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Abstract

This thesis is concerned with the area of algebraic set theory. Algebraic set
theory was invented by Joyal and Moerdijk [18] with the aim to study set the-
ory from the perspective of category theory. The central notion is a category
of classes, given by a triple (E ,S,Ps), consisting of a Heyting pretopos E , a
particular class S of arrows of E that are called small maps and an endofunc-
tor Ps : E → E . The small maps provide an abstract notion of smallness on
E , whereas the endofunctor Ps should be thought of as generalized powerclass
functor. Universes of set theory arise as initial algebras for this functor.

The main goal of this thesis is prove that Cohen’s model negating the contin-
uum hypothesis can be recovered in the algebraic set theory framework. Cohen’s
model has already been examined in the filed of topos theory by Tierney [29]. It
will be shown that Tierney’s proof translates to the algebraic set theory setting.
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Chapter 1

Introduction

Algebraic set theory aims to study (intuitionistic) Zermelo Fraenkel set theory
from the perspective of category theory. The framework was invented by André
Joyal and Ieke Moerdijk and first presented in their book [18]. The main idea of
the setting can be summarized as follows. Given a Heyting pretopos E together
with a particular collection of arrows of E that we call small maps, one can
define a generalized powerclass functor Ps : E → E on E . Joyal and Moerdijk
show in [18] that initial algebras for this functor satisfy the axioms of Zermelo
Fraenkel set theory. In this light set theory is formalized by operations on sets
rather than by properties of the membership relation and therefore obtains an
algebraic flavor.

Before we examine the abstract categorical setting more closely, let us first
see how usual set theory fits into this framework. Assume that V is a universe
of set theory. Consider the category E that has the subclasses of V as objects
and (possibly class-sized) functions between these classes as arrows. Define a
powerclass functor Ps : E → E on E by mapping a class X to the class of all
its subsets. An algebra for the functor Ps is a class A, together with a map
Ps(A) → A. Such an algebra η : Ps(V ) → V is called initial, if for any algebra
α : Ps(A)→ A, there is a unique map f : V → A such that the diagram

Ps(V ) Ps(A)

V A

Ps(f)

η α
f

commutes. In our setting, the set theoretic universe V that we started with
becomes an algebra for the Ps-functor by sending a subset a of V to a itself.
The recursion theorem familiar from set theory tells us that our universe V is
in fact the initial algebra for the powerclass functor Ps. A central observation
made in algebraic set theory is that the abstract property of being an initial
algebra for such a powerclass functor is in some sense sufficient to be a universe
of set theory. In the framework of algebraic set theory the ingredients of our
example are replaced with notions from category theory. Roughly, this can be
illustrated as in the following table:
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CHAPTER 1. INTRODUCTION 4

Set theoretic notion Categorical notion
The true category of classes Heyting pretopos
Sets Small objects determined by small maps
Powerclass functor Ps functor
Universe of set theory Initial algebra for the Ps functor

In the general setting, the true category classes is replaced by the notion of
a Heyting pretopos. A Heyting pretopos is a category having similar closure
properties as the true category of classes. In particular, it admits elementary set
theoretic operations such as products, unions and pairs. Following our example
again, we think of the objects of a Heyting pretopos as classes and of its arrows
as functions between classes. As in our example we would like to recognize those
elements of the Heyting pretops that are small, i.e. that represent sets in some
abstract sense. To this end the Heyting pretopos E is equipped with a class S, a
collection of arrows of E satisfying certain axioms that we call small maps. The
axioms for the small maps intend to determine those maps as small that have
set-sized fibres. In this way the small maps also provide an abstract notion of
smallness for objects. The small objects of E are the ones whose unique map to
the terminal object is small.

The axioms for the small maps imply that there is an endofunctor Ps : E → E
that we call the generalized powerclass functor. Just as the powerclass functor
in our example, the functor Ps intuitively maps an object of E to the collection
of all its small subobjects. Now universes of set theory in the abstract setting
arise as initial algebras for the Ps functor. We call them algebraic universes.

The universes occuring in algebraic set theory satisfy in general some intu-
itionistic form of set theory. In fact, it is one great feature of the algebraic set
theory framework that it allows one to obtain models for various set theories
in a uniform way. Roughly, this is due to two (interrelated) parameters. On
the one hand, the internal logic of the base category E determines whether the
resulting model of set theory satisfies intuitionistic or classical rules. On the
other hand, changing the abstract notion of smallness by modifying the axioms
for the class of small maps allows one to obtain models of several intuitionistic
and constructive set theories. One line of research focuses on isolating axioms
for the class S of small maps to obtain models for a particular set theory. In the
original approach [18] soundness with respect to Friedman’s IZF was proven.
Simpson [28] considered a much reduced axiomatization compared to the origi-
nal framework and proved soundness for the theory IZF, but with replacement
instead of the collection axiom. He also proves a completeness result, an im-
provement compared the original approach. Van den Berg and Moerdijk [5]
examine Aczel’s theory CZF in the algebraic set theory setting, also obtain-
ing a completeness result. Recovering models of a particular set theory in this
way can be used to lift results from topos theory to the set theory in question.
Examples of this kind can be found in [8] for the set theory CZF.

Another line of research in algebraic set theory asks whether familiar results
from topos theory can be translated into categories of classes. In a series of
papers [6, 7], Van den Berg and Moerdijk show that categories of classes are
closed under the formation of sheaves and realizability models. These observa-
tions allow one in particular to develop sheaf models in the algebraic set theory
setting without reference to some preexisting universe of sets.

A different approach is taken in [26, 2]. Instead of examining an established
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constructive set theory, the authors develop the set theory BIST. The theory
BIST intends to capture the set theory internal to a topos. In particular,
the authors show that in fact every topos occurs as the category of sets in a
particular category of classes by building the category of ideals of a topos. Also
predicative versions of the set theory BIST were studied [3].

1.1 Historical Development
We would like to summarize some of the major steps that led to the development
of algebraic set theory since the invention of category theory by Eilenberg and
Mac Lane in 1945.

In the 1960s, Lawvere and Tierney developed the notion of an elementary
topos. Even though the axiomatization of a topos is very simple, it allows almost
all mathematical constructions to be carried out internally. In fact, Lawvere’s
vision was that a topos can be seen as a universe of sets and in this way serves
as a foundation for mathematics alternative to set theory. This idea was also
strengthened as in the 1970s Mitchell and Bénabou defined a formal language
internal to a topos. The internal language allows one to reason about a topos as
if it would consist of sets and functions between these. One fascinating aspect of
the internal logic of a topos is that it follows intuitionistic rather than classical
rules. This brought back the ideas of Brouwer and Heyting developed in the
beginning of the 20th century.

Around the same time, a major development in set theory was Cohen’s
invention of the method of forcing [11], establishing the independence of the
continuum hypothesis and the independence of the axiom of choice from the
other Zermelo Fraenkel axioms of set theory. Forcing soon became an indis-
pensable proof technique, yielding answers to questions that have long been
open by proving them to be independent of the set theoretic axioms. In [29],
Tierney presented a categorical version of Cohen’s forcing model falsifying the
continuum hypothesis. His work was extended by Bunge [10], who defined a
topos falsifying Souslin’s hypothesis. A bit later, Freyd [14] found a surpris-
ingly simple construction of a topos falsifying the axiom of choice.

These results aroused interest to determine the precise relationship between
axiomatic set theory and topos theory. Accordingly, there have been attempts to
find models for (intuitionistic) axiomatic set theories inside a topos. In the 1980s
Fourman [12] and independently Hayashi [16] suggested methods to interpret
set theory in Grothendiek toposes. Also, Scott [27] worked on interpretations
of set theory in presheaf categories, presented his work in talks but never pub-
lished it. The common idea of these models was to mimic the construction of a
cumulative hierarchy in a topos. These constructions, however, had two disad-
vantages. A first minor disadvantage is that the construction proceeds over an
external induction over the ordinals. Therefore, the construction is somewhat
non-elementary as it needs a reference to set theory and cannot be carried out in
the topos itself. Another more serious problem is that quantifiers in the internal
logic of a topos are necessarily bounded by objects of the topos. Therefore, to
formulate unbounded axioms such as replacement or unrestricted separation,
one has to extend the language of set theory with predicates for each object
occurring in the cumulative hierarchy.

In the framework of algebraic set theory these problems are overcome. In
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a Heyting pretopos, classes become the first-class citizens as opposed to sets in
topos theory. In this way, the universe of set theory now becomes a particular
object of the Heyting pretopos. This object is used to interpret the free variables
of the language of set theory. As the bound on variables is now given by the
object that is the universe itself, the bound does not cause a restriction anymore.
In this light, algebraic set theory can be seen as a complete answer to the
correspondence between axiomatic (intuitionistic) set theory and topos theory.

1.2 Outline of the Thesis
The main goal of the present thesis is to show how Cohen’s model falsifying CH
fits into the framework of algebraic set theory. In [29], Tierney has shown that
Cohen’s model can be recovered in the categorical context by building sheaves
over the Cohen poset, a major achievement in topos theory. In the thesis, we
will see that Tierney’s result fits in the framework of algebraic set theory. To
this end we will consider the category of an enlarged version of sheaves over the
Cohen poset that form a category of classes. As in [29], one can show that the
continuum hypothesis is falsified in the internal logic of this category of classes.
Our contribution is to show that the statement in the internal logic of the outer
category of classes translates to a statement about the algebraic universe that
the category of classes contains. Accordingly, we will obtain an algebraic model
of Zermelo Fraenkel set theory that falsifies the continuum hypothesis.

As we explained, earlier topos theory failed to provide a model satisfying all
the axioms of Zermelo Fraenkel set theory whereas algebraic set theory succeeds
to provide such universes. In this light, our result can be seen as completing the
task of recovering Cohen’s result in a categorical context. It should be noted,
however, that the idea of building a cumulative hierarchy inside a topos, as
suggested in [12] or [16], leads to a very similar result.

The major part of the thesis is intended to introduce the reader to the field
of algebraic set theory. We will develop the necessary background from category
theory that is needed to understand basic concepts and theorems of this field. In
particular, we will discuss how to interpret logic inside a category of classes and
prove that for our axiomatization the algebraic universes satisfy the set theory
IZF. Often we will focus on providing detailed proofs of statements that are
omitted in the literature.

Chapter 2 In this chapter we will introduce the reader to the notion of a cat-
egory of classes. We will define the notion of a Heyting pretopos and
summarize some of its elementary properties. In particular, we will exam-
ine how Heyting pretoposes provide sound semantics with respect to first
order intutionistic logic. Moreover, we will provide an axiomatization of
the class of small maps leading to the notion of a category of classes. In
the final part we will discuss more properties of categories of classes that
are used later in the thesis.

Chapter 3 In the third chapter, we will examine examples of categories of
classes. First, we will discuss the example of the true category of classes
again. Then we will investigate categories of large presheaves and large
sheaves. These categories can be seen as a class-sized version of presheaves
and sheaves familiar from topos theory.
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Chapter 4 In the fourth chapter we will investigate algebraic universes of set
theory, i.e. initial algebras for the Ps functor on a category of classes.
The main goal is to establish a soundness theorem as in [18], i.e. we will
show that algebraic universes validate the axioms of IZF. Moreover, we
will analyze how statements formulated in the internal logic of E can be
translated into statements of the language of set theory. We like to think
about this as squeezing set theoretic structure into our universe. Finally,
we will study a condition ensuring the existence of an initial algebra for
the Ps functor.

Chapter 5 The main goal of the fifth chapter is to show how Cohen’s result
fits into the context of algebraic set theory. To this end we will follow the
presentation of Tierney’s proof along the lines of Chapter 6 in [20]. We
will translate the Tierney’s result in the algebraic set theory framework
using the squeezing results that we established earlier.



Chapter 2

Categories of Classes

A category of classes intends to capture the interrelation between classes and
sets. It consists of a base category E together with a distinguished class S of
arrows of E that are called small maps. The class of small maps determines
particular objects of the category E to be small objects. These small objects in
a category of classes intend to behave as sets as opposed to proper classes. The
notion of a category equipped with a class of small maps was first introduced
by Joyal and Moerdijk [18] and originated in earlier work of the authors.

In this chapter we will introduce the reader to the notion of a category of
classes. In the first section we will define the notion of a Heyting pretopos
that forms the base category for our further considerations. We will examine
elementary properties of these categories, in particular, we will describe how to
interpret logic inside a Heyting pretopos. In the next section, we will define
the axioms for the class of small maps leading to the definition of a category
of classes. In a last section, we will examine the notion of a category of classes
more closely. Most of the results presented in this chapter already occur in the
original work [18]. Additional results that we present can be found in [28], [30]
and [26].

2.1 Heyting pretoposes
The aim of this section is to introduce the reader to the notion of a Heyting
pretopos. We will list some basic properties of such categories, in particular, we
will show that show that the subobject lattices of objects in a Heyting pretopos
form Heyting algebras. This property enables one to interpret logic inside a
category. We will explain the details in the following section.

For an object X of E , we denote by E /X, the slice category of E over X.
The category E /X has as objects all arrows of E with codomain X and for
f : A→ X and g : B → X in Ob(E /X) every h : A→ B of E is an arrow from
f to g if and only if f = g ◦ h. If the category E has pullbacks, every arrow
f : X → Y of Ar(E) induces a functor

f∗ : E /Y −→ E /X

that acts on objects by pullback along f and on arrows in the obvious way. Ob-
serve that f∗ always has a left adjoint Σf : E /X → E /Y given by composition

8
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with f .
For every object X of E we will denote by Sub(X) the category of subobjects

over X. Its object are equivalence classes of monos with codomain X where two
monosm : A→ X and n : B → X are equivalent if there are g : (m : A→ X)→
(n : B → X) and h : (n : B → X)→ (m : A→ X) in E /X. Arrows in Sub(X)
are inherited from E /X. Observe, that if g : (m : A → X) → (n : B → X)
is an arrow in E /X, then g is necessarily a mono in E and unique as an arrow
from m to n. If there is an arrow between A and B in Sub(X), we will usually
write A ≤ B. The relation ≤ makes Sub(X) into a partial order. Note however,
that we will often abuse notation by writing m : A → X in Sub(X), when we
mean the subobject given by the equivalence class of m. If the category E has
pullbacks then for f : X → Y the pullback functor from above induces a functor

f−1 : Sub(Y ) −→ Sub(X),

since monos are preserved under pullback. If no confusion is to be expected,
we will often denote f−1 as f∗ and call it the pullback functor. Note that f−1

does not necessarily have a left adjoint. However, in the case where f itself is a
mono, the left adjoint ∃f : Sub(X)→ Sub(Y ) of f−1 is induced by composition
with f .

Definition 2.1.1. A category E is called a pretopos if

(1) it has all finite limits,

(2) it has finite sums which are stable under pullback and disjoint. The latter
means that for every A,B in E , the coproduct inclusionsmA : A→ A

∐
B,

mB : B → A
∐
B are monos and the diagram

0 B

A A
∐
B

is a pullback.

(3) Equivalence relations have quotients that are stable.

Let us explain the notions used in the definition of a pretopos. First, we will
explain the notion of an equivalence relation. A mono m = 〈m1,m2〉 : R →
A×A is called an equivalence relation if it is

• reflexive, i.e. there is r : A→ R such that m1r = m2r = idA,

• symmetric, i.e. there is s : R → R such that m1s = m2 and m2s = m1

and it is

• transitive, i.e. if P is the pullback in

P R

R A

q

p m1

m2
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then there is t : P → R such that m1t = m1p and m2t = m2q.

An equivalence relation 〈m1,m2〉 : R → A × A has a quotient if there is a
map f : A→ B fitting in a diagram of the form

BAR
m1

m2

f

that is both, a pullback and a coequalizer. Next, we will explain what stability
under pullback in (2) and (3) of the Definition 2.1.1 means. Assume that E is
a pretopos, X an object of E and let h : A → X and g : B → X be elements
of the slice category E /X. It is easy to see that the coproduct A

∐
B of A and

B in E equipped with the universal map h
∐
g : A

∐
B → X gives rise to the

coproduct of h and g in the slice category E /X. Now by stability under pullback,
we mean that for every f : Y → X, the pullback functor f∗ : E /X → E /Y
preserves this structure, i.e. f∗(h

∐
g : A

∐
B → X) gives rise to the coproduct

of f∗(h : A → X) and f∗(g : B → X) in E /Y . Similarly, for quotients of
equivalence relations.

In fact, it is not difficult to see that if E is a pretopos, every slice category
E /X has finite limits, disjoint sums, effective equivalence relations and quotients
of these. These are again automatically stable under pullback, because every
slice category of a slice category is already a slice category of E , see [17, p. 8].
Therefore stability of the under pullback follows in the slice category follows
from the corresponding fact in E . We obtain:

Corollary 2.1.2. If E is a pretopos, then for every X in E also the slice category
E /X is a pretopos.

Next, we are going to list some properties of pretoposes.

Proposition 2.1.3. Let E be a pretopos. Then the following properties hold.

(1) Every arrow f : A → B can be factored into a cover, see [17, p. 19] for
the definition, followed by a mono. Moreover, the factorization is unique
up to unique isomorphism.

(2) E has images, i.e. for every arrow f : A→ B there is a smallest subobject
through which f factors. Moreover, images are stable under pullback.

(3) For every morphism f : Y → X, the pullback functor f−1 : Sub(X) →
Sub(Y ) has a left adjoint ∃f : Sub(Y )→ Sub(X). Moreover, the adjunc-
tion satisfies the Beck-Chevalley condition, i.e. for every pullback diagram

W X

Y Z

f

j h

g

and A in Sub(X), we have that g−1(∃h(A)) = ∃j(f−1(A)) in Sub(Y ).

(4) The initial object 0 of E is strict, i.e. every arrow f : A→ 0 is an isomor-
phism.
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(5) Every mono and every epi in E is regular. Moreover, E is balanced, i.e.
every arrow that is mono and epi is an isomorphism.

Proof. Although all the verification of the properties listed are fairly standard,
we would still like to sketch some of them.

(1) A worked out proof of this statement can be found in [24]. The construction
is as follows. Let f : A → B be an arrow in E . It is easy to see that the
kernel pair (p1, p2) of f , i.e. the maps fitting in the pullback

Z A

A B

p1

p2 f

f

defines an equivalence relation on A. By (3) of Definition 2.1.1 let e : A→
Q be the coequalizer of this relation. Then e is clearly a regular epi and
therefore a cover as regular epis are always covers. Since f ◦ p1 = f ◦ p2

there is a unique map m : Q→ B such that f = m ◦ e. Now one can show
that m is a mono which gives the desired factorization.

(2) For an arrow f : A→ B let

A Q B
e m

be the unique factorization as above, where e is the coequalizer of the
kernel pair (p1, p2) of f . It is easy to see that m : Q → B is the smallest
subobject through which f factors and therefore provides the image of f .
Stability follows from the fact that quotients of equivalence relations are
stable.

(3) Let f : Y → X be an arrow in E . We define

∃f : Sub(Y )→ Sub(X).

as follows. Given a subobject mC : C → Y of Y let ∃f (mC : C → Y ) be
the image of f ◦mC as in

C Y X

∃f (C)

e

f

m

mC

.

From the fact that such a factorization is unique, it follows that ∃f is
well-defined. It is also easy to see that this assignment is functorial, i.e.
order preserving. For let md : D → Y and mc : C → Y in Sub(Y ) with
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D ≤ C witnessed by k : D → C, i.e. we have mc ◦ k = md. By the
latter it is clear that f ◦md factors through ∃f (C) but this implies that
∃f (D) ≤ ∃f (C) in Sub(X).
We show that ∃f is a left adjoint to f−1, i.e. for allmC : C → Y ∈ Sub(Y )
and mA : A→ X ∈ Sub(X) we have

∃f (C) ≤ A ⇔ C ≤ f−1(A).

For the direction from left to right, assume that there is a map h : ∃f (C)→
A ∈ Sub(X). Then f ◦ mC = m ◦ e = mA ◦ h ◦ e, where m ◦ e is the
factorization of f ◦mC . So by the universal property of the pullback in

f−1(A) A

Y X

p2

m′ mA

f

there is a unique map g : C → f−1(A) with m′ ◦ g = mC . This witnesses
that C ≤ f−1(A) ∈ Sub(Y ). Conversely, assume there is a map k :
C → f−1(A) ∈ Sub(Y ). But this implies that f ◦ mC factors through
mA : A → X. Since ∃f (C) is the smallest subobject of X with this
property, it follows that ∃f (C) ≤ A in Sub(X). This finishes the proof
that ∃f is left adjoint to f−1. That the adjunction satisfies the Beck-
Chevalley condition follows from the fact that images are preserved under
pullback.

(4) This is proven in [17, p. 31] for coherent categories. The proof uses that for
every X, Sub(X) has a smallest object that it stable under pullback. Since
E has finite sums, it follows that E has an initial object 0. For every X the
image of the unique map 0→ X is easily seen to be the smallest object of
Sub(X). Stability follows from stability of finite sums and images.

(5) See [17, p. 38].

Definition 2.1.4. A pretopos E is a Heyting pretopos if for every f : Y → X
of E the pullback functor f−1 : Sub(X) → Sub(Y ) has a right adjoint ∀f :
Sub(Y )→ Sub(X).

The next proposition tells us that in a Heyting pretopos, Sub(X) carries the
structure of a Heyting algebra. This already indicates the logical character of
such categories. In the next section, we will explain in detail how a Heyting pre-
topos provides a semantics that is sound with respect to first order intuitionistic
logic.

Proposition 2.1.5. Let E be a pretopos. Then every subobject poset forms a
distributive lattice and the lattice structure is preserved under pullback. If E is
a Heyting pretopos then these lattices are Heyting algebras.
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Proof. Let X be an object of E . Given subobjects mA : A→ X and mB : B →
X of X, define the meet of A and B as the pullback in the following diagram.

A ∧B B

A X

π2

π1 mB

mA

Since the pullback of a mono is a mono, π1 is a mono, and therefore mA ◦ π1 :
A∧B → X witnesses that A∧B is indeed a subobject of X. Now the universal
property of the pullback corresponds precisely to the fact that A ∧ B is the
greatest lower bound of A and B in Sub(X). We already remarked that such
pullbacks are preserved by the pullback functors. The meet of A and B in
Sub(X) is constructed in two steps. First, we take the sum of A and B and
obtain a canonical map from s : A

∐
B → X by the universal property of finite

sums. The map s is not necessarily a mono. We define A ∨ B as the image of
s. Then it is not difficult to see that A ∨ B defines the least upper bound of
A and B. Stability under pullback follows from the fact that in pretopoi finite
sums and images are preserved under pullback. In Proposition 2.1.3, (3), we
argued that the initial object 0 of E is strict. An easily verified consequence of
strictness is that the unique arrow 0→ X is a mono. It is clear that this defines
the least object of Sub(X). Moreover, the identity arrow idX : X → X serves
as the greatest element in the lattice. The distributivity of the lattice is proved
in [17, p. 32].

Now assume that E is a Heyting pretopos. It remains to show that we also
have a Heyting implication that is preserved under pullback. So let m : A→ X
and n : B → X be elements of Sub(X). Since E is a Heyting pretopos, the
pullback functor m−1 : Sub(X) → Sub(A) has a right adjoint ∀m : Sub(A) →
Sub(X). Define

A⇒ B := ∀m(m−1(B)).

In order to show that A⇒ B satisfies the axiom for Heyting implication, we
need to show that for every C in Sub(X), A∧C ≤ B if and only if C ≤ A⇒ B.
Observe, that since m : A → X is a mono, the left adjoint ∃m : Sub(A) →
Sub(X) is simply given by postcomposition with m. This shows that for every
C in Sub(X), A ∧ C = ∃m(m−1(C)). We then have for some C ∈ Sub(X):

A ∧ C ≤ B
⇔ ∃m(m−1(C)) ≤ B [in Sub(X)]

⇔ m−1(C) ≤ m−1(B) [in Sub(A), since ∃m ` m−1 ]

⇔ C ≤ ∀m(m−1(B)) [in Sub(X)]

⇔ C ≤ A⇒ B.

