the message blocks.

• Cflame, the expected cost when we minimize the message block construction cost while keeping
the parameters consistent with the observed differential paths.

• Csearch, the expected cost when we minimize the Birthday Search cost.

• Cmin, the minimal expected cost.

Firstly, for Cmsg, we choose w1, . . . , w4 to be as small as possible. We have to balance the parameters
v1 and v2 against u4. Increasing v1 and v2 does not speed up the message block construction by
much, so we pick v1, v2 = −1 which allows us to pick u4 = 1. The combined Birthday Factor for
these parameters is 211.0. We therefore have

Cmsg = 4 · Cpath + 211.0 · 244.3

√
p

+ 213.6 ·
(
210.5 + 221.8 + 218.7 + 220.5

)
≈ 255.8

where Cpath is the cost of constructing a full differential path and p is the probability that a collision
is useful. We assume that p ≈ 1/2 and that 4 · Cpath is insignificant compared to the other costs.
Even if that is not the case, our estimate provides a lower bound.

For Cflame, we must choose minimal values for the wi that are compatible with the differential
paths. That is, we must take w1 = 4, w2 = 3, w3 = 4 and w4 = 1. We have v1 ≥ 1 and v2 ≥ 0,

81

therefore, we must have u4 ≥ 3. We can minimize the cost by choosing v1 = v2 = u4 = 4. Then,
we have a Birthday Factor of 24.5. This gives us

Cflame = 4 · Cpath +
248.8

√
p

+ 213.6 ·
(
214.2 + 226.1 + 224.7 + 225.1

)
≈ 249.3

with the same assumptions as before. For Csearch, we have a Birthday Factor of 1 and

Csearch = 4 · Cpath +
244.3

√
p

+ 213.6 ·
(
214.7 + 232.8 + 224.7 + 234.2

)
≈ 248.4

To minimize the total expected cost, we take w1 = 4, v1 = 3, w2 = 5, v2 = 4, w3 = 4, w4 = 5 and
u4 = 4. Then, we have a Birthday Factor of 21.0 and

Cmin = 4 · Cpath +
245.8

√
p

+ 213.6 ·
(
214.7 + 230.4 + 224.7 + 231.2

)
≈ 246.6

when we assume that p ≈ 1/2 and that Cpath is insignificant compared to the other terms. We now
show that this cost is indeed minimal:

Theorem 3.15. Given the values for E[attempts] from Section 3.6.2 and assuming that the prob-
ability p for a useful collision in the Birthday Search is 1/2, the expected cost of the collision attack
is equivalent to at least Cmin = 246.6 executions of MD5Compress. For suitably chosen parameters,
this cost can be achieved.

Proof. We have already given parameters which show that the second part of the theorem holds.
To see that the first part holds, note that we can not increase the Birthday Factor beyond 21.5, for
otherwise, the cost of the Birthday Search already exceeds Cmin.

If the Birthday Factor is 21.5, the combined cost of solving all four paths may not be larger
than 244.2 if we want to improve upon Cmin. But it is impossible to reduce the costs of the second
and fourth block sufficiently while maintaining a Birthday Factor of 21.5. We need w4 ≤ 4, but this
does not leave enough room to reduce w2 sufficiently.

For Birthday Factor 21.0, the cost of solving the paths must be ≤ 245.4 to achieve a cost ≤ Cmin.
We must choose w4 ≤ 5, or else the cost of solving the fourth block already exceeds that limit.
This leaves at most one more parameter we can reduce. We have to do this reduction at the second
block, setting w2 = 5. But this is precisely the parameter choice that gives us Cmin.

For Birthday Factor 20.5, the blocks need to be solved with a cost of 245.8 if we want to have a
total cost ≤ Cmin. But we may only reduce one parameter and then, the cost of solving the second
or of solving the fourth differential path will already be higher than that. For a Birthday Factor of
1, the expected cost is Csearch > Cmin.

Remark 3.16. Extending the parameters beyond the maximum for which we performed Monte
Carlo-simulations will not reduce the overall cost either, since for the maximal parameter choice,
the cost of solving the fourth path is already higher than Cmin.

The parameters for Cmin are consistent with the observed differential paths. Assuming that our
reconstruction is correct, we can conclude that the expected cost of the collision attack used by
the Flame authors is lower-bounded by 246.6 calls to MD5Compress. It is however unlikely that they
used the parameters which achieve Cmin, especially in the fourth block, since the minimal cost is
achieved for w4 = 5, but there is only one carry in the observed differential path. This might be
due to several reasons:

82

• The attackers did not search for optimal parameters (or did not use parameters at all), since
the goal was not to find out how fast MD5 can be broken, but just to break it in a reasonable
amount of time.

• Since the Birthday Search is more cost-effective to parallelize than the message-block con-
struction, the attackers intentionally made the cost of the Birthday Search higher and the
cost of solving the differential paths lower. That way, the attackers can improve the speed
of the attack using massively parallel architectures such as graphic processing units (GPUs),
even though the theoretical cost is higher.

