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A B S T R AC T

Informational cascades occur when it is optimal for decision-makers
to abandon their own private information in favour of inferences they
make about other individuals’ information. The informational cascade
model, centred on the core notion of Bayesian update, has been able
to explain, at least partially, many observed conformism patterns in
social settings.

The aim of this thesis is to put the informational cascade model
in game theoretic terms and analyse it using a new probabilistic epi-
stemic logic. The strength of game theory lies in its mathematical
apparatus that structures and identi�es strategic choices. Regarding
informational cascades as games of imperfect information with chance
moves allows us to capture, in a natural way, the reasoning of agents
engaged in an informational cascade. The strength of a logical treat-
ment of games is, among others, the incorporation of all levels of an
agent’s beliefs into an analysis of optimal behaviour. This attribute is
instrumental in analysing games with paradoxical collective outcomes
like informational cascades. False cascades, a term that denotes people
herding on the wrong decision, are paradoxical outcomes because they
are intuitively inconsistent with the intentions of the individuals that
generate them.

We �rst formalize the Urn Model, the canonical example of inform-
ational cascades, as a game of imperfect information. Next, we prove
that the unique perfect Bayesian equilibrium of this game sometimes
leads to false cascades. Then, we determine various changes that need
to be put in place in order to ensure more socially desirable outcomes
in informational cascade games. Finally, we propose a new logic, Prob-
abilistic Logic of Communication and Change, to treat social dynamics
of information games. We prove it is a sound and complete logic
with respect to Bayesian Kripke structures and proceed to apply it to
sequential social information �ow games.
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1

I N T R O D U C T I O N

An informational cascade is, grosso modo, a mechanism that explains
conformity in certain social situations. Suppose, as a �rst example that,
while in a new town, you need to choose a dining restaurant. Based on
your own research, you intend to go to restaurant A. However, when
you arrive there, you notice that restaurant A is empty, whereas, just
across the street, in restaurant B, there is a big crowd of people. At this
point, if you believe that the other diners have obtained individual,
but imperfect information with regard to which of the two restaurants
is superior, and if you believe they have similar tastes in restaurants
as you, then it might be rational for you to join them at restaurant B.
This would make sense if your private information is outweighed by
the public information you infer from so many other people having
chosen the other venue. In this case, we say that an informational
cascade has occurred (Banerjee, 1992).

Informational cascades are worth studying because they show how
our intuition about social knowledge fails. The expectation is that
groups are able to track the truth better than the individuals compos-
ing them, by virtue of communication, whereby the individual pieces
of information each member of the group possesses are pooled to-
gether and analysed in a rational manner. However, informational
cascades show how communication, when structured sequentially,
can impair the attainment of truth. This stems from a fundamental
misalignment of interests between the individual and the group, in
the use of communication, which is individually rational and, at the
same time, group-irrational. This feature, together with the strategic
considerations that rationality engenders among members of a group,
o�ers a natural interpretation of informational cascades within game
theory.

This thesis pursues a game theoretic treatment of informational
cascades, in an attempt to explain their outcomes as consequence of
strategic reasoning. Moreover, a game theoretic perspective will open
the door to investigating various other variants of cascade-like games
and in this way broaden the applicability of informational cascades as
explanatory tools to other social dynamics of information phenomena.

1



introduction

One class of examples is given by truth-tracking situations. These
can easily be seen as cascade models where individuals’ payo�s are
tied to the group’s performance. Later, informational cascade models
will provide a platform for building a logic for games, grounded in
Bayesian reasoning. We provide a sound and complete axiomatization
for this logic with respect to Bayesian Kripke frames and then move
on to proving the occurrence of cascades using the newly de�ned
semantics. The logical treatment of cascades at the close of the thesis
contains a formal representation of all levels of reasoning the agents
in the cascade engage in, and a stepping stone in the direction of a
logical treatment of imperfect information games.

The thesis is structured as follows: in Chapter 2 we de�ne an inform-
ational cascade, give an overview of the main literature results and
draw upon the recent global �nancial turmoil to exemplify its work-
ings. We then present the canonical cascade example, the urn model,
and close the chapter with a theorem that computes the likelihood of
a false cascade occurring.

Chapter 3 deals with a classical game theoretic formalization of
informational cascades. We take the canonical model presented in
the previous chapter and model it as an imperfect information game
with chance moves. Then we prove that the reasoning entrenched in
informational cascades represents a Perfect Bayesian Nash Equilibrium
(PBNE) of the cascade game. Further, we de�ne a re�nement to the
PBNE that applies exclusively to urn-type games.

Chapter 4 has a two-fold aim: to generalize the cascade setting
to other social dynamics of information games and to implement
structural changes that incentivise agents to pursue socially optimal
strategies. Our analysis shows that there is little we can do about
avoiding cascades, since they emerge as deeply seated consequences
of best-response behaviour in almost all of these games.

Chapter 5 presents a new logic suited for a probabilistic epistemic
analysis of social dynamic of information games. The logic we present,
called Probabilistic Logic of Communication and Change (PLCC), has
both a sound and a weakly complete axiomatization with respect
to Bayesian Kripke frames, a kind of probabilistic epistemic frames
grounded in Bayesian decision theory. PLCC represents a probabilistic
version of the Logic of Communication and Change introduced by van
Benthem et al. (2006), which is, in turn, the epistemic interpretation
of propositional dynamic logic with updates.

Chapter 6 gives a taste of the potential applications of PLCC in game
theory, by proving that a false cascade ensues in the Urn Game, as
soon as after the �rst two players’ moves. The disconcerting result of
this analysis is that no amount of higher level information that the
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introduction

agents might possess, including common knowledge of the possibility
of a cascade, is su�cient to prevent it.

The conclusion of the thesis is that informational cascades are in-
escapably a “paradox” of rationality, an inherent tension that arises
when individual rationality is applied in certain social situations. Game
theory, mechanism design, logic, Bayesian reasoning or even com-
binations of all these are not always able to dissolve the paradox.
Informational cascades remain a fundamental challenge to social ra-
tionality.
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2

T H E P H E N O M E N O N O F I N F O R M AT I O N A L
C A S C A D E S

This chapter introduces the reader to the phenomenon of informational
cascades. It contains an informal de�nition of informational cascades,
followed by a real-life example of a cascade inspired from the recent
global �nancial turmoil and �nally, a standard formal analysis of
informational cascades. Along the way, we review the main literature
results in cascade theory and contribute to it a theorem about the
likelihood of false cascades forming in the canonical cascade setting.

2.1 definition

Informational cascades provide an explanation for how groups of
people quickly converge, in a rational way, to a common behavioural
pattern, based on very little information. The notion was introduced
by the seminal work of Bikhchandani et al. (1992), and ever since
economists, social psychologists and sociologists alike have used in-
formational cascades to explain the occurrence and evolution of the
phenomena of people falling in line with the crowd (Surowiecki (2005),
Bicchieri (2005), Easley and Kleinberg (2010), Hansen et al. (2013)).

De�nition 1: Informational Cascades

An informational cascade is de�ned as a situation in which it is
optimal for an individual, having observed the actions of other
individuals, to follow the behaviour of his predecessor without
regard to his own information (Bikhchandani et al., 1992).

In general, informational cascades occur in settings where:

1. People make decisions sequentially, with every person be-
ing able to observe the actions of earlier decision-makers.
This is, in some sense, the pivotal assumption of the model.
It gives way for agents to interpret the actions of others,
and infer from their choices the private information the
others possess.

5



the phenomenon of informational cascades

2. There is common knowledge that the individuals in the
cascade are rational.
Rationality is interpreted here as instrumental rationality:
what means to take to achieve the satisfaction of your prefer-
ences, given your beliefs and information about the probab-
ilities that various means will achieve those ends (Kolodny
and Brunero, 2013). Instrumental rationality is a standard
assumption in decision theory, game theory and economics.
For example, Aumann (2006) states: “A person’s behaviour
is rational if it is in his best interests, given his information”.

3. Each person has some piece of private information that he
receives prior to making a decision.
This aptly models the numerous real-life situations of decision-
making under imperfect information.

4. Individuals in the sequence do not have access to others’
private information.
Again, as above, this assumption re�ects in the empirical
phenomena we want to explain.

5. The space of available actions is discrete.

Interpretation of the de�nition

We would like to make two observations about the informational cas-
cades de�nition of Bikhchandani et al. (1992). First is that sensu stricto,
informational cascades are interpretations of certain phenomena, not
the phenomena themselves. More precisely they are interpretations
of situations of apparent conformity, that satisfy the �ve conditions
laid out earlier. Observe that in the de�nition, the word “optimal” ap-
pears, which hints at the inherent formal interpretation, represented
by standard Bayesian reasoning.1 Later in this chapter we present the
Bayesian analysis of informational cascades in detail.

The second observation related to the informational cascades de�ni-
tion is that it might be misleading to say agents in a cascade disregard
their own information. A more accurate description would be that the
private information of an agent caught in a cascade has no bearing on
his decision. Put di�erently, an agent’s decision does not carry any

1 By Bayesian reasoning we understand the use of Bayes’ Rule for computing con-
ditional probabilities together with the Simple Principle of Conditionalization and
more, broadly, Bayesian decision theory. For more details see Talbott (2013)
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2.2 a case for homo economicus

information regarding his private signal to the others that observe his
behaviour.

To facilitate our discussion of informational cascades, we divide
them into two categories:

• false cascades (or reverse cascades) in which the individuals
stabilize on the wrong choice,

• true cascades in which individuals stabilize on the correct out-
come.

A de�ning characteristic of cascades is fragility, as introduced by
Bikhchandani et al. (1992) and Hirshleifer and Anderson (1994). Ac-
cording to Easley and Kleinberg (2010) cascades are fragile if, after
having persisted for a long time, can be overturned with comparat-
ively little e�ort . Fragility is due to the scarcity of public information,
which can sometimes be composed only of the information available
to the �rst two individuals in a group. Due to this,the release of as little
as one more individual’s information is enough to break the cascade.
Later in the thesis we show that the public release of the private signal
of one player, during a play of the canonical game of informational
cascades with a large number of players, is su�cient to reduce the
likelihood of a false cascade occurring by almost a quarter. For the
detailed proof, see Theorem 6.

The informational cascade model thus presents herding as the result
of hyper-rational individual behaviour. However, one of its perplexing
features is that individuals end up taking the wrong collective decision,
despite the group having epistemic access to the truth. One may
think that, perhaps, agents with higher-order reasoning powers could
engage in meta-level considerations that would help avoid these kind
of unfortunate situations. However, as we will show later, this is not
the case with certain cascades, which survive this type of higher order
reasoning. For this reason, one may �nd in informational cascades
a striking resemblance with the Tragedy of the Commons-type of
situations, where people fail to consider the social impact of their
actions (Baltag et al., 2013).

2.2 a case for homo economicus

Herding is a well-documented phenomenon in �nancial markets (Welch
(1992), Avery and Zemsky (1998), Bikhchandani and Sharma (2001)).
Stock market bubbles, �nancial speculation, bank runs are just a few
instances where herding behaviour is observed. Roughly speaking,
there are two types of explanations for the observed herding behaviour

7



the phenomenon of informational cascades

in the �nancial markets (Devenow and Welch, 1996, p. 604). There are
the explanations which claim that investors are boundedly rational,
relying on rules of thumb and informational processing short-cuts in
order to reach a decision (Shiller, 1995). Then, there are theories that
o�er a rational explanation of herding in �nancial markets (Scharfstein
and Stein, 1990), amongst which informational cascades (Bikhchandani
and Sharma, 2001).

In the remainder of the section, we argue for the appropriateness
of informational cascades as explanations of how rational investors
may be led astray and create a market bubble. Seen as informational
cascades, market bubbles illustrate the failure of disseminating inform-
ation about the true value of an asset (Shiller, 2000).

In economic theory, the current mainstream explanation of investor
behaviour is the E�cient Market Hypothesis (EMH), one of the tenets
of neoclassical economics. This theory is a form of the wisdom of the
crowds, which states that investors are making rational, independent
decisions, which in aggregate, are better than any individual one.
According to this theory, �nancial markets always get asset prices right
given the available information. However, there are many empirical
situations that the E�cient Market Hypothesis cannot explain, for
example numerous �nancial market phenomena that are characterized
by both fragility and wave-like dynamics, like stock market bubbles.
A bubble is a type of investing phenomenon that occurs when there
is “trade in high volumes at prices that are considerably at variance
with intrinsic values” (Smith et al., 1993). This de�nition characterizes
both the boom and burst phase of a bubble, that we often encounter
in reality. While some economists deny the existence of bubbles,
numerous historical examples have convinced many others to �nd
new explanations for investor behaviour, divorced from the EMH.

There are two main grounds on which to attack the EMH: by chal-
lenging the assumption that investors are rational, and by challenging
that investors make decisions independently. Behavioural economics
takes the �rst route of attack and asserts that investors are irrational.
The apparent irrationality of investors is due to known biases in human
cognition, like the tendency to care more about small losses than small
gains or the tendency to extrapolate too hastily from small samples
(Krugman, 2009).

An alternative explanation for the EMH failing to describe mar-
ket bubbles is the contention that people decide independently of
one another. This constitutes the second route of attack, adopted
by the informational cascade model. According to it, investors are
hyper-rational individuals who, as part of their decision, extract the
information that other people’s choices reveal. Since information gath-
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2.2 a case for homo economicus

ering is costly, in situations of imperfect information like �nancial
markets, it becomes rational for individuals to appeal to the public
information available. It is arguably less costly to do so than to gather
additional private information.

The result of taking into consideration public information is that,
after a certain stage, the private information of decision makers does
not make its way into the market. Thus a self-defeating loop is created,
in which an avidness for information prevents people from learning
anything new. This situation seems to lend itself very well to a cascade-
like explanation. Take as an example the housing market bubble that
represented the ignition of the 2008 �nancial crisis, the worst after
the Great Depression. In Shiller (2008), it is argued that the housing
bubble is an informational cascade: in a sequence of perfectly rational
individuals, each decided erroneously, but rationally, to invest in the
housing market, based on the imperfect information they had.

Following Shiller’s argument, the pre-crisis housing market was one
in which houses were of a low investment value. Talking in stylized
terms, there were two types of signals that individuals in the market
could receive: a high signal, which indicated that houses were of high
investment value and a low signal, which signalled houses were of a
low investment value. Say that the high signal occurred with prob-
ability 0.6 whereas the low signal with probability 0.4. Consequently,
every individual had a piece of private information that lead, 60% of
the time, to the right decision.

We could look at the group of potential investors in the housing
market as making decisions in a sequence. Consider a �rst individual
in the sequence. He decided to pay a high price for a house based
on receiving a high signal in a low investment value world, thereby
signalling to the other people that houses are a good investment.
The second investor, after having received a high signal and having
observed the public action of the �rst investor, decided to buy a house
for a high price too. At this point, whatever the signal the third person
received, the information he inferred from the previous players’ actions
outweighed that carried by his own signal, and therefore decided to
purchase a high priced house.

Any subsequent player, being able to reproduce the reasoning of
the third individual, if rational, also chose to enter the housing mar-
ket. Intuitively, what happened was that, as people observed others
purchasing houses at higher and higher prices, they concluded that
these investors’ information about the market outweighed their own.
This created a housing market bubble, where prices were set much
above their intrinsic value. Later in the chapter we will show that the
probability of this type of bubble forming is 20%, which means that
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the phenomenon of informational cascades

one in �ve times, a group of individuals will reach the wrong collective
decision.

2.3 the bayesian analysis of informational cascades

Moving towards an abstract model of informational cascades, we now
present the Urn Model. This represents a canonical example of a
formal representation of informational cascades. The Urn Model was,
to our knowledge, �rst described as part of an experimental setting of
Anderson and Holt (1996) and then presented, with minor variations,
in subsequent cascade theory literature.

We present a narrative of the Urn Model that is close to Baltag
et al. (2013): each individual in a group tries to correctly identify the
proportion of black and white marbles contained in an urn, that was
placed in a room by “Nature”. It is common knowledge that the urn
can either contain a mix denoted W of 2/3 white marbles and 1/3
black marbles or a mix denoted B of 1/3 white marbles and 2/3 black
marbles, each equally likely. The agents enter the room one at a time.
Upon entering, each agent draws a marble from the urn, looks at it, and
puts it back. Then he makes a guess as to which mix he thinks is more
probable,W or B, and writes it on a whiteboard, for all the subsequent
agents entering the room to see. After everyone has entered the room,
the game ends and the arbiter individually rewards the players who
have guessed correctly.

Formally, consider a game with n players, {1, . . . ,n}, where every
individual is rational, in the sense that he obeys by the Bayesian
decision-theoretic reasoning. It is common knowledge amongst agents
that there are two possible states of the world: urnW and urn B, each
equally likely ex ante and that every agent is rational. UrnW contains
a proportion of 2/3 white marbles and 1/3 black marbles, whereas urn
B contains a proportion of 2/3 black marbles and 1/3 white marbles.
Each agent in turn receives an independent, private signal, w or b,
which has the following probability of being true, given the true state
of the world:

P (w |W ) = P (b |B) = 2/3
P (w |B) = P (b |W ) = 1/3

Intuitively, this signal corresponds to a private, independent draw
of a marble from the real urn. Note that we interchangeably make
use of the following terminology for signals that have a probability
of occurring higher than 1

2 : high precision, high probability or high
quality signals. Signals with a probability of occurrence of less than 1

2
we call low precision, low probability or low quality signals.

10



2.3 the bayesian analysis of informational cascades

Then, agents make a prediction about the true urn based on their
private signal and the publicly announced predictions of previous
players in the sequence. They do not observe previous agents’ private
signals, only their actions. There is a tie-breaking rule called the self-
biased rule, which dictates that, whenever an agent assigns the same
probability to both states of the world, respectively 1/2, he chooses
the action indicated by his own signal. There is common knowledge of
the tie-breaking rule amongst the players. A player receives a positive
payo� if and only if his guess is correct.

The urn cascade

To illustrate the concept of an informational cascade, we show the
rational reasoning steps that lead agents into one, after only two
moves.

Assume the real state of the world is B. Player 1 draws a marble
from urn B, unbeknownst to him, looks at it and makes his guess
based solely on this information (since there are no actions of previous
players that he can use to extract further information from). Assume
his private signal is w . Then, conditioning upon observing a white
marble, player 1 infers, using Bayes’ theorem, that aW world is twice
as likely than a B world:

P (W |w ) =
P (w |W )P (W )

P (w )
=

P (w |W )P (W )

P (w |W )P (W ) + P (w |B)P (B)

=

2
3 ·

1
2

1
2
=

2
3

All subsequent players are able to infer that player 1 saw a white
marble, given that they all know he is rational. Consequently, player
2 makes his guess based on the private signal of player 1, w1, and his
own private draw. Assume he receives a w2 signal. Then it becomes
obvious that player 2 will predictW . However, were player 2 to receive
a b2 signal, he would have predicted B, by the tie breaking rule. In
fact, player 2’s action fully re�ects his signal. Then, by announcing
W , player 2 reveals his private signal to all subsequent players.

Now consider player 3, whose information can be divided into two
categories: the information publicly available to him, constituted of
player 1 and player 2’s actions, (W1 andW2) and his own private inform-
ation, either w3 or b3. Then player 3, having inferred from previous
actions the signals w1 and w2 of player 1 and player 2 respectively, is
now rationally bound to chooseW , no matter what his private signal
is. This can easily be shown by tracing player 3’s Bayesian reasoning:

11



the phenomenon of informational cascades

• If player 3 draws a w3 then it is obvious that he will chooseW .

• If player 3 draws a b3 then, by applying his Bayesian reasoning,
his subjective degree of belief inW will be higher than in B:

P (W | w1 ∧w2 ∧b3) =
P (w1 ∧w2 ∧b3 |W ) · P (W )

P (P (w1 ∧w2 ∧b3)

=

4
27 ·

1
2

6
27 ·

1
2
=

2
3

whereas
P (B | w1 ∧w2 ∧b3) =

1
3

We can say that player 3’s private information is “dominated” by the
public information he receives from previous players. The third agents’
reasoning can then be reproduced by any subsequent individual i > 3
in the sequence, who then understands that player 3’s action carries
no informational content.

Therefore, agent 4 is exactly in the same informational state as agent
3, since the information available to him is represented by the signals
of the �rst two players and his own. Engaged in the same rational
re�ection as agent 3, agent 4 decides to chooseW , irrespective of his
own private signal.

By iterating this last step for every subsequent agent, we conclude
that all players in the game will chooseW . Given that we assumed the
true state of the world is B, then what results is a false informational
cascade, where agents’ decisions stabilize on the wrong choice forever.

2.4 likelihood of cascades

In this section, we prove a limit result about the probability of false
cascades arising during a game with a large number of players.2.

Theorem 1: Likelihood of false cascades

If the number of players n → ∞, and the probability of a low
signal is p, then the likelihood of a false cascade starting during a
play of the urn game is p2

(2p2−2p+1) .

2 Bikhchandani et al. (1992) computes such a probability but for a slightly di�erent
setting. The di�erence in the tie-breaking rule used in this thesis and the one in
Bikhchandani et al. (1992), accounts for the di�erence in the calculation of the
likelihood of a false cascade occurring during a play of the game. While we use the
self-biased rule, they use the coin-toss rule.