This finishes the proof that A⇒ B satisfies the properties of Heyting impli-
cation. We already argued that left adjoints of the pullback functors satisfy the
Beck-Chevalley condition. From this it easily follows that also the right adjoint
satisfy this property, i.e. commutes with the pullback functor, as the following
calculation shows. Let
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W X

Y Z

p

q f

g

be a pullback. Assume B in Sub(X). Then

∀pq−1(B) ≤ ∀pq−1(B) [in Sub(X)]

⇒ p−1∀pq−1(B) ≤ q−1(B) [since p−1 ` ∀p]
⇒ ∃qp−1∀pq−1(B) ≤ B [since ∃q ` q−1]

⇒ g−1∃f∀pq−1(B) ≤ B [since ∃q ` q−1 satisfies B.-Ch.]

⇒ ∀pq−1(B) ≤ f−1∀g(B) [adjunction properties.]

The other direction, that f−1∀g(B) ≤ ∀pq−1(B) follows similarly, finishing the
proof that the adjunction satisfies the Beck-Chevalley condition. It is immediate
to infer that Heyting implication is preserved under pullback.

Definition 2.1.6. A pretopos is called a Boolean pretopos if all subobject lat-
tices are Boolean algebras.

From the definition of a Boolean pretopos it is not immediately clear that
Boolean pretoposes form a special case of Heyting pretoposes. This fact is
established in the next proposition.

Proposition 2.1.7. Every Boolean pretopos is a Heyting pretopos.

Proof. Let E be a Boolean pretopos. Since E is in particular a pretopos, it
remains to prove that the pullback functors have right adjoints. By Proposition
2.1.5 it follows that every subobject poset is a distributive lattice and the lattice
structure is preserved under pullback. Observe that we can infer that also the
complement operation is preserved under pullbacks. To this end let f : Y → X
and arrow in E and A ∈ Sub(X). Then

Y = f∗(X) = f∗(A ∨AC) = f∗(A) ∨ f∗(AC). (2.1)

Since sums are disjoint, it follow that f∗(AC) is the complement of f∗(A) in
Sub(Y ), i.e. f∗(AC) = f∗(A)C . In Proposition 2.1.5 we also showed that f∗
has a left adjoint ∃f : Sub(Y )→ Sub(X). We make use of this in order to define
a functor

∀f : Sub(Y )→ Sub(X) by B 7→ ∃f (BC)C .

Since complements are unique, the assignment is well-defined and one can easily
check that it is functorial. Then for all A ∈ Sub(X), B ∈ Sub(Y ) we have

f∗(A) ≤ B (in Sub(Y ))

⇔ BC ≤ f∗(A)C = f∗(AC) [properties of the complement and (1)]

⇔ ∃f (BC) ≤ AC [since ∃f a f∗]

⇔ A ≤
(
∃f (BC)

)C
= ∀f (B) [complement properties].

This shows that ∀f is indeed the right adjoint of f .
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2.1.1 Interpreting First Order Intuitionistic Logic inside
a Heyting Pretopos

In this section, we will show how to interpret first order languages in a Heyting
pretopos giving rise to a sound semantics with respect to first order intuitionistic
logic. Moreover, we will see that Boolean pretoposes give rise to sound semantics
with respect to classical logic. Formulas of a first-order (sorted) language will
always be interpreted in a context, i.e. in a string x̄ = x1 : X1, . . . xn : Xn of
sorted variables. The sorts of the language will be interpreted as objects of the
category. Assuming ϕ to be a formula all whose free variables are among x1 :
X1, . . . xn : Xn, then the interpretation of ϕ in the context x1 : X1, . . . xn : Xn

is defined to be a subobject of the product of the interpretation of the sorts
occurring in the context.

The results presented in this section summarize the treatment of first order
categorical logic in Johnstone’s book [17]. For a more thorough introduction to
categorical logic the reader is referred to [21] or [25].

We will now make the ideas described above more explicit. First, we define
how to interpret languages in a Heyting pretopos.

Definition 2.1.8. Let E be a Heyting pretopos and let L be a sorted first-order
language. An interpretation of L in E is provided if

• To every sort X of L is assigned an object M(X) of E . Note that we
will often abuse notation and denote the name of the sort X and its
interpreting object M(X) with the same letter X.

• Every relation symbol R : X1, . . . , Xn is assigned to a subobject

JRK M(X1)× · · · ×M(Xn)

• Every function symbol f : X1, . . . , Xn → Y of L is assigned to an arrow

JfK : M(X1)× · · · ×M(Xn)→M(Y ) in E .

Having an interpretation of the language L in E , we get an interpretation
of terms of the language L. A term t will always be interpreted in a context x̄
where all free variables of t are among the ones in x̄. If this condition is satisfied,
we say that the particular context is suitable for the term.

Definition 2.1.9. For a term x̄.t in context, i.e. a term t in a suitable context
x̄, we define its interpretation recursively:

• If t = xi : Xi a variable, then

Jx̄.xiK : X1 × · · · ×Xn → Xi

is the i-th projection.

• If t = ft1 . . . tm, f : Y1, . . . , Yn → Z and ti : Yi, then the interpretation
Jx̄.tK is given by the composite

X1 × · · · ×Xn Y1 × · · · × Ym Z
〈Jx̄.t1K, . . . , Jx̄.tmK〉 JfK

.
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By a straightforward induction, one can prove that this definition enjoys the
substitution property.

Lemma 2.1.10. Let x̄ be a suitable context for a term t : Z. Let si : Xi be a
string a terms of the same length as x̄. Let ȳ be a suitable context for all the
terms in this string. Then the interpretation Jȳ.t[s̄/x̄K is given as the composite

Y1 × · · · × Ym X1 × · · · ×Xn Z
〈Jȳ.s1K, . . . , Jȳ.snK〉 Jx̄.tK

.

Observe that by using a trivial substitution, the above Lemma can also be
applied if only some of the variables in t are substituted.

We will now sketch how to interpret first order formulas in our category.
Note that in our context equality will always be part of the language. As in
the case of terms, also formulas are interpreted in a context of variables. Again,
we call a context x̄ suitable for a formula ϕ if all free variables of ϕ are among
the ones in x̄. As already mentioned in the introduction of this section, the
interpretation of a formula ϕ in context x̄ will be a subobject of X1× · · · ×Xn,
where X1, . . . , Xn are the interpretations of the sorts of the variables in x̄. Note
that if variables xi and xj have the same sort then the interpretation of this
sort occurs multiple times in the product. One can think of the subobject Jx̄.ϕK
as containing exactly those elements of X1 × · · · ×Xn that satisfy the formula
ϕ.

Definition 2.1.11. We define the interpretation of a formula ϕ in suitable
context x̄ by induction over ϕ.

Atomic formulas:
If x̄ is a suitable context for terms t : Z and s : Z, the interpretation
Jx̄.t = sK is the equalizer in

Jx̄.t = sK X1 × · · · ×Xn Z
Jx̄.tK

Jx̄.sK .

If R : Y1, . . . , Ym is a relation symbol, ti : Yi terms, and x̄ a suitable context
for all these terms, then the interpretation of the formula Rt1, . . . tm is the
pullback in

Jx̄.Rt1, . . . , tmK JRK

X1 × · · · ×Xn Y1 × · · · × Ym
〈Jx̄.t1K, . . . , Jx̄.tmK〉

.

Boolean connectives:
The algebraic structure on Sub(X1 × · · · ×Xn) according to Proposition
2.1.5 allows us to interpret Boolean connections of formulas. So if x̄ is a
suitable context for formulas ϕ and ψ and we already have interpretations
Jx̄.ϕK, Jx̄.ϕK in Sub(X1 × · · · ×Xn) we define

• Jx̄.⊥K := 0 and Jx̄.>K := 1, the largest subobject of SubX1 × · · · ×Xn.
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• Jx̄.ϕ ∧ ψK := Jx̄.ϕK ∧ Jx̄.ψK
• Jx̄.ϕ ∨ ψK := Jx̄.ϕK ∨ Jx̄.ψK
• Jx̄.ϕ⇒ ψK := Jx̄.ϕK⇒ Jx̄.ψK
• Jx̄.¬ϕK := Jx̄.ϕK⇒ 0 ,

where the operations on the right hand side arise from the Heyting algebra
structure on Sub(X1 × · · · ×Xn).

Quantifiers:
Assume yx̄ is a suitable context for the formula ϕ and we already have
an interpretation Jyx̄.ϕK in Sub(Y ×X1 × · · · ×Xn). Then x̄ is a suitable
context for the formulas ∃yϕ and ∀yϕ. Let

πY : Y ×X1 × · · · ×Xn −→ X1 × · · · ×Xn

denote the obvious projection map. The formulas ∃yϕ and ∀yϕ are inter-
preted as

• Jx̄.∃yϕK := ∃πY
(Jyx̄.ϕK) and

• Jx̄.∀yϕK := ∀πY
(Jyx̄.ϕK).

Here ∃πY
and ∀πY

are the left and right adjoints of the pullback functor
associated to πY .

In Proposition 2.1.5 we did not only show that the subobjects lattices in E
have a Heyting algebra structure, we also showed that this structure should be
preserved under pullbacks. Moreover we showed that the left and right adjoints
of the pullback functor satisfy the Beck-Chevalley condition, i.e. commute with
the pullback operations. These properties are exactly the ones we need to prove
the substitution property for formulas.

Lemma 2.1.12. Let x̄ be a suitable context for ϕ and let ti : Xi a string of
terms of the same length as x̄. Moreover let ȳ be a suitable context for all the
term in the string t̄. Then Jȳ.ϕ(ti/xi)K is the pullback in

Jȳ.ϕ(ti/xi)K Jx̄.ϕK

Y1 × · · · × Ym X1 × · · · ×Xn

〈Jȳ.t1K, . . . , Jȳ.tnK〉
.

The above lemma also sheds light on how formulas behave by enlarging the
context. Assume ϕ is a formula with free variables x̄ = x1, . . . , xn. Let ȳ be a
string of variables such that all variables in x̄ occur in the string ȳ. Then ȳ is
also a suitable context for ϕ. Applying the trivial substitution, i.e. substitute
variables xi for xi, Lemma 2.1.12 gives that the interpretation of ϕ in context
ȳ is given by the pullback in

Jȳ.ϕK Jx̄.ϕK

Y1 × · · · × Ym X1 × · · · ×Xn

〈Jȳ.x1K, . . . , Jȳ.xnK〉
.
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In light of the semantics that we will define below, this shows soundness of the
weakening rule. If a formula ϕ does not contain any free variables, then we
call ϕ a sentence. In this case, the empty context is suitable for ϕ and JϕK
is interpreted as an element in Sub(1), where 1 is the terminal object of the
category E .

Finally, we will provide a definition of truth of a sequent in a Heyting pre-
topos.

Definition 2.1.13. Let E be a Heyting pretopos, L a sorted language and
assume we have an interpretation of L in E . Let ϕ and ψ be L-formulas in
context x̄ that is suitable for ϕ and ψ.

• We say that a sequent ϕ `x̄ ψ in context x̄ is satisfied in E if and only if

Jx̄.ϕK ≤ Jx̄.ψK in Sub(X1 × · · · ×Xn).

In this case we write: E |=x̄ ϕ ` ψ.

• Note that if ϕ on the right hand side is > then the sequent > `x̄ ψ is
satisfied in E if

Jx̄.ψK ∼= X1 × · · · ×Xn in Sub(X1 × · · · ×Xn).

In this case we write: E |=x̄ ψ.

• In particular, if ϕ is a sentence, then E |= ϕ iff JϕK ∼= 1 in Sub(1).

• If T is a first order theory, i.e. a set of sequences of the form ϕ `x̄ ψ. We
say that E is a model for T if all sequences of T are satisfied in E .

Note that we will often omit the free variables x̄ in the notation E |=x̄ ϕ
when no confusion is to be expected. The above definition provides a semantics
that is sound with respect to first order intuitionistic logic, see for example [17,
p. 830] for a suitable calculus.

Proposition 2.1.14 (Soundness). Let T be a first-order theory. Let E be a
Heyting pretopos that is a model for T. Let ϕ ` ψ be a sequent. Then

(T `i ϕ ` ψ) =⇒ (E |= ϕ ` ψ) .

Proof. A proof can be found in [17, p. 823]. Note, however, that we have actually
already done most of the work. For example, to see that the substitution rule is
sound use Lemma 2.1.12 and the fact that pullback functors are order preserving,
the soundness for the cut-rule follows by transitivity of the partial order on the
subobject lattices. The rules for Boolean connectives are sound by the Heyting
algebra structure on the subobject lattices. Finally, the rules for the quantifiers
are:

ϕ `x̄,y ψ
∃yϕ `x̄ ψ

ψ `x̄,y ϕ
ψ `x̄ ∀yϕ

The notation implies that x̄ is a suitable context for the formula ψ. Our con-
siderations above Definition 2.1.13 revealed that Jx̄y.ψK = π−1

y (Jx̄.ψK), where
πY : Y ×X1 × · · · ×Xn → X1 × · · · ×Xn is the projection map as in Definition
2.1.8. Now it is clear that the quantification rules express exactly the properties
of right and left adjoints of the pullback functor associated to πY .1

1The observation that quantification can be modeled categorically by right and left adjoints
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2.1.2 The Internal Language of a Heyting pretopos
Above, we saw how to interpret first order languages in a category. Every
category comes in fact with its own internal language that allows us to reason
about the category itself in a formal way.

Definition 2.1.15. Let E be a category with finite products. The internal
language of E is given by:

• The sorts of L(E) are given by the objects of the category.

• Every arrow f : X1 × · · · × Xn → Y in E determines a function symbol
f : X1, . . . , Xn → Y of L(E).

• And every mono R → X1 × · · · × Xn determines a relation symbol R :
X1, . . . , Xn.

The internal language L(E) has a canonical interpretation in E by inter-
preting the sorts, function and predicate symbols by the objects, functions and
subobjects that gave rise to them. Since E is a Heyting pretopos, the soundness
theorem (Proposition 2.1.14) tells us that sequences in the internal language are
closed under the rules of inference of intuitionistic logic. This provides us a way
to prove statements about the category E in a formal language. In fact, this
way of proving properties of E can replace the diagrammatic reasoning in which
arguments are often hard to follow [25, p. 3]. We will see many instances of this
reasoning later.

For now, let us see some elementary examples how the internal language can
be used on the one hand to characterize subobjects and on the other hand to
prove properties about E . The following examples are taken from [21].

Characterizing subobjects:

(1) Assume f : A→ X is a mono. Then f is a subobject of X. One can
easily see that this subobject is determined by the interpretation of
the formula Jx.∃a(f(a) = x)K

(2) Given arrows f : Y → X and g : Z → X, the formula f(y) = g(z)
determines a subobject Jyz.f(y) = g(z)K of Y × Z. Now it is easy
to see that this subobject corresponds to the one given by the mono
〈πY , πZ〉 : Y ×X Z → Y × Z, where πY and πZ are coming from the
pullback in

Y ×X Z Z

Y X

πZ

πY g

f .

Expressing properties of E:

(1) f : X −→ X is the identity morphism if and only if E |=x f(x) = x.

of a weakening functor was first made by Lawvere and was a milestone in the development of
categorical logic.
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(2) f : X −→ Y is monic if and only if E |=xx′ (f(x) = f(x′) ` x = x′)

Let us sketch the proof of (2). For the direction from left to right assume that
f : X → Y is monic. As already remarked above, the subobject Jxx′.f(x) =
f(x′)K, is given by 〈p1, p2〉 : Jxx′.f(x) = f(x′)K → X ×X, where p1 and p2 are
coming from the pullback

Jxx′.f(x) = f(x′)K X

X X

p1

p2 f

f .

The subobject Jxx′.x = x′K is given by the diagonal ∆ : X → X ×X. Since f
is a mono and fp1 = fp2 it follows that p1 = p2. But this shows that 〈p1, p2〉
factors through the diagonal and therefore Jxx′.f(x) = f(x′)K ≤ Jxx′.x = x′K in
Sub(X × X), which shows that the right hand side of (2) is satisfied. For the
direction from right to left, assume that Jxx′.f(x) = f(x′)K ≤ Jxx′.x = x′K in
Sub(X ×X). This implies that p1 = p2, where p1 and p2 are as in the pullback
above. In order to show that f is mono, let g, h : W → Y be arrows such that
fg = fh. By the universal property of the pullback above there is a unique map
k : W → Jxx′.f(x) = f(x′)K with g = p1k and h = p2k. Since p1 = p2 it follows
that g = h. This shows that f is mono.

We finish this section by stating a very useful lemma that tells us that
internally definable functions in the category E indeed occur as arrows in E . For
a proof of the lemma the reader is referred to [21, p. 89].

Lemma 2.1.16. Assume R→ A×B a mono, is provably a functional relation,
i.e.

E |=a.A,b:B (Rab ∧Rab′)→ b = b′ and
E |=a:A ∃b : BRab

then there is a unique arrow f : A → B such that the graph of f , Γ(f) := Ja :
Ab : B | f(a) = bK = R in Sub(A×B).

Another useful lemma concerns the truth of existential statements.

Lemma 2.1.17. Assume ϕ is a formula such that all free variables of ϕ are
among a : A, x̄ : X̄ and ȳ : Ȳ . Assume f : X̄ → A is an arrow in E. Then if

E |= ϕ[f(x̄)/a] then E |= ∃a : Aϕ.

Proof. All relevant interpretations are shown in the diagram below, where the
square is a pullback and m is the image of 〈πȲ , πX̄〉n.
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Jϕ[f(x̄)/a]K JϕK

Ȳ × X̄ Ȳ × X̄ ×A

Ȳ × X̄

J∃a : AϕK

∼= n

〈πȲ , πX̄ , fπX̄〉

e

m
〈πȲ , πX̄〉

Since E |= ϕ[f(x̄)/a], the map on the left hand side is iso. It follows that
J∃a : AϕK = Ȳ × X̄, and we conclude that E |= ∃a : Aϕ. That proves the claim.

2.2 Axioms for the Small Maps
In this section, we are going to introduce the notion of small maps on a Heyting
pretopos E with a stable natural numbers object2. The small maps provide an
abstract notion of being set-sized as opposed to be a proper class. Instead of
defining a notion of smallness for objects, we will define smallness of maps. In
this way, we automatically obtain the notion of small maps in all slice categories.
The reader is invited to think about a small map as being fibrewise small. For
ordinary set theory this means that a map f : X → Y between classes is small
if for every y ∈ Y the preimage f−1(y) is a set. Having a notion of small maps
at hand, the small objects are defined to be the ones whose unique map to the
terminal object is small. The axiom systems for the small maps the reader may
find in the current literature on algebraic set theory vary. Compare for example
the choices made in the original approach [18] with the choices made in [28] or
[5]. One reason is that different axiomatizations lead to soundness with respect
to different set theories. In particular predicative aspects can be considered.
This flexibility is in fact one great feature of the categorical framework to set
theory. Our choice of the axioms for the small maps is led by the goal to obtain
models for the set theory IZF and ZF in the case that the underlying Heyting
pretopos is Boolean. Moreover, we feel that in our presentation the relation to
the set theoretic axioms is most evident.

In the following, let E always be a Heyting pretopos with a stable natural
number object.

Definition 2.2.1. A class S of arrows of E is called a class of small maps if it
satisfies the following conditions:

(S1) All monos belong to S.

(S2) The maps in S are closed under composition.

(S3) If in the diagram below, g is small, e an epi then also f is small.
2See [17, p. 108] for the definition of a stable natural numbers object.
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X Y

Z

g

e f

(S4) The maps in S are stable under pullback, i.e. if in the pullback

A B

C D

g f

f is small then also g is small.

(S5) If f : A→ X and g : B → X are small maps, then also f +g : A+B → X
is small, where f + g arises from the universal property of the coproduct.

As already mentioned, having the notion of small maps at hand we can define
small objects as the ones whose unique map to the terminal object is small. The
small maps also determine small relations.

Definition 2.2.2. • An object A ∈ Ob(E) is called small, if the unique
map A→ 1 to the terminal object is small.

• A relation R ⊆ X × Y is called small in X or just small, if the composite

R X × Y Y
π2

is a small map.

One can think of a relation R on X × Y as small if for any y ∈ Y the R
predecessors of y build a set. In the context of set theory such a relation is
called set-like. Note that the order of the product matters, so a relation R on
X × Y that is small in X is not necessarily small in Y .

A next axiom that a category of classes is supposed to satisfy concerns the
representability of small relations. It in particular requires that for every object
of the Heyting pretopos there is powerclass object.

(P1) For any object X there is an object Ps(X) and a small relation ∈X⊆
X ×Ps(X) such that for any small relation R ⊆ X × Y there is a unique
map t : Y → Ps(X) which fits into a pullback of the form:

R ∈X

X × Y X × Ps(X)
idX ×t

Intuitively, axiom (P1) states that every small relation R ⊆ X × Y can be
written as x ∈ t(y), where t(y) = {x | xRy}, i.e. the relation R is representable
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by the relation ∈X . We will later express this precisely in the internal language
of the category.

Using the internal language of E , we can build the internal subset relation

JC : Ps(X).C ′ : Ps(X).∀x : X(x ∈X C)→ (x ∈X C ′)K→ Ps(X)× Ps(X).

We will often denote this relation by ⊆X→ Ps(X) × Ps(X). Requiring the
internal subset relation to be small, is a last axiom imposed on the small maps.
We will later see that this axiom corresponds to the powerset axiom of set
theory.

(P2) For every object X, the internal subset relation is small.

We finish this section by providing the definition of a category of classes.

Definition 2.2.3. We call a Heyting pretopos E equipped with a class S satis-
fying axioms (S1)-(S5), (P1) and (P2) and that has a stable and small natural
number object is called a category of classes.

Note that in the definition of a category of classes we also required the natural
numbers object to be small. As we will see later, this requirement corresponds
to the axiom of infinity. It should also be remarked that the our axiomatization
of the small maps is in fact redundant. In [28] for example Simpson shows
that axiom (S3) is implied by the other axioms we required. We will make
use of Simpson’s observation in the next chapter when we examine examples of
categories of classes.

2.3 Properties of Categories of Classes
In this section we will derive some elementary properties of a categories of classes
that we will use later in this thesis. First, we will derive more consequences of
the axioms for small maps. Then we will examine the representability axiom
(P1) more closely. In particular, we will see that the assignment X 7→ Ps(X) is
functorial giving rise to the generalized powerclass functor Ps : E → E . We will
then discuss that the notion of a category of classes is stable under slicing. This
property allows us to reason in the internal logic also when formulas contain
free parameters. We will see that an initial algebra for the Ps-functor is also
stable under slicing in a certain sense. Then we will discuss another interesting
property of a category of classes, namely that the small objects in category of
classes form a topos. This property shows us that the small objects in a Heyting
pretopos indeed behave like sets. Finally, we will show that small objects in a
category of classes are exponentiable.

2.3.1 Properties of the Small Maps
Next, we will examine some consequences of the axioms for small maps. The
first two properties in the following Lemma state that small maps are preserved
by the product and coproduct functor, respectively. The last property is called
cancellation in [28]. From this property it is immediate to see that all arrows
between small objects are small.

Lemma 2.3.1. Assume f : A→ X and g : B → Y are arrows in E.
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(1) If f and g are small, the product f × g : A×B −→ X×Y is a small map.

(2) If f and g are small also f + g : A+B −→ X + Y is small.

(3) Let f : A→ B and g : B → C be arrows in E. If h := g ◦ f is small then
also f is small.

Proof. (1): By (S4) it follows that f ′ and g′ in the pullbacks below are small.

A× Y A

X × Y X

f ′ f

πX

B ×X B

X × Y Y

g′ g

πY

Again, by (S4) it follows that in the pullback below p is small.

B ×A A× Y

B ×X X × Y

p f ′

g′

It is easy to see that f × g = g′ ◦ p so (1) follows since small maps are
closed under composition.

(2): Since in the Heyting pretopos coproducts are disjoint, the coproduct in-
clusion mA : A → A + B, mB :→ A + B are monos, so in particular
small by axiom (S1). So by (S2), the maps mA ◦ f : X → A + B and
mB ◦ g : Y → A+B are small. Now the claim follows by axiom (S5).

(3): The map h′ in the pullback

D A

B C

h′ h

g

is small. Since g ◦ f = h there is a unique map l : A → D such that
f = h′ ◦ l. It is clear that l is mono and therefore small, so again the claim
follows by (S2).

Lemma 2.3.2. (1) Assume s : S → X × Y is a relation and r : R→ X × Y
is a relation that is small in X. Then the intersection R ∩ S → X × Y is
also small in X.

(2) Similarly, assume R→ Y ×Z is a small in Y and S → X × Y is a small
in X. Let R′ and S′ be the pullbacks in
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R′ R

X × Y × Z Y × Z

S′ S

X × Y × Z X × Y

Then the intersection R′ ∩ S′ :→ (X × Y )× Z is small in X × Y

Proof. The intersection of R and S is given by the pullback

R ∩ S R

S X × Y

s′

r

s .

Since s is a mono and therefore small, it follows that s′ is small. Now the
composite

R ∩ S X × Y Y
r ◦ s′ πY

is small since πY ◦ r is small since R is small in X. This proves (1). The proof
of (2) is similar.

Next, we will examine axiom (P1) a bit more closely following a discussion
in [26]. The axiom states that there is a one-to-one correspondence between
small relations on X × Y and arrows from Y to Ps(X). Given a small relation
r : R → X × Y , write brc : Y → Ps(X) for the unique map classifying r.
Conversely, for every function f : Y → Ps(X) write dfe := (idX ×f)−1(∈X) in
Sub(X × Y ) for the unique small relation classified by f . Observe that in the
internal logic we have for every small relation R→ X × Y

E |=x:X,y:Y Rxy ↔ x ∈X brc(y).

And conversely, for every arrow f : Y → Ps(X)

E |=x:X,y:Y x ∈X f(y)↔ dfexy.
Next we will show that the element relation ∈X is extensional. This property

will turn out to be very useful when arguing internally about E .

Lemma 2.3.3. Typed Extensionality:

E |=A:Ps(X),B:Ps(X) (∀x : X.(x ∈X A↔ x ∈X B))↔ A = B.

Proof. Let φ abbreviate the formula (∀x : X.(x ∈X A↔ x ∈X B)). Let

T := JA : Ps(X)B : Ps(X).φK Ps(X)× Ps(X)
〈r1, r2〉

be the interpretation of φ. In order to show that

E |=A:Ps(X),B:Ps(X) (∀x : X.(x ∈X A↔ x ∈X B))→ A = B. (2.2)

we need to show that r = 〈r1, r2〉 factors through the diagonal ∆Ps(X) :
Ps(X)→ Ps(X)× Ps(X). To this end let U be the pullback in
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U ∈X ×Ps(X)

X × T X × Ps(X)× Ps(X)

∈X

X × Ps(X)
idX ×r 〈π1, π2〉

so that r1 classifies U . Similarly let V be the pullback in

V ∈X ×Ps(X)

X × T X × Ps(X)× Ps(X)

∈X

X × Ps(X)
idX ×r 〈π1, π3〉

so that V is classified by r2. Now using the internal logic we can prove that

U = Jφ ∧ x ∈X AK = Jφ ∧ x ∈X BK = V in Sub(X × Ps(X)× Ps(X)).

So U and V define in fact the same subobject of X × T . By the uniqueness of
the classifying map it follows that r1 = r2. Therefore, 〈r1, r2〉 factors through
the diagonal as desired and we conclude that (2.2) holds. The proof of the other
direction is even simpler.

The next lemma states that the assignment X 7→ Ps(X) given by (P1) is
functorial. An arrow f : A → B will be mapped to Ps(f) : Ps(A) → Ps(B),
where Ps(f) maps a subset of A to its image under f . For a category of classes
E , we will usually refer to Ps : E → E as the (generalized) powerclass functor.

Lemma 2.3.4. The assignment A 7→ Ps(A) extends to a functor Ps : E → E.

Proof. Let f : Y → X be an arrow E . The composite

∈Y Y × Ps(Y ) X × Ps(Y )× Y
mY

〈fπY , πPs(Y ), πY 〉
.

is easily seen to define the subobject Jy ∈Y A∧f(y) = xK in Sub(X×Ps(Y )×Y ),
where the free variables x, y and A are of type X, Y and Ps(Y ), respectively.

Therefore, the image m in the diagram

∈Y Y × Ps(Y ) X × Ps(Y )

Im
(
f × idPs(Y ) ◦mY

)
mY

f × idPs(Y )

e m

defines the subobject J∃y : Y (y ∈Y A∧f(y) = x))K in Sub(X×Ps(Y )). We will
now argue that m defines a small relation on X × Ps(Y ).

We have πPs(Y ) ◦m ◦ e = πPs(Y ) ◦mY ◦ f × idPs(Y ) = πPs(Y ) ◦mY . By (P1)
it follows that πPs(Y ) ◦mY is small and therefore πPs(Y ) ◦m ◦ e is small. Now
since e is epi, by (S3) it follows that πPs(Y ) ◦m is small. So m indeed defines a
small relation on X × Ps(Y ).

By (P1) we define Ps(f) as the classifying map of the relation m, i.e. the
unique map fitting in the pullback
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Im
(
f × idPs(Y ) ◦mY

)
∈X

X × Ps(Y ) X × Ps(X)
idX ×Ps(f)

.

Note, that by the above we have that

E |=x:X,A:Ps(Y ) x ∈X Ps(f)(A)↔ ∃y : Y (y ∈Y A ∧ f(y) = x). (2.3)

Using (2.3) and typed extensionality it is easy to verify that the assignment
f 7→ Ps(f) is functorial.

Observe that (2.3) in the proof of Lemma 2.3.4 expresses in the internal logic
that for f : Y → X, Ps(f) maps a subset A of Y to the image of A under f .

Corollary 2.3.5. The functor Ps : E → E preserves monos.

Proof. This is easy to see using the internal logic and the characterization (2.3)
in the proof of Lemma 2.3.4.

Lemma 2.3.6. If f : A→ X is small, we have an internal inverse image map
f−1 : X → Ps(A) such that

E |=x:X,a:A a ∈A f−1(x)↔ f(a) = x

Proof. Since f is small, the graph 〈idA, f〉 : A → A × X of f defines a small
relation. The classifying map of this relation, i.e. the unique map f−1 : X →
Ps(A) fitting in the pullback

A ∈A

A×X A× Ps(A)

〈idA, f〉

idA×f−1

satisfies the above condition.

As a well known fact in topos theory, there is also a contravariant version of
the powerset functor. This would act on f : A → B by mapping a subset of A
to its preimage under f . In our context this applies only to small maps.

Lemma 2.3.7. If f : A→ B is small, there is a map f ′ : Ps(B)→ Ps(A) such
that

E |= z ∈A f ′(C)↔ ∃y : By ∈B C ∧ f(z) = y.

Proof. Let f : A → B be a small map in E . We define f ′ : Ps(B) → Ps(A)
as follows. Take R to be the relation R := Jz : A, x : Ps(B) | ∃y : B(y ∈B
x ∧ f(z) = y)K. We show that this defines a small relation on A × Ps(B).
Consider the following diagram.
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T A× ∈B

A× Ps(B) A×B × Ps(B)

∈B

B × Ps(B)

R A× Ps(B) Ps(B)

h

〈π1, fπ1, π2〉

〈π1, π3〉 π2

m p

e

,

where the upper right rectangle is a pullback and me is the epi mono factoriza-
tion of 〈π1, π3〉〈π1, fπ1, π2〉 ◦ h. To show that R is small in A, we need to show
that pm is a small map. The horizontal map from A × Ps(B) to B × Ps(B) is
f × idPs(B) and therefore small. It follows by (S4) that also the composite on
the top of the rectangle is small. The map map on the right hand side of the
rectangle is small since ∈B is a small relation. As a composite of small maps
pme is small. Now since e is epi, by (S3) it follows that pm is small as desired.
We define f ′ as the classifying map of this relation. Note that

E |= z ∈A f ′(C)↔ ∃y : By ∈B C ∧ f(z) = y.

as required.

It is interesting to observe that the additional structure of small maps im-
poses logical properties on the Heyting pretopos. In particular a category of
classes always has a subobject classifier.

Lemma 2.3.8. E has a subobject classifier.

Proof. We claim that ∈1→ Ps(1) is a subobject classifier. Let m : A → X be
a mono in E . Since monos are small, m gives rise to a small relation m : A →
X ∼= 1×X. By (P1) m corresponds to a unique map bmc fitting in the pullback

A ∈1

X Ps(1)

m

bmc

Note that one can infer that ∈1 is isomorphic to the terminal object of E .

A useful property that we will use later and that we stole from [30] is de-
scribed in the following lemma.

Lemma 2.3.9. If m : A→ B is a mono, then the following square is a pullback:

∈A ∈B

A× Ps(A) B × Ps(B)
m× Ps(m)

Proof. Since m is a mono, the composite

∈A A× Ps(A) B × Ps(A)
m× idPs(A)
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provides its own epi-mono factorization. According to the proof of Lemma 2.3.4,
map Ps(m) is then defined to be the classifying map of this relation, i.e. the
one fitting in the pullback

∈A ∈B

A× Ps(A)

B × Ps(A) B × Ps(B)
idB ×Ps(m)

m× idPs(A)

Now the claim follows immediately.

2.3.2 Stability under Slicing
In this section, we will discuss that the notion of a category of classes is stable
under the formation of slice categories.

Proposition 2.3.10. If E is a category of classes, then for every object X the
slice category E /X is a category of classes. Moreover, for every f : Y → X, the
pullback functor f∗ : E /X → E /Y preserves all the structure in question.

A detailed proof of the above proposition can for example be found in [30].
We will sketch the basic concepts. Given an object X of E it is not difficult to
see that the slice category E /X is a Heyting pretopos. We equip E /X with a
class of small maps given by

SX := {s : (g : A→ X)→ (h : B → X) | s : A→ B is small in E},

so we define a map in the slice category to be small if and only if it is a small
map in E . It is easy to see that SX satisfies axioms (S1) − (S5). Given an
object g : A→ X in E /X let

T := JC : Ps(A), x : X.∀a : A(x ∈A C → g(a) = x)K Ps(A)×Xt
.

Then the powerclass PXs (g : A → X) of g : A → X can be defined as the
composite

T Ps(A)×X X
t πX

.

In order to define the element relation in the slice category, let

S := J∀a : A(x ∈A C → g(a) = x) ∧ a ∈A CK A× Ps(A)×Xs
,

where of course the free variables are of types a : A,C : Ps(A) and x : X,
respectively. Then ∈g:A→X is defined as the composite

S A× Ps(A)×X X
s πX

.
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A detailed proof of the validity of axiom (P1) is given in [30]. That also the
powerset axiom (P2) is valid in the slice category is for example proven in [26].
Concerning the preservation under pullback, it is easy to see that the Heyting
pretopos structure is preserved and it follows by axiom (S4), that also the class of
small maps is preserved by the pullback functors. For a proof that powerclasses
and the element relation are preserved by the pullback functors, the reader is
referred to the proof of Lemma 2.1.16 of [30].

2.3.3 The Initial Algebra for the Ps Functor
We will now discuss that also the structure of an initial algebra for the Ps functor
is stable, i.e. if α : Ps(V )→ V is the initial algebra for Ps in E then for every T
of E , t∗(α : Ps(V )→ V ) is the initial algebra for PsT in the slice category E /T ,
where t∗ is the pullback functor associated to the unique map t : T → 1.

We say that a Ps algebra has the inductive property if it has no proper
subalgebras. It is easy to see that an initial algebra for the Ps-functor satisfies
the inductive property. For if η : Ps(V ) → V is initial and α : Ps(A) → A is a
subalgebra then by initiality there is a unique algebra homomorphism h fitting
in the diagram

Ps(A) Ps(V )

A V

Ps(A)

A

Ps(g)

α η
g

Ps(h)

h
α

Since the identity is the only algebra homomorphism on α : Ps(V ) → V ,
we conclude that gh = idV and since g is a mono it follows that hg = idA,
showing that g is an isomorphism of Ps-algebras. One particular property of
the Ps-functor is that a Ps-algebra that is also a fixed point of Ps satisfying
the inductive property is automatically initial. This can be proved by imitating
the proof of the recursion theorem familiar from set theory in the categorical
setting.

Proposition 2.3.11. Assume α : Ps(V )→ V is a fixed point of Ps having the
inductive property. Then α : Ps(V )→ V is an initial algebra.

A similar result is discussed in [5, p. 19]. For the remainder of this section, we
will summarize how the initial algebra of the Ps functor behaves under slicing.
So let T be an object on E and as above η : Ps(V )→ V the initial algebra for Ps.
Note that since Ps is indexed by Proposition 2.3.10, we can pull η : Ps(V )→ V
back along t : T → 1 and obtain a PsT -algebra t∗(Ps(V ) → V ) in E /T . It is
immediate to see that t∗(Ps(V ) → V ) is a fixed point of Ps

T . One can also
prove that it still has the inductive property. So we obtain:

Lemma 2.3.12. Assume α : Ps(V ) → V is a fixed point of V having the
inductive property. Then t∗(α : Ps(V )→ V ) has the inductive property.

Note that together with the characterization stated in Proposition 2.3.11,
we obtain that initial algebras for the Ps functor are indexed.

Corollary 2.3.13. Assume, α : Ps(V ) → V is the initial algebra for Ps in E.
Then for every T in E, 〈α, idT 〉 : Ps

T (t∗(V )) ∼= Ps(V )×T → V ×T is the initial
algebra for PsT : E /T → E /T .
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2.3.4 The Topos of Small Subobjects
We will now see that the full subcategory of small objects in a category of classes
carries the structure of a topos. This was pointed out for example in [2, 26, 30].
This category will be denoted by ES , it is given by:

• The objects of ES are the small objects of E .

• The arrows of ES are the arrows f : A→ B in E between small objects of
E .

In other words, ES is the full subcategory of E consisting of the small objects.
It follows by (3) in Lemma 2.3.1 that all arrows of ES are in fact small in E .

Lemma 2.3.14. Let E be a category of classes. Then for every small object A
of E also Ps(A) is small.

Proof. We show more generally, that for every small object g : A→ X of E /X
also PXs (g : A→ X) is a small object of E /X. So assume that g : A→ X is a
small object of E /X. But this just means that the arrow g : A→ X is a small
map in E . Now using Lemma 2.3.6, there is a map g−1 : X → Ps(A) such that

E |= ∀a : A(a ∈A g−1(x)↔ g(a) = x).

Using the internal logic it easy to see that T , the domain of PXs (g : A → X)
can alternatively be obtained by the above square in the pullback

T ⊆

Ps(A)×X Ps(A)× Ps(A)

X Ps(A)

idPs(A)×g−1

g−1

.

By axiom (P2) the map on the right hand side is small, so this shows by (S4)
that PXs (g : A→ X) is a small object in E /X.

Now it is easy to show that ES is an elementary topos.

Proposition 2.3.15. The category ES is an elementary topos and all the rele-
vant structure is inherited from E.

Proof. Similarly as in Lemma 2.3.1 one can see that products of small objects
are small. Moreover, if f, g : A → B are two maps in ES , then their equalizer
in E is small and therefore provides the equalizer of f and g in ES . By Lemma
2.3.14, the subobject classifier Ps(1) is small and provides a subobject classifier
in ES . Again, using Lemma 2.3.14, for every small object A also Ps(A) is small
and ∈A is a small relation on A × Ps(A) in ES . Since every relation on A × B
for some B in ES is small, axiom (P1) expresses precisely that ∈A→ A×Ps(A)
satisfies the universal property of powerobjects.
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2.3.5 Exponentials and the Object of Epimorphisms
In this last section, we will see that small objects in a category of classes are
exponentiable. Moreover, we will introduce the object of epimorphisms. Similar,
as the exponential serves as a categorical notion of a function space, the object
of epimorphisms represents the collection of surjective functions between two
objects. The following proofs are taken from [30].

Let A be a small object of E . For an arbitrary object B we define

BA := {f : Ps(A×B) | ∀x : A∃!y : B(x, y) ∈A×B f}.

Lemma 2.3.16. The following correspondence holds in E

A→ B

1→ BA
,

i.e. arrows from A to B correspond to points of BA.

Proof. Let g : 1→ BA be given. Let bgc := g ◦m, where m : BA → Ps(A×B).
Since bgc factors through m, it follows that J∀x : A∃!b : B(x, y) ∈A×B bgcK ∼= 1.
Therefore, the relation J(x, y) ∈A×B∈ bgcK → A × B is functional. By Lemma
2.1.16 we conclude that it corresponds to a unique map g′ : A→ B such that

Γ(g′) = Jg′(x) = yK = J(x, y) ∈A×B bgcK in Sub(A×B).

Conversely, assume that f : A→ B is an arrow in E . Let 〈idA, f〉 ∼= Γ(f)→
A×B be the graph of f . Since A is small, the composite

A A×B 1
〈idA, f〉

is a small map. But this shows that the graph of f is a small subobject of
A×B. Let dfe : 1→ Ps(A×B) be its classifying map according to (P1). Since
J(x, y) ∈A×B dfeK ∼= Jf(x) = yK it is easy to se that J∀x : A∃!y : B(x, y) ∈A×B
dfeK ∼= 1. Therefore, dfe factors through BA via an arrow f ′ : 1 → BA. One
can easily check that the concepts are inverse to each other.

Proposition 2.3.17. For every object E of E we have

E ×A→ B

E → BA
.

Proof. Let e : E → 1 be the unique map from E to the terminal object and
e∗ : E → E /E the corresponding pullback functor. Then e∗(A→ 1) = π1 : E ×
A→ E and e∗(B → 1) = π1 : E ×B → E in E /E. Let us denote these objects
by eA and eB , respectively. Since we showed that pullback functors preserve
the relevant structure, we have that E × BA → E = e∗(BA → 1) represents
the subobject Jz : Ps

E(eA ×E eB) | ∀x : eA ∃!y : eB B(x, y) ∈EeA×EeB zK of
Ps

E(eA ×E eB). So we can use the result from Lemma 2.3.16 for eA and eB
in the slice category E /E, to obtain a one to one correspondence between the
maps on the left and the right hand side.
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E ×A E ×B

E

l
E E ×BA

E

h

It is easy to see that the map l and h above need to be of the form l = 〈πE , f〉
for some f : E×A→ B and h = 〈idE , g〉 for some g : E → BA in E , respectively.
This establishes the desired correspondence.

This finishes the proof that small objects in E are exponentiable. Now sim-
ilarly, if A is a small and B an arbitrary object of E , we define

Epi(A,B) := {f : Ps(A×B) | ∀x : A∃!y : B〈x, y〉 ∈A×B f∧∀y : B∃x : A〈x, y〉 ∈A×B f},

the object of epimorphisms from A to B.

Proposition 2.3.18. There is a one to one correspondence

E ×A→ B epi in E
E → Epi(A,B)

.

Proof. Again, we first show that there is a one to one correspondence

A→ B epi in E
1→ Epi(A,B)

in E .

Let g : 1→ Epi(A,B) is an arrow in E and let bgc be the composite

1 Epi(A,B) BA Ps(A×B)
g

.

As bgc factors through BA there is a unique map g′ : A→ B such that Jg′(x) =
yK ∼= J(x, y) ∈A×B bgcK. Since bgc factors trough Epi(A,B) one can easily infer
that J∀y : B∃x : Ag′(x) = yK ∼= 1. In other words g′ is a cover and therefore epi.

Conversely, assume f : A → B is epi. and let dfe : 1 → Ps(A × B) be
the classifying map of the graph of f as above. Since f is epi, f is a cover by
(5) in Proposition 2.1.3. Using this it is easy to see that dfe factors through
Epi(A,B). We obtain the correspondence claimed in the proposition by passing
to the suitable slice category as above. All arguments are as above, one only
needs to observe that an arrow g : E × A → B is epi in E if and only if
h := 〈idE , g〉 : eA → eB is epi in E /E.

Proposition 2.3.19 clearly justifies the terminology of the object of epimor-
phisms. A property that we will use later can also be found in [20, p. 287].

Lemma 2.3.19. Let E be a Boolean pretopos , m : Z → Y be a mono and
z : 1→ Z be a global section. Then Epi(X,Z) ∼= 0 implies Epi(X,Y ) ∼= 0.

Proof. By the correspondence in Proposition 2.3.18 the identity map on Epi(X,Y )
gives rise to an epi e : Epi(X,Y ) × X → Y . Since E is Boolean m : Z → Y
has a Boolean complement m′ : Z ′ → Y in Sub(Y ), i.e. Y = Z + Z ′. The
maps idZ and z◦!Z′ give rise to an arrow r : Y → Z with idZ = rm. By the
latter, r is epi. So the composite r ◦ e : Epi(X,Y ) × X → Z is epi. So by
using the correspondence in Proposition 2.3.18, r ◦ e corresponds to an arrow
Epi(X,Y ) → Epi(X,Z) ∼= 0. Since in a boolean pretopos every arrow to 0 is
an isomorphism, the claim follows.



Chapter 3

Examples of Categories of
Classes

Having developed the general theory of categories of classes in the previous
chapter, we will now turn to examine examples of such. First, we will indicate
how the familiar classes of set theory fit in our framework. Then we will discuss
the categories of large presheaves and the category of large sheaves on site, the
class-sized version of presheaves and sheaves, respectively. That such functor
categories fit into the algebraic set theory framework was already observed in
the original approach [18]. We will discuss this in detail how well-known results
from topos theory translate to our framework. In particular, we will provide an
explicit descriptions for the powerclass functors for the category of large sheaves.

3.1 The Category of the True Classes
We would like to think informally about the category of the true classes as the
category having classes as objects and possibly class-sized functions between
them as arrows. We will denote this category by Classes. A notion of small
maps on Classes is provided by declaring a map f : B → A as small, if for all
a ∈ A the preimage f−1(a), is a set as opposed to be a proper class. One idea
to make this rather informal definition more precise was already suggested in
[18]. Let us assume that V is a universe of set theory containing an inaccessible
cardinal κ. Then the elements of the universe V can be though of as the classes,
whereas elements of V with cardinality strictly less than the inaccessible κ are
defined to be small objects.

We will briefly indicate that the category Classes is a Heyting pretopos.
Limits are calculated as in sets. The same applies to finite sums therefore they
are disjoint and stable. The fact that equivalence relations have quotients is
however not entirely obvious. This is due to the fact that equivalence classes
can be proper classes. However, we can apply Scott’s trick in order to get sets as
representatives for the equivalence classes. The class containing the representing
sets is easily seen to be the quotient of the equivalence relation in question.

Given a map f : Y → X, the pullback functor f∗ : Sub(X)→ Sub(Y ) has a

34
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right adjoint ∀f : Sub(Y )→ Sub(X) that maps B ⊆ Y to

∀f (B) := {x ∈ X | for all y ∈ f−1(x), y ∈ B}.

The natural numbers object is given by the usual natural number and is therefore
stable. As announced, the small maps are the fibrewise small maps. It is
straightforward to check that the axioms or the small maps are satisfied. Note,
that in order to show the fibrewise small maps are closed under composition, we
use the axiom of replacement. Axiom (P2) follows from the powerset axiom.

3.2 Large Presheaves
Given a small category C, presheaves over C are contravariant functors from C
to the category of sets. In this section, we will allow these functors to have
classes in their codomain and we will call them accordingly large sheaves. We
will discuss how the category of large presheaves gives rise to a category of
classes, where smallness is defines by being small componentwise. It should
be remarked that the results presented in this section are standard in the topos
theory literature. Our task is to check in detail that they also fit in our enlarged
framework.

Definition 3.2.1. For a small category C the category ClassesC
op

, the category
of large presheaves, consists of the following:

• The objects are large presheaves, i.e. contravariant functors X : Cop →
Classes

• The arrows are natural transformations between these functors.

Proposition 3.2.2. For any category C the category ClassesC
op

is a Heyting
pretopos with a natural number object.

Proof. • Limits in the category of presheaves are constructed pointwise.
More precisely this means the following. Assume F : I → ClassesC

op

is a
diagram. Then for all C ∈ C there is a diagram

FC : I → Classes defined by FC(i) := F (i)(C) and FC(α) := F (α)C .