These two reasons are not mutually exclusive.
The expected cost of the attack by Stevens et al., using four near-collision blocks, is roughly 1/4

of the lower bound of the Flame attack; its expected cost is equivalent to 244.55 calls to MD5Compress

(see [25, Section 3.7]). The cost of the Birthday Search is the dominating part of the cost.

3.7 Summary

To sum up, the differential paths of the Flame collision attacks appear to be constructed by joining
two partial differential paths: An upper path which starts from the input-δIHV and a lower path
which causes the desired output-δIHV . This is similar to the attack by Stevens et al., although
∆Q6 is constant which makes the connection process about 213 times more expensive, compared
to the attack by Stevens et al. Tunnels were used in the attack, but the exact method is unclear.
We show that the straightforward explanation offered by Stevens in [25] does not account for the
observed tunnel strengths and offer an alternative explanation. We conjecture that in the first and
third block, each eligible bit is active for T8 with probability 0.33 and in the second and fourth, the
probability is 0.44. However, without more output samples, it is impossible to test our explanation.

We specify a family of differential path end-segments based on the observed differential paths
of the Flame attack. Based on our assumptions in Section 3.5.1, we argue that for some parameter
choice, these differential path end-segments were used in the Flame attack. Based on this recon-
struction of the end-segments, we estimate that the expected cost of the attack is equivalent to at
least 246.6 executions of MD5Compress, but likely somewhat more expensive. Presumably, the goal
was not to develop the theoretically cheapest attack possible, but an attack that is fast enough and
produces only four near-collision blocks, so that they can be hidden in an RSA-key. As already
mentioned, this might be due to an intentional attempt to increase the speed on massively parallel
architectures. When we minimize the cost of constructing the message blocks, while keeping the
parameters consistent with the observed differential paths, the expected cost becomes 249.3 which
might be closer to the expected cost of the attack that the Flame authors carried out.

83

Appendix A

Flame Differential Paths

Here, we show the differential paths for all four Flame near-collision blocks. The bitconditions
are listed with the condition on the most significant bit to the left and the least significant one
to the right. For the meaning of the bitconditions, refer to Tables 1.1 and 1.2. The rotation
probabilities are given next to each line. In the first column after the bitconditions. We write
“opt” if the rotation probability for δTt that is used in the differential path is optimal, followed by
that probability. Otherwise, we write “pa\po” where pa is the actual rotation probability and po the
optimal probability. We calculated these probabilities according to Lemma 1.6 under the idealizing
assumption that Tt is a uniformly distributed random variable on the set of all 32-bit words. In
the next column, we give empirical estimates by Marc Stevens for the conditional probabilities of
the rotations, taking the distribution of δTt under the condition that the working states fulfill their
bitconditions into account. The calculated and estimated probabilities have the largest differences
at steps with many bitconditions.

As discussed in Section 1.4.6, these differential paths have long middle segments, ranging from
step 23 to 59, with mostly trivial differences. For brevity, if there is a sequence of steps where all
bitconditions are identical, we do not list them all individually.

84

Steps Bitconditions Probability Conditional estimate
-3-.....

-2 00...... .1.1.01. ...1..+. ..-.10..

-1 110-+..1 .1.-.00. .+.+.... ..-110..

0 +-100..0 .-0+^++1 .0.+0.11 .110-+.. opt, 0.723631 1.000000
1 0+-++..- .-0++-+0 011-0..1 110+++.. 0.377524\0.493162 0.49707
2 +0-0-.00 .-++00+- 0-1-+.1+ 1+-0++^. 0.246820\0.628058 0.166016
3 +010-000 .-+++0+1 +--.+^1+ -+-+++-. opt, 0.910804 1.000000
4 -00-10+. .11-+-0+ +++11--0 -101-+0. 0.381041\0.561097 1.000000
5 0-+-++-^ ^0110+1- -110+0-0 -0001+1^ 0.229237\0.435275 1.000000
6 ++----+- ---+---- -----+++ ++++++++ 0.424792\0.513688 1.000000
7 111.-111 1101011. 110-1001 +0100.00 opt, 0.837956 1.000000
8 00+0.111 10111101 -1101100 .1110011 0.062526\0.444309 0.170898
9 ..0.1...-.. 0.10+... 0-....0. opt, 0.516082 0.563477
10 ..0^...1 ^....0.. 0^0-1... .1....+. 0.054927\0.851331 0.121094
11 ..0-...1 +....-.. .+-01... .0..^.1. opt, 0.822020 0.899414
12 .1-1..^+ 1....+.. .0+0....+.1. opt, 0.710508 0.946289
13 .0+1..-+ 1....0.. 100....10... opt, 0.753908 0.655273
14 .-+...1.1.. 1.+....11... opt, 0.514114 0.578125
15 .0+...10 -.0....--... opt, 0.992125 0.989258
16 .1+..... .0...... ..^..... opt, 0.875000 0.887695
17 ..1..... .1....0. ^......^^... opt, 0.999023 1.000000
18 ..0..... .+....1. opt, 0.998993 0.998047
19-. opt, 0.875000 0.864258
20 0....... .^...... opt, 1.000000 1.000000
21 0.......^. opt, 0.500000 0.501953
22 -....... opt, 0.500000 0.517578
23 opt, 1.000000 1.000000
24 ^....... opt, 1.000000 1.000000

