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Chapter 1

Introduction

In his book Non-Well-Founded Sets, Aczel forms a model for his system of
non-well-founded set theory ZFCA by constructing a final coalgebra for the
powerclass functor acting on Classes, the category of classes and functions.
Relying on this result, he included a proof showing that one can obtain such a
final coalgebra for every endofunctor on Classes that is set-based, monotone,
and preserves inclusions and weak pullbacks. Such final coalgebras have
been used in the semantics of coinductive types [DM05] and in modelling
the behaviour of programs [JR97,Rut00]. Later on, in a paper together with
Mendler [AM89], Aczel gave an improvement of this result by showing that
it is still valid when the assumptions of monotonicity and of preservation
are dropped. In this thesis, we shall further generalise by proving a Final
Coalgebra Theorem in the context of Algebraic Set Theory.

Algebraic Set Theory, first presented by André Joyal and Ieke Moerdijk
[JM95], is a novel framework where models of set theory are determined
algebraically. This new approach claims to have the potential of describing
various set theories in one uniform fashion. Indeed, theories such as CZF,
IZF, ZF, BIST, CST and so on have been successfully modelled, as can be
seen from, e.g., the work by Awodey et al. [ABSS07], [AF05], and [AW05].

However, it turns out that only Van den Berg and De Marchi [vdBM07]
made the attempt to use the Joyal-Moerdijk axiomatisation to model a set
theory containing Aczel’s Anti-Foundation Axiom AFA. In the aforemen-
tioned paper, Van den Berg and De Marchi prove a final coalgebra theorem
for a certain class of endofunctors on a Heyting pretopos with a class of
small maps. As a special instance of this result, they construct a final coal-
gebra for the Ps functor determined by the class of small maps, and prove
that it is a model of the weak non-well-founded set theory CZF0 + AFA.
The proof of their theorem is, however, very indirect. Using the formalism
of indexed categories they prove an Indexed Final Object Theorem from
which their recover the Final Coalgebra Theorem as a special case. The aim
of this thesis is to find a new, more insightful proof of this latter theorem.
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In order to give the intuition for the algebraic proof, we start by reviewing
Aczel and Mendler’s result. The review that we provide improves their result
by showing that the axiom of choice is unnecessary to their proof. We show
it by using the Relation Reflection Scheme RRS, introduced and showed
to be provable in ZF by Aczel [Acz08]. In fact, our proof is essentially
constructive and can be carried in CZF+RRS modulo the fact that we
have to assume the existence of coequalizers in Classes in order to form
quotients freely.

After having reviewed Aczel and Mendler’s paper, we recast their proof
in the internal logic of a Heyting pretopos with a class of small maps sat-
isfying the Joyal-Moerdijk axiomatisation from [JM95], equipped with a
stable natural number object, and satisfying RRS. The functors to which
the result applies are assumed to be indexed, set-based, and monomorphism
preserving. Although Van den Berg and De Marchi do not need RRS, they
use the preservation of weak pullbacks. Our proof is an improvement in this
respect for we only require the preservation of monomorphisms, which is a
weaker assumption.

In Chapter 2, we provide an introduction to categorical logic: many-
sorted first-order languages are defined and their categorical interpretation
is presented. Chapter 3 introduces the Joyal-Moerdijk small maps axioma-
tisation. We review Aczel and Mendler’s result in Chapter 4 and dedicate
Chapter 5 to the proof of our theorem.
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Chapter 2

Categorical Logic

The aim of this chapter is to give an introduction to categorical logic. After
recalling the definition of a many-sorted first-order language and defining
several syntactic features, we present the categorical generalisation of the
standard set-theoretic semantics for first-order languages. Next, we explain
how a functor can be safely used in the internal logic of a category. We
finish with several examples of characterisation of diagrammatic facts. This
presentation is based on [Joh02b, Section D1.4] and [MR77].

2.1 Many-Sorted First-Order Languages

We start with the definition of a first-order signature.

Definition 2.1.1. A first-order signature Σ consists of the following data:

(i) A set Σ-Sort of sorts.

(ii) A set Σ-Fun of function symbols; we write

f : A1, . . . , An → B

to indicate that f has type A1, . . . , An, B.

(iii) A set Σ-Rel of relation symbols; we write

R� A1, . . . , An

to indicate that R has type A1, . . . , An.

For each sort A in Σ-Sort, we assume to be given an unbounded supply
of variables of sort A.

Definition 2.1.2. The collection of terms over a signature Σ is defined
recursively as follows:
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(i) If x is a variable of sort A, then x : A is a term of sort A.

(ii) If f : A1, . . . , An → B is a function symbol and t1 : A1, . . . , tn : An are
terms, then f(t1, . . . , tn) : B is a term of sort B.

We go on with the formulas over Σ.

Definition 2.1.3. The class F of formulas over a signature Σ is recursively
defined as follows:

(i) Relations: If R � A1, . . . , An and t1 : A1, . . . , tn : An are terms, then
R(t1, . . . , tn) is in F .

(ii) Equality : If s and t are terms of the same sort, then s = t is in F .

(iii) Truth: > is in F .

(iv) Binary conjunction: If φ and ψ are in F , then φ ∧ ψ is in F .

(v) Falsity : ⊥ is in F .

(vi) Binary disjunction: If φ and ψ are in F , then φ ∨ ψ is in F .

(vii) Implication: If φ and ψ are in F , then φ→ ψ is in F .

(viii) Negation: If φ is in F , then ¬φ is in F .

(ix) Existential quantification: If φ is in F and x is a variable, then (∃x)φ
is in F .

(x) Universal quantification: If φ is in F and x is a variable, then (∀x)φ is
in F .

We shall not consider terms and formulas by themselves, but rather
terms and formulas-in-context.

Definition 2.1.4. A context is a finite tuple x̄ = x1, . . . , xn of distinct vari-
ables. Given two disjoint contexts x̄ and ȳ, the result of their concatenation
is denoted x̄ȳ. The type of a context x̄ is the finite list of sorts of the variable
appearing in x̄ which preserves the order of the context.

Given a formula φ, a context x̄ is called suitable for φ if all free variables
of φ appear in x̄. A formula-in-context is an expression x̄.φ, where φ is a
formula and x̄ is a suitable context for φ. Similarly, one defines a term-in-
context x̄.t as a term t and a context x̄ where all the variables of t appear
in x̄.

We end this section with the definition of a sequent, which expresses the
notion of logical entailment.

Definition 2.1.5. A sequent over a signature Σ is an expression of the form

φ `x̄ ψ,
where φ and ψ are formulas over Σ and x̄ is a context suitable for both of
them.
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2.2 Categorical Semantics

We start by generalising the usual definition of set-theoretical structure for
a many-sorted first-order signature Σ to any category with finite products.

Definition 2.2.1. Let C be a category with finite products and Σ a signa-
ture. A Σ-structure M on C is specified by:

(i) An assignment sending each sort A ∈ Σ-Sort to an object MA of C.

(ii) An assignment sending each function symbol f : A1, . . . , An → B ∈ Σ-
Fun to a morphism Mf : MA1 × . . .×MAn →MB of C.

(iii) An assigment sending each relation symbol R : A1, . . . , An ∈ Σ-Rel to
a subobject MR�MA1 × . . .×MAn in C.

We continue with the interpretation of terms and formulas-in-context in
a Σ-structure. The interpretation of the function symbols naturally extends
to the interpretation of the terms-in-context over Σ, and nothing more than
finite products is required on the underlying category.

Definition 2.2.2. Let M be a Σ-structure on a category C with finite
products. A term-in-context x̄.t over Σ with x̄ = x1, . . . , xn, xi : Ai, and
t : B, is interpreted as a morphism

Jx̄.tKM : MA1 × . . .×MAn →MB

in C, recursively defined as follows (we omit the subscript M from Jx̄.tK when
it is clear which structure is being referred to):

(i) If t is a variable, it must appear in x̄, say t = xi, then Jx̄.tK = πi is the
ith projection

MA1 × . . .×MAn
pi−→MB.

Note that in the case where the context consists only in the variable
xi, Jx̄.tK is simply 1Ai .

(ii) If t is f(t1, . . . , tm) with ti : Ci, then Jx̄.tK is the composition

MA1 × . . .×MAn
〈Jx̄.t1K,...,Jx̄.tmK〉−−−−−−−−−−→MC1 × . . .×MCm

Mf−−→MB.

Next, we turn to the interpretation of formulas-in-context in a Σ-structure.
The number of logical operators that we are able to interpret depends on
the amount of structure in C.
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Definition 2.2.3. Let M be a Σ-structure on a category C with at least
finite limits. A formula-in-context x̄.φ over Σ with x̄ = x1, . . . , xn and xi : Ai
is interpreted as a subobject

Jx̄.φK �MA1 × . . .×MAn,

recursively defined as follows:

(i) If φ is R(t1, . . . , tm) where R is a relation symbol of type B1, . . . , Bm,
then Jx̄.φK is the pullback

Jx̄.φK MR

MA1 × . . .×MAn MB1 × . . .×MBm.
〈Jx̄.t1K,...,Jx̄.tmK〉

(ii) If φ is s = t, where s and t are terms of sort B, then Jx̄.φK is the
equalizer of

MA1 × . . .×MAn MB.
Jx̄.sK

Jx̄.tK

We could reduce the semantics of equality to that of relations by in-
troducing a symbol =A for each sort A and requiring M(=A) to be
the diagonal of MA; a formula-in-context of the form x̄.s =A t would
then be interpreted as the pullback of the diagonal along 〈Jx̄.sK, Jx̄.tK〉.

(iii) If φ is >, then Jx̄.φK is the top element of Sub(MA1 × . . .×MAn).

(iv) If φ is ψ ∧χ, then Jx̄.φK is the meet of Jx̄.ψK and Jx̄.χK in Sub(MA1×
. . .×MAn).

(v) If φ is ⊥ and Sub(X) has a bottom element for each X in C, then Jx̄.φK
is the bottom element of Sub(MA1 × . . .×MAn).

(vi) If φ is ψ ∨χ and Sub(X) has a finite joins for each X in C, then Jx̄.φK
is the join of Jx̄.ψK and Jx̄.χK in Sub(MA1 × . . .×MAn).

(vii) If φ is ψ → χ and Sub(X) is a Heyting algebra for each X in C, then
Jx̄.φK is the Heyting implication Jx̄.ψK → Jx̄.χK in Sub(MA1 × . . . ×
MAn).

(viii) If φ is ¬ψ and Sub(X) is a Heyting algebra for each X in C, then Jx̄.φK
is the Heyting negation ¬Jx̄.ψK in Sub(MA1 × . . .×MAn).
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(ix) If φ is (∃y)ψ and pulling back along π has a left adjoint ∃π satisfying
the Beck-Chevalley condition for each projection π in C, then Jx̄.φK is
∃π(Jx̄y.ψK) where π is the projection

MA1 × · · · ×MAn ×MB
p−→MA1 × · · · ×MAn.

(x) If φ is (∀y)ψ and pulling back along π has a right adjoint ∀π satisfying
the Beck-Chevalley condition for each projection π in C, then Jx̄.φK is
∀π(Jx̄y.ψK) where π is the projection of (ix).

We have required that the quantifiers satisfy the Beck-Chevalley condi-
tion. This condition says that for any pullback square

X ×Y Z Z

X Y,

f ′

g′ g

f

the diagram

Sub(X ×Y Z) Sub(Z)

Sub(X) Sub(Y ),

Qg′

f ′∗

Qg

f∗

satisfies f∗QgA = Qg′f
′∗A, for all subobjects A in Sub(Z), with Q = ∃,∀,

i.e., it says that quantification commutes with pullback.
Satisfaction of a sequent in a model is defined as follows.

Definition 2.2.4. Let M be a Σ-structure on a category C.

(i) A sequent φ `x̄ ψ over Σ interpretable in C with xi : Ai is satisfied in
M , denoted φ �M,x̄ ψ, if Jx̄.φKM ≤ Jx̄.ψKM in Sub(MA1× . . .×MAn).

(ii) M is a model of a theory T over Σ interpretable in C if M satisfies all
the axioms of T .

In order for the connectives to commutes with substitution, we shall
ask C not only to possess the structure required by the previous definition,
but also its stability under pullback, i.e., we require pullback functors to
be homomorphisms for the subobject categories of C. Similarly, the Beck-
Chevalley condition is imposed on the left and right adjoints to pullback to
ensure the commutation of the quantifiers with substitution as long as no
bound variable is captured.

