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Abstract

In this thesis we construct a new model of intensional type theory in the category of cubical sets with

connections. To facilitate this we introduce the notion of a nice path object category, a simplification of the

path object category axioms of [vdBG12] that nonetheless yields the full path object category structure.

By defining cubical n-paths and contraction operators upon them we exhibit the category of cubical sets

with connections as a nice path object category, and are therefore able to utilise a general construction of a

homotopy theoretic model of identity types from the structure of a path object category in order to give our

model of type theory.



Introduction

The problem of constructing sound models of intensional type theory goes back at least 30 years, starting

with the model of type theory in locally cartesian closed categories given by Seely in [See84]. This had a

major deficiency in that it only modelled an extensional type theory. That is, the following rule is satisfied

p ∈ IdA(a, b)
Id - Reflection

a = b ∈ A

meaning propositional and definitional equality coincide. This is problematic besides the desire to keep

these two notions separate, as the addition of reflection causes desirable computational properties such

as strong normalisation [Str93] and decidable type checking [Str91] to fail. It wasn’t until Hofmann &

Streicher’s landmark paper [HS98] that an intensional model was constructed. In their paper identity types

were interpreted as hom-sets of groupoids, themselves given a discrete groupoid structure. Witnesses to

propositional equality were thus given by isomorphisms between terms, themselves interpreted as objects

in groupoids. As the hom-sets could be inhabited by more than one arrow this meant extensionality was

no longer satisfied, although the lack of higher dimensional structure meant these witnesses could not be

further related by identity terms. In order to obtain such towers of identity types it was required to look at

higher dimensional structure, which in turn opened the door to methods from homotopy theory. This idea

was independently taken up by Voevodsky [Voe06] and Warren [War08], and paved the way for the field now

known as homotopy type theory [IAS13].

In recent years research in this area has accelerated, yielding a number of models of intensional type theory in

familiar mathematical settings such as simplicial sets [KLV12, Str14], chain complexes [War08], topological

spaces [vdBG12] and the effective topos [vOar]. In [vdBG12] van den Berg and Garner were able to give a

general framework for producing such models that encompassed all of those listed. The inspiration for the

present work comes from the cubical set model presented in [BCH14], the existence of which was intimated in

[Cis14]. A natural question arises: can this model also be brought into the general framework of [vdBG12]?

We answer in the affirmative, as long as we take the category of cubical sets with connections. In doing so

we are able to present a brand new model of intensional type theory.

Structure Of The Thesis

The thesis is split into two sections: the first contains the vast majority of the original work in this thesis.

Here we concern ourselves with the identification of a path object category structure on the category of

cubical sets with connections. The second section is then an expansion of the work in [vdBG12] and details
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how one can construct a model of type theory with the path object category structure we have determined.

We give a brief summary of each chapter below:

• Chapter 1. We introduce path object categories, a natural axiomatic framework satisfied by categories

with an internal notion of path. For the first time in the literature we present these axioms in full detail

by abstracting from the characteristic example in Top. Over the course of the chapter we prove that

the category Gpd is a path object category.

• Chapter 2. We introduce a new concept, that of a nice path object category. We prove that this

simplification of the path object category axioms still yields the path object category structure and

thus reduce the task of identifying such a structure on the category of cubical sets with connections.

• Chapter 3. We give the main result of the thesis: that the category of cubical sets with connections

is a path object category. To do so we exhibit a instance of the nice path object category axioms by

introducing cubical n-paths and contraction operators. We then show that we can give the collection

of cubical n-paths through X the structure of a cubical set with connections and use the contraction

operators to show we have an internal notion of path contraction for these paths.

• Chapter 4. We present the categorical semantics for the models of type theory we construct. Con-

currently we give motivation for the framework introduced in Chapter 6 by presenting the fibration

interpretation of type theory and explaining the coherency issues such models suffer.