12



2.4 likelihood of cascades

Proof. Let n be the total number of agents. Let p be the probability of
a low signal (not matching the real colour). Denote the private signal
of player i by ci and the guess of player i by Ci . We put k to be the
largest number 0 ≤ k ≤ n

2 s.t.

colour(c2k−1) , colour(c2k )

This means that we have:

colour(c2i−1) , colour(c2i )∀1 ≤ i ≤ k

colour(c2k+1) = colour(c2k+2)

This implies that before 2k there was no cascade (in fact no decisive
majority). Hence:

colour(Cm ) = colour(cm )∀m ≤ 2k

From this it follows that there is still no cascade at stages 2k + 1 and
2k + 2.:

colour(c2k+1) = colour(c2k+2) = colour(C2k+1) = colour(C2k+2)

But now we have a decisive majority in favour of colour(c2k+2), there-
fore a cascade forms at stage 2k + 3:

colour(C2k+3) = colour(C2k+2) = colour(C2h )∀h ≥ 2k + 3

Based on the above, we draw the following conclusions:

1. A cascade forms, in the sense that people disregard their signals,
if and only if k , as de�ned above, has the property that 2k + 3 ≤
n. If so, the cascade starts at stage 2k + 3 but not earlier.

2. A cascade can only form at stages of the form 2k + 3, with
1 ≤ k ≤ n−3

2

What is the probability that the cascade starts exactly at stage 2k + 3,
and moreover that it is false?

P
( ∧
1≤i≤k

colour(c2i−1) , colour(c2i ) ∧ colour(c2k+1) = colour(c2k+2)
)
=

P




∧
1≤i≤k

((
colour(c2i−1) = “high”∧ colour(c2i = “low” )

)
∨

(
colour(c2i−1) = “low”∧ colour(c2i ) = “high”

))
∧

(
colour(c2k+1) = colour(c2k+2) = “low”

)


=
(
(1 − p)p + p (1 − p)

)k
· p2

= 2k (1 − p)k · pk+2)

13
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Figure 2.1: The probability of a false cascade as a function of the low
precision signal p.

Therefore the probability that a false cascade forms is:

P (false cascade forms) =
∑

1≤k≤ n−3
2

2k (1 − p)k · pk+2

for a group of n agents. As n → ∞, we have

limn→∞P (a false cascade) =
∑
k∈N

2k (1 − p)k · pk+2

=p2 ·
1

1 − 2(1 − p)p

=
p2

2p2 − 2p + 1

The higher the p, the higher the probability of a false cascade start-
ing. However, recall that p ≤ 1

2 , since p is “low”. So the maximum
probability of a false cascade is achieved for p = 1

2 , which gives
P (low cascade) = 1

2 . A graph of the probability of a false cascade
can be found in Fig. 2.1.

�

One can think of the initial segment of guesses before a cascade
starts as partitioned in pairs of consecutive guesses of di�erent colours.
However, as soon as a pair whose elements have the same colour
occurs in the initial segment, a cascade of the same colour starts. Some

14



2.4 likelihood of cascades

LL

(a) A false cascade starting after the �rst two moves.

LLHL

(b) A false cascade starting after the �rst 4 moves.

LLHLLH

(c) An initial sequence of 6 moves leading up to a false cascade.

LLLHHLHL

(d) An initial sequence of play leading to a false cascade after 8 moves

Figure 2.2: Sequences leading to false cascades. L denotes an action
that doesn’t match the state of the world while H does. The
action of player i matches the colour of the private signal
i received. Each piece of the puzzle represents a pair of
guesses.

examples of initial sequences that lead to false cascades are included in
Figure 2.2. This claim can easily be veri�ed, if we take into account that
the actions of players actually represent their signals. For a cascade
to start, there must be two extra signals of one kind before a player’s
turn. The signal this player receives will not matter, since, if it’s of
the colour in minority, then that colour will remain in minority by 1.
However, if the number of signals of each colour di�ered by one before
a player’s turn, the colour of that player’s signal is su�cient to restore
his belief in either urn to 1

2 . This, together with the self-biased rule,
dictates that this player reveals the colour of his signal through his
action to subsequent players. Therefore this player is not in a cascade.

In Chapter 2, we made an overview of the cascade literature in order
to frame the dialogue on informational cascades and give context to
our results. We reviewed the established de�nition of informational
cascades and then surveyed their most salient characteristics, like
fragility. We gained the intuition that informational cascades can have
pernicious implications for economic welfare, by impeding the correct
aggregation of mass information. Then we presented a simple-minded
urn model to demonstrate the features of cascades in a Bayesian de-
cision theoretic analysis. The original contribution of this chapter is
Theorem 1, which puts a number on the likelihood of false cascades
forming in urn games.
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3

I N F O R M AT I O N A L C A S C A D E S A S G A M E S

This section is devoted to a classical game theoretic approach to inform-
ational cascades. The game-theoretic lenses provide the opportunity
for modelling the dynamics of information inherent in informational
cascades as consequences of strategic behaviour. The actions that
set in motion the informational cascade, regarded as irrational in a
non-strategic world, can now be explained using the apparatus of
game theory. Although the association between informational cas-
cades and games has been made in several cascade literature papers
like Banerjee (1992), Hirshleifer and Anderson (1994), Hung and Plott
(2001) an explicit and formal game-theoretic treatment of cascades
and equilibria concepts is lacking.

We begin by de�ning the Urn Model as an extensive form game with
imperfect information and chance moves. In e�ect, the Urn Model
describes a sequence of individual decisions made by rational agents,
based on some private information each obtains and the public in-
formation generated by previous players’ actions. The extensive form
re�ects the sequential character of the game, the imperfect informa-
tion stems from the private signals that players receive and the chance
moves mimic the choice of the initial urn and the private draws taken
from the chosen urn. Subsequently, we prove that the reasoning that
leads agents into a cascade in the Urn Model, can be captured in game
theoretic jargon as the unique Perfect Bayesian Nash Equilibrium
(PBNE) of the game. In terms of our dining example in Chapter 1, the
cascade-like reasoning is a PBNE because every tourist acts optimally,
given his beliefs about the other tourists, and the information he has
at his disposal at the time of his choice.

Structurally, the chapter is organized as follows: the �rst section
introduces the Condorcet Jury Theorem and the de�nition of extensive
games we use throughout the thesis. The second section contains the
formalization of the Urn Model, introduced in Section 2.3 as an imper-
fect information game. The last section formally de�nes the concept
PBNE for games with imperfect information and chance moves, and
then proves that the reasoning of agents captured by the cascade

17



informational cascades as games

represents a PBNE. Along the way, we de�ne a re�nement of PBNE,
entitled self-biased equilibrium, in order to strengthen the notion of
optimality for cascade settings.

3.1 preliminaries

3.1.1 The Condorcet jury theorem

The Condorcet jury theorem represents a mathematical characteriz-
ation of the observation that “the many are smarter than the few”
(Surowiecki, 2005). It states that majorities are much more likely than
any single individual to select the “correct” of two alternatives, when
there exists uncertainty about which of the two alternatives is in fact
the best. More precisely, the theorem characterizes the conditions
under which the majority of individuals in a group, whose size tends
to in�nity, is correct.

Theorem 2: The Condorcet Jury theorem

The probability that the majority selects the correct alternative
exceeds p and approaches 1 as n → ∞, whenever the following
constraints are met:

• Each individual in a group of n people takes an independent
decision, based solely on his own private information.

• The likelihood of each private signal to be right is p > 1/2.

• The choice is binary, i.e. there are two mutually exclusive
alternatives to choose from.

This technical result could be seen to vindicate the potential of
groups to attain truth in situations with imperfect information and
sequential moves. It stands in an antithetical position to the reasoning
of agents caught in a cascade. Later in the thesis, we prove that in fact
the reasoning underpinned by the Condorcet Jury Theorem is a PBNE
of a structurally identical game to the Urn Model.

3.1.2 Extensive games with imperfect information

In the language of games, imperfect information signi�es the inability
of some player to distinguish between two di�erent histories h and
h′ of a game, whereas incomplete information refers to the lack of
information that certain players have about the structure of the game,

18



3.1 preliminaries

the strategies of other players or of payo� functions, including their
own.

The informational cascade setting is, naturally, one with incomplete
information. This is due to the fact that players have a common prior
belief about the objective payo� uncertainty and update it according
to their private signal about the underlying state of the world. Each
private signal initiates a belief hierarchy, which is build upon the
�rst-order beliefs about the game fundamentals, like the posterior
probability of the true state of the world, and �rst-order beliefs about
the signals of others, given by conditioning upon the common prior.

However, Harsanyi (1967-68) showed that a game with incomplete
information can be replaced by a game of imperfect information, in
which Nature conducts a lottery, the outcome of which will decide
which particular subgame will be played. This will be achieved by
�xing the values of the unknown parameters of the original game. The
result is a game of complete information with randomized moves by
Nature, in which each player will receive partial information about
the outcome of the lottery and about the values of the parameters. To
sum up, by adding Nature as a player, we are able to transform the
players’ payo� uncertainty into unobservable moves by Nature, and
hence, transform a game of incomplete information into a game of
imperfect information.

We use a formalization of extensive games with imperfect informa-
tion that is close to Kreps and Wilson (1982). Informally, an extensive
form game with imperfect information and chance moves by Nature
consists of:

1. a set of players

2. choices available to a player whenever it is his turn to move

3. a physical order of play

4. rules for determining whose turn it is at every point

5. the information each player has when it is his turn to move

6. the payo�s for each player

7. for every vertex assigned to Nature a probability distribution
over the actions available at that vertex where each such distri-
bution is independent of every other such distribution.
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informational cascades as games

De�nition 2: Extensive gameswith imperfect information and chance
moves

A game is a structure

G := 〈A,T ,Aд ∪ {0}, P , (Ii )i∈Aд, (pv )v∈V0 , (πi )i∈Aд〉

where:

1. A is a set of actions. As usual, we denote by A∗ the set of
all �nite sequences of elements of A, by ≤ the initial pre�x
relation on A∗, by < its strict version and by r (the root) the
empty sequence.

2. T ⊂ A∗ is a set of nodes (or histories) which is closed
under initial pre�xes: v ∈ T , t ≤ v ⇒ t ∈ T . We denote
by NonTerm(T ) := {v ∈ T | ∃t ∈ T s.t. v ≤ t } the non-
terminal nodes of T and byTerm(T ) := T \NonTerm(T )

the terminal nodes. We also denote by A(v ) := {a ∈ A |

va ∈ T } the actions available at node v .

3. Aд is a set of players. We will use a new symbol, 0 < Aд to
denote Nature, as a separate kind of player.

4. Pl : NonTerm(T ) → Aд ∪ {0} is a function which assigns
a player to every non-terminal node. For i ∈ Aд ∪ {0} we
put Vi = {v | i = Pl (v )} to be the set of vertices at which
player i needs to make a move. Finally, call V := ∪i∈AдVi
the set of nodes assigned to players, except Nature.

5. For every player i ∈ Aд, Ii is a partition of Vi , called player
i’s information partition. We denote by ∼i the equivalence
relation on Vi induced by this partition: v ∼i t i� v ∈ I (t ).
We denote by I (v ) the information cell in the partition Ii
that contains v .

6. p is a function assigning to each of Nature’s nodes a probab-
ility distribution pv : A(v ) → [0, 1] over Nature’s available
actions at v .

7. for each player i ∈ Aд, πi : Term(T ) → R is the payo�
function for player i that assigns a real-valued payo� to
each terminal node.

This structure is required to satisfy the following condition:

v′ ∈ I (v ) ⇒ A(v ) = A(v′)
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3.2 the urn game

Name Notation De�nition

precedence relation < t < v if t is a node on
the unique path fromv

to the root
the depth of vertex v d (v ) d (v ) := |{y | y < v}|
non-terminal nodes NonTerm(T ) {t ∈ T | ∃v ∈

T s.t. t < v}
terminal nodes Term(T ) T \ NonTerm(T )

initial node, root r r s.t. ∀x ∈ T , r ≤ x

kth action of node v v (k ) the kth element of v
predecessor of v of depth k − 1 v � k the initial segment ofv

of length k − 1

Table 3.1: Tree notions.

Additional notation

For a node v , we put d (v ) := |{y | y < v}| to be the depth of node v .
Since the nodes/histories are sequences of actions, we can think of a
node as a function v : dom(v ) → A such that dom(v ) = {1, . . . ,d (v ) +
1}, is an initial segment of N∗. Denote by v (k ) the kth element of
v and by v � k the initial segment of v that ends with the k − 1th
element, where k ≥ 1. Finally, we call last (v ) := v (2Pl (v )), for v ∈ V ,
the last action taken before reaching node v .

The notation is summarized in Table 3.1.

3.2 the urn game

The aim is to formalize the canonical example of social learning, the
Urn Model, as a sequential (extensive form) game of imperfect inform-
ation with randomized moves by Nature, called the Urn Game. This
aptly describes the situation where the payo� function of each player
i depends not only on the set of strategies chosen by the n players, but
also on a set of random variables, represented by Nature’s choices. It
is assumed that all players know the joint probability distribution of
these random, independent variables, but that each player only knows
the realization of his own random variable (his private signal given by
the draw of the marble from the urn).

Now we introduce a special class of games, called urn games, that
exempli�es the setting described in the Urn Model in Chapter 2.

De�nition 3: Urn games
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informational cascades as games

An urn game is a structure

U = 〈Aд ∪ {0},A,T , P , (Ii )i∈Aд, (px )x∈V0〉

representing an imperfect information extensive form game such
that:

• The set Aд is of the form Aд = {1, . . . ,n}, for some n ∈ N,
and 0 to denote the player Nature, like in the general case.

• A is a set of actions of the form A := ∪k=2n+1
k=1 Ak where

Ak =


{W k−1

2
,B k−1

2
} if k is odd and k , 1

{w k
2
,b k

2
} if k is even

{W ,B} if k = 1

Notice that Ak is indexed by the turns in the game and
each individual action index represents a player in Aд. For
example, A4 = {w2,b2} and A5 = {W2,B2}. We denote by
colour(a) the colour given by the function colour : A →
{white, black} s.t.

colour(a) =
white if a ∈ {Wi ,wi ,W }

black otherwise

• T := {t | t ∈ × j
i=0Ai , for j ≤ 2n+ 1}, where A0 = {∅}. T

represents all the possible partial and terminal histories of
the game that represent the order of play.

• The player function Pl that requires players move at the
even depths of nodes and Nature at the odd depths of nodes,
as follows:

Pl (v ) =

d (v )
2 if d (v ) is even

0 otherwise.

Notice that every agent, except Nature, only plays once
and the depth of the vertex at which a player i , 0 has to
move is equal to 2i . The odd and even distinction ensures
the alternation between Nature’s turns and the players’. It
also emphasizes the sequential character of the Urn Game,
whereby each agent in turn observes a private draw from

22



3.2 the urn game

the urn, and then makes a guess. Also, notice that Vi =
{v ∈ T : d (v ) = 2i} if i ∈ Aд and V0 = {v ∈ T : d (v ) =
0 or d (v ) is odd }.

• For each player i ∈ Aд, the information partition Ii is given
by:

I (v ) = {v′ ∈ Vi |v (2j + 1) = v′(2j + 1),
∀j < i and v (2i ) = v′(2i )}

This formalization ensures that agents only observe the
actions of the previous players and their own signal. The
signals of the previous players and the choice of world are
not observed.

• A family of probability mass functions

(pv : A(v ) → [0, 1])v∈V0

such that

pv (a) =

 2
3 if colour(v (1)) = colour(a)
1
3 otherwise

where a ∈ A(v ), and pr : A(r ) → [0, 1] with a ∈ A(r ) such
that:

pr (a) =

 1
2 if a =W
1
2 otherwise

This family of probability distributions represents Nature’s
“behavioural strategy”, where each probability distribution
is independent of the other. In our game, Nature only deals
in two probability distributions: the one that assigns prob-
abilities to states of the world, and the other that assigns
probabilities to the private signals drawn by agents from
the urn.

Notice that in the above de�nition, we left the payo�s unspeci�ed,
hence we de�ned a class of urn games, not only a speci�c game. We
make the observation that urn games are games with perfect recall1,
and moreover, they are a synchronous system: there is a global clock
and time is common knowledge.

1 For every player i , if v1, v2 ∈ Ii , a ∈ A(v1) and v1a ≤ v2, then for every v ′ ∈ Ii (v2),
∃v ∈ Ii (v1) s.t. va ≤ v ′. Intuitively, perfect recall says that agents remember what
they knew in the past and what actions they previously took.
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informational cascades as games

Name Notation De�nition

colour function colour(·) colour : A→ {white, black} s.t.

colour(a) =
white if a ∈ {Wi ,wi ,W }

black otherwise

Table 3.2: The colour function returns, for any action in urn games,
the colour of the action: either black or white. This comes
in handy, for example, when stating payo�s that depend on
whether the agent guessed the correct colour of the true
urn.

De�nition 4: The Basic Urn Game

De�ne the Basic Urn Game as an extensive form game with im-
perfect information GU := 〈U ,π Ind

i 〉i∈Aд, constituted of an urn
game where the payo� function is:
For each player i , the individual payo� function πi , such that:

π Ind
i (v ) =

1 if colour(v (1)) = colour(v (2i + 1))
0 otherwise

This says that agents are rewarded if and only if the colour of their
action matches the colour of the true state of the world. Notice
that there is no payo� for player 0: Nature.

In the next section, we intend to explicitly and formally capture
the cascade-like reasoning as an equilibrium concept of the Basic Urn
Game. The aim of this is to explain cascade reasoning as a species of
higher order rational inference.

3.3 the cascade as a perfect bayesian nash equilibrium

Most solution concepts developed in game theory have no bite in
games of incomplete information. However, the notion of Perfect
Bayesian Nash Equilibrium captures an appropriate idea of rationality
for this setting. PBNE broadens the classical concept of an equilibrium
by adding a set of beliefs, on top of the usual strategy pro�le. The
belief set represents players’ probability assignments at the nodes of
the game tree: it represents the beliefs of each player about where in
the tree he is.
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Figure 3.1: The Urn Game tree for one player. Precedence is repres-
ented graphically by arrows: one node precedes another if
there is a sequence of arrows pointing from the �rst to the
second. The game begins at the initial node, and proceeds
along some path from node to immediate successor, until
it reaches a terminal node. The game ends there, and each
player receives the payo� associated with that terminal
node. The payo�s are written in vector form, with the �rst
element being the payo� of player 1, the second the payo�
of player 2, and so on. The 0 in the hollow circles repres-
ents Nature’s nodes, and the 1 in the �lled circle represents
player 1’s nodes. Each action a is written along the branch
that connects v to va.

This construction is motivated by the complication that arises in
games of incomplete information, where events in one players’ de-
cision tree may correspond to actions of other players. In this sense,
the optimality of an action at an information set may depend upon a
history that has occurred.

3.3.1 De�nitions

We �rst introduce the formal concepts needed for the de�nition of
a Perfect Bayesian Nash Equilibrium and then proceed to de�ne the
equilibrium itself. In doing so, we tailor the de�nitions for extensive
games of imperfect information with chance moves, by giving a formal
interpretation to the common understanding in the literature of what
a PBNE should entail.
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De�nition 5: Belief systems

A belief system is a function µ : V → [0, 1], where the restriction of
µ to an information set I ∈ Ii of player i , is a probability measure
µi : = µ � I → [0, 1].

Each µ (v ) represents the probability that Pl (v ) assigns to being at
node v . Consequently, µi summarizes the beliefs of player i about the
actions of the players that moved before him in the game.

De�nition 6: Behavioural strategies

A behavioural strategy σi of player i is represented by a function
σi : Vi →

(
A→ [0, 1]) such that the following conditions are met:

• σi (v ) is a probability measure on A

• σi (v ) (a) = 0 for ∀a < A(v )

• if v ∼i v′ then σi (v ) = σi (v′)

Denote by σ (v ) := σi (v )∀i ∀v ∈ Vi . Then σ is a pro�le of behavi-
oural strategies for every player in the game.

A behavioural strategy of player i is a function that assigns to each
of i’s information sets Ii a probability distribution over the actions in
A(Ii ). Notice that a behavioural strategy in which every probability
distribution assigns probability 1 to a single action is equivalent to a
pure strategy.

Two possible interpretations of behavioural strategies

1. Behavioural strategyσi can be interpreted to signify the common
belief of all players, except i , about the strategy that player i is
going to play in the game.

2. Alternatively, behavioural strategy σi states that there is com-
mon knowledge of the beliefs that each player has about his
own strategy, before the game starts.

De�nition 7: Assessments

A pair of the form (σ , µ ), where σ is a pro�le of behavioural
strategies for each player in the game, and µ is a belief system
represents an assessment.
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3.3 the cascade as a perfect bayesian nash equilibrium

Computation of expected payo� in extensive-form games

Given an extensive form game

G = 〈Aд ∪ {0},A,T , P , (Ii )i∈Aд, (πi )i∈Aд, (pv )v∈V0〉

and an assessment (σ , µ ), we want to compute the expected payo�
of player i at info set I . We do so piecemeal, using the following
constructions: �rst, let Prσ (w ,a) denote the probability that action a

is played at node w , given the strategy pro�le σ :

Prσ (w ,a) =
σPl (w ) (w ) (a) if Pl (w ) , 0
pw (a) if Pl (w ) = 0

Next, call Prσv (t ) the probability that node t will be reached given
that node v was reached and given behavioural strategy σ .

Prσv (t ) =


∏

d (v )<k≤d (t ) Pr
σ (t � k , t (k )) if v ≤ t

0 if v � t

Finally, call the probability that terminal node t will be reached,
given the beliefs µ of player i at information set I and the behavioural
strategy σ :

Prσ ,Iµ (t ) :=
∑
v∈I

µ (v )Prσv (t )

Then, the expected payo� of player i at information set I , is given by
the expression below:

E
µ, I
i (σ ) =

∑
t∈Term

Prσ ,Iµ (t )πi (t )

Now we are ready to de�ne a Perfect Bayesian Nash Equilibrium.

De�nition 8: Perfect Bayesian Nash Equilibria

The assessment (σ , µ ) is a perfect Bayesian equilibrium if and only
if the following conditions are satis�ed, with de�nitions adapted
from Osborne (2004, p. 323):

1. Sequential rationality: A strategy pro�le σ is sequentially
rational according to a belief system µ if at every informa-
tion set I , the player who moves at I is behaving optimally
according to the beliefs generated by µ at I . Formally, let i
be the player whose information set I is. Then, σ is sequen-
tially rational at I if:

E
µ,I
i (σi ,σ−i ) ≥ E

µ,I
i (σ ′i ,σ−i ) for all σ ′i
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2. Weak consistency of beliefs with strategies: For every inform-
ation set I , reached with positive probability2, given the
strategy pro�le σ , the probability assigned by the belief
system to each vertex t in I is given by:

µ (t ) =

∏
0<k<d (t ) Pr

σ (t � k , t (k ))∑
t ′∈I

∏
0<k<d (t ′) Prσ (t ′ � k , t ′(k ))

In terms of notation introduced earlier:

µ (t ) =
Prσr (t )∑

t ′∈I Pr
σ
r (t ′)

where recall that r denotes the root, or the empty history.

The above conditions can be interpreted intuitively as follows: the
�rst condition requires that agents’ strategies are optimal, after any his-
tory of events. More precisely, it requires that every player’s strategy
be optimal “in the part of the game that follows each of her informa-
tion sets, given the strategy pro�le and the player’s belief about the
history in the information set that has occurred, regardless of whether
the information set is reached if the players follow their strategies”
(Osborne, 2004, p. 325).

In brief, the second condition says that each player’s beliefs, at nodes
that accord with the strategy pro�le, must be correct: the probability
it assigns to every vertex must be the probability with which that
vertex is reached if the players follow their strategies. The di�culty
arises when a player i , at his information set, needs to consider the
probability of a vertex that, according to the strategy pro�le must
have been reached with probability 0. It is stipulated, that in such a
case, the player can have any beliefs at all. Then we can say that the
weak consistency of beliefs condition under-determines the beliefs
that players should hold in a game. We call the nodes that have a
positive probability of being reached given a strategy pro�le “on path”
nodes, and all the others “o�-path” nodes.

3.3.2 PBNE in Urn Games

At this stage we want to formalize in game theoretic terms the reas-
oning that players in the Urn Model informally engage in, and check
whether it is an equilibrium in the Basic Urn Game. Of the several ver-

2 Notice that given the nature of information sets, either every node in an information
set I is 0, or every node is non-zero. Thus the expression “an information set is
reached with positive probability” denotes an information set where every node is
non-zero.
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3.3 the cascade as a perfect bayesian nash equilibrium

sions of Perfect Bayesian Nash Equilibrium proposed in the literature,
the one we presented is the weakest, because it places no restrictions
at all on the beliefs following a zero-probability event. However, given
the paradoxical nature of cascade reasoning, we want to consider more
stringent criteria on the consistency-of-beliefs condition, that could
strengthen the equilibrium concept. We propose a new consistency cri-
terion, which we call self-biased consistency, that applies exclusively
to urn games and that strengthens the weak consistency-of-beliefs
condition of PBNE. After doing so, we check which other consistency
criteria presented in the PBNE literature our criterion satis�es.

De�nition 9: Self-biased consistency

Given a behavioural strategy σ and a node v , we call a belief
system self-biased consistent i�:

µ (v ) :=
Pr

sb (σ ,v )
r (v )∑

v∼iv ′ Pr
sb (σ ,v )
r (v′)

where sb (σ ,v ) is de�ned, for all w ∈ dom(σ ):

sb (σ ,v ) (w ) (a) =



1 if σ (w ) (a) = 0 and also
colour(a) = last(w ) and wa ≤ v′

for all v′ ∈ I (v )
0 if and σ (w ) (a) = 0 and also

colour(a) , last(w ) and wa ≤ v′

for all v′ ∈ I (v )
σPl (w ) (w ) (a) otherwise

De�nition 10: Self-biased equilibrium

An assessment (σ , µ ) is a self-biased equilibrium if and only if it
satis�es the following requirements:

1 Sequential rationality: σ is sequentially rational given the
belief system µ.

2 Self-biased consistency: µ is self-biased consistent with re-
spect to σ

De�nition 9 gives us a unique belief system that is determined, at
“on path” nodes by the consistency condition of PBNE, and at “o� path”
nodes by the belief that agents who deviated from their strategy, in fact
follow their signal. This conviction is common knowledge amongst
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informational cascades as games

agents and represents, intuitively, a mechanism of rationalization
of the actions of those players that deviate from their strategy. We
wish to refer to this rule for dealing with “surprises” as the self-biased
rule and note that it applies only to observable defectors: agents that
have falsi�ed their strategy during a play of the game. For all other
players whose guesses have been consistent with their strategies, the
self-biased rule is not applied.

One question that arises is how the self-biased consistency rule
relates to the consistency restrictions of PBNE proposed in the literat-
ure. We present three such restrictions:

• Structural consistency (Kreps and Wilson, 1982): An assessment
is structurally consistent if, for each information set I , there
exists a strategy pro�le σ ∗I such that σ ∗I (v ) > 0, ∀v ∈ I and

µ (v ) =
Pr

σ ∗I
r (v )∑

v∼iv ′ Pr
σ ∗I
r (v′)

That is, for every information set reached, the agent having to
move at that information set, can �nd a strategy pro�le that
would yield exactly the same beliefs as those held by the agent
at that information set.

• The reasonability criterion (Fudenberg and Tirole, 1991): Even
though this condition was developed for multi-stage games with
observable actions, it constitutes an important reference point
in the literature and we wish to mention it. The key condition of
this criterion imposes that a player’s action cannot signal private
information that the player does not possess when choosing that
action. Applying this to “o� path” information sets, the strategy
assigned to a deviator by the agent moving at that information
set, should not depend upon the deviator possessing information
he has no access to.

• The strategic independence principle (Battigalli, 1996): Informa-
tion about player k’s strategic behaviour is irrelevant for the
probability assignments exclusively concerning player j’s stra-
tegic behaviour, where j , k . In terms of deviations, it says
that if player k deviates and player j does not, the beliefs about
player j are updated in accordance with Bayes’ rule.

We observe that all of these requirements, interpreted on extensive
games with imperfect and chance moves, are ful�lled by the self-biased
consistency requirement. Next, we are going to de�ne the Bayesian
assessment and prove that, modulo the tie-breaking rule, it represents
the unique PBNE of the game.
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3.3 the cascade as a perfect bayesian nash equilibrium

Lemma 1

Every self-biased equilibrium is a Perfect Bayesian Nash Equilib-
rium.

Proof. It is straightforward to notice that the criteria for self-biased
equilibrium are a re�nement on the criteria of PBNE. �

De�nition 11: The Bayesian assessment

We de�ne the assessment (σBayes , µBayes ) by recursion on the
depth of v ∈ V :
Stage 1: v ∈ V1

µBayes (v ) =
pv�1(v (1)) · pv�2(v (2))∑

v ′∼1v (pv ′�1(v
′(1)) · pv ′�2(v′(2)))

σ
Bayes
1 (v ) (a) =

1 if colour (a) = colour (last (v ))
0 otherwise

Stage i: v ∈ Vi

µBayes (v ) :=
Pr

sb (τ ,v )
r (v )∑

v∼iv ′ Pr
sb (τ ,v ′)
r (v′))

where τ = (σ1, . . . ,σi−1)
Next, we de�ne

µBayes (W |v ) =
∑

v ′∈I (v )s .t .v ′(1)=W
µBayes (v′)

which depends on the restriction of σBayes to the predecessors of
v . µBayes (W |v ) informs a decision on:

σ
Bayes
i (v ) (a) =



1 if µBayes (W |v ) > 1
2 and a =Wi

1 if µBayes (W |v ) < 1
2 and a = Bi

1 if µBayes (W |v ) = 1
2 and colour(a) =

colour(last(v ))
0 otherwise

Considerations on the Bayesian assessment

The strategy pro�le σBayes is the one that corresponds to every player
guessing the colour of the urn they believe is most probable, given
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informational cascades as games

their beliefs and other player’s strategies. In this sense we call the
individual strategy σBayes

i the Bayesian strategy . However intuitive,
the reader is invited to resist the association of the Bayesian strategy
with Bayesian reasoning, since the latter concept is captured by all
the other strategy pro�les we consider in the thesis. In more general
terms, Bayesian reasoning is equivalent, in games, to instrumental
rationality. We do not, therefore, want to associate an entire species
of reasoning with a unique strategy.

The belief system µBayes is de�ned as to ful�l the self-biased consist-
ency requirement. This means two things: one, that on path, µBayes
satis�es the weak consistency-of-beliefs requirement of PBNE and
two, that o� path µBayes is determined by the self-biased rule, which
requires that agents use a back-up strategy for forming beliefs (by
applying Bayes’ rule) about observable deviators in a game. This back-
up strategy is, in e�ect, the Condorcet pure strategy we will introduce
formally in Chapter 4, which states that players always guess the urn
that matches the colour of their signal.

The choice of the Condorcet strategy, as a fall-back option for the
Bayesian strategy, is motivated by two principles. The �rst principle
is unfalsi�ability. Say a player j defects from his strategy σBayes . Then
player i believes j has followed his signal. Since player i cannot ob-
serve j’s signal, his new belief about j cannot be proved wrong. The
second principle is rationalizibility: the Condorcet strategy ensures
that players entertain a certain belief in the other’s rationality. Even if
their strategy is not optimal, it is at least justi�able on other grounds,
like the maximization of the social welfare. We will discuss the merits
of the Condorcet strategy more in depth in Chapter 4, where we prove
that it is a PBNE of a di�erent urn game.

Theorem 3: The PBNE of the Urn Game

The assessment (σBayes , µBayes ) represents a Perfect Bayesian Nash
Equilibrium of the Urn Game GU = 〈U ,π Ind

i 〉i∈Aд.

Proof. In order to prove that (σBayes , µBayes ) is a Perfect Bayesian Nash
Equilibrium, we will need to prove the following (see Section 3.3):

claim 1 σBayes is sequentially rational given the belief system µBayes .

claim 2 µBayes is consistent with respect to the strategy pro�le σBayes .

Proof of Claim 1. We need to check whether, at any node v of player
i , the action dictated by σBayes gives i the highest expected payo�. But
this is immediate, since the expected payo� for any player i is equal
to the subjective probability they assign to their guess being correct.
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3.3 the cascade as a perfect bayesian nash equilibrium

It only remains to pursue this intuition formally. We know that, for
any σ :

E
µ, I
i (σ ) =

∑
t∈Term

∑
v∈I

µ (v )Prσv (t )π
Ind
i (t )

Since π Ind
i (v ) returns 0 whenever the action of the agent does not

match the state of the world, the terminal nodes t that don’t satisfy
the condition colour (t (1)) = colour (t (2i + 1)) disappear from the sum.
Then:

E
µ, I
i (σ ) =

colour (t (2i+1))=colour (t (1))∑
t∈Term

∑
v∈I

µ (v )Prσv (t )

which is equivalent to:

E
µ, I
i (σ ) =

∑
t∈Term

colour (t (2i+1))=colour (v (1))
v∈I

µ (v )Prσv (t )

which is equivalent to:

E
µ, I
i (σ ) =

∑
t∈Term

colour (t (2i+1))=colour (v (1))
v ,t�(2i+1)∈I

µ (v )σ (v ) (t (2i + 1))Prσt�(2i+2) (t )

Observe that ∑
t∈Term

t�(2i+1)∈I
Prσ

t�(2i+2) (t ) = 1 and t (2i + 1) ∈ {Wi ,Bi }.
Therefore, we get that:

E
µ, I
i (σ ) =

∑
v (1)=W
v∈I

µ (v )σ (v ) (Wi ) +
∑

v (1)=B
v∈I

µ (v )σ (v ) (Bi )

Now, it is easy to notice that the maximum of the expected payo�
at node v E

µ, I
i (σ ) is attained for σ a behavioural strategy that assigns

probability 1 to a ∈ A(v ) for which ∑
µ (v )colour (v (1)=colour (a)) is largest.

In case ∑
v (1)=W
v∈I

µ (v ) =
∑
v (1)=B
v∈I

µ (v )), then any strategy is optimal.

In the particular case of µBayes , we get that σBayes is optimal.
Intuitively, the expected payo� of a strategy for player i is nothing

than the subjective belief player i assigns to the world being of the
colour of his guess. Therefore, as long as the choice of action is guided
by the colour of the world that is more probable than the other, players
are maximizing their payo�. We proved that the strategy pro�le σBayes

is sequentially rational given µBayes .
�
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informational cascades as games

Proof of Claim 2. We have de�ned µBayes using the de�nition of self-
biased consistency. Therefore, it satis�es the weak consistency re-
quirement of PBNE by de�nition.

�

�

The “uniqueness” of PBNE in the Basic Urn Game

We observe that all the PBNE of the Basic Urn Game agree “on path”
with the above Bayesian assessment (σBayes , µBayes ), by virtue of the
sequential rationality proof above. Moreover, the Bayesian assessment
is not only a PBNE but also a self-biased equilibrium, by virtue of
ful�lling a stronger consistency requirement than demanded by PBNE.
We showed in Theorem 1 that cascades in the Basic Urn Game happen
20% of the time if players play according to any PBNE at “on path”
nodes, that has the same tie-breaking rule as us. This leads to the
conclusion that cascades are, in a sense, “unavoidable”, if players are
rational.

As the last result of this chapter, we would like to formally character-
ize the result by Bikhchandani et al. (1992), that argued the probability
of a cascade forming during a play of an urn game is 1, whenever
the number of players is in�nite. We slightly generalize his result, by
showing that the probability of a cascade happening approaches one as
the number of players reaches∞, for any Urn-type game, where all but
an initial segment of players, play the Bayesian strategy, σBayes . We
will make use of this theorem in order to prove things about cascades
later in the thesis.

Theorem 4: Certainty of cascades

The probability that a cascade starts during a play of an Urn-
type game G = 〈U ,π 〉, approaches 1 as the number of players
n → ∞, whenever all but a �nite initial number of players, play
the Bayesian strategy, sBayes .

Proof. Let, for simplicity, n be even total number of players in an
urn-type game. Let p denote the probability of a low signal (one that
doesn’t match the true colour of the world). The proof is based on
the observations made in Theorem 1, namely that for a cascade to not
occur during an urn-type game, the value of k constrained to:

colour (c2i−1) = colour (c2i )∀i ≤ k

must be maximal, i.e. k = n−2
2 . Only then are cascades, true or false,

ensured to not happen. What is the probability of such a string of
guesses to occur during a play of an urn game ?
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3.3 the cascade as a perfect bayesian nash equilibrium

P
( ∧
1≤i≤k

colour (c2i−1) , colour (c2i )
)
=

Pr




∧
1≤i≤k

((
colour (c2i−1) = “high”∧ colour (c2i ) = “low”

)
∨

(
colour (c2i−1) = “low”∧ colour (c2i ) = “high”

))
=

(
p (1 − p)

)k
P (no cascade forms) = (p (1 − p))

n−2
2

for a group of n agents. As n → ∞, we have

limn→∞P (no cascade) = 0

Therefore, the probability of a cascade occurring during a play of
the game is equal to 1. �

This concludes Chapter 3, which presented informational cascades
in the architecture of game theory and made use of equilibrium con-
cepts in order to underpin the reasoning of agents caught in a cascade.
This was achieved by giving a clear and formal account of the Per-
fect Bayesian Nash Equilibrium concept for imperfect information
games with chance moves. Along the way, a re�nement of PBNE for
urn-type games was de�ned, called self-biased equilibrium, and was
proved that the reasoning leading agents into cascades abides by these
even stringent equilibrium requirements. The chapter also played a
foundational role, by introducing background theoretical notions and
preparing the ground, with Theorem 3 and Theorem 4, for assessing
optimal behaviour in games that depart from the Basic Urn Game in
natural ways.

We end with noting that the game model of cascades is able to
capture a wide array of informational situations. For example, it can
incorporate the scenario in which players do not have perfect recall,
in the sense that they forget some of the things that they knew earlier.
In our Basic Urn Game, we can interpret this feature as expressing the
limited observational powers of agents: people in the sequence do not
remember what everyone else before them did, but only the last 2 ac-
tions, for example. This is only one of several potential generalization
of our informational cascade model. Others will be considered in the
next chapter.
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4

S O C I A L DY N A M I C S O F I N F O R M AT I O N G A M E S

In this chapter various payo� con�gurations for urn games are con-
sidered. By implementing di�erent scenarios, we generalize the cas-
cade setting and explore, using game theoretic tools, the interactions
and tensions between notions like self-interest and cooperation, and
their composite in�uence on the likelihood of cascades. These consid-
erations bring to life interesting patterns of information �ow.

Modi�cations to the canonical payo� structure in informational
cascade games have been considered in the literature before. The con-
formity and the majority payo� were treated by Hung and Plott (2001),
however their focus was on experimental results. Banerjee (1992)
treats modi�cations that reward agents based on their rank within the
sequence of decisions, something that we do not consider in this thesis.
One of the original contributions of this chapter is a formal game the-
oretic analysis of the games resulting from payo� modi�cations, with
a focus on the impact of the changes on the social welfare of the group.
Another is constituted by the proof of Theorem 6, which represents,
apart from a result about optimal strategies, a quanti�cation of the
observed fragility of cascades in urn-type games. The last contribution
of the chapter takes the form of a strategic game called the Hybrid
Coordination game, where joint strategies are considered. This game
induces a socially desirable outcome in an urn-type game, where play-
ers are rewarded both for individually and collectively �nding the
truth.

Structurally, the chapter is divided into two parts: the �rst part
introduces payo� structures that depart from the Basic Urn Game
payo�, in order to determine what changes need to be put in place
for groups to achieve better social outcomes. The second part of the
chapter contains the Hybrid Coordination Game, a strategic form
game, designed to force agents to cooperate.
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social dynamics of information games

4.1 modifications of the basic urn game

In general, under common knowledge of rationality, di�erent pay-
o�s make di�erent actions rational, and therefore, to a certain extent,
players can indirectly communicate their private signals to each other
via their actions. As we have seen in the Basic Urn Game, the cas-
cade starts as soon as the communication of private signals amongst
agents ends. Then a natural question to ask is how changes in payo�
structures alter communication, via actions, amongst agents. This
section tries to answer this question by modifying the payo� structure
of the canonical Basic Urn Game, in order to check whether, and to
what degree, the likelihood of cascades is dependent upon the payo�
structure of the game.

De�nition 12: The majority function

The majority function maj : T \ r → {W ,B, 0} returns the major-
ity decision in urn-type games:

maj (v ) =


W if |{i | v (2i + 1) =Wi , i < j}| > j

2
B if |{i | v (2i + 1) = Bi , i < j}| > j

2
0 otherwise.

where j=Pl(v)

Consider a family of urn games, with di�erent payo� structures,
which we call social dynamics of information games. The payo� struc-
tures that diverge from the Basic Urn Game re�ect di�erent empirical
situations that broaden the scope of informational cascade models.

De�nition 13: The Conformity Urn Game

With the conformity payo� subjects receive a positive payo� if
and only if their guess matches that of the majority, no matter if
the majority is right or wrong.

π
Conf
i (v ) =

1 if colour(v (2i + 1)) = colour(maj(v ))
0 otherwise

The Conformity Urn Game is an urn game

GConf = 〈U ,πConfi 〉i∈Aд∪{0}
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that rewards agents according to the conformity payo�. Recall
thatU represents a generic urn game, introduced in De�nition 3.

The conformity payo� turns the urn game into a coordination game,
whereby the reward to an agent adopting an action increases in the
number of other agents adopting the same action (for example the con-
vention to drive on the right side of the road, the use of fax machines,
etc).

De�nition 14: The Majority Urn Game

The majority payo� is a payo� according to which subjects re-
ceive a positive payment if and only if the group decision (determ-
ined by the majority rule) is correct.

πMaj
i (v ) =

1 ifmaj (v ) = v (1)
0 otherwise

The Majority Urn Game is an urn game

GM = 〈U ,πMaj
i 〉i∈Aд∪{0}

in which agents are rewarded according to the majority payo�.

Experimental results (Hung and Plott, 2001) show that the majority
payo� reduces conformity among early decision-makers since each
agent has an incentive to reveal his private information to subsequent
players. The complete revelation of private information precludes the
formation of cascades altogether. However, the conformity payo�, as
the name suggests, induces pure conformity, and therefore leads to a
cascade from the beginning of the game. Therefore, evidence shows
that variations in payo� structures lower or rise, depending on the
variation, the likelihood of cascades forming.

The majority payo� applied to the urn game incentivizes agents
to take the social welfare of the group into consideration. It aptly
models voting situations, in which the majority decides upon a group
enforceable law, that each individual must abide by. From a mechanism
design perspective, modifying the payo� of the Basic Urn Game makes
sense if the aim of the designer is to maximize the learning potential
of the group, or ensure a socially desirable outcome.

De�nition 15: The Hybrid Urn Game

The hybrid payo� rewards a player if the majority is right and if
he guesses correctly.

Let πHyb
i (v ) = y · π Ind

i (v ) + x · πMaj
i (v )

39



social dynamics of information games

The x ,y-Hybrid game is an urn game GHyb = 〈U ,πHyb
i 〉i∈Aд∪{0}

where agents are rewarded both according to the hybrid payo�
function with parameters x and y.

The hybrid payo� is designed in such a way as to create con�icting
interests for strategic reasoners, between individualistic and collect-
ive behaviour. This is achieved by tying individual payo�s to the
performance of the majority vis-à-vis the truth. This type of payo�
characterizes the adoption decisions of new technologies, where one
component of the payo� is determined by the quality of the product,
perceived subjectively by an individual, and the other payo� compon-
ent is determined by whether the majority of the population adopts
the same technology (since, by adoption of the majority, there will
be more updates, extensions, new versions for that technology, and
hence more satisfaction for the individual adopter).

4.2 incidence of cascades

We set out to assess the likelihood of cascades formally, by determining
how rational agents would play, under di�erent payo�s. In doing so,
we make use of concepts from game theory, namely PBNE, and try
to show a series of positive and negative results, in various games,
about two main strategies: the Bayesian strategy and the Condorcet
strategy. These two strategies are of particular importance, since they
represent very distinct levels of communication. While the Bayesian
strategy can lead to no communication, relatively soon in the game,
the Condorcet strategy is the equivalent of full communication. Since
communication levels in games determine the incidence of cascades,
analysing whether one of these two salient strategies, or a combination
of both, will be played by rational agents, will in fact determine how
likely cascades are to start during a play of the game.

De�nition 16: The conformity assessment

The assessment (σConf , µConf ) is an assessment where:

σConf (v ) (a) =


1 if maj(v ) , 0 and colour(a) = colour(maj(v ))
1 if maj(v ) = 0 and colour(a) = colour(last(v ))
0 otherwise

for any v and i s.t. Pl (v ) = i and a ∈ A(v ). µConf is the belief
system determined by the self-biased consistency requirement
introduced in De�nition 10:
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4.2 incidence of cascades

µConf (v ) :=
Pr

sb (σConf ,v )
r (v )∑

v∼iv ′ Pr
sb (σConf ,v )
r (v′))

Intuitively, σConf represents the behavioural equivalent of the pure
strategy that requires agents to follow the majority decision of the
players who moved before him. This strategy is the formal equival-
ent of the concept of conformity. In Theorem 5 we show that the
conformity assessment represents a PBNE of the Conformity Game.

Theorem 5

The assessment (σConf , µConf ) is a PBNE of the Conformity Urn
Game.

Proof. We have to check only one of two requirements for assessments
to qualify as PBNE, namely, sequential rationality. Weak consistency-
of-beliefs is satis�ed by de�nition. The intuition is that, after the �rst
player, who guesses the colour of his marble, all subsequent players
will imitate the �rst. This induces unanimity in guesses throughout
the entire game, and therefore, the guarantee of the conformity payo�.
It is evident that no other strategy could achieve a better payo� than
this. In the proof, we pursue this intuition formally:

We compute the expected utility at each node v of a player i , given
her beliefs µConf , her information set I and the payo� function πConfi :

E
µConf , I
i (σConf ) =

∑
t∈Term

Prσ
Conf ,I

µConf
(t )π

Conf
i (t )

where Prσ
Conf ,I

µConf
(t ) is the probability that terminal node t is reached,

given the strategy pro�le σConf and the beliefs µConf at information
set I . First, notice that there will always exist a majority, established
after player 1’s move. Then, notice that every terminal history t

that extends v , in which a player j > i at node t � 2j + 1 does
not follow the guess of the majority, has probability 0 of occurring
because σj (t � 2i + 1) (t (2i + 1)) = 0. Finally, notice that πConfi (t ) for
the terminal histories that have non-zero probability of occurring is
always 1. Given all this, we can re-state the expected payo� of player
i at information set I as:

E
µConf , I
i (σConf ) =

∑
t∈Term

Prσ
Conf ,I

µConf
(t )

Since, naturally, one of the possible terminal histories must occur
at the end of the game, the expected payo� of player i is:
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E
µConf , I
i (σConf ) = 1

We obtained that the expected payo� of player i , given his beliefs µConf
and strategy pro�le σConf is maximum and equal to 1. Therefore, any
other behavioural strategy σi will not yield a better payo� to player i
than his strategy σConfi . The conformity strategy pro�le is sequentially
rational with respect to its consistent beliefs µConf . �

Before we move on to Theorem 6 that shows the Bayesian strategy
pro�le is not a PBNE of the Majority Urn Game, we introduce the
Condorcet assessment, which we have discussed informally until now,
as part of self-biased consistency requirement.

De�nition 17: The Condorcet assessment

The assessment (σCond , µCond ) is a self-biased consistent assess-
ment where:

σCond (v ) (a) =

1 if colour (a) = colour (last (v ))
0 otherwise

for any v and a ∈ A(v ). µCond is the self-biased consistent belief
system introduced in De�nition 10:

µ (v ) :=
Pr

sb (σCond ,v )
r (v )∑

v∼iv ′ Pr
sb (σCond ,v )
r (v′))

Theorem 6

The assessment (σBayes , µBayes ), de�ned in De�nition 11, is not a
PBNE of the Majority Urn Game, when the number of players
n → ∞.

Proof. We show that the Bayesian strategy pro�le is not sequentially
rational, given the players’ beliefs µBayes , and therefore not a PBNE.
To this end, we prove the following claim:

E
µC ,I
k

(σCondk ,σBayes
−k

) > E
µBayes ,I
k

(σ
Bayes
k

,σBayes
−k

)

for some k ∈ Aд and one of his information sets I , where µC and
µBayes represent the self-biased consistent belief systems with respect
to strategy pro�le (σCond

k
,σBayes
−k

), respectively σBayes . We begin by
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noticing that πMaj (t ) = 0 if maj (t ) , t (1)). Then expected payo� of
player k at information set I is equal to:

E
µ,I
k
(σ ) =

maj (t )=t (1)∑
t∈Term(T )

Prσ ,Iµ (t )

which can be restated more intuitively as

E
µ,I
k
(σ ) = P (majority is right | σ , µ ), ∀k ∈ Aд

Given that every player k seeks to maximize his expected payo�,
every player therefore seeks to maximize the social welfare of the
group, represented by the probability that the majority will be right.
The assumption that n → ∞ allows to set the probability of a cascade
forming during the game to 1 by Theorem 4. This means terminal
histories contain either a false cascade and therefore a majority that
is wrong, or a true cascade and therefore a majority that is correct.
Writing TC for true cascade and FC for false cascade, this means:

P (majority is right) = P (TC forms)

Therefore, the claim can now be restated as:

P (TC | (σCondk ,σBayes
k

), µC ) > P (TC | (σBayes
k

,σBayes
k

), µBayes )

Given that P (TC) = 1 − P (FC), we can state the claim as:

P (FC | (σCondk ,σBayes
k

), µC ) < P (FC | (σBayes
k

,σBayes
k

), µBayes )

Take player k to have his turn after a cascade has started and consider
the decision at his node v . Player k is better advised to play the
Condorcet rather than the Bayesian strategy, since the former yields a
lower probability of a false cascade happening in the game than the
latter. This is what we show in the rest of the proof, by calculating a
series of probabilities.

• The probability that a false cascade has formed before player k’s
turn can be easily approximated by the probability that a false
cascade happens in the entire game. By Theorem 1, this is equal
to 1

5 .

• The probability that a false cascade formed beforek will continue
after k’s move, given that k plays the Condorcet strategy, is

1
5︸︷︷︸

pr that false cascade forms before k

·
1
3︸︷︷︸

pr that k′s signal is low quality
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• The probability that a false cascade will form at some point after
k , given that k broke a false cascade started before k and k plays
the Condorcet strategy, is:

1
5︸︷︷︸

pr false cas before k

·
2
3︸︷︷︸

pr k′s signal is high

·
1
3︸︷︷︸

pr (k+1)′s signal is low

together with
1
5︸︷︷︸

pr FC before k

·
2
3︸︷︷︸

pr k′s signal is high

·
2
3︸︷︷︸

pr (k+1)′s signal is high

·
1
5︸︷︷︸

pr FC a�er k

• The probability that a false cascade will form after k given that a
true cascade was broken by k and k plays the Condorcet strategy
is:

4
5︸︷︷︸

pr TC before k

·
1
3︸︷︷︸

pr k′s signal is low

·
1
3︸︷︷︸

pr (k+1)′s signal is low

·
1
5︸︷︷︸

pr FC a�er k

Now we are ready to compute the probability of a false cascade
starting after player k , given that he plays the Condorcet strategy and
everyone else is plying the Bayesian strategy :

P (FC | σCondk ,σBayes
−k

) = P (FC continues | FC before k )
· P (FC before k )

+P (FC after k | FC broken by k )

· P (FC broken by k )

+P (FC after k | TC before k )
· P (TC before k )

By plugging in the numbers computed earlier, we get that:

P (FC | σCondk ,σBayes
−k

) =
1
5 ·

1
3 +

1
5 ·

2
3 ·

1
3 +

1
5 ·

2
3 ·

2
3 ·

1
5 +

4
5 ·

1
3 ·

1
3 ·

1
5

=
11
75

By applying Theorem 1 for p = 1
3 , we get that

P (FC forms | (σBayes
k

,σBayes
−k

)) =
1
5

and since 11
75 <

1
5 , the Condorcet strategy for player k yields a higher

expected payo� than the Bayesian strategy, given that everyone else
plays the Bayesian strategy. We proved that σBayes is not sequentially
rational given µBayes .

�
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4.2 incidence of cascades

If we calculate the percentage di�erence in likelihood of cascades,
it turns out that player k , by making his private signal public, reduces
the probability of a false cascade by a little more than a quarter. The
interesting conclusion to be drawn from Theorem 6 is that it takes
very little to reverse a cascade, even in a population dominated by
conformists. One deviator, known as revealing his private signal, is
su�cient to induce a sudden change of actions in the direction of the
true state of the world. This testi�es to the fragility of cascades that
allow single agents to break and (or) start a new pattern of conformism.

We now move to the next result of this section. We show that the
Condorcet strategy pro�le together with its consistent belief system
is a Perfect Bayesian Nash Equilibrium of the Majority Urn game. The
interesting part of the proof is showing that the Condorcet strategy is
a best response to everyone else choosing Condorcet. As before, we
only consider the two salient strategy pro�les Condorcet and Bayesian.
In the language of mechanism design, we could say that the imposition
of πMaj induces a Bayesian incentive compatible mechanism for the
revelation of private information.

Theorem 7

The assessment (σCond , µCond ) represents a Perfect Bayesian Nash
Equilibrium of the Majority Urn Game.

Proof. In what follows, we only prove that σCond is sequentially ra-
tional given the set of beliefs µCond , as proving weak consistency-of-
beliefs is evident. For this purpose, we proceed to prove the following
claim:

Eµ
Cond ,I (σCondi ,σCond−i ) = 1

where

Eµ
Cond ,I (σCondi ,σCond−i ) = P (majority is right | σCondi ,σCond−i )

as proved in Theorem 6.

case 1 Assume n is large.
By applying the Condorcet Jury Theorem (See 2) to the Majority
Urn Game, we get that the probability of a majority of people
being right approaches 1, as n → ∞.

lim
n→∞

P (majority is right | σCondi ,σCond−i ) = 1

In fact, given the precision of our high quality signal, 2
3 , the prob-

ability that the majority gets it right becomes approximatively 1,
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for relatively low n’s. So, for large n’s, we approximate the prob-
ability that the majority is right, given σCondi , by 1. Therefore,
we can say that no strategy will do better than Condorcet since:

E (σ
Bayes
i ,σCond−i ) = P (majority is right | σBayes

i ,σCond−i ) < 1

case 2 Assume n is small.
Here, we can further assume that player i acts as if his move
would make a di�erence to the outcome of the game. For oth-
erwise, he would be indi�erent between choosing among his
strategies.
Player i can only make a di�erence, if at the end of the game, all
the other players would have chosenWi and Bi in equal numbers.
In this case, both his Bayesian and Condorcet strategies will
advise him to follow his signal. Therefore, the argument is that,
if player i believes he has a say in the game, no matter where he
is in the sequence, then he must believe that by the end of the
game, the scores are tied. In that case then, both the Bayesian
and the Condorcet strategies tell him the same thing: to follow
his signal.
Therefore, a rational agent i , ignorant of whether he will have
made a di�erence by the end of the game, will always choose to
follow his signal, since following his signal is as good as choosing
according to his belief in the right urn in case he doesn’t make a
di�erence, and better in case he does get to have the swing vote,
in retrospect.

�

The last results of the section concern showing that in the Hybrid
Game, the Bayesian strategy and its accompanying belief system per-
sists as a PBNE, for certain values of x and y. As expected, this result
shows the mitigating e�ect on the likelihood of cascades occurring in
the game, that the addition of a payo� component based on the per-
formance of the majority. However, we prove last that the Condorcet
strategy is never a PBNE, no matter the values of x and y, as long as
x , 0. The Hybrid Game thus represents a middle ground between
the Basic Urn Game and the Majority Urn Game in terms of cascade
likelihood.

Theorem 8
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4.2 incidence of cascades

For n large enough, and for x ,y such that y > 4x/10, then the
assessment (σBayes , µBayes ) is a PBNE of the x ,y-Hybrid Urn Game
with n players.

Proof. As before, we only need to check the sequential rationality
condition of a PBNE. More speci�cally, we are looking for the x and y
values for which the Bayesian strategy is sequentially rational, given
the beliefs µBayes . We begin by computing player i’s expected payo�
of the Bayesian strategy, Ei (σBayes

i ,σBayes
−i ). Given that n → ∞ and

every player plays σBayes
i , by Theorem 4 we get that the likelihood of

a cascade forming during the game is 1. Therefore, there will always
be a majority guess, and that guess will be correct if and only if the
cascade that forms is a true cascade. By Theorem 1, the probability of
a true cascade forming during a play of the game is 4

5 and it is precisely
the probability that the majority is right. Therefore, the expectation
of the collective payo� component x is determined by the probability
of a true cascade forming and is, consequently, equal to 4

5x . Moreover,
given that n is very large, cascades tend to ensue relatively early in the
game, so we can safely approximate the probability that any individual
is right by the probability of a true cascade forming. This gives us the
following expression for the expected payo� of player i:

E (σ
Bayes
i ,σBayes

−i ) = P (true cascade)x + P (true cascade)y

=
4
5 (x +y)

It remains to show that the expected payo� of playing the Bayesian
strategy cannot be surpassed by playing any other strategy. We argue
that we only need to look at only one other candidate strategy, namely
the only other that seems reasonable given the payo� structure: the
Condorcet strategy.

As computed in Theorem 6, we know that the likelihood of a cascade
forming when one player plays the Condorcet strategy and all the
others play the Bayesian strategy is:

P ( false cascade | (σCondi ,σBayes
−i )) =

11
75

However, the probability of a cascade forming during a play of this
game is, by Theorem 4, also 1. Then, following the same reasoning as
above, we obtain that:

P (majority is right | (σCondi ,σBayes
−i )) = P (true cascade | (σCondi ,σBayes

−i ))

= 1 − 11
75

=
64
75
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and hence the expected payo� of playing the Condorcet strategy is:

E (σCondi ,σBayes
−i ) = P (true cascade)x + P (i’s signal is correct)y

=
11
75x +

2
3y

It remains to calculate for which values of x and y:

4(x +y)

5 >
2y
3 +

64x
75

After calculations, we obtain that the Bayesian strategy is sequentially
rational whenever y > 4x

10 . Therefore, we showed that the Bayesian
assessment is a PBNE, whenever y > 4x

10 . �

We make the observation that, in the Hybrid Urn Game, the Con-
dorcet assessment is never a PBNE, for all values x ,y with y , 0,
since, for a player i , it gives a lower expected payo� than the Bayesian
strategy. In the next section, we try to rectify this sub-optimal result
by modifying the structure of the game.

As summarized in Table 4.1, in this section we have shown that:

• The conformity assessment is a PBNE when the payo� rewards
agents based on the ability to conform to the majority’s decision.

• The Bayesian assessment ceases to be a PBNE, when the payo�
rewards agents solely based on the group outcome.

• The Condorcet assessment is a PBNE, when an agents’ payo� is
entirely dependant on the group outcome.

• The Bayesian assessment is a PBNE, whenever agents are rewar-
ded, in certain ratios, both based on their individual performance
and that of the group.

The inevitable conclusion that follows is that, whenever an incentive
is present that is not exclusively based on the group attainment of
truth, optimal behaviour leads to cascades.

4.3 the hybrid coordination game

As we’ve seen in the previous section, under our most general payo�
considered, the Hybrid Urn Game is still very vulnerable to cascade
behaviour (we proved the Bayesian assessment represents a PBNE
and the Condorcet assessment doesn’t). In this section, we modify
some of the structural assumptions of the Hybrid Urn Game in order to
direct the optimal behaviour of players towards more socially desirable
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4.3 the hybrid coordination game

Assessment Conformity Urn G Majority Urn G Hybrid Urn G

Condorcet 3 7
Bayesian 7 3
Conformity 3

Table 4.1: PBNE status for di�erent Urn Games and assessment types.
Empty combinations are conjectured to be a 7, but not
proven in this thesis.

outcomes. In particular, we want to create the e�ects of a pre-play
deliberation stage in which players can coordinate on their strategies,
prior to them knowing their private information (including their turn
in the game). This handily generalizes the cascade setting, in order
to accommodate more interesting and life-like situations, such as the
deliberations of a jury in a trial (Osborne, 2004, p. 301). Given the
symmetry of each player’s information, it’s only natural to look at
situations in which they all need to agree, as a grand coalition, on a
joint strategy pro�le. Deviations from an agreed upon joint strategy
will be penalized.

The pure joint strategies available to a group are just the Cartesian
product of the individual pure strategies of the group members. We
assume, for simplicity of exposition, that there are only two salient
individual pure strategies each agent can “rationally” choose from:
the Condorcet and the Bayesian strategies, introduced below, together
with the de�nition of a pure strategy:

De�nition 18: Pure strategies

A pure strategy of player i in an extensive game is a function
si : Vi → A, such that:

• si (v ) ∈ A(v )

• if v ∼i v′ then s (v ) = s (v′)

We denote a pure strategy pro�le by s = (s1, . . . , sn ).

A pure strategy can be seen as a behavioural strategy in which every
distribution assigns probability 1 to a single action.

De�nition 19: The Bayesian Pure Strategy

The Bayesian pure strategy dictates that every player i chooses,
at each of his nodes v , the action with the highest probability of
being true, according to his beliefs µi .
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s
Bayes
i (v ) =


Wi if µi (W ) > 1

2
Bi if µi (B) > 1

2
a ∈ A(v ) s.t. colour(a) =
colour(last(v ))

otherwise

where µi (W ) =
∑s .t .t (1)=W

t∈I µi (t ).

This de�nition re�ects the self-biased tie-breaking rule assumed in
the Urn Model.

De�nition 20: The Condorcet Pure Strategy

The Condorcet strategy dictates that players never take into con-
sideration any information other than the one conveyed by their
own private signal:

sCondi (v ) =

Wi if last (v ) = wi

Bi otherwise

Of all the possible joint strategies that the grand coalition can agree
upon, three are of particular interest, and therefore we limit the agents
to considering only these in the deliberation period. These salient
joint strategies, which we call protocols, are described below in detail:

De�nition 21: The Condorcet Protocol

Under the Condorcet protocol sCond , every player i plays the Con-
dorcet strategy sCondi . This is the strategy according to which
one guesses the colour of the marble one draws from the urn.
Formally, sCond = (sCond1 , sCond2 , . . . , sCondn ).

De�nition 22: The Bayesian Protocol

Under the Bayesian protocol sBayes , every player i plays the Bayes-
ian strategy s

Bayes
i . This requires that every player guesses the

urn for which the posterior probability, after having observed his
signal and the actions of players before him, is higher. Formally,
sBayes = (s

Bayes
1 , sBayes2 , . . . , sBayesn ).

De�nition 23: The Hybrid Protocol

The Hybrid protocol prescribes that the �rst n
m people in the

sequence(where n
m is odd and m is chosen such that n

m ∈ N )
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4.3 the hybrid coordination game

guess the colour of their marble, and the rest each guess what the
majority of the �rst n

m people have guessed. Letm ≥ 2 be �xed.

1 2 . . . n
m︸     ︷︷     ︸

Condorcet

|

imitation︷        ︸︸        ︷
n

m
+ 1 . . .n

No player knows, a priori, what his place in the sequence will be.
Formally, sHyb = (sCond1 , . . . , sCondn

m
, sBayesn

m
, . . . , sBayesn ).

Our goal is to design a game that simulates a pre-play delibera-
tion period, before the Hybrid Urn Game starts, where players can
coordinate on the joint strategy that maximizes the social welfare of
the group1. First, we prepare the ground by introducing the de�nition
of extensive form games with simultaneous moves. Then, we de�ne the
Hybrid Coordination Game, which introduces a new turn into urn
games, at which all agents choose simultaneously which of three pure
strategies to play for the rest of the game. The choices of each player
are publicly revealed when the turn ends, at which point an urn game
starts. The payo�s of the Hybrid Coordination Game are the hybrid
payo�s with two twists: a penalty for those players who no not follow
the strategy they chose in the �rst turn of the game and a penalty for
lack of coordination amongst agents.

De�nition 24: Extensive form games with simultaneous moves

(Adapted to imperfect information games from Osborne (2004, p.
206). An extensive form game with imperfect information and
simultaneous moves is a structure

G := 〈A,T ,Aд ∪ {0}, Pl∗, (Ii )i∈Aд, (πi )i∈Aд, (pv )v∈V0〉

where all the elements are as de�ned in De�nition 3.1.2, except:

• The player function Pl∗ : NonTerm(T ) → P (Aд ∪ {0})
that assigns a set of players to every sequence of nodes
pertaining to information sets of agents.

This de�nition generalizes the player function to allow more than
one player to move at each node.

1 The social welfare of a group is the sum of the payo�s of the individuals in the
group.
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De�nition 25: The Hybrid Coordination Game

The Hybrid Coordination Game represents an extensive form
game with simultaneous moves

C = 〈Aд ∪ {0},A,T , Pl∗, (Ii )i∈Aд, (px )x∈V0〉

such that:

• The set Aд is of the form Aд = {1, . . . ,n}, for some n ∈ N,
and 0 denotes the player Nature, like in the general case.

• A is a set of actions of the form A := ∪k=2n+1
k=1 Ak ∪ AAд

where:
AAд = {Hybrid ,Bayes ,Cond } and

Ak =


{W k−1

2
,B k−1

2
} if k is odd and k , 1

{w k
2
,b k

2
} if k is even

{W ,B} if k = 1

• T := {t | t ∈ A0 × AAд × A1 . . .Aj , for j ≤ 2n+ 1} T
represents all the possible partial and terminal histories of
the game that depict the order of play.

• The player function Pl∗ that requires players to move at
the even depths of nodes and Nature at the odd depths of
nodes, as follows:

Pl∗(v ) =


Aд if d (v ) is 0
d (v )−1

2 if d (v ) is odd
0 otherwise

• For each player i ∈ Aд, the information partition Ii is given
by:

I (v ) = {v′ ∈ Vi |v (1) = v′(1),v (2j + 2) = v′(2j + 2),
∀j < i and v (2i + 1) = v′(2i + 1)}

where v (1) = (v1(1),v2(1), . . . ,vn (1)) is the sequence of
choices made on the �rst turn, by each player. This form-
alization ensures that agents observe everyone’s choice of
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Ag

HG

σ1

HG

σi

HG

σj

HG

σ3n

Ag All players HG Hybrid Urn Game

Figure 4.1: A graphical representation of the Hybrid Coordination
game.

strategy, the actions of the previous players and their own
signal. The signals of the previous players and the choice
of world are not observed.

• A family of probability mass functions

(pv : A(v ) → [0, 1])v∈V0

as before

pv (a) =

 2
3 if colour(v (1)) = colour(a)
1
3 otherwise

where a ∈ A(v ), and pr : A(r ) → [0, 1] with a ∈ A(r ) such
that:

pr (a) =

 1
2 if a =W
1
2 otherwise

• The payo� function of player i , πCoori , is represented by:

πCoori =


π
Hyb
i (v ) if vi (1) = vj (1)∀i , j ∈ Aд and

vi (1) (v � 2i + 2) = v (2i + 2)
0 otherwise

Clari�cation on the �rst move

At the �rst turn of the Hybrid Coordination Game, all players except
Nature make a move. Each agent can choose from a set of three
actions they can perform at this turn: {Hybrid,Bayes,Cond}. The
action Hybrid states that if i’s place in the sequence of the Hybrid
Game is lower than n

m , then player i plays the sCondi strategy, and if i’s
place in the sequence of the Hybrid Game is higher than n

m , then player
i plays the sBayesi strategy. The Bayes action represents the choice of
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x + (3m−1)
3m y 0 0

x + (3m−1)
3m y 0 0

0 4(x+y)
5 0

0 4(x+y)
5 0

0 0 x+2
3y

0 0 x+2
3y

Hybrid Bayes Cond

Hybrid

Bayes

Cond

player i

pl
ay

er
−
i

Figure 4.2: Hybrid Coordination Game Payo� Matrix. We collapsed
the n-player game into a two-person game in which each
agent plays against all the others taken collectively. If
m ≥ 2 and y , 0 then out of the three Nash Equilibria,
(Hybrid ,Hybrid ) yields the highest expected individual
payo�.

s
Bayes
i in the Hybrid Game and similarly, the Cond action represents

the choice of sCondi .
The Hybrid Coordination Game thus de�ned could be visualized as

a strategic, one-o�, game in which players commit to strategies in the
Hybrid Urn Game. For simplicity, we constructed the payo� matrix of
the Hybrid Coordination game bi-dimensionally, describing player i’s
payo�s against the individual payo�s of all the other players in the
game. This is represented by Figure 4.2. We note that formally, this
does not constitute a strategic game proper, since its payo�s are given
in expectation form, and not deterministic form, as usual.

The strategy pro�le in which every player chooses the same strategy,
Bayesian, Condorcet or Hybrid and then plays according to it represent
PBNE of the Hybrid Coordination Game. Before we show this, we
set to calculate the individual expected payo�s given in Figure 4.2 of
playing one of three protocols.

(1) The individual expected payo� for sHyb
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4.3 the hybrid coordination game

Let Ei (sHyb ) be the expected payo� of player i when the group
is playing according to the Hybrid Protocol.

Ei (s
Hyb ) =

1
m︷      ︸︸      ︷

P
(
i ≤

n

m

)
·Ei (s

Hyb | i ≤
n

m
)

+ P
(
i >

n

m

)
︸      ︷︷      ︸

m−1
m

·E (πCoor
i ) (sHyb | i >

n

m
)

The next step is to apply the limit to the expression obtained:

lim
n→∞

E (πCoor
i ) (sHyb ) = lim

n→∞

( 1
m
· Ei (s

Hyb | i ≤
n

m

)
(4.1)

+ lim
n→∞

(
(m − 1)

m
· Ei (s

Hyb | i >
n

m
)

)
(4.2)

We manipulate the limit operator for the �rst component 4.1
and obtain:

(4.1) = 1
m
·

(
lim
n→∞

Ei (s
Hyb | i ≤

n

m
)
)

=
1
m
( lim
n→∞

(
x · P ( maj is right | sHyb

)
+ lim

n→∞

(
y · P (guess of i is correct | sCondi )

)
)

=
1
m
[x · lim

n→∞
P ( maj is right | sHyb )

+y · lim
n→∞

P (sдi is high)]

=
1
m
· x +

1
m
·y ·

2
3

=
1
m

(
x +

2y
3

)

The last two lines follow by an application of Theorem 2:

lim
n→∞

P (maj is right | sHyb ) =

lim
n→∞

P (maj of the �rst n

m
is right | sHyb ) = 1

and

lim
n→∞

P (sдi is high | i ≤ n

m
) = lim

n→∞

2
3 =

2
3
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Similarly, for the second component of the equation, Eqn. 4.2,
we obtain:

(4.2) = lim
n→∞

P (i >
n

m
) · Ei (s

Hyb | i >
n

m
)

=
m − 1
m
·

(
x · lim

n→∞
P ( maj is right | sHyb )

)
+

m − 1
m
·

(
y · lim

n→∞
P (guess of i is correct | sBayesi ))

)
=
m − 1
m

(x · 1+y · 1)

The last line follows by an application of Theorem 2:

lim
n→∞

P ( maj is right | sHyb ) =

lim
n→∞

P (guess of i is correct | sBayesi )) =

lim
n→∞

P ( maj of the �rst n

m
is right | sHyb ) = 1 (by Thm. 2)

Bringing together our components (4.2) and (4.1), we obtain the
desired result:

Ei (s
Hyb ) =

1
m

(
x +

2y
3

)
+

m − 1
m

(x · 1+y · 1)

= x +

(
3m − 1
3m

)
·y

(2) The individual expected payo� of sCond

Let Ei (sCond ) be the expected payo� of player i when the group
is playing according to the Condorcet Protocol. We need to
calculate: limn→∞ Ei (s

Cond ).

lim
n→∞

Ei (s
Cond ) = x · lim

n→∞
P ( maj is right | sCond )

+y · lim
n→∞

P (guess of i is correct | sBayesi )

= x · 1+y ·
2
3

(3) The individual expected payo� of sBayes

Given that n → ∞, the likelihood of a cascade forming is 1, see
Bikhchandani et al. (1992). This together with Theorem 1, gives
us:

Ei (s
Bayes ) =

4
5 (x +y)
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In the remainder of this section we will assess which protocol gives
the highest expected payo� for the individuals in the game.

De�nition 26: Protocol Dominance

A protocol A is said to dominate another protocol B, if every
individual in the group derives a higher expected utility from
the group playing according to protocol A than from the group
playing according to protocol B.

We prove three theorems that o�er an order of dominance among
these protocols:

Theorem 9

The Hybrid Protocol strongly dominates the Condorcet Protocol,
for all payo� functions (πCoori )i∈N with x ≥ 0, m > 1 and y , 0
as n → ∞.

Proof. We want to �nd out for what values of x , y andm the Hybrid
protocol dominates the Condorcet protocol:

lim
n→∞

Ei (s
Hyb ) > lim

n→∞
Ei (s

Cond )

Plugging in the values computed above, we obtain:

x +
3m − 1
3m ·y > x +

2y
3 ⇔

3m − 1
3m >

2
3 ⇔m > 1, y , 0

�

Theorem 10

The Condorcet Protocol strongly dominates the Bayesian Protocol,
for all payo� functions (πi )i∈N with x ≥ 0 and y , 0, y < 3

2x as
n → ∞.

Proof. We need to show, in a manner akin to the previous proof, for
which values of x and y the Condorcet protocol is better than the
Bayesian protocol:

lim
n→∞

Ei (s
Cond ) > lim

n→∞
Ei (s

Bayes )

We know from previous calculations that:

Ei (s
Cond ) = x +

2
3y

Ei (s
Bayes ) =

4
5 (x +y)

Then, after some straightforward manipulation, we obtain:

x +
2
3y >

4
5 (x +y) ⇔ y <

3
2x

�
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social dynamics of information games

Theorem 11

The Hybrid protocol strongly dominates the Bayesian protocol for
all payo� functions (πi )i∈N with x ,y ≥ 0, andm ≥ 2 as n → ∞.

Proof. We need to �nd for what values of x ,y andm the Hybrid pro-
tocol dominates the Bayesian protocol:

lim
n→∞

Ei (s
Hyb ) > lim

n→∞
Ei (s

Bayes )

After plugging in the values, we get that:

x +
3m − 1
3m y >

4
5 (x +y) if and only ifm > 2

�

Theorem 12

The Condorcet Protocol is weakly dominant for all payo� func-
tions (πi )i∈N with y = 0 and x , 0 as n → ∞.

Proof. Given that y = 0, the expected utilities for the di�erent proto-
cols become:

Ei (s
Bayes ) =

4
5x

Ei (s
Cond ) = x

Ei (s
Hyb ) = x

The result is then immediate. �

Putting all of these results together, we get that, when n → ∞:

Ei (s
Hyb ) > Ei (s

Cond ) > Ei (s
Bayes )

for y < 1.5x , y , 0, m ≥ 2 and that:

Ei (s
Hyb ) = Ei (s

Cond ) > Ei (s
Bayes )

for y = 0.
Given that players receive a payo� of 0 whenever they deviate from

their chosen strategy or their strategy is not uniform, it is straight-
forward to show that each of the three protocols represents a PBNE.
However, of the individual expected payo�s of playing each of these
protocols, the Hybrid protocol yields the maximum. Then, by structur-
ally changing the game and the payo� function to punish players from
deviating from the group strategy, we succeeded in directing players
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4.3 the hybrid coordination game

towards a more socially desirable outcome. In conclusion, in the �rst
part of this chapter we looked at alternative payo� structures for urn
games. In the second part of the chapter we took a mechanism design
perspective on the Hybrid Urn Game, and created a new strategic form
game that forces cooperation at the level of the group, with the aim of
maximizing its social welfare.
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5

P R O B A B I L I S T I C L O G I C O F C O M M U N I C AT I O N
A N D C H A N G E

In this chapter we introduce a new epistemic dynamic logic, whose
static language is Probabilistic Epistemic PDL (PE-PDL), a probabil-
istic extension to Epistemic PDL, given in (van Benthem et al., 2006).
What results is a powerful logic, called Probabilistic Logic of Com-
munication and Change (PLCC) that uni�es, under its framework,
arbitrary levels of mutual knowledge, including common knowledge
and a multi-agent Bayesian update mechanism that accommodates
various social-epistemic scenarios. The strength of this logic comes
from its combination of probabilistic features and higher levels of
mutual knowledge. We provide a sound and complete axiomatization
for PLCC.

5.1 probabilistic logic of communication and change

5.1.1 Language of PLCC

Let At be a set of atomic propositions and Aд a set of basic agents
Aд = {a,b, c . . .}. Consider the PLCC language LPLCC given by the
following Backus Naur form:

ϕ ::=p | p ∧¬p | ¬ϕ | ϕ ∧ψ | [π ]ϕ | [e]ϕ | α1 · Pa (ϕ1) + . . .+ αn · Pa (ϕn ) ≥ β

π ::=a | π ;π | π ∪ π | π ∗ | ϕ?

wherep ∈ At is an atom proposition, α1, . . . ,αn, β are rational numbers,
e is an event from the domain of a probabilistic update model A, and
a ∈ Aд is an agent.

The static underlying language of PLCC is the language that results
from using the same syntactic constructions as in PLCC, except for
[e]ϕ. We call this probabilistic epistemic PDL, which we abbreviate by
PE-PDL.

In the epistemic interpretation we are pursuing, [a]ϕ corresponds,
in natural language paraphrase, to “agent a knows that ϕ”. However,
by making use of constructors, we can create more complex levels
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of knowledge (Parikh, 2003). One extreme state of knowledge is
represented by a proposition ϕ being common knowledge amongst a
group of agents A ⊂ Aд which is captured as [A∗]ϕ.

Weaker levels of knowledge are illustrated, for example, by state-
ments of the kind “a and b know that ϕ” , which appears as [a ∪b]ϕ.
Another example is given by the composition constructor, that can
express notions like “agent a knows that agent b knows that ϕ” via the
expression [a;b]ϕ. The language of PLCC is very expressive and can
accommodate for more esoteric notions of group knowledge, however
there is currently no salient interpretation for them. Lastly, the unusual
character of the test operator allows us to construct a modality[ϕ?]
out of any formula ϕ . Intuitively, this modality accesses the present
state if the present state satis�es ϕ.

We abbreviate: ¬[π ]¬ϕ by 〈π 〉ϕ, ¬(¬ϕ1 ∧¬ϕ2) by (ϕ1 ∨ϕ2), ¬(ϕ1 ∧
ϕ2) by (ϕ1 → ϕ2), (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1) by ϕ1 ↔ ϕ2. On top
of these, we add other obvious abbreviations for formulas involving
probabilities such as:

• ∑j=n
j=1 αjPa (ϕj ) for α1 · Pa (ϕ1) + . . . + αn · Pa (ϕn ) ≥ β . We call

formulas of this form a-probability formulas.

• ∑j=n
j=1 αjPa (ϕj ) ≤ β for ∑j=n

j=1 −αjPa (ϕj ) ≥ −β

• ∑j=n
j=1 αjPa (ϕj ) ≥

∑i=m
i=1 βiPb (ψi ) for

j=n∑
j=1

αjPa (ϕj ) +
i=m∑
i=1
−βiPb (ψi ) ≥ 0

• ∑j=n
j=1 αjPa (ϕj ) > β for



j=n∑
j=1

αjPa (ϕj ) ≥ β


 ∧¬



j=n∑
j=1

αjPa (ϕj ) ≤ β




• ∑j=n
j=1 αjPa (ϕj ) < β for



j=n∑
j=1

αjPa (ϕj ) ≤ β


 ∧¬



j=n∑
j=1

αjPa (ϕj ) ≥ β




• ∑j=n
j=1 αjPa (ϕj ) = β for



j=n∑
j=1

αjPa (ϕj ) ≥ β


 ∧



j=n∑
j=1

αjPa (ϕj ) ≤ β



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5.1 probabilistic logic of communication and change

5.1.2 Semantics of LPLCC

De�nition 27: Bayesian Kripke models

Take as given a set of agentsAд and a set of literalsAt . A Bayesian
Kripke model is a quadruple M = (S ,∼, µa ,V )a∈Aд where:

• S is a �nite non-empty set of states.

• ∼ is a set of equivalence relations ∼a on S for agent a.

• A function µa : S →
(
S → [0, 1]) , for each agent a ∈ Aд

such that the following conditions are met:
SDP if s ∼a v then µa (s ) (s

′) = µa (v ) (s
′)∀s′ ∈ S (Fagin and

Halpern, 1994), corresponding to axiom W10
CONS µa (s ) (v ) = 0 if s /a v (Fagin and Halpern, 1994)
CAUT s /a v if µa (s ) (v ) = 0 (van Eijck and Schwarzentruber,

2014)
PROB for every s ∈ S

∑
t∈S µa (s ) (t ) = 1 corresponding to

axiom W2
To improve legibility we will denote an expression of the
form µa (s ) (s

′) by µsa (s′).

• V is a function that assigns a set of states in S to each
propositional variable in At .

Following van Benthem et al. (2006), before describing the update
mechanism, we generalize our event model by allowing factual change.
Through the feature of substitution functions we are able to reset the
propositional valuation of the epistemic model anterior to the event
being observed. The generalization to factual change is driven by
the natural interpretation of the kinds of events we usually model in
games. These do not typically only involve informational change, but
also factual changes, as in the case of players’ actions.

De�nition 28: Substitutions (van Benthem et al., 2006)

A substitution function σ : At → LPLCC is a function that maps
all but a �nite number of propositional atoms into themselves.
Call the set {p ∈ At | σ (p) , p} the domain of σ and denote
it by dom(σ ). Let subLPLCC denote the set of all such possible
substitution functions and ϵ the identity substitution.
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De�nition 29: Event Models

The event model for a �nite set of agents Aд with the LPLCC
language, is the quintuple A = (E,∼, PRE,prea , sub)a∈Aд where:

• E is a non-empty �nite set of events.

• ∼ is a set of equivalence relations ∼a for each agent a ∈ Aд.

• PRE : E → P (LPLCC) such that PRE (e ) is �nite set of
pairwise inconsistent sentences called preconditions for the
occurrence of event e such that Φ :=

⋃
e∈E PRE (e ) is a �nite

set of pairwise inconsistent formulas. Further, denote by
pree =

∨
PRE (e ).

• prea : Φ →
(
E → [0, 1]) assigns to each precondition ϕ ∈

Φ a subjective probability distribution over E, such that
prea (ϕ) (e ) = 0 i� ϕ < PRE (e ). We abbreviate prea (ϕ) (e ) by
prea (e |ϕ) in order to improve legibility.

• sub : E → subLPLCC assigns a substitution function to each
event in E.

Discussion on the modelling of preconditions

According to De�nition 29, the function pre is treated di�erently than
in the standard probabilistic DEL framework (van Benthem, Gerbrandy
and Kooi, 2009, p. 77). The �rst contrast with the standard probabilistic
event models is represented by the addition of the function PRE (Baltag
et al., 1999). Function PRE represents the set of objective qualitative
conditions that give the preconditions for an event happening, and are
objective in the sense that agents share this common language when
thinking about events. These PRE′s can be recovered in the standard
de�nition as: PRE (e ) = {ϕ ∈ Φ|pre (e |ϕ) > 0}.

The second point of divergence with the standard de�nition is the
function prea (ϕ) that represents the subjective probability distribution
that agent a assigns to events, given a certain precondition ϕ. Our
pre is the subjective version of the objective occurrence probabilities
in the probabilistic DEL framework. The condition imposed on pre

ensures that agents cannot be wrong about an event being possible at a
given world; however the actual assignment of probabilities to possible
events is left to the discretion of each agent. In a sense, our event
models have absorbed the observation probabilities of van Benthem,
Gerbrandy and Kooi (2009). In our view the divergence of objective
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5.1 probabilistic logic of communication and change

and subjective probabilities does not have grounds in the Bayesian
framework.