The Substitution Rule for sequent calculi is the following rule:
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φ `x̄ ψ
φ[s̄/x̄] `ȳ ψ[s̄/x̄],

where ȳ is any string of variables including all the variables occurring in the
string of terms s̄. Semantically, substitution is interpreted by pullback along
projections. Indeed, we have the following two substitution properties from
which soundness of the above rule follows from the fact that taking pullback
is order preserving:

Proposition 2.2.5. Let ȳ be a suitable context for a term t : C with yi : Bi,
s̄ be a string of terms of the same length and type as ȳ, and x̄ be a suitable
context for each si with xi : Ai. Then Jx̄.t[s̄/ȳ]K is the composite

MA1 × . . .×MAn
〈Jx̄.s1K...Jx̄.smK〉−−−−−−−−−−→MB1 × . . .×MBm

Jȳ.tK−−−→MC.

Proof. We go by induction on the structure of t. If t is a variable, then it
has to be among ȳ, say t = yi. In this case, ȳ.t[s̄/ȳ] = x̄.si. By definition,

Jȳ.yiK = MB1 × . . .×MBn
pi−→MBi,

and

Jx̄.siK = MA1 × . . .×MAn
Jx̄.siK−−−→MBi.

Therefore,

Jx̄.siK = MA1× . . .×MAn
〈Jx̄.s1K,...,Jx̄.smK〉−−−−−−−−−−−→MB1× . . .×MBm

pi=Jȳ.tK−−−−−→MBi.

If t = f(t1, . . . , tk) with ti : Ci. Then

x̄.f(t1, . . . , tk)[s̄/ȳ] = x̄.f(t1[s̄/ȳ], . . . , tk[s̄/ȳ]).

By definition, Jx̄.f(t1[s̄/ȳ], . . . , tk[s̄/ȳ])K is the morphism

MA1 × . . .×MAn
〈Jx̄.t1[s̄/ȳ]K,...,Jx̄.tk[s̄/ȳ]K〉−−−−−−−−−−−−−−−−→MC1 × . . .×MCm

JMfK−−−→MC,

but, by induction hypothesis, for each ti, Jx̄.ti[s̄/ȳ]K is the morphism

MA1 × . . .×MAn
〈Jx̄.s1K×...×Jx̄.smK〉−−−−−−−−−−−−→MB1 × . . .×MBm

Jȳ.tiK−−−→MCi.

Therefore, Jx̄.f(t1[s̄/ȳ], . . . , tk[s̄/ȳ])K equals

MA1×. . .×MAn
〈Jx̄.s1K×...×Jx̄.smK〉−−−−−−−−−−−−→MB1×. . .×MBm

Jȳ.tiK−−−→MC1×. . .×MCk
JMfK−−−→MC,

as required.

Requiring the structure of the subobject categories of C to be stable
under pullback, the substitution property extends to formulas.
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Proposition 2.2.6. Let ȳ.φ be a formula-in-context over Σ with yi : Bi and
C a Heyting category, s̄ be a string of terms of the same length and type as
ȳ, and x̄ be a context suitable for all the terms in s̄ with xi : Ai. Then, for
any Σ-structure M on C, Jx̄.φ[s̄/ȳ]K is given by the pullback square

Jx̄.φ[s̄/ȳ]K Jȳ.φK

MA1 × . . .×MAn MB1 × . . .×MBm.
〈Jx̄.s1K,...,Jx̄.smK〉

Proof. By induction on φ. If φ := R(t1, . . . , tk) with R : C1, . . . , Ck. Then,

x̄.R(t1, . . . , tk)[s̄/ȳ] = x̄.R(t1[s̄/ȳ], . . . , tk[s̄/ȳ]).

By definition, Jx̄.R(t1[s̄/ȳ], . . . , tk[s̄/ȳ])K is given by the pullback square

Jx̄.R(t1[s̄/ȳ], . . . , tk[s̄/ȳ])K MR

MA1 × . . .×MAn MC1 × . . .×MCk,
〈Jx̄.t1[s̄/ȳ]K,...,Jx̄.tk[s̄/ȳ]K〉

hence, by Proposition 2.2.5, Jx̄.R(t1[s̄/ȳ], . . . , tk[s̄/ȳ])K is the pullback

Jx̄.R(t1[s̄/ȳ], . . . , tk[s̄/ȳ])K MR

MA1 × . . .×MAn MB1 × . . .×MBm MC1 × . . .×MCk,
〈Jx̄.s1K,...,Jx̄.smK〉 〈Jȳ.t1K,...,Jȳ.tkK〉

and since Jȳ.R(t1, . . . , tk)K is the pullback

Jȳ.R(t1, . . . , tk)K MR

MB1 × . . .×MBm MC1 × . . .×MCk,
〈Jȳ.t1K,...,Jȳ.tkK〉

by the pullback lemma, we have the pullback square

Jx̄.R(t1[s̄/ȳ], . . . , tk[s̄/ȳ])K Jȳ.R(t1, . . . , tk)K

MA1 × . . .×MAn MB1 × . . .×MBm.
〈Jx̄.s1K,...,Jx̄.skK〉
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The cases of the logical connectives follow readily from the fact that the
structure of the subobject categories of C is stable under pullback.

If φ := (∃z)ψ with z not occurring in ȳ, then ((∃z)φ)[s̄/ȳ] = (∃z)φ[s̄/ȳ].
Hence, J(∃z)φ[s̄/ȳ]K = ∃zJφ[s̄/ȳ]K. Recall that in Definition 2.2.3, we re-
quired both quantifiers to satisfy the Beck-Chevalley condition so as to make
them commutes with pullback. By induction hypothesis, Jx̄.φ[s̄/ȳ]K is the
pullback of Jȳ.φK along 〈Jx̄.s1K, . . . , Jx̄.smK, 1Z〉, thus ∃zJφ[s̄/ȳ]K is the pull-
back of Jȳ.∃zφK along 〈Jx̄.s1K, . . . , Jx̄.smK〉, as required.

The case of the universal quantifier is similar.

Requiring the structure of the subobject categories to be stable under
pullback, we obtain the commutation of the logical connectives with substi-
tution:

Jx̄.ψ ∧ χ[t̄/ȳ]K = Jx̄.ψ[t̄/ȳ]K ∧ Jx̄.χ[t̄/ȳ]K,
Jx̄.(ψ ∨ χ)[t̄/ȳ]K = Jx̄.ψ[t̄/ȳ]K ∨ Jx̄.χ[t̄/ȳ]K,

Jx̄.(ψ → χ)[t̄/ȳ]K = Jx̄.ψ[t̄/ȳ]K→ Jx̄.χ[t̄/ȳ]K, and

Jx̄.¬ψ[t̄/ȳ]K = ¬Jx̄.ψ[t̄/ȳ]K.

Regarding quantification, the Beck-Chevaley condition implies that quan-
tification commutes with substitution, provided that no bound variable are
captured. Indeed, starting with the pullback square

MX̄ ×MY MZ̄ ×MY

MX̄ MZ̄,

〈Jx̄.t1K,...,Jx̄.tnK〉×1MY

π1 π1

〈Jx̄.t1K,...,Jx̄.tnK〉

the Beck-Chevalley condition implies that Jx̄.Q(φ)[t̄/x̄]K = Jx̄.Q(φ[t̄/x̄])K.
The foregoing shows that the substitution rule is sound. For the rest of

the soundness proof, the rest of the soundness proof can be found in [Joh02b,
Section D1.3, Proposition 1.3.2]. One of the advantages of being able to
build models out of abstract categories is that the completeness argument
becomes simpler than in the standard case; the reader can find the proof
in [Joh02b, Section D1.4, Theorem 1.4.11], and a simplified version in [Pit00,
Section 5.5.7].

We define the following for future reference.

Definition 2.2.7. Let C be a category with finite limits.

(i) A category C is called a regular category if it is finitely complete, the
kernel pair of any morphism – see Definition 3.1.4 below – has a co-
equalizer which is stable under pullback. Equivalently, each subobject
category has a stable top element, stable finite meets, and pullback
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functors have a left adjoint satisfying the Beck-Chevalley condition;
i.e., C has the required structure to interpret regular logic, the frag-
ment of many-sorted first-order logic closed under top, conjunction,
and existential quantification.

(ii) A category C is called a coherent category if it is a regular category in
which each subobject category has a stable bottom element and stable
finite joins; i.e., C has the required structure to interpret coherent
logic, the fragment of many-sorted first-order logic closed under top,
conjunction, bottom, disjunction, and existential quantification.

(iii) A category C is called a Heyting category if each subobject category
is a Heyting algebra such that pullback functors are Heyting algebra
homomorphisms and have both a left and a right adjoint satisfying the
Beck-Chevalley condition; i.e., C has the required structure to interpret
full intuitionistic many-sorted first-order logic.

(iv) A category C is called a Boolean category if it is a Heyting category in
which each subobject category is a boolean algebra such that pullback
functors are Boolean algebra homomorphisms; i.e., C has the required
structure to interpret full classical many-sorted first-order logic.

The categorical treatment of the logical connectives brings no new in-
sights, it only replies on the fact that propositional calculi can be interpreted
in Heyting and Boolean algebras. The original contribution of categorical
logic is due to Lawvere’s observation – see [Law65] – that quantification can
be treated as the adjoint of pullback along the substitution. Let us expand
on this observation.

Syntactically, a quantifier Q can be seen as an operator which takes a
formula-in-context x̄y.φ to return the formula-in-context x̄.(∃y)φ with, say,
xi : Ai and y : B. Semantically, if a similar treatment is possible, Q has
to be an operator sending Jx̄y.φK to Jx̄.(∃y)φK, therefore, it must be a map
from Sub(MA1× . . .×MAn×MB) to Sub(MA1× . . .×MAn). To see that
this mapping is functorial, consider the following two rules:

φ `x̄y ψ
(∃y)φ `x̄ (∃y)ψ

φ `x̄y ψ
(∀y)φ `x̄ (∀y)ψ.

As these rules are derivable in intuitionistic logic, by soundness, we must
have that, in Sub(MA1 × . . . × MAn) × MB, Jx̄y.φK ≤ Jx̄y.ψK implies
Jx̄.(Qy)φK ≤ Jx̄.(Qy)ψK, i.e., Qy be monotone, so it is a functor.

Let us now show that ∃y and ∀y are the left and right adjoints to pull-
back. We are familiar with the following two-way rules on introduction and
elimination of quantifiers:

φ `x̄y ψ
(∃y)φ `x̄ ψ

φ `x̄y ψ
φ `x̄ (∀y)ψ.
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Note that the usual requirement that y must not occur free in ψ and φ for
existential and universal quantification respectively is implicit, since under
the inference line both formulas appear in the context x̄ which it suitable
for both of them.

Although, y does not occur in ψ, above the inference line, ψ does appear
in the context x̄y. This occurance of ψ in this context can be seen as an
occurrence of ψ in the context x̄ when x̄ is extended to x̄y. This extension
is made possible by the weakening rule which is nothing but the following
trivial substitution:

φ `x̄ ψ
φ[x̄/x̄] `yx̄ ψ[x̄/x̄].

Semantically, the weakening rule is interpreted as the following pullback:

Jx̄y.φ[x̄y/x̄]K Jx̄.φK

MA1 × . . .×MAn ×MB MA1 × . . .×MAn,π

where π is the projection of the first n factors of MA1 × . . .×MAn ×MB.
Note in passing that this implies that the interpretation of a formula in
the context consisting of its free variable determines its interpretation in
any other context. Thus, Jx̄y.φK can be written as π∗Jx̄.φK where π∗ is
the pullback functor from Sub(MA1 × . . . × MAn) to Sub(MA1 × . . . ×
MAn ×MB) determined by π. This begin given, soundness of the rules of
introduction and elimination of quantifiers means that

Jx̄y.φK ≤ p∗Jx̄.ψK

Jx̄.∃y(φ)K ≤ Jx̄.ψK,

and

p∗Jx̄.φK ≤ Jx̄y.ψK

Jx̄.φK ≤ Jx̄.∀y(ψ)K;

i.e., they precisely say that the existential and universal quantifiers are,
respectively, left and right adjoints to π∗.