Using that Classes is complete, for each C ∈ C there is a limiting cone XC

for FC , in particular we have natural transformations ρC : ∆XC
⇒ FC .

We will now show that there is a unique presheaf structure making the
collection {XC | C ∈ C} into a vertex of the limit for F . Observe that
a given arrow f : C ′ → C gives rise to a cone of the diagram F ′C with
vertex XC and components F (i)(f) ◦ (ρC)i. Since X ′C is limiting, there is
a unique arrow f̄ : XC → XC′ making all involved triangles commute. So
we can define a large presheaf X : Cop −→ Classes by

C 7→ XC , f : C → C ′ 7→ f̄ : XC → XC′ .

By uniqueness of the map f̄ , X is well-defined and functorial, i.e. a large
presheaf. The natural transformation η : ∆X ⇒ F with components

ηi : X ⇒ F (i) given by (ηi)C := ρC(i)

shows that X is the vertex of a cone for F . One can easily check that X
is limiting.
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• Colimits in ClassesC
op

are also computed pointwise. This can be proved
similarly as above. Again, we have to pay attention that we need to
use Scott’s trick in order to avoid the use of the axiom of choice. So in
particular finite sums are constructed pointwise. Stability under pullback
and disjointness follows from the corresponding fact in Classes. Since
colimits and limits are calculated pointwise in ClassesC

op

it follows that
equivalence relations have quotients. Also the stability follows from the
corresponding fact in the category Classes.

• In order to show that ClassesC
op

is a Heyting pretopos, it remains to show
that for an arrow η : Y → X, the pullback functor η∗ : Sub(X)→ Sub(Y )
has a right adjoint. For B ∈ Sub(Y ) and C ∈ C define ∀η(B)(C) by

{x ∈ X(C) | ∀f : D → C of C,∀y ∈ Y (D) (ηD(y) = X(f)(x)⇒ y ∈ B(D))}

Observe that for a presheaf X, the subobjects are given by the sub-
presheaves of X, therefore for an arrow f : D → C, ∀η(B)(f) is just
the restriction of X(f) to ∀η(B)(C). It is easily seen that this assign-
ment defines a functor ∀η : Sub(Y ) → Sub(X). Using that pullbacks in
ClassesC

op

are defined pointwise, one can easily see that for all A ∈ Sub(X)
and B ∈ Sub(Y )

η∗(A) ≤ B ⇔ A ≤ ∀η(B),

so ∀η is indeed the right adjoint of η∗. This finishes the proof that
ClassesC

op

is a Heyting pretopos. The natural number object is given
by the constant presheaf with value N.

We are now going to describe the collection of small maps for the category
ClassesC

op

. We want to call a natural transformation η : X ⇒ Y small if all its
components are small in the category of classes, so we define

S := {η : X ⇒ Y | such that for all C ∈ C, ηC : X(C)→ Y (C) is small in Classes}.

Observe that according to this definition, a large presheaf X : Cop → Classes is
small, if X(C) is a set for all C ∈ C.

Before we check that the axioms from Definition 2.2.1 are satisfied, we will
give a precise description of the Ps functor.

For a large presheaf X : Cop → Classes, we define Ps(X) : Cop → Classes by

Ps(X)(C) = {A | A is a small subpresheaf of yC ×X}

and for an arrow f : C ′ → C we define

Ps(X)(f) = (yf × idX)∗,

where yf results from the Yoneda-embedding. So a small subpresheaf A of
yC × X will be mapped to the pullback along yf × idX . By the pointwise
description of pullbacks one can easily see that Ps(X)(f) = (yf × idX)∗ indeed
maps small subpresheaves of yC ×X to small subpresheaves of yC′ ×X.

Moreover, we define ∈X ⊆ X × Ps(X) by

∈X(C) := {(x,A) ∈ X(C)× Ps(X)(C) | (idC , x) ∈ A(C)}
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Claim. The assignment ∈X(C) gives rise to a small relation on X × Ps(X).

Proof. First, we will show that ∈X defines a subpresheaf on X×Ps(X). To this
end we need to show that for any f : D → C of C

(x,A) ∈ ∈X(C) implies (X(f)(x),Ps(X)(f)(A)) ∈ ∈X(D).

So assume (x,A) ∈ ∈X(C), i.e. (idC , x) ∈ A(C). We want to show that

(X(f)(x),Ps(X)(f)(A)) ∈ ∈X(D). (3.1)

To this end we would need to check that (idD, X(f)(x)) ∈ Ps(X)(f)(A)(D).
Since Ps(X)(f) is defined by pullback along yf× idX and the pullback is defined
pointwise, the latter holds precisely when (f,X(f)(x)) ∈ A(D). Now since
A itself is a subpresheaf and by assumption (idC , x) ∈ A(C) it follows that
(yC ×X) (f)(idC , x) ∈ A(D). But since (yC ×X) (f)(idC , x) = (f,X(f)(x)),
we have established (3.1). Therefore we showed that ∈X defines a subpresheaf
of X × Ps(X). It remains to show that this is a small relation. So we need to
show that the composite

∈X X × Ps(X) Ps(X)
π2

defines a small map. Since small maps are defined pointwise, this reduces to
show that for every C ∈ C the composite

∈X(C) X(C)× Ps(X)(C) Ps(X)(C)
π2

is a small map in Classes. So assume A ∈ Ps(X)(C), i.e. A is a small subpresheaf
of yC × X. In order to show that the above composition is small in Classes,
we need to show that there are just set-many x ∈ X(C) with (x,A) ∈ ∈X(C),
i.e. (idC , x) ∈ A(C). But since A is small and therefore A(C) is a set for every
C ∈ C, the latter follows.

Proposition 3.2.3. The class S defines a class of small maps.

Proof. We will check that the conditions from Definition 2.2.1 are satisfied.
Since smallness, limits and colimits are defined pointwise, it immediately follows
that (S1)-(S5) are satisfied. We check that the representability axiom (P1) is
validated.

Above, we already argued that ∈X defines a small relation on X ×Ps(X). It
remains to show the universal property of this relation. So assume R ⊆ X × Y
defines a small relation on X×Y . Define the map t : Y ⇒ Ps(X) by components

tC : Y (C) −→ Ps(X)(C)

y 7→ tC(y),

where tC(y) : Cop −→ Classes is the subpresheaf of yC ×X given by

tC(y)(D) := {(g, x) | g : D → C, x ∈ X(D), such that (Y (g)(y), x) ∈ R(D)}.

That this assignment gives rise to a subpresheaf of yC×X, follows from R being
a subpresheaf of X×Y . Or more precisely, assume (g, x) ∈ tC(y)(D) and let f :
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D′ → D be a map in C. In order to show that (yC×X)(f)(g, x) ∈ tC(y)(D′), we
need to check that (Y (f)(Y (g)(y)), X(f)(x)) = (Y (gf)(y), X(f)(x)) ∈ R(D′).
But the latter follows by R being a subpresheaf. Let us turn to the proof that
tC(y) is small. For this purpose, we need to show that for every D ∈ C, tC(y)(D)
is a set. Since R is small, for every g : D → C there are just set-many elements
x ∈ X(D) with (Y (g)(y), x) ∈ R(D). Moreover, since C is small, there are also
just set many candidates for the first component of an element in tC(y)(D),
therefore the latter needs to be a set. One can check that t : Y → Ps(X) is the
unique map fitting in the required pullback diagram.

In order to show the powerset axiom (P2), observe that for a presheaf X,
the internal subset relation ⊆X : Cop → Classes is given by components

⊆X (C) = {(A,B) ∈ Ps(X)(C)× Ps(X)(C) | A is a subpresheaf of B}.

It is clear that the above defines a small relation. If B ∈ Ps(X)(C), then B
is a small subpresheaf of yC × X. Using the powerset axiom in Classes, it is
clear that there are only set-many subpresheaves of B. Smallness of the natural
number object follows since it is pointwise small.

By our considerations in Chapter 2, we know that the assignment

X 7→ Ps(X)

is in fact functorial. The action of Ps on arrows in ClassesC
op

can also easily
be described explicitly. If η : X ⇒ Y is and arrow in ClassesC

op

, then Ps(η)C :
Ps(X)(C) → Ps(Y )(C) maps a small subpresheaf Z ⊆ yC ×X to the image of
Z under idyC ×η. So for some C ′ in C we have

Ps(η)C(Z)(C ′) :={(h, y) ∈ yC(C ′)× Y (C ′) | ∃x ∈ X(C ′) such that
(h, x) ∈ Z(C ′) and ηC′(x) = y}.

Remark 3.2.4. Note that in ClassesC
op

, we have in fact class-sized colimits.
Analogously to the well-known fact for presheaves, see for example Proposition
1.1. in [23], one can show that every large presheaf X is a colimit of repre-
sentables over a (possibly class sized) diagram. This property implies that the
representable presheaves form a system of generators for ClassesC

op

, i.e. for any
two distinct arrows f 6= g : X ⇒ Y between large presheaves X and Y , there is
a representable presheaf yC and a map h : yC ⇒ X such that fh 6= gh.

3.3 Large Sheaves on a Site
The last example that we examine is the category of large sheaves over a small
category C. Analogously to the case a presheaves, large sheaves are allowed to
have proper classes in their codomain. In order to show that the large sheaves on
a site give rise to a category of classes, we will develop the most basic results from
sheaf theory including the notion of the associated sheaf functor. Again, the
presented results are standard, we will only check that their “enlarged version”
still holds. At the end of this section, we will have a closer look at the dense
topology and examine large sheaves over poset categories.
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3.3.1 Grothendieck Topologies
Grothendieck topologies generalize the notion of an open cover on a topological
space. A category C together with Grothendieck topology Cov is called a site.
We will see how this additional structure gives rise to the notion of large sheaves.
Let C be a small category and C be an object of C. A sieve R on C is a
subpresheaf R ⊆ yC of the representable presheaf yC . Equivalently, R is a
collection of arrows of C with codomain C that is in a sense downwards closed,
meaning that if h : D → C is in R, then for every arrow g : B → D the
composite h ◦ g is an element of R. Now assume f : C ′ → C is an arrow in C
and R is a sieve on C. Then it is easy to see that the set

f∗(R) := {g : B → C ′ | f ◦ g ∈ R}

defines a sieve on C ′. Note that in fact f∗(R) = yf
∗(R), where yf ∗ is the pull-

back functor associated to the natural transformation yf : yC′ ⇒ yC resulting
from the Yoneda embedding. A Grothendieck topology assigns to every object
C of C a collection of covering sieves.

Definition 3.3.1. Let C be a small category. A Grothendieck topology on C
assigns to every C ∈ Ob(C) a set Cov(C) of sieves on C, such that the following
conditions are satisfied:

• The maximal sieve on C is in Cov(C).

• If R ∈ Cov(C) and f : C ′ → C is an arrow in C, then f∗(R) ∈ Cov(C ′).

• If R ∈ Cov(C) and S is a sieve on C such that for every f : C ′ → C in R
we have that f∗(S) ∈ Cov(C ′), then S ∈ Cov(C).

One can easily verify the following properties.

Lemma 3.3.2. For every C ∈ Ob(C)

• If R ∈ Cov(C) and S a sieve on C with R ⊆ S, then S ∈ Cov(C).

• If R,S ∈ Cov(C), then R ∩ S ∈ Cov(C).

If R ∈ Cov(C), we call R a cover for C or a covering sieve. A pair (C,Cov)
of a small category C and a Grothendieck topology Cov on C is called a site.

Definition 3.3.3. Let C be a small category, C ∈ Ob(C) and R a sieve on C.
Let X : Cop → Classes be a large presheaf. A compatible family for X indexed
by R is given by elements xf ∈ X(C ′) for all f : C ′ → C ∈ R, such that for all
g : C ′′ → C ′ ∈ Ar(C)

xfg = X(g)(xf ).

Since a sieve R on C is the same as a subpresheaf of the representable functor
yC , an alternative description of a compatible family for X indexed by R is a
natural transformation

η : R⇒ X.

Naturality of η corresponds precisely to compatibility of the family (ηC′(f))f :C′→C∈R.
If (xf )f∈R is a compatible family for X indexed by R, an amalgamation for the
family is an element x ∈ X(C) such that

xf = X(f)(x) for all f ∈ R.
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Definition 3.3.4. Let (C,Cov) be a site. A large presheaf X : Cop → Classes is
called a large sheaf, if every compatible family on X indexed by some covering
sieve has exactly one amalgamation.

There is also a weaker notion, namely the one of a separated large presheaf.
Such a presheaf satisfies the uniqueness condition in the above definition but
not necessarily the existence condition.

Definition 3.3.5. A large presheaf X is called separated, if every compatible
family on X has at most one amalgamation.

The large sheaves on a site determine a full subcategory of the large presheaves.

Definition 3.3.6. Given a site (C,Cov), we denote by LSh(C,Cov), the full
subcategory of ClassesC

op

generated by the sheaves for (C,Cov), i.e.

• The objects of LSh(C,Cov) are the large sheaves for (C,Cov).

• For X,Y ∈ Ob(LSh(C,Cov)), the arrows between X and Y are all arrows
in ClassesC

op

between X and Y regarded as large presheaves.

The goal of the following sections is to prove that the category of large
sheaves on a site forms a category of classes. Before we can prove this fact, it
will be useful to establish the notion of the associated sheaf functor.

3.3.2 The Associated Sheaf Functor
In the present section we will always work with a fixed site (C,Cov). As the
large sheaves on (C,Cov) form a subcategory of the large presheaves, there is
an inclusion functor

ι : LSh(C,Cov)→ ClassesC
op

.

The goal of this section is to show that ι has a left adjoint

a : ClassesC
op

→ LSh(C,Cov) .

The functor a is called the associated sheaf functor or sheafification functor.
The construction of a proceeds in two steps. In a first step one constructs for
a large presheaf X : Cop → Classes a large presheaf X+ : Cop → Classes. This
process is referred to as the +-construction. The presheaf X+ is not necessarily
a sheaf, but it is already separated. Since the +-construction always turns a
separated large presheaf into a sheaf, the result of applying the +-construction
twice will always be sheaf.

Let us describe the +-construction. Let X : Cop → Classes be a large
presheaf. We define a relation on pairs of the form (R,φ), where R ∈ Cov(C)
and φ : R⇒ X an arrow in ClassesC

op

by

(R,φ) ∼ (S, ψ)⇔ ∃T ∈ Cov(C) with T ⊆ R ∩ S, such that φ and ψ coincide on T .

Note that every pair (R,φ) stands for a compatible family on X indexed by R.
Now ∼ is the relation that identifies two such compatible families, if they agree
on a covering sieve. The relation ∼ is easily seen to be an equivalence relation
by using the properties of covering sieves that we stated in Lemma 3.3.2. Note,
that since C is small, all natural transformations φ : R⇒ X are sets. However,
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the equivalence classes of ∼ might be proper classes. We can apply Scott’s trick
to choose sets of representatives for the equivalence classes. We denote the (set
of representatives of an) equivalence class of a pair (R,φ) by [(R,φ)]. We define
X+ : Cop → Classes on objects C ∈ Ob(C) by

X+(C) = {[(R,φ)] | R ∈ Cov(C), φ : R⇒ X nat. trans.}.

And for an arrow f : C ′ → C ∈ Ar(C), we define

X+(f) : X+(C)→ X+(C ′), [(R,φ)] 7→ [(f∗(R), ψ)],

where ψ = φ ◦ f ′ and f ′ is as in the pullback

f∗(R) R

yC yC′

f ′

yf

It is easy to see that X+(f) is well-defined on equivalence classes. Also the
functorality of X+ is easy to verify.

The assignment X 7→ X+ extends to a functor

(−)+ : ClassesC
op

→ ClassesC
op

,

by setting for η : X ⇒ Y ∈ Ar(ClassesC
op

),

(η+)C : X+(C)⇒ Y +(C), [(R,φ)] 7→ [(R,φ ◦ η)].

Again, one can easily check that this is well-defined on equivalence classes and
the functorality of the assignment.

As in Lemma 2.11 and 2.12 in [23], one can prove that the +-constructions
always results in a separated presheaf and that it turns separated presheaves
into sheaves.

Lemma 3.3.7. For every large presheaf X, the large presheaf X+ is separated.

Lemma 3.3.8. If X is separated, then X+ is a large sheaf.

Lemma 3.3.7 and 3.3.8 show that by applying the +-construction to a large
presheaf twice, the result will always be a large sheaf. We define the associated
sheaf functor by

a : ClassesC
op

→ LSh(C,Cov)

X 7→ X++

η : X ⇒ Y 7→ η++.

In order to show that a is indeed left adjoint to the inclusion, we define a natural
transformation

ζ : idClassesC
op =⇒ (−)+
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with components

ζX : X =⇒ X+ where, for C in C
(ζX)C : X(C)→ X+(C)

x 7→ [(yC , φ)],

where φ : yC ⇒ X corresponds to x ∈ X(C) according to the Yoneda Lemma.
The natural transformation ζ has a universal property as proved for example in
2.10 in [23].

Proposition 3.3.9. Let X be a large presheaf, F a large sheaf and g : X ⇒ F
an arrow in ClassesC

op

. Then g factors uniquely through ζX : X → X+ as in

X F

X+

g

ζX g̃

.

Using the universal property stated above, it is easy to check:

Corollary 3.3.10. Assume ζX : X → X+ factors through a large presheaf X ′,
X ′ separated, then

(X ′)+ ∼= X++.

Now define η : idClassesC
op =⇒ a by η := ζ ◦ ζ. Again by applying Proposi-

tion 3.3.9 twice, it immediately follows that η serves as the unit of the desired
adjunction. So we established:

Proposition 3.3.11. The functor a : ClassesC
op → LSh(C,Cov) is left adjoint

to the inclusion functor.

Being left adjoint, the sheafification functor preserves colimits. However,
one can also show that it also preserves finite limits. As in Lemma 2.13 in [23],
the +-construction preserves finite limits. Again, by applying the result twice,
we obtain:

Corollary 3.3.12. The associated sheaf functor a : ClassesC
op → LSh(C,Cov)

preserves finite limits.

3.3.3 Closed Subpresheaves
In this section we will show that a site (Cov C) determines a universal closure
operation on the category ClassesC

op

, i.e. a closure operation on all subobject
lattices Sub(X) for X ∈ ClassesC

op

that is stable under pullback. The closed
subpresheaves of a large presheaf are the ones that remain invariant under this
closure operation. Given a presheaf X, a closed subpresheaf of X contains
amalgamations for all compatible families on it. If X itself is a sheaf, then its
closed subpresheaves are exactly its subsheaves. We will encounter the closed
subpresheaves again, when we define the Ps-functor for LSh(C,Cov) is the next
section. We begin with the definition of a universal closure operation.
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Definition 3.3.13. A universal closure operation on ClassesC
op

assigns to every
large presheaf X an operation (·) : Sub(X) → Sub(X) such that the following
hold

(1) For all A ∈ Sub(X) we have A ≤ Ā and

(2) Ā = ¯̄A.

(3) If A ≤ B in Sub(X) then Ā ≤ B̄.

(4) For all φ : Y ⇒ X and for all A ∈ Sub(X) , φ∗(Ā) = φ∗(A), where
φ∗ : Sub(X)→ Sub(Y ) is the associated pullback functor.

Properties (1)-(3) state that for every X ∈ ClassesC
op

the function (·) :
Sub(X) → Sub(X) is indeed a closure operation in the usual sense. Property
(4) requires that the various closure operations are connected in the sense that
closure is stable under pullback. The next proposition asserts that every site
determines a universal closure operation.

Proposition 3.3.14. Let (C,Cov) be a site. Then (C,Cov) determines a uni-
versal closure operation on ClassesC

op

.

Proof. Let X ∈ ClassesC
op

and Z ∈ Sub(X). We define for C ∈ Ob(C), and
x ∈ X(C)

x ∈ Z(C) ⇔ There is a covering sieve R on C and
X(f)(x) ∈ Z(C ′) for all f : C ′ → C in R.

By using the properties of covering sieves that we established earlier, it is easily
checked that the above definition determines a universal closure operation as
desired.

The notion of a closure operation gives rise to the definition of closed sub-
presheaves of a given presheaf. Note that the definition of closure very much
depends on the Grothendieck topology that we are working with.

Definition 3.3.15. Let (C,Cov) be a site and X ∈ ClassesC
op

. A subpresheaf
Z of X is called closed if Z̄ = Z in Sub(X), where (·) : Sub(X) → Sub(X) is
part of the universal closure operation that (C,Cov) determines.

By the definition of the closure operator on a large presheaf X, the proof of
the following lemma is immediate.

Lemma 3.3.16. A subpresheaf Z of X is closed if and only if for all x ∈ X(C):
If {f : C ′ → C | X(f)(x) ∈ Z(C ′)} covers C, then x ∈ Z(C).

As announced, it turns out that the closed subpresheaves of a large sheaf
are precisely the ones that are sheaves themselves.

Lemma 3.3.17. Let X be a sheaf. Then a subpresheaf Z ⊆ X is a sheaf if and
only if Z is closed.

Proof. For the direction from right to left, assume that Z ∈ Sub(X) is closed. It
is easy to see that subpresheaves of sheaves are separated. Therefore an existing
amalgamation of a compatible family for Z is necessarily unique. The existence
of amalgamations is easily seen by Lemma 3.3.16. The direction from left to
right is clear by the definition of the closure operation in Proposition 3.3.14.
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This finishes our considerations on closed subpresheaves. It should be re-
marked that in fact the converse of Proposition 3.3.14 is also true: every uni-
versal closure operation on a category of large presheaves ClassesC

op

determines
a Grothendieck topology on the index category C and the notions are inter-
definable. A proof of this fact is worked out in Theorem 2.5 of [23].

3.3.4 Large Sheaves as a Category of Classes
We will now show that the large sheaves on a site give rise to a category of
classes. The small maps are inherited from the presheaves. The pointwise small
maps give rise to small maps on LSh(C,Cov).

Proposition 3.3.18. LSh(C,Cov) is closed under limits in ClassesC
op

.

Proof. Let F : I → ClassesC
op

be a diagram such that for all i ∈ I, F(i) is a
large sheaf. Let X : Cop → Classes be the limiting cone for F in ClassesC

op

.

Claim. X is a sheaf.

In order to prove the claim, let R ∈ Cov(C) be a covering sieve on C and
let ν : R⇒ X be a natural transformation. We will show that there is a unique
x ∈ X(C), with νC′(f) = X(f)(x) for all f : C ′ → C ∈ R. The proof will use
the pointwise construction of limits for presheaves and the sheaf structure of the
F(i)s. Since X is a cone for F , there is a natural transformation η : ∆X ⇒ F
with components ηi : X ⇒ F(i) for all i ∈ I. Then for all i ∈ I, the composition

ηi ◦ ν : R⇒ F(i)

defines a compatible family for F(i) indexed by R. Since F(i) is a large sheaf,
there exists xi ∈ F(i)(C), such that for all f : C′ → C ∈ R,

(ηi ◦ ν)C′(f) = F(i)(f)(xi). (3.2)

Observe, that for all k : i → j, we have F(k)C(xi) = xj . This follows since for
all f : C ′ → C ∈ R we have

F(j)(f)(xj)

= (ηj ◦ ν)C′(f)

= (F(k) ◦ ηi ◦ ν)C′(f)

= F(k)C′(F(i)(f)(xi))

= F(j)(f)(F(k)C(xi)),

where the first equality follows by η being natural, the second by (3.2) and
the last one by naturality of F(k). By uniqueness of the amalgamation for
the compatible family ηj ◦ ν, it follows that xj = F(k)C(xi). This shows that
the terminal object {∗} is a cone for the diagram F(−)(C) : I → Classes
with components given by ∗ 7→ xi. Since limits in ClassesC

op

are constructed
pointwise, X(C) is the limiting cone of F(−)(C) : I → Classes. Therefore, there
is a unique element x ∈ X(C) with

(ηi)C(x) = xi (3.3)
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We have for all f : C ′ → C ∈ R,

(ηi ◦ ν)C′(f)

= F(i)(f) ((ηi)C(x))

= (ηi)C′(X(f)(x)),

where the first equality follows by (3.2) and (3.3) and the second by naturality
of ηi. By the universal property of ηi it follows that X(f)(x) = νC′(f)(x). This
shows that our x ∈ X(C) is the unique amalgamation for the compatible family
defined by ν. This proves that X is a sheaf.