25-33 opt, 1.000000 1.000000
34 !....... opt, 0.500000 0.507812

35-39 +....... opt, 1.000000 1.000000
40 -....... opt, 1.000000 1.000000

41-42 +....... opt, 1.000000 1.000000
43-44 -....... opt, 1.000000 1.000000
45-49 +....... opt, 1.000000 1.000000

50, 52, 54, 56, 58 -....... opt, 1.000000 1.000000
51, 53, 55, 57, 59 +....... opt, 1.000000 1.000000

60 +.11110. opt, 1.000000 1.000000
61 +.11000.001.00. opt, 0.992188 1.000000
62 -.+----.0.... 0.390625\0.609375 0.426758
63 +.?0??+.--+.+-. opt, 0.867188 0.855469
64 +......+ ++++++.. -..-.+-.+-.

Table A.1: Differential path of the first near-collision block of the Flame certificate (Block 8)

85

Steps Bitconditions Probability Conditional estimate
-3 +.......-.....

-2 -1....+. .1.1.0.. 0....1+. .-+...0.

-1 +01.-.+1 .0-+.0^. 011+---1 -++.0.10

0 1-0.1.+0 ^-0+1+-1 -1011+-0 001.1^-1 opt, 0.676736 0.749023
1 10-.01.+ +++-0+10 --+111+- +--0-+1- opt, 0.552536 0.425781
2 .01.-011 00+-++0+ 0--+.--0 ++10+0+0 opt, 0.849149 0.492188
3 ..1.-+11 +001++^+ 01-+0110 0+1++0++ opt, 0.623376 0.833008
4 ..-.1-11 ++1-++-+ -1111--+ ++0+-+-1 0.100466\0.546746 1.000000
5 ^^1^+1-- 10-01011 0+10-1-+ 0-+++000 0.398942\0.431254 0.499023
6 +-++++++ ++++---- ------+- --+----- 0.458008\0.518055 1.000000
7 0010-000 01111011 1011-111 10.10010 opt, 0.960723 1.000000
8 00000100 1111111+ -1001111 1-010111 opt, 0.468258 0.672852
9 ...-1... .-.....1 0..1+... .1....^. 0.467804\0.468719 0.495117
10 ...0...0 ^0.....0 1..+0... .0....-. opt, 0.910110 0.895508
11 ..0+..^0 -1...^.. ...01...1. opt, 0.877075 0.807617
12 .001..-+ 0....-.. ..01....1. opt, 0.875061 1.000000
13 .1-1..0- 1....0.. 1^1....11... opt, 0.996096 1.000000
14 .-+...100.. 1-+....11... opt, 0.514206 0.586914
15 .0+....0 +01....+-... opt, 0.992128 0.994141
16 .^+..... .0...... .^^..... opt, 0.875000 0.879883
17 ..1..... .1....0. ^......^^... opt, 0.999023 1.000000
18 ..0..... .-....1. opt, 0.999054 0.999023
19-. opt, 0.875000 0.895508
20 0....... .^...... opt, 1.000000 1.000000
21 0.......^. opt, 0.500000 0.487305
22 -....... opt, 0.500000 0.508789
23 opt, 1.000000 1.000000
24 ^....... opt, 1.000000 1.000000

25-33 opt, 1.000000 1.000000
34 !....... opt, 0.500000 0.507812
35 -....... opt, 1.000000 1.000000

36-40 +....... opt, 1.000000 1.000000
41-43 -....... opt, 1.000000 1.000000
44-45 +....... opt, 1.000000 1.000000

46 -....... opt, 1.000000 1.000000
47 +....... opt, 1.000000 1.000000
48 -....... opt, 1.000000 1.000000

49-58 +....... opt, 1.000000 1.000000
59 +.......0..... opt, 1.000000 1.000000
60 +.....0.1001. 110..... opt, 0.500000 0.506836
61 -....100 ...0.... ...1..1. 00+..... opt, 0.496094 0.749023
62 +....1-.-+++. +--..... opt, 0.972412 0.948242
63 +....++- ...+.... ...???-. ?+-..... 0.238037\0.269775 0.261719
64-- ..+..... .-....-. .+-....+

Table A.2: Differential path of the second near-collision block of the Flame certificate (Block 9)

86

Steps Bitconditions Probability Conditional estimate
-3

-2 .1.1010011. 10...... ..0.....