Next, we show how an endofunctor on C can be used in the internal
logic of C. In defining the categorical semantics, we have been very cautious
about preservation under pullback; indeed, we have required the structure of
the subobject categories to be stable under pullback and the quantifiers to
satisfy the beck-Chevalley. We have seen that the reason for this requirement
as to do with soundness of the substitution rule. When a variable x : X is
introduced, we implicitly start to work in the slice C/X. Now if we wish
to introduce a new variable y : Y , i.e., move to the slice C/Y X, we want
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to make sure that what we have proved in the context x, i.e. in C/X, is
still correct in the extended context yx, i.e. in C/Y X. This prerequisite
corresponds to soundness of the instance of the substitution rule that we
have called weakening of contexts.

Given an endofunctor F on C, suppose that we wish to consider, e.g.,
the formula-in-context x.FPx, for a predicate P : X, and next the formula-
in-context yx.FPx where the previous context is extended to yx. Given the
foregoing, we want to be sure that pulling back FP along the projection
π2 : Y ×X → X is the same as applying F to the pullback of P along π2.
This property can be forced by assuming that F is indexed.

Definition 2.2.8. A endofunctor F on C is indexed if it is given as a col-
lection

(FA : C/A→ C/A | A ∈ C)

such that for all f : J → I we have

f∗ ◦ F I ∼= F J ◦ f∗.

Remark 2.2.9. This definition is a special case of endofunctor on an in-
dexed category C where C is self-indexed.

We end this section by showing how the internal logic of a category C
can be used to express diagrammatic facts in C.

Definition 2.2.10. Given a category C with finite limits, we define L(C) the
canonical language of C consisting of a sort for each object of C, a function
symbol for each morphism of C, and a relation symbol for each subobject of
C.

Then the “identity” map from L(C) to C gives rise to the obvious canoni-
cal modelMC of L(C), which we think as C itself, where each sort, function,
and relation symbol gets interpreted by “itself”. The following proposition
gives a list of characterisations of diagrammatic facts in C via the satisfac-
tion of sequents of L(C) in MC . The logical expression of these facts arise
naturally, and it enables to work in C as if it were the category Sets. The
proofs of these characterisations can be found in [MR77, Chapters 2 & 3].
As we think ofMC as C itself, when a sequent φ �x̄ ψ is satisfied inMC , we
say that C satisfies it or that it holds in the internal logic of C.

Proposition 2.2.11. (i) An object A in C is an initial object if and only
if the sequent

x = x `x:A >

holds in C.
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(ii) An object A in C is a terminal object if and only if the sequents

`x:A,y:A x = y

and
`x:A (∃x)(x = x)

hold in C.

(iii) An morphism m : A → B in C is a monomorphism if and only if the
sequent

m(x) = m(y) `x:A,y:A x = y

holds in C.

(iv) An morphism e : A → B in C is a cover (see Definition 3.1.2) if and
only if the sequent

`x:B ∃y(e(y) = x)

holds in C.

(v) An morphism m : E → A in C equalizes f, g : A → B if and only if
the sequents

m(x) = m(y) `xy:E x = y

and
f(x) = g(x) `x:A ∃y(m(y) = x)

hold in C.

(vi) The following diagram is a pullback square in C

A B

C D

a

b

d

c

if and only if the sequents

c(x) = d(y) `x:By:C ∃z(a(z) = x ∧ b(z) = y)

and
a(x) = a(y) ∧ b(x) = b(y) `xy:A x = y

hold in C.
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vii A morphism q : A → Q in E is the quotient (see Definition 3.1.5) of
an equivalence relation R � A × A (see Definition 3.1.3) if and only
if the sequents

Rxy `xy:A q(x) = q(y),

`x:Q ∃y(q(y) = x),

and
q(x) = q(y) `xy:A Rxy

hold in C.

We finish with this useful characterisation of morphisms in C.

Definition 2.2.12. For any morphism f : A→ B in C, call G the graph of
f if G is the subobject Jf(a) = bK of A×B.

Proposition 2.2.13. Call R a functional relation if the sequents

Rxy ∧Rxy′ ` y = y′

and
` (∀x)(∃y)Rxy

hold in C. Then R is a functional relation if and only if it is the graph of
some morphism in C.

Proof. See [MR77, Theorem 2.4.4].
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Chapter 3

Categories of Classes

This chapter presents the material on topos theory and algebraic set theory
theory necessary for Chapter 5. In the first section, we define the notion
of pretopos, and derive the structure required to their internal logic. The
presentation of this material is based on [Joh02a, Chapter A1] and [MR77].
In the second section, we introduce the Joyal-Moerdijk axiomatisation for
small maps [JM95], and develop an internal version of inclusion maps that
we shall use in Chapter 5.

3.1 Pretopoi

We start by generalising the usual notions of image, equivalence relation,
and kernel to any category.

Definition 3.1.1. A monomorphism m is called an image of f if f factors
through m, and, whenever f factors through a monomorphism n, so does m;
m is then the least subobject of the codomain of f through which f factors.

With images, we can defined covers, which are characterised by surjec-
tivity.

Definition 3.1.2. A morphism f is called a cover if it cannot factor through
any proper subobject of it codomain.

Definition 3.1.3. A relation R� A×A on A with projections r1, r2 : R→
A is an equivalence relation on A if it satisfies the following three properties:

(i) It is reflexive, i.e., there exists an arrow r : A → R which is a section
to both r1 and r2, i.e., such that r1r = r2r = 1A.

(ii) It is symmetric, i.e., there exists an arrow s : R→ R such that r1s = r2

and r2s = r1.

(iii) It is transitive, i.e., there exists an arrow t : P → R, where P the
pullback
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P R

R A,

p2

p1 r2

r1

such that r1t = r1p2 and r2t = r2p1.

Definition 3.1.4. Let f : A → B be an arrow in any category C, if it
exists, the kernel pair of f is the pullback of f along itself, as displayed in
the following diagram:

A×B A A

A B.

f

f

It follows easily that kernel pairs are equivalence relations. We give three
extra definitions in order to be able to state what pretopoi are.

Definition 3.1.5. A morphism q : A → Q is called a quotient of the
equivalence relation R → A × A if q coequalizes the pair of projections
r1, r2 : R→ A and (r1, r2) is at the same time the kernel pair of q.

Definition 3.1.6. A category C is called exact if every equivalence relation
in C has a stable quotient.

Definition 3.1.7. A coproduct A+B is called disjoint if the coprojections
q1 : A→ A+B and q2 : B → A+B are monomorphisms and their pullback
is an initial object.

We are now ready for the following definition.

Definition 3.1.8. A category E is a pretopos if it is finitely complete, has
disjoint and stable coproducts, and is exact.

They are many examples of pretopoi that the reader can find in [Joh14]
and [MR77]. Our first task will to derive the structure required to interpret
regular logic. As it is the logic of regular categories, we work in full generality
with a regular category – see Definition 2.2.7 for the definitions of regular,
coherent, Heyting, and Boolean categories.

In Sets, every function has an image through which it factors as an
injection composed with a surjection; this fact generalises to any regular
category.

Proposition 3.1.9. In a regular category E, any arrow f : A → B has an
image m, and factors as f = me with e an epimorphism.
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Proof. Let k1, k2 : K → A be the kernel pair of f . As E is regular, the pair
(k1, k2) has a quotient e : A → Q, and so we obtain an arrow m : M → B
such that f = me by universality, as displayed in the following diagram:

K A B

Q.

k1

k2

f

e m

In order to show that m is mono, take its kernel pair k′1, k
′
2 : K ′ → Q. As

mek1,mek2, we obtain a unique arrow u : K → K ′ by universality of K ′

such that k′1u = ek1 and k′2u = ek2, as depicted below:

K A B

k′ Q.

k1

k2
u

f

e

k′1

k′2

m

This u must be epi because it is given as follows:

K A

K ′ Q

A Q M,

k2

k1

u
e

k′2

k′1 m

e m

where the two squares are pullbacks. So by multiple application of the
pullback lemma we obtain

K . A

. K ′ Q

A Q M,

u
e

k′2

k′1 m

e m

where all squares are pullbacks. Hence, u is epi since it is the composite
of two epimorphisms. From this fact, we can easily derive that m is mono.
Firstly, u being epi implies that k′1 = k′2; secondly, any two arrows x, y :
C → M such that mx = my gives an unique arrow k with x = k′1k and
y = k′2k, as displayed in the following diagram:
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C

K ′ Q

Q B.

x

y

k

k′1

k′2

m

m

As k′1 = k′2, we have x = k′1k = k′2k = y. Thus, m is a monomorphism.
We have proved that M is a subobject of B, remains to show that it is

also the image of f . For that matter, suppose f factors through another
subobject on B as in

K A B

M

A B

M ′ ,

k1

k2

f

e m

f

e′ m′

then m′ being mono we have that e′k1 = e′k2, so we obtain u : M → M ′

with e′ = ue. Hence, me = m′ue, which implies that m = m′u since e is epi.
Thus, we have M ≤M ′ in Sub(B).

We shall also need epi-mono factorisations to be stable under pullback.

Proposition 3.1.10. Images are stable under pullback, i.e., for any two f :
A→ B and g : B′ → B with the same codomain, Img(g∗(f)) ∼= g∗(Img(f))
where g∗ : Sub(B) → Sub(B′) is the pullback functor determined by g be-
tween the subobject categories Sub(B) and Sub(B′). Consequently, the image
factorizations of Proposition 3.1.9 are stable under pullback.

Proof. Consider the pullback
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K ′ K

A′ A

Img(g∗f) Img(f)

B′ B

g∗k1 g∗k2 k1 k2

g∗f

e′

f

e

m′ m

g

of f and its kernel pair k1, k2 along g, with me the factorization of f and m′e′

the factorization of g∗f . As the pullback of a pullback square is a pullback
square, g∗k1, g

∗k2 is the kernel pair of g∗f . As E is regular, quotients of
kernel pairs are stable, hence the pullback of m : Img(f) � B along g is a
quotient of the kernel pair g∗k1, g

∗k2. Therefore, Img(g∗f) and g∗Img(g)
are isomorphic.

The structure derived so far is enough to interpret regular logic. To
prove it, we have to check that each subobject category has a stable top
element, stable finite meets, and that pullback functors have a left adjoint
satisfying the Beck-Chevalley condition.

Proposition 3.1.11. For any X in a pretopos E, Sub(X) has a top element;
hence, the internal logic of E has top.

Proof. Simply take 1X .

Proposition 3.1.12. For any X in a pretopos E, Sub(X) has finite meets;
hence, the internal logic of E has conjunction.

Proof. Let A,B be two subobjects of X. Take the pullback A×XB of A and
B in E . As monos are stable under pullback, A ×X B is a subobject of X;
moreover, its universal property makes sure that it is the least upperbound
of A and B in Sub(X).

The top element and the meet operation are stable under stable under
pullback.

Proposition 3.1.13. For any X in a pretopos E, the top element and the
meets of Sub(X) are stable under pullback.

Proof. Let f : Y → X be any morphism with codomain X. The top element
is preserved by f∗ because we have the following pullback square:
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Y X

Y X;

f

1Y 1X

f

meets are preserved because they are given by pulling back in E , and pullback
functors preserve pullbacks.

We now show that regular categories have existential quantification.

Proposition 3.1.14. For any arrow f : X → Y in a pretopos E, there exists
a left adjoint ∃f to f∗; moreover, this adjoint satisfies the Beck-Chevalley
condition. In particular, pullback functors along projections have a left ad-
joint satisfying Beck-Chevalley, hence the internal logic of E has existential
quantification.

Proof. Define ∃f : Sub(Y )→ Sub(X) to be the functor sending mA : A� Y
to the image of fmA. This map ∃f is indeed a functor because if A ≤ B
for any two A and B in Sub(Y ) then fmA factors through ∃fB, and so
∃fA ≤ ∃fB since ∃fA is the least subobject of X with this property.

To show that ∃f is left adjoint to f∗, it suffices to show that

∃fA ≤ B if and only if A ≤ f∗B,

for any subobjects A and B of X and Y , respectively. The situation is
depicted in the following diagram:

A f∗B ∃fA B

X Y .

mA

e

mf∗B m∃fA
mB

f

Suppose ∃fA ≤ B, then we have an arrow h : ∃fA → B such that m∃fA =
mBh. So the span (mA, he) is a cone for

X
f−→ Y

mB←−− B,

therefore we obtain an arrow h′ : A → f∗B in Sub(X), i.e., A ≤ f∗B. For
the converse, suppose A ≤ f∗B, then fmA factors through B, and hence
we must have ∃fA ≤ B, since ∃fA is the least object of Sub(Y ) with this
property.