Proposition 3.3.19. LSh(C,Cov) is a Heyting pretopos with a stable natural
number object.

Proof. First, we will prove that LSh(C,Cov) is a Heyting pretops.

• Finite limits exists by Proposition 3.3.18.

• Given a diagram F : I ⇒ LSh(C,Cov), the colimit of this diagram is the
sheaf X++, where X is the limiting cocone in ClassesC

op

. This follows as
a is left adjoint to the inclusion. So LSh(C,Cov) is cocomplete. For sums
we also have a more direct description. For X,Y ∈ LSh(C,Cov), define
(X + Y )′ : Cop → Classes by

(X + Y )′(C) =

{
X + Y (C) if ∅ /∈ Cov(C)
{∗} if ∅ ∈ Cov(C)

}
where + denotes the sum of A and B in ClassesC

op

. One can show that
(X+Y )′ is separated and thatX+Y → (X+Y )+ factors through (X+Y )′

and therefore by Corollary 3.3.10

((X + Y )′)+ ∼= (X + Y )++.

We will now sketch the proof that coproducts are stable under pullback.
Let f : Y ⇒ X be an arrows in LSh(C,Cov). And assume that A and
B are subsheaves of X. We want to show that f∗

(
((A+B)′)

+
)
∼=(

(f∗(A) + f∗(B))
′)+, where again + denotes the sum of A and B in

ClassesC
op

. We have

f∗
(

((A+B)′)
+
)

∼= (f∗ ((A+B)′))
+

∼=
(
(f∗(A) + f∗(B))

′)+
,

where the first ∼= follows since (−)+ preserves finite limits by our consider-
ations in Section 3.3.2 and the second since sums are stable in ClassesC

op

and the definition of (−)′. Disjointness follows from the corresponding
fact for large presheaves.

• That equivalence relations have quotients that are stable follows from
the corresponding fact in presheaves using that the sheafification functor
preserves finite limits and coequalizers.
We just argued that LSh(C,Cov) is cocomplete. Therefore, equivalence
relations have quotients that are easily checked to be stable.
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• Finally, we will show that pullback functors have right adjoints. So let η :
Y ⇒ X be an arrow in LSh(C,Cov). Note that by Proposition 3.3.18, the
pullback functor η∗ : Sub(X)⇒ Sub(Y ) is the restriction of the pullback
functor corresponding to η in ClassesC

op

to the subpresheaves of X that
are sheaves. Accordingly, we can try to define ∀η : Sub(Y ) ⇒ Sub(X) as
in ClassesC

op

by setting for a subsheaf B ∈ Sub(Y )

∀η(B)(C) = {x ∈ X(C) | ∀f : D → C of C,∀y ∈ Y (D)

(ηD(y) = X(f)(x)⇒ y ∈ B(D))}.

We already proved that this defines a subpresheaf of X. We will show that
∀η(B) is actually also a sheaf. So assume R is a covering sieve on C ∈ C
and ν : R⇒ ∀η(B) a natural transformation. As a subpresheaf of a sheaf,
∀η(B) is separated. So it remains to show that there is an amalgamation
of the compatible family determined by ν. It is clear that ν also defines
a compatible family on X and since X is a sheaf, there is x ∈ X(C) such
that

for all f : C ′ → C ∈ R; νC′(f) = X(f)(x) (3.4)

We need to show that in fact, x ∈ ∀η(B). To this end, let g : D → C ∈ C
and y ∈ Y (C) with

ηD(y) = X(g)(x). (3.5)

We need to show that y ∈ B(D). Observe that g∗(R) is a covering sieve on
D. For h : E → D ∈ g∗(R), Y (h)(y) determines a compatible family for Y ,
indexed by the covering sieve g∗(R) whose unique amalgamation is y. So
if we are able to show that for all h : E → D ∈ g∗(R), Y (h)(y) ∈ B(E) it
would follow that y ∈ B(D) since B is a sheaf. So let h : E → D ∈ g∗(R).
Then g ◦ h ∈ R and so clearly, νE(gh) ∈ ∀η(B)(E). We have

ηE ((Y )(h)(y))

= X(h) (ηD(y)) [by naturality of η]
= X(h) (X(g)(x)) [by (3.5)]
= νE(gh) [by (3.4)]
= X(idE)(νE(gh)).

Since νE(gh) ∈ ∀η(B)(E) this implies that (Y )(h)(y) ∈ B(E). By our
above argumentation, this finishes the proof that ∀η(B) is a sheaf. That
∀η is a right adjoint of η∗ follows as in the case of large presheaves.

This finishes the proof that the large sheaves form a Heyting pretopos. The
natural number object is given by the sheafification of the natural number object
of the large presheaves. This finishes the proof of the proposition.

Now we can equip LSh(C,Cov) with a class of maps

S := {η : X ⇒ Y | η is a small map inClassesC
op

.}

Proposition 3.3.20. The class S satisfies the axioms for small maps.



CHAPTER 3. EXAMPLES OF CATEGORIES OF CLASSES 47

The validity of the axioms (S1), (S2) and (S4) are immediate as limits in
LSh(C,Cov) are constructed pointwise. To check the validity of axiom (S5),
one uses the precise description of the coproducts given above. As we already
remarked at the end of Section 2.2, Simpson [28] showed that (S3) in fact is
implied by the validity of the other axioms, so we do not need to check its
validity separately. We will check (P1). To this end we will provide a precise
description of the Ps -functor for large sheaves on a site. For X ∈ ClassesC

op

we
define Ps(X) : Cop → Classes by setting for C ∈ Ob(C)

Ps(X)(C) = {Z | Z is a small and closed subpresheaf of yC ×X},

and for f : C ′ → C ∈ Ar(C) we define the action of Ps(X) by pullback along
yf × idX , i.e. we define

Ps(X)(f) = (yf × idX)∗.

By property (4) in Definition 3.3.13 it follows that (yf × idX)∗ maps a closed
subpresheaf of yC × X to a closed subpresheaf of yC′ × X. By the pointwise
description of pullbacks it is also immediate to see that (yf×idX)∗ also preserves
smallness of the subpresheaves. Therefore, Ps(X)(f) is well-defined.

Proposition 3.3.21. For every large presheaf X, Ps(X) is a sheaf.

Proof. First, we show that Ps(X) is separated. Assume Y and Y ′ are small and
closed subpresheaves of yC ×X. Let R ∈ Cov(C) such that for all f : C ′ → C ∈
R we have

(yf ×X)∗(Y ) = (yf ×X)∗(Y ′). (3.6)

We need to show that Y = Y ′. For the latter it is enough to show that for all
D ∈ C, Y (D) ⊆ Y ′(D), since the other direction follows by symmetry. Assume
(f, x) ∈ Y (D). If f : D → C ∈ R, we have

(f, x) ∈ Y (D)

⇒ (idD, x) ∈ (yf ×X)∗(Y )(D)

⇒ (idD, x) ∈ (yf ×X)∗(Y ′)(D)

⇒ (f, x) ∈ Y ′(D).

Here, the first and the last implication follow from the definition of the
pullback and the one in the middle follows from (3.6). Now assume that f : D →
C is arbitrary. Then f∗(R) is a covering sieve on D. Let k : E → D ∈ f∗(R),
i.e. f ◦ k ∈ R.

We have

(f, x) ∈ Y (D)

⇒ (f ◦ k,X(f)(x)) ∈ Y (E)

⇒ (f ◦ k,X(f)(x)) ∈ Y ′(E),

where the first implication follows by Y being a subpresheaf of yC ×X and the
latter by f ◦ k ∈ R and the calculation above. So for every k : E → D ∈ f∗(R),
we have (f ◦ k,X(f)(x)) = (yC ×X)(k)(f, x) ∈ Y ′(E). This means that

f∗(R) ⊆ {k : E → D | (yC ×X)(k)(f, x) ∈ Y ′(E)} =: S.
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Since the set of covering sieves is upwards closed and f∗(R) ∈ Cov(D), it follows
that S is a covering sieve on D. Now since Y ′ is closed, by Lemma 3.3.16 we can
conclude that (f, x) ∈ Y ′(D). This finishes the proof that Ps(X) is separated.
It remains to show that every compatible family has an amalgamation. To this
end let R be a covering sieve on C and let (Zf )f∈R be a compatible family for
R. Compatibility means that for every g : E → D ∈ Ar(C) and f : D → C ∈ R
we have that Zfg = (yg × idX)∗(Zf ). We need to find an amalgamation for this
family. We define for E ∈ C

Z(E) = {(fg, x) | f ∈ R, (g, x) ∈ Zf (E)}

It is easy to see that Z defines a small subpresheaf of yC × X. We show that
for every f : D → C ∈ R we have (yf × idX)∗(Z) = Zf . The direction Zf ⊆
(yf × idX)∗(Z) follows directly by the definition of Z. We show that for every
E ∈ C we have (yf×idX)∗(Z)(E) ⊆ Zf (E). Assume (h, x) ∈ (yf×idX)∗(Z)(E).
Then (fh, x) ∈ Z(E). This means that there exists f ′ : B → C ∈ R and
g : E → B with (g, x) ∈ Zf ′(E) and f ′ ◦ g = f ◦ h. The latter clearly implies
that Zf ′g = Zfh. So by compatibility, it follows that

(yg × idX)∗(Zf ′) = (yh × idX)∗(Zf ) (3.7)

Now we have that

(g, x) ∈ Zf (E)

⇒ (idE , x) ∈ (yg × idX)∗(Zf ′)(E)

⇒ (idE , x) ∈ (yh × idX)∗(Zf )(E)

⇒ (h, x) ∈ Zf (E),

where the implication in the middle follows from (3.7). Since (h, x) ∈ Zf (E)
this shows that (yf × idX)∗(Z)(E) ⊆ Zf (E) and therefore we can conclude that

(yf × idX)∗(Z) = Zf . (3.8)

It seems that we found an amalgamation for our compatible family. Note that Z
does not necessarily define a closed subpresheaf of yC×X. However, the closure
Z̄ is easily seen to be small and it is clearly a closed subpresheaf of yC × X.
Therefore, Z̄ is an element of Ps(X)(C). We are now going to argue that Z̄ is
an amalgamation for our compatible family. We have for all f : D → C ∈ R

Ps(X)(f)(Z̄)

= (yf × idX)∗(Z̄) [by definition of Ps(X)(f)]

= (yf × idX)∗(Z) [by (4) in Definition 3.3.13]
= Z̄f [by (3.8)]
= Zf . [since Zf is closed.]

So Z̄ is indeed an amalgamation as desired. This finishes the proof that Ps(X)
is a sheaf.

This establishes the action of the powerclass functor Ps in LSh(C,Cov) on
objects. The explicit description of Ps on arrows is given as follows. Let η : X ⇒
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Y is an arrow in LSh(C,Cov) and let for a moment P : ClassesC
op → ClassesC

op

be the powerclass functor of ClassesC
op

that we discussed at the end of Section
3.2. Then Ps(η)C : Ps(X)(C)→ Ps(Y )(C) maps a small and closed subpresheaf
Z ⊆ yC ×X to

Ps(η)C(Z) := P(η)C(Z).

Next, we are going to define the element relation in LSh(C,Cov). Let X be
a large sheaf. As is the case of presheaves we define ∈X ⊆ X × Ps(X) by

∈X(C) = {(x,A) ∈ X(C)× Ps(X)(C) | (idC , x) ∈ A(C)}.

It is easy to check that ∈X defines a subpresheaf. We are going to check that
∈X is a sheaf.

Lemma 3.3.22. The relation ∈X ⊆ X × Ps(X) is a subsheaf.

Proof. Since X is by assumption a sheaf, also X × Ps(X) is a sheaf. So by
Lemma 3.3.17 it suffices to show that ∈X is closed. In order to do so, we will
apply Lemma 3.3.16. So let (x, Z) ∈ (X × Ps(X))(C) such that S := {f : D →
C | (X × Ps(X))(f)(x, Z) ∈ ∈X(D)} covers C. We have

S = {f : D → C | (X(f)(x),Ps(X)(f)(Z)) ∈ ∈X(D)}
= {f : D → C | (X(f)(x), (yf × idX)∗(Z)) ∈ ∈X(D)} [by def. of Ps(X)(f)]
= {f : D → C | (idD, X(f)(x)) ∈ (yf × idX)∗(Z)(D))} [by def. of ∈X ]
= {f : D → C | (f,X(f)(x)) ∈ (Z)(D))} [by definition of the pullback)]

covers C. Now since Z is a closed subpresheaf of yC ×X, it follows by Lemma
3.3.16 that (idC , x) ∈ Z(C). So by definition of ∈X it follows that (x, Z) ∈
∈X(C).

We will now sketch the proof that ∈X ⊆ X × Ps(X) satisfies the universal
property. To this end let R ⊆ X × Y be a small relation in LSh(C,Cov). The
unique map t : Y ⇒ Ps(X) is given by the components tC : Y (C)→ Ps(X)(C),
where for y ∈ Y (C), tC(y) is defined by

tC(y)(D) = {(f, x) | f : D → C, x ∈ X(D), such that (Y (f)(y), x) ∈ R(D)}.

One can easily check that this defines a subpresheaf of yC ×X. Smallness of
tC(y) follows by R being small. We will check that tC(y) is closed. Again, we
will use the characterization given by Lemma 3.3.16. Assume f : D → C and
x ∈ X(D) such that

{g : E → D | (yC ×X)(f)(g) ∈ tC(y)(E)}
= {g : E → D | (f ◦ g,X(g)(x)) ∈ tC(y)(E)}
= {g : E → D | (Y (g)(Y (f)(y)), X(g)(x)) ∈ R(E)} [by definition of tC(y)(E) ]

covers D. Since R is a sheaf it follows that (Y (f)(y), x) ∈ R(D). But this
shows that (f, x) ∈ tC(y)(D) is as desired. This finishes the proof that tC(y)
is closed. One can check that t is the unique map making the desired diagram
into a pullback. This shows that (P1) holds. The validity of the powerset axiom
follows, as in the case of presheaves, by a precise description of the internal
subset relation. Smallness of the natural number object is clear. That finishes
the verification of the axioms for the small maps and therefore we have proved
Proposition 3.3.20.
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3.3.5 The Dense Topology
In this section we will introduce the dense topology, a canonical example for a
Grothendieck topology on a small category C. A particular feature of the dense
topology is that the resulting large sheaves always form a Boolean pretopos.
Let C be a small category. Let C be in C and let R be a sieve on C. Let

R be covering ⇔ f.a. f : D → C, there is g : E → D such that f ◦ g ∈ R.

One can easily check that this defines a Grothendieck topology on C. This
topology is called the dense topology on C and is often denoted by ¬¬.

Proposition 3.3.23. Let ¬¬ be the dense topology on C. Then LSh(C,¬¬) is
a Boolean pretopos.

Proof. We need to check that for all X ∈ LSh(C,¬¬), Sub(X) is a Boolean
algebra, i.e. it remains to show that all A ∈ Sub(X) have a Boolean complement.
One can calculate that the Heyting complement ¬A of A is explicitly given by

¬A(C) = {x | f.a. f : B → C,X(f)(x) 6∈ A(B)}.

In order to show that ¬A is a Boolean complement it suffices to show that

¬¬A ≤ A in Sub(X). (3.9)

Let x ∈ ¬¬A(C). In order to show that x ∈ A(C) it suffices to show that
R := {h : D → C | X(f)(x) ∈ A(D)} covers C in the dense topology since A is
a closed subpresheaf of X. So let f : B → C be arbitrary. Since x ∈ ¬¬A(C)
it follows that X(f)(x) 6∈ ¬A(B). But this implies that there is an arrow
g : D → B with X(g)X(f)(x) = X(f ◦ g)(x) ∈ A(D), i.e. f ◦ g ∈ R. So we
showed that R is covering and therefore (3.9) follows.

3.3.6 Large Sheaves over Poset Categories
For later reference, we will examine the special case where P is a poset category.
In this case most of the basic notions introduced in the preceding sections have
a particularly simple form:

Sieves: A sieve on p ∈ P corresponds to the downwards closed subsets below
p.

The dense topology: A sieve on p, i.e. is a downwards closed subset D below
p is covering in the ¬¬-toplogy if and only if D is dense below p, i.e. for
every q ≤ p there is d ∈ D with d ≤ q.

Representable presheaves: For p ∈ P :

yp :Pop −→ Classes

q 7→ ∅ if p 6≤ q and q 7→ {∗} if p ≤ q.

together with the obvious maps.
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The Ps-functor on the presheaves over P:

Ps(X)(p) ={Y | Y ⊆ yp ×X small subpresheaf }
∼={Y | Y ⊆ X small subpresheaf such that Y (q) = ∅ if q 6≤ p}

Also, for p′ ≤ p, the map

Ps(X)(p′ ≤ p) : Ps(X)(p) −→ Ps(X)(q)

is given by the obvious inclusion. For this reason we will often abuse
notation by writing for example x ∈ (yp ×X)(q) for some x ∈ X(q).

Given these descriptions we can easily infer the following corollaries that we
establish for later reference. By Remark 3.2.4, we know that the large presheaves
over P are generated by the representable presheaves. One can infer that the
large sheaves are therefore generated by the collection a(yp), p ∈ P, see for
example the discussion in [20, p. 139]. The above description of the representable
presheaves reveals that these are all subobjects of 1, the terminal presheaf. Since
the sheafification functor a preserves the terminal object and monos we can infer
that also the large sheaves are generated by subobjects of 1. This gives:

Corollary 3.3.24. LSh(P,¬¬) is generated by subobjects of 1.

By Proposition 3.3.23 from above it follows that LSh(P,¬¬) is Boolean.
Since as in the case of the presheaves one can sow that all even class-sized limits
and colimts exist, we can infer that the subobject lattice of a large sheaf is
complete. Therefore, we also established:

Corollary 3.3.25. LSh(P,¬¬) is Boolean pretopos. Moreover, for every X,
Sub(X) is a complete Boolean algebra.



Chapter 4

Algebraic Universes of Set
Theory

Algebraic universes of set theory arise as initial algebras for the powerclass
functor on a category of classes. In this chapter we will examine these initial
algebras. As first shown in [18], we will prove that they satisfy an intuitionistic
version of set theory. Moreover, we will investigate the correspondence between
a category of classes and the universe that it contains.

In the first section, we will explain how to interpret the language of set
theory in an algebraic universe and introduce the axioms of the set theory
IZF. In the second section we will show that our axiomatization of a category
of classes provides universes for the set theory IZF, and for ZF in the case
the underlying pretopos is Boolean. Moreover, we will examine the validity of
the axiom of choice in our framework. In the third section we will consider
more elementary set theoretical constructions in the universe. In particular, we
will see how set theoretical structure provided by the Heyting pretopos can be
“squeezed” into the universe that it contains. The established results provide
us the necessary tools for our considerations in the next chapter. In the last
section we will investigate the existence of initial algebras for the Ps-functor.

4.1 Interpreting the Language of Set Theory
In this section, we will see how to interpret the language of set theory in a
category of classes that contains an initial algebra for the Ps-functor.

The language of set theory as a sorted language consists of:

• Variables that all have the same sort V .

• A binary relation symbol ∈: V × V .

Let E be a category of classes and assume that V is an initial algebra for
the powerclass functor Ps : E → E . The unique sort of the language of set
theory will be interpreted by V . We will now show how to interpret the element
relation. Since V is initial, by Lambek’s Lemma we get isomorphisms:

52
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Ps(V ) V

Int

Ext

Recall that by axiom (P1) there is a small relation ∈V on V × Ps(V ). By
taking the pullback

ε ∈V

V × V V × Ps(V )
idV ×Ext

we obtain a small relation ε on V × V . The relation ε provides a canonical
interpretation of the language of set theory in E . If ϕ(x1, . . . , xn) is a formula
in the language of set theory, such that all free variables of ϕ are among x̄ =
x1, . . . , xn then we will write

(V, ε) |= ϕ iff Jx̄ | ϕK is the maximal in Sub(
∏

1≤l≤n

V ).

Remark 4.1.1. Note that alternatively, we could have defined the interpretation
of ∈ as the subobject ∃idV × Int(∈V ) of V × V , i.e. as the composite ∈V→ V ×
Ps(V ) → V × V . But since Ext and Int are inverse to each other, these two
canonical choices deliver the same relation.

Note that since Ext and Int are inverse to each other, also

∈V ε

V × Ps(V ) V × VidV × Int

(4.1)

is a pullback. It is now easy to see that the representability axiom (P1) for
small relations on ∈V translates to one on ε.

(P1′) Let r : R→ V ×X be a small relation. Then there exists a unique arrow
t : X → V that fits into a pullback:

R ε

V ×X V × V
idV ×t

Moreover, if t′ classifies R is terms of ∈V , then t = Int ◦t′.

Clearly, as in Section 2.3, a small relation r : R→ V ×X can be characterized
internally as

E |=x:X,v:V Rxv ↔ xεt(y)↔ x ∈V t′(y).

In particular, if m : A → V is a small subobject then according to (P1′) it
can be classified by a global section a : 1→ V , i.e. we have a pullback
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A ε

V × 1 V × V

m

idV ×a

Note that in this case A and Jx : V | xεaK are the same subobjects of V , i.e. we
have:

A Jx : V | xεaK

V

∼=

m

.

This correspondence tells us that small subobjects of the universe correspond
to elements of the universe.

Remark 4.1.2. Analogously to usual practice in model theory, we will use the
following conventions: We will allow to use function symbols in formulas in the
language of set theory for every arrow f : V n → V of E . So in particular, if
a : 1→ V is a global sections we regard xεa as a valid formula in the language
of set theory.

Recall that in Section 2.2 we defined the internal subsetrelation ⊆V on
Ps(V )× Ps(V ). Now, we can also form a the subsetrelation on V via

⊆:= Jx, y : V | ∀z(zεx→ zεy)K −→ V × V.

The difference between the two relations is that for ⊆V , we used the “typed
version” ∈V of the element relation whereas in the latter we used the “untyped”
ε. By the pullback (4.1), the preservation of Boolean operations under pullback
and since the quantification satisfy the Beck-Chevalley condition, we obtain that
⊆V is a pullback of ⊆.

Lemma 4.1.3. The following is a pullback

⊆V ⊆

Ps(V )× Ps(V ) V × V
Int× Int .

Remark 4.1.4. Of course, the above correspondence is true more generally. As-
sume that φ is a formula in the internal language of E containing variables of
types Ps

n(V ) for some n, using equality and the element relations ∈Ps
n(V ). Then

by basically ignoring the types of the variables, we can interpret the formula φ
using the relation ε. We would call this the untyped interpretation of φ. By
iteratively applying the isomorphism Int with inverse Ext we obtain, similar as
above, a pullback diagram between the typed and the untyped interpretation of
φ.
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4.1.1 The Constructive Set Theory IZF

The development of constructive set theory was initiated by John Myhill in his
seminal paper [22]. Myhill’s intention was to give Bishop’s program on construc-
tive mathematics a set theoretical foundation. Since then many axiomatizations
of constructive set theories were introduced and studied. See for example Peter
Aczel’s and Michael Rathjen’s book [1] for a good introduction to the topic.
The main features that constructive set theories opposed to classical Zermelo
Fraenkel set theory have are:

• The underlying logic follows intuitionistic rather than classical rules.

Therefore,

• the axiom of choice must be dropped, as (in the presence of the other
axioms) it implies the law of excluded the middle by a famous result of
Diaconescu1.

• In the presence of the other axioms, the foundation axiom implies the law
of excluded in the middle. Therefore the axiom of foundation is replaced
by the classically equivalent axiom scheme of set induction.

Accordingly, we define the theory IZF that we will refer to as intuitionistic
set theory as follows.

Definition 4.1.5. The axioms of intuitionistic set theory IZF are:

(Extensionality): ∀x∀y((∀z(z ∈ x↔ z ∈ y))↔ x = y)

(Pairing): ∀x∀y∃z∀v(v ∈ z ↔ ((v = x) ∨ (v = y)))

(Union): ∀x∃z∀v(v ∈ z ↔ ∃w(w ∈ x ∧ v ∈ w))

(Powerset): ∀x∃z∀v(v ∈ z ↔ ∀w(w ∈ v → w ∈ x))

(Infinity) : ∃x(∅ ∈ x ∧ (y ∈ x→ y ∪ {y} ∈ x))

(Separationscheme): For every formula ϕ, where a does not occur freely:
∀a∃w∀x(x ∈ w ↔ (x ∈ a ∧ ϕ))

(Replacementscheme): For every formula ϕ, where w does not occur freely:
(∀x (x ∈ a→ ∃!yϕ(x, y)))→ ∃w∀y(y ∈ w ↔ ∃x(x ∈ a ∧ ϕ))

(Induction): ∀x(∀y(y ∈ x→ ϕ)→ ϕ[x/y])→ ∀xϕ

4.2 Algebraic Models for (Intuitionistic) Set The-
ories.

We will now prove that algebraic universes satisfy the axioms of IZF introduced
in the previous section. As already mentioned, the validity of the particular set
theoretic axioms relies on the axioms for small maps that we imposed on a
category of classes. We will point out the precise correspondences in the proof

1See for example [1, p. 104] for a proof of this fact.
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of Theorem 4.2.2. Whereas the axioms for the small maps determine which
of the set theoretical axioms are validated, the internal logic of the underlying
pretopos determines the underlying logic of the set theory. In Proposition 4.2.3,
we will show that a Boolean pretoposes carrying the structure of a category of
classes gives rise to a universe of classical set theory, i.e. satisfying the usual
ZF axioms and is sound with respect to classical inference rules.

The following Lemma will be useful in the proof of Theorem 4.2.2. It ex-
presses that if a formula defines a small relation on V , then the universe believes
that there is a set containing exactly those elements validating the formula.

Lemma 4.2.1. Let ϕ be a formula in the language of set theory such that the
free variables of ϕ are among y and x̄. Assume the interpretation

Jyx̄.ϕK V × V x̄
m

defines a relation that is small in V , where V x̄ :=
∏
x∈x̄ V . Then

(V, ε) |= ∃w(yεw ↔ ϕ).

Proof. Since m as a relation is small in V , by (P1′) there is a unique map
f : V x̄ → V fitting in the pullback

Jyx̄.ϕK ε

V × V x̄ V × V
m

idV ×f
.

It is clear that
E |= yεf(x̄)↔ ϕ(y, x̄).

The rest of the proof follows by Lemma 2.1.17.

Theorem 4.2.2. Let E be a category of classes and let V be an initial algebra
for the Ps functor on E. Then,

(V, ε) |= IZF

Proof. We check that (V, ε) validates the axiom of IZF listed in Definition 4.1.5.

(Extensionality): The proof is the same as that of typed extensionality in
Lemma 2.3.3. One only needs to replace the use of axiom (P1) by axiom
(P1′).

Checking the validity of the axioms of pairing, union, and powerset is very
similar. Each of these axioms requires the existence of a set defined by a certain
formula. So provided that the formula defines a small relation, we obtain a
set as in Lemma 4.2.1. The smallness of the relations in question relies on a
corresponding axiom for the small maps.

(Pairing): For the case of the pairing axiom, we need to show that Jz = x∨z =
yK → V × V × V is a small relation. Then as in Lemma 4.2.1, we obtain
an arrow

pair : V × V −→ V such that
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Jz ∈ pair(x, y)↔ z = x ∨ z = yK = V × V × V in Sub(V × V × V ) which
implies the validity of the pairing axiom. Let Vx, Vy and Vz denote the
copies of V intended to interpret the variables x, y and z, respectively.

First note that

Jzxy.z = xK ∼= V × V Vz × (Vx × Vy)
〈π1, π1, π2〉

and

Jzxy.z = yK ∼= V × V Vz × (Vx × Vy)
〈π1, π1, π2〉

define small relations in Vz.

By axiom (S5) , it follows that the composite

Jzxy.z = xK + Jzxy.z = yK Vz × (Vx × Vy) Vx × Vy

is a small map. Now the interpretation Jzxy.z = x ∨ z = yK is the image
in

Jzxy.z = xK + Jzxy.z = yK Vz × (Vx × Vy) Vx × Vy

Jzxy.z = x ∨ z = yK
m

.

And therefore, m : Jzxy.z = x∨z = yK→ Vz×(Vx×Vy) is a small relation
by (S3) as desired.

(Union): We need to show that Jxw.∃y(yεx ∧ wεy)K→ V × V defines a small
relation. Then as before, the validity of the union axiom follows by Lemma
4.2.1. As in the proof of Lemma 2,

Jxyw.yεx ∧ wεyK (Vy × Vw)× Vx (4.2)

defines a relation that is small in Vy×Vw. Now Jxw.∃y(yεx∧wεy)K is the
image in

Jxyw, y ∈ x ∧ wεyK Vy × Vw × Vx Vx × Vw

Jxw.∃y(yεx ∧ wεy)K

Using that Jxyw.y ∈ x ∧ w ∈ yK → Vx is small by 4.2 and axiom (S3) it
follows that

Jxw.∃y(y ∈ x ∧ w ∈ y)K Vw × Vx

is a small relation as desired.
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(Powerset): We need to construct a map

pow : V → V such that Jv ∈ pow(x)↔ ∀w(w ∈ v → w ∈ x))K in Sub(V×V ).

Axiom (P2) says that

⊆V := J∀w : V (w ∈ v → w ∈ x)K Ps(V )× Ps(V )

is a small relation. Following Remark 4.1.4 at the beginning of the current
chapter, and using how ε is defined in terms of ∈V , the internal subsetre-
lation on V can be obtained as the pullback

J∀w(w ∈ v → w ∈ x)K ⊆V

V × V Ps(V )× Ps(V )
Ext×Ext

.

Since Ext is an isomorphism, it follows by (P2) that J∀w(w ∈ v → w ∈
x)K defines a small relation on V . The map pow can be defines as the
classifying map of this relation.

(Separation): The validity of the axiom of separation is an immediate conse-
quence of all monos being small.

Assume ϕ(y, x̄) is a formula where a does not occur freely and such that
all free variables of ϕ are among the ones in y, x̄. Consider the diagram

Jyax̄.y ∈ a ∧ ϕ(y, x̄)K Jyax̄. yεaK

Jyax̄. ϕ(y, x̄)K Vy × Va × V x̄

Va × V x̄

n

k

π

,

where the upper square is a pullback so that k◦n : Jyax̄.y ∈ a∧ϕ(y, x̄)K→
Vy × Va × V x̄ provides the interpretation of y ∈ a ∧ ϕ(y, x̄). Since ε is
a small relation one can easily infer that the composite on the right had
side is a small map. As a pullback of a mono, the map n is a mono and
therefore small. It follows that the composite πkn is a small map. And so
Jyax̄.y ∈ a ∧ ϕ(y, x̄)K→ Vy × Va × V x̄ is small in Vy as desired.

(Infinity) : The validity of the axiom of infinity relies on the smallness of the
natural number object. We will show that the recursive property of the
natural number object implies that it is a subobject of V . We define a
successor operation succ : V → V , intended to map a set x to x ∪ {x} as
the composite
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V V × V V V
(idV , s) pair union

,

where pair and union are defined as previously and s : V → V is the
singleton map, the classifying map of the diagonal on V . The classifying
map ∅ : 1 → V of the unique map 0 → V × 1 from the initial object,
defines the empty set in V . We show that there is a map ω : 1→ V such
that

(V, ε) |= ∅εω ∧ ∀x(xεω → succ(x)εω).

By the recursive property of the natural number object in E , there is a
unique map g : N→ V that fits into a commutative diagram:

1 N

1 V

N

V

o

∼= g

∅

s

succ

g

.

Arguing internally, one can show that g is a mono, so that g : N → V
defines a small subobject of V . Let ω : 1 → V be its classifying map.
Then clearly,

E |=x:V xεω ↔ ∃n : N g(n) = x. (4.3)

Using (4.3) and the commutativity of the diagram above, we can easily
prove that ω is as required. So in particular:

E |= g(o) = ∅ → ∃n : N g(n) = ∅ → ∅εω.

and

E |= xεω → ∃n : N g(n) = x

→ ∃n : N g(s(n)) = succ(x)

→ ∃m : N g(m) = succ(x)

→ succ(x)εω.

(Induction) : For readability reasons, we first discuss the case where ϕ(x) is
a formula in the language of set theory with only one free variable. First
assume that

T := J∀y∀x(xεy → ϕ(x))→ ϕ(y)K = 1 in Sub(1).

We will later argue how the general case follows from that. By the above,
in particular J∀x(xεy → ϕ(x))→ ϕ(y)K = V in Sub(V ). We want to show
that Jϕ(x)K = V . To this end, we would like to equip m : A := JϕK → V
with a Ps-algebra structure. Then the claim follows by the inductive
property of the initial algebra discussed in Section 2.3.3. Define

R := Jw : Ps(A)y : A | m(y) = Int(Ps(m)(w))K→ Ps(A)×A.
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We claim that R defines a functional relation on Ps(A) × A. The func-
tionality of the relation is clear by the definition of R. It remains to
show that R is total. Observe that to this end, we need to show that
Jw : Ps(A) | ϕ(Int(Ps(m)(w)))K ∼= Ps(A) in Sub(A). Note that by our
assumption (4.2), it suffices to show that E |= xε Int(Ps(m)(w)) → ϕ(x).
But we have

E |= xε IntPs(m)(w)→ x ∈ Ps(m)(w) [By definition of ε]
→ ∃z : A (m(z) = x ∧ z ∈A w) [By (2.3), Lemma 2.3.4.]
→ ϕ(x) ,

where the last implication follows since Jϕ(x)K = J∃z : Am(z) = xK in
Sub(V ). This finishes the proof that R is a functional relation. Now by
Lemma 2.1.16, of Section 2.1.2, R corresponds to an arrow α : Ps(A)→ A
with graph R. It is immediate to see that f equips A with an algebra
structure such that m : A→ V becomes an morphism of Ps-algebras. As
explained above, we can conclude that Jϕ(y)K = V . Next, we will explain
how we can get rid of the assumption (4.2). In the slice category T , the
interpretation of the formula ∀y∀x(xεy → ϕ(x)) → ϕ(y) is the maximal
subobject of the terminal object in E /T . Note that by our considerations
in Section 2.3.3, we can infer that 〈Int, idT 〉 Ps(V ) × T → V × T , the
pullback of the algebra Ps(V ) → V along t : T → 1, gives rise to a Ps

T -
algebra satisfying the inductive property. Therefore, we can carry out the
proof above in the category E /T , to obtain that J∀y(ϕ(y)) ∼= T . This
finishes the proof that (V, ε) validates the induction axiom for formulas
ϕ with one free variable. Now if ϕ contains more free variables, we can
carry out the same proof by passing to the appropriate slice category.

(Replacement) : This proof is taken from [30]. First assume that a : 1 →
V is a global section such that J∀x(xεa → ∃!yϕ(x, y))K = 1 in Sub(1),
i.e. (V, ε) |= ∀x(xεa→ ∃!yϕ(x, y)). Let A→ V be the small subobject of
V that is characterized by a. Define a relation

R := Jx : V y : V | ϕ(x, y) ∧ xεaK→ A× V.

By the assumption it is clear that R is functional. So by Lemma 2.1.16, R
corresponds to a function f : A → V such that R is the graph of f . The
image of f , is given by the mono n in

A V

Im(f)

1
f

e n

!V

.

Since A is a small, the composite !V ◦ f is a small map. Since e is epi,
by (S3) it follows that also !V ◦ n is a small subobject of V . Note that
Im(f) = J∃x : V xεa ∧ ϕ(x, y)K. Since Im(f) is small, using Lemma 4.2.1,
it follows that (V, ε) |= ∃w(∀x(xεw ↔ (xεa ∧ ϕ(x, y))). The general case
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follows by passing to the appropriate slice category and using the stability
under slicing results that we discussed in Section 2.3.2.

Now, if E is a category of classes such that the underlying pretopos is
Boolean, then the internal logic of E follows classical rules. In Section 4.1.1
we already mentioned that the axiom of set induction is classically equivalent to
the axiom of foundation. Therefore, in this case our algebraic universe satisfies
the usual ZF axioms.

Corollary 4.2.3. If the underlying pretopos E of the category of classes is
Boolean then

(V, ε) |= ZF .

4.2.1 About The Axiom of Choice
We would like to say a few words about the axiom of choice in our context. In
topos theory, the axiom of choice is usually formulated in the form that every
epi p : X → I has a section, i.e. there is a morphism s : I → X such that
p ◦ s = idI . However, the validity of the axiom of choice in the internal logic
of a topos depends on a weaker principle, called (IAC) stating that for every
object E of the topos, the functor (−)E : E → E preserves epimorphisms. See
for example the discussion in [20, p. 275]. We say that a category of classes E
satisfies the axiom of choice, if for every small object E an epi p : E → I with
domain E has a section. The internal version translates to the statement that
for every small object E, the functor (−)E : E → E preserves epimorphisms
between small objects. Note that the latter makes sense in a category of classes
as small objects are exponentiable as we discussed in Section 2.3.5. If E satisfies
(IAC) and V is a universe of E one can prove along the lines of [20, pp. 312-315]
that the axiom of choice holds in the universe.

Lemma 4.2.4. If a category of classes E satisfies (IAC), then (V, ε) |= AC.

Assuming the axiom of choice in our metatheory, one can prove that a
Boolean topos that is generated by subobjects of 1 and whose subobject lattices
are complete Boolean algebras satisfies the axiom of choice, see Proposition 8 in
[20, p. 276]. The idea of the proof is as follows. Assuming that p : E → I is epi,
we can consider the partial order of partial sections of p, i.e. of pairs (W, s) with
m : W → I in Sub(I) and s : W → E such that e ◦ s = m. By completeness of
the subobject lattices, we can apply Zorn’s Lemma to obtain a maximal such
subobject. Booleanness and the assumption on the generators helps to show
that this subobject is I itself.

The criterion can be translated into our framework. However, we need to
be a bit careful about sizes in our metatheory. In addition to Booleanness of
a category of classes and the assumption on the generators, we need to require
that for every small object X the collection of subobjects of X forms a set in
our metatheory; moreover, we need to assume that also the collection of maps
between two small object forms a set. In this case the above proof translates
immediately. Assume that E is such a category of classes. Let E be small
and assume that p : E → I is epi. Then by (S3) also I is a small of E . By our
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assumption on the sizes, the order of partial sections for p forms a set. Therefore
we can apply Zorn’s Lemma as in the above argument.

Proposition 4.2.5. Let E be category of classes such that the underlying preto-
pos in Boolean. Assume that it is generated by subobjects of 1 and assume that
for every X is E the Boolean algebra Sub(X) is complete. Moreover, assume
that for every small object X the collection of subobjects of X is a set and that
for two small objects X,Y the collection of maps between X and Y is a set.
Then E satisfies the axiom of choice.

Recall our discussion on a category of large sheaves over a poset in Section
3.3.6. Assume that LSh(P,¬¬) is the category of large sheaves over some poset
category P. In Corollary 3.3.24 we showed that it is generated by subobjects
of 1. Moreover, in Corollary 3.3.25, we argued that LSh(P,¬¬) is a Boolean
pretopos and for every X the subobject lattice Sub(X) is a complete Boolean
algebra. So we can apply the above Proposition 4.2.5 and obtain:

Corollary 4.2.6. LSh(P,¬¬) satisfies the axiom of choice.

4.3 More Set theoretic Structure in the Algebraic
Universe

In the previous section we saw that the algebraic universes validate the IZF
axioms. This in particular implies that we can perform elementary set theoretic
operations such as products, powersets and function spaces in our universe. The
goal of this section is to show that in fact we can perform the same operations
outside the universe by using the structure given by the Heyting pretopos and
then “squeeze” the obtained object into the universe. We will explain this a bit
more carefully. Recall that at the end of Section 4.1, we argued that every small
subobject of the universe corresponds to an element of the universe. Assume
now that A → V and B → V are such small subobjects, corresponding to
elements a : 1→ V and b : 1→ V . Now, we will see that also A×B, Ps(A) and
AB the product, powerset and exponential of two small subobjects give rise to
small subobjects of V in such a way, that V believes that their classifying map
define product, powerset and function space between a and b, respectively. One
can interpret this correspondence as telling us that statements in the internal
logic of the “outer” Heyting pretopos can be translated into statements about
the universe. Very similar ideas can also be found in [30], [28], and [6].

In set theory, we code products, functions etc. by ordered pairs. The next
Lemma shows that the same such coding can be performed in the algebraic
universe.

Lemma 4.3.1. There is a mono V × V V
〈-, -〉

that corresponds to map-
ping elements of V to their ordered pair.

Proof. We simply mimic the Kuratowski definition of the ordered pair in our
algebraic universe. Therefore, we define 〈-, -〉 as the composite

V × V V × V × V V × V V
∆V × idV s× pair pair

,
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where s is the singleton operation and pair is the pairing function as in the
proof of Theorem 4.2.2. We can infer that

(V, ε) |= zε〈x, y〉 ↔ z = s(x) ∨ z = pair(x, y).

Using the internal logic, we can prove that

(V, ε) |= 〈x, y〉 = 〈x′, y′〉 → (x = x′ ∧ y = y′).

That proves the claim.

The following Lemma helps us to translate statements of the (typed) internal
language of E into the language of set theory.

Lemma 4.3.2. Let ϕ(x̄, y) be a formula in the internal language of V such that
all the free variables of ϕ are of type V . Let m : A → V be a small subobject
classified by a : 1→ V , we have:

Jx̄ | ∃z : Aϕ[m(z)/y] K = Jx̄ | ∃v : V (vεa ∧ ϕ)K (4.4)

and
Jx̄ | ∀z : Aϕ[m(z)/y] K = Jx̄ | ∀v : V (vεa→ ϕ)K (4.5)

in Sub(Vx̄), where Vx̄ :=
∏
x∈x̄ V . Also a more general version of the statement

holds. Let ϕ(x̄, ȳ) be a formula in the internal language with all free variables
of type V and let k be the length of the string ȳ. Let (mi : Bi → V ), 1 ≤ i ≤ k
be small subobjects classified by maps bi : 1→ V , 1 ≤ i ≤ k, then

Jx̄ | ∃z1 : B1 . . . ∃zk : Bk ϕ
[
m(zi)/ȳ

]
K = Jx̄ |

∧
i

∃vi : V viεbi ∧ ϕK

and

Jx̄ | ∀z1 : B1 . . . ∀zk : Bkϕ
[
m(zi)/ȳ

]
K = Jx̄ | ∀v1 : V . . . vk : V

∧
i

viεbi → ϕK

in Sub(Vx̄).

Proof. We show (4.4). Consider the following diagram, where the upper square
is a pullback and n ◦ e is the epi-mono factorization of p′ ◦ l′ so that n : T → Vx̄
is the interpretation of ∃z : Aϕ[m(z)/y].

Jϕ[m(z)/y] K Jϕ(x̄, v)K

Vx̄ ×A Vx̄ × V

Vx̄ Vx̄

T

l′ l
idVx̄
×m

p′ p

idVx̄

e

n
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By our observation at the beginning of this chapter, m : A→ V is the interpre-
tation of vεa. Therefore, (idVx̄

×m) ◦ l′ : Jϕ[m(z)/y] K→ Vx̄ × V is the interpre-
tation of vεa∧ϕ. Now n◦e is also the epi-mono factorization of p◦(idVx̄

×m)◦l′.
But this shows that n : T → Vx̄ is the interpretation of ∃v : V (vεa ∧ ϕ). So we
established (4.4). For (4.5), note that

Jx̄ | ∀z : Aϕ[m(z)/y] K = ∀p′(idVx̄
×m)−1(l : Jϕ[m(z)/y] K→ Vx̄ × V )

and

Jx̄ | ∀v : V (vεa→ ϕK = ∀p∀idVx̄×m
(idVx̄

×m)−1(l : JϕK→ Vx̄ × V ).

Where the maps l, p and p′ are as in the diagram above. Since p′ = p◦(idVx̄
×m)

it follows that ∀p′ = ∀p∀(idVx̄ ×m). This shows (4.5). The proofs for the more
general cases are very similar.

The next proposition summarizes the results announced in the introduction.

Proposition 4.3.3. Let m : A → V and n : B → M be small subobjects of V
classified by a : 1→ V and b : 1→ V , respectively.

Products:

A×B ∼= Jx : V | ∃z, y(zεa ∧ yεb ∧ x = 〈z, y〉K in Sub(V ),

where A×B is regarded as a subobject of V via the map 〈-, -〉 ◦m× n. So
if a× b : 1→ V classifies A×B, we have

(V, ε) |= xεa× b↔ ∃z, y(zεa ∧ yεb ∧ x = 〈z, y〉) (4.6)

Powersets:
Ps(A) ∼= Jx : V | x ⊆ aK in Sub(V ),

where Ps(A) is a subobject of V via the map Int ◦Ps(m). So if this subob-
ject is classified by pow(a) : 1→ V we have

(V, ε) |= xεpow(a)↔ x ⊆ a.

Functions: If f : A→ B is an arrow between A and B, then

Γ(f) ∼= A A×B V × V V
〈id, f〉 m× n 〈-, -〉

is a small subobject and suppose this is classified by ρ : 1→ V . Then

(V, ε) |= “ρ is a function from a to b”.

Proof. • First observe that by the proof of Proposition 2.3.15, A × B is
indeed a small subobject of V . In Sub(V ) we have:

A×B
= Jx | ∃a : A∃b : B(x = 〈m(a), n(b)〉K
= Jx | ∃y : V ∃z : V (yεa ∧ zεb ∧ x = 〈y, z〉K,

where for the last equality we use Lemma 4.3.2.
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• Let a′ : 1 → Ps(V ) be the classifying map of m : A → V that we obtain
from (P1) so that Int ◦a′ = a. We show that h : Jx : Ps(V ) | x ⊆V a′K →
Ps(V ) and Ps(m) : Ps(A) → Ps(V ) are the same subobjects of Ps(V ).
Our claim follows from this as using Lemma 4.1.3, it is easy to see that
∃IntJx : Ps(V ) | x ⊆V a′K = Jx : V | x ⊆ aK in Sub(V ).
We show two directions separately. The proof of Ps(A) ≤ Jx : Ps(V ) |
x ⊆V a′K is a direct application of the internal logic. Since by earlier
results we have:

Ps(A)

= Jx : Ps(V ) | ∃C : Ps(A).x = Ps(m)(C)K
= Jx : Ps(V ) | ∃C : Ps(A).∀y : V (y ∈V x↔ y ∈V Ps(m)(C)K [By typed extensionality.]
= Jx : Ps(V ) | ∃C : Ps(A).∀y : V (y ∈V x↔ ∃z : A(z ∈A C ∧m(z) = y))K [2.3 in Lemma 2.3.4.]
≤ Jx : Ps(V ) | ∀y : V (y ∈V x→ ∃z : A(m(z) = y)K [Arguing internally.]
≤ Jx : Ps(V ) | ∀y : V (y ∈V x→ y ∈V a′)K
= Jx : Ps(V ) | x ⊆V a′K .

Conversely, we show that the following triangle commutes:

Jx : Ps(V ) | x ⊆V a′K Ps(V ) Ps(A)

Ps(V )

h m′

h Ps(m)

,

where the map m′ results by applying the contravariant powerset functor
to the small map m. Recall that we defined this functor in Lemma 2.3.7.
We will argue internally to show that the above diagram commutes. First
note that we have

E |= ∀y : V (y ∈V h(x)↔ y ∈V h(x) ∧ y ∈V a′).

Now also

E |=∀y : V (y ∈V Ps(m)m′h(x)

↔ ∃z : A(m(z) = y ∧ z ∈A m′h(x)) [See 2.3, Lemma 2.3.4.]
↔ ∃z : A(m(z) = y ∧ (∃y′ : V (y′ ∈V h(x) ∧m(z) = y′)) [See Lemma 2.3.7.]
↔ ∃z : A(y ∈V h(x) ∧m(z) = y))

↔ y ∈V h(x) ∧ ∃z : Am(z) = y

↔ y ∈V h(x) ∧ y ∈ a′).

So by typed extensionality the diagram commutes.

• Assume that ρ is the classifying map of the graph of f : A → B. In
order to show that (V, ε) |= ”ρ is a function”, we need to check that the
following three statements are satisfied.

(V, ε) |=ρ ⊆ a× b
(V, ε) |=∀v(vεa→ ∃w(wεb ∧ 〈v, w〉ερ) and
(V, ε) |=∀w, v, z(〈z, v〉ερ ∧ 〈z, w〉ερ→ v = w).
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From the description of ρ it is easy to see that

E |=v:V vερ↔ ∃x : A(v = 〈m(x), n(f(x))〉). (4.7)

Therefore, we can calculate internally:

E |= vερ→ ∃x : A(v = 〈m(x), n(f(x))〉) [By (4.7).]
→ ∃x : A∃y : B(v = 〈m(x), n(y)〉)
→ ∃u : V ∃w : V (uεa ∧ wεb ∧ v = 〈u,w〉) [By Lemma 4.3.2.]
→ vεa× b [By 4.6].

So in particular, we have that (V, ε) |= vερ → vεa × b, which shows the
first claim.

E |= uεa→ ∃x : A(m(x) = u) [By Lemma 4.3.2.]
→ ∃x : A(m(x) = u ∧ 〈u, n(f(x))〉ερ) [By (4.7).]
→ ∃y : B〈u, n(y)〉ερ
→ ∃w : V (wεb ∧ 〈u,w〉ερ) [By Lemma 4.3.2.]

which shows the second claim. Finally,

E |=〈z, v〉ερ ∧ 〈z, w〉ερ
→ ∃x : A ∃x′ : A(m(x) = z ∧m(x′) = z ∧ 〈z, v〉ερ ∧ 〈z, w〉ερ) [ By (4.7).]
→ ∃x : A〈m(x), v〉ερ ∧ 〈m(x), w〉ερ [Since m is a mono.]
→ ∃x : A (v = n(f(x)) = w) [Use (4.7).]
→ v = w.

So we proved that V believes that ρ is a function.

As expected, also more specific properties of the “squeezed” objects remain
valid in the universe. The next corollary expresses that squeezed monos give
rise to injective functions.

Corollary 4.3.4. If f : A → B is a mono in E and ρ : 1 → V classifies the
graph of f as above, then

(V, ε) |= “ρ is an injective function from a to b.”

Proof. Above we saw that V believes that ρ is a function from a to b so it
remains to show that V believes that ρ is injective. We calculate internally:

E |=〈z, v〉ερ ∧ 〈z′, v〉ερ
→ ∃x : A∃x′ : Am(x) = z ∧m(x′) = z′ ∧ n(f(x)) = v = n(f(x′))

→ ∃x : A∃x′ : Am(x) = z ∧m(x′) = z′ ∧ x = x′

→ z = z′,

where in the second last step we used that f and n are monos. This proves the
claim.
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Recall that in Section 2.3.5 we saw that for a small object A and an ob-
ject B we can form the exponential BA. Similarly, we also defined the object
Epi(A,B), the object of epimorphisms from A to B. In the remaining part
of this section we will see that we can squeeze these constructions in the same
manner as we did in the proposition above.

In the following let m : A → V and n : B → V be fixed small subobjects
of V , classified by maps a : 1 → V and b : 1 → V , respectively. Note that the
composite

Ps(A×B) Ps(V × V ) Ps(V ) V
Ps(m× n) Ps(〈-, -〉) Int

(4.8)

is a small subobject of V . Assume that it is classified by classified by pow(a×b) :
1→ V . By Proposition 4.3.3 it is immediate that

(V, ε) |= xεpow(a× b)↔ (x ⊆ a× b). (4.9)

Recall that in Section 2.3.5 we defined

BA := Jf : Ps(A×B) | ∀x : A∃!y : B(x, y) ∈A×B fK Ps(A×B)
h

.

Let l := Int ◦Ps(〈-, -〉 ◦m × n) the composite as in (4.8). Then BA is a small
subobject of V via l ◦ h. We will soon see that this subobject corresponds to
the set of functions from a to b. Before we will proof another little lemma.

Lemma 4.3.5. Let l := Int ◦Ps(〈-, -〉 ◦m× n). Then

J〈x, y〉 ∈A×B zK = J〈m(x), n(y)〉εl(z)Kin Sub(A×B × Ps(A×B)).

Proof. Let k := 〈-, -〉 ◦m × n The right hand side of the equation above is the
pullback in

T ε

A×B × Ps(A×B) V × V
k × l

.

By Lemma 2.3.9 and the definition of ε the two squares in the diagram below
are pullbacks

∈A×B ∈V

A×B × Ps(A×B) V × Ps(V )

ε

V × V
k × Ps(k) idV × Int

Therefore, by the two pullback Lemma the outer rectangle is a pullback. Since
k × l = idV × Int ◦k × Ps(k), it follows that ∈A×B and T define the same sub-
object of A×B × Ps(A×B). This proves the claim.

Now we are ready to show that hl : BA → V gives rise to the subobject of
all functions from a to b. Note that since l is mono, the subobject defined by
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hl is the same as ∃lJz : Ps(A× B) | ∀x : A∃!y : B(x, y) ∈A×B zK. We calculate
in Sub(V ):

∃lJz : Ps(A×B) | ∀x : A∃!y : B(x, y) ∈A×B zK
= ∃lJz : Ps(A×B) | ∀x : A∃!y : B〈m(x), n(y)〉εl(z)K [By Lemma 4.3.5.]
= Jw : V | ∃z : Ps(A×B)l(z) = w ∧ ∀x : A∃!y : B〈m(x), n(y)〉εl(z)K
= Jw : V | ∃z : Ps(A×B)l(z) = w ∧ ∀x : A∃!y : B〈m(x), n(y)〉εwK
= Jw : V | w ⊆ a× b ∧ ∀x : A∃!y : B〈m(x), n(y)〉εwK [By (4.9).]
= Jw : V | w ⊆ a× b ∧ ∀u(uεa→ ∃!v(vεb ∧ 〈u, v〉εw)K [Use Lemma 4.3.3.]

If BA is classified by the arrow ba : 1→ V the above calculation shows that

(V, ε) |= fεab ↔ “f is a function from a to b”.

Recall that in Section 2.3.5, we defined

Epi(A,B) := {z : Ps(A×B) | ∀x : A∃!y : B (x, y) ∈A×B z∧∀y : B∃x : A (x, y) ∈A×B z}

as a subobject of Ps(A×B). Also Epi(A,B) gives rise to a small subobject of
V via the map l. As above we calculate in Sub(V )

∃lJz : Ps(A×B) | ∀x : A∃!y : B(x, y) ∈A×B z ∧ ∀y : B∃x : A (x, y) ∈A×B zK
= Jw : V | w ⊆ a× b ∧ ∀u(uεa→ ∃!v(vεb ∧ 〈u, v〉εw) ∧ ∀v(vεb→ (∃u(uεa ∧ 〈u, v〉εw))K.

So if Epi(A,B) is classified by epi(a, b) : 1→ V , then

(V, ε) |= fε epi(a, b)↔ “ ‘is a surjective function from a to b”.

Corollary 4.3.6. If Epi(A,B) ∼= 0 in E then

(V, ε) |= “there is no surjective function from a to b.”

4.4 Existence of Algebraic Universes
In this section we will discuss the existence of initial algebras for the Ps-functor
on a category of classes. First, we will examine a criterion ensuring the existence
of such initial algebras. Next, we will discuss whether the criterion is applicable
to the examples of categories of classes that we considered in Chapter 3. In
particular, we will prove that this is the case for the category Classes and the
category of large presheaves. We also briefly discuss the case of the category of
large sheaves.

Let Ps : E → E be an endofunctor on a category E and let D be an index
category. Assume F : D → E is a diagram with colimit η : F ⇒ ∆Z . Then
Ps(η) : PsF ⇒ ∆Ps(Z) is a cocone for the diagram Ps ◦ F : D → E . However,
the cocone Ps(η) need not to be colimiting. If µ : PsF ⇒ ∆W is the colimit for
Ps ◦ F , then there is a canonical map

k : W → Ps(Z)

of cocones. We say that the functor Ps commutes with colimits of type D, if k
is an isomorphism for every diagram over D.
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If the endofunctor Ps : E → E commutes with colimits of type (Ord,≤) it
admits an initial algebra as the criterion in Proposition 4.4.1 ensures. In the
case that the endofunctor Ps : E → E is the powerclass functor on some category
of classes, the criterion tells us that an initial algebra for Ps can be obtained
by mimicking the construction of a cumulative hierarchy inside our category of
classes.

Proposition 4.4.1. Assume that E has colimits of type (Ord,≤). Moreover,
assume that Ps : E → E commutes with colimits of this type. Then Ps has an
initial algebra α : Ps(A)→ A.

Proof. First we will construct a diagram F : (Ord,≤)→ E . Then we show that
its colimit gives rise to an initial algebra of Ps. By an external recursion over
the ordinals we define:

P0
s (0) := 0 and ι0,1 : 0→ Ps(0) the unique map.

For successor steps:

Pα+1
s (0) := Ps(Pαs (0)) and ια+1,α+2 := Ps(ια,α+1)

For a limit β, let η : (Pαs (0), ια,α+1)α<β ⇒ ∆X be the colimit of the diagram
described by (Pαs (0), ια,α+1)α<β .

Let Pβs (0) := X and ια,β = ηα for α < β.

It is easy to see that also, Ps(Pβs (0)) gives rise to a cocone for (Pαs (0), ια,α+1)α<β ,
then we define

ιβ,β+1 : Pβs (0)→ Pβ+1
s (0) resulting from the universal property of Pβs (0).

The above defines a diagram F : (Ord,≤) → E given by (Pαs (0), ια,β)α<β . Let
µ : F ⇒ ∆A be its colimit. Since by assumption the functor Ps preserves
colimits of type (Ord,≤), Ps(µ) : Ps ⇒ ∆Ps(A) is the colimit for Ps ◦ F . It is
easy to see that also (A,µα+1)α∈Ord gives rise to a cocone for Ps ◦ F . So there
is a unique map s : Ps(A)→ A such that µα+1 = s ◦ Ps(µα) for all α ∈ Ord.

Claim. s : Ps(A)→ A is the initial P-algebra.

Assume t : Ps(B)→ B is another algebra for Ps. Similar as above, one can
show that B gives rise to a cocone ν : F ⇒ ∆B of F with

να+1 = t ◦ Ps(να), for all α ∈ Ord. (4.10)

By the universal property of A there is a map f : A→ B such that να = f ◦µα
for all α. We would like to show that f gives rise to a Ps-algebra homomorphism.
Using (4.10) it is clear that (B, t◦Ps(να)) gives a cocone for P◦F and t◦Ps(f) is
the unique map from the colimiting cocone (Ps(A),Ps(µα)) making all involved
triangles commute, i.e. t ◦ Ps(f) is the unique map such that t ◦ Ps(να) =
(t ◦ Ps(f)) ◦ Ps(µα) for all α. Now also

t ◦ Ps(να) = να+1 = f ◦ µα+1 = f ◦ s ◦ Ps(µα) for all α.
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So by the uniqueness just discussed it follows that t ◦Ps(f) = f ◦ s. This shows
that f is indeed a homomorphism of Ps algebras and one can easily see that f
is the unique such. This finishes the proof of the claim and therefore we proved
the proposition.

Our goal in the remaining part of this section is to discuss whether that
Proposition 4.4.1 applies to the categories of classes that we already encountered.
In Chapter 3, we already argued that the categories Classes, ClassesC

op

and
LSh(C,Cov) admit class-sized colimits so it remains to show that the respective
powerclass functors commute with colomits of type (Ord,≤). In the following
we will analyze even more generally whether the respective powerclass functors
commute with colimts over ∞-filtered categories.

A category D is called κ-filtered if every diagram of size κ has a cocone in
D. The category D is called ∞-filtered, if D is κ-filtered for every κ. Note that
in particular the category (Ord,≤) is ∞-filtered.

Recall that a colimit of a diagram in Classes is constructed by first taking the
coproduct over the images of the diagram and then quotient by an equivalence
relation. If the index category if filtered, these equivalence relations take a
particularly simple form. In particular, we do not have to look at general “zig-
zags”. For a proof see [9, p. 77].

Lemma 4.4.2. Let D be an ∞-filtered category and let F : D → Classes be
a diagram. Then the limiting cocone η : F ⇒ ∆limF of F is of the form
lim(F) ∼=

∐
Di∈D F(Di)/ ∼, where

(i, x) ∼ (j, y)⇔x ∈ F(Di) and y ∈ F(Dj) and there are
f : Di → Dk and g : Dj → Dk for some Dk in D
such that F(f)(x) = F(g)(y).

Proposition 4.4.3. Let D be an ∞-filtered category. Then Ps : Classes →
Classes commutes with colimits of type D.

Proof. Let F : D → Classes a diagram. Let β : F ⇒ ∆Z is the limiting cocone
for F and assume α : Ps F ⇒ ∆W is the limiting cocone for Ps F . Let

u : W → Ps(Z) be the canonical map of cocones.

We will show that u is an isomorphism.

Claim. u is a mono.

By Lemma 4.4.2, we know that W :=
∐
Ps F(Di)/ ∼, where ∼ as described

above. Let X,Y ∈ W with u(X) = u(Y ). Let x0 ∈ Ps(F(Di)) and y0 ∈
Ps(F(Dj)) be representatives of the equivalence classes X and Y , respectively.
We will show that x0 ∼ y0. By assumption, we have that

Ps(βi)(x0) = u([x0]) = u([y0]) = Ps(βj)(y0). (4.11)

Define
L := {(a, b) ∈ x0 × y0 | βi(a) = βj(b)}.

By the description of Z according to Lemma 4.4.2 for all (a, b) ∈ L we can pick
D(a,b) of D such that there are f(a,b) : Di → D(a,b) and g(a,b) : Dj → D(a,b) with
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F(f(a,b))(a) = F(g(a,b))(b). Note that since x0 and y0 are sets, also L is a set.
So since D is ∞-filtered, there is Dk in D and f : Di → Dk and g : Dj → Dk

such that for all (a, b) ∈ L we have F(f)(a) = F(g)(b). We will show that
Ps(F(f))(x0) = Ps(F(g))(y0), finishing the proof that x0 ∼ y0. To this end, let
d ∈ Ps(F(f))(x0). Since Ps(F(f))(x0) = ImF(f)(x0), there is a ∈ x0 such that
F(f)(a) = d. The latter implies that βi(a) = βk(F(f)(a)). By (4.11) there is b
in y0 with βi(a) = βj(b), i.e. (a, b) ∈ L. By the choice of Dk this implies that
F(g)(b) = F(f)(a) = d in Dk. We conclude that d ∈ Ps(F(g))(y0). The other
direction follows by symmetry. This finishes the proof that u is mono.

Claim. u is epi.

Let A ∈ Ps(Z), i.e. A is a subset of Z. Let A0 be a system of representatives
of the equivalence classes occurring in A. Moreover, for a ∈ A0 let Da in D such
that a ∈ F(Da). By ∞-filteredness of D, let Dk in D, fa : Da → Dk a cocone
for the collection of Da’s. Then A′′0 := {F(fa)(a) | a ∈ A0} ∈ Ps(F(Dk)) and it
is easy to see that Ps(βk)(A′′0) = A. But then u maps αk(A0′′) ∈W to A. This
finishes the proof that u is epi.

Proposition 4.4.1 and Proposition 4.4.3 imply:

Corollary 4.4.4. The functor Ps : Classes→ Classes admits an initial algebra.

Using the pointwise construction of colimits in the category of large presheaves
it is not difficult to see that also the powerclass functor on the category of large
presheaves commutes with colimits over ∞-filtered categories.

Proposition 4.4.5. Let C be a small category. Then the powerclass functor
Ps : ClassesC

op → ClassesC
op

commutes with colimits over ∞-filtered categories.

Proof. Let F : D → ClassesC
op

be a diagram, where D ∞-filtered. Let Z :
Cop → Classes, β : F ⇒ ∆Z be the colimit for F . Also let W : Cop → Classes,
α : Ps F ⇒ ∆W be the colimit for Ps F . Let k : W ⇒ Ps(Z) result from the
universal property of W .

Claim. k : W → Ps(Z) is a mono.

It suffices to show that k is pointwise a mono in Classes. So let C ∈ C be
fixed. We will show that kC : W (C) → Ps(Z)(C) is a mono in Classes. Since
colimits in ClassesC

op

are constructed pointwise, using Lemma 4.4.2, we know
that W (C) ∼=

∐
Ps(F(Di))(C)/ ∼, where

(i, x0) ∼ (j, y0) ⇔ x0 ∈ Ps(F(Di))(C), y0 ∈ Ps(F(Dj))(C) and there are
f : Di → Dk and g : Dj → Dk for some Dk in D such that
Ps(F(f))C(x0) = Ps(F(g))C(y0).

Assume X,Y ∈ W (C) with kC(X) = kC(Y ). Let x0 ∈ Ps(F(Di))(C) and
y0 ∈ Ps(F(Dj))(C) be representatives of the equivalence classes of X and Y ,
respectively. Note that by our description of the Ps functor in Section 3.2, we
know that x0 ⊆ yC×F (Di) is a small subpresheaf and similarly y0 ⊆ yC×F(Dj)
small. For C ′ in C we define

LC′ := {((h, a), (l, b)) ∈ x0(C ′)× y0(C ′) | h = l and (βi)C′(a) = (βj)C′(b)}.
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Since colimits in ClassesC
op

are computed pointwise, we know that βC′ :
FC′ ⇒ ∆Z(C′) is a colimit in Classes, where FC′ : D → Classes, D 7→ F(D)(C ′)
and (βC′)i := (βi)C′ . As in the proof of Proposition 4.4.3, we can pick for all
pairs ((h, a), (h, b)) ∈ LC′ , an element Dh,a,b of D that is an upper bound of
Di and Dj such that a and b are equated in Dh,a,b i.e. there are maps fh,a,b :
Di → Dh,a,b and gh,a,b : Dj → Dh,a,b such that F(fh,a,b)C′(a) = F(gh,a,b)C′(b).
By ∞-filteredness there is an upper bound DC′ for all the Dh,a,b so in par-
ticular there are maps fC

′
: Di → DC′ , gC

′
: Di → DC′ such that for all

((h, a), (h, b)) ∈ LC′ we have that F(fC
′
)C′(a) = F(gC

′
)C′(b). having found

such a DC′ for all C ′ in C, we can use ∞-filteredness again -and the fact that
C is small- to find an D in D and f : Di → D and g : Dj → D such that for all
C ′ in C and for all ((h, a), (h, b)) ∈ LC′ , F(f)C′(a) = F(g)C′(b). We claim that

Ps(F(f))C(x0) = Ps(F(g))C(y0). (4.12)

Let C ′ in C and assume (h, d) ∈ Ps(F(f))C(x0)(C ′). Then (h, d) ∈ yC(C ′) ×
F(D)(C ′) such that there is a ∈ F(Di)(C

′), (h, a) ∈ x0(C ′) and F(f)C′(a) = d.
This implies that (h, (βi)C′(a)) ∈ Ps(βi)C(x0)(C ′). Now by assumption, we
have that Ps(βi)C(x0)(C ′) = kC([x0])(C ′) = kC([y0])(C ′) = Ps(βj)C(y0)(C ′).
So there is (h, b) ∈ y0(C ′) with (βj)C′(b) = (βi)C′(a). So the triple (h, a, b) ∈
LC′ and therefore F(f)C′(a) = F(g)C′(b) = d. So we established (h, d) ∈
Ps(F(f))C(y0)(C ′). This shows that Ps(F(f))C(x0)(C ′) ⊆ Ps(F(f))C(y0)(C ′).
The other direction follows by symmetry and therefore we proved (4.12). But
(4.12) implies that x0 ∼ y0 which finishes the proof that k is mono.

Claim. k is epi.

First note that it is enough to show that k is componentwise an epi. So let
C in C and let X ∈ Ps(Z)(C), i.e. X ⊆ yC × Z a small subpresheaf. Our aim
is to show that there is a Dk in D and Y ⊆ yC × F(Dk) a small subpresheaf
such that Ps(βk)C(Y ) = X. Then we would be done as (αk)C(Y ) would be a
preimage of X. By ∞-filteredness, there is a Dk such that every equivalence
classes occurring in X has a representative (h, x) ∈ yC(C ′) × F(Dk)(C ′). For
C ′ ∈ C let x0(C ′) ⊆ yC(C ′) × F(Dk)(C ′) be a system of representatives of the
equivalence classes. Note that x0(C ′) is a set for every C ′ since X is small.
Now the collection of the x0(C ′) does not necessarily define a subpresheaf of
yC×F(Dk), however there is a smallest subpresheaf Y of yC×F(Dk) that such
that x0(C ′) ⊆ Y (C ′) for all C ′ in C. Since all the x0(C ′) are sets is clear that
Y is small. One can easily calculate that Y is as desired.

Using Proposition 4.4.1 and Proposition 4.4.5 we can infer:

Corollary 4.4.6. The functor Ps : ClassesC
op → ClassesC

op

admits an initial
algebra.

We also expect, that the powerclass functor PSh
s : LSh(C,Cov)→ LSh(C,Cov)

commutes with colimits over ∞-filtered categories, establishing the result that
also PSh

s admits an initial algebra. Due to a lack of time we cannot provide a
complete proof of this fact. We we still sketch the steps one would need to take.
Assume F : D → LSh(C,Cov) is a diagram over an ∞-filtered category D. In
Chapter 3, we saw that colimits in LSh(C,Cov) are obtained by first taking the
colimit X of F in ClassesC

op

and then apply the sheafification functor. However,
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we expect that the particular form of an∞-filtered category D ensures that the
colimiting presheaf X is already a sheaf, i.e. we expect that one can prove:

Lemma 4.4.7. LSh(C,Cov) is closed under colimits over ∞-filtered categories
in ClassesC

op

.

Note that the powerclass functor PSh
s : LSh(C,Cov)→ LSh(C,Cov) is in fact

already defined on presheaves, i.e. it can be seen as a functor PSh
s : ClassesC

op →
ClassesC

op

. We expect that one can prove:

Lemma 4.4.8. The functor PSh
s : ClassesC

op → ClassesC
op

commutes with
colimits over ∞-filtered categories.

The proof would be similar to the proof of Proposition 4.4.5, however, one
would need to take the closure operator into account that is involved in the
definition of PSh

s . Lemma 4.4.7 and Lemma 4.4.8 together would yield that PSh
s :

LSh(C,Cov)→ LSh(C,Cov) commutes with colimit over ∞-filtered categories.



Chapter 5

An Algebraic Model for ¬CH

Towards the end of the 19th century, Georg Cantor proved by his famous di-
agonal argument that the real numbers have a strictly larger cardinality than
the natural numbers. Cantor conjectured that all subsets of the reals are either
countable or have the same cardinality as the reals themselves. The statement
became known as the Continuum hypothesis (CH) and was considered as so im-
portant that Hilbert placed it on top of his list of open mathematical problems
to be solved in the 20th century. A partial answer to the conjecture was found
in 1940 by Kurt Gödel who proved that CH is consistent with the other axioms
of Zermelo-Fraenkel by constructing L, the universe of constructible sets [15]. A
full answer to the conjecture was found in 1963 by Paul Cohen [11], who intro-
duced the method of forcing to construct a model of set theory falsifying CH.
The results of Gödel and Cohen established the independence of the Continuum
hypothesis from the other axioms of Zermelo-Fraenkel set theory.

Led by the idea that topos theory would serve as an alternative mathematical
foundation, people saw themselves challenged to provide a topos theoretic proof
of Cohen’s result. In 1972 Tierney succeeded to solve this task. In [29], Tierney
proved that the category of sheaves over the Cohen poset provides a topos that
falsifies the continuum hypothesis and satisfies the axioms of a category of sets
(CS). In this way, Tierney showed that the continuum hypothesis is not implied
by the other axioms for a category of sets. The axioms of a category of sets
are essentially the topos axioms including a natural number object, Booleanness
and the axiom of choice. They differ from the ZFC axioms mostly in the lack
of replacement and (unrestricted) separation.

The goal of this chapter is to show that Tierney’s proof translates to the
context of algebraic set theory. In this way we show that the categorical proof
can provide a model for the full ZFC axioms -as opposed to only the axiom of
CS- falsifying the continuum hypotheses. We will proceed as follows: In the
first part, we will see that Tierney’s result translates to a category of classes
by considering the category of large sheaves over the Cohen poset. To this
end we will mostly follow the presentation given in Chapter 6 of Mac Lane
and Moerdijk’s book[20], modifying some arguments in order to make them fit
into our framework. In this way, we obtain that the outer category of classes
falsifies the continuum hypothesis. In a second step, we will show that the
statement in the outer categy of classes translates to the algebaric universe that
the category of classes contains. For this purpose we will essentially use the
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squeezing results that we established in Chapter 3. In this way we will obtain
an algebraic universe of set theory falsifying the continuum hypotheses.

In a nutshell, the topos theoretic proof works as follows. One starts with
a large set B whose cardinality is even larger than that of the powerset of
the natural numbers. The Cohen poset P is defined to be the set of finite
approximations of a function B×N→ 2 ordered by reverse inclusion. Now the
category of sheaves over the Cohen poset with respect to the dense topology
forms a Boolean topos satisfying the axiom of choice. This topos is shown to
refute CH as one can find a particular sheaf whose cardinality is strictly in
between the one of the natural numbers sheaf and its powersheaf. The sheaf
in question is obtained as the shefification of the constant presheaf taking the
value of the powerset of the true natural numbers. It can be seen as the fake
powersheaf of the natural numbers.

First, we will describe the Cohen poset. In the real category of classes let
B := P P(N) be the powerset of the powerset of the natural numbers. So in
Classes the cardinal inequalities

|N | < |2N| < |B| hold.

Let P be the set of finite approximations of functions from B ×N to 2, i.e

p ∈ P ⇔ p = {((b1, n1), i1), . . . , ((bk, nk), ik)}

with bj ∈ B,nj ∈ N, ij ∈ {0, 1} for all j with 1 ≤ j ≤ k and such that p is a
function.

For p, q ∈ P let

q ≤ p⇔ q extends p as a function

This clearly defines a partial order on P . We will call P := (P,≤) the Cohen
poset. In the following we will work with the category

LSh(P,¬¬),

the category of large sheaves over P with respect to the dense topology that we
introduced in Section 3.3.5. In 3.3.4, we proved that LSh(P,¬¬) is a category
of classes. Assume that VP is the initial algebra for the powerclass functor PSh

s

on LSh(P,¬¬) with element relation εP. By Proposition 3.3.23 and Corollary
4.2.3 it follows that

(VP, εP) |= ZF .

Our goal is to show that
(VP, εP) |= ¬CH .

Let us briefly indicate how we will achieve the result above. In Proposition
4.2.2 we saw that ω : 1→ VP, the classifying map of the natural number object
in LSh(P,¬¬) determines the natural numbers in VP. Moreover, in Proposition
4.3.3 we saw that pow(ω) : 1→ VP, the classifying map of the powerset of the
natural numbers determines the powerset of the natural numbers in VP. We
will see that there is a map x : 1→ VP such that:

(VP, εP) |= “There are injections m1 : ω → x and m2 : x→ pow(ω)”,



CHAPTER 5. AN ALGEBRAIC MODEL FOR ¬CH 76

and

(VP, εP) |= “there is no surjection from ω to x and no surjection from x to pow(ω)”.

This would establish that the algebraic universe (VP, εP) believes that there is
some cardinality between the one of the natural numbers and the cardinality of
its powerset, showing that (VP, εP) falsifies the continuum hypothesis . In order
to prove this result about the universe, we will first establish the result in the
outer category of classes.

For a class X, we will denote by X̂ the image under the composite

Classes ClassesP
op

LSh(P,¬¬)
∆ a

.

where ∆ denotes the constant functor that maps a class X to the constant
presheaf with value X and a denotes the sheafification functor as in Section
3.3.2. The remaining part of this section is devoted to establish the following
results in the category LSh(P,¬¬):

There are monos m1,m2 as in

N̂ P̂(N) PSh
s (N̂)

m1 m2

. (5.1)

Moreover,
Epi(N̂, P̂(N)) ∼= 0 (5.2)

and

Epi(P̂(N),PSh
s (N̂)) ∼= 0 (5.3)

Note that P̂(N) denotes the sheafification of the constant presheaf taking
the value of the powerset of the natural numbers in Classes, whereas PSh

s (N̂)
is the powersheaf of the natural numbers sheaf in LSh(P,¬¬). We begin by
the construction of the monos from (5.1). The existence of m1 is obvious. In
Classes there is a mono j1 : N → Ps(N) and since ∆ and a preserve monos,
m1 := ĵ1 is a mono in LSh(P,¬¬) as desired. The construction of m2 is a bit
more involved. In Proposition 5.0.11, we will show that there is a mono

m′2 : B̂ −→ PSh
s (N̂) in LSh(P,¬¬), where as before B = P P(N).

Once such a mono m′2 is found, the existence of m2 is clear. As above, there is
mono j2 : P(N)→ B in the category Classes giving rise to a mono ĵ2 : P̂(N)→
B̂ in the category LSh(P,¬¬). Then we can define m2 as the composite m′2 ◦ ĵ2.
In the following we make use of the simplified notations that we introduced in
Section 3.3.6.

We begin with the construction of m′2. First we work in the category of large
presheaves over P. Let Ps : ClassesP

op

→ ClassesP
op

denote the powerclass
functor for the category ClassesP

op

.
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In the category of large presheaves over P, i.e the category ClassesP
op

we
would like to define a natural transformation

f : ∆B =⇒ Ps(∆ N)

with components

fp :B −→ Ps(∆ N)(p)

b 7→ Zpb

where PS denotes the powerclass functor in ClassesP
op

. For p ∈ P and b ∈ B
we define

Zpb :Pop −→ Classes by the assignment
q 7→ {n | q ≤ p and q(b, n) = 0}.

Claim. The assignment Zpb gives rise to a subpresheaf of yp ×∆(N).

Proof. First observe that it is clear that for every q ∈ P, Zpb(q) ⊆ (yp ×
∆(N)) (q). In order to prove the claim it remains to check that for q′ ≤ q,
Zpb(q) ⊆ Zpb(q

′). To this end let q′ ≤ q and assume n ∈ Zpb(q), i.e. q ≤ p and
q(b, n) = 0. But since q′ ≤ q, by transitivity q′ ≤ p. Also, since q(b, n) = 0 and
q′ extends q, it follows that q′(b, n) = 0. But this shows that n ∈ Zpb(q

′) as
desired. This proves the claim.

The above claim shows that the assignment fp is well defined. The naturality
of the family f is obvious.

Lemma 5.0.9. The map f defines a mono in ClassesP
op

.

Proof. It suffices to show that f is componentwise a mono so let p ∈ P be fixed.
In order to show that fp : B −→ Ps(∆ N)(p) is a mono in Classes, assume that
b, b′ ∈ B with b 6= b′. We need to show that fp(b) 6= fp(b

′),i.e. Zpb 6= Zpb′ . To
this end let n ∈ N be large enough such that

(b, n) 6∈ dom(p) and (b′, n) 6∈ dom(p).

Let q := p ∪ {((b, n), 0)} ∪ {((b, n), 1)}. One can easily see that n ∈ Zpb(q) but
n 6∈ Zpb′(q). Therefore, Zpb 6= Zpb′ as desired.

Lemma 5.0.10. Zpb is a closed subpresheaf of yp ×∆(N).

Proof. Let q ∈ P. Assume n ∈ yp(q) ×N and assume that the set D := {d |
n ∈ Zpb(d)} is covering in the dense topology, i.e. D is dense below q. We need
to show that n ∈ Zpb(q). Since n ∈ yp(q) ×N it is clear that q ≤ p. Next, we
argue that (b, n) ∈ dom(q). For if not, then q′ := q ∪ {((b, n), 1)} ≤ q in P.
Since D is dense below q there is d ∈ D with d ≤ q′. Now d ∈ D implies that
n ∈ Zpb(d) which implies that d(b, n) = 0 but this contradicts that d extends q′.
We conclude that (b, n) ∈ dom(q). With very similar arguments we can show
that q(b, n) = 0. But this shows that n ∈ Zpb(q) and so Zpb is indeed a closed
subpresheaf of yp ×∆(N).

Lemma 5.0.11. The arrow f gives rise to a mono m′2 : B̂ =⇒ PSh
s (a(∆ N))

in LSh(P,¬¬).
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Proof. By the previous Lemma and the explicit description of the powerclass
functor for large sheaves in Proposition 3.3.19, f factors through ι◦PSh

s (∆(N)),
where ι is the inclusion LSh(P,¬¬)→ ClassesP

op

. Since a preserves monos the
map

a(f) : B̂ =⇒ aPSh
s (∆ N) is mono in LSh(P,¬¬). (5.4)

Since PSh
s (∆(N)) is a sheaf, it follows that aPSh

s (∆ N) ∼= PSh
s (∆(N)). As in

Corollary 5 in [20, p. 282], one can also show that PSh
s (∆(N)) ∼= PSh

s (a(∆(N))).
The two isomorphisms together give aPSh

s (∆ N) ∼= Ps(a(∆(N))). Therefore,
the claim follows from (5.4).

With Lemma 5.0.11, we showed that we have monos

N̂ P̂(N) PSh
s (N̂)

m1 m2

as stated in (5.1). Our next goals are to establish (5.2) and (5.3) above, i.e. to
show that in LSh(P,¬¬)

Epi(N̂, P̂(N)) ∼= 0 and Epi(P̂(N),PSh
s (N̂)) ∼= 0.

The result that will essentially help us to prove the above is stated in Propo-
sition 5.0.13 below. Namely, that for two infinite sets S, T of Classes we have

Epi(S, T ) ∼= 0 in Classes implies Epi(Ŝ, T̂ ) ∼= 0 in LSh(P,¬¬). (5.5)

This is a special property of LSh(P,¬¬) that follows from a combinatorial prop-
erty of P called the countable chain condition. Since a ◦∆ always preserves
monos, the entailment (5.5) expresses that the functor a ◦∆ preserves cardinal-
ities.

Definition 5.0.12. An object X of E satisfies the countable chain condition
if in the Heyting algebra Sub(X) every antichain is countable, i.e. for every
collection {Ui}i∈I of subobjects of X such that Ui ∧ Uj = 0 in Sub(X) if i 6= j,
the index set I is necessarily countable. A category of classes E satisfies the
countable chain condition if it is generated by objects having the countable
chain condition.

Proposition 5.0.13. If E satisfies the countable chain condition, then for any
two infinite sets S and T in Classes, Epi(S, T ) ∼= 0 in Classes implies that
Epi(Ŝ, T̂ ) ∼= 0 in LSh(P,¬¬).

Proof. We sketch the proof of Proposition 6 in [20]. Let S and T be infinite sets
and suppose that Epi(Ŝ, T̂ ) 6∼= 0 in E . By our assumption on the generators,
it follows that there is an object E 6∼= 0 in E satisfying the countable chain
condition and an arrow f : E → Epi(Ŝ, T̂ ). In the proof of Proposition 2.3.18,
we showed that f corresponds to an epi

E × Ŝ E × T̂

E

g
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in E /E. One can easily show that g : E × Ŝ → E × T̂ is also epi in E . For
two elements s : 1 → S and t : 1 → T let ŝ : 1 → Ŝ and t̂ : 1 → T̂ be the
corresponding global sections in E . Consider the following diagram in E , where
both squares are pullbacks.

Us,t Pt

E ∼= E × 1 E × Ŝ

E × 1 ∼= E

E × T̂

n′ n
1× ŝ

h

1× t̂
g

Observe that internally,

Pt = Je : E s : Ŝ | π2g(e, s) = t̂ K in Sub(E × Ŝ)

and
Us,t = Je : E | π2g(e, ŝ) = t̂ K in Sub(E).

In Classes let W := {(s, t) ∈ S × T | Us,t 6∼= 0 in E}. The next step is to show
that for any t ∈ T there is some s ∈ S such that (s, t) ∈ W . Following [20],
there is an iso

qs∈SUs,t ∼= Pt in E .

Since h is the pullback of an epi, h itself is an epi. Since E 6∼= 0 it follows that
there is at least one s ∈ S with Us,t 6∼= 0. This shows that the projection

W −→ T

(s, t) 7→ t

is epi in Classes. Again, as in [20], one can show that for distinct t, t′ in T ,
Us,t and Us,t′ define disjoint subobjects of E. Since E satisfies by assumption
the countable chain condition, it follows that for every s there can be at most
countably many t such that Us,t 6∼= 0 so the set Ws := {t ∈ T | (s, t) ∈ W} is
countable for every s ∈ S. Since S is infinite by assumption, it follows that the
cardinality of W =

⋃
s∈SWs equals the cardinality of S. The bijection S →W

composed with the epi W → T from above gives an epi S → T . This shows
that Epi(S, T ) 6∼= 0 in Classes. This finishes the proof of the proposition.

It remains to show that LSh(P,¬¬) satisfies the countable chain condition.
We will infer this from the well known fact that the Cohen poset satisfies the
countable chain condition, i.e. for every family A ⊆ P such that any two distinct
elements of A are incompatible is necessarily countable. The proof of the latter
relies on a combinatorial fact called the ∆-system lemma. See for example [19,
p. 204].

Lemma 5.0.14. The Cohen poset P satisfies the countable chain condition.

Lemma 5.0.15. LSh(P,¬¬) satisfies the countable chain condition.

Proof. The proof can be found in Lemma 7 [20, p. 289]. We will summarize the
main arguments. First, we show that the representable presheaves on P are in
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fact sheaves. So let yp be a the representable functor for p. We will show for
any q in P,

If D is dense below q and all elements of D are smaller than p, then q ≤ p.
(5.6)

It is not difficult to see that (5.6) implies that yp is a sheaf. So let D be dense
below q and assume that for every d ∈ D, d ≤ p. We want to show that
q ≤ p. First we show dom p ⊆ dom q. For if not, let (b, n) in dom(p) with
(b, n) 6∈ dom(q). Without loss of generality assume that p((b, n)) = 0. Then
q′ := q ∪ {(b, n), 1)} ≤ q. Since D is dense below q, there is d ∈ D with d ≤ q′

so in particular d((b, n)) = 1. But this contradicts d ≤ p. This shows that
dom(p) ⊆ dom(q). Assume (b, n) ∈ dom(p) and without loss of generality
p((b, n)) = 0. Then also q((b, n)) = 0 since otherwise q and b cannot have any
common predecessor. This proves (5.6).

Recall from Proposition 3.2.4 that the collection of a(yp) generate LSh(P,¬¬).
Since we just showed that all representable presheaves are sheaves, it follows
that a(yp) ∼= yp for every p ∈ P and therefore LSh(P,¬¬) is generated by the
representables. By our considerations in Section 3.3.6 it follows that the repre-
sentables are subobjects of the terminal object 1. So it suffices to show that 1
satisfies the countable chain condition since this property is clearly inherited by
subobjects. To this end let (Ui)i∈I be an antichain in Sub(1). Since the repre-
sentables generate, for each i ∈ I we can pick pi ∈ P with ypi ≤ Ui. Clearly, also
the ypi form an antichain. But this implies that the family pi is an antichain in
P. By Lemma 5.0.15 the family (pi)i∈I must be countable. But this proves the
claim.

We will now summarize the stated results and see how we can infer (5.2) and
(5.3) from above. By Lemma 5.0.15, LSh(P,¬¬) satisfies the countable chain
condition. So we can apply Proposition 5.0.13 to obtain that

Epi(N̂, P̂(N)) ∼= 0 in LSh(P,¬¬)

this establishes (5.2). Again, by applying Lemma 5.0.13 and the fact that B is
of larger cardinality than the powerset of the natural numbers in Classes, we
obtain

Epi(P̂(N), B̂)) ∼= 0 in LSh(P,¬¬) .

Now in (5.0.11), we showed that there is a mono B̂ → PSh
s (N̂) in E . Since

LSh(P,¬¬) is Boolean by Proposition 3.3.23, and clearly there is some global
section 1→ B̂, we can apply Lemma 2.3.19 to conclude that

Epi(P̂(N),PSh
s (N̂))) ∼= 0 in LSh(P,¬¬) .

This shows (5.3).
Now we will show that the universe in LSh(P,¬¬) provides an algebraic

model of set theory that satisfies the negation of the continuum hypothesis.
Having the squeezing results from Section 4.3 at hand, it is straightforward to
infer that the universe VP falsifies CH from Tierney’s result. So let (VP, εP) be
the initial algebra for the powerclassfunctor in LSh(P,¬¬).

Theorem 5.0.16. (VP, εP) |= ZFC +¬CH .
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Proof. Since LSh(P,¬¬) is a Boolean pretopos by Corollary 3.3.25, it follows
from Corollary 4.2.3 that (VP, εP) |= ZF. By our discussion is Section 4.2.1 we
can also infer that the axiom of choice is validated in (VP, εP). Observe in the
proof of Theorem 4.2.2 we saw that the natural number object N̂ of LSh(P,¬¬)

defines a small subobject n : N̂→ VP of the universe that gives rise to an arrow
ω : 1→ VP such that

(VP, εP) |= “ω is the set of natural numbers”.

In Section 4.3, we saw that composite

PSh
s (N̂) PSh

s (VP) VP
PSh

s (n) Int

is a small subobject whose classifying map pow(ω) : 1 → V determines the
powerset of ω in VP, i.e.

(VP, εP) |= “pow(ω) is the powerset of ω”.

We will now show that

(VP, εP) |= ∃x ( “there are injections m1 : ω → x ∧m2 : x→ pow(ω)

∧ there is no surjection from ω to x
∧ there is no surjection from x to pow(ω)”).

Let X := P̂(N), where as previously P(N) denotes the powerclass of the natural
numbers in Classes. By (5.1) from the previous section, there is a mono m2 :
X → PSh

s (N̂) which gives rise to a small subobjet of VP via Int ◦PSh
s (n) ◦m2.

Let this subobject be classified by the map x : 1→ VP. In the previous section
we showed that there are monos m1 : N̂→ X and m2 : X → PSh

s (N̂).
In Section 4.3 we examined how we can squeeze these monos into the uni-

verse. So if ρ1 : 1 → VP and ρ2 : 1 → VP classify the monos m1 and m2,
respectively by Corollary 4.3.4 we have that

(VP, εP) |= “ρ1 : ω → x and ρ2 : x→ pow(ω) are injections”.

According to (5.2) and (5.3) from the previous section we have

Epi(N̂, X) ∼= 0 and Epi(X,PSh
s (N̂)) ∼= 0.

By Corollary 4.3.6, it follows that

(VP, εP) |= “there is no surjection ω → x”∧“there is no surjection x→ pow(ω).”

This shows that the universe VP believes that x : 1 → VP has a cardinality in
between the one of the natural numbers and the one of the continuum. This
shows that (VP, εP) |= ¬CH. This finishes the proof of the theorem.



Chapter 6

Conclusion

6.1 Summary of the Thesis
In this thesis we aimed to provide an introduction to the field of the algebraic
set theory with the aim on translating Tierney’s topos theoretic forcing proof
in the setting of algebraic set theory.

In the first chapter, we examined the framework of algebraic set theory in
general. To this end we discussed the notion of a Heyting pretopos, gave an
introduction to categorical logic and in particular discussed internal languages
of categories. We provided an axiomatization of the class of small maps leading
to the definition of a category of classes. Moreover, we collected basic properties
of categories of classes. The results presented in this chapter were collected
mostly from the works [18, 28, 30, 26].

Next, we discussed how categories of presheaves and sheaves on a site fit
into the framework of algebraic set theory. That presheaves and sheaves fit into
the framework of algebraic set theory was already observed in the original work
[18]. Categories of presheaves and sheaves consist of contravariant functors from
a small category C to the category of sets. We saw that such functor categories
can be turned into categories of classes by allowing the functors to have classes
in their codomain and declaring a map between to such functors, i.e. a natural
transformation, as small if all its components are small maps in the category of
the true classes. We discussed how the well known topos theoretic proofs also
apply in the algebraic set theory setting. In particular, we provided an explicit
description of the powerclass functor for the case of large sheaves on a site.

In the next chapter, we focused on the universes of set theory that algebraic
set theory provides. These universes arise as initial algebras for an endofunctor
Ps : E → E on a category of classes. We explained how the language of set theory
is interpreted in these algebraic universes. As first proven in [18], we showed that
the algebraic universes are sound with respect to the intuitionistic set theory
IZF. Moreover, we saw that universes in Boolean categories of classes are
sound with respect to the classical set theory ZF. In addition, we discussed the
validity of the axiom of choice in the algebraic set theory setting. In particular,
we saw that a well-known criterion from topos theory ensuring the validity of
the axiom of choice translates into our framework after a slight modification.
Thereafter, we investigated how statements in the internal logic of the outer
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category of classes relate to set theoretic statements about the algebraic universe
that it contains. Roughly, we saw that constructions such as products, functions
and powersets build in the outer category of classes can be squeezed into the
algebraic universe via a coding procedure, delivering their set theoretic analogue
in the universe. The squeezing results, as we like to call them, provided us with
the major tool to transfer Tierney’s forcing proof in the algebraic set theory
setting. The possibility of such translations was made explicit in [6] and some
examples were carried out in [30]. We further extended these results providing
the necessary preparation for the next chapter.

As the key part of this thesis we showed how Cohen’s model negating the
Continuum Hypothesis fits into the algebraic set theory framework. The proof
consisted of two steps. First, we observed that the sheaf theoretic proof given
by Tierney in [29] can also be carried out in a category of classes, namely in
the enlarged version of Tierney’s sheaf topos. In this way we showed that the
continuum hypothesis is falsified in the internal logic of the outer category of
classes. In a second step, we used the squeezing results that we established in
the previous chapter to prove that the statement in the internal logic of the
category of classes can be translated to the algebraic universe that the category
of classes contains. In this way, we obtained an algebraic model satisfying the
usual ZFC axioms and the negation of the continuum hypothesis.

6.2 Discussion and Further Work
In this thesis we provided an algebraic model of set theory falsifying the con-
tinuum hypothesis, based on the topos theoretic result proved by Tierney [29].
Whereas the topos theoretic model only satisfies a bounded version of set theory,
the setting of algebraic set theory allowed us to obtain a model satisfying the
negation of the continuum hypotheses and all axioms of usual ZFC set theory.

Tierney’s idea was to give an elementary proof using only constructions
internal to a topos. In our presentation, however, we often made reference to
some external universe of set theory. Especially in our considerations on large
presheaves and large sheaves we used an external universe of sets that provided
us a notion of smallness. So in particular, we assumed an external universe of
set theory in our considerations in the last chapter.

But also in the context of algebraic set theory an elementary proof can be
given. Van den Berg and Moerdijk [7] have shown that a category of classes is
closed under the formation of sheaves. Using this result, one can show that Tier-
ney’s proof can be translated into the algebraic set theory framework without
reference to an external universe of set theory.

Cohen’s original method of forcing was soon recognized to be equivalent to
an approach using Boolean valued models of set theory.1 It would be interesting
to see how the theory of Boolean valued models fits into the algebraic set theory
framework. A natural starting point for such considerations could be a result
by Higgs stating that the category of sheaves over a Boolean algebra and the
category of Boolean valued models are equivalent categories.2 The idea would
be to translate Higgs result in the algebraic set theory setting, establishing the
equivalence between the categories of large sheaves over Boolean algebras and

1See [4] for an account on Boolean valued models of set theory.
2A proof of Higgs’ result can be found in [17] or [13].
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the category of Boolean valued (class)-models. We expect that a Boolean valued
universe of set theory then corresponds to the algebraic universe arising in the
category of large sheaves over the Boolean algebra in question. It should be a
small step to extend this result to the case of Heyting algebras.
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