-1 ^0.0101- .1.0^10. 11.0.... ..1.100^

0 ++1-++++ 1001---. --.1.... .1+.110- opt, 0.833079 1.000000
1 0-111110 1-1+1+-^ --1+.... .01^++-0 opt, 0.861702 0.96875
2 10-01110 +++1---+ +10+.... 0-0++++1 0.403589\0.408343 0.374023
3 -0-01^1+ +0+1--10 0-++^^.0 01+0+00. opt, 0.941415 1.000000
4 --0++-00 0-0+11++ ++-1-+10 -+00+-1. 0.084686\0.592803 1.000000
5 -1++-0-1 +1-00+1- +0++110- -1--1+^^ opt, 0.775861 1.000000
6 ++----+- ---+---- -----+++ ++++++++ opt, 0.513692 1.000000
7 1000-010 00.1010. 101-0101 +0001.00 opt, 0.837956 1.000000
8 11+1.101 01011100 -1000101 .1000011 opt, 0.437474 0.0566406
9 ..0.1...-.. 0.10+... 0-....0. opt, 0.516082 0.573242
10 ..0^...1 ^....0.. 0^0-1... .1....+. 0.054927\0.851331 0.120117
11 ..0-...1 +....-.. .+-01... .0..^.1. opt, 0.822020 0.8896484
12 .1-1..^+ 1....+.. .0+0....+.1. opt, 0.710508 0.948242
13 .0+1..-+ 1....0.. 100....10... opt, 0.753908 0.631836
14 .-+...1.1.. 1.+....11... opt, 0.514114 0.585938
15 .0+...10 -.0....--... opt, 0.992125 0.993164
16 .1+..... .0...... ..^..... opt, 0.875000 0.868164
17 ..1..... .1....0. ^......^^... opt, 0.999023 1.000000
18 ..0..... .+....1. opt, 0.998993 0.999023
19-. opt, 0.875000 0.868164
20 0....... .^...... opt, 1.000000 1.000000
21 0.......^. opt, 0.500000 0.495117
22 -....... opt, 0.500000 0.509766
23 opt, 1.000000 1.000000
24 ^....... opt, 1.000000 1.000000

25-33 opt, 1.000000 1.000000
34 ^....... opt, 0.500000 0.493164
35 -....... opt, 1.000000 1.000000

36-41 +....... opt, 1.000000 1.000000
42 -....... opt, 1.000000 1.000000
43 +....... opt, 1.000000 1.000000

44-46 -....... opt, 1.000000 1.000000
47 +....... opt, 1.000000 1.000000
48 -....... opt, 1.000000 1.000000

49-59 +....... opt, 1.000000 1.000000
60 -.....0.1. opt, 1.000000 1.000000
61 -.0110.01....0. opt, 0.496094 0.514648
62 +..01.+.0....+. opt, 0.498047 0.492188
63 +.+---?--....+. opt, 0.404300 0.395508
64 .+...+.-++++ -.....+.-...

Table A.3: Differential path of the third near-collision block of the Flame certificate (Block 10)

87

Steps Bitconditions Probability Conditional estimate
-3 +.......

-2 +....0+. 000+---. ..000..1

-1 +....+-. 11...-++ ++1101+. 10011..1

0 001.1+-. 01^.^111 -++----0 11+-+11- opt, 0.983143 1.000000
1 011.0.+. -+-^++1+ ++0000-1 +--0-11+ opt, 0.905244 0.742188
2 +--.-0-. -+1+0--0 1+1-1-++ -1-00+-- opt, 0.691042 0.756836
3 +--1-^1. .+100--+ 10---1+0 ---0++-1 opt, 0.308664 1.000000
4 -010+-1. 10-1-01+ 0-000-1- 0+-10-1- opt, 0.574448 1.000000
5 +00-+00^ 0++-11-0 +++0-111 01-+-100 opt, 0.748917 1.000000
6 +-++++++ ++++---- ------+- --+----- opt, 0.518059 0.506836
7 .111-110 01.010.0 0101-110 1101.011 opt, 0.960723 0.735352
8 11110110 0101000+ -0101111 0-100111 0.031742\0.475575 0.0507812
9 ...-1... .-.....1 0..1+... .1....^. 0.467804\0.468719 0.522461
10 ...0...0 ^0.....0 1..+0... .0....-. opt, 0.910110 0.895508
11 ..0+..^0 -1...^.. ...01...1. opt, 0.877075 0.822266
12 .001..-+ 0....-.. .111....1. opt, 0.875061 1.000000
13 .1-1..0- 1....0.. 100....11... opt, 0.996096 1.000000
14 .-+...100.. 1-+....11... opt, 0.514206 0.556641
15 .0+....0 +01....+-... opt, 0.992128 0.998047
16 .^+..... .0...... .^^..... opt, 0.875000 0.892578
17 ..1..... .1....0. ^......^^... opt, 0.999023 1.000000
18 ..0..... .-....1. opt, 0.999054 0.999023
19-. opt, 0.875000 0.860352
20 0....... .^...... opt, 1.000000 1.000000
21 0.......^. opt, 0.500000 0.485352
22 +....... opt, 0.500000 0.501953
23 opt, 1.000000 1.000000
24 ^....... opt, 1.000000 1.000000