Let us now check the Beck-Chevalley condition. Considering any pull-
back square
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X ×Y Z Z

X Y,

f ′

g′ g

f

we need to show that the diagram

Sub(X ×Y Z) Sub(Z)

Sub(X) Sub(Y )

∃g′

f ′∗

∃g

f∗

satisfies f∗∃gA = ∃g′f ′∗A, for all subobjects Z. For any such subobject
mA : A � Z. As X ×Y Z is the pullback of Z along f , by the pullback
lemma, f ′∗A is the pullback of gmA along f , and since we have stable images
by Proposition 3.1.10, f∗∃gA = ∃′gf ′∗A holds in Sub(X), as required.

Using the existence of stable coproducts, we can interprete more connec-
tives, namely, we can show that each subobject category in a pretopos also
has a stable bottom element and stable finite joins, i.e., pretopoi are able to
interpret coherent logic.

Lemma 3.1.15. (i) For each X in a pretopos E, Sub(X) has a bottom
element.

(ii) Any f : A→ 01 is an isomorphism, where 01 is the bottom element of
Sub(0) and A any object of E.

(iii) 01 is the initial object of E.

Proof. For (i), take 0 the empty coproduct and consider any mA : A � X
in Sub(X). As 0 is initial, there is x : 0 → X and a : 0 → A such that
x = mAa. Moreover, x has an image 0X , therefore, as x factors through
mA, we must have 0X ≤ A, i.e., the image of x is the bottom element of
Sub(X).

Next, to prove (ii), as 01 is the initial object of Sub(1) and coproducts
are assumed to be stable, we have the pullback diagram

0A 01

A 1

mA m1
f

g

where 0A is the initial object of Sub(A). As 1 is final, g factors as g = m1f
which implies that 0A is the equalizer of g and m1f . Indeed, for any x as
displayed below
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0A A 1

Z

mA
m1f

g

u
x

with m1fx = gx, 0A being the pullback of m1 along g, we obtain a unique
u : Z → 0A such that x = mAu. Now as m1f and g are equal we have
0A ∼= A, and consequently A has no proper subobject. By post-composing
with any of the two projections, the existence of g entails the existence of
an arrow from A×A to 1, and it follows by the above argument that A×A
has no proper subobject. In particular, the diagonal ∆A (i.e. the equalizer
of the projections) is isomorphic to A × A, and hence the projections of
A×A are equal. It follows that any morphism having A as its domain is a
monomorphism, so in particular g is mono, and therefore A ≤ 01 in Sub(1),
i.e., A ∼= 01.

Finally, for the last item, π1 : 01×A→ 01 is an isomorphism, hence there
is a morphism π2π

−1
1 : 01 → 01 × A → A. Moreover, it is unique because

for any two f, g : 0 → A, by (ii) again, their equalizer is an isomorphism,
therefore they must be equal.

Proposition 3.1.16. For each X in a pretopos E, the initial object 0 is the
bottom element of Sub(X); hence, the internal logic of E has bottom.

Proof. From Lemma 3.1.15 (iii), 0 ∼= 01, and since 01 � 1 is mono, so is
0 � 1 and 0 � X must be mono as well. Thus, 0 is the bottom element of
Sub(X).

Proposition 3.1.17. For any X in a pretopos E, Sub(X) has finite joins;
hence, the internal logic of E has disjunction.

Proof. Let A and B be two subobjects of X. Using the assumption that E
has coproducts, we can form A+B

A A+B B

X .

p1

mA

u

q2

mB

By universality of A + B, we obtain an arrow u : A + B → X unique with
the property that mA = uq1 and mB = uq2. However, nothing ensures
that u is a monomorphism. To obtain a subobject of X, we take me the
image-factorization of u, as indicated below:
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Z

A A+B B

M

X .

mZ

p1

mA

z1 v

e

q2

mB

z2

m

We claim that M is the join of A and B. Suppose that there is some Z in
Sub(X) as depicted above. Then we obtain v : A+ B → X by universality
and have mA = mZvp1 and mB = mZvp2, but since me is the unique arrow
with this property, it follows that me = mZv, i.e., me factors through Z.
Therefore M ≤ Z.

We have showed that the subobject categories of a pretopos are bounded
lattices, the next two propositions show that there are distributive and stable
under pullback.

Proposition 3.1.18. For any X in a pretopos E, the top element, meets,
the bottom element, and joins in Sub(X) are stable under pullback.

Proof. By Proposition 3.1.13 the top element and the meets are stable. For
the rest, let f : Y → X be any morphism with codomain X. By Propo-
sition 3.1.16, the bottom element is the empty coproduct, and hence it is
stable by assumption. As the join of A and B is constructed by taking the
image of their coproduct, stability of joins follows from that of coproducts
and images, given by assumption and Proposition 3.1.10, respectively.

Proposition 3.1.19. For any X in a pretopos E, Sub(X) is distributive.

Proof. We prove distributivity of meets over joins. Let A be any subobject
of X. We can define the operation A ∧ (−) as the composite

Sub(X) Sub(A) Sub(X)
m∗A ∃mA

so that A ∧ (−) preserves joins because there are stable under pullback by
Proposition 3.1.18 and preserved by left adjoints since joins are the coprod-
ucts of Sub(X).

Here is a useful property of pretopoi that we shall need later on.

Proposition 3.1.20. In a pretopos E, covers coincide with regular epimor-
phisms and every epimorphism is regular.

Proof. See [Joh02a, Proposition 1.3.4 and Corollary 1.4.9].
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With an arbitrary pretopos, we cannot obtain better than coherent logic.
In order to interpret full many-sorted first-order logic, we need to assume
that pullback has a right adjoint. The following definition introduces the
kind of pretopoi with which we shall work later on.

Definition 3.1.21. A pretopos E is a Heyting pretopos if all pullback func-
tors have a right adjoint.

The fact the left adjoints satisfy Beck-Chevalley implies that the right
ones satisfy the condition as well. The next proposition shows that Heyting
pretopoi interpret full many-sorted first-order intuitionistic logic.

Proposition 3.1.22. Any subobject category in a Heyting pretopos E is a
Heyting algebra; moreover, pullback functors between subobject categories are
Heyting algebra homomorphisms.

Proof. As Sub(X) is a (distributive) bounded lattice whose structure is pre-
served by pullback functors, we only need to show that for any X in E ,
Sub(X) has stable Heyting implications. Let A and B be two subobjects of
X. We claim that A⇒ B is given by ∀m(A ∧B) with m is the inclusion of
A in X. We must check that for any C in Sub(X), the following holds:

C ∧A ≤ B ⇔ C ≤ ∀m(A ∧B).

From right to left, suppose C ∧ A ≤ B. As ∀m is the right adjoint of m∗,
C ≤ ∀m(A∧B) is equivalent to m∗C = C ∧A ≤ A∧B. So we need to show
that C ∧ A ≤ A ∧ B, but, by assumption, C ∧ A ≤ B and, by definition,
C∧A ≤ A, hence C∧A ≤ A∧B. For the converse, suppose C ≤ ∀m(A∧B).
Then, by the same equivalence, C ∧A ≤ A ∧B, so C ∧A ≤ B.

In order to prove stability, let A and B be two subobjects of X, m :
A � X be the inclusion of A into X, and f : Y → X be any morphism
with codomain X. We have to show that

f∗(A→ B) ∼= f∗(A)→ f∗(B),

that is
f∗∀m(A ∧B) ∼= ∀f∗m(f∗(A) ∧ f∗(B)).

As ∀m satisfies the Beck-Chevalley condition, given the pullback square

f∗A A

Y X,

g

f∗m m

f

the following diagram commutes:
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Sub(f∗A) Sub(A)

Sub(Y ) Sub(X).

∀f∗m ∀m

g∗

f∗

Since meets are constructed by pullback and pullbacks preserve monomor-
phisms, A ∧ B is a subobject of A, so f∗∀m(A ∧ B) ∼= ∀f∗mg∗(A ∧ B).
Moreover, the pullback lemma implies that the outer square of the diagram
below is a pullback:

g∗(A ∧B) A ∧B

f∗A A

Y X,

g

f∗m m

f

hence f∗(A ∧B) ∼= g∗(A ∧B). Therefore,

∀f∗m(g∗(A ∧B)) ∼= ∀f∗m(f∗(A ∧B))
∼= ∀f∗m(f∗(A) ∧ f∗(B)),

from which follows that

f∗∀m(A ∧B) ∼= ∀f∗m(f∗(A) ∧ f∗(B)).

Although we shall work with the more general Heyting pretopoi, we
introduce their Boolean version for sake of completeness.

Definition 3.1.23. A Boolean pretopos is a Heyting pretopos in which every
subobject category Sub(X) is complemented, i.e., for all A in Sub(X) there
is a (necessarily unique) A in Sub(X) such that A∧A′ =⊥ and A∨A′ = >.

This last proposition shows that Boolean pretopoi interpret full many-
sorted classical first-order logic.

Proposition 3.1.24. For any X in a Heyting pretopos, if A a subobject of
X has a complement A′, then A′ = ¬A. Consequently, the internal logic of
Boolean pretopoi satisfies the law of excluded middle.

Proof. Let A′ be the complement of A, we have to show that A′ ≤ ¬A and
¬A ≤ A′. For the first one, from A ∧A′ =⊥ we obtain

A ∧A′ ≤⊥ ⇒ A′ ≤ Q→ 0

⇒ A′ ≤ ¬A;
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for the second one, from A ∨A′ = > and distributivity we obtain

¬A = ¬A ∧ (A ∨A′)⇒ ¬A = (¬A ∧A) ∨ (¬A ∧A′)
⇒ ¬A = ¬A ∧A′

⇒ ¬A ≤ A′.

3.2 The Small Maps Axiomatisation

Here we introduce the notion of category of classes in the sense of Alge-
braic Set Theory. It will consists of a Heyting pretopos E satisfying the
Joyal-Moerdijk axiomatisation for small maps [JM95]. This set of axioms is
intended to distinguish in E a class a morphisms S referred to as the class
of small maps of E . The intention is that a map f : A → B is considered
small if its fibres are small. When E is the (true) category of classes ac-
cording to some model of set theory and small is defined as being a set, a
canonical example of class of small maps S satisfying the axiomatisation is
the collection of functions whose fibres are sets.

We shall assume that a category of classes satisfies the following axioms.

(A1) (Pullback Stability) In any pullback square

Y ′ Y

X ′ X

g f

p

if f belongs to S then so does g.

(A2) (Descent) In any pullback square as above, if g belongs to S and p is
an epimorphism then f belongs to S.

(A3) (Finiteness) The maps 0→ 1 and 1→ 1 belong to S.

(A4) (Sums) If Y → X and Y ′ → X ′ belong to S then so does their sum
Y + Y ′ → X +X ′.

(A5) (Composition) S is closed under composition, and any isomophism
belongs to S.

(A6) (Quotients) In any commutative diagram

z Y

X

p

g f
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if p is an epimorphism and g belongs to S then so does f .

(A7) (Strong Collection Axiom) For any two arrows p : Y � X and f :
X → A where p is an epimorphism and f belongs to S, there exists a
quasi-pullback square1 of the form

Z Y X

B A

g

p

f

h

(S1) (Exponentiability Axiom) Every map in C is exponentiable, i.e., f :
A→ X belongs to S then it is exponentiable as an object of E/X.

(S2) (Representability Axiom) There exists a map π : E → U in S which
is universal in the following sense: for any f : Y → X in S there exists
a diagram

Y Y ′ E

X X ′ U

f ′ π

p c

in which both squares are pullbacks.

(NNO) (Natural Numbers Object) There exists an object N in E and two
arrows 0 : 1 → N and s : N → N with the following universal prop-
erty: for all f : A→ B and g : B → B there exists a unique morphism
u : N → Z such that the following diagram commutes:

1×A N ×A N ×A

A B B.

0×1A

∼=

s×1A

u u

f g

Axioms (A1)-(A3) say that being small is a property of the fibres of the
maps in S. Axioms (A4)-(A7) are set-theoretic: (A4) says that collections
containing 0 and 1 elements are small; (A5) is a union axiom, it says that
the union of a small disjoint family of small object is again small; (A6)
is a replacement axiom, it says that the image of a small object is a small
object; and, (A7) is the categorical version of the strong collection axiom,

1Recall that such a square is said to be a quasi-pullback if the unique arrow Z → B×AX
is an epimorphism.
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it says that for any epimorphism p : Y � X with small codomain there is
an epimorphism Z � X with small domain that factors through p. One
can check in particular that E satisfies (A7) if and only if the more familiar
version of strong collection holds in the internal logic of E :

E � (∀a : Ps(X))((∀x ∈ a)(∃y : Y )ϕ(x, y)→ (∃b : Ps(Y ))collec(x ∈ a, y ∈ b, ϕ(x, y))),

where collec(x ∈ a, y ∈ b, ϕ(x, y)) abbreviates

(∀x ∈ a)(∃y ∈ b)(ϕ(x, y)) ∧ (∀y ∈ B)(∃x ∈ a)(ϕ(x, y)).