• Chapter 5. Following [vdBG12], we give the modifications required to solve the coherency issue in

model category interpretations of identity types. In doing so we present the framework by which we

construct the model in the title of the thesis: that of a homotopy theoretic model of identity types. We

prove that such structures produce sound categorical models of intensional type theory.

• Chapter 6. We prove that path object categories are homotopy theoretic models of identity types. To

do so we introduce a notion of homotopy internal to path object categories and construct a cloven

weak factorisation system based on strong deformation retracts and maps corresponding to certain

homotopy lifting properties. As an immediate corollary we obtain a model of intensional type theory

in the category of cubical sets with connections.

• Chapter 7. In this concluding chapter we summarise the work of the thesis and identify some open

questions and potential future research with the tools we have developed.

• Appendix A. We give the category theoretic background required to read the thesis.

• Appendix B. We present the rules of the fragment of type theory we model in this thesis.

Original Contribution

The original contributions of this thesis are thus:

1. The first complete exposition of the path object category axioms in the literature as well as an expansion

of the material detailed in [vdBG12].
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2. The introduction of nice path object categories. We prove that this refinement of the path object

category axioms yields the necessary structure to construct categorical models of type theory, and has

the benefit of side-stepping the introduction of tensorial strengths. We believe this framework can

provide simplified and/or new proofs of known path object category structures as well as providing a

simple set of axioms to identify new models of type theory with.

3. A new model of intensional type theory given in cubical sets with connections. This can be distinguished

from the model in cubical sets given in [BCH14] in one key respect: in our model any cubical set may

be interpreted as a context. In order to do so, we introduce cubical n-paths as well as contraction

operators upon them and then prove that the category of cubical sets with connections carries a nice

path object category structure.
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Cubical Sets With Connections
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Chapter 1

Path Object Categories

We begin by introducing the central notion of this section of the thesis: that of a path object category

[vdBG12]. By abstracting from the characteristic case in Top we can build up to the full definition gradually,

articulating the motivation for each axiom and developing the precise details concurrently. To do so we will

intermittently require additional category theoretic concepts: for the sake of a self contained exposition we

give a full introduction to each as they are needed.

1.1 Axiom 1: Path Objects

Appropriately the first criteria we demand of a path object category is the existence of what we will call path

objects. The idea is to be able to assign to each object X an object MX in the category that we interpret

as containing all of the “paths” between “points” in X. That these collections of paths have the structure of

an object of the category is the stringent condition that makes path object categories special. The principal

example is given by the Moore path space of a topological space X

{(r, φ) ∈ R+ ×XR+ | ∀s ≥ r(φ(s) = φ(r))}

together with the subspace topology inherited from the usual topology on R+ × XR+ . The path object

category structure can be seen as an abstraction from this particular case.

What is particularly special in this case is that these Moore paths give the morphisms of a category based

in X: We have dom(r, φ) = φ(0), cod(r, φ) = φ(r), whilst the composition of paths (r, φ) and (s, ψ) with

φ(r) = ψ(0) is given by (r + s, θ) where

θ(t) =

φ(t) if t ≤ r

ψ(t− r) if r ≤ t

It is then immediate that idx = (0, t 7→ x). We note that each of these maps is a continuous function - a

morphism in Top - so this construction is entirely contained within the category. As we wish to replicate

this we must first introduce an internal notion of category.

2



Chapter 1. Path Object Categories 3

1.1.1 Internal Categories

To help understand the motivation behind this definition, as well as introduce the notation for the general

case, we give a category theoretic procedure for specifying a small category within Set. We first specify the

objects and morphisms of our category by choosing sets C0 and C1. These would need to satisfy certain

coherence properties of course, and we thus require “source” and “target” morphisms s, t : C1 → C0 specifying

domain and codomain for our arrows. Each object in C0 has an identity arrow, and we give this by specifying

a morphism e : C0 → C1 assigning identity arrows in such a way that

se = idC0
= te

By taking a pullback with the source and target maps obtain the set of all pairs of composable arrows:

C1 ×C0
C1 C1

C1 C0

p0

p1 t

s

(1.1)

In Set the vertex of this pullback is of course given by {(f, g) | t(f) = s(g)}. We thus give composition by

specifying a morphism

c : C1 ×C0 C1 → C1

with uniqueness following from the fact c is a function. When the context is clear we will interchangeably

denote c(f, g) by g ◦ f . We also require the commutativity of the following diagrams, ensuring that the

domain and codomain of g ◦ f are dom(f) and cod(g) respectively

C1 ×C0
C1 C1

C1 C0

c

p0 s

s

C1 ×C0
C1 C1

C1 C0

c

p1 t

t

We now need to specify some conditions on the data we have thus far to satisfy the usual category axioms.

First we ensure that identity arrows work as usual, with f ◦ iddom(f) = f and idcod(f) ◦ f = f . Once again

we take pullbacks: from the source and target pullback we obtain the following cones using the fact e is a

retract of s and t.

C1

C1 ×C0 C1 C1

C1 C0

idC1

et

〈id,et〉

p0

p1 t

s

C1

C1 ×C0 C1 C1

C1 C0

es

idC1

〈es,id〉

p0

p1 t

s

(1.2)
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By computation we can see that the function 〈id, et〉 is given by f 7→ (f, idcod(f)), and similarly the function

〈es, id〉 is given by f 7→ (iddom(f), f). Hence the identity axiom is satisfied iff

c ◦ 〈id, et〉 = idC1
= c ◦ 〈es, id〉

Finally we ensure associativity is satisfied. We’d first give a set comprised of triples of composable morphisms

by taking a pullback, and as one might expect there are two ways we can do that:

(C1 ×C0
C1)×C0

C1 C1 ×C0
C1

C1 C0

q0

q1 tπ1

s

C1 ×C0
(C1 ×C0

C1) C1 ×C0
C1

C1 C0

r0

r1 t

sπ0

It is clear that these vertexes are identical up to deletion of brackets and hence isomorphic. However these

diagrams both induce different cones on the source/target pullback:

(C1 ×C0
C1)×C0

C1

C1 ×C0
C1 C1

C1 C0

cq0

q1

〈c,id〉
p0

p1 t

s

C1 ×C0
(C1 ×C0

C1)

C1 ×C0
C1 C1

C1 C0

r0

r1

〈id,c〉
p0

p1 t

s

(1.3)

Working out the details we see that these induced arrows are given by

〈id, c〉(f, (g, h)) = (f, h ◦ g)

〈c, id〉((f, g), h) = (g ◦ f, h)

Hence associativity reduces to the condition

c ◦ 〈id, c〉 = c ◦ 〈c, id〉

With all of these properties satisfied we have specified a small category. By abstracting away from Set we

obtain a general procedure. We note that we only require the existence of the pullbacks given in the preceding

discussion, but we strengthen our definition to include the requirement of finite completeness, as this holds

in all the cases of interest to us.

Definition 1.1 (Internal Category). [Bor94a] Given a finitely complete C, a category internal to C

C0 C1 C1 ×C0 C1e

s

t

c

consists of the following data:

• Objects: An object C0 in C;
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• Arrows: An object C1 in C;

• Source/Target: Morphisms s, t : C1 → C0;

• Identity: A morphism e : C0 → C1;

• Composition: A morphism c : C1 ×C0 C1 → C1, where C1 ×C0 C1 is given by (1.1);

such that the following diagrams commute:

• Source/Target of identities:

C0 C1

C0

idC0

e

s

C0 C1

C0

idC0

e

t

• Source/Target of compositions:

C1 ×C0
C1 C1

C1 C0

c

p0 s

s

C1 ×C0
C1 C1

C1 C0

c

p1 t

t

• Left and right identity laws:

C1 C1 ×C0 C1 C1

C1

〈id,et〉

idC1

c

〈es,id〉

idC1

Where 〈id, et〉 and 〈es, id〉 are as given in (1.2).

• Associativity:

C1 ×C0 C1 ×C0 C1 C1 ×C0 C1

C1 ×C0 C1 C1

〈c,id〉

〈id,c〉 c

c

Where 〈c, id〉 and 〈id, c〉 are as given in (1.3).

Remark 1.2. Although for our purposes we only require the definition of an internal category, one can also

internalise the notion of functor, natural transformation, limits and more. For an introduction to this rich

theory we direct the interested reader to [Bor94a] from which our presentation is taken.
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1.1.2 Path Objects

With the idea of an internal category under our belts we can give the first half of our definition. Let E be a

finitely complete category. We wish to assign to every object X an object of paths through X MX such that

there is an internal category

X MX MX ×X MXeX

sX

tX

cX

We interpret the source map sX as giving the start point of paths; similarly tX gives end-points. Then the

pullback MX×XMX gives the object of concatenable paths and composition cX performs that concatenation

of paths. Finally the map eX assigns trivial paths.

Notation 1.1.1. We will make frequent reference to the projection maps in (1.1). To prevent any ambiguity

we denote the object they are associated with in the superscript:

MX ×X MX MX

MX X

pX0

pX1 tX

sX

Another feature of the path structure on Top is reversal of paths. Given a Moore path (r, φ), the reversal

can be given by (r, φ◦) where

φ◦(t) =

φ(r − t) if t ≤ r

φ(0) if r ≤ t

This induces an identity-on-objects involution on the Moore path category structure. We thus require such

a morphism τX : MX →MX. This means that the following identities will be satisfied

τX ◦ τX = idMX τX ◦ eX = eX

sX ◦ τX = tX tX ◦ τX = sX

as well as internal functorality. We can define the map τ cX : MX ×X MX → MX ×X MX making use of

the identities just given:

MX ×X MX

MX ×X MX MX

MX X

τX◦pX1

τX◦pX0

τcX

pX0

pX1 tX

sX
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We thus require τX ◦cX = cX ◦τ cX . This enforces that the reversal of a composition of paths is the composition

of the reversals of the original paths.

To complete the idea we note that in Top any continuous function f : X → Y induces a map between Moore

path spaces by the assignment (r, φ) 7→ (r, f ◦ φ). It is immediate that this is functorial, and extends the

assignment of Moore path spaces to a pullback preserving functor. Not only this, but this extension establishes

the categorical structure maps as the components of natural transformations. We thus demand that the

assignment M can be extended to a pullback preserving functor making s, t, e, c, τ natural transformations.

That is

s : M ⇒ id t : M ⇒ id

e : id⇒M τ : M ⇒M

In order to state the case for c we need to confirm the assignment of pullback vertices X 7→MX ×X MX is

functorial. To do so we prove the following general proposition:

Proposition 1.3. Given endofunctors M,N : C → C and natural transformations s, t : M ⇒ N there exists

a canonical endofunctor CM,N : C → C extending the assignment

X 7→MX ×NX MX

where MX ×X MX is the pullback along sX and tX .

Proof. By the naturality of s and t it follows for every f : X → Y in C we can give an assignment f 7→ CM,N (f)

where CM,N (f) is obtained

MX ×NX MX

MY ×Y MY MY

MY NY

Mf◦pX0

Mf◦pX1

CM,N (f)

pY0

pY1 tY

sY

(1.4)

Since

tY ◦Mf ◦ πX0 = Nf ◦ tX ◦ πX0
= Nf ◦ sX ◦ πX1
= sY ◦Mf ◦ πX1

Functorality of this assignment follows straightforwardly from functorality of M and N .
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In our particular case we set N = id. Hence we demand that

c : CM ⇒M

We capture the discussion of this section in a definition:

Definition 1.4 (Has Path Objects). A finitely complete category E has path objects if there exists a pullback

preserving endofunctor M : E → E and natural transformations

s : M ⇒ id t : M ⇒ id

e : id⇒M c : C ⇒M

τ : M ⇒M

such that, for all X in E

i) X MX MX ×X MXeX

sX

tX

cX is an internal category of E .

ii) τX constitutes an identity-on-objects involution on the internal category MX with

τX ◦ τX = idX τX ◦ eX = eX

sX ◦ τX = tX tX ◦ τ = sX

τX ◦ cX = cX ◦ τ cX

Thus we can give the first path object category axiom:

Axiom 1: E has path objects

As motivation, we give a straightforward example of a category with path objects:

Example 1.1. We show the category Gpd has path objects. Define I to be the groupoid with two objects 0

and 1 and two non identity arrows 0 → 1 and 1 → 0 which are each others’ inverses. Given Γ in Gpd we

define MΓ = ΓI . We can equivalently consider ΓI as the groupoid with arrows p : γ → γ′ of Γ as objects

and commutative squares

γ
p- γ′

δ

h

?

q
- δ′

k
?
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as morphisms (h, k) : p→ q. We define sΓ, tΓ : ΓI → Γ by the domain and codomain functors respectively:

sΓ(p : γ → γ′) = γ sΓ((h, k)) = h

tΓ(p : γ → γ′) = γ′ tΓ((h, k)) = k

We then give eΓ : Γ→ ΓI as the functor assigning identity arrows:

eΓ(γ) = idγ eΓ(p : γ → γ′) =

γ
idγ- γ

γ′

p
?

idγ′
- γ′

p
?

The pullback ΓI ×Γ ΓI can be computed to be the groupoid comprised of composable pairs of Γ-morphisms

(p, q) with morphisms (h, j, k) : (p, q)→ (p′, q′) given by commutative diagrams

γ
p- γ′

q- γ′′

δ

h

?

p′
- δ′

j
?

q′
- δ′′

k
?

Hence we define cΓ : ΓI ×Γ ΓI → ΓI by

cΓ(p, q) = q ◦ p cΓ(h, j, k) = (h, k)

Finally we define the involution τΓ : ΓI → ΓI

τΓ(p : γ → γ′) = p τΓ(h, k) = (h−1, k−1)

Now it is straightforward to see that this data equips Γ with the structure of an internal category (in fact,

an internal groupoid) since the required properties are all inherited from Γ itself. The assignment Γ 7→ ΓI

can be extended to the usual exponent functor (−)I , which is also pullback preserving. Naturality in the

cases s, t, e, τ is straightforward, so we focus on c. We can compute the assignment of arrows of the functor

C(·)I : Gpd→ Gpd to be given by

C(·)I (f)(p, q) = (f(p), f(q)) C(·)I (f)(h, j, k) = (f(h), f(k)) : (f(p), f(q))→ (f(p′), f(q′))

Hence given a functor f : Γ→ ∆ naturality follows immediately by functorality:

fI ◦ cΓ(p, q) = fI(q ◦ p) = (f(q ◦ p)) = (f(q) ◦ f(p)) = c∆(f(p), f(q)) = c∆ ◦ C(·)I (f)(p, q)

with the case for morphisms similar.
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1.2 Axiom 2: Constant Paths

The next piece of data we require of a path object category is the existence of constant paths. Many of the

examples we want to fit into this framework come equipped with a notion of length for each path. Jumping

ahead slightly, if we come to the idea of path contraction without this, problems can arise. For example in

the topological case, in order to contract a path p through X to an end point we should demand a path of

paths ηX(p) given by

sX(p) tX(p)

tX(p) tX(p)

p

p eX(tX(p))

eX(tX(p))

ηX(p)

This requires that for ηX we have identity upon post-composition with sMX or M(sX) and the composite

eX ◦ tX upon post-composition with tMX or M(tX). However in this case our idea cannot work without

constant paths. Hence if the Moore path p is length r, necessarily the corresponding ηX(p) must also be

length r since M(sX) preserves path length and M(sX)(ηX(p)) = p. However by the same argument, for

r > 0 we cannot have M(tX)(ηX(p)) = eX(p) since eX(p) is length 0 and M(tX) preserves path length.

Hence to obtain a notion of contraction in our structure we need to ensure M(tX)(ηX(p)) is a non-trivial

path of length r that is constant at tX(p).

Now we have that the terminal topological space given by {?} with the discrete topology and all Moore paths

through this space are of the form (k, t 7→ ?).: We can then define ConXx : R+ → X by ConXx (t) = x and

give an assignment M1 × X → MX by sending ((k, t → ?), x) to (k,ConXx ). By utilising some properties

of the maps assigning this we can use these constant paths to perform path contraction. The idea is thus:

interpret M1 as the “object of path lengths” and give a map

α1,X : M1×X →MX

that takes a path length r and an object of x and returns the constant path at x of length r. These maps

must interact appropriately with the natural transformations s, t, c, e and τ . To see how to resolve this we

need to investigate the structure the product × enforces on our category.

1.2.1 Strong Functors

We begin with a definition:

Definition 1.5 (Monoidal Category). [Bor94b] A monoidal structure (⊗, 1, ε, ι, a) on a category C consists

of the following data:

• Tensor Product: A functor C ⊗ C → C;

• Unit Object: An object 1 in C;

• Unitors: Natural isomorphisms

ε : 1⊗− ⇒ idC
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ι : −⊗ 1⇒ idC

• Associator: A natural isomorphism

a : (−⊗−)⊗− =⇒ −⊗ (−⊗−)

Making the following diagrams commute

• Pentagon Identity

(W ⊗X)⊗ (Y ⊗ Z)

((W ⊗X)⊗ Y )⊗ Z

(W ⊗ (X ⊗ Y ))⊗ Z W ⊗ ((X ⊗ Y )⊗ Z)

W ⊗ (X ⊗ (Y ⊗ Z))

aW⊗X,Y,Z

aW,X,Y ⊗Z

aW,X⊗Y,Z

W⊗aX,Y,Z

aW,X,Y⊗Z

• Triangle Identity:

(X ⊗ 1)⊗ Y X ⊗ (1⊗ Y )

X ⊗ Y

aX,1,Y

ιX⊗Y X⊗εY

We call a category equipped with a monoidal structure a monoidal category. Further, we say a monoidal

category is strict if the associator and left/right unitors are all identity morphisms.

As the name “tensor product” implies, the inspiration behind this notion comes from the category of vector

spaces Vect. It is well known that the operation of taking the tensor product of vector spaces extends to

linear maps, thus giving the requisite functor. An even simpler example of this phenomenon, however, is

given by interpreting ⊗ to be × in a category with finite products:

Example 1.2 (Cartesian Monoidal Category). Let C be a category with finite products as well as a canonical

choice of product A×B for each pair of objects A,B in C, say by assuming AC. Then there exists a Cartesian

monoidal structure on C given by taking the tensor product to be the usual product and the unit object to

be the terminal object 1 in C.This is functorial because of our choice of products. To obtain the unitors we

utilise the universal property of the product. First note we can obtain a morphism φ : X → 1×X as follows

X

1×X

1 X

! idX
φ

π1,X
0

π1,X
1



Chapter 1. Path Object Categories 12

We immediately have that π1,X
1 ◦ φ = idX and we obtain φ ◦ π1,X

1 = id1 by the universal property of the

product since

π1,X
0 ◦ φ ◦ π1,X

1 = π1,X
0 (1 is terminal)

π1,X
1 ◦ φ ◦ π1,X

1 = π1,X
1

Hence π1,X
1 constitutes an isomorphism, and by exploiting properties of the product we can see that it is

natural. Hence we have εX = π1,X
1 . Similarly we obtain ιX = πX,10 . Finally we obtain the associator aX,Y,Z

from the diagram

(X × Y )× Z

X × (Y × Z)

X Y × Z

πX,Y0 ◦πX,Y×Z0
πX,Y1 ×idZ

aX,Y,Z

π0
π1

It is a straightforward but tedious exercise to verify the monoidal identities are satisfied by these natural

isomorphisms.

This example highlights a further property a monoidal category may satisfy: symmetry. It is easily verifiable

that in a category with finite products there is a natural isomorphism A × B ' B × A. For a monoidal

category to be symmetric there are some obvious identities that should hold to ensure the symmetry maps

operate coherently with the existing structure:

Definition 1.6 (Symmetric Monoidal Category). A monoidal category C is symmetric if there exists natural

isomorphisms υX,Y : X ⊗ Y ' Y ⊗X such that the following diagrams commute:

• Unit Coherence:

X ⊗ 1 1⊗X

X

υX,1

εX ιX

• Associativity Coherence:

(X ⊗ Y )⊗ Z X ⊗ (Y ⊗ Z) (Y ⊗ Z)⊗X

(Y ⊗X)⊗ Z Y ⊗ (X ⊗ Z) Y ⊗ (Z ⊗X)

aX,Y,Z

υX,Y ⊗Z

υX,Y⊗Z

aY,Z,X

aY,X,Z Y⊗υX,Z

• Inverse Law:

X ⊗ Y X ⊗ Y

Y ⊗X
υX,Y

id

υY,X
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That the Cartesian moinoidal structure satisfies these additional properties follows immediately from basic

facts about products. So why is this relevant to our interests? It turns out that, given an endofunctor M on

a symmetric monoidal category, there is a notion of functor that allows us to move from tensor products of

M-images and objects to the M-image of a tensor product in a coherent way:

Definition 1.7 (Strong Functor). [Koc70] Given a symmetric monoidal category C a tensorial strength on

an endofunctor M : C → C is a natural transformation α : M(−) ⊗ (−) ⇒ M((−) ⊗ (−)) rendering the

following diagrams commutative

• Unitor:

MX ⊗ 1 M(X ⊗ 1)

MX

αX,1

ιMX M(ιX)

• Associativity

M((X ⊗ Y )⊗ Z)

M(X ⊗ Y )⊗ Z

(MX ⊗ Y )⊗ Z MX ⊗ (Y ⊗ Z)

M(X ⊗ (Y ⊗ Z))

αX⊗Y,Z

αX,Y ⊗idZ

aMX,Y,Z

αX,Y⊗Z

M(aX,Y,Z)

We call (M,α) a strong functor.

A trivial example of a tensorial strength is given by the identity maps idX⊗Y . As one might expect, these

turn the identity endofunctor id: C → C into a strong functor. We also have a canonical strength for MM if

(M,α) is a strong functor.

Example 1.3. Suppose (M,α) is a strong functor on a symmetric monoidal category (C,⊗). We define

α?X,Y : MMX ⊗ Y →MM(X × Y ) by

α?X,Y = M(αX,Y ) ◦ αMX,Y

That this is a natural transformation follows from the fact that α is one: let f : X → X ′ and g : Y → Y ′.

Then

MM(f ⊗ g) ◦ α?X,Y = M(M(f ⊗ g) ◦ αX,Y ) ◦ αMX,Y

= M(αX′,Y ′) ◦M(Mf ⊗ g) ◦ αMX,Y

= M(αX′,Y ′) ◦ αMX′,Y ′ ◦ (MMf ⊗ g)

= α?X′,Y ′ ◦ (MMf ⊗ g)
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α? also inherits the unitor axiom:

MM(ρX) ◦ α?X,1 = M(M(ρX) ◦ αX,1) ◦ αMX,1

= M(ρMX) