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Abstract

This thesis argues for a quantitative, social-cognitive, and experimental ap-
proach to pragmatics. A formal decision-theoretic framework is proposed to
model language production and interpretation in the context of social cogni-
tion. The framework is applied to several case studies: (1) use of referential
expressions, (2) descriptive use of positive forms of gradable adjectives, and
(3) use of quantifiers to give quantitative predictions which are tested against
experimental data. We discuss design choices in experimental measure and
formal modeling to incorporate various cognitive factors involved in prag-
matic phenomena. This approach can shed new light on the meaning and
use of language.



Chapter 1

Introduction

1.1 Motivation

Natural language is crucial to civilization and is indispensable to human
everyday life. Given its great importance and prevalence, a theory of how
people use natural languages is needed, in order to describe, explain, and
predict various linguistic phenomena.

Intuitively, we use natural languages primarily1 in two ways: Either we
say something for some purpose, or we hear something and (not necessarily
explicitly or even consciously) respond to it.

Hence a theory about language use should account for both produc-
tion and interpretation. Specifically, an account of production describes
utterances used under different circumstances for various purposes, and an
account of interpretation spells out the effect of an utterance on the listener
and its consequences.

Note that this does not imply commitment to Behaviorism (e.g., Skin-
ner, 1957). We by no means deny the legitimacy or need of having mental
representations in a linguistic theory. In fact, in our above description, “pur-
pose” is about intention/desire, and we will have no objection to an account
where “circumstance” includes the speaker’s belief/knowledge and “effect
of an utterance” is a change of the mental state of the listener on which
subsequent behavior is based.

Neither are we claiming that perfect description or prediction of behavior
is all that a theory of natural language is about. The above requirement is
taken to be necessary rather than sufficient. We are merely stating that a
linguistic theory that gives no such predictions is at least incomplete, and if
it makes wrong predictions on these matters, then revision would be needed.

In this thesis, we argue for a quantitative, social-cognitive, and exper-

1One can use language to organize one’s thoughts. Although such activities may intu-
itively be seen as speaking to oneself, this view is not uncontroversial. This type of use is
beyond the scope of this thesis.
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imental approach to the study of language use (pragmatics) that aims at
meeting the above requirement. We will review previous works in this
approach that have yielded fruitful results in studying a variety of prag-
matic phenomena, most notably the Rational Speech Act (RSA) theory
(e.g., Frank, Goodman, Lai, & Tenenbaum, 2009; Frank & Goodman, 2012;
Bergen, Goodman, & Levy, 2012; Goodman & Stuhlmüller, 2013) and game-
theoretic pragmatics (e.g., Rabin, 1990; Stalnaker, 2006; Franke, 2011; Jäger,
2013; Franke & Jäger, 2014) and introduce our extensions on several case
studies. But first of all, let us explain and argue for the three features of
this approach.

1.2 The Need for a Quantitative Theory

Traditionally, pragmatics primarily deals with categorical (in most cases,
binary) or ordinal linguistic data. Thus we first need to justify the need of
a quantitative theory of pragmatics.

The main reason is that a quantitative pragmatic theory allows us to
better capture the subtlety and complexity of how people use language.
Take production for example, there can be several possible utterances for a
speaker to fulfill a purpose on a certain occasion, but a speaker might use
them with different frequencies. Or a listener might feel that an utterance
is ambiguous between two readings, but he may have a preference for one
reading to various degrees. If our theory only makes categorical or ordinal
predictions, it will inevitably lose some of the rich information about how
people use language. A categorical theory that only predicts possibilities
of utterances is inadequate to explaining preferences among alternatives.
An ordinal theory is able to make predictions such as that utterance 1 is
preferred to utterance 2, but it may fail to express, for example, the huge
preference for utterance 1 to utterance 2, in contrast to the slight inclination
for utterance 3 rather than utterance 4. A quantitative theory, on the other
hand, has rich enough expressive power which enables us to systematically
make any such comparisons, as we can build a quantitative theory that
directly models the relative frequency of each utterance (reading). This
means that a quantitative theory makes more specific predictions and thus
has more commitments, which also makes it more falsifiable.

Hence, we need a quantitative theory to fully capture complex patterns
in various phenomena of language use in a systematic way.

1.3 Language Use as Social Behavior

The second feature of the pragmatic theory is to investigate language use
in the context of social cognition. This idea can be traced back to several
schools in philosophy of language.
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A Wittgensteinian view of language (Wittgenstein, 1953) draws the anal-
ogy between linguistic activities and games, treating the meaning of an ex-
pression as the conventional rule governing its proper conversational use
to serve some social function. The speech act theory (e.g., Austin, 1962)
demonstrates that one can make an utterance as performing and fulfilling a
conventional social action. Last but not least, Grice (1989) illustrates how
the meaning of an utterance can be calculated from the expression’s conven-
tional meaning and general expectation of cooperativity in communication,
and further treats communication as intention recognition.

We shall emphasize here that we do not intend to enter the debate on
what is meaning. Note that our statement of the goal (i.e., a theory of
production and interpretation) in the beginning does not refer to meaning
at all. Rather, we want to argue for an approach that focuses on the use of
language, especially its social-cognitive aspect in production. In this section
we will argue that one of the merits of this approach is that it can provide
unique insight into the debate on the nature of meaning.

It helps to reflect on why meaning is such a fundamental issue in phi-
losophy of language in the first place, in the light of our goal. A tentative
answer is that meaning seems to be the most straightforward first step for
any account of interpretation.

It is a fact that people have different responses to (utterances of) different
linguistic expressions, thus any theory of interpretation should at least be
able to account for such differences. The most intuitive and straightforward
way to achieve this is to state that different expressions have different mean-
ings (and some might have none, in which case the listener will think of the
utterance as nonsense), and then proceed to build a theory of meaning that
(1) specifies the meaning of each expression, and (2) explains how different
meanings contribute to different responses. Traditional truth-conditional
semantics is a typical example of a theory of meaning. First, through com-
positionality it is able to assign meanings to infinitely many expressions
that constitute a considerable part of natural language. Second, through
logical systems it predicts people’s interpretation such as truth judgment,
entailment recognition.

This approach has been highly successful to account for a wide range of
phenomena concerning interpretation. However, what is missing in this pic-
ture is production, which is about utterances of expressions under different
circumstances for various purposes. A theory of meaning in the above sense
tells us nothing about when and why an utterance would be made in the
first place. Hence it is inadequate to explaining production.

Moreover, interpretation is not independent of production. For exam-
ple, the interpretation of indexicals, such as “I,” “here,” “now,” crucially
depends on the circumstances where they are uttered. Hence a theory of
meaning in the narrow sense above is inadequate even for interpretation.
This observation has led to a revision of the traditional theory of meaning.
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According to the new theory, the meaning of an expression is relativized to
the circumstances under which it is uttered.

Thus, we have seen how the aspect of circumstances in production af-
fects interpretation and eventually influences the theory of meaning. It is
natural to hypothesize that the other aspect in production, i.e., purposes,
also plays a role in interpretation. Indeed, this is the aspect that the theories
of meaning in the beginning of this section emphasize. Language is mostly
used to serve social functional purposes such as conveying information, mak-
ing requests, and performing actions. Thus it is reasonable to expect that
language will be used to best serve these purposes. For example, Grice’s
theory illustrates how the listener, assuming the speaker is cooperative in
conveying relevant information, can learn more information from an utter-
ance than its truth-conditional semantics predicts, by taking the speaker’s
perspective and reasons hypothetically about production.

However, it shall be emphasized here that informativity is not the only
factor that influences language use. Other cognitive factors may also in-
fluence both production and interpretation. For instance, Grice’s maxim
of manner requires that the speaker should normally be brief and orderly,
which takes into account the cognitive factors of production and interpreta-
tion efforts.

In this thesis, we will further investigate how various social cognitive
factors can affect production, which in turn can influence interpretation and
eventually shed new light on the meaning of language. We will illustrate
how to integrate these cognitive factors into quantitative models whose pre-
dictions can be empirically tested, and discuss how the results could com-
plement existing theories of meaning.

1.4 Experimental Pragmatics

Finally, we argue for the need of experimental studies to obtain data for
our purposes, since traditionally the primary source of linguistic data in
semantics and pragmatics is researchers’ own linguistic judgments.

The main reason why pragmatic intuition of a single person is not enough
for studying the use of language is the quantitative nature of the phenomena.

First of all, production is usually non-deterministic, and our reflection
on such non-determinancy is not accurate. For example, one might use
utterance A 70% likely and utterance B 30% likely in a certain situation
for a particular purpose, but he does not necessarily know such likelihoods.
Hence the judgment of a single person is not reliable and thus inadequate.

Secondly, even though we usually feel highly definite about typical cat-
egorical semantic judgements concerning interpretation (such as truth or
entailment), it is no longer the case when we are to make context-sensitive,
graded pragmatic judgments. It is usually hard to know the exact strengths
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of our graded judgments through introspection. This again means that it is
not enough to have judgments from a single person.

Last but not least, our pragmatic theory is almost always incomplete to
account for all individual differences in language use. For example, people’s
choices of utterances in the same situation might vary from person to person.
Nevertheless, we might observe a general tendency in the population. It
is such patterns of language use that our pragmatic theory is aimed at
capturing.

In contrast, traditional semantics makes claims about every individual’s
definite linguistic judgements in a linguistic community. We normally have
strong intuitions and feel very certain about those claims. This is for good
reasons and such intuitions usually turn out to be correct. Thus it may seem
less necessary to conduct experiments for this type of research. However,
when we are to deal with more subtle, fine-grained linguistic phenomena
where non-determinancy and individual differences add heavy noise to in-
dividual judgments, we can only rely on experimental methods to discover
and verify the patterns of interest.

Experimental studies also force us to explicitly spell out the link between
mental states (if they are part of the theory) and behavior, which helps make
pragmatic theories empirically testable. For instance, a theory may predict
that after utterance u, the listener would come to believe p. One way to
test such a prediction may be to utter u to someone and directly ask him
whether he believes p now. What is implicitly assumed here is that people’s
belief about p is not influenced by the query itself. This assumption may
be generally accepted, but the point is that we should still make it explicit,
so that when we use different experimental measures, we could compare
the underlying assumptions to better understand the (potentially seemingly
different) empirical results and what they suggest about the theory.

1.5 Thesis Overview

The rest of the thesis is organized as follows. In Chapter 2, we review the
study of referential expressions in a language game, and a previous quanti-
tative model in the literature for predicting production and interpretation,
to illustrate the core ideas of the proposed approach and further spell out
the general framework.

We develop a probabilistic model under this framework in Chapter 3,
to account for the meaning and use of gradable adjectives. It focuses on
the production side of vague expressions and shows how (sub-)optimal use
of language could shape its meaning. The formal model is based on the
previous individual research project, and in this thesis we further test its
empirical validity by comparing model predictions against the experimental
data we collected.
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In Chapter 4 we extend our formal analysis to the meaning and use of
the quantifiers such as many. We first develop a similar probabilistic model
for the meaning of many and show how it can account for the meta-linguistic
effects of use of quantifiers. Then we argue for the need of other cognitive
factors to better capture the complex lexical competition among different
quantifiers in people’s linguistic judgments. By using both quantitative
modeling and experimental studies, we illustrate the effect of two additional
cognitive factors and how to use them to improve model predictions.

In Chapter 5 we first analyze the discrepencies between free production
and meta-linguistic judgments, and discuss the relation between these ex-
perimental measures. In particular, we discuss a proposed hypothesis in
the literature that certain types of meta-linguistic judgments can be better
understood as the listener’s belief about the speaker, which may differ from
actual production in terms of the relevant cognitive factors. We revisit the
study of referential expressions and illustrate how to incorporate various cog-
nitive factors systematically and use the results of our previous individual
research project to provide evidence for the hypothesis about the relation
between free production and certain types of meta-linguistic judgments.

Finally, in Chapter 6 we summarize the merits and implications of the
proposed approach, discuss potential objections and limitations, and suggest
several extensions in the future work.

The main contribution of the thesis is the general framework we propose
that summarizes several lines of previous research into a unified framework.
In particular, we explicitly argue for the need of considering the purpose
of language use in understanding production, which is in turn crucial to
interpretation and the theory of meaning.

We also emphasize the need of incorporating various cognitive factors to
better capture the complex patterns of language use, especially the need of
explicitly specifying the assumptions that link model predictions to experi-
mental measures. This contributes to the recent methodological discussions
in experimental pragmatics.

Finally, by using this framework, we also make original contributions
to the issues in the case studies that we use to illustrate the merits of the
framework’s three major features.
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Chapter 2

Formal Framework

2.1 Motivating Example: Referential Games

Before we introduce the formal framework, in this section we will use a
concrete example to illustrate the kind of problems this thesis is trying to
address.

Referential games are confined interactive reasoning tasks used to study
pragmatic inference in controlled environments (e.g., Stiller, Goodman, &
Frank, 2011; Frank & Goodman, 2012; Degen & Franke, 2012).

A referential game consists of a set of objects called a context. For ex-
ample, Figure 2.1(a) is a context which contains different shapes of different
colors in a particular arrangement. The speaker in the game is asked to refer
to one of the objects (the target) by uttering an expression to the listener.
The listener, who does not know which object is the target, needs to recover
the target based on the speaker’s choice of expression.

o1 o2 o3

(a) Example context: green square
and circle, and blue circle.

o1 o2 o3

“Green”: e1 1 1 0
“Circle”: e2 0 1 1

“Square”: e3 1 0 0
“Blue”: e4 0 0 1

(b) Vocabulary and truth table

Figure 2.1: A simple referential game

For simplicity, we restrict the possible expressions (the vocabulary) the
speaker could use to four words: “Green,” “Circle,” “Square,” and “Blue.”

As stated in Chapter 1, we want a theory about both production and
interpretation. Production is about utterances used under different circum-
stances for various purposes. In our example, the circumstance is the context

8



and vocabulary in the referential game, and the speaker’s purpose is to refer
to the target object. Interpretation is about the effect of an utterance on
the listener and its consequences. In this case, the main effect of a referen-
tial expression is to make the listener attend to a particular object in the
context (which he believes is the speaker’s intended target) in order to fulfill
subsequent communication goals.