Axiom (S1) expresses that if A is small and X is a class then there is a
object of arrow from A to X. Finally, (S2) means that every small object
is isomorphic to Eu some fibre of π.

We cite two consequences of this axiomatisation from [JM95]. The first
one says that the axioms (A1)-(A7), (S1), and (S2) are stable under
slicing; the second one that their exists a power object for any class.

Proposition 3.2.1. If S is a class of small maps in E then SX , the class
of maps of S with codomain X, is a class of small maps for E/X.

A relationR� X×Y is said to be small, if the composite R X × Y Y
π2

is small.

Proposition 3.2.2. For any object X in E there exists a power object Ps(X)
and a small relation εX � X×Ps(X) such that for any Z and small relation
R � X × Z there exists a unique morphism u : Z → Ps(X) such that the
following square is a pullback:

R εX

X × Z X × Ps(X).
1X×u

Moreover, the assignment X 7→ Ps(X) is functorial and gives rise to a
monad.

We are in in position to give to define categories of classes.

Definition 3.2.3. A category of classes is a Heyting pretopos E satisfying
the axioms (A1)-(A7), (S1), (S2), and (NNO).

We prove one property of our categories of classes that we shall need
later on.

Proposition 3.1. Any Heyting pretopos E with a natural numbers object
and a class of small maps has stable finite colimits.
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Proof. We need to show that E has stable finite coequalizers. The coequal-
izer of any diagram

A B,
f
g

is given as the quotient of the equivalence relation generated by

{(x, y) : A×A | f(x) = g(y)}.

Since in a pretopos all equivalence relations have a quotient, all we need to
do it to show how to form the reflexive, symmetric, and transitive closure
of a relation. Using the natural numbers object, [vdBM07, Proposition 3.4]
shows how to do that.

In the remainder of this section, we define a notion of inclusion maps
that we shall use in Chapter 5. For any X in a category of classes E , we
want to have an inclusion map iXA for any A : Ps(X). As ∈X is a small
relation, the morphism q in the diagram below is small by definition:

∈X

X × Ps(X) Ps(X).

ε
q

π2

(3.1)

By (S1), we can form the exponential

(X × Ps(X)
π2−→ Ps(X))(∈X

q−→Ps(X))

Ps(X)

in C/Ps(X). Recall that in Sets the exponential βα in the slice Sets/I of
two maps α : A → I and β : B → I is given by the set of maps between
slices of α and β:

{(fi : α−1(i)→ β−1(i)) | i ∈ I}.

Hence, in E/Ps(X), πq2 is given internally by

{(iXA : A ∼= q−1(A)→ π−1
2 (A) ∼= X) | A : Ps(X)}.

Its universal property is illustrated by the following diagram:

∈X ×ps(X)π
q
2

∈X ×Ps(X)Z X ×Ps(X) Ps(X),

ev

f

1∈X×ps(X)f̄
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expressing the one-to-one correspondence in E/Ps(X)

f :∈X ×Ps(X)Z → X ×Ps(X) Ps(X)

f̄ : Z → πq2.

between maps f :∈X ×Z → X ×Ps(X) and their transposes f̄ : Z → πq2. In
E/Ps(X), the terminal object is the identity 1Ps(X), so we have in particular
the following one-to-one correspondence:

f :∈X→ X ×Ps(X) Ps(X)

f̄ : Ps(X)→ πq2.

For the morphism ε :∈X� X × Ps(X) specifically, we have the transpose
iX( ) : Ps(X)→ πq2, as displayed below:

∈X ×Ps(X)π
q
2

∈X ×Ps(X)Ps(X) X ×Ps(X) Ps(X).

ev

ε

1∈X×i
X
( )

For each A : Ps(X), we can think of iXA as the inclusion of A into X in the
sense that ev((a,A), iXA ) = (a,A).

Now consider A,B : Ps(X), we also want to have an inclusion maps
between A and B. We obtain obtain them in a similar way. Define

IX = {(A,B) : X ×X | (∀x : X)(x ∈ A→ x ∈ B)},

and consider the following pullback of diagram (3.1):

π∗1 ∈X π∗2 ∈X X × Ps(X)2 ∈X X × Ps(X)

Ps(X)2 Ps(X),

π∗1q
π∗2q q

ε

π2
π1

π2

where π∗1 ∈X and π∗2 ∈X consist of

{(x,A,B) : X × Ps(X)× Ps(X) | x ∈ A}

and
{(x,A,B) : X × Ps(X)× Ps(X) | x ∈ B},

respectively. In this situation, there need not be a morphism π∗1 ∈X�
π∗2 ∈X , but by pulling back these two triangles along IX
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l∗π∗1 ∈X l∗π∗2 ∈X X × IX π∗1 ∈X π∗2 ∈X X × Ps(X)2

IX Ps(X)2,

l∗π∗1q

m

l∗π∗2q π∗1q
π∗2q

l

where l∗π∗1 ∈X and l∗π∗2 ∈X consist of

{(x,A,B) : X × Ps(X)× Ps(X) | (∀x : X)(x ∈ A→ x ∈ B) ∧ (x ∈ A)}

and

{(x,A,B) : X × Ps(X)× Ps(X) | (∀x : X)(x ∈ A→ x ∈ B) ∧ (x ∈ B)},

respectively, we obtain a monomorphism m : l∗π∗1 ∈X� l∗π∗2 ∈X , since in
this case if (x,A,B) ∈ l∗π∗1 ∈X then A ⊆ B and so (x,A,B) ∈ l∗π∗2 ∈X .

As m is a monomorphism, it is small; hence, by (S1), we can form the
exponential l∗π∗2q

l∗π∗1q in C/l∗π∗2q, internally given by

{iXA,B : A ∼= l∗π∗1q
−1(A,B) ∼= B → l∗π∗2q

−1(A,B) | (A,B) : IX}.

By its universal property and the fact that in C/IX the terminal object is
the indentity 1IX , we have the following one-to-one correspondence:

l∗π∗1 ∈X→ l∗π∗2 ∈X
IX → l∗π∗2q

l∗π∗1q,

and we obtain iX( ),( ) as the transpose of m.
Note that these two kind of inclusion interact well in the sense that

we have ev(ev(x, iXA,B), iXB (x)) = ev(x, iXA (x)), i.e., iXB i
X
A,B = iXA . Since an

inclusion iXA or iXA,B is only a term of type πq2 or l∗π∗2q
l∗π∗1q, they need not

be symbol in the internal language of E corresponding to it. However, we
will pretend that we have such symbol and write, e.g., iXA (a) = a while we
really mean ev(a, iXA )(a) = a.

Besides begin able to use the inclusions iXA and iXA,B is the internal lan-

guage of E , given an indexed endofunctor on E , we also want to form FiXA
and FiXA,B. This is done in the following way. Consider any exponential

BA in a category with finite products C. We have the following diagram in
C/BA:

A×BA BA A×BA BA

BA .

〈ev,π1〉

π2 π2
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So, we have the morphism

FB
A

(A×BA) FB
A

(A×BA),
FB

A
(〈ev,π1〉)

and, by indexation, FB
A

(A×BA BA) ∼= FA×BA. Hence, in C, we have the
morphism

FA×BA FB ×BA FB,
F (〈ev,π1〉) π1

which takes a pair (x : FA, f : BA) and evaluates Ff at x. If FB was small,
which need not be the case even though B is assumed to be so, we could
form the exponential FBFA in C/BA. The morphism π1F (〈ev, π1〉) would
then have a transpose

BA → FBFA

taking f : A → B to Ff : FA → FB. Although this transpose need not
exists, π1F (〈ev, π1〉) is enough to evaluate Ff , and that is all we need.

The foregoing holds in particular for the exponentials πQ2 and l∗π∗2q
l∗π∗1q

in E/Ps(X) and E/IX , therefore, we can form the image under F of the
inclusion maps that we have defined.
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Chapter 4

A ZF Proof of the Final
Coalgebra Theorem

In this chapter, we provide a review of Aczel and Mendler’s Final Coalgebra
Theorem [AM89]. The theorem concerns coalgebras for an endofunctor F
acting on Classes, any category of classes and functions in the sense of
any model of ZF. We shall work under the assumption that F satisfies the
following assumption:

Definition 4.1. A endofunctor F on Classes is called set-based if for every
F -coalgebra (A,α) and every x ∈ A there exists a subset Y of A and some
y ∈ FY such that FiY,A(y) = α(x), where iY,A is the inclusion map of Y
into A.

Our aim is to prove the following result:

Theorem. (The Final Coalgebra Theorem) Every set-based endofunc-
tor F on Classes admits a final F -coalgebra.

Our reviewed version improves Aczel and Mendler’s result in two ways:
first, our notion of set-based functor presupposes the existence of such a
Y ⊆ A only for elements of the form α(x) with x ∈ A, while Aczel and
Mendler requires it for every x ∈ FA. Second, whereas they assume their
category of classes to be defined over ZFC, we show that the Axiom of
Choice is unnecessary and can be avoided with the Relation Reflection
Scheme [Acz08]. This scheme is formulated as follows:

RRS For any class A and R with R ⊆ A × A such that (∀x ∈ A)(∃y ∈
A)R(x, y), if a is a subset of A then there exists b a subset of A such
that a ⊆ b and (∀x ∈ a)(∃y ∈ b)R(x, y).

Its intuitive reading is that given a class-sized relation on A which is total,
for any element x ∈ A we can bound the collection of elements related to x
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by R to a set-sized collection. Regarding the strength of this scheme, Aczel
argues for its free use in constructive mathematics for each of its instance
is satisfied in the interpretation of CZF in Martin-Löfs constructive type
theory, cf. [Acz08] and [Acz78].

The main purpose of this review is to provide intuitions for the next
chapter. Although we work over ZF, the proof is essentially constructive
and, if you assume the preservation of monomorphisms, it can be carried
in CZF+RRS modulo the fact that we assume the existence of coequaliz-
ers in Classes. Over ZF, coequalizers do exist and are constructed using
Scott’s trick. Unfortunately, Scott’s trick is not applicable in a constructive
setting due to the fact that the least number principle fails constructively.
Nonetheless, the result could possibly be extended to the exact completion
of Classes on CZF+RRS if, following [dBM08], one manages to show that
RRS is preserved under exact completion.

We give one more definition before embarking in the proof.

Definition 4.2. We call (B, β) a subcoalgebra of (A,α) if B is a subclass
of A and the inclusion map iB,A is a coalgebra homomorphism; a coalgebra
(A,α) small if A is a set.

The first step of the strategy consists in proving the following key propo-
sition which says that large coalgebras for a set-based functor are in a sense
determined by their small subcoalgebras. Indeed, we shall crucially use it to
prove 4.4 below where we show that such large coalgebras are nothing but
the colimit of their small subcoalgebras.

Proposition 4.3. Let (A,α) be an F -coalgebra for a set-based functor F .
Then for any set X ⊆ A there exists (B, β) a small subcoalgebra of (A,α)
such that X ⊆ B.

Proof. We want to construct some set B ⊆ A with X ⊆ B and such that
for all x ∈ B there exists some y ∈ FB with FiB,A(y) = α(x). Let R be the
following class-sized relation:

R = {(X,Y ) ∈ P(A)× P(A) | (∀x ∈ X)(∃y ∈ FY )(FiY,A(y) = α(x))},

where P(A) is the class of subsets of A. We claim that R is total. Let
X ⊆ A be any subset of A, and ϕ(x, Y ) be the following formula:

ϕ(x, Y ) = x ∈ X ∧ Y ∈ P(A) ∧ (∃y ∈ FY )(FiY,A(y) = a(x)).

The assumption that F is set-based ensures that for every x ∈ X there exists
some Y for which ϕ(x, Y ) holds. By the Strong Collection Axiom (which is
provable in ZF, see, e.g., [Kun80]), we obtain a set B such that for every
x ∈ X there is some Y ∈ B such that ϕ(x, Y ) holds, and for every Y ∈ B
there exists some x ∈ X such that ϕ(x, Y ) holds. Define

C =
⋃
B.
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Then for any x ∈ X, there is some Y ∈ B such that FiY,A(y) = α(x) for
some y ∈ FY , and since Y ⊆ C ⊆ A we have FiY,A = FiC,AFiY,C , so
FiC,A(FiY,C(y))) = α(x). Hence, ϕ(x,C) holds. Therefore (X,C) ∈ R and
we conclude that R is total.