De�nition 30: Product Update Models

Given a static Bayesian Kripke model M = (S , (∼a )a∈Aд, µ,V ) and
an event model A = (E,∼,Φ,prea , sub), we say that the result of
executing A in M , is the product update model M ⊗A = (S ⊗ E,∼
, µ,V ) where:

• S ⊗ E = {(s , e ) | s ∈ S , e ∈ E,M , s |= pree }. We denote by
prea (e |s ) the value of prea (e |ϕs ), where ϕs is the element of
Φ that is satis�ed inM , s . If no suchϕ exists thenprea (e |s ) =
0.

• (s , e ) ∼a (s′, e′) i� s ∼a s
′ and e ∼a e

′.

• Let D :=
∑

(s ′,e ′)∼a (w ,д)
(
µwa (s

′) · prea (e
′|s′)

) . Then we have
that

µ
(w ,д)
a (s , e ) :=

 µwa (s )·prea (e |s )
D if (s , e ) ∼a (w ,д)

0 otherwise

• V (p) = {(s , e ) | M , s |= sub (e ) (p)}

Justi�cation of the update rule

We claim that our product update rule is fully grounded in Bayesian
reasoning. By inspection, it can be noticed that the product update
rule is nothing else than an application of Bayes’ theorem. If we regard
pairs of the form (s , e ) as “outcomes”, then event s could be interpreted
as the set of outcomes {(t , e ) |t = s} and event e can be interpreted as
the set of outcomes {(s , f ) | f = e}. Then the product update µ (w ,д)

a (s , e )
is nothing than the posterior probability player a assigns to s ∧ e , after
conditionalizing on her information set, where this is put in standard
Bayesian terms as: w (a) ∧ д(a), where w (a) := {w′|w′ ∼a w } and
д(a) := {д′|д′ ∼a д}.

De�nition 31: Semantics of PLCC

The semantics of LPLCC is an extension of the semantics for epi-
stemic logic. We assign truth values to formulas in LPLCC at a
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state s in the semantic structure M and we write (M , s ) |= ϕ if the
formula ϕ is true at a state s in the Bayesian Kripke structure M :

M , s |=p i� s ∈ V (p)

M , s |=¬ϕ i� M , s 6 |= ϕ
M , s |=ϕ ∧ψ i� M , s |= ϕ and M , s |= ψ
M , s |=[a]ϕ i� for all t ∈ S : if s ∼a , t then M , t |= ϕ
M , s |=[e]ϕ i� M , s |= pree then M × A, (s , e ) |= ϕ,

e an event in action model A
M , s |=[π ]ϕ i� for all t ∈ S : if sRπt then M , t |= ϕ,

∀π a complex agent

M , s |=
j=n∑
j=1

αjPa (ϕj ) i�
j=n∑
j=1

αj · µ
s
a (S (ϕj )) ≥ β

where µsa (S (ϕj )) is an abbreviation for ∑
s ′∈S ,s ′ |=ϕ j µ

s
a (s
′).

The binary relations Rπ mentioned above are built, for each
agent π , starting from (∼a )a∈Aд and using the following rules:

Ra =∼a

Rπ1∪π2 = Rπ1 ∪ Rπ2

Rπ1;π2 = Rπ1 ;Rπ2
Rπ ∗ = (Rπ )

∗

sRϕ?t ⇔ s = t and s |= ϕ

where ; is the set-theoretic operation of concatenation and (Rπ )
∗

represents the re�exive-transitive closure of Rπ .

We write |= ϕ if M , s |= ϕ for every pointed Bayesian Kripke model
M , s .

5.1.3 Proof System of LPLCC

In what follows, we describe a complete axiomatization for our dy-
namic probabilistic PDL language LPLCC with change of facts.

We begin with the static axiomatic system which contains the ax-
ioms of PDL together with the axioms of (Fagin et al., 1990). We
compartment them into �ve parts, pertaining to propositional, know-
ledge, inequalities, probabilities and programs reasoning as portrayed
below. The set of axiom schemas that results, together with the restric-
tion of these to the language of PE-PDL, represents the proof system
of PE-PDL.
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5.1 probabilistic logic of communication and change

Inference Rules for PLCC

K1 All instances of propositional tautologies

R1 From ϕ and ϕ → ψ inferψ (modus ponens)

R2. From ϕ infer [π ]ϕ

Axioms for reasoning about knowledge

For any basic program a, we have that:

K3. [a]ϕ → ϕ

K4. [a]ϕ → [a][a]ϕ

K5. ¬[a]ϕ → [a]¬[a]ϕ

Axioms for programs

1. [π ](ϕ → ψ ) → ([π ]ϕ → [π ]ψ )

2. [π1;π2]ϕ ↔ [π1][π2]ϕ

3. [π1 ∪ π2]ϕ ↔ [π1]ϕ ∧ [π2]ϕ

4. [π ∗]ϕ ↔ (ϕ ∧ [π ][π ∗]ϕ)

5. [π ∗](ϕ → [π ]ϕ) → (ϕ → [π ∗]ϕ)

6. [ϕ?]ψ ↔ (ϕ → ψ )

Axioms for reasoning about linear inequalities

I1. α1 · Pa (ϕ1) + . . . + αn · Pa (ϕn ) ≥ β ↔ α1 · Pa (ϕ1) + . . . + αn ·

Pa (ϕn ) ≥ β + 0 · P (ϕn+1)

I2. α1 · Pa (ϕ1) + . . .+ αn · Pa (ϕn ) ≥ β → αj1 · Pa (ϕ1) + . . .+ αjn ·

Pa (ϕn ) ≥ β where j1 . . . jn is a permutation of 1, . . . ,n

I3. (α1 · Pa (ϕ1) + . . .+ αn · Pa (ϕn ) ≥ β ) ∧(
α ′1 · Pa (ϕ1) + . . .+ α ′n · Pa (ϕn ) ≥ β

′
)

→
(
(α1 + α ′1) · Pa (ϕ1) + . . .+ (αn + α ′n ) · Pa (ϕn ) ≥ (β + β′)

)
I4. (α1 · Pa (ϕ1) + . . .+ αn · Pa (ϕn ) ≥ β )

↔ (dα1 · Pa (ϕ1) + . . .+ dαn · Pa (ϕn ) ≥ dβ ) if d > 0

I5. (t ≥ b) ∨ (t ≤ b) if t is a term

I6. (t ≥ b) → (t > c ) if t is a term and b > c
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Axioms for reasoning about probabilities

W1. Pa (ϕ) ≥ 0

W2. Pa (true ) = 1

W3. P (ϕ ∧ψ ) + P (ϕ ∧¬ψ ) = Pa (ϕ)

W4. Pa (ϕ) = Pa (ψ ) if ϕ ↔ ψ is a propositional tautology.

W5. Pa ( f alse ) = 0

W7. [a]ϕ ↔ Pa (ϕ) ≥ 1

W10. w → [a]w , for any w an a-probability formula.

On top of these, we add a series of reduction axioms for product
update, that convey the e�ects of informational events. These allow
the translation of any sentence from the dynamic language PLCC into
an equivalent sentence in the underlying static language PE-PDL. The
set of static axioms together with the reduction axioms represent the
proof system of PLCC.

The reduction axioms for update models

[e]p ↔ (pree → sub (e ) (p))

[e]¬ϕ ↔ (pree → ¬[e]ϕ)
[e](ϕ ∧ψ ) ↔ ([e]ϕ ∧ [e]ψ )

[ei ][π ]ϕ ↔
n−1∧
i=0

[Tij (π )][ej ]ϕ)

A↔
(
pre (e ) → (C ≥ D)

)
where the letters in the last line stand for

A = [e]




∑
1≤h≤k

αh · Pa (ψh ) ≥ β




C =
∑

1≤h≤k
ϕi∈Φ
f ∼ae

αh · prea ( f | ϕi ) · Pa (ϕi ∧ [f ]ψh )

D =
∑
ϕi∈Φ
f ∼ae

β · prea ( f | ϕi ) · Pa (ϕi )

and we used the following de�nition.
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De�nition 32: Tij programme transformers

Tij (a) =

?pre(ei );a if eiR (a)ej
? ⊥ otherwise

Tij (?ϕ) =

?(pre(ei ) ∧ [ei ]ϕ) if i = j

? ⊥ otherwise

Tij (π1;π2) =
n−1⋃
k=0

(
Tik (π1);Tkj (π2)

)
Tij (π1 ∪ π2) = Tij (π1) ∪Tij (π2)

Tij (π
∗) = Kijn (π )

where Kijn (π ) is given by De�nition 33 and n denotes the number
of events in E.

De�nition 33: Kijk (π ) path transformers

Kijk (π ) is de�ned by recursion on k , as follows:

Kij0(π ) =

?(p ∨¬p) ∪Tij (π ) if i = j

Tij (π ) otherwise
Kij (k+1) (π ) =

(Kkkk (π ))
∗ if i = k = j

(Kkkk (π ))
∗ ;Kkjk (π ) if i = k , j

Kikk (π ); (Kkkk (π ))
∗ if i , k = j

Kijk (π ) ∪
(
Kikk (π ); (Kkkk (π ))

∗ ;Kkjk (π )
)

otherwise (i , k , j )

As usual, both axioms and inference rules are to be understood
as schemata in which the formulas above stand for any well-formed
formulas. The reduction axioms show that the static language PE-PDL
is rich enough to pre-encode the dynamic language PLCC.

Theorem 13: Soundness

The proof system LPLCC is sound with respect to Bayesian Kripke
structures if and only if, for ϕ ∈ LPLCC :

` ϕ implies |= ϕ

Induction on the length of the proof. It is su�cient to prove that every
axiom is sound and each inference rule preserves truth. This is a
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routine proof, so we will only check the soundness of the most di�cult
reduction axiom:

A↔
(
pre (e ) → (C ≥ D)

)
where the letters stand for:

A = [e]




∑
1≤h≤k

αh · Pa (ψh ) ≥ β




C =
∑

1≤h≤k
ϕi∈Φ
f ∼ae

αh · prea ( f | ϕi ) · Pa (ϕi ∧ [f ]ψh )

D =
∑
ϕi∈Φ
f ∼ae

β · prea ( f | ϕi ) · Pa (ϕi )

Take an arbitrary Bayesian Kripke model M and a state s , such that:

M , s |= [e]




∑
1≤h≤k

αh · Pa (ψh ) ≥ β




by semantic de�nition︷︸︸︷
⇔∑

1≤h≤k
αh

∑
(s ′,e ′)∼a (s ,e )

M⊗A,(s ′,e ′) |=ψh

µ
(s ,e )
a (s′, e′) ≥ β

by the product update rule︷︸︸︷
⇔∑

1≤h≤k
αh

∑
(s ′,e ′)∼a (s ,e )

M⊗A,(s ′,e ′) |=ψh
µsa (s

′)pre (e′|s′)∑
(w ,f )∼a (s ,e ) µ

s
a (w )pre ( f |w )

≥ β

∑
1≤h≤k

αh
∑

(s ′,e ′)∼a (s ,e )
M⊗A,(s ′,e ′) |=ψh

µ
(s ,e )
a (s′, e′) ≥ β

by the product update rule︷︸︸︷
⇔∑

1≤h≤k
αh

∑
(s ′,e ′)∼a (s ,e )

M⊗A,(s ′,e ′) |=ψh
µsa (s

′)pre (e′|s′)∑
(w ,f )∼a (s ,e ) µ

s
a (w )pre ( f |w )

≥ β

re-aranging the terms︷︸︸︷
⇔∑

1≤h≤k
αh

∑
(s ′,e ′)∼a (s ,e )

M⊗A,(s ′,e ′) |=ψh

µsa (s
′)pre (e′|s′) ≥ β

∑
(w ,f )∼a (s ,e )

µsa (w )pre ( f |w )
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by grouping worlds according to the preconditions they satisfy, for every f ∼a e︷︸︸︷
⇔∑

1≤h≤k
αh

∑
f ∼ae
ϕi∈Φ

prea ( f |ϕi )
∑
s ′∼as

s ′ |=[f ]ψh
s ′ |=ϕi

µsa (s
′) ≥ β

∑
f ∼ae
ϕi∈Φ

prea ( f |ϕi )
∑
w |=ϕi

µsa (w )

by semantic de�nition︷︸︸︷
⇔

M , s |=
∑

1≤h≤k
αh

∑
f ∼ae
ϕi∈Φ

prea ( f |ϕi ) ·Pa (ϕi ∧ [f ]ψh ) ≥ β
∑
f ∼ae
ϕi∈Φ

prea ( f |ϕi )Pa (ϕi )

re-grouping the sums︷︸︸︷
⇔

M , s |=
∑

1≤h≤k
f ∼ae
ϕi∈Φ

αhprea ( f |ϕi ) · Pa (ϕi ∧ [f ]ψh ) ≥
∑
f ∼ae
ϕi∈Φ

βprea ( f |ϕi )Pa (ϕi )

Reintroducing the notation for terms, we obtained that:

M , s |=
(
pre (e ) → (C ≥ D)

)
and thus proved that the reduction axiom is sound.

�

5.2 completeness of plcc

We �rst prove the completeness of the static language PE-PDL, which
we call PE-PDL, and then argue, via the reduction axioms, that every
LPLCC-formula can be translated into a LPLCC-formula.

5.2.1 Completeness of the static language PE-PDL

The following de�nitions have been adapted from Blackburn et al.
(2001) to include the test operator.

De�nition 34: Fischer-Ladner closure

Let X be a set of formulas. Then X is Fischer-Ladner closed if it is
closed under subformulas and satis�es the following additional
constraints:

(i) If [π1;π2]ϕ ∈ X then [π1][π2]ϕ ∈ X

(ii) If [π1 ∪ π2]ϕ ∈ X then [π1]ϕ ∧ [π2]ϕ ∈ X

(iii) If [π ∗]ϕ ∈ X then [π ][π ∗]ϕ ∈ X
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(iv) If [ϕ?]ψ ∈ X then ϕ → ψ ∈ X .

(v) If w ∈ X then [a]w ∈ X , for w an a-probability formula.

If Σ is any set of formulas then FL(Σ) (the Fischer-Ladner closure
of Σ) is the smallest set of formulas containing Σ that is Fischer-
Ladner closed.

Given a formula ϕ, we de�ne ∼ ϕ as the following formula

∼ ϕ =

ψ if ϕ is of the form ¬ψ
¬ϕ otherwise.

A set of formulas X is closed under single negations if ∼ ϕ belongs
to X whenever ϕ ∈ X .

We de�ne ¬FL(Σ), the closure of Σ, as the smallest set con-
taining Σ which is Fischer-Ladner closed and closed under single
negations.

De�nition 35: Atoms

Let Σ be a set of formulas. A set of formulas A is an atom over Σ if
it is a maximal consistent subset of ¬FL(Σ). That is, A is an atom
over Σ if A ⊆ ¬FL(Σ), if A is consistent, and if A ⊂ B ⊆ ¬FL(Σ)
then B is inconsistent. At (Σ) is the set of all atoms over Σ.

The following lemma (except for item 6) closely follows Blackburn
et al. (2001, lemma 4.81).

Lemma 2

Let Σ be any set of formulas, and A any element of At (Σ). Then

1. For all ϕ ∈ ¬FL(Σ): exactly one of ϕ and ∼ ϕ is in A

2. For all ϕ ∨ψ ∈ ¬FL(Σ): ϕ ∨ψ ∈ A i� ϕ ∈ A orψ ∈ A

3. For all 〈π1;π2〉ϕ ∈ ¬FL(Σ): 〈π1;π2〉ϕ ∈ A i� 〈π1〉〈π2〉ϕ ∈ A

4. For all 〈π1 ∪ π2〉ϕ ∈ ¬FL(Σ): 〈π1 ∪ π2〉ϕ ∈ A i� 〈π1〉ϕ ∈ A

or 〈π2〉ϕ ∈ A

5. For all 〈π ∗〉ϕ ∈ ¬FL(Σ): 〈π ∗〉ϕ ∈ A i�ϕ ∈ A or 〈π 〉〈π ∗〉ϕ ∈ A

6. For all [ϕ?]ψ ∈ ¬FL(Σ) : [ϕ?]ψ ∈ A i� ϕ → ψ .

Now it is time to de�ne the canonical model over Σ.
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De�nition 36: Canonical model over Σ

Let Σ be a �nite set of formulas. The canonical model over Σ

is the triple (At (Σ), {SΣπ }π∈Π,V Σ) where for all the propositional
variables p, V Σ (p) = {A ∈ At (Σ) | p ∈ A} and for all atoms
A,B ∈ At (Σ) and all programs π ,

ASπB if ϕASπ [π ]ϕB is consistent.

where ϕA is de�ned as the conjunction of all formulas that belong
to A.

De�nition 37: Regular model over Σ

Let Σ be a �nite set of formulas. For all basic programs a, de�ne
RΣ
a as:

ARaB if ∀ϕ ∈ ¬FL(Σ), [π ]ϕ ∈ A i� [π ]ϕ ∈ B

For the complex programs, inductively de�ne the PDL relations
such that ∀π ,π1,π2, we have:

Rπ1∪π2 = Rπ1 ∪ Rπ2

Rπ1;π2 = Rπ1 ;Rπ2
Rπ ∗ = (Rπ )

∗

ARϕ?B ⇔ A = B and ϕ ∈ A

Finally, de�ne R, the regular model over Σ, to be

R = (At (Σ), {RΣ
π }π∈Π,V Σ)

where V Σ is the canonical valuation.

Given the regular model R = (At (Σ), {RΣ
π }π∈Π,V Σ), our goal is to

de�ne a probability assignment

µΣ : Aд →
(
At

(
Σ) → (At (Σ) → [0, 1]

))
s.t. if we consider the Bayesian Kripke structure

M = (At (Σ), {RΣ
π }π∈Π, µΣ,V Σ)

then for every state A ∈ At (Σ) and every ψ ∈ ¬FL(Σ) we have
(M,A) |= ψ i�ψ ∈ A.
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Lemma 3

For any a ∈ Aд, there exists a probability function µi , such that
all a-probability formulas w ∈ ¬FL(Σ) can be true together.

Proof. Using only propositional reasoning, we can show that:

` ψ ↔
∨

{A∈At (Σ) |ψ∈A}

ϕA, for allψ ∈ ¬FL(Σ) (5.1)

` ϕA → ¬ϕB , for any A,B ∈ At (Σ),A , B (5.2)

Using these observations and Axioms W1-W5, we can show that

Pa (ψ ) =
∑

{A∈At (Σ) |ψ∈A}

Pa (ϕA)

is provable in PE-PDL. Using this fact, together with I1 and I3, we can
show that an a-probability formulaψ ∈ ¬FL(Σ) is provably equivalent
to a formula of the form ∑

A∈At (Σ)

cAPa (ϕA) ≥ b

for some appropriate coe�cients cA. Let Ka (A) be the set of atoms B
such that 0 ϕA → Pa (ϕB ) = 0. Now, in the presence of W7, we can
show that if A ∈ At (Σ) and A′ < Ki (A), then

` ϕA → (µi (ϕA′ ) = 0)

Now, �x an agent a and a stateA ∈ At (Σ). We describe a set of linear
equalities and inequalities corresponding to a and s , over variables of
the form xiAA′, for A′ ∈ At (Σ). We can think of xaAA′ as representing
µAa (A

′), that is the probability of state A′ under agent a’s probability
distribution at state A. We have one inequality corresponding to every
a-probability formulaψ ∈ ¬FL(Σ). Assume thatψ is equivalent to∑

A′∈At (Σ)

cA′Pa (ϕA′ ) ≥ b

Notice that exactly one of ψ and ¬ψ is in A. If ψ ∈ A, then the
corresponding inequality is∑

A′∈At (Σ)

cA′xaAA′ ≥ b

If ¬ψ ∈ A, then the corresponding inequality is∑
A′∈At (Σ)

cA′xaAA′ < b
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Further, due to W7, we have the following equalities:

xaAA′ = 0

for A′ < Ka (A) and
xaAA′ > 0

for A′ ∈ A \ Ka (A) . Finally, we have the equality∑
A′∈At (Σ)

xaAA′ = 1

As shown in Fagin et al. (1990, Thm. 2.2), since ϕA is consistent, this set
of linear equalities and inequalities has a solution x∗a,A,A′ , forA′ ∈ At (Σ).
Set µa,A(A) = x∗a,A,A′ . This is the probability assignment µ that we are
looking for. Before we proceed to the truth lemma, we only need
to make sure that our modelM, thus constructed, satis�es the SDP
condition, corresponding to the introduction of Axiom W10 in the
logic. This can be easily checked by inspecting of the de�nition of Ra .
Given this, we can assume, without loss of generality, that if ARaA′
then µa,A = µa,A′, since we have that the de�nition of µa,A depends
only on the a-probability formulas and their negations at state A. �

Before we prove the truth lemma, we need to establish two import-
ant results: an existence lemma for Sπ and a theorem which states that
Sπ ⊆ Rπ .

Lemma 4: The Existence Lemma for Sπ

Let A be an atom and let 〈π 〉ϕ be a formula in ¬FL(Σ). Then
〈π 〉ϕ ∈ A i� there is a B such that ASπB and ϕ ∈ B.

Proof. Following the strategy laid out in Blackburn et al. (2001, p. 244),
we set out to construct an appropriate atom B by forcing choices. We
begin by enumerating the formulas in the �nite set FL(Σ) as σ1, . . . ,σm
and de�ne B0 to be {ϕ}. Suppose as an inductive hypothesis that Bn
is de�ned such that ϕA ∧ 〈π 〉ϕBn is consistent (where 1 ≤ n ≤ m). We
get that

` 〈π 〉ϕB ↔ 〈π 〉 ((ϕB ∧ σn+1) ∨ (ϕB ∧¬σn+1))

and thus

` 〈π 〉ϕB ↔ (〈π 〉(ϕB ∧ σn+1)) ∨ (〈π 〉(ϕB ∧¬σn+1))

Therefore, either for B′ = B ∪ {σn+1} or for B′ = B ∪ {¬σn+1}, we
have that ϕA ∧ 〈ϕB′〉 is consistent. Choose Bn+1 to be this consistent
expansion, and let Bm be B. Then B is the atom we want. �
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Lemma 5: Lemma for basic programs

For all programs a ∈ Aд, Sa ⊆ Ra .

Proof. We need to show that, if ASaB, then ARaB, for all A,B ∈ At (Σ).
We begin by noting that, since ϕA ∧ 〈a〉ϕB is consistent, then there
exists a maximally consistent set (MCS) Γ such that ϕA ∧ 〈ϕB〉 ∈ Γ.
Note thatA is the maximal consistent subset of ¬FL(Σ) that extends to
Γ: A = Γ ∩¬FL(Σ). Since ϕA ∧ 〈a〉ϕB ∈ Γ then 〈a〉ϕB ∈ Γ too. So, there
exists a ∆, a maximally consistent set, such that Γ ∼a ∆, where ∼a is
the canonical relation, de�ned by A ∼a B i� for all formulas ϕ, ϕ ∈ A
implies 〈a〉ϕ ∈ B. Let B = ∆ ∩ ¬FL(Σ). Then, we have that A ∼a B.
We can show that, by the standard results on canonical models, we
have that if the logic includes the S5 axioms, then ∼a is an equivalence
relation.

We prove the following claim:

T ∼a U ↔ ∀ϕ,w 〈a〉ϕ ∈ T i� 〈a〉ϕ ∈ U

Proof.

“⇒” SupposeT ∼a U and 〈a〉ϕ ∈ T . Then, by the de�nition of ∼a , we
have that 〈a〉〈a〉ϕ ∈ U . By Axiom K4, we have that 〈a〉ϕ ∈ U .
The other direction follows from the symmetry of ∼a .

“⇐” Suppose that ∀ϕ, 〈a〉ϕ ∈ T i� 〈a〉ϕ ∈ U . Letψ ∈ U . We need to
show that 〈a〉ψ ∈ T . Fromψ ∈ U and Axiom K3, we then have
that 〈a〉ϕ ∈ T .

�

Therefore, we proved then that if ASaB then ARaB. �

Lemma 6

If Σ is �nite, then ¬FL(Σ) is �nite.

Proof. We skip the proof of this theorem, as it is a straightforward
proof by induction. �

Lemma 7

For all programs π , we have that Sπ ∗ ⊆ (Sπ )
∗.

Proof. Identical to the proof of Lemma 4.87 in (Blackburn et al., 2001,
p. 244). �

76



5.2 completeness of plcc

Theorem 14

For all programs π , Sπ ⊆ Rπ .

Proof by induction on the complexity of π .

base case: π = a is given by the Lemma for basic programs.

inductive hypothesis: Assume the claim holds for all programs
of complexity lower than π . Now we try to show it for π

Case 1: π is of the form π1;π2. Suppose ASπ1;π2B, that is, ϕA ∧
〈π1;π2〉ϕB is consistent. It follows, by Axiom 3, that ϕA ∧
〈π1〉〈π2〉ϕB is consistent. By the IH, we get that ARπ1C and
CRπ2B. It follows immediately that ARπ1;π2B.

Case 2: π is of the form π1 ∪ π2. Similar to Case 1. Omitted here.

Case 3: π is of the form π ∗. Suppose ASπ ∗B, that is, ϕA ∧ 〈π ∗〉ϕB
is consistent. Since Sπ ∗ ⊆ (Sπ )

∗, we get that there exists
a chain A = C0SπC1 . . .Ck = B, such that, for every pair
CiCi+1, by the IH, if CiSπCi+1 then CiRπCi+1. But then
ARπ ∗B.

Case 4: π is of the form ϕ?. Assume ϕ ∈ ¬FL(Σ). Suppose ASϕ?B.
Then ϕA ∧ [ϕ?]ϕB is consistent. From Axiom 7, using pro-
positional reasoning, we get that 〈ϕ?〉ψ ↔ (ϕ ∧ψ ). It
follows that

ϕA ∧ (ϕ ∧ψB ) is consistent

However, it’s easy to notice that for any two atoms are
mutually exclusive, therefore ` ϕA → ¬ϕB∀A , B. We can
conclude then thatA = B. Finally, sinceϕA∧ϕ is consistent
and ϕ ∈ ¬FL(Σ), we conclude that ϕ ∈ A.

�

Before we prove the truth lemma, we need to establish an existence
lemma as follows:

Lemma 8: Existence Lemma

Let A and B be atoms in At (Σ) and let [π ]ϕ ∈ ¬FL(Σ). Then if
[π ]ψ ∈ A and ARπB then ϕ ∈ B.

Proof: induction on the complexity of π .
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base case: π is a basic program a

We need to show that if ARaB and [a]ϕ ∈ A, then [a]ϕ ∈ B. It
immediately follows that if [a]ϕ ∈ A and ARaB then, by the
de�nition of Ra we get [a]ϕ ∈ B. By this and the transitivity
axiom [a]ϕ → ϕ, it follows that ϕ ∈ B.

inductive step: Assume the claim holds for all π of a certain com-
plexity and lower.

Case 1: ϕ is of the form π1 ∪ π2. We have that ARπ1∪π2B and [π1 ∪
π2]ϕ ∈ A. By Ax. (iv), we have that [π1]ϕ, [π2]ϕ ∈ A.
Since ARπ1∪π2B then we have that either ARπ1B or ARπ2B.
Applying the IH, we get that in either case ϕ ∈ B.

Case 2: π is of the form π1;π2. Similar to Case 1. Will omit here.
Case 3: π is of the form ϕ?. We have that [ϕ?]ψ ∈ A andARϕ?B and

we need to show thatψ ∈ B. By Axiom 7, then ϕ → ψ ∈ A.
Further, from ARϕ?B, we get that A = B and ϕ ∈ A. By an
application of modus ponens, we get thatψ ∈ A.

Case 4: π is of the form [π ∗]. In order to prove this, it su�ces to
show that:

Theorem 15

∀ϕ such that [π ∗] ∈ ¬FL(Σ), if [π ∗]ϕ ∈ A and ARπ ∗B

then [π ∗]ϕ ∈ B.

Proof by induction on the length of the path k from A to
B: A = C0RπC1 . . .RπCk = B.

Proof.

base case: the length of the path k = 1. We know that
ARπB and [π ∗]ϕ ∈ B. By Axiom 5 and clause 5 of the
FL closure, we get that [π ][π ∗]ϕ ∈ A. Applying the
IH∃Lemma , we get that [π ∗]ϕ ∈ B.

inductive hypothesis: Assume the claim holds for
all lengths lower than k and try to prove it for k .
We have that [π ∗]ϕ ∈ A and

A = C0RπC1 . . .Ck−1RπCk = B

By the IH, given that ARπ ∗Ck−1, we have that [π ∗]ϕ ∈
Ck−1. By Axiom 5 and clause 5 of the FL closure,
[π ][π ∗]ϕ ∈ Ck−1. Since we also have that Ck−1RπB,
by the IH∃Lemma , we get have [π ∗]ϕ ∈ B.
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�

�

Theorem 16: Truth Lemma

Let R be a regular PE-PDL model over Σ. For all atoms A and all
ϕ ∈ ¬FL(Σ), R,A |= ϕ i� ϕ ∈ A.

Proof: Induction on the number of connectives.

base case Follows immediately from the de�nition of the canonical
valuation over Σ.

inductive step

case 1: The Boolean case.

It follows immediately from Lemma 2 above, and from Lemma
3, in case of a-probability formulas w .

case 2: ϕ is of the form [a]ψ

“⇒” R,A |= [a]ψ then [a]ψ ∈ A.

Proof. De�ne ∆ =
{
[a]χ |[a]χ ∈ A

}
∪

{
¬[a]χ |¬[a]χ ∈ A

}. Then
∆ ∪

{
¬ψ

} is inconsistent. For suppose otherwise. Then ∆ ∪{
¬ψ

} could be expanded to a MCS B ∈ At (Σ). We have that by
construction ARaB. If ¬ψ ∈ B then by the IH I get that B |= ¬ψ .
Since R,A |= [a]ψ and ARaB ⇒ B |= ψ . Contradiction. Then
` ϕ∆ → ψ . By R2 ⇒` [a](ϕ∆ → ψ ) and by Ax. 4 and Ax. 5 we
get that ϕ∆ → [a]ϕ∆. By K2 ⇒` ϕ∆ → [a]ψ . This, together with
the fact that [a]ψ ∈ ¬FL(Σ) and the fact that for ∀ϕ ∈ FL(Σ),
either ϕ or its negation is in A⇒ [a]ψ ∈ A. �

“⇐” if [a]ψ ∈ A then R,A |= [a]ψ .

Proof. Consider B ∈ At (Σ) s.t. ARaB. Then [a]ϕ ∈ A⇔ [a]ϕ ∈ B.
This together with the assumption imply that [a]ψ ∈ B. By Ax.
K3 we know that [a]ψ → ψ and since [a]ψ ∈ ¬FL(Σ) then
ψ ∈ ¬FL(Σ), we get thatψ ∈ B. By the IH⇒ B |= ψ . This holds
for any B s.t. ARaB. ⇒ A |= [a]ψ . �

case 3: ϕ = [π1 ∪ π2]ψ

“⇒” if R,A |= [π1 ∪ π2]ψ then [π1 ∪ π2]ψ ∈ A.
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Proof. A |= [π1 ∪ π2]ψ ⇒ ∀B s.t. ARπ1B or ARπ2B then B |= ψ ⇒

A |= [π1]ψ and A |= [π2]ψ . By IH we get that [π1]ψ , [π2]ψ ∈ A.
By Ax. 4, we have that [π1]ψ ∧ [π2]ψ ⇔ [π1 ∪ π2]ψ . Since
[π1 ∪ π2]ψ ∈ ¬FL(Σ) ⇒ [π1 ∪ π2]ψ ∈ A. �

“⇐” if [π1 ∪ π2]ψ ∈ A then A |= [π1 ∪ π2]ψ .

Proof. Consider B ∈ At (Σ) s.t. ARπ1∪π2B. This means thatARπ1B
or ARπ2B. Now [π1 ∪ π2]ψ ∈ A. By Ax. 4 [π1 ∪ π2]ψ ↔ [π1]ψ ∧
[π2]ψ ⇒ [π1]ψ , [π2]ψ ∈ A ⇒ by IH A |= [π1]ψ ∧ [π2]ψ . Since B

is s.t. ARπ1B or ARπ2B then B |= ϕ ⇒ A |= [π1 ∪ π2]ψ �

case 4: ϕ is of the form [π1;π2]ψ
“⇒” R,A |= [π1;π2]ψ then [π1;π2]ψ ∈ A

Proof. From R ,A |= [π1;π2]ψ we get that for ∀C ,∀B ∈ At (Σ) s.t.
ARπ1C andCRπ2B, then B |= ψ . It follows thatC |= [π2]ψ for any
C s.t. ARπ1C ⇒ A |= [π1][π2]ψ . By IH⇒ [π1][π2]ψ ∈ A. By Ax.
3⇒ [π1;π2]ψ ∈ A, since [π1;π2]ψ ∈ ¬FL(Σ). �

“⇐” if [π1;π2]ψ ∈ A⇒ A |= [π1;π2]ψ

Proof. We need to show that if [π1;π2]ψ ∈ A then for ∀C ,B ∈
At (Σ) s.t. ARπ1C and CRπ2B then B |= ψ . By Ax. 3 and by clause
1, if [π1;π2]ψ ∈ A⇒ [π1][π2]ψ ∈ A. By IH⇒ A |= [π1][π2]ψ ⇒
for ∀C s.t. ARπ1C we have R,C |= [π2]ψ ⇒ ∀B s.t. CRπ2B ⇒
B |= ψ ⇒ A |= [π1;π2]ψ �

case 5: ϕ is of the form ϕ?

“⇒” Assume A |= [ϕ?]ψ . We need to show that [ϕ?]ψ ∈ A. By
Axiom 6, A |= ϕ → ψ . By the IH, we get that ϕ → ψ ∈ A. By
Axiom 7, [ϕ?]ψ ∈ A.
“⇐”Assume [ϕ?]ψ ∈ A. Show that A |= [ϕ?]ψ . By Axiom 7, we
get that ϕ → ψ ∈ A. By the IH, we have that A |= ϕ → ψ . By
Axiom 7,we get that A |= [ϕ?]ψ .

case 6: ϕ is of the form [π ∗]ψ

“⇐” if [π ∗]ψ ∈ A⇒ A |= [π ∗]ψ .
From the Existence Lemma and an application of Axiom 5, it
follows immediately that ∀ϕs .t .[π ]ϕ ∈ ¬FL(Σ), if ARπ ∗B and
[π ∗]ϕ ∈ A then ϕ ∈ B.
“⇒” if A |= [π ∗]ψ ⇒ [π ∗]ψ ∈ A.
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Proof. By contraposition, we need to prove that if ¬[π ∗]ϕ ∈ A
then A 6 |= [π ∗]ψ . By the Existence Lemma for Si∗ , we have that if
¬[π ∗]ϕ ∈ A then ∃B ∈ At (Σ) such that ASπ ∗B, then ¬ϕ ∈ B. But
we have shown that Sπ ∗ ⊆ Rπ ∗ , therefore we have thatARπ ∗B. By
the IHTruth Lemma and the fact that ¬ϕ ∈ B we have that B |= ¬ϕ.
Therefore A 6 |= [π ∗]ϕ. �

case 7 : ϕ is of the form ∑k
j=1 αjPa (ϕj ) ≥ β . By Lemma 3, ∑k

j=1 αjPa (ϕj ) ≥

β ∈ A if and only if ∑k
j=1

∑
B∈At ,`B→ϕ j αjµa,A(B) ≥ β if and

only if R,A |= ∑k
j=1

∑
B∈At ,`B→ϕ j αjµa,A(B) ≥ β if and only if

R,A |= ∑k
j=1 αjPa (ϕj ) ≥ β .

This concludes the proof of the Truth Lemma.

�

Theorem 17: Weak completeness of PE-PDL

PE-PDL is weakly complete with respect to the class of all Bayesian
Kripke frames.

The reduction axioms presented in Section 5.1.3 determine a trans-
lation procedure, for reducing the LPLCC-formulas into LPE-PDL for-
mulas.

De�nition 38: Translation
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The function t takes a formula from the language of LPLCC and
yields a formula in the language of LPE-PDL.

t (T ) = T r (a) = a

t (p) = p r (B) = B

t (¬ϕ) = ¬t (ϕ) r (?ϕ) =?t (ϕ)
t (ϕ1 ∧ϕ2) = t (ϕ1) ∧ t (ϕ2) r (π1;π2) = r (π1); r (π2)

t ([π ]ϕ) = [r (π )]t (ϕ) r (π1 ∪ π2) = r (π1) ∪ r (π2)

t ([e]T ) = T r (π ∗) = (r (π ))∗

t ([e]p) = t (pre(e )) → t (sub(e ) (p))
t ([e]¬ϕ) = t (pre(e )) → ¬t ([e]ϕ)

t ([e](ϕ1 ∧ϕ2)) = t ([e]ϕ1) ∧ t ([e]ϕ2)

t ([ei ][π ]ϕ) =
n−1∧
j=0

[Tij (r (π ))]t ([ej ]ϕ)

t ([e][e′]ϕ) = t ([e]t ([e′]ϕ))

t




∑
1≤h≤k

αh · Pa (ψh ) ≥ β


 =

∑
1≤h≤k

αh · Pa (t (ψh )) ≥ β

t (A) = t (pre (e )) → t (C ≥ D)

where the letters in the last line stand for

A = [e]




∑
1≤h≤k

αh · Pa (ψh ) ≥ β




C =
∑

1≤h≤k
ϕi∈Φ
f ∼ae

αh · prea ( f | ϕi ) · Pa (t (ϕi ∧ [f ]ψh ))

D =
∑
ϕi∈Φ
f ∼ae

β · prea ( f | ϕi ) · Pa (t (ϕi ))

Finally, we have that:

Theorem 18: Completeness of PLCC

For any ϕ, a formula of the language LPLCC, we have that:

|= ϕ i� ` ϕ

Proof. Given the completeness of the static language PE-PDL LPE-PDL,
and the translation procedure above, which ensures every formula in
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the language of PLCC is equivalent to a formula in the language of
PEPDL, the result follows immediately. �

In conclusion, Chapter 5 developed the probabilistic version of the
Logic of Communication and Change, a powerful epistemic logic that
we believe could become well-suited for modelling social dynamics
of information games. PLCC aspires to becoming a candidate for
the standard logic for imperfect information games for the reason
that it can express diverse notions of group knowledge, especially
common knowledge alongside probabilistic statements that are revised
by the principle of Bayesian conditionalization. The main result of
this chapter is the proof that PLCC is a sound and weakly complete
logic with respect to Bayesian Kripke structures.
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6

T H E L O G I C A P P R OAC H T O C A S C A D E S

This section presents a logical formulation of informational cascades,
both semantically and syntactically. The semantic approach will dispel
the argument according to which the Bayesian analysis of the cascade
(see Chapter 2) fails to take into consideration the higher order beliefs
of players. These beliefs encode the agents’ re�ection on the overall
game and on the possibility of a cascade formation. On the other hand,
statements that describe informational cascades are quite naturally
expressed in a logical syntax. More generally, the syntactic approach
can spot hidden assumptions behind ordinary economic or game-
theoretic reasoning, and the axioms and inference rules can also help
to analyse such assumptions.

Using Bayesian Kripke structures, we present a semantic treatment
of cascades. This construction has several advantages. The �rst is
that it represents a quantitative belief system that tracks each agent’s
observational learning, as the game unfolds. The use of probabil-
istic epistemic structures allows the incorporation of all levels of an
agents’ beliefs and knowledge about the current state of the world
into the model. This includes taking into account all the players’ meta-
considerations regarding the game. Moreover, it allows for a clear
delineation between the knowledge of an agent before and after an
action has been observed. This brings forth a transparent analysis of
the consequences information has on agents’ knowledge and beliefs.
Logical approaches to cascades have been considered in the literat-
ure before Baltag et al. (2013), Rendsvig (2013), in the framework of
Dynamic Epistemic Logic. Our presentation will be carried out in the
Bayesian Kripke semantics for Probabilistic Logic of Communication
and Change introduced in Chapter 5.

6.1 the semantic proof of the cascade

This section presents a PLCC semantic proof of the cascade formation
in the Basic Urn Game. The strategy consists of simulating a play of
the game where the �rst two players receive a low precision signal, and
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the logic approach to cascades

show, using Bayesian Kripke models, that under common knowledge
of rationality, every subsequent player i ≥ 3 will follow the �rst two,
no matter their own private signal.

Consider a set of agents Aд = {1, . . . ,n} together with 0 denoting
Nature, and a set of propositional atoms

At = {W̄ , B̄} ∪ {W̄i , B̄i }i∈Aд ∪ {w̄i , b̄i }i∈Aд

These propositional atoms allow us, through the mechanism of substi-
tutions or postconditions, to track the progression of the game. The
idea is to set all propositional atoms as false at all worlds in the initial
state model M0. Then, as agents take turns to play, the event models
underlying this progression execute change of facts corresponding to
the actions announced during the game.

A play of the game represents, in semantic notions, a succession
of product updates of an initial Bayesian Kripke model, after event
models that alternate between being private announcements of signals
and public announcements of guesses. We will denote the events
that model announcements of player i’s private signal by A2i−1 and
the events that model the guess of player i by A2i . We encode the
assumption of common knowledge of rationality into the modelling of
the events, more precisely in the preconditions, that constrain agents
to perform only “rational” moves. Essentially, in this setting common
knowledge of rationality is a constraint on the event models.

We begin with a Bayesian Kripke model denoted by M0, which
represents the informational state of the agents, after Nature has
picked the state of the world:

M0 = (S0,∼i , µi ,V )i∈Aд

where:

• S0 = {W ,B}.

• ∼i is an equivalence relation on S for agent i: W ∼i B ∀i ∈ Aд.

• µi : S0 → [0, 1] such that µi (s ) = 1
2 ∀s ∈ S .

• V assigns a set of states in S to each propositional variable in At

as follows:

? V (W̄ ) = {W } and V (B̄) = {B}

? V (W̄i ) = ∅, V (B̄i ) = ∅,, for all i ∈ Aд

? V (w̄i ) = ∅, V (b̄i ) = ∅,, for all i ∈ Aд
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6.1 the semantic proof of the cascade

We graphically represent Bayesian Kripke models as follows: the
worlds are depicted by rectangles, which contain the atoms true at that
world. These atoms, put together in a sequence, label the world they’re
in. Worlds are connected by arrows, which represent equivalence
relations. Every arrow is labelled by the agents who cannot distinguish
between the worlds connected by the arrow. We do not denote re�exive
arrows in our models, since they are always assumed to be there for
any model represented. Given the SDP condition, we have that within
every agent’s information set, his probability assignments at each
world are the same. Therefore, we represent only one probability
assignment per world per agent, next to the name of the world. In
model M0 of Figure 6.1, the actual state B is represented by the bold-
font rectangle, whereas the label on the arrows designates the agents
that cannot distinguish between the two states of the world,W and B.
The probabilities that each player assigns to the worlds are represented
on the side of each rectangle, preceded by the players that hold these
beliefs.

W B
all k

all k : 1/2 all k : 1/2

Figure 6.1: The initial state model M0, after Nature picks the state of
the world B. This action is not observable by any of the
agents k ∈ Aд. All players give each world equal chances
of being true.

Nature’s pick of player 1’s private signal

Next in the sequence of play, Nature reveals the private signal of
player 1. This turn can be modelled using a probabilistic event model
A1 = (E1,∼i , PRE,prei , sub1)i∈Aд in which:

• E1 = {w1,b1}

• ∼i such that w1 ∼i b1∀i , 1

• PRE (e ) = {W̄ , B̄} for all e ∈ E1. Then Φ = {W̄ , B̄}.

• prei : Φ→
(
E1 → [0, 1]) such that prei (w1 |W̄ ) = prei (b1 |B̄) =

2
3

and prei (b1 |W̄ ) = prei (w1 |B̄) =
1
3 for all i , 0

• sub1(w1) = σw and sub1(b1) = σb , where dom(σw ) = {w̄1},
dom(σb ) = {b̄1}, and σw (w̄1) = ¬w̄1, σb (b̄1) = ¬b̄1

The event model A1 is depicted graphically in Figure 6.2. We abuse
notation by dropping the agent indexation of the pre function in the
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the logic approach to cascades

drawings because it is assumed that all players in the game share the
same subjective beliefs regarding the probabilistic preconditions.

w1 b1
pre (w1 |W̄ ) = 2

3
pre (w1 | B̄) = 1

3

pre (b1 |W̄ ) = 1
3

pre (b1 | B̄) = 2
3

k , 1

Figure 6.2: The event model A1 represented by player 1 drawing a
ball from the urn. Player 1 sees a w1, however none of the
other players can distinguish between the two events at
this stage.

The result of updating M0 with event A1 is the new state model
M1 = M0 ⊗A1 = (S1,∼i , µi ,V )i∈Aд, represented in Figure 6.3. Observe
that agent 1 knows she has drawn a white marble w1, while not being
able to discern the true urn B. All the other players in the game remain
ignorant with regard to player 1’s private draw, and can therefore
exclude no world.

Ww1 Bw1

Wb1 Bb1

all k

k , 1 k , 1

all k

k , 1 k , 1

k : 2/6
1 : 2/3

k : 1/6
1 : 1/3

k : 1/6
1 : 1/3

k : 2/6
1 : 2/3

Figure 6.3: The product update model M1 resulting after the private
announcement of player 1’s signal.

Given the new state model M1, we can calculate the probabilities
that each agent gives to the new states, using the probability update
formula introduced in Section 5.1.2. For example, we compute the
revised probability assignment of player 1, since any other players’
informational state does not change as a result of event E1. We drop
the world indexation in the product update rule in order to improve
legibility, since by the SDP condition, the probability assignment of
an agent is the same at every world within the same information set.
For example, applying the product update rule

µi (s , e ) =
µi (s ) · prei (e |s )∑

(s ′,e ′)∈S1 µi (s
′) · prei (e′|s′)

we have that

µ1(W ,w1) =

1
2 ·

1
3

1
2
=

2
3
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6.1 the semantic proof of the cascade

This represents, intuitively, the probability player 1 assigns to the state
of the world being W, given he received the private signal w1. The
other probabilities are computed in the same way and included in
Figure 6.3.

Player 1’s action

We formalize player 1’s action as an event model A2 with two events,
W1 and B1, unrelated to each other by player arrows since they all know
what action is being taken. Each action changes facts according to a
substitution function. Formally we haveA2 = (E2,∼i , PRE,prei , sub2)i∈Aд
in which:

• E2 = {W1,B1}

• ∼i such thatW1 /i B1∀i

• PRE (e ) = {ϕW ,ϕB } for all e ∈ E2, such that:

ϕ1W := P1(W̄ ) > P1(B̄) ∨
(
P1(W̄ ) = P1(B̄) ∧w1

)
ϕ1B := P1(W̄ ) < P1(B̄) ∨

(
P1(W̄ ) = P1(B̄) ∧b1

)
• prei : Φ→

(
E2 → [0, 1]) such that prei (W1 |ϕ

1
W ) = prei (B1 |ϕ

1
B ) =

1 and prei (W1 |ϕ
1
B ) = prei (B1 |ϕ

1
W ) = 0 for all i .

• sub2(W1) = σW1 and sub2(B1) = σB1 , where dom(σW1 ) = {W̄1},
dom(σB1 ) = {B̄1}, and σW1 (W̄1) = ¬W̄1, σB1 (B̄1) = ¬B̄1.

We depict event model A2 graphically in Figure 6.4 The pre function

W1 B1
pre (W1 |ϕ1

W ) = 1
pre (W1 |ϕ1

B ) = 0
pre (B1 |ϕ1

W ) = 0
pre (B1 |ϕ1

B ) = 1

Figure 6.4: The event model A2 represented by player 1’s announce-
ment of his guess. Everyone can distinguish between these
two events, hence the model has no outgoing arrows.

encodes the common knowledge of rationality and tie-breaking rule
assumptions: agent 1 only announces W1 if he either believes W to
be more likely than B or he believes them to be equally probable but
his private signal was w1. In the previous paragraph, we computed
player 1’s subjective probability thatW is the true state of the world,
µ1(W ,w1) =

2
3 . Therefore player 1 will chooseW1. This event gives

rise to the update model M2. The product update model will still have
four worlds, but the two worlds where W1 is true will be unrelated
(for all players) to the two worlds in which B1 is true: it is common
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the logic approach to cascades

knowledge in which of these two zones the players are. Assuming the
real world is Bw1W1, we can thus disregard the B1 worlds as irrelevant
(inaccessible, impossible). More precisely, the 4-world model with
actual world Bw1W1 is bisimilar to the the 2-world model (having only
the W1 worlds) with the same actual world Bw1W1. So we can just
delete the B1 worlds, obtaining the model in Figure 6.5. From now
on, we abuse notation and refer to the bisimilar model as being the
product update model itself.

Bw1W1 Ww1W1
all k

k : 1/3 k : 2/3

Figure 6.5: The product update model M2 after player 1’s announce-
ment. The consequence of imposing common knowledge
of rationality on the current model is the deletion of the
worlds at which b1 is true. All players, knowing that player
1 is rational, are able to deduce that player 1 saw a white
ball.

Nature’s pick of player 2’s private signal

Assume that Nature sends player 2 the signal w2. This private commu-
nication is represented by the event model

A3 = (E3,∼i ,Φ,pre , sub)i∈Aд

where, the elements are, mutatis mutandis, as for A1. This private
announcement is modelled as an event model and is represented in
Figure 6.4

w2 b2
pre (w2 |W̄ ) = 2

3
pre (w2 | B̄) = 1

3

pre (b2 |W̄ ) = 1
3

pre (b2 | B̄) = 2
3

k , 2

Figure 6.6: The event model A3 represented by player 2 drawing a
ball from the urn. Player 2 sees a w2, however none of the
other players can distinguish between the two events at
this stage.

Again, as above, we model the e�ect of this event using a product
update model M3 = M2 ⊗A3 in Figure 6.7.

Player 2’s action

The action of player 2 can be encoded as an event model A4, which is
depicted in Figure 6.8, where :
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6.1 the semantic proof of the cascade

Ww1W1w2 Bw1W1w2

Ww1W1b2 Bw1W1b2

all k

k , 2 k , 2

all k

k , 2 k , 2

k : 4/9
2 : 2/3

k : 2/9
2 : 1/3

k : 1/9
2 : 1/3

k : 2/9
2 : 2/3

Figure 6.7: The product update model M3 resulting after the private
announcement of player 2’s signal.

ϕ2W :=
(
P2(W̄ ) > P2(B̄)

)
∨

(
P2(W̄ ) = P2(B̄) ∧w2

)
ϕ2B :=

(
P2(W̄ ) < P2(B̄)

)
∨

(
P2(W̄ ) = P2(B̄) ∧b2

)
and in general, let:

ϕiW :=
(
Pi (W̄ ) > Pi (B̄)

)
∨

(
Pi (W̄ ) = Pi (B̄) ∧wi

)
ϕiB :=

(
Pi (W̄ ) < Pi (B̄)

)
∨

(
Pi (W̄ ) = Pi (B̄) ∧bi

)

W2 B2
pre (W2 |ϕ2

W ) = 1
pre (W2 |ϕ2

B ) = 0
pre (B2 |ϕ2

W ) = 0
pre (B2 |ϕ2

B ) = 1

Figure 6.8: The event model A4 represented by player 2’s announce-
ment of his guess. Everyone can distinguish between these
two events

The preconditions are designed to make player 2 choose actionW2,
given that the subjective belief he attaches to the world beingW is
given by µ2(W ) = 4

5 >
1
2 . This public announcement will give rise

to the product update model M4. Graphically this is represented in
Figure 6.9:

Bw1W1w2W2 Ww1W1w2W2
all k

k : 4/5 k : 1/5

Figure 6.9: The product update model M4 after player 2’s public an-
nouncement. The consequence of imposing common know-
ledge of rationality on the current model is the deletion of
the worlds at which b2 is true.
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the logic approach to cascades

Nature’s pick of player 3’s private signal

Assume, further, that Nature chooses a black ball b3 for player 3. As
expected, we model the private communication using an event model
A5, represented in Figure 6.10.

w3 b3
pre (w3 |W̄ ) = 2

3
pre (w3 | B̄) = 1

3

pre (b3 |W̄ ) = 1
3

pre (b3 | B̄) = 2
3

k , 3

Figure 6.10: The event model A5 represented by player 3 drawing a
black ball from the urn. None of the players, except 3, can
distinguish between the two events at this stage.

The update model that follows this event, denoted by M5, is given by
Figure 6.11. In the pictorial representation, you can �nd the subjective
probability player 3 assigns to the world beingW , given the observed
actions of previous players and his own private signal.

Player 3’s action

As dictated by rationality, player 3 will choose actionW3, as depicted
in Figure 6.12. Moreover, if Nature had chosen a white ballw3 then the
subjective probability that player 3 assigned to the world being white
would have been higher than 2

3 . Therefore, no matter what signal
player 3 had received, he would have chosenW3.

As we have gotten used to by now, we are going to construct a
product update model M6, as a result of the public communication
of actionW3. In this new model, no worlds will be deleted, since no
player except player 3 can distinguish between b3 andw3, based solely
on the assumption of common knowledge of rationality. For player 3,
as we have argued, it is consistent with rationality to choose actionW3,
both in the case that he receives a w3 and b3. This means this agent
has entered into a false cascade, and others cannot infer his private
signal though his choice.

The same reasoning can be applied to any subsequent player, who
will rationally chooseWi , regardless of his private signal. This is due to
the failure of extracting any extra information for any players, except
player 1, player 2 and himself. Thus, as argued before, agents will
enter a cascade, in which every player i > 2 imitates his predecessor.

We set to prove this claim formally by induction on the number of
players. First, we encode the initial conditions of this example into
one sentence called initial. This says that it is common knowledge
that eitherW or B holds, that nobody knows which of them is true
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6.1 the semantic proof of the cascade

Ww1W1w2W2w3 Bw1W1w2W2w3

Ww1W1w2W2b3 Bw1W1w2W2b3

all k

k , 3 k , 3

all k

k , 3 k , 3

k : 8/15
3 : 8/9

k : 4/15
3 : 2/3

k : 1/15
3 : 1/9

k : 2/15
3 : 1/3

Figure 6.11: The product update model M5 resulting after the private
announcement of player 3’s signal.

W3 B3
pre (W3 |ϕ

3
W ) = 1

pre (W3 |ϕ
3
B ) = 0

pre (B3 |ϕ
3
W ) = 0

pre (B3 |ϕ
3
B ) = 1

Figure 6.12: The event model A6 represented by player 3’s announce-
ment of his guess. Everyone can distinguish between
these two events

and that everybody assigns probability 0.5 to each possibility. More
precisely,

initial :=
(
(W ∨ B) ∧

∧
i∈Aд

(¬[i]W ∧¬[i]B) ∧ Pi (W ) = 0.5)
)

Proposition 1

For all i ≥ 3, all e2 ∈ E2 and e4 ∈ E4, all 5 ≤ j ≤ 2i − 1, and all
e5 ∈ E5, e6 ∈ E6 . . . , e2i−1 ∈ E2i−1, we have that:

[∪∗i∈Aд]initial⇒ [w1][e2][w2][e4][e5] . . . [e2i−1](∧
j<i

(
Pj (W ) ≥ 2 · Pj (B)

)
∧

∧
j≥i

(
Pj (W ) ≥ 4 · Pj (B

))
is a valid formula.

We set to prove this in induction on the number of players. Note that
by the completeness result, it follows that all these formulas should
also be provable in the axiomatic system.

Proof by induction on the number of players.

base case The case n = 3 was already proved above.
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Ww1W1w2W2w3W3 Bw1W1w2W2w3W3

Ww1W1w2W2b3W3 Bw1W1w2W2b3W3

all k

k , 3 k , 3

all k

k , 3 k , 3

k : 8/15
3 : 8/9

k : 4/15
3 : 2/3

k : 1/15
3 : 1/9

k : 2/15
3 : 1/3

Figure 6.13: The product update model M6 resulting after the private
announcement of player 3’s signal.

inductive hypothesis Assume the proposition holds for all i ≤
n − 1 and try to prove it holds for n. In particular the inductive
hypothesis holds for n − 1, and therefore get state model M2n−3,
which we will represent partially, by lumping together all the
W -worlds and, respectively, B-worlds as presented in Figure 6.14

W -worlds B-worlds
all kall a ≤ n − 1 a :≥ 2/3

all a > n − 1 a :≥ 4/5
all a ≤ n − 1 a :≤ 1/3
all a > n − 1 a :≤ 1/5

Figure 6.14: The state model M2n−3, representing the beliefs of players
after player n − 1 has seen his signal. The probabilities
express the sentence in the proposition, in terms of actual
probability assignments. For example, Pj (W ) ≥ 2 · Pj (B)
is equivalent to saying that µj (W ) ≥ 2

3
.

Next, player n − 1 will publicly announceWn−1!, as demanded
by his beliefs. This announcement will not change the inform-
ational state of any agent, since no one except n − 1 can infer
anything about the private signal of player n − 1. Therefore,
the new model M2n−2 will be identical to M2n−3 in terms of be-
liefs of players. This is so because at every world in the model
M2n−3, the sentence Pn−1(W ) > 1

2 is true, and therefore com-
mon knowledge. The next event is represented by the private
announcement of player n’s signal, which is re�ected in event
model A2n−1 depicted in Figure 6.15.

The new product update model that results from M2n−2 and
A2n−1 is presented graphically in Figure 6.16

Applying the technique of lumping togetherW -worlds and re-
spectively B-worlds, we end up with a model of the form:
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wn bn
pre (w1 |W̄ ) = 2

3
pre (w1 | B̄) = 1

3

pre (b1 |W̄ ) = 1
3

pre (b1 | B̄) = 2
3

k , n

Figure 6.15: The event model A2n−1 represented by player n drawing
a ball from the urn. None of the other players can distin-
guish between the two events at this stage.

W -world wn B-world wn

W -world bn B −world bn

all k

k , n k , n

all k

k , n k , n

k : 8/15
n : 8/9

k : 4/15
n : 2/3

k : 1/15
n : 1/9

k : 2/15
n : 1/3

Figure 6.16: The product update model M2n−1 resulting after the
private announcement of player n’s signal.

W -worlds B-worlds
all kall a ≤ n a :≥ 2/3

all a > n a :≥ 4/5
all a ≤ n a :≤ 1/3
all a > n a :≤ 1/5

Therefore, model M2n−1 satis�es

Pj (W ) ≥ 2 · Pj (B)j ≤ n, and

Pj (W ) ≥ 4 · Pj (B) for all j > n

Hence we proved the induction step for n.

�

In conclusion, in Chapter 6 we used a logical formalism to capture
the meta-level reasoning of players about game cascades. The con-
clusion of this analysis is that informational cascades can be seen
as an infelicity of the social dynamics of information engendered by
strategic considerations, rather than a failure of individual rational
cognisance. This claim is endorsed by the observation that from player
3 onwards, all players were aware that they were in a cascade. What
is more, there was common knowledge that a cascade ensued, and yet,
these higher order re�ective powers that agents were endowed with
failed to dissuade any of them from changing their strategy.
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C O N C L U S I O N A N D D I R E C T I O N S F O R F U R T H E R
WO R K

7.1 synthesis

In this thesis, we looked at situations where “rational individual action,
in pursuit of well-de�ned preferences, leads to outcomes undesirable
to individuals and surprising, given their intention” (Granovetter, 1978,
p. 15).

Essentially, the thesis shows how hard it is to avoid false cascades.
The logical chapter and its application show that no amount of higher-
level rationality, theory of the mind, perfect Bayesian reasoning and
common knowledge (including common knowledge of the protocol, of
everybody’s rationality and of everybody’s awareness of the possibility
of cascades) is enough to avoid the cascade. The game theory chapters
show that the strategy leading to cascades is a PBNE, and indeed an
unique equilibrium as far as its on path prescriptions are concerned.

The chapters on other games are attempts at social mechanism
design aimed at avoiding the cascade, by changing the payo�s to
favour collective rationality, or by imposing team-play (joint choice of
strategy) and forbidding or punishing individual deviations from the
group decision. By and large, most of these attempts fail: some kind of
cascading behaviour is produced by best response actions in most of
these variations. The only exception is constituted by truth-tracking
games, which reward agents if and only if the group attains the truth.

A condensed view of the thesis’ contributions can be divided ac-
cording to their nature. Part of our contribution is exegetical. We
interpreted and formalized one of the main solution concepts, namely
Perfect Bayesian Nash Equilibrium, for a new type of games: imperfect
information games with chance moves. Another part of our contribu-
tion is explanatory: we developed a formal de�nition of informational
cascades, based on a �ne-grained conception of cascade behaviour,
as generated by strategic considerations. From this perspective, in-
formational cascades can now be described as sequential games with
imperfect information and chance moves in which the Bayesian strat-
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conclusion and directions for further work

egy is a PBNE. We compressed cascade reasoning into a strategy and
showed that the likelihood of cascades depends on the structure of
rewards the group shares at the end of the game. This dependence
is indirect, connected by the notion of optimality. Finally, a part of
the contribution is conceptual. We put forth a proposal for a logic
of imperfect information games. While there are a few open prob-
lems in the way of achieving a viable logic for games, the start seems
promising.

7.2 directions for further work

The developments of this thesis could be expanded in various directions

direction 1 In this thesis we talked, in fact, about one particular
kind of externality, called informational externality. It is the very
familiar concept that refers to the informational bene�t an agent
enjoys from observing the actions of some other agents. We
showed before that the information which can be inferred from
someone else’s action constituted the motor for the propagation
of conformity in the informational cascade models presented.
In contrast, a future direction could be considering an alternat-
ive explanation for rational herd behaviour: payo� externalities.
These denote situations in which the payo� of an agent is an
increasing function in the number of other agents adopting the
same action. Some examples are the convention of driving on
the right side of the road or the adoption of the fax technology.
In both of these cases, the more people adopt a particular be-
haviour or technology, the more bene�t everyone derives from
them. Payo� externalities are sometimes called network e�ects,
because an agent can incur an explicit bene�t by aligning his
behaviour with the behaviour of others.
A potential focus could be characterizing the reasoning of con-
nected agents, in a way that places emphasis on the in�uence
individuals have on their network neighbours. This perspective
is motivated by the observation that most social informational
processes take place at a local, rather than global level: when
considering whether to adopt a technology, for example, one
often turns to his circle of friends and acquaintances, and less
to statistics regarding what the overall population is doing.

direction 2 This thesis was mainly concerned with informational
cascades and their logical formalization. However, a fruitful
direction could be the formalization, in the same logical language,
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of other social epistemic phenomena, like pluralistic ignorance.
With regard to other urn games, a logical formalization can
only be done by moving to a “protocol” version of the logic
(in the style explored in van Benthem, Gerbrandy, Hoshi and
Pacuit (2009)), since if one player’s payo� depends also on all the
other players’ future moves, then the assumption of common
knowledge of rationality becomes a constraint on the whole
future history of events, so a “protocol” constraint rather than a
one-event constraint.

direction 3 We can further generalize the informational cascade
setting. For example, we would want to endogenize the order
in the sequence of choices. This seems like a natural extension
of the cascade model presented in this thesis. Another would
be, as hinted earlier in Chapter 3, to change the informational
structure of the game. For example, consider cases where players
do not observe the order of the decisions made before them in
the sequence, but just the number of people opting for each
choice (like in the restaurant example). Another possible change
would be to limit the observational powers of the players to the
last couple of decisions.
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