Since production and interpretation might be non-deterministic, the
theory needs to predict the production probability σC,V (u | t), i.e., the
probability of making utterance u given target t, under context C and
with vocabulary V , and similarly the interpretation probability ρC,V (t | u)
(t ∈ C, u ∈ V ).

Let us briefly review the theories in Section 1.3 in the light of this exam-
ple, and clarify their relations to the goal of this thesis. Truth-conditional
semantics states that the meaning of an expression e is its truth condition.1

In this case it tells us whether the description of object o as e is true (Ta-
ble 2.1(b)). Clearly, this by itself says nothing about the probabilities that
we want, though we shall see later that it can be very helpful.

A Wittgensteinian view essentially equates the meaning of an expres-
sion e (in a fixed language with vocabulary V ) with the whole collection of
σC,V (u = e | t) and ρC,V (t | u = e) for every possible context C and target
t. However, in this thesis we make no commitment to such a claim. Our
goal is a principled theory to derive these probabilities, rather than claiming
that this collection of probabilities itself is the meaning of an expression.We
note that the study of these probabilities is important in its own right, as it
helps us understand how people actually use natural language and can have
practical applications in, e.g., artificial intelligence.

The speech act theory emphasizes the distinction between an expression
e and an utterance of that expression. We can see that this distinction
is naturally incorporated in the formula. We also note that we can deal
with the various effects of an utterance by replacing t in the interpretation
probability ρC,V (t | u = e) with other effects of interest.

Finally, Grice’s theory uses truth-condtional semantics together with
conversational principle and maxims to account for production and inter-
pretation. For example, the Maxim of Quality states that the speaker should
not say things known to be false or lacking evidence. Hence in the above
example, we have σ(e2 | o1) = σ(e4 | o1) = 0,2 as the intended object o1 is a
green square, which is neither a circle nor blue. In addition, the Maxim of
Quantity states that the speaker should make the utterance as informative
as required. Hence we have σ(e1 | o1) = 0 and σ(e3 | o1) = 1, as there are
two green objects in the context but only one square, which means “Square”

1More precisely, the meaning of a sentence is its truth condition, and the meaning of
an expression is its contribution to the truth condition.

2σ(e2 | o1) is short for σC,V (u = e2 | t = o1), and similarly later we will use ρ(o2 | e1)
for ρC,V (t = o2 | u = e1).
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is informative enough while “Green” is ambiguous. Listeners reason coun-
terfactually to interpret an utterance. For example, when a listener hears
the utterance “Green,” he will consider for which object the speaker can use
this utterance according to the maxims. He can rule out object o3 because of
the maxim of quality and object o1 because of the maxim of quantity. Thus
he can conclude that the intended object must be o2, i.e., ρ(o2 | e1) = 1,
even though “Green” is literally true for both o1 and o2.

Grice’s analysis is very insightful and is the first attempt to meet our
goal: predicting σ(u | t) and ρ(t | u). However, since his theory is categor-
ical, its predictions are limited. As we stated earlier, language use is often
non-deterministic, which requires predictions about the specific probabili-
ties. For instance, when the target is o2, “Green” and “Circle” are both true
and ambiguous, so there is uncertainty in the choice of word. In this case,
Grice’s theory cannot predict the production probability σ(u | o2). More-
over, Grice’s theory is primarily about what a cooperative speaker should say
and how a listener could recover the speaker’s intentioin, rather than what
speakers and listeners actually do. Hence we can expect that even when
Grice’s theory does predict a probability, which is either 0 or 1, it might not
match the probabilities we observe about how language is actually used.

This suggests that we need to further extend Grice’s pragmatic theory
to meet our goal. In the next section we will introduce such a quantitative
extension.

2.2 The Rational Speech Act Theory

The rational speech act (RSA) theory (e.g., Frank et al., 2009; Frank &
Goodman, 2012; Bergen et al., 2012; Goodman & Stuhlmüller, 2013) pro-
vides a quantitative extension of Grice’s theory. In general, there are two
main problems that a quantitative extension of Grice’s theory needs to ad-
dress. On the production side, it needs a quantitative rendering of coopera-
tive principle and conversational maxims to explain how non-deterministic
use of language could adhere to them. On the interpretation side, it needs a
quantitative counterpart of the listener’s counterfactual reasoning in Grice’s
theory.

For the first problem, the RSA model uses information theory to quan-
titatively measure the informativity of an utterance. Specifically, it starts
with a postulated literal listener with uniform prior belief over all objects
in the context. Formally, we denote this uniform prior as U(·), which is a
function mapping each object to the same probability 1

|C| :

U(o) =
1

|C|
, ∀o ∈ C .

When the literal listener hears an utterance u, he does a probabilistic
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conditioning on the literal meaning of u:

ρ0(o | u) = U(o | JuK) =

{
1/|JuK| if o ∈ JuK
0 otherwise

. (2.1)

In other words, after receiving utterance u, the literal listener believes that
every object for which u is true is equally likely to be the speaker’s intended
object, and those objects for which u is not true cannot be the intended
object.

Intuitively, the closer the induced literal listener’s belief ρ0(· | u) is to
the speaker’s intended object t, the more informative the utterance u is.
Technically, the informativity of utterance u for speaker’s intended object t
can be measured as the negative Kullback-Leibler divergence (e.g., MacKay,
2003) of ρ0 from the speaker’s own belief δt:

Info(u, t) = −KL(δt‖ρ0) = −
∑
o

δt(o) log

(
δt(o)

ρ0(o | u)

)
, (2.2)

where δt is a delta distribution with all probability mass on target object t,
as the speaker knows her intended referent:

δt(o) =

{
1 if o = t
0 otherwise

. (2.3)

Given the definitions of δt and ρ0, (2.2) can be simplified as

Info(u, t) = log(ρ0(t | u)) = log

(
1

|JuK|

)
. (2.4)

We can see that the fewer objects for which the utterance u is true, the more
likely that the literal listener believes in the speaker’s intended object t after
hearing the utterance, and thus the more informative the utterance is. Thus
(2.4) gives us a quantitative measure of the informativity of an utterance.

It remains to be answered how the production probabilities can be de-
rived from the informativity of the utterances. Intuitively, we can weaken
the maxim of quantity a little bit and require that the more informative an
utterance is, the more likely that it will be used. Technically, we will use a
soft-max function (e.g., Luce, 1959; Sutton & Barto, 1998) to capture this
intuition in specifying the production probability:

σ(u | t) ∝ exp(λS · Info(u, t)), (2.5)

where λS is a parameter measuring the speaker’s degree of rationality, i.e.,
to what extent the speaker sticks to the most informative utterance. The
symbol ∝ means “linearly proportional to.” For example, suppose there are

11



two expressions e1 and e3 true3 for target t, then the probability of uttering
e1 is

σ(e1 | t) =
exp(λS · Info(e1, t))

exp(λS · Info(e1, t)) + exp(λS · Info(e3, t))
,

and similarly for e3 we have

σ(e3 | t) =
exp(λS · Info(e3, t))

exp(λS · Info(e1, t)) + exp(λS · Info(e3, t))
.

It can be shown that when λS = 0, σ(u | t) is uniformly distributed over
all true utterances, meaning that the speaker just randomly selects one of
the true utterances without any considerations of informativity. On the
other hand, when λS → ∞, σ(u | t) is uniformly distributed among the
most informative utterances, meaning that the speaker strictly adheres to
the maxim of quantity. Thus, we use a finite positive λS to capture the
intuition that actual speakers are generally as informative as possible, but
need not be strictly so.

From (2.1)-(2.5) we obtain the speaker’s production rule:

σ(u | t) ∝ exp(λS · log

(
1

|JuK|

)
= |JuK|−λS , (2.6)

which is also referred to as the size principle, since the larger the set of
objects for which utterance u is true, the less informative the utterance is,
and thus the less likely it will be used by the speaker.

So far we have seen how the RSA theory addresses the production prob-
lem. For the interpretation problem, the RSA theory adopts Bayes’ rule as
the quantitative counterpart of the listener’s reasoning in Grice’s theory.

Formally, in the RSA model, the actual listener, who reasons pragmat-
ically, upon hearing utterance u, updates his prior belief S(t) by applying
Bayes’ rule:

ρ(t | u) ∝ S(t) · σ(u | t) . (2.7)

The pragmatic listener’s prior belief S(t) comes from perception or other
non-linguistic contextual factors. It can be empirically measured. For each
object, the listener reasons counterfactually about how likely the speaker
would use the utterance if that object were intended and weights these
likelihoods by the prior belief, to form a posterior belief about the target
object. We can see that this is the same kind of reasoning in Grice’s theory,
except that it is done quantitatively via Bayes’ rule.

3Technically, (2.2) implies that the informativity of a false utterance is −∞ and it can
be shown that exp(λS · −∞) = 0, which means false utterances will never be uttered even
if we consider them in (2.5). However, we note that this is not always the case for all the
variations we will discuss in Chapter 5. Unless otherwise stated, we generally assume the
maxim of quality holds, i.e., the speaker only chooses among literally true utterances.
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Frank and Goodman (2012) conducted experiments to collect partic-
ipants’ judgments in referential games, and obtained a highly significant
correlation between the model’s prediction (setting λS = 1) and the exper-
imental data. This provides evidence of the potential of the approach. In
later chapters we will present further evidence of its empirical predictive
power on other case studies, but before that, we will abstract away from
this case study and summarize the general framework in the next section.

2.3 General Framework

In the previous sections we introduced referential games as a model of refer-
ential use of language, and showed how quantitative predictions about both
production and interpretation can be derived using the RSA theory, which
can be seen as an extension of the classical Gricean theory.

In this section we summarize this process of pragmatic study on an
abstract level and describe the general framework.

When we want to investigate a phonomenon of language use (e.g., refer-
ential expressions), including both production and interpretation, below are
the typical steps we follow.

1. First and foremost, we need to identify the purpose of the type of
language use we are interested in. For example, the purpose of using
referential expressions is for the speaker to refer the listener to some-
thing that she intends to talk about. While it seems rather trivial
in this case, the purpose of language use is not always easy to spec-
ify. Besides the fact that people can use same type of expressions for
different purposes, there can also be conceptual subtleties when the
purpose has to be specific enough to allow for a formal quantitative
model. Assumptions and simplifications often need to be made, and
we will see in Chapter 5 that even in the case of referential expressions,
there are different ways in specifying the purpose in detail.

2. For an account of production, we also need to specify the circum-
stances under which utterances are made and the range of expressions
involved. Again, usually we need to make many assumptions and sim-
plifications, to make both formal modeling and experimental study
feasible. Usually, we start with many simplifications in an attempt to
capture the essence of the phenomenon, and we will then gradually
relax the assumptions to give more realistic accounts.

For example, for referential expressions, we use referential games as a
simple characterization of the circumstances. We treat a context as a
collection of objects and restrict the vocabulary to one-word features
of the objects.
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Of course, this formalization is too simple to capture all the relevant
phenomena concerning referential expressions. For instance, it does
not allow speakers to use compositional expressions and is not able to
account for the possibility of over-specification (e.g., Gatt, van Gom-
pel, van Deemter, & Kramer, 2013). Thus it is certainly not a fully
generative story of referential language use. However, our hope is that,
since it succeeds in prediction in a simplified, controlled scenario, the
model may capture some mechanism in pragmatic reasoning that is
part of the whole picture. Thus we may be able to put together such
pieces of knowledge together to better deal with more complex and
realistic situations later on, even if adjustments are often needed.

Another concern is that the game is too artificial to be relevant to the
actual use of natural language. We will further discuss this issue in the
last chapter. Here we note that the response above similarly applies.

3. Production is treated as a decision problem. Given the purpose and
circumstance, the speaker needs to choose among alternatives to best
serve his purpose. The choice is based on the speaker’s belief of the
effect of each alternative and her evaluation of such an effect. The
speaker’s belief of the effect is specified as the behavior of a hypothet-
ical literal listener based on the speaker’s semantic knowledge. The
evaluation of such an effect, which is technically called its utility, is
based on the purpose specified in Step 1 and is quantitative. The
speaker’s choice will be such that maximizes the utility, adjusted by
cognitive factors.

For instance, in the RSA model of referential expressions, the alterna-
tives are literally true utterances. The effect of an utterance is specified
as the literal listener’s updated belief, and the utility is measured as
how far away this belief is from the speaker’s own intention, i.e., the
informativity of the utterance. The speaker chooses her utterance by
soft-maximizing the utility. The parameter λS incorporates the cogni-
tive factor that people do not always make strictly optimal decisions.

4. For interpretation, after hearing an utterance, the listener needs to in-
fer the speaker’s intention and the circumstance (if it is not observable
by the listener).

As in the classical Gricean theory, the actual (pragmatic) listener takes
the speaker’s perspective to reason about how likely the speaker would
use the utterance, for each possible intention and under each circum-
stance. The reasoning is mediated by other cognitive factors and we
use Bayes’ rule to quantitatively integrate all these factors to obtain
the posterior belief of the listener.

For instance, in the RSA model, the listener’s posterior belief is an
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integration of perspective-taking and perceptual salience.

Here we note that there could be discrepencies between actual produc-
tion and listener’s belief about the speaker. Also, when we conduct
experiments, we need to specify the link from the listener’s belief to the
observed behavior. We will further discuss these issues in Chapter 5.
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Chapter 3

Meaning and (Sub-)Optimal
Language Use

In the previous chapter, we introduce the general framework and use the
study of referential expressions as an example to show how the framework
can be applied to account for both production and interpretation and how it
extends previous Gricean analysis by incorporating various cognitive factors
and giving quantitative predictions.

The use of referential expressions is usually considered as part of prag-
matic pragmatics, in the sense that it is only about how people use expres-
sions beyond what they literally mean.

In contrast, as pointed out earlier, the study of indexicals is considered
to be about semantic pragmatics, as we have to consider the circumstances
under which they are used to correctly specify their meanings.

In this chapter, we will apply the framework to the study of gradable
adjectives, to illustrate that the framework, which focuses on production
and particularly (sub-)optimal language use, can contribute to the study of
meaning as well.