25-33 opt, 1.000000 1.000000
34 !....... opt, 0.500000 0.498047
35 +....... opt, 1.000000 1.000000

36-39 -....... opt, 1.000000 1.000000
40 +....... opt, 1.000000 1.000000

41-43 -....... opt, 1.000000 1.000000
44-46 +....... opt, 1.000000 1.000000

47 -....... opt, 1.000000 1.000000
48 +....... opt, 1.000000 1.000000

49-59 -....... opt, 1.000000 1.000000
60 +.....0.00. opt, 1.000000 1.000000
61 +.....1. 11....1. opt, 0.496094 0.525391
62 -.....-. 10...-+. opt, 0.500000 0.493164
63 +.....-. +-...?-. opt, 0.499995 0.50293
64-++. +-....-. ..-.+..+

Table A.4: Differential path of the fourth near-collision block of the Flame certificate (Block 11)

88

Appendix B

Expected Number of Attempts at
Solving the End-Segments

In the following tables, we give the results of the Monte Carlo-simulations in Section 3.6.2 for all
parameter choices.

89

Parameters Trials Successes Trials/Success Birthday factor

w1 = 1, v1 = −1 14284746 10000 210.5 22.0

w1 = 1, v1 = 0 14284746 13199 210.1 22.0

w1 = 1, v1 = 1 14284746 14182 210.0 22.0

w1 = 1, v1 = 2 14284746 15637 29.8 22.0

w1 = 1, v1 = 3 14284746 22535 29.3 22.0

w1 = 2, v1 = −1 46417453 10000 212.2 21.5

w1 = 2, v1 = 0 46417453 15113 211.6 21.5

w1 = 2, v1 = 1 46417453 17009 211.4 21.5

w1 = 2, v1 = 2 46417453 19427 211.2 21.5

w1 = 2, v1 = 3 46417453 27297 210.7 21.5

w1 = 3, v1 = −1 200785961 10000 214.3 21.0

w1 = 3, v1 = 0 200785961 16419 213.6 21.0

w1 = 3, v1 = 1 200785961 21104 213.2 21.0

w1 = 3, v1 = 2 200785961 25874 212.9 21.0

w1 = 3, v1 = 3 200785961 35030 212.5 21.0

w1 = 4, v1 = −1 777345731 10000 216.2 20.5

w1 = 4, v1 = 0 777345731 16682 215.5 20.5

w1 = 4, v1 = 1 777345731 23470 215.0 20.5

w1 = 4, v1 = 2 777345731 32195 214.6 20.5

w1 = 4, v1 = 3 777345731 42718 214.2 20.5

w1 = 5, v1 = −1 1112515535 10000 216.8 1
w1 = 5, v1 = 0 1112515535 16366 216.1 1
w1 = 5, v1 = 1 1112515535 22639 215.6 1
w1 = 5, v1 = 2 1112515535 30735 215.1 1
w1 = 5, v1 = 3 1112515535 40538 214.7 1

Table B.1: Results of the Monte Carlo simulation for the end segment of the first near-collision
block.

90

Parameters Trials Successes Success probability Birthday factor

w2 = 0, v2 = −1 37689927528 10000 221.8 23.0

w2 = 0, v2 = 0 37689927528 16042 221.2 23.0

w2 = 0, v2 = 1 37689927528 17263 221.1 23.0

w2 = 0, v2 = 2 37689927528 17695 221.0 23.0

w2 = 0, v2 = 3 37689927528 17847 221.0 23.0

w2 = 0, v2 = 4 37689927528 17932 221.0 23.0

w2 = 1, v2 = −1 112707985708 10000 223.4 22.5

w2 = 1, v2 = 0 112707985708 17360 222.6 22.5

w2 = 1, v2 = 1 112707985708 19287 222.5 22.5

w2 = 1, v2 = 2 112707985708 19909 222.4 22.5

w2 = 1, v2 = 3 112707985708 20138 222.4 22.5

w2 = 1, v2 = 4 112707985708 20219 222.4 22.5

w2 = 2, v2 = −1 516950724692 10000 225.6 22.0

w2 = 2, v2 = 0 516950724692 20135 224.6 22.0

w2 = 2, v2 = 1 516950724692 24573 224.3 22.0

w2 = 2, v2 = 2 516950724692 26045 224.2 22.0

w2 = 2, v2 = 3 516950724692 26547 224.2 22.0

w2 = 2, v2 = 4 516950724692 26733 224.2 22.0

w2 = 3, v2 = −1 270004515480 1000 228.0 21.5

w2 = 3, v2 = 0 270004515480 2206 226.9 21.5

w2 = 3, v2 = 1 270004515480 3066 226.4 21.5

w2 = 3, v2 = 2 270004515480 3576 226.2 21.5

w2 = 3, v2 = 3 270004515480 3755 226.1 21.5

w2 = 3, v2 = 4 270004515480 3806 226.1 21.5

w2 = 4, v2 = −1 1415975743623 1000 230.4 21.0

w2 = 4, v2 = 0 1415975743623 2170 229.3 21.0

w2 = 4, v2 = 1 1415975743623 3038 228.8 21.0

w2 = 4, v2 = 2 1415975743623 3926 228.4 21.0

w2 = 4, v2 = 3 1415975743623 4456 228.2 21.0

w2 = 4, v2 = 4 1415975743623 4637 228.2 21.0

w2 = 5, v2 = −1 10415440989433 1120 233.1 20.5

w2 = 5, v2 = 0 10415440989433 2524 231.9 20.5

w2 = 5, v2 = 1 10415440989433 3668 231.4 20.5

w2 = 5, v2 = 2 10415440989433 5008 231.0 20.5

w2 = 5, v2 = 3 10415440989433 6463 230.6 20.5

w2 = 5, v2 = 4 10415440989433 7365 230.4 20.5

w2 = 6, v2 = −1 7392736230494 130 235.7 1
w2 = 6, v2 = 0 7392736230494 295 234.5 1
w2 = 6, v2 = 1 7392736230494 422 234.0 1
w2 = 6, v2 = 2 7392736230494 565 233.6 1
w2 = 6, v2 = 3 7392736230494 760 233.2 1
w2 = 6, v2 = 4 7392736230494 990 232.8 1

Table B.2: Results of the Monte Carlo simulation for the second near-collision block.

91

Parameters Trials Successes Trials/Success Birthday factor

w3 = 0 4231476891 10000 218.7 22.0

w3 = 1 16564888766 10000 220.7 21.5

w3 = 2 70906580486 10000 222.8 21.0

w3 = 3 243313360982 10000 224.5 20.5

w3 = 4 275529380806 10000 224.7 1

Table B.3: Monte Carlo-simulation results for the third near-collision block.

Parameters Trials Successes Trials/Success Birthday factor

w4 = 1, u4 = 0 14986221886 10000 220.5 24.5

w4 = 1, u4 = 1 12080362522 10000 220.2 24.0

w4 = 1, u4 = 2 40666946131 10000 222.0 23.5

w4 = 1, u4 = 3 259469948224 10000 224.6 23.0

w4 = 1, u4 = 4 350239928299 10000 225.1 22.5

w4 = 2, u4 = 0 31473408443 10000 221.6 24.0

w4 = 2, u4 = 1 27095762586 10000 221.4 23.5

w4 = 2, u4 = 2 89336968111 10000 223.1 23.0

w4 = 2, u4 = 3 573516490688 10000 225.8 22.5

w4 = 2, u4 = 4 785283707839 10000 226.2 22.0

w4 = 3, u4 = 0 107212346493 10000 223.4 23.5

w4 = 3, u4 = 1 80888979585 10000 222.9 23.0

w4 = 3, u4 = 2 289767080938 10000 224.8 22.5

w4 = 3, u4 = 3 1729323958821 10000 227.4 22.0

w4 = 3, u4 = 4 2385632329208 10000 227.8 21.5

w4 = 4, u4 = 0 391719772246 10000 225.2 23.0

w4 = 4, u4 = 1 302369621493 10000 224.8 22.5

w4 = 4, u4 = 2 1050401211933 10000 226.6 22.0

w4 = 4, u4 = 3 55771294749 100 229.1 21.5

w4 = 4, u4 = 4 120935577619 100 230.2 21.0

w4 = 5, u4 = 0 1500432472222 10000 227.2 22.5

w4 = 5, u4 = 1 1265003442364 10000 227.0 22.0

w4 = 5, u4 = 2 4223606267373 10000 228.7 21.5

w4 = 5, u4 = 3 221260468157 100 231.0 21.0

w4 = 5, u4 = 4 254345380301 100 231.2 20.5

w4 = 6, u4 = 0 72363355156 100 229.4 22.0

w4 = 6, u4 = 1 45938374478 100 228.8 21.5

w4 = 6, u4 = 2 105022546473 100 230.0 21.0

w4 = 6, u4 = 3 1228561139591 120 233.3 20.5

w4 = 6, u4 = 4 2419872905855 120 234.2 1

Table B.4: Results of the Monte Carlo-simulation for the fourth near-collision block

92

Bibliography

[1] Ivan Damg̊ard. A Design Principle for Hash Functions. In Gilles Brassard, editor, CRYPTO,
volume 435 of Lecture Notes in Computer Science, pages 416–427. Springer, 1989.

[2] Magnus Daum and Stefan Lucks. Attacking Hash Functions by Poisoned Messages, “The
Story of Alice and her Boss”, June 2005. http://th.informatik.uni-mannheim.de/people/
lucks/HashCollisions/.

[3] Bert den Boer and Antoon Bosselaers. Collisions for the Compression Function of MD5. In
Tor Helleseth, editor, EUROCRYPT, volume 765 of Lecture Notes in Computer Science, pages
293–304. Springer, 1993.

[4] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, 22(6):644–654, 1976.

[5] Hans Dobbertin. Cryptanalysis of MD5 compress, 1996. presented at the rump session of
Eurocrypt’96.

[6] Hans Dobbertin. The Status of MD5 After a Recent Attack. RSA Laboratories’ CryptoBytes,
2(2), 1996.

[7] Philip Hawkes, Michael Paddon, and Gregory G. Rose. Musings on the Wang et al. MD5
collision. IACR Cryptology ePrint Archive, 2004:264, 2004. http://eprint.iacr.org/2004/
264.

[8] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography. Chapman &
Hall/CRC, 2008.

[9] Kaspersky Lab. The Flame: Questions and Answers, May 2012. Securelist blog, http:

//www.securelist.com/en/blog/208193522/The_Flame_Questions_and_Answers.

[10] Vlastimil Klima. Finding MD5 Collisions on a Notebook PC Using Multi-message Modifica-
tions. IACR Cryptology ePrint Archive, 2005.

[11] Vlastimil Klima. Tunnels in Hash Functions: MD5 Collisions Within a Minute. IACR Cryp-
tology ePrint Archive, 2006:105, 2006. http://eprint.iacr.org/2006/105.

[12] Arjen Lenstra, Xiaoyun Wang, and Benne de Weger. Colliding X.509 Certificates. Cryptology
ePrint Archive, Report 2005/067, 2005. http://eprint.iacr.org/2005/067.

93

http://th.informatik.uni-mannheim.de/people/lucks/HashCollisions/
http://th.informatik.uni-mannheim.de/people/lucks/HashCollisions/
http://eprint.iacr.org/2004/264
http://eprint.iacr.org/2004/264
http://www.securelist.com/en/blog/208193522/The_Flame_Questions_and_Answers
http://www.securelist.com/en/blog/208193522/The_Flame_Questions_and_Answers
http://eprint.iacr.org/2006/105
http://eprint.iacr.org/2005/067

[13] Arjen K. Lenstra and Benne de Weger. On the Possibility of Constructing Meaningful Hash
Collisions for Public Keys. In Colin Boyd and Juan Manuel González Nieto, editors, ACISP,
volume 3574 of Lecture Notes in Computer Science, pages 267–279. Springer, 2005.

[14] Maher. Identification of a New Targeted Cyber-Attack, May 2012. http://certcc.ir/index.
php?name=news&file=article&sid=1894.

[15] Ralph C. Merkle. One Way Hash Functions and DES. In Gilles Brassard, editor, CRYPTO,
volume 435 of Lecture Notes in Computer Science, pages 428–446. Springer, 1989.

[16] Ellen Nakashima, Greg Miller, and Julie Tate. Washington Post, June
19, 2012. http://www.washingtonpost.com/world/national-security/

us-israel-developed-computer-virus-to-slow-iranian-nuclear-efforts-officials-say/

2012/06/19/gJQA6xBPoV_story.html.

[17] Jonathan Ness. Microsoft certification authority signing certificates added to the Un-
trusted Certificate Store. TechNet Blogs, Security Research & Defense, 2012. http://

blogs.technet.com/b/srd/archive/2012/06/03/microsoft-certification-authority

-signing-certificates-added-to-the-untrusted-certificate-store.aspx.

[18] Ron L. Rivest. The MD5 Message-Digest algorithm. Internet Request for Comments, April
1992. RFC 1321.

[19] Phillip Rogaway. Formalizing Human Ignorance. In Phong Q. Nguyen, editor, VIETCRYPT,
volume 4341 of Lecture Notes in Computer Science, pages 211–228. Springer, 2006.

[20] Phillip Rogaway and Thomas Shrimpton. Cryptographic Hash-Function Basics: Definitions,
Implications, and Separations for Preimage Resistance, Second-Preimage Resistance, and Col-
lision Resistance. In Bimal K. Roy and Willi Meier, editors, FSE, volume 3017 of Lecture
Notes in Computer Science, pages 371–388. Springer, 2004.

[21] sKyWIper Analysis Team. sKyWIper (a.k.a. Flame a.k.a. Flamer): A complex malware for
targeted attacks. Technical report, Budapest University of Technology and Economics, Labo-
ratory of Cryptography and System Security, May 2012.

[22] Alex Sotirov. Analyzing the MD5 collision in Flame. Presentation at SummerCon, slides
available at http://www.trailofbits.com/resources/flame-md5.pdf, 2012.

[23] Marc Stevens. Fast Collision Attack on MD5. Cryptology ePrint Archive, Report 2006/104,
2006.

[24] Marc Stevens. Attacks on Hash Functions and Applications. PhD thesis, Universiteit Leiden,
2012.