Considering {X} for any X ⊆ A, as R is total, RRS gives us a set B
such that {X} ⊆ B ⊆ P(A) on which R is total. Once more, define

C =
⋃
B.

Then for any x ∈ C there is some y ∈ FC such that FiC,A(y) = α(x).
Indeed, if x ∈ C then x ∈ Z for some Z ∈ B, and so by totality of R on B
there is some Y ∈ B such that FiY,A(y) = α(x) for some y ∈ FY . Thus, we
have Y ⊆ C ⊆ A, and obtain FiC,A(FiY,C(y))) = α(x).

It remains to define a coalgebra map γ on C making iC,A a coalgebra
homomorphism. We use Excluded Middle to make the following case dis-
tinction. If C is empty, γ can be set to be the empty map. If C is inhabited,
as iC,A is injective, using Excluded Middle again we can define a left-inverse
to iC,A, i.e., a map f : A → C such that fiC,A = 1C . By functoriality,
we have FfFiC,A = 1FC which implies that FiC,A is injective as well. So
γ can be define to be the mapping sending x to be unique y such that
FiC,A(y) = α(x). These two uses of Excluded Middle can be avoided by as-
suming that F preserves monomorphisms. Indeed, this assumption implies
that FiC,A is injective and γ can then be defined as above.

We shall stick to the terminology of Aczel and Mendler [AM89] and call
(A,α) complete if for every small coalgebras (B, β) there exists exactly one
coalgebra homomorphism from (B, β) to (A,α), weakly complete if there
exists at least one such homomorphism, and strongly extensional if there
exists at most one such homomorphism. We now prove that our tasks boils
down to finding a complete F -coalgebra.

Theorem 4.4. Every complete F -coalgebra for a set-based functor F is
final.

Proof. Assuming that (Z, ζ) is complete, we have to show that there exists
a unique coalgebra homomorphism from any large coalgebra (A, a) to (Z, ζ).
Let {(Bi, βi) | i ∈ I} be an indexation of the small subcoalgebras of (A,α)
and {zi : (Bi, βi) → (Z, ζ)} be the collection of unique homomorphisms
from each (Bi, βi) to (Z, ζ). We want to define a map u : A → Z unique
with the property that F (u)α = ζu. Consider any x ∈ A, Proposition 4.3
ensures that there exists (B, β) some small subcoalgebra of (A,α) such that
x ∈ B. Suppose that there exist (B1, β1) and (B2, β2) such that x belongs
to both B1 and B2. We want to make sure that z1 and z2 map x to the
same element of Z so that u : A → Z can be defined to be

⋃
i∈I zi. By

Proposition 4.3 again, there exists a small subcoalgebra (C, γ) such that
B1 ∪B2 ⊆ C. Hence, for j = 1, 2, we have
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Bj C Z

FBj FC FZ

iBj,C

zj

βj

zc

β ζ

F iBj,C

Fzj

Fzc

where the right and outer squares commute. To show that the left square
commutes as well, we use Excluded Middle one more time to define a left-
inverse to zc and conclude that F (zc) is a monomorphism. As in the proof of
Proposition 4.3, this can be avoided by assuming that F preserves monomor-
phisms. Indeed, we have the following diagram where the right and outer
squares commute:

Bj C A

FBj FC FA.

iBj,C

βj

iBj,A

iC,A

β α

FiBj,C

FiBj,A

FiC,A

By preservation of monomorphisms, FiC,A is mono, therefore, the left square
commutes. As (Z, ζ) is complete, we have zciBj ,C = zj , and since zciB1,C(x) =
zciB2,C(x), we conclude that z1(x) = z2(x).

To see that u is indeed a coalgebra morphism, consider any x ∈ A. By
Proposition 4.3, there exists (B, β) a small subcoalgebra of (A,α) such that
x ∈ B, as displayed below:

B A Z

FB FA FZ.

iBj,A

β

zb

iA,Z

α ζ

F iB,A

Fzb

FiA,Z
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By construction, uiA,B = zb, hence FuFiA,B = Fzb, and we have:

ζu(x) = ζzb(x)

= Fzb(x)β(x)

= FuFiA,Bβ(x)

= FuαiA,B(a)

= Fuα(a).

The map u is unique for suppose that they are two homomorphisms u, u′ :
(A,α) → (Z, ζ). Then for any x ∈ A, Proposition 4.3 gives (B, β) some
small subcalgebra of (A,α) such that x ∈ B:

B A Z

FB FA FZ.

β

iAB u

u′

α ζ

F (iAB)

Fu

Fu′

As (Z, ζ) is complete, uiB,A = u′iB,A. Therefore, u(x) = u′(x).

It remains to construct such a complete coalgebra. We start by con-
structing a weakly final coalgebra and then show how to make it complete.

Proposition 4.5. There exists a weakly complete F -coalgebra.

Proof. Let (Bi, βi)i∈I be an indexation of the class of all small coalgebras.
We can form the disjoint union B :=

⊎
i∈I(Bi). Then for each (Bi, βi) we

have an map bi : Bi → B sending x to (x, i). Define β : B → FB to be
the coalgebra map sending (x, i) to F (bi)βi(x). Then each bi a coalgebra
homomorphism.

The most technical part of this proof is the following proposition where
we show how to turn an F -coalgebra (A,α) into a strongly complete one.
We shall need to take quotients of (A,α) with respect to relations on A
respecting the coalgebra map in the following sense.

Definition 4.6. A congruence R on a coalgebra (A,α) is a relation on A
such that if (x, y) ∈ R then F (q)α(x) = F (q)α(y), with q : A → A/R the
coequalizer of R.

Remark 4.7. In the usual sense, a congruence is required to be an equiv-
alence relation. We work with the above definition for we shall need to
consider small congruences on large coalgebras which cannot be small if
required to be equivalence relations due to the reflexivity condition.

The reader could have expected that we would work with bisimulations;
however, as we only ask F to satisfy the assumption of being set-based, it
need not preserve weak pullbacks. The problem in this situation is that
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a congruence on an F -coalgebra (A,α) may not be a bisimulation. This
problem prevents us to use bisimulations because we want to work with
quotients with respect to arbitrary relations preserving coalgebra maps in
the sense of the above definition. One can note indeed that all results
involving quotients with respect to bisimulations in [Rut00] are proved under
the assumption that F preserves weak pullbacks. An example of congruence
on an F -coalgebra where F is a set-based endofunctor on Classes which is
not a bisimulation can be found in [AM89, Section 6].

To turn a coalgebra into a strongly extensional one, the strategy is to
define the largest congruence on (A,α) so as to form the smallest quotient
of (A,α). In such a quotient, all elements that can possibly be identified
are identified (in reference to the previous remark, note that it need not be
the case if we form the quotient of (A,α) with respect to the largest bisim-
ulation on it) which enables to prove that if there is some homomorphism
from a (small) coalgebra into such quotient, then there can only be one such
homomorphism. Since homomorphisms into (A,α) are carried to the quo-
tient via the quotient map, applying this construction to a weakly complete
coalgebra produces a complete coalgebra.

Proposition 4.8. For every F -coalgebra (A,α) for a set-based functor F
there exists a strongly extensional F -coalgebra (B, β) and a surjective coal-
gebra homomorphism (A,α) � (B, β).

We divide the proof in the following three lemmas.

Lemma 4.9. For every F -coalgebra (A,α) there exists a maximal congru-
ence M on (A,α), i.e., there exists a congruence M on (A,α) such that
every congruence on (A,α) is a subclass of M .

Proof. Let M be the union of all small congruences on (A,α). We claim that
M is the (necessarily unique) maximal congruence on (A,α). To check that
M is a congruence, take any (x, y) ∈ M . Then there exists R some small
congruence such that (x, y) ∈ R. As R is a congruence on (A,α), we have
F (qR)α(x) = F (qR)α(y), and, since R ⊆ M , there is a (unique) coalgebra
homomorphism u : A/R → A/M such that uqR = qM , as displayed in the
following:

R

M A A/M

A/R ,

qM

qM u
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where qM and qR are the equalizers of M and R, respectively. Hence, we
have

F (qM )α(x) = F (u)F (qR)α(x)

= F (u)F (qR)α(y)

= F (qM )α(y).

Therefore, M is a congruence. To check that M is maximal, let R be some
large congruence on (A,α). For any (x, y) ∈ R, by Proposition 4.3, there
exists (B, β) some small subcoalgebra of (A,α) such that x, y ∈ B. To show
that (x, y) ∈M , we prove that R�B is a congruence on (A,α), where R�B is
the restriction of R to B. For that matter, consider the situation depicted
below:

R�B R

B A

B/R�B A/R

FB FA

FB/R�B FA/R

s1 s2

iR�B,R

r1 r2

iB,A

β

qR�B

qR
α

j

F iB,A

FqR�B

FqR

Fj

where qR and qR�B are the quotients of (A,α) with respect to R and R�B, and
the two upper squares are pullbacks. We first show that R�B is a congruence
on (B, β) and then deduce that it is also a congruence on (A,α). As the
upper squares are pullbacks, we have

qRis1 = qRis2

and we obtain the j by the universal property of qR�B . We claim that j is a
monomorphism. Consider any x, y ∈ B/R�B and suppose that j(x) = j(y),
we have to show that x = y. Since qR�B is surjective, x and y are given by
qR�B (a) and qR�B (b) for some a, b ∈ B. As

jqR�B = qRiB,A,

we have
jqR�B (a) = jqR�B (b),
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hence
qR(a) = qR(b),

from which (a, b) ∈ R and so (a, b) ∈ R�B. It follows that

qR�B (a) = qR�B (b),

as
required. As j is mono, preservation of monomorphisms gives that Fj

is mono as well, besides, by functoriality,

F (j)F (qR�B ) = F (qR)F (i).

Hence,

F (qR)αiB,As1 = F (qR)αiB,As2

⇔ F (qR)F (iB,A)βs1 = F (qR)F (iB,A)βs2

⇔ F (j)F (qR�B )βs1 = F (j)F (qR�B )βs2.

But
F (qR)αiB,As1 = F (qR)αiB,As2

holds since R is a congruence, so we have

F (j)F (qR�B )βs1 = F (j)F (qR�B )βs2,

and, since Fj is a monomorphism, we conclude that

F (qR�B )βs1 = F (qR�B )βs2,

i.e., R�B is a congruence on (B, β).
To see that R�B is a congruence on (A,α), consider the diagram below:

R�B R�B

B A

B/R�B A/R�B

FB FA

FB/R�B FA/R�B,

1R�B

s1 s2 t1 t2

iB,A

β

qB

qA
α

k

FiB,A

FqB

FqA

Fk
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where t1 = iB,As1, t2 = iB,As2, and k is obtained in the same way as j in
the previous diagram. R�B is a congruence on B, so

F (qB)βs1 = F (qB)βs2.

Hence,

F (k)F (qB)βs1 = F (k)F (qB)βs2

⇔ F (qA)F (iB,A)βs1 = F (qA)F (iB,A)βs2

⇔ F (qA)αiB,As1 = F (qA)αiB,As2

⇔ F (qA)αt1 = F (qA)αt2.

Thus, R�B is a congruence on (A,α).

Quotienting some F -coalgebra with respect to its maximal congruence
results in an F -coalgebra that cannot be further quotiented.

Lemma 4.10. Let q : A → Q be the quotient of (A,α) with respect to its
maximal congruence M and ρ be the unique coalgebra map on Q making
q a coalgebra homomorphism. Then (Q, ρ) has no proper quotient, i.e., for
any congruence R on (Q, ρ), if (x, y) ∈ R then x = y.

Proof. Let R be any congruence on (Q, ρ). Take R̄ the reflexive, symmetric,
and transitive closure of R and define the equivalence relation

S = {(x, y) ∈ A×A | (q(x), q(y)) ∈ R̄}.

Consider the quotient qR̄ : Q → Q/R̄ of (Q, ρ) with respect to R̄. Sup-
pose (x, y) ∈ S, then (q(x), q(y)) ∈ R̄, so qR̄q(x) = qR̄q(y). Conversely, if
qR̄q(x) = qR̄q(y), then (q(x) = q(y)) ∈ R̄ since it is an equivalence relation,
so (x, y) ∈ S. We conclude that Q/R̄ is a quotient of (A,α) with respect to
S. Illustrating the situation with the following diagram:

S R̄

A Q Q/R̄

FA FQ FQ/R,

q

α

qR̄

ρ

Fq FqR̄

we see that if (x, y) ∈ S then (q(x), q(y)) ∈ R̄ which implies that

F (qR̄)ρq(x) = F (qR̄)ρq(y)

since R̄ is a congruence. Hence

F (qR̄q)α(x) = F (qR̄q)α(y),
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i.e., S is a congruence on (A, a). As M is the maximal congruence on (A,α),
S ⊆ M . Hence for any (x, y) ∈ R, (x, y) ∈ R̄ and there exists a, b ∈ A such
that q(a) = x and q(b) = y. Hence, (a, b) ∈ S, so (a, b) ∈ M and so
q(a) = q(b), i.e., x = y.

We conclude the proof of the proposition with this last lemma.

Lemma 4.11. If (A,α) has no proper quotient then it is strongly exten-
sional.

Proof. Suppose that there exists two coalgebra homomorphisms τ1, τ2 :
(B, β) → (A,α). We want to show that τ1 = τ2. By Lemma 4.10, it
suffices to check that the relation

R = {(τ1(x), τ2(x)) | x ∈ B}

is a congruence on (A,α). Let qR : A → A/R be the quotient of A with
respect to R. The following diagram depicts the situation:

R

B A A/R

FB FA FA/R.

τ1

τ2

β

qR

α

Fτ1

Fτ2
FqR

Then qRτ1 = qRτ2, so we have

F (qR)F (τ1) = F (qR)F (τ2)

by functoriality, hence

F (qR)F (τ1)β = F (qR)F (τ2)β,

and since τ1 and τ2 are coalgebra homomorphisms

F (qR)ατ1 = F (qR)ατ2.

Thus, R is a congruence on (A,α).

45



Chapter 5

The Final Coalgebra
Theorem in AST

Our aim in this chapter is to prove the following result.

Theorem. (The Final Coalgebra Theorem in AST) Every indexed,
set-based, and monomorphism preserving endofunctor F on a category of
classes E satisfying the Relation Reflection Scheme admits a final coalgebra.

Besides the Moerdijk-Joyal axioms for small maps introduced in 3.2,
we assume that our category of classes E satisfies the Relation Reflection
Scheme.

RRS For all I in E , and for all A and R in the slice E/I such that R ⊆ A×IA
the following holds in E/I:

E/I �(∀x : A)(∃y : A)R(x, y)

→ (∀a : Ps(A))(∃b : Ps(A))((∀x : A)(x ∈ a→ x ∈ b)
∧ (∀x ∈ a)(∃y ∈ b)R(x, y)).

The above formulation forces preservation under slicing so that Proposi-
tion 3.2.1 holds as well for RRS, which is necessary to work with the internal
logic of E .

In the standard case, the definitions of set-based functor and small sub-
coalgebra are given in terms of inclusion maps. In our context, we shall
define them using the inclusion maps introduced in Section 3.2.

Definition 5.1. We call an endofunctor F on a category of classes E set-
based if for every F -coalgebra (A,α) it holds in E that for all x : A, there
exists some Y : Ps(A) for which there is some y : FY such that FiAY (y) =
α(x).
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Definition 5.2. An internal small subcoalgebras of (A,α) is, internally,
a pair of variables (B, β) of type, respectively, Ps(A) and FBB such that
αiAB = F (iAB)β holds in E .

We start with the following key proposition.

Proposition 5.3. Let F be an indexed, set-based, and monomorphism pre-
serving endofunctor on a category of classes E satisfying the Relation Re-
flection Scheme. Then for every F -coalgebra (A,α) it holds in E that for
all X : Ps(A) there exists a small subcoalgebra (B, β) of (A,α) such that
X ⊆ B.

Proof. Define the relation

R = {(X,Y ) : Ps(A)× Ps(A) | (∀x : X)(∃y : FY )(FiAY (y) = α(x))}.

We claim that R is total. Let ϕ(x, Y ) be the following formula where x and
Y are of type A and Ps(A), respectively:

ϕ(x, Y ) = (∃y : FY )(FiAY (y) = α(x)).

Let collec(x ∈ X,Y ∈ B,ϕ(x, Y )) be the abbreviation of the following
formula:

(∀x ∈ X)(∃Y ∈ B)(ϕ(x, Y )) ∧ (∀Y ∈ B)(∃x ∈ X)(ϕ(x, Y )).

By the assumption that F is set-based, we have

E � (∀x ∈ X)(∃Y : Ps(A))ϕ(x, Y ),

and by (A7), E satisfies the Strong Collection Schema – cf. Section 3.2.
Hence, for any X : Ps(A), we have:

E � (∃B : Ps(A))(collec(x ∈ X,Y ∈ B,ϕ(x, Y )).

Define
C =

⋃
B.

To show that R(X,C) holds, consider any x ∈ X. Then there exists some
Y : Ps(A) and some y : FY such that FiAY (y) = α(x). As iAY = iACi

A
Y,C ,

by functoriality, we have FiAY = FiACFi
A
Y,C , hence FiACFi

A
Y,C(y) = FiAY (y) =

α(x). Thus, R(X,C) holds and we conclude that R is total.
Now we can use RRS to obtain some B : Ps(Ps(A)) such that R is total

on B. To this aim, for any X : Ps(A) consider the singleton {X} which
is given by the map single : Ps(A) → Ps(Ps(A)) obtained by the universal
property of ∈Ps(A), as displayed below:
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Jx = yK ∈Ps(A)

Ps(A)× Ps(A) Ps(A)× Ps(Ps(A)).
1A×single

Then RRS says that there exists some B : Ps(Ps(A)) such that {X} ⊆ B
and on which R is total. Define

C =
⋃
B.

Then for any x : A such that x ∈ C, there exists some Y : Ps(A) such that
Y ⊆ C and some y : FY such that FiAY (y) = α(x), hence FiAC(FiAY,C(y)) =

FiAY (y) = α(x). Moreover, as iAC is mono the assumption that F preserves
monomorphisms implies that FiAC is a monomorphism. Hence, the relation

{(x, y) : C × FC | FiAC(y) = α(x)}

is functinal, and it is therefore correspond to the graph of an morphism
γ : C → FC by Proposition 2.2.13. Thus, (C, γ) is a small subcoalgebra of
(A,α) containing X, as required.

We adapt the terminology of the previous chapter to the algebraic set-
ting.

Definition 5.4. We call an F -coalgebra (A,α) complete if it holds in E
that for every small F -coalgebras (B, β) there exists exactly one coalgebra
homomorphism from (B, β) to (A,α), weakly complete if there exists at least
one such homomorphism, and strongly extensional if there exists at most one
such homomorphism.

Remark 5.5. To quantify over all small F -coalgebras we use the fact that
internally every small object is isomorphic to some fibre Eu of the universal
small map π : E → U given by (S2). A small coalgebra is then internally
specified by some u : U and α : FEEuu which allows to define an object of
all small coalgebras on which we can quantify. We shall go through this
construction in more detail in the proof of Proposition 5.7.

As in the standard case, our task boils down to finding a complete F -
coalgebra.

Theorem 5.6. Complete F -coalgebras are final.

Proof. Let (Z, ζ) be complete, and consider any large coalgebra (A,α). We
must show that there exist a unique coalgebra homomorphism u from (A,α)
to (Z, ζ). Define the following relation:

U = {(x, z) : A× Z | (∃B : Ps(A))(∃β : FBB)(∃zb : ZB)(αiAB = FiABβ

∧ ζzb = Fzbβ ∧ x ∈ B ∧ zb(x) = z)}.
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We claim that U is functional. For any x : A, we have {x} : Ps(A). Applying
Proposition 5.3, we obtain (B, β) a small subcoalgebra of (A,α) such that
x ∈ B. As (Z, ζ) is complete, there exists a unique homomorphism zb :
(B, β) → (Z, ζ), hence U(x, zb(x)) holds. To check the uniqueness part
of functionality, suppose the existence of (B1, β1) and (B2, β2) two small
subcoalgebras of (A,α) such that x ∈ B1 and x ∈ B2. We want to show
that z1(x) = z2(x), where z1 and z2 are the unique homomorphisms from
(B1, β1) and (B2, β2) into (Z, ζ). By Proposition 5.3 again, there exists
(C, γ) a small subcoalgebra of (A,α) such that B1 ∪B2 ⊆ C. With j = 1, 2,
we have

Bj C Z

FBj FC FZ,

iABj,C

zj

βj

zc

β ζ

F iABj,B

Fzj

Fzc

where the right and outer square commute. To show that the left square
commutes as well, consider the diagram below:

Bj C A

FBj FC FA.

iABj,C

iABj

βj

iAC

γ α

FiABj,C

FiABj

FiAC

The inclusion iAC is a monomorphism and so is FiAC by preservation of
monomorphisms. It then follows that the left square commutes. As (Z, ζ) is
complete, we have zj = zci

A
B, and since zci

A
Bj,C(x) = zci

A
Bj,C(x), we conclude

that z1(x) = z2(x). Thus, U is a functional relation and is therefore the
graph of a morphism u : A→ Z by Proposition 2.2.13.

To see that u is indeed a coalgebra morphism, consider any x : A. By
Proposition 5.3, there exists (B, β) a small subcoalgebra of (A,α) such that
x ∈ B, as displayed below:
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B A Z

FB FA FZ.

β

iAB

zb

u

α ζ

F iAB

Fzb

Fu

By construction, uiAB = zb, hence FuFiAB = Fzb, and we have:

ζu(x) = ζzb(x)

= Fzb(x)β(x)

= FuFiABβ(x)

= FuαiAB(a)

= Fuα(a).

To prove uniqueness of u, suppose that we are given two such homomor-
phisms u and u′. For any x : A, by Proposition 5.3 again, we have (B, β)
with x ∈ B:

B A Z

FB FA FZ.

β

iAB u

u′

α ζ

F (iAB)

Fu

Fu′

As (Z, ζ) is complete, uiAB = u′iAB. Therefore u(x) = u′(x).

It remains to construct a complete F -coalgebra. We start with the con-
struction of weakly complete F -coalgebra and then show how to turn it into
a complete one.

Proposition 5.7. There exists a weakly complete F -coalgebra.

Proof. By (S2), there exists a universal small map π : E → U such that,
internally, there is an isomorphism from every small object A to Eu for some
u ∈ U . As π is small, we can use (S1) to form the following exponential in
the slice E/U :

FU (π : E → U)(π:E→U)

U.
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Being given that exponentials in slices consists in the objects of maps be-
tween fibres, this exponential that we denote S is the object of pairs

(u : U,α : Eu → (FUE)u).

But by indexation of F (see Definition 2.2.8) (FUE)u) ∼= F (Eu), so S is in
fact the object

{(u : U,α : Eu → FEu)},

i.e., the object of all small coalgebras.
Using S, we define the internal sum

T =
∑

(u,α)∈S

Eu,

the coproduct of all small objects on which there is a coalgebra morphism.
We want to define a coalgebra map on T . Consider the following diagram:∑

(u,α)∈S Eu Eu

∑
(u,α)∈S FEu FEu

F
∑

(u,α)∈S Eu

∑
(u,α)∈S α

i

α

u

j

F i

where i and j are coprojections. Then the collection of Fi’s for each (u, α) ∈
S forms a cocone and we obtain u by universality of

∑
(u,α)∈S FEu. The

composite τ = u
∑

(u,α)∈S α is a coalgebra morphism on T , moreover, by
(S2) every small coalgebra is given as some (u, α) ∈ U , therefore (T, τ) is
weakly extensional.

As in the standard case, the next proposition ensures that a weakly
complete F -coalgebra can be made complete.

Proposition 5.8. For any F-coalgebra (A,α), there exists a strongly exten-
sional F-coalgebra (Z, ζ) and an epimorphism (A,α) � (Z, ζ).

Before we embark in the proof, we give the internal and an external
version of the congruences that we have worked with in the previous chapter.

Definition 5.9. We call R : Ps(A × A) a internal congruence on (A,α) if
it holds in E that if R(x, y) then F (q)α(x) = F (q)α(y), where q : A � QR
is the coequalizer of R. We call an external relation R� A×A an external
congruence if it holds in E that if R(x, y) then F (q)α(x) = F (q)α(y), where
q : A� QR is the coequalizer of R.
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We define maximality for external congruences; moreover, we require
maximality to be a stable property.

Definition 5.10. An external congruence M on (A,α) is stably maximal
on (A,α) if for every object I and every external congruence R on I∗A in
E/I, it holds in E/I that R ⊆ I∗M , where I∗A and I∗M are respectively
the pullbacks of R and M along I → 1.

We start by showing that such a maximal congruence on (A,α) exists.

Lemma 5.11. There exists a maximal internal congruence on every F -
coalgebra.

We prove this lemma in two steps: first we construct an object of all
internal congruences on (A,α) and next we show that the internal union of
this object is a stably maximal congruence on (A,α).

Sublemma 5.12. There exists a object of all internal small congruences on
(A,α).

Proof. Consider the composite p

∈Ps(A2)

A2 × Ps(A2) Ps(A
2),

q

π2

which is small by definition of ∈Ps(A×A). As A× A× Ps(A× A) fits in the
pullback square

A×A× Ps(A×A) A× Ps(A×A)

A× Ps(A×A) Ps(A×A),

〈π2,π3〉

〈π1,π3〉 π2

π2

q is a subobject of A × Ps(A × A) ×Ps(A×A) A × Ps(A × A) in the slice
E/Ps(A×A), and we can form its coequalizer:

∈Ps(A×A) A× Ps(A×A) Q,
q

in E/Ps(A × A). We shall define a coalgebra morphism on A × Ps(A × A)
in E/Ps(A×A). To this end, consider the following pullback of α:

A× Ps(A2) FA× Ps(A2) A FA

Ps(A
2) 1 .

π2

α×1

π2

α
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As
Ps(A×A)× FA = Ps(A×A)∗FA,

by indexation, we have

Ps(A
2)∗FA ∼= FPs(A×A)(Ps(A

2)∗A) = FPs(A×A)(Ps(A
2)×A),

which provides A×Ps(A×A) with a coalgebraic structure ᾱ in E/Ps(A×A)
by composition of the above isomorphism with α× 1Ps(A×A):

∈Ps(A2) A× Ps(A2) Q

FPs(A
2)(A× Ps(A2)) FPs(A

2)Q.

q

ᾱ

FPs(A2)(q)

We defined this coalgebra morphism on A× Ps(A×A) to obtain the above
diagram which lives in the slice E/Ps(A× A) and has the property that its
fibre over any R : Ps(A×A) is

R A A/R

FA F (A/R).

qR

α

FqR

(5.1)

Using ᾱ, we can define C the object of congruences on (A,α):

C = {R : Ps(A
2) | ∀((x,R), (y,R)) :∈Ps(A2) (FPs(A

2)(q)ᾱ(x,R) = FPs(A
2)(q)ᾱ(y,R))},

The stably maximal congruence is constructed by taking the internal
union of C.

Sublemma 5.13. The internal union of the object of all internal congru-
ences on (A,α) is stably maximal.

Proof. Let M be the following internal union:

M = {(x, y) : A×A | (∃R : C)((x, y) ∈ R)},

i.e., M is the image of π2〈π2, π3〉, as displayed in the following diagram
where the square on the right-hand side is a pullback:

M • ∈A×A

A×A A×A× C A×A× Ps(A×A).

m

〈π2,π3〉
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We claim that M is stably maximal. First, we check that it is a con-
gruence. Suppose Mxy holds, then there exists some internal congruence
R such that R(x, y) holds. Let qM and qR be the coequalizers of M and
R. Note that the coequalizer of R is internally given by the property de-
scribe in diagram 5.1. Although R is not an external object, we illustrate
the situation with the following diagram:

R

M A QM

QR

FA FQM

FQR .

r1 r2

qM

qR

α

u

FqM

FqR

Fu

By definition, R(x, y) implies Mxy, so qM (x) = qM (y), and so externally we
have qMr1 = qMr2. Hence, we obtain a morphism u by universality of qR
making the triangle commute. By functoriality, FqM = FuFqR, and, since
R is a congruence,

FqRα(x) = FqRα(y)

⇒ FuFqRα(x) = FuFqRα(y)

⇒ FqMα(x) = FqMα(y),

i.e., M is a congruence on (A,α).
To check maximality, let R be some external congruence on (A,α). For

any (x, y) : A × A such that R(x, y), consider {x, y} which is given by the
map pair : A × A → Ps(A×) obtained by the universal property of ∈A, as
displayed below:

Jx = y ∨ x = zK ∈A

A× (A×A) A× Ps(A).
1A×pair

By Proposition 5.3, there exists (B, β) some small subcoalgebra of (A,α)
such that {x, y} ⊆ B. To show that Mxy holds, we prove that R�B the
restriction of R to B given by pulling back R along iAB is a congruence on
(A,α). For that matter, consider the situation depicted below:
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R�B R

B A

B/R�B A/R

FB FA

FB/R�B FA/R,

s1 s2 r1 r2

iAB

β

qR�B

qR
α

j

F iAB

FqR�B

FqR

Fj

where qR and qR�B are the coequalizers of R and R�B. We first show that
R�B is a congruence on (B, β), and then deduce that it is a congruence on
(A,α). As the upper squares are pullbacks, we have

qRi
A
Bs1 = qRi

A
Bs2,

and we obtain j by the universal property of qR�B . We claim that j is a
monomorphism. Suppose that j(x) = j(y), we have to show that x = y.
Since qR�B is a regular epimorphism, it is surjective by Proposition 2.2.11(iv),
so x = qR�B (a) and y = qR�B (b) for some a, b : B. As

j(x) = j(y),

jqR�B (a) = jqR�B (b),

and, as
jqR�B = qRi

A
B,

we have
qR(a) = qR(b),

so that R(a, b), so R�B(a, b) and we conclude that

qR�B (a) = qR�B (b),

as required. Since j is mono, preservation of monomorphisms gives that Fj
is mono as well, besides, by functoriality,

F (j)F (qR�B ) = F (qR)F (iAB).

So we have

F (qR)αiABs1 = F (qR)αiABs2

⇔ F (qR)F (iAB)βs1 = F (qR)F (iAB)βs2

⇔ F (j)F (qR�B )βs1 = F (j)F (qR�B )βs2.
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But
F (qR)αiB,As1 = F (qR)αiB,As2

holds since R is a congruence, so

F (j)F (qR�B )βs1 = F (j)F (qR�B )βs2,

and, since Fj is a monomorphism, we conclude that

F (qR�B )βs1 = F (qR�B )βs2,

i.e., R�B is a congruence on (B, β).
To see that R�B is a congruence on (A,α), consider the diagram below:

R�B R�B

B A

B/R�B A/R�B

FB FA

FB/R�B FA/R�B,

s1 s2

1R�B

t1 t2

iAB

β

qB

qA
α

k

FiAB

FqB

FqA

Fk

where t1 = iABs1, t1 = iABs1, and k is obtained by the universal property of
qB. R�B is a congruence on B, so

F (qB)βs1 = F (qB)βs2.

Hence,

F (k)F (qB)βs1 = F (k)F (qB)βs2

⇒ F (qA)F (iAB)βs1 = F (qA)F (iAB)βs2

⇒ F (qA)αiABs1 = F (qA)αiABs2.

Thus, R�B is a congruence on (A,α). The fact that M is stably maximal
simply follows from the fact that any argument in the internal logic is stable
under slicing.

Next, we prove that the quotient of (A,α) with respect to its maximal
congruence has no proper quotient.
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Lemma 5.14. Let qM : A→ Q is the quotient of (A,α) with respect to its
maximal congruence and ρ be the unique coalgebra morphism on Q making
q a coalgebra homomorphism. Then (Q, ρ) has no proper quotient, i.e., it
holds in E that for every internal congruence R on (Q, ρ), R(x, y) implies
x = y.

Proof. Let qM be the coequalizer of the maximal congruence on (A,α), R
be any congruence on Q, and R̄ be the reflexive, symmetric, and transi-
tive closure of R, constructed as in Proposition 3.1. Further, let S be the
equivalence relation given by

S = {(x, y) : A×A | R̄(qM (x), qM (y))}.

The situation is depicted below where qR̄ is the coequalizer of R̄:

S R̄

A Q Q/R̄

FA FQ FQ/R̄.

s1 s2 t1 t2

qM

α

qR̄

ρ

FqM FqR̄

We show that qR̄qM is a coequalizer of S, and next that S is a congruence
on (A,α). As S is an equivalence relation, by Proposition 2.2.11(vii), we
have to check that the following sequents hold in E :

` (∀x : Q/R̄)(∃y : Q)(qR̄qM (y) = x),

S(x, y) ` qR̄qM (x) = qR̄qM (y),

and
qR̄qM (x) = qR̄qM (y) ` S(x, y).

The first sequent holds because qR̄qM is an epimorphism, and the second
because qR̄qMs1 = qR̄qMs2. The last sequent holds as well for if qRqM (x) =
qRqM (y), then R̄(qM (x), qM (y)) holds since qR̄ is the coequalizer of R̄ and
R̄ is an equivalence relation, so by definition S(x, y) holds.

To show that S is a congruence on (A,α), suppose S(x, y). Then R̄(qM (x), qM (y))
holds. Since R is a congruence, using (NNO) we can prove by induction
on the R-paths that R̄ is a congruence as well. Hence

F (qR̄)ρqM (x) = F (qR̄)ρqM (x),

and as
ρqM = FqMα,
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we have
F (qR̄)F (qM )α(x) = F (qR̄)F (qM )α(y),

as required.
To conclude the proof of this lemma, suppose R(x, y) holds. As qM :

A → Q is a regular epimorphism, it is surjective by Proposition 2.2.11(iv).
Therefore, qM (a) = x and qM (b) = y for some a, b : A so that S(a, b) holds.
But, since S is a congruence on (A,α), we have Mab. Thus qM (a) = qM (b),
i.e., x = y.

Finally, we show that F -coalgebras which have no proper quotient are
strongly extensional.

Lemma 5.15. If (A,α) has no proper quotient, then it is strongly exten-
sional.

Proof. Suppose (A,α) has no proper quotient, and let τ1, τ2 : B → A be two
coalgebra homomorphisms with B a small object. We have to show that
τ1 = τ2. Consider the relation R given by

R = {(x, y) : A×A | (∃b : B)(x = τ1(b) ∧ y = τ2(b))},

and the following diagram:

R

B A A/R

FB FA FA/R,

τ2

τ1

β α

qR

Fτ2

Fτ1 FqR

where qR is the equalizer of R. For any b : B, R(τ1(b), τ2(b)), so qRτ1(b) =
qRτ2(b) from which we have qRτ1 = qRτ2. By functoriality,

F (qR)F (τ1)β = F (qR)F (τ2)β,

and since Fτiβ = ατi, we have FqRατ1 = FqRατ2. So R is a internal
congruence on (A,α). Consequently, as (A,α) is assumed to have no proper
quotient, R(τ1(b), τ2(b)) implies τ1(b) = τ2(b). Thus, as R(τ1(b), τ2(b)) holds
for all b : B, τ1 = τ2.
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Chapter 6

Further Research

In this thesis, we started with a review of Aczel and Mendler’s Final Coalge-
bra Theorem. We have shown that the Axiom of Choice was not necessary
to their result and could be avoided with the Relation Reflection Scheme, a
principle provable in ZF.

The main result of this work is a new, more insightful proof of the Final
Coalgebra Theorem in AST, originally proved by Van den Berg and De
Marchi. While they provide a general result granting the existence of final
objects in indexed categories from which the recover the theorem as a special
case, we managed to recast Aczel and Mendler’s argument directly in the
internal logic of our category of classes. Although in the original proof the
authors do not need to assume the Relation Reflection Scheme, their result
requires the preservation of weak pullbacks. Our result is an improvement
in this respect for we only needed the preservation of monomorphisms.

Building upon our theorem, an interesting goal for further research would
be to prove a dual version, namely, that indexed set-based functors preserv-
ing monomorphisms also admits an initial algebra. This dual result could
possibly find an application in type theory as it would entail the existence of
so-called W -types, see [MP00]. The following seems to be a promising strat-
egy: given an endofunctor F satisfying our assumptions, our result ensures
the existence of a final F -coalgebra (A,α). By Lambek’s lemma, α is an
isomorphism, so it has an inverse α−1 which provides A with an algebraic
structure. As α−1 is an isomorphism, it is a monomorphism; the idea at
this point would be to adapt to our setting a folklore result, see, e.g., [jib97],
claiming that in this case the smallest subalgebra of (A,α−1) is an initial
algebra.
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