3.1 Gradable Adjectives: Background

According to the degree-based approach to the semantics of gradable ad-
jectives such as tall (e.g., Kennedy & McNally, 2005; Kennedy, 2007), the
denotation of a gradable adjective is a function that maps individuals to
degrees on its underlying scale structure, e.g., JtallK = λx.height(x). The
meaning of the positive form of a gradable adjective, such as tall in the sen-
tence “John is tall,” is taken to be the composition of the gradable adjective
with a silent morpheme pos:

Jpos tallK = λx.height(x) ≥ ds,
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where ds is the contextually appropriate standard of comparison (also called
threshold).

In order to fully specify the semantics of pos, we need to address how
the threshold ds is determined.

First, we know that ds is context-sensitive. For instance, we use differ-
ent thresholds for tall when we talk about men or trees, which are called
comparison classes.

Secondly, for many gradable adjectives, ds is also vague, in that we can
still be uncertain about the threshold even if the comparison class is explicit.
However, as Kennedy (2007) observes, some gradable adjectives, such as full
and dry, have positive forms which are arguably not vague.1 Such gradable
adjectives are called absolute adjectives, in contrast to relative adjectives
such as tall, whose positive forms are vague.

Thus a theory of the meaning of the positive forms must correctly predict
the contextual resolution of the threshold and in particular the difference
between absolute and relative adjectives.

The organization of the rest of the chapter is the following. In Section 3.2
we review previous works, especially the evolutionary and probabilistic ap-
proaches. In Section 3.3 we combine insights from the evolutionary and prob-
abilistic approaches and apply our framework to derive a speaker-oriented
model of the use of positive forms of gradable adjectives and account for the
absolute-relative distinction. In Section 3.5 we introduce our replication of
the experimental study by Solt and Gotzner (2012) and use the empirical
data to test our model’s predictions in Section 3.6.

3.2 Previous Works

3.2.1 Scale Structures and Interpretive Economy

Kennedy (2007) illustrates that there is a correlation between the type of
scale structure underlying a gradable adjective and the threshold for the its
positive form.

Depending on whether or not it has a maximal element and a minimal
one, a scale structure can be classified into four categories: (1) totally open
(neither), (2) lower closed (only minimum), (3) upper closed (only maxi-
mum), and (4) totally closed (both). For example, tall has a totally open
scale, wet has a lower closed one, pure has an upper closed one, and open
has a totally closed one.

Kennedy observes that if a scale structure has an accessible endpoint,
then the corresponding gradable adjective by default uses that endpoint as
the standard of comparison in its positive form (if it has both, then addi-

1In reality we often use these positive forms loosely, e.g., a full glass of water may not
be absolutely full, but this is a different issue.
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tional selection may apply). For instance, wet, being lower closed, receives
a minimum standard of comparison, i.e., something is wet just in case it has
a non-minimal degree of wetness.2 On the other hand, tall, being totally
open, has a vague standard of comparison.

From this observation, Kennedy proposes the Interpretive Economy prin-
ciple to address the difference between relative and absolute adjectives. It
stipulates that when computing the truth conditions of a sentence, one
should maximize the contribution of the conventional meaning of its ele-
ments. In the case of gradable adjectives, since the endpoints in the scales
are part of the conventional meaning, the corresponding gradable adjectives
should use them by default whenever they are available. Only when such
conventional standards are not available would people attempt to use vague
standards.

This analysis is insightful, but it does not completely solve the problem.
First, it does not account for how the thresholds for relative adjectives are
contextually determined. Moreover, the Interpretive Economy principle is
not fully satisfactory.

3.2.2 Evolutionary Approaches

As Potts (2008) points out, the Interpretive Economy principle (IE) does
not really explain why scale structures influence the meaning of positive
forms of gradable adjectives, but rather characterizes the phenomena in a
more illuminating fashion. As an explanation, IE is yet “an optimization
principle left unsupported by a theory of optimization” (p. 5). What is
needed, according to Potts, is an explanation of why it is beneficial to use
endpoints, in terms of more basic mechanisms.

Potts himself provides an evolutionary account. He uses a strategic game
where speakers and listeners need to coordinate the standard of compari-
son among various options. Assuming that endpoints are most cognitively
prominent, Potts show that they constitute Schelling points (Schelling, 1960)
which attract coordination and thus are evolutionarily stable (Benz, Jäger,
& van Rooij, 2005).

The main problem with this account is the assumption that endpoints
are most cognitively salient. Since a scale is only an abstract theoretical
construct, we do not have much evidence or justification about why some
part of it should be cognitively more salient than others.

Franke (2012) provides an alternative game-theoretic account that avoids
this assumption. According to this account, the salience of degrees on a scale
is replaced by the probability distribution of the degrees. The scale structure

2It is non-minimal because technically the minimal degree in the scale is the one that
corresponds to zero degree of wetness, i.e., dry. Later we will refer to the corresponding
threshold as the non-minimal threshold, which technically is the second least degree on
the scale.
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constrains the type of distribution. For example, the distribution on open
and totally closed scales are assumed to be normal and uniform, respectively.

Franke models the referential use of positive forms by using referential
games in which there are objects possessing various degrees in all types of
scales according to the corresponding probability distributions. The speaker
tries to convey an intended referent among its competitors to the listener, by
choosing a property of that referent and using the positive form to indicate
whether it has a high or low degree of that property.

He proposes a heuristic for such referential games. The speaker, knowing
the intended referent, always selects a property that makes it the most salient
among its competitors, and indicates the direction, i.e., whether the degree
is high or low, accordingly. Salience is measured in terms of how far away the
intended referent’s degree deviates from its competitors, The listener, upon
receiving a property and the direction, simply chooses an object that has
the most extreme degree of that property in the correct direction. Through
simulations Franke shows that using this heuristic leads to a high chance
of referential success. Further examination reveals that whenever a closed
scale property is selected by the speaker, the corresponding degree is always
close to the endpoints, while open scale properties allow for a wider range
of degrees to be used.

Essentially, instead of postulating the cognitive salience of degrees, which
are abstract semantic entities, Franke’s account adopts a more empirically
attested view that an individual that has extreme degrees within a group is
more cognitively salient. Scale structures influence the thresholds by con-
straining the probability distribution of degrees, which affects the probability
of a degree being extreme in a certain group.

This model provides an account of referential use of gradable adjectives.
However, there are other types of use of gradable adjectives this analysis
does not address.

3.2.3 Descriptive and metalinguistic use of language

Barker (2002) argues that a dynamic perspective on vagueness and context
helps better illustrate the difference between descriptive and metalinguis-
tic use of language. Consider an utterance of the sentence “John is tall.”
Usually, it is used to convey information about John’s height to someone
who does not know him. This is an instance of descriptive use. However,
sometimes the utterance is used even if the listener already knows the height
of John, e.g., the conversation takes place at a party where John is present.
In this case the main effect of the utterance is to convey that the speaker
thinks John’s height suffices to count as tall. This would be an instance of
metalinguistic use, as it concerns information about how language itself is
used.

To capture this distinction between two modes of language use, Barker
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develops a dynamic update semantics where every possible world contains
metalinguistic information (such as the standard of comparison for tall) as
well as factual information (such as John’s height). In this way both modes
of use can be treated as a contextual update by which worlds inconsistent
with the current utterance get eliminated.

3.2.4 Probabilistic Approaches

Lassiter (2011) points out that Barker’s implementation implies that in each
world there is a single precise language being spoken, but such a strong com-
mitment to epistemicism (Williamson, 1996) is not necessary to exploit its
crucial idea, i.e., treating vagueness as a result of language users’ imprecise
knowledge of language. He proposes an alternative model where the set of
possible worlds and the set of possible languages are separated. We can then
distinguish between factual and linguistic common ground and regard the
current languages being spoken simply as those in the linguistic common
ground. In this way, the linguistic standard is no longer some external fact
in the world that conversational participants passively discover, but rather
the result of their active coordination for effective communication.

In addition, Lassiter suggests that the above dynamic account should
be naturally extended into a probabilistic model to encode the uncertainty
in factual and metalinguistic information in a more fine-grained manner.
In the new model, there is a probability distribution over world-language
pairs and contextual updates are carried out by probabilistic conditioning.
However, although he points out that our world knowledge and linguistic
knowledge are in general correlated, Lassiter (2011) does not enlarge on
how this relation is established. Thus the model is not yet fully capable of
explaining the semantic properties of gradable adjectives.

Later, Lassiter and Goodman (2013) apply the RSA theory to give a
quantitative account of how our world knowledge constrains the range of
plausible thresholds in the semantics of positive forms of gradable adjectives.

The analysis is based on a game-theoretic scenario of descriptive language
use. We will adopt the same scenario in our model and describe it in detail
in the next section.

The main difference between the RSA model and the model we will
introduce in the next section is that the RSA model puts the contextual
resolution of threshold on the interpretation level. As a result, it does not
have an production account of how positive forms of gradable adjectives are
actually used by the speaker.

In the next section, we will apply the general framework introduced in
the previous chapter to provide a quantitative model that predicts both
the production and interpretation of positive forms. In particular, we will
show how the model predicts the difference between absolute and relative
adjectives.

20



3.3 Formal Modelling

3.3.1 The Speaker-Oriented Model (SOM)

In this section we will apply our formal framework and combine insights from
the evolutionary and probabilistic approaches introduced earlier to account
for the descriptive use of positive forms of gradable adjectives, and shows
how the model sheds new light on the semantics of the pos morpheme.

The first step is to identify the purpose of the type of language use we
are interested in. We will focus on descriptive use of positive forms. As
noted earlier, the purpose is usually to convey information about the degree
of the individual mentioned. We assume that the question under discussion
(QUD) is how tall John is, as a working example.

The next step is to specify the possible range of expressions and the
circumstances of production.

Since we want a semantic account, the focus is whether the positive
form is semantically applicable.3 Thus we assume that the speaker can only
choose between using the positive form (u1) and saying nothing (u0).

The circumstance of a descriptive use is the degree of the intended indi-
vidual and the comparison class that the speaker has in mind. Here, similar
to the evolutionary account and the RSA model, a comparison class is taken
to be a probability distribution of degrees on the scale, rather than simply
a set of individuals, to better capture our background world knowledge.
For instance, when we talk about John’s height, we not only know that we
are comparing him against the set of male individuals, but also have some
prior world knowledge about the distibution of adult male heights, φ(h). In
addition, the speaker knows John’s height h0 while the listener does not.

We use the probabilistic production rule proposed by Lassiter (2011),
according to which the probability that one would call someone of height h0

“tall” is the probability that the threshold θ is no greater than h0:

σ(u1 | h0,Pr) = p(θ ≤ h0) =

∫ h0

−∞
Pr(θ) dθ . (3.1)

where Pr(θ) is the probability distribution of θ, which is the result of com-
bining pos and the contextual comparsion class φ(h).

The remaining question is how Pr(θ) is derived. In general, this is from
the speaker’s selection of the (sub-)optimal threshold. Note that since we
want to account for the semantics of positive forms, which is part of the
linguistic convention, the selection here is on the community level, i.e., how
should the speakers in a linguistic community choose the threshold for com-
parison class φ(h), so that on average they can most successfully convey
the degree of an individual from that comparison class. This is different

3More precisely, the focus is to what extent the positive form is applicable. Applicability
is the generalization of truth to allow for graded or probabilistic judgments.
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from selecting referential expressions in the previous chapter, which is on
the individual level.

Technically, according to our framework, we need to specify the speaker’s
belief of the effect of each threshold and the corresponding utility. We specify
the effect of using threshold θ via a hypothetical literal listener based on the
speaker’s semantic knowledge, which states that “tall” is true iff h0 ≥ θ.

If John’s height h0 < θ, the speaker can say nothing, since “tall” is not
true. In this case, the literal listener can only use the prior information to
infer John’s height, so his belief about John’s height is the same as the prior
distribution:

φ(h | u0, θ) = φ(h) . (3.2)

In particular, the probability of him believing in the correct height is φ(h0).
If John’s height h0 ≥ θ, the speaker can utter “tall” and the literal

listener can do an update via conditioning on its truth, which yields a new
distribution:

φ(h | u1, θ) = φ(h | h ≥ θ) =
φ(h)∫∞

θ φ(h) dh
if h ≥ θ, otherwise 0 . (3.3)

In particular, the probability of him believing in the correct height is φ(h0)
1−Φ(θ) ,

where Φ(θ) =
∫ θ
−∞ φ(h) dh is the cummulative probability of the prior dis-

tribution φ(h) at θ.
The probability of John’s height being h0 is φ(h0), hence on average we

have the expected success of θ:

ES(θ) =

∫ θ

−∞
φ(h0)φ(h0|u0, θ) dh0 +

∫ ∞
θ

φ(h0)φ(h0|u1, θ) dh0, (3.4)

where the left summand corresponds to situations where the speaker has
to stay silent because h0 < θ and the literal listener can only use the prior
knowledge, and the right summand corresponds to heights to which “tall”
is applicable to induce a more accurate belief.

Since h0 is a bound variable in the above formula, for simplicity we will
simply rewrite it as h:

ES(θ) =

∫ θ

−∞
φ(h)φ(h|u0, θ) dh+

∫ ∞
θ

φ(h)φ(h|u1, θ) dh, (3.5)

Now we will introduce another cognitive factor in specifying the utility.
Since it takes some effort to produce an utterance, other things equal, people
would prefer a threshold that requires utterances less often. Formally, we
introduce a cost parameter of the positive form c, and specify the general
utility as the expected success minus the cost:

U(θ) = ES(θ)−
∫ ∞
θ

φ(h) · cdh . (3.6)
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Figure 3.1: SOM predictions for Gaussian distribution N(0,1), with λ = 4.

The integral of cost starts from θ because the positive form is used only
when h ≥ θ.

Now we are finally able to link the linguistic knowledge Pr(θ) to the
utilities of each threhold, U(θ). The greater the utility of a convention, the
more likely that people are going to use it:

Pr(θ) ∝ exp(λ · U(θ)) . (3.7)

Combining (3.1), (3.6) and (3.7), we have a full production model at
our disposal, and the corresponding interpretation model can be derived by
applying Bayes’ rule:

ρ(h | u1) ∝ φ′(h) · σ(u1 | h,Pr′) .