[25] Marc Stevens. Counter-cryptanalysis. In Ran Canetti and Juan A. Garay, editors, CRYPTO
(1), volume 8042 of Lecture Notes in Computer Science, pages 129–146. Springer, 2013.

[26] Marc Stevens, Arjen K. Lenstra, and Benne de Weger. Chosen-Prefix Collisions for MD5 and
Colliding X.509 Certificates for Different Identities. In Moni Naor, editor, EUROCRYPT,
volume 4515 of Lecture Notes in Computer Science, pages 1–22. Springer, 2007.

94

http://certcc.ir/index.php?name=news&file=article&sid=1894
http://certcc.ir/index.php?name=news&file=article&sid=1894
http://www.washingtonpost.com/world/national-security/us-israel-developed-computer-virus-to-slow-iranian-nuclear-efforts-officials-say/2012/06/19/gJQA6xBPoV_story.html
http://www.washingtonpost.com/world/national-security/us-israel-developed-computer-virus-to-slow-iranian-nuclear-efforts-officials-say/2012/06/19/gJQA6xBPoV_story.html
http://www.washingtonpost.com/world/national-security/us-israel-developed-computer-virus-to-slow-iranian-nuclear-efforts-officials-say/2012/06/19/gJQA6xBPoV_story.html
http://blogs.technet.com/b/srd/archive/2012/06/03/microsoft-certification-authority
http://blogs.technet.com/b/srd/archive/2012/06/03/microsoft-certification-authority
-signing-certificates-added-to-the-untrusted-certificate-store.aspx
http://www.trailofbits.com/resources/flame-md5.pdf

[27] Marc Stevens, Alexander Sotirov, Jacob Appelbaum, Arjen K. Lenstra, David Molnar,
Dag Arne Osvik, and Benne de Weger. Short Chosen-Prefix Collisions for MD5 and the
Creation of a Rogue CA Certificate. In Shai Halevi, editor, CRYPTO, volume 5677 of Lecture
Notes in Computer Science, pages 55–69. Springer, 2009.

[28] Paul C. van Oorschot and Michael J. Wiener. Parallel Collision Search with Cryptanalytic
Applications. J. Cryptology, 12(1):1–28, 1999.

[29] Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash Functions. In Ronald
Cramer, editor, EUROCRYPT, volume 3494 of Lecture Notes in Computer Science, pages
19–35. Springer, 2005.

[30] Tao Xie and Dengguo Feng. How To Find Weak Input Differences For MD5 Collision Attacks.
Cryptology ePrint Archive, Report 2009/223, 2009.

[31] Jun Yajima and Takeshi Shimoyama. Wang’s sufficient conditions of MD5 are not sufficient.
Cryptology ePrint Archive, Report 2005/263, 2005.

95

	Contents
	Introduction
	Outline
	Hash Functions in Cryptography
	Cryptography
	Cryptographic Hash Functions
	Digital Signatures and the Hash-And-Sign Paradigm
	Collision Resistance and Chosen-Prefix Attacks

	The Hash Function MD5
	The Merkle-Damgård Construction
	Outline of MD5
	The Compression Function
	Inverting the MD5 Compression Function

	Cryptanalysis of MD5
	Types of Collision Attacks
	Generic Collision Attacks by Birthday Search
	A Short History of MD5-Cryptanalysis
	Differential Cryptanalysis
	Binary Signed Digit Representation
	Differential Paths
	Rotations of Arithmetic Differentials
	Bitconditions
	Representing Differential Paths with Bitconditions
	A Basic Algorithm for Solving Differential Paths
	Trivial Differential Steps

	Attacks on MD5
	The Identical-Prefix Attack by Wang et al.
	The Chosen-Prefix Attack by Stevens et al.
	Outline of the Attack
	Elimination Strategy
	Birthday Search
	Extending Partial Differential Paths
	Extending a Path Forward
	Extending a Path Backward
	Connecting Upper and Lower Paths
	Tunnels
	Solving Differential Paths
	Cost of the Attack

	Counter-Cryptanalysis: Detecting Collision Attacks
	Counter-Cryptanalysis
	Collision Detection in MD5

	The Collision Attack for Flame
	The Flame Collision Attack
	About Flame
	The Rogue Certificate

	Hypotheses
	Analysis of the Differential Paths
	Some Features of the Near-collision blocks
	Connection Steps
	Estimating the Success Probability

	Tunnels
	Tunnel Strengths in the Near-collision Blocks
	Explanation Attempts

	Differential Path Family
	Overview
	Reconstructing the End Segments
	Arguments for the Reconstruction
	Birthday Search

	Estimating the Cost of Constructing Message Blocks
	A Formula for the Expected Cost
	Estimating the Expected Number of Attempts at Solving the End-Segment
	Total Cost

	Summary

	Flame Differential Paths
	Expected Number of Attempts at Solving the End-Segments
	Bibliography