Note that Pr′(θ) and φ′(h) are correlated the same way as before, but the
listener’s prior world knowledge φ′(h) need not be the same as the speaker’s.
In the simplest case, prior world knowledge is in the common ground, so
φ′(h) = φ(h). (Note that this does not mean the speaker and listener will
always have common linguistic knowledge, because they might have different
λ and c.)

Fig. 3.1 shows predictions by the SOM for the Gaussian distribution
N(0,1), with all parameters the same for both the speaker and the listener.
We can see from Fig. 3.1(a) that the SOM predicts that the distribution of
the threshold Pr(θ) peaks slightly to the right of the average height, and that
the posteriorof height after hearing “tall” ρ(h | u1) is shifted from the height
prior to the right. Also, we can see from Fig. 3.1(b) that the production
rule of the SOM does give sensible predictions. The probability of calling
someone of height h “tall,” σ(u1 | h), roughly has an “S” shape.
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Note that our model gives reasonable predictions even when the cost
c = 0.4

Since Pr(θ) is the core component of the SOM, in the next section we will
focus on Pr(θ) to better illustrate the SOM’s predictions for different prior
distributions. We will further show how the SOM predicts the difference
between absolute and relative adjectives observed by Kennedy (2007).

3.4 The Absolute-Relative Distinction

The crucial difference between absolute and relative adjectives is whether
their underlying scale structures have accessible endpoints. Previous ac-
counts (Franke, 2012; Lassiter & Goodman, 2013) interpret this difference
as a constraint on the type of probability distribution of the degrees. More
specifically, probability distributions on open and closed scales differ in
whether there can be significant probability mass on the endpoint.

For instance, a relative adjective such as tall, corresponds to a scale
that has no maximal element because the degree of height is unbounded
and thus the probability must asymptotically fall to 0. On the other hand,
an absolute adjective such as open, is associated with a scale that has a
maximal element, and the occurrence probability of maximally open objects
is usually non-negligible.

We adopt this view and apply the SOM to various distributions within
the beta distribution family, which not only has a wide range of distribu-
tions that help us explore the exact boundary between absolute and relative
adjectives, but also has nice closure properties that facilitate analytic deriva-
tions.

A beta distribution is defined on [0, 1] and has two positive shape pa-
rameters α, β. Its densitiy function is defined as follows:

φ(d;α, β) = Kdα−1(1− d)β−1, (3.8)

where K = 1/B(α, β) is a normalization constant.

There is a tight correspondence between parameters of the beta distri-
bution and scale structures (Fig. 3.2). If α, β > 1, both endpoints have
zero probability mass, which corresponds to open scales. If α > 1, β ≤ 1,
the lower endpoint has zero probability mass and the upper endpoint has
nonzero probability mass, which corresponds to upper closed scales. Simi-
larly, α ≤ 1, β > 1 corresponds to lower closed scales. Finally, if α, β ≤ 1,
both endpoints have nonzero probability mass, which corresponds to totally
closed scales.

4Given the prevalence of gradable adjectives, we do not think it is very costly to utter
them. In particular, the cost should not be the main factor that drives model prediction.
Thus we take c = 0 as an approximation of the relatively small cost of the positive form.
Later we will use empirical data to estimate the cost.
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Figure 3.2: Correspondence between Beta distributions and scale structures.

In general, the SOM predicts the following correspondence between end-
point probability mass and the optimal threshold:5

(i) If there is a sufficient amount of probability mass at the upper end-
point, then the maximal threshold is always optimal.

(ii) If (i) is not the case and the probability mass at the lower endpoint is
sufficiently larger than elsewhere, then the non-minimal threshold6 is
optimal.

(iii) Otherwise the optimal threhold is sensitive to φ(h).

Let us first briefly explain how this correspondence correctly predicts
the difference between absolute and relative adjectives observed by Kennedy
(2007). The critical point is that in our formulation of the model, we assume
that prior distribution φ(h) as the speaker’s knowledge about the compari-
son class. However, in reality, besides the fact that comparison classes are
often implicit, the speaker almost always has uncertainty about the exact
distribution φ(h). Typically, the speaker knows the type of probability dis-
tribution for each adjective from its degree scale, but they do not know the
exact distribution. For instance, the speaker might know the ranges of the
shape parameters for a particular adjective, but he is uncertain about the
exact values.

However, in the cases of absolute adjectives, the speaker does not need
to know the exact φ(h) in order to know where the optimal threshold is. As

5For now we always assume c = 0, and in the end we will show that this assumption is
not crucial to the prediction.

6Recall that the non-minimal threshold is the one that corresponds to the non-minimal
reading, rather than an arbitrary non-minimal degree.
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Figure 3.3: Predictions by the SOM for Beta(α,β), with λ = 4.

long as there is sufficient probability mass at either endpoint, the optimal
threshold will be there.7 This stability of optimal threshold explains why
absolute adjectives are semantically not vague.

For open-scale adjectives, on the other hand, since the optimal threshold
is sensitive to φ(h), the speaker cannot be sure where it is when they cannot
be sure about φ(h). Thus, the vagueness of relative adjectives is the result
of such sensitivity of the optimal threhold when there is uncertainty about
the exact prior.

Now we are going to show such correspondence through representative
examples in the beta distribution family.

We start from the relatively simple part, the open scales. The corre-
sponding beta distribution has α, β > 1. For example, Fig. 3.3(a) shows the
SOM’s prediction of Pr(θ) for Beta(3,7), which is an open scale that roughly
corresponds to cheap and expensive (Lassiter & Goodman, 2013). 8

Indeed, we can see that as the prior probability mass shifts to the left in
Fig. 3.3(a) compared to Fig. 3.1(a), the optimal threhold also shifts to the
left.

Now we turn to closed scales and we will focus on cases where β = 1, as
other cases will become straightforward after we show the results for β = 1.

From (3.8) it can be proved that Beta(α, 1) has density function φ(h;α, 1) =
αhα−1, and specifically the probability mass at the end point h = 1 is α.

7The speaker actually chooses the threshold sub-optimally via soft-max, reflecting the
loose use of language, but if they are forced to, they can confirm that semantically the
threshold is not vague because it is always at either endpoint.

8Technically, we use Beta(3,7) for degrees of expense and Beta(7,3) for degrees of cheap-
ness, as they have inverse orderings on the degrees, and put the predictions of both models
in the same plot.
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Figure 3.4: Predictions by the SOM for Beta(α,1), with λ = 4.

Fig. 3.3(b) shows the SOM’s prediction of Pr(θ). We can see that when
α is high (0.4 or 0.7), Pr(θ) is always increasing, which means the upper
endpoint is always the optimal standard. Meanwhile, when α is low (0.3 or
0.1), Pr(θ) is always decreasing on (0,1], which means that a non-minimal
standard is always optimal.9

In fact, it can be shown that α = 1/3 is when a “phase transition”
takes place, i.e., Pr(θ) is increasing when α > 1/3, uniform when α = 1/3
and decreasing when α < 1/3. Hence we know that optimal thresholds for
absolute adjectives are stable to across a wide range of priors, which means
slight uncertainty in φ(h) will not affect the speaker’s knowledge about the
optimal standard.

Fig. 3.4 further shows the robustness of the SOM’s predictions with
respect to costs. We know in general a higher cost will drive θ to the
right, so we only need to focus on thresholds for non-minimal readings.
We can see that when the cost is relatively low, the prediction is almost
unaffected, as shown in Fig. 3.4(a) for Beta(0.1,1). Meanwhile, when the cost
becomes relatively high, the upper endpoint also becomes a local optimum,
as reflected by the v-shaped curves in Fig. 3.4(a) for Beta(0.3,1) and in
Fig. 3.4(b) for Beta(0.1,1).10 Nevertheless, the maximal threshold is only a
local optimum. In fact, it can be proved that for α < 1/3, U(θ) always goes

9The plot does not show the utility of θ = 0. Note that θ = 0 means the positive
form is always true, which is effectively the same as staying silent all the time. Thus
θ = 0 has very low utility and can never be optimal. Of course, in the continuous case
like this, there is no single non-minimal threshold, but in reality we almost always have
limited precision with degree scales. We can then effectively make them discrete, and the
non-minimal threshold

10In fact, this is also true for Beta(0.3,1), but the turning point is too close to 0 to be
observable.
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to infinity11 when θ approaches 0, regardless of the cost, so the non-minimal
threshold is always globally optimal.

Finally, when β < 1, the density φ(h) goes to infinity at the upper end-
point, which means Pr(θ) will be driven even faster to the upper endpoint.
Hence again we obtain the maximal threshold as desired and the predictions
are also very robust.

In sum, we have shown that the SOM correctly predicts the difference
between relative and absolute adjectives. We interpret vagueness as the
stability of the optimal threshold under uncertainty about the exact prior
distribution of degrees in the comparison class and shows how degree scales
influence speaker’s knowledge about the optimal threshold by constraining
the type of priors. Closed scales constrain the priors such that there is always
sufficient probability at either end point, which is enough for the speaker
to be certain about the optimal threshold, even if she is not sure about
the exact prior. This explains why absolute adjectives are semantically not
vague. Optimal thresholds for priors on open scales, on the other hand,
are sensitive to the exact prior, so the speaker cannot be sure about where
they are when she is uncertain about the exact prior. This accounts for the
vagueness of relative adjectives.

It should be noted here that the analysis above is based solely on the
lexical properties of gradable adjectives. The prior distributions used here
are the default priors constrained by the scales. In reality, when the speaker
learns more about the degree distribution of the comparison class, he will
adjust his prior accordingly, and different gradable adjectives can have con-
straints of different strengths on to what extent the default prior must be
maintained in the light of new information. Our experiment will illustrate
this issue in the next section.

3.5 Experiment

We have seen how the SOM can predict the difference between absolute and
relative adjectives. Such a prediction is based on a specific mechanism of
contextual resolution of the threshold, which can be seen as completing the
semantics of the pos morpheme. Hence it is important to empirically test
the validity of such a mechanism.

Since the threshold distribution Pr(θ) is not directly observable, we test
it by comparing the production model, which is determined by Pr(θ), to
actual speakers’ choices. If the production model gives good prediction
about the speaker data, then we will have more evidence of the empirical
validity of the proposed mechanism.

In order to test the predictive power of the above production model, we
collected participants’ production of the positive forms of several adjectives

11Again, this is the result of using continuous scales.
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under explicit comparison classes of varying degree distributions. Our de-
sign is that of Solt and Gotzner (2012), with minor modifications. We will
introduce our replication first and then mention these minor differences.

Participants, Materials and Methods 96 US participants were re-
cruited via Amazon’s Mechanical Turk. Each of them received $0.25 for
the experiment.

(a) Example items

Prior d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11

baseline 1 2 3 4 5 6 5 4 3 2 1
left-skewed 2 5 6 6 5 4 3 2 1 1 1
right-skewed 1 1 1 2 3 4 5 6 6 5 2
moved 1 2 3 4 5 6 5 4 3 2 1

(b) Number of items for each degree in each prior condition

Figure 3.5: Stimuli used in our replication of Solt & Gotzner’s study

We tested participants’ production for four gradable adjectives: big, dark,
tall and full. For each adjective, we presented contexts of 36 items. Each
item instantiated the adjective in question to one out of 14 possible degrees
(balls varying in size, grey rectangles varying in lightness, cartoon characters
varying in height, glasses varying in water level; see Fig. 3.5(a)). We chose
mostly abstract items so as to minimize the effect of participants’ back-
ground world knowledge. Stimuli were designed to make all 13 differences
between adjacent degrees perceptually uniform.

We included 4 kinds of contextual prior distributions in our experiment.
Each context consisted of 36 items spanning over 11 out of the 14 degrees.
The baseline, left-skewed and right-skewed priors span over the lower 11
degrees with different distributions, and the moved prior spans over the
upper 11 degrees (4th–14th) and has the same shape of distribution as the
baseline. Fig. 3.5(b) shows the number of items for each degree in the 4
distributions.

Each participant finished 4 trials. In each trial they saw a context cor-
responding to 1 of the 4 adjectives under 1 of the 4 priors and were asked to
check all items for which they would use the adjective in the given context
(Fig. 3.6). We used a Latin square design for adjective-prior combinations
within the 4 trials and counterbalanced the order of adjectives.
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Figure 3.6: A sample trial

General Predictions Since the SOM’s prediction of production is based
on the distribution of degrees in the comparison class, when we systemati-
cally manipulate the distribution in the comparison class, we expect to see
that the speakers’ choices change correpondingly as predicted by the model.

However, note that the prior distribution is also constrained by the lex-
ical property of gradable adjectives, and the strengths of such constraints
can vary. Thus we cannot always directly use the empirical distribution12

of degrees in the presented comparison class as the prior distribution in the
speaker model. Rather, we need to make additional assumptions about how
the prior distributions are constrained by each adjective.

The only constraint on degree distributions by open-scale adjectives is
that the probability must asymptotically fall to 0 to both sides. The empiri-
cal distribution already satisfies this constraint. Also, for the two open-scale
adjectives tall and big in our experiment, since the stimuli were artificially
constructed, participants would have very little prior knowledge about the
comparison class. Thus we expect that participants would approximately
use the empirical distribution of degrees as the prior distribution in the
speaker model.

On the other hand, the two closed-scale adjectives have more initial
constraints on the degree distribution. Moreover, as pointed out in the
previous section, such constraints have different strengths. Hence we expect
participants’ belief of the degree distribution might be adapted in the light

12By empirical distribution we mean a distribution where each degree’s probability is
just its relative frequency in the stimuli set. For instance, in the baseline condition, the
empirical distribution is one such that degree 5 has probability 5/36 and degree 10 has
probability 2/36, and so on.
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of the statistical information of the presented stimuli.

Qualitative Results The results are shown in Fig. 3.7. As expected,
proportions of intuitive applicability judgements followed an S-shaped curve
rising from lower to higher degrees. More importantly, the statistical dis-
tribution of the contextual comparison class had an apparent influence on
the applicability judgements. E.g., when there are many high-degree items
such as in the right-skewed condition, smaller proportion of low-degree items
were chosen.
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Figure 3.7: Observed and predicted applicability judgements for each degree
for each adjective-prior pair. The blue and green curves show the observed
proportions of items checked in each condition. The pink curve shows the
mean posterior predictive values of the model when condition on the data
by Solt & Gotzner.

The Original Dataset The experiment by Solt and Gotzner (2012) had
194 participants in total (47 – 50 participants in each condition). Test items
included big, tall, and dark, but also pointy instead of full. We chose full
primarily because pointy is a rather unusual word and it is hard to construct
items with uniformly spaced degrees of “pointiness.”

Results of their experiment are shown in Fig. 3.7 (blue lines). We can
see that the result of our replication is close to theirs in most conditions,
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except for the baseline and left-skewed conditions for tall. Since our main
purpose here is to use these data to test our model, we do not report further
statistical analysis of the data themselves.

3.6 Model Fitting and Validation

Our model has free parameters: λ (rationality) and cA (cost of adjective
A). We will use Bayesian inference (MacKay, 2003) to learn likely values of
these parameters from the data of Solt and Gotzner (2012), and then test
the model’s predictions on our own replication.

Since we do not have a theory of the strengths of the initial constraints
on priors, we will use the empirical distributions in each stimuli set as the
prior distribution p that is used in the SOM.13 As discussed earlier, we
expect participants to use such empirical distributions for tall and big, so
the bottomline is that the SOM should provide reasonable predictions for
these two adjectives. In addition, we will compare the SOM prediction
and actual production data for dark and full and try to diagnose possible
discrepencies between empirical distribution and that in participants’ belief.

We assume the following binomial process that generates data in both
experiments: for each adjective A and prior p,

nA,pi ∼ Binom(NA,p
i , σp(A | di; λ, cA)), (3.9)

where nA,pi is the number of items of degree di checked by participants in

the condition with adjective A and prior p, and NA,p
i is the total number of

items of degree di in this condition.14

Intuitively, it means the following. Under prior p, with parameters λ, cA,
for degree di, the SOM predicts that with probability σp(A | di; λ, cA) the
participants are going to use the positive form. Now the participants judged
NA,p
i items of degree di in total, from probability theory we know that

the number of items that were described as A, nA,pi , follows the binomial

distribution Binom(NA,p
i , σp(A | di; λ, cA)).

Hence, for a given adjective, λ and cA, for each one of the 4 priors,
our model makes predictions for all 11 degrees. Thus the model makes 44
predictions for each adjective.

13Note that we use p instead of φ because we are using discrete degrees.
14Note that we allowed participants to check none of the pictures, and some participants

did not check all the pictures with the highest degree. In order to take these possibili-
ties into account, we introduce an unobserved maximal degree d12 with prior probability
p(d12) = 0. Since this degree corresponds to a θ according to which the positive form is
never used, the utility associated with it is rather small. Nevertheless, the soft-max func-
tion will assign a small non-zero probability to it, and hence the model always predicts
that d11 might have a small probability not to be checked.
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Parameters Learning We assume that λ is a constant, while each ad-
jective has its own parameter cA. This is because λ is the general degree
of rationality in our sample population, whereas different adjectives could
have different costs cA depending on their lexical properties. With this, we
use the following hyperpriors (initial belief about the parameters):

λ ∼ Unif(0, 100) cA ∼ Unif(−1, 0), (3.10)

where A ∈ {big, dark, tall}. We draw 8000 samples (after a burn-in period
of 9000 samples) from the posterior distribution P (λ, c | DSG), i.e., we
make a joint inference of λ, ctall, cdark, cbig from the dataset DSG (Solt &
Gotzner, 2012). For these posterior samples of parameters, we have λ̄ =
48.23, sd = 1.14; c̄big = −.064, sd = .003; c̄tall = −.024, sd = .003;
c̄dark = −.054, sd = .002.

Since Solt and Gotzner (2012) did not include full in their experiment,
we cannot learn the parameters directly from their dataset. Instead, we use
the posteriors from their dataset to constrain the parameter λ:

λfull ∼ Norm(48.23, 1.14) cfull ∼ Unif(−1, 0) . (3.11)

We get λ̄full = 46.67, sd = .904; c̄full = −.158, sd = .006.

Model Validation We validate our model in two ways.
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Figure 3.8: The relation between model predictions and participants’ choices
on the replication dataset

First, we use Bayes model averaging (Hoeting, Madigan, Raftery, &
Volinsky, 1999)

σ(u | d,DSG) =
∑
λ,c

P (λ, c | DSG) · σ(u | d; λ, c), (3.12)

to compute the model’s predictions after it learns the free parameters from
DSG. The idea is that we take the weighted average of model predictions un-
der various parameter configurations, where the weights reflect our strengths
of belief about the parameters.

33



Table 3.1: Posterior predictive credibility values. The left value is for the
training data (Solt & Gotzner, 2012), the right for our replication. Values
in bold are those where the test values fall below a critical value of .05 for
both data sets.
Adj Prior d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11

big base 1/1 1/1 1/1 .08/.63 .04/.06 .92/.08 .10/.59 .06/.32 .01/.06 .22/.21 .41/.03
big left 1/1 .64/1 .33/.19 .01/0 .16/.02 .19/.01 .12/.42 .12/.24 0/.02 .25/.01 1/1
big right 1/1 1/1 1/1 1/1 .17/1 .01/1 .06/.23 .01/.66 .24/.04 0/0 .10/1
big moved 1/1 .27/1 .60/1 .52/.64 .58/.16 .92/.64 .12/.20 .21/.68 0/.05 .04/.83 .40/.17
dark base 1/1 1/1 1/1 .57/.42 .87/.02 .05/.89 .19/.53 .30/.67 0/.04 0/.37 .39/1
dark left 1/1 .43/1 1/.08 .65/.01 .37/.34 0/.59 .33/.24 .84/.02 .02/.16 .08/.41 .42/1
dark right 1/1 1/1 1/1 1/1 1/1 .19/.12 .09/0 0/0 .01/.13 1/0 .24/.01
dark moved 1/1 1/1 .64/1 .39/.07 .62/.80 .30/.89 .07/1 .83/.15 .04/.52 .21/.36 .64/.13
tall base 1/1 .64/1 .08/.43 0/.03 0/.01 0/.01 0/0 0/0 .09/.48 .09/1 1/1
tall left 1/1 .01/.18 0/0 0/0 0/0 .31/0 .36/0 .58/1 .01/.30 .01/1 .12/1
tall right 1/1 1/1 1/1 .64/1 .19/1 .01/.37 .23/.08 0/.10 0/.19 .41/.01 .12/0
tall moved 1/1 .65/1 .08/.41 0/1 .91/.74 .46/1 .17/.08 .77/.53 .30/.14 .09/1 .05/.07
full base –/1 –/1 –/1 –/1 –/1 –/.45 –/0 –/0 –/0 –/1 –/.68
full left –/1 –/1 –/1 –/1 –/.06 –/0 –/.02 –/.07 –/.43 –/.83 –/1
full right –/1 –/1 –/1 –/1 –/1 –/1 –/0 –/0 –/.38 –/0 –/.06
full moved –/1 –/1 –/1 –/1 –/0 –/.01 –/.02 –/0 –/.05 –/.25 –/.41

The predictions are shown in Fig. 3.7 (pink lines), and Fig. 3.8 shows
the relation between model predictions and participants’ choices for each
adjective on the replication dataset Drep. We can see that in general the
model prediction fits the empirical data.

Specifically, model predictions correlate well with observations (R2
big =

.97, R2
dark = .98, R2

tall = .94, R2
full = .95, with overall R2 = .96 and p < .001

for all cases). Correlations remain highly significant even when we only
keep those data points for which our model’s prediction is within the range
of (0.05, 0.95) (R2

big = .93, R2
dark = .94, R2

tall = .88, R2
full = .90, with overall

R2 = .90 and p < .001 for all cases). This suggests that our model does
capture the general trend of participants’ choices, rather than by simply
assigning extreme probabilities to extreme degrees.

Second, in order to better diagnose the model’s predictions for each data
point, we investigate the posterior predictive distribution (c.f. Kruschke,
2011). Concretely, for each of the 8000 samples of parameters drawn from
the posterior distribution described before, we use the binomial generative
process (3.9) to generate a new dataset. Thus in the end we have 8000
simulated datasets. Then for each adjective, each prior and each degree, we
look at the number of items checked in the actual dataset (either DSG or
Drep) and record the frequency of this actual observation in the simulated
datasets. Finally, we calculate the posterior predictive credibility value as
the sum of relative frequencies of all observations that occurs no more often
than the actual observation in the simulated datasets. This posterior pre-
dictive credibility value then captures the estimated maximal threshold on
credibility thresholds under which the observed data would not contradict
our model. Concretely, a value of .05 means that the observed data falls
within a 95% HDI interval of the posterior predictive; a value of 1 means
that the observation was the mode of our posterior predictive sampling.
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The posterior predictive credibility values are shown in Table 3.1. We
can see that the model’s predictions generally pass the predictive check. For
those degrees where the model fails to meet a critical threshold of .05 on
both data sets (marked in bold), we note two possible sources of bad fit:
(1) The discrepancy between the two datasets due to noise. As a result, the
model fitting the training set can fail to generalize to the test set. We also
want to emphasize here that since the model needs to fit all degrees under
all priors simultaneously, noise in one degree might influence performance
on another degree as well. (2) The discrepancy between the two datasets
due to differences in stimuli. For instance, the stimuli for tall generally
have greater height-to-width ratio in the experiment by Solt and Gotzner
(2012) than in our replication. As a result, participants in our replication
tended to avoid the use of tall when the character’s height-to-width ratio
failed to meet the precondition of tall. This might explain why the model
generalizes well in the moved condition but performs poorly on the baseline
and left-skewed conditions.

The two validation methods both suggest that the model in general cap-
tures participants’ applicability judgements well.

Costs and Initial Constraints We mentioned earlier that given the
prevalence of relative adjectives, we would not expect them to be very costly.
We have seen that the estimated values of costs are indeed very small.

However, whereas big, tall, and dark have relatively similar costs, we can
see that full has a much greater cost.

One could accept this result and conclude that it is somehow much more
costly to produce full. However, such a claim is clearly dubious without a
justification of why full is so costly.

Alternatively, we think it is more plausible to concede that the model
predictions for full are anomalous. However, this does not necessarily mean
that the model itself is wrong. Rather, it is more likely that our additional
assumption that participants used empirical distribution as the prior for full
may be questionable. Note that unlike height, size or darkness, the fullness
of a glass is just a contingent property, hence it is probably the case that
the initial constraint set by the lexical property of full on the distribution
of fullness cannot be easily overridden by some observations of the stimuli.

Note that dark, which semantically has closed scales, nonetheless exhibit
properties of relative adjectives very similar to tall and big. This again
suggests that the contextual prior is the result of both world knowledge and
the lexical constraint.

Thus future work should aim at estimating the latent degree distribution
that the participants believe for adjectives such as full, and ultimately we
need a theory that predicts how the lexical constraint and world knowledge
are combined to obtain such distributions.
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Chapter 4

Cognitive Factors

4.1 Meaning and Use of Quantifiers

In the previous chapter, we discussed the use of positive forms of gradable
adjectives, and showed that by considering the purpose of descriptive use of
positive forms, we could enhance our understanding of the meaning of the
morpheme pos and give quantitative production and interpretation models.

In this chapter, we try to generalize the analysis to the study of quanti-
fiers such as many and most.

The classical Generalized Quantifier Theory (Barwise & Cooper, 1981),
treats denotations of quantifiers as relations between sets. For instance,

JsomeK(A)(B) = 1 iff A ∩B 6= ∅,

JmanyK(A)(B) = 1 iff |A ∩B| ≥ ns,

JmostK(A)(B) = 1 iff |A ∩B| > |A−B|,

where ns is the contextually appropriate cardinality threshold.
This picture, however, does not account for the close relation between

many and most. Subsequent developments (e.g., Hackl, 2000, 2009; Solt,
2009, 2011) try to derive the meaning of most compositionally from many
and the superlative morpheme -est, to provide a more unified account of the
two quantifiers that captures their relations.

What is left to be answered for any of these theories to be complete is,
again, how the cardinality threshold ns is contextually derived.

Note the striking similarity between many and relative gradable adjec-
tives. From the empirical perspective, in addition to the well-known fact
that many is both context-sensitive and vague, Yildirim, Degen, Tanen-
haus, and Jaeger (2013) conducted a series of experiments and illustrated
that people adapt their expectations of how many will be used after observ-
ing several instances of utterances, exhibiting the dynamic metalinguistic
effect in the sense of Barker (2002). From the theoretical side, Solt (2009)

36



gives a degree-based analysis of many in parallel with gradable adjectives.
Hence, it is reasonable to expect that our model for gradable adjectives can
be similarly generalized to account for the quantifier many as well.

The organization of the chapter is the following. Section 4.2 introduces
a basic model of many using the idea from the previous chapter and shows
how dynamic metalinguistic effects could be accounted for. Section 4.3 in-
troduces other cognitive factors involved in the complex lexical competition
among alternative quantifiers such as most and numerals, and illustrate
how they may be used to further address the discrepencies between empir-
ical data and predictions of the basic model. In Section 4.4 we report on
experimental evidence of the effects of these factors. Finally, in Section 4.5
we will conclude with a prelude to the discussion of experimental measures
and modeling choices in the next chapter.

4.2 Degree-Based Modeling of Many

In this section we introduce the basic idea of generalizing the speaker-
oriented model we developed in the last chapter to account for the use of
quantifier many.

We will focus on the partitive construction of many, such as in the sen-
tence “many of the candies are green.” In general, we consider utterances
of the form “Many of the A’s are B.”

As usual, the first step in our framework is to identify the purpose of
such language use. We assume that the purpose of this type of sentences
is to convey the cardinality of A ∩ B, i.e., how many things in A are B.
For instance, by saying “many of the candies are green” the speaker tries to
make the listener have a better idea of the number of green candies.

For simplicity, we will assume that N , the cardinality of A, is fixed and
known. Obviously this assumption is too strong in reality, but we should
keep in mind that its main purpose is to first give us a good handle of the
simple, idealized situations. Its role is similar to degree distributions on
comparison classes for gradable adjectives. Later we will discuss how to
gradually relax these restrictions.

This assumption also helps make controlled experimental studies feasible.
For instance, Yildirim et al. (2013) presented participants with pictures of
mixed green and blue candies, with the total number of candies in the picture
fixed to be 25, and varied the number of green candies. We use this scenario
as a working example and we will describe their experiments in detail after
introducing below our basic model of the use of many.

Similar to our analysis of gradable adjectives, we will treat the contextual
cardinality threshold ns as a threhold variable θ and use Pr(θ) to denote the
speaker’s linguistic knowledge about the distribution of the threshold. We
use n to denote the cardinality of A∩B, i.e., n = |A∩B|. Note that “many
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Figure 4.1: SOM predictions for Binom(25,0.5), with λ = 48, c = 0.

of the A’s are B” is true iff n ≥ θ. Our goal is to derive Pr(θ), which will
further yield the production model σ(“many”|n;N) that we want.

The previous chapter addresses how Pr(θ) can be constrained by the
prior belief φ(n) about the cardinality of A∩B, so our remaining task is to
specify an appropriate prior φ(n).

A natural candidate for φ(n) is the binomial distribution Binom(N, r),
where r ∈ [0, 1] is the (believed) rate of observing the mentioned property
B in the population of A. For example, in our scenario of candies, the
N = 25 candies are assumed to be randomly drawn from a population of
candies. A belief of r = 0.6 means that the speaker believes that in the
whole population of the candies, 60% are green. Given such a belief about
the general frequency of green candies, φ(n;N, r) is the probability of having
exactly n green candies within a group of N candies.

Technically, we have1:

φ(n;N, r) =

(
N

n

)
rn(1− r)N−n . (4.1)

Typically, we do not have much prior knowledge about how colors are
distributed in the population of candies, so we might think both colors are
equally likely, i.e., r = 0.5. Fig. 4.1(a) shows the binomial distribution
Binom(25, 0.5). We can see that if 25 candies are drawn from a population
where half of the candies are green, then we are most likely to see 12 or
13 candies are green, and it is quite improbable that we will see a mix of 5
green and 20 blue candies.

1Note that since cardinalities are discrete, φ(n;N, r) is the probability mass for n,
rather than the density.

38



0 5 10 15 20 25

0.
00

0.
05

0.
10

0.
15

Binom(25,0.4)

n

P
ro

ba
bi

lit
y 

M
as

s

(a) Binom(25, 0.4), the red line is n = 13.
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Figure 4.2: SOM predictions for Binom(25,0.4), with λ = 48, c = 0.

Now that we have the prior φ(n;N, r) specified, we can use the SOM to
derive the production probability σ(“many” | n;N, r, λ, c). Fig. 4.1(b) shows
the production probability for each n, when the prior φ(n) is Binom(25, 0.5),
with λ = 48 and c = 0.2 We can see that the production probability is
around 50% when n is between 13 and 14, and gradually becomes higher.
The entire curve is S-shaped, similar to relative adjectives.

The production probability σ(“many” | n; r) is sensitive to the popula-
tion rate r. Fig. 4.2 shows the binomial distribution Binom(25, 0.4) and the
corresponding production probability σ(“many” | n; 0.4), and Fig. 4.3 shows
those when r = 0.6.

We can see that for a lower population rate, the probability of using
“many” generally increases, and vice versa for a higher population rate.
This is expected. For example, suppose someone sees a group of 25 people
in an Asian country where the majority of the population has black hair
(r is low for blond), if 10 people in that group are blond, it seems fairly
likely that he will use “many of the people in that group are blond” as a
description, at least much more likely than he would if he saw the group in
Northern Europe, where blond hair is not uncommon (higer r).

2For simplicity, we will use λ = 48, c = 0 throughout the chapter to illustrate the
concept. Further experimental work is needed and more information about these pa-
rameters can be learned from the empirical data in the way introduced in the previous
chapter. Since N is often fixed as well, later we will only write σ(“many” | n; r) instead
of σ(“many” | n;N, r, λ, c).
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Figure 4.3: SOM predictions for Binom(25,0.6), with λ = 48, c = 0.

Uncertainty about the Population Rate r

So far we have been assuming that the population rate r is known definitely
by the speaker. In reality, this assumption is of course too strong. The pop-
ulation rate r is a latent parameter of the speaker’s belief about the popula-
tion. As was discussed in the previous chapter about comparison classes for
gradable adjectives, even if our world knowledge and contextual informa-
tion provides us with some prior preference about the latent parameter, we
usually cannot be entirely sure. Moreover, when we consider conversations,
which involve two individuals, it becomes even more evident that we gener-
ally cannot expect to know exactly the latent parameters corresponding to
what other conversational participants believe about the population. The
best we can assume is that people general share the same type of latent
parameters, with some noise introducing variability. Hence the latent pa-
rameter r is always associated with some uncertainty and we will adopt the
beta distribution family again to encode such uncertainty.

We introduced the beta distribution family in Section 3.4. Recall that
a beta distribution is defined on [0, 1] and has two positive parameters α, β
controlling its shape. While we used it there only because of its variability in
shape and nice closure property, the shape parameters of beta distribution
in fact have deeper conceptual meanings in Bayesian statistics. For the sake
of our modeling, here we only state the mathematical fact that Beta(α, α)
is symmetric and has maximal probability density at 0.5. In addition, the
greater α is, the more centered at 0.5 the distribution becomes. In the
limit case where α→∞, the distribution effectively becomes a vertical line
r = 0.5. Fig. 4.4(a) illustrates examples of such distributions.

Since we already know the production probability σ(“many” | n; r) for
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Figure 4.4: Average SOM predictions under hyperpriors Beta(α, α).

each r, now with the hyperprior quantifiying our belief about r, we can
again use the Bayes model averaging technique introduced in Section 3.6
to calculate the average production probability as the weighted average of
σ(“many” | n; r) using the density ψ(r) as weights:

σ(“many” | n;ψ(r)) =

∫ 1

0
ψ(r)σ(“many” | n; r) dr .

Fig. 4.4(b) shows the average production probability when ψ(r) is either
Beta(5,5) or Beta(20,20). We can see that as α→∞, the average production
probability converges to the production probability when r is exactly 0.5.

Metalinguistic Effects of Use of Quantifiers

Incorporating uncertainty about the latent parameter r not only gives us
a more realistic production model, but also is the key to accounting for
metalinguistic effects of use of vague terms (Barker, 2002).

Let us return to the experiment by Yildirim et al. (2013) as an example
to illustrate the effects and show how to formally account for them.

In the experiment, participants were first presented with 10 pictures3 in
which 13 out of 25 candies were green, together with a video of a speaker
constantly using “some of the candies are green” or “many of the candies
are green” to describe these pictures. Participants were then presented with
pictures containing 25 candies. The pictures had various numbers of green
candies and participants were asked to judge the production probability of
“many” and “some” by the speaker.

3The pictures were mixed with 10 other filler pictures to make the manipulation less
obvious.
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Figure 4.5: Results of the experiments by Yildirm et al. (2013)

They used a series of experiments to test the robustness of the phe-
nomenon and obtained similar patterns in participants’ responses. The re-
sults of their experiments are shown in Fig. 4.5. We can see that participants’
expectation of the speaker’s use of “many” changed according to the previ-
ous observations of use of quantifiers. If the speaker constantly used “some”
when n = 13 (some-biased), then participants would judge “many” (red
dashed line) generally as less likely to be used by the speaker for each car-
dinality, and vice versa for participants’ judgments after observing constant
use of “many” when n = 13.4

We should note that this phenomenon cannot be simply explained in
terms of adaptation to the superficial relative frequencies, as differences in
judgments may not be constant for each cardinality. Our analysis is that
participants use Bayes’ rule to update their hyperprior of the population
rate r from the observed use of quantifiers:

ψ′(r) ∝ ψ(r) · σ(un:k/K | r),

where un:k/K means that utterance u in total is used k times out of K
observations for cardinality n.

The intuition is that participants were revising their belief about the
speaker’s latent parameter r in the light of the observations of his use of
quantifiers. Note that for each of the K observations, we know the prob-
ability of using utterance u is σ(u | n; r).5 Hence, the probability of using
utterance u k out of K instances of language use, is given by the binomial
distribution:

σ(un:k/K | r) = Binomk(K,σ(u | n; r)),

where Binomk is the binomial distribution’s probability mass at k.

4Yildirim et al. (2013) did not report the baseline in detail. They only mentioned that
participants were indifferent between “many” and “some” when n = 13.

5For now we will assume “some” is always used when “many” is not. Note the similarity
between “some” here and saying nothing as the alternative to positive forms.
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Figure 4.6: Posterior average SOM predictions.

Hence we can compute the posterior distribution of population rate r,
as shown in Fig. 4.6(a). We can see that if participants observed constant
use of “some” by the speaker, he would think that the speaker has a belief
that correponds to a higher population rate, and vice versa for “many.”

Using model averaging again, we obtain the average posterior produc-
tion probability of “many,” as shown in Fig. 4.6(b). We can see that the
production probability shifts to the intended direction after either type of
observations.

4.3 Cognitive Factors and Language Use

It is easy to see that the predictions in 4.6(b) can not fully account for the use
of quantifiers “many” and “some.” In general, they capture the borderline
cases reasonably well, but they give bad predictions near the ends of the
cardinality scale.

Towards the lower end, the account predicts that “some” will almost
always be used when n is small (since “some” is assumed to be used whenever
“many” is not) and the production probability monotonically decreases as n
grows greater. However, this is not the case in the empirical data shown in
Fig. 4.5, where participants gave low ratings for “some” on such cardinalities.
The judged production probability first increases from n = 1 to somewhere
between 5 and 10 before it gradually drops as n increases.

Similarly, towards the upper end, the SOM predicts “many” will almost
always be used and the production probability always increases as n grows.
In contrast, participants’ judgments in the empirical data peak at some n
around 20 and drops down afterwards.
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There are many plausible explanations for the discrepencies. One intu-
itive account is that people probably would use exact number terms instead
when n is small, and when n moves towards the upper end of the cardinal-
ity scale, it becomes more likely for the speaker to use “most” and maybe
eventually expressions such as “almost all” and “all but one.”

This explanation points out that there are many other linguistic ex-
pressions that can serve the purpose of conveying the cardinality. Hence
we would expect a much more complex competition and interaction among
linguistic alternatives in the domain of quantification than most domains
underlying gradable adjectives. For example, when talking about a person’s
height, we do not have many common, simple linguistic alternatives to “tall”
other than “short.”6 For many other gradable adjectives it is even hard to
find their antonyms.

As mentioned earlier, the SOM in this and the previous chapters is a
“semantic pragmatic” account, in the sense that the analysis only considers
the use of an expression in isolation. The primary consideration is that,
if the expression of interest is the only available expression, how it should
be used in order to (sub-)optimally serve its purposes. It is because of this
isolation that the resulting model presumably captures some property of the
linguistic expression, which can then be seen as part of the semantics of that
expression.

However, as we have seen in Chapter 2, language use can and arguably
should also be considered on the level of “pragmatic pragmatics,” where
speakers have to choose among several linguistic expressions which are all
semantically true but differ in other respects such as informativity.

This section will focus on this aspect of competition among alternative
expressions to better explain participants’ judgments.

There are at least two approaches. A fully generative approach is what
we have seen in Chapter 2. It completely spells out the range of alternatives
and make them freely compete with each other. This would be ideal in
helping us fully understand the phenomena. However, so far it is unclear how
expressions which involve latent parameters would fit in such an account.
The major difficulty is that if we simply take all latent parameters into
account on the same level, the interactions will become too complex to be
tractable.

Hence, in this section we will adopt a semi-generative approach, accord-
ing to which lexical competitions can happen on different levels, so that we
can treat some level as the basic and adjust model predictions according to
considerations from other levels.

More concretely, in our analysis of the use of “many” and “some,” we

6However, if we take into account modifiers such as very, we might similarly observe
complex interactions. For instance, someone who is 2.2m is probably not described as just
“tall,” but as “very, very tall.”
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Figure 4.7: Adjusted SOM predictions for many and some.

will treat the SOM as the basic model that captures the informative use of
“many,” and additionally consider two other cognitive factors.

The first cognitive factor is the difficulty in counting the exact cardinality
n, which involves the competition between non-specific quantifiers such as
“many,” “most,” and “some” and number quantifiers such as “one,” “two,”
and “three.” Since number quantifiers are more specific and thus more
informative, they should generally be used. However, when n grows larger,
it takes more effort to count it and it becomes easier to make mistakes, which
means number terms become less appealing. Hence we will first assume that
the overall probability of using non-specific quantifiers such as “many” is
proportional to the difficulty of counting the cardinality n correctly.

Concretely, we have

pd(n) = ad + bd log(n),

where ad, bd are constants. The reason that we use log(n) instead of n is that
human perception is often linear on the log-scale, known as Fechners law in
psychophysics. For simplicity, we will specify it by considering endpoint
values. When n = 1, pd(1) = ad, which according to empirical data is
around 0.4. Thus we know ad = 0.4. When n = 25, for simplicity we will
assume that pd(25) = 1, from which we know bd = 0.186.

The second factor we consider is the strengthening from “many” to
“most.” We will adopt the analysis of “most” as the composition of “many”
with the superlative morpheme -est (e.g., Hackl, 2000, 2009; Solt, 2009,
2011). We will take the meaning of many as a function that maps sets to
cardinalities, just as tall maps individuals to heights. The meaning of -est is
to assert that the individual has the greatest degree among all alternatives.
For instance, x is tallest means height(x) > height(y) for any other y in
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the comparison class. In the case of most as many-est. When we use “most
of the candies are green,” the superlative morpheme involves a comparison
between the set of green candies and the alternative set(s), which in this
case is the set of blue candies. Thus, G, the set of green candies, is many-est
when |G| > |Y | for any other alternative set Y in the comparison class,
which in this case is only B, the set of blue candies.

Again, if the sizes of these two sets are obviously different, then one
should strengthen “many” to “most” more likely. When there are n green
candies, there are 25−n blue candies, so the difference is n−(25−n) = 2n−
25. We can similarly derive the probability factor of maintaining “many” as
a function of n. An example is shown in Fig. 4.7(a) and Fig. 4.7(b) shows
the adjusted production probabilities of “many” and “some” (dotted lines)
after observing “some” (orange lines) or “many” 10 times for n = 13.

We can see that even though the predictions are not perfect, it generally
captures the trends towards the endpoints.7

4.4 Experiments

In the previous sections we generalized the SOM to account for the use of
quantifiers, and introduced two additional cognitive factors, i.e., the diffi-
culty of counting and the salience of difference between alternative sets. As
noted earlier, our semi-generative model is a primitive one, and more work
needs to be done to systematically learn from the empirical data and design
better models.

In this section we will report on the results of two experiments adapted
from Degen and Goodman (2014) to empirically justify the introduction of
these two cognitive factors. The aim is to establish the plausibility of the
choices, rather than to fully validate the model prediction, which we leave
to future work.

4.4.1 Experiment 1: Salience of Difference and Strengthen-
ing of Many to Most

Our first experiment is about the salience of difference bewteen alternative
sets and its effect on the strengthening of many to most. In the previous
sections, we assume that the alternative set is perceived at the same time
along with the main set. For instance, in a picture of candies, the alternative
set (blue candies) and the main set (green candies) are in the same picture
and can be directly compared against each other.

7We pointed out that the phenomenon cannot be explained simply as adaptation to
relative frequencies, but such an adaptation could still be one of the factors. Also, we
assume the QUD is how many green candies there are, but if participants observed “some”
constantly, they might assume that the QUD could be whether there are green candies.
These factors are not in the current model.
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However, in some situations the alternative set is not present in percep-
tion, which means a direct comparison is impossible. For example, suppose
we know that 25 candies were distributed in two boxes. When we open
the first box, see 20 candies, and say “most of the candies are in this box,”
we do not directly observe the alternative set (candies in the other box).
In situations like this, the speaker can only obtain the cardinality of the
main set directly from perception, and has to calculate the cardinality of
the alternative set for comparison.

There are two modes of perception of the cardinality of a set, either the
speaker counts and believes in a specific cardinality n, or the speaker just
forms a coarse representation of the numerosity of the set, resulting in a
belief across a wider range of n’s.

In the first case, if the speaker counts correctly, the salience of difference
will be similar to that in the previous section where the alternative sets are
available.

In the second case, since perception is fuzzy for large cardinalities, the
coarse representations the speaker forms there will be close to each other
(e.g., the coarse representation for n = 18 will not differ much from the
one for n = 21). This means that the difference between the main and
alternative set will be less variable (more flat) over large cardinalities.

Thus, when the cardinality n of the target set is fixed, if the verification
strategy plays a role in the strengthening of many to most, we would expect
to see an interaction between the proportion n/N and whether exact count-
ing takes place, on the judgment of “most.” When the proportion n/N is
low, if participants count the exact number correctly, then they will judge
“most” as less likely than those who do not count. When the proportion
n/N is high, if participants count the exact number correctly, then they will
judge “most” as more likely than those who do not count.

Participants

We recruited 144 US participants via Amazon’s Mechanical Turk. Each
participant received a payment of $0.25.

Materials and Procedure

Participants first read a brief story about a character losing her marbles in
shoe boxes due to the visit of a relative. The story introduced N , the total
number of marbles which are relevant in the context, as either 37 or 53, and
evoked a question under discussion (QUD) that the speaker needs to find
all of the lost marbles. An example of the story is as follows:

Your friend, Kate, is really into collecting marbles. One af-
ternoon, you run into her near her house and she invites you
home for tea. On the way she talks enthusiastically about the
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(a) Randomly Distributed (b) Orderly Distributed

Figure 4.8: Target Pictures used in Experiments 1 and 2.

special edition of 53 marbles that she recently added to her col-
lection. “I put them on the shoe cabinet and they look perfect!”
she says proudly.

When you enter her house, however, there are shoe boxes
everywhere on the floor and the new set of marbles is gone. “It
must have been my five-year-old nephew,” Kate says, “Oh he is
always so naughty!”

Kate immediately starts opening one box after another. You
know her well enough to tell that she is upset and is determined
to find every last one of her new marbles. Wanting to help, you
pick up a shoe box and open it. . .

Participants were then asked to answer the following two questions to
make sure that they did pay attention to the story: How many marbles are
there in Kate’s missing new set? and When will Kate be satisfied?. The
two options for the first answer were the correct N and an incorrect one,
and the two options for the second answer were If she finds every missing
marble. (correct) and If she finds at least one missing marble (incorrect).
They were allowed to proceed only after they had answered the questions
correctly.

Then participants were shown a target picture containing a box of n =
27 marbles randomly distributed (Fig. 4.8(a)). We chose n = 27 for two
reasons. First, previous pilot studies suggested that roughly half of the
participants would count and the other half would not when n is around 27.
Second, for n = 27, we can construct pictures of orderly distributed marbles
whose total number can be easily counted (Fig. 4.8(b)). They will be used
in Experiment 2. Also, the total numbers of the missing marbles (53 or 37)
were chosen to make n = 27 has proportions of slightly greater than 50% or
slightly less than 75%.

Participants were told that they called out to the friend upon seeing the
box: “I found of the missing marbles!” They were asked to fill in the
blank with (only) one word that they thought they would most likely use.
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After that the picture disappeared and participants were asked how many
marbles there were in the picture as a memory check. They were instructed
that if they knew the answer, then they should report it, otherwise they
should indicate that they did not know.8

Finally, the participants were asked to adjust sliders to rate how likely
that they would use each of the four words some, many, most, all to complete
the sentence. The endpoints of the sliders were marked as very unlikely and
very likely and numerically the ratings ranged from 0 to 100 (but participants
did not know the number).

Names in the story, the character and the visiting relative’s genders,
marble colors9 and positions were all randomized.

Results

We classify participants’ responses to the memory check into 3 categories:
Dunno (when they stated they did not know the exact number n), Correct
(when they gave the correct n = 27) and Incorrect (when they gave an
incorrect n). Table 4.3 shows the number of participants in each category.

Table 4.1: Responses to the memory check in Experiment 1
Condition Dunno Correct Incorrect Total

N = 53(50%) 34 28 10 72
N = 37(75%) 24 37 11 72

We can see that a small proportion of participants incorrectly counted
the number of marbles. This is understandable, considering there were so
many randomly distributed marbles in the picture. In fact, most of the
incorrect numbers are 26 or 28.

In this chapter we focus on participants’ slider ratings for the quantifiers.
We will report on and discuss participants’ free choices of words in the next
chapter.

Table 4.2: Average slider ratings in Experiment 1
Group Some Many Most All

N = 53 (50%), Dunno 83.59 51.47 57.53 13.65
N = 53 (50%), Correct 87.82 53.61 37.50 5.54
N = 37 (75%), Dunno 65.83 54.54 70.54 18.00
N = 37 (75%), Correct 67.59 67.49 84.78 10.65

8They were instructed explicitly that stating that they did not know would not affect
the payment.

9There is only one color in each picture, as different colors may have some grouping
effect which can make counting easier.
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Table 4.2 shows the average slider ratings for each quantifier in each
condition given by the Dunno and Correct groups. 10 We can see that all
receives very low ratings, which is not surprising since it is false in both
conditions. We can also see that within each condition Dunno and Correct
groups gave some very close average ratings. This suggests that judgment
of some does not need to involve counting, which is also unsurprising given
its semantics.

We are mainly interested in the judgments for many and most.

We can see that when the proportion is a little more than 50%, both
groups gave similar ratings for many but the participants who counted cor-
rectly seemed to rate most as less likely than those who did not count.

In contrast, when the proportion is slightly less than 75%, participants
who counted correctly seemed to give higher ratings for both many and
most.

Statistical Analysis

We will now test whether the above observations are statistically signifi-
cant. Since participants’ ratings were not normally distributed and we do
not want to make ad-hoc assumptions about the distribution, we adopt
non-parametric bootstrapping, a resampling method, to test whether the dif-
ferences between the two groups’ ratings are significant.

Concretely, we will construct the 95% confidence interval of the difference
between average ratings of the Dunno group and that of the Correct group
for each condition. First, we sample with replacement from our original
data to get another dataset of the same size (72 for each condition), and
(for each quantifier) we compute the difference in average ratings, diff1,
between the Dunno and Correct groups in the new dataset. Next, we repeat
this procedure 1000 times to get 1000 new datasets and correspondingly
diff1, diff2, . . .diff1000. Last, we take the 95% percentile interval of these 1000
differences and treat it as the confidence interval of the difference between
the two groups’ ratings. If 0 falls out of this confidence interval, then we
conclude that the difference is significantly.

Table 4.3: Bootstrap: Dunno − Correct (N = 53 (50%))
Some Many Most All

Mean Diff −4.20 −2.39 20.14 7.97
95% CI [−12.75, 4.91] [−17.08, 11.76] [6.01,33.62] [−0.18, 16.95]

10Since there were only a few participants who incorrectly counted the number of mar-
bles, and they had different such false beliefs, we just exclude their responses from the
analysis.
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Table 4.4: Bootstrap: Dunno − Correct (N = 37 (75%))
Some Many Most All

Mean Diff -1.78 -12.96 -14.11 7.28
95% CI [−16.99, 13.47] [−28.72, 2.45] [−29.33,−0.36] [−3.22, 19.37]

The bootstrap 95% confidence intervals of the differences between two
groups’ ratings in each condition are shown in Table 4.3 and Table 4.4.

We can see that only the differences between two groups’ ratings for most
are significant. When the proportion is a little more than 50%, participants
who counted correctly rated most significantly lower than those who did not
count, and when the proportion is slightly less than 75%, participants who
who counted correctly rated most significantly higher than those who did
not count.

Discussion

The results suggest that the salience of difference affects the strengthening
of many to most. The larger the difference between the cardinalities of the
main and alternative sets is, the more likely that most would be used.

4.4.2 Experiment 2: Effect of Difficulty in Counting

Our second experiment is about the effect of difficulty in counting. The
natural prediction is that if counting is easy, then speakers are supposed to
use vague quantifiers less often.

Participants

We recruited 48 US participants11 via Amazon’s Mechanical Turk. Each
participant received a payment of $0.25.

Materials and Procedure

The only difference is that the pictures presented to the participants had
marbles that are orderly distributed (Fig. 4.8(b)), making it very easy to
count correctly.

Results and Statistical Analysis

Table 4.6 shows participants’ responses to the memory check. We can see
that clearly the pictures with orderly distributed marbles made almost all
participants count and count correctly.

11The size was chosen such that roughly the same number of participants would count
correctly as that in Experiment 1.
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Table 4.5: Responses to Memory Check in Each Condition in Experiment 2
Condition Dunno Correct Incorrect Total

N = 53 0 23 1 24
N = 37 2 22 0 24

Table 4.6 shows the average slider ratings for each quantifier by the
participants given by the participants who counted correctly in Experiment 1
(Random) and Experiment 2 (Orderly).

Table 4.6: Average slider ratings by the Correct group
Group Some Many Most All

N = 53 (50%), Random 87.82 53.61 37.50 5.54
N = 53 (50%), Orderly 86.52 56.17 33.83 8.09
N = 37 (75%), Random 67.59 67.49 84.78 10.65
N = 37 (75%), Orderly 68.82 53.91 73.18 16.95

We can see that participants’ ratings for some and all are again very
stable. This suggests that for large cardinalities, some might be judged
truth-conditionally, i.e., at least one, which does not involve counting the
exact number.

When the proportion is slightly more than 50%, there is no much differ-
ence in participants’ ratings for any quantifier. This could be a basement
effect, since in general this is a borderline case for many and most, which
means the base ratings might already be low and thus cannot drop too much.

When the proportion is slightly less than 75%, the ratings for many and
most seem to drop when the marbles in the pictures were orderly distributed.
Using the bootstrap method again, we can see that only the difference for
most is statistically significant.

All the bootstrap 95% confidence intervals are shown in Table 4.7 and
Table 4.8.

Table 4.7: Bootstrap: Random − Orderly (N = 53 (50%))
Some Many Most All

Mean Diff 1.26 -2.38 3.76 -2.61
95% CI [−6.60, 9.04] [−17.42, 13.90] [−11.37, 18.73] [−11.30, 5.33]

Discussion

The experiment suggests that the difficulty in counting has some effect on
the use of quantifiers, but they might have different effect sizes for different

52



Table 4.8: Bootstrap: Random − Orderly (N = 37 (75%))
Some Many Most All

Mean Diff −0.97 13.75 11.73 −6.42
95% CI [−15.34, 13.68] [−4.36, 32.01] [1.03,23.43] [−20.94, 5.31]

quantifiers, because the participants might use different verification strate-
gies in their ratings. This means that the formal model may be improved if
we introduce different effects of difficulty in counting to different quantifiers.
For instance, for quantifier some, it could be that as long as the cardinal-
ity exceeds a threshold, participants would stop counting, so the difficulty
factor pd(n) may reach 1 faster for some than for many or most.

4.5 Discussion

In this chapter, we further apply the framework and generalize the analysis
of gradable adjectives to the study of quantifiers. We show that the basic
idea still applies and derives a quantitative model for the meaning of many
and show how its meaning can be adapted after exposure to meta-linguistic
use. However, we note that the use of quantifiers is more complex because of
the competition among various lexical alternatives and some other cognitive
factors are involved. As a first step, we use a semi-generative approach to in-
corporate two cognitive factors in the use of quantifiers: difficulty in counting
and salience of difference between alternative sets. Our experiments provide
evidence that these factors do play a role in the use of quantifiers.
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Chapter 5

Design Choices

In previous chapters we have seen applications of the framework to several
case studies of the meaning and use of language. Even though these studies
share the main features of the framework such as careful considerations of the
purposes of language use, incorporation of cognitive factors, and emphasis on
empirical validation via experimental studies, there are nonetheless various
design choices in both formal modeling and experimental setup made in
each study. In this chapter, we will review and discuss some of these design
choices and their implications.

We will start with a discussion on various experimental measures, and
then turn to formal modeling.

5.1 Experimental Measure

There are many ways in which one can observe language use in an exper-
iment. Commonly used experimental measures include categorical judg-
ment/forced choice, graded Likert scale/slider ratings (which can be seen as
either ordinal or quantitative), and (possibly restricted) free production.

We classify experimental measures to two main categories: free produc-
tion and metalinguistic judgments.

5.1.1 Free Production

Free production is closest to how people actually use language and is one of
the most important goal of our theory and models of language use.

However, clearly it is usually unrealistic to allow participants to use
whatever utterance they want without any constraint. A pratical solution
is to use a restricted free production paradigm, where participants’ choices
of expressions are under restrictions. Admittedly, restricted free production
is a somewhat contradictory notion, but it is intended to show the balance
between freedom and feasibility of subsequent analysis.
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For example, in our experiments introduced in the previous chapter, we
let participants to freely choose one word to fill in the utterance template
“I found of the missing marbles!” This test is known as cloze test
(Taylor, 1953) and is used in the assessment of language skills. Thus we
adopt it to measure native speakers’ disposition to use language.

Participants’ choices of words are shown in Table 5.1.

Table 5.1: Free Production (27 Marbles in the Picture)
N Picture Group Number Some Many Most All Other

53 Random Dunno 6 17 2 3 3 3 (1 half)
53 Random Wrong 5 2 0 0 0 3 (half)
53 Random Correct 15 6 0 0 0 7 (half)
53 Ordered Correct 12 6 1 0 0 4 (half)
37 Random Dunno 2 9 2 9 1 1 (half)
37 Random Wrong 6 2 1 2 0 0
37 Random Correct 19 4 1 11 0 2 (several)
37 Ordered Correct 13 2 0 6 1 0

When N = 53, we can see that if participants counted the number
(correctly or wrongly), around half of them will use the number term which
they believed to be the number of marbles in the picture, and the other
half split between some and half. Only one participant used lots, which we
classified as many for simplicity.

In contrast, around half of the participants who did not count the num-
ber used some, the other half of the responses are scattered among other
quantifiers, round numbers, and others such as bunches.

There is no doubt that the data contain a lot of noise and the size of
the dataset is too small to draw strong conclusions. Nevertheless, there are
already noteworthy patterns in the data.

First, half was used loosely by the participants. Semantically speaking,
half is never true for any of the cardinalities when the total size N is 53,
but it was indeed used by some participants. Note that those who wrongly
counted the number as 24, 26 or 28 were also willing to use half.

Of course, it is far from a novel finding that people can use language
loosely. However, this does inform us of what might be missing in our
previous model for the use of quantifiers. Moreover, it also posts a theoretic
challenge to our modeling techniques, i.e., how we could allow for loose use
of language in the model.

Second, many and most are seldom used by participants who counted,
but they received around 50 in slider ratings. This suggests that additional
theory of how slider ratings correspond to production probalities is needed,
even though participants were instructed to directly evaluate the production
probability. A possible method is to normalize the slider ratings (e.g., Degen
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& Goodman, 2014). However, we note that this is far from ideal, because
even if the slider ratings were normalized, the result would still suggest that
using some could not be more than twice likely as using many or most.

Similarly, when N = 37, we can see that participants used many much
less often than most, but the large difference was not directly reflected in
the slider ratings (See Table 4.2).

These discrepencies between free production and slider ratings prompt
us to reflect the nature of metalinguistic judgments.

5.1.2 Metalinguistic Judgments

People not only use language, but also talk about langauge. In fact, speakers
can have very strong opinions about language. They often agree with each
other, but this is not always the case.

That people have certain patterns of linguistic or metalinguistic judg-
ments is by itself a very fascinating cognitive phenomenon that deserves
a lot of research. However, as we have already seen, speakers may have
judgments different from their actual use of language.

Thus, a theory needs to be explicit about which type of phenomena
it intends to address and spells out the assumptions that link theoretical
predictions to experimental measures. Of course, since linguistic and met-
alinguistic judgments are often closely related to actual use of language,
normally a theory can explain both types of phenomena, as long as it has a
proper mechanism that links them together.

Since the focus of classical semantics and pragmatics is on interpretation,
linguistic and metalinguistic judgments are traditionally explained from the
interpretation side. Recently, Degen and Goodman (2014) tested a series of
different measures and argued that some of the phenomena about metalin-
guistic judgments, including sentence verification might be better explained
from the perspective of production, particularly in the light of formal, prob-
abilistic models of language production and interpretation.

It might seem that this account would fail to explain the discrepencies
between slider ratings for quantifiers and how speakers actually use quanti-
fiers, but such discrepencies can actually be resolved in the framework.

Recall that the framework accounts for interpretation in terms of listen-
ers’ perspective-taking integrated with other cognitive factors. The crucial
observation is that, the listener’s perspective-taking is always with respect
to his belief about the speaker, which may not be fully accurate. Thus, as
Degen and Goodman (2014) speculated, some metalinguistic judgments such
as sentence verification or slider ratings really measure listeners’ underlying
speaker models.

Let us try to use this hypothesis to explain why many was seldom actu-
ally used, but still received considerable ratings. One explanation is that the
partitive constrution many of may be less acessible to some of the speak-
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ers. In other words, speakers might have some production bias against the
partitive construction of many. Meanwhile, listeners1 could be unaware of
such a bias, and thus they underlying speaker models do not incorporate
this bias. This would explain why the slider judgments do not reflect the
scarcity of many of in free production.

Clearly, this is only one of the many possible explanations of the phe-
nomenon we observed, and it needs to be further rigorously tested. However,
the main point here is the realization that the speaker and the listener may
be influenced by different cognitive factors, and in addition that the speaker
and listener may not be aware of each other’s biases.

In the next section, we will revisit our first case study of referential
expressions and illustrate how to incorporate the above observation into the
formal models to enrich the framework to better capture the use of language.

5.2 Formal Modeling

In previous sections and chapters, we have seen the need for various cognitive
factors in our model to better capture various phenomena of language use.
In particular, such factors may be different for production and interpretation
and may not be shared by speakers and listeners. Finally, we need to specify
the link between models and experimental measures.

In this section we discuss variations in modeling the use of referential
expressions.

For production, there are three factors we will consider.

Recall the soft-max production rule (2.6), repeated here:

σ(u | t) ∝ exp(λS · logU(t | JuK)) .

Firstly, as hypothesized in last section, the speaker might have lexical
preferences.

In our case, the speaker might prefer features of shapes, which are nouns,
to color terms, which are adjectives.

Technically, we can introduce a cost term that encodes the such prefer-
ences.

σ(u | o) ∝ exp(λS · (logU(o | JuK)− Cost(u))) .

We define the cost function using a constant c ∈ R

Cost(u) = c if u is an adjective and 0 otherwise . (5.1)

If c > 0 it means there is a preference for nouns and if c < 0 then the
preference is for adjectives. No preference exists if c = 0.

1We should emphasize here that the speaker and listener here could even be the same
person, since the bias may be subconscious.
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Secondly, RSA measures the informativeness of an utterance u, in terms
of how close the induced belief of the literal listener is from the speaker’s
own belief. We will call it a belief-oriented view.

However, in our case of using referential expressions, it seems more im-
portant that the literal listener actually attends to the intended target.
Hence an action-oriented view would directly use probability ρ0(t | m in-
stead of the KL divergence.

σa(u | t) ∝ exp(λS · (ρ0(t | u)− Cost(u))) . (5.2)

The technical difference is whether the probability or its logarithm is
used in the formula.

Finally, since we introduce perceptual salience as a cognitive factor for
the pragmatic listener model, we want to test whether the speaker will also
take it account in production. Thus, we replace the literal listener’s uniform
distribution U(t) with the salience prior S(t). This leads to the alternative
production rule:

σS(u | t) ∝ exp(λS · (logS(t | JuK)− Cost(u))) . (5.3)

Hence we have four types of speaker models that differ in either the
speaker’s belief about the literal listener, or the speaker’s goal of communi-
cation. We now introduce a uniform notation σxy, x ∈ {a, b}, y ∈ {U ,S}
for them:

σay(u | t) ∝ exp(λS · (y(t | u)− Cost(u))), (5.4)

σby(u | t) ∝ exp(λS · (log y(t | u)− Cost(u))), (5.5)

where U is the uniform prior and S is the salience prior. For example, in
the original RSA model, the speaker does not take listener’s salience prior
into account and he has a belief-oriented goal of communication. Thus it
will be denoted as σbU .

Now we turn to the listener model (2.7),

ρ(t | u) ∝ S(t) · σ(u | t) .

As pointed out previously, the likelihood term σ(m | t) is the listener’s
belief about how the speaker behaves and it is possible that it might differ
from actual production. We thus treat the speaker’s production term σ(m |
t) in the listener’s model as a parameter, making the listener’s belief about
production explicit:

ρ(σxy)(t | u) ∝ S(t) · σxy(u | t) . (5.6)

Note that the speaker’s production rule has two parameters λS, c which are
also included in the above specification of the listener model.
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Next, even though our intuition suggests different objects have different
perceptual salience and thus might affect our interpretation, it is after all
an empirical question whether it is a relevant cognitive factor. Hence we
consider a variation where the listener does not take into account the per-
ceptual salience in his reasoning, which means he has a uniform prior over
the referents:

ρU (σxy)(t | u) ∝ U(t) · σxy(u | t) . (5.7)

Finally, in the original experiment by Frank and Goodman (2012), lis-
teners were asked to bet over possible referents. We have argued that such
an introspective measure may not be very accurate, and in the context of
referential expression resolution it makes more sense for the listener to ac-
tually decide which is the indended referent. (Consider the case in which
the listener is asked to pass something.)

Hence in such cases the listener will choose an object by, essentially,
(soft-)maximizing over his posterior beliefs. Formally, the action-oriented
listener model becomes:

ρav(σxy)(t | u) ∝ exp(λL · ρbv(σxy)(t | u)), (5.8)

where v ∈ {U ,S}, λL is the parameter measuring the listener’s degree of ra-
tionality, and ρbv is the belief-oriented model that does the Bayesian update
and chooses the referent linearly proportional to the posterior:

ρbv(σxy)(t | u) ∝ v(t) · σxy(u | t) . (5.9)

For instance, the original RSA listener model is a belief-oriented one with
the perceptual salience as prior, whose belief about the speaker is σbU , hence
it is denoted as ρbS(σbU ).

Qing and Franke (2013) adapted the original experiment by Frank and
Goodman (2012) and systematically compared the predictions of the above
models to the new experimental data. The results suggest that lexical pref-
erence is a cognitive factor in production and perceptual salience is one in
interpretation. However, the results suggest that the speaker does not take
perceptual salience into account in production, and similarly the listener
does not take lexical preference into account in interpretation. Moreover,
an action-based view might better reflect the goal of communication and
link model prediction to the experimental measure in a forced-choice setting
where the listener was forced to select one object as the intended referent.

These results provide evidence for the hypothesis that some types of
meta-linguistic judgments correspond to listeners’ belief about production,
which may be influenced by cognitive factors different from actual produc-
tion. Of course, more work needs to be done to fully understand this relation,
but it shall be clear that it is important to explicitly spell out the design
choices in both formal modeling and experimental measure.

59



Chapter 6

Discussion and Conclusion

6.1 Challenges

We have seen that the framework has provided novel insights into a range of
phenomena of language use and many of its predictions have been compared
to empirical data and shown to have good predictive power. However, there
may be methodological concerns about the framework. In this section we
discuss the main objections and challenges.

First, some might be skeptical about whether a particular case study has
implications for the study of meaning. The answer is that it depends. While
the study of referential expressions might not be seen as about semantics
per se, the studies of positive forms of gradable adjectives and quantifiers
do provide new perspectives on issues in semantics.

Secondly, one might doubt whether formal modeling and experimental
studies can be generalized to actual language use. The main objection is
that most of the studies presented in this thesis seem too artificial to have
real implications for our understanding and use of natural language.

Our response is that imperfections in case studies need not undermine
the general merits of the framework. Abstraction, simplication and exper-
imentation are crucial parts in the progress of any science. There is no
doubt that generalization from a highly controlled environment to the real
world, which is inductive in nature, is always risky and might turn out to
be wrong. However, this does not mean that we should give up the entire
process. Most of the time, the challenge is that the reality is far more com-
plex to be modelled directly. Making simplifications and using controlled
experimental methods help us tackle the huge problem piece by piece.

Of course, as always one should be cautious in interpreting the results of
model predictions and experiments, especially when one tries to generalize
them into more realistic, complex scenarios. Again, we need to repeat the
process, do formal modeling and empirical investigations (including other
methods such as corpus studies).
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6.2 Conclusion

In this thesis, we propose a quantitative, social-cognitive and experimental
framework for the study of the meaning and use of language, and use 3 case
studies, i.e., referential expressions, positive forms of gradable adjectives,
and quantifiers, to illustrate how the framework can be applied to provide
unique contributions to different semantic and pragmatic problems.

The main advantages of the proposed framework are the following.
First, by focusing on production, especially the purpose of language use,

we are not only able to provide an account of how language is used, but
can also shed new light on the study of meaning, which is traditionally
investigated primarily from the perspective of interpretation.

Second, by using quantitative models, our framework can better cap-
ture the subtlety of meaning and use, especially the graded or probabilistic
linguistic judgments that are common in language use in reality.

Finally, by incorporating various cognitive factors and using experimen-
tal methods to inform model designs, the framework can better deal with
the three-way relation between language, mind and world.

We shall emphasize that the framework proposed here obviously cannot
solve all the problem. Rather, we propose to use it as a complementry
approach such that, when combined with insights from other approaches,
e.g., the rich tradition of formal semantics and pragmatics, can yield a better
theory of the meaning and use of language. This is exactly what we plan to
explore in the future work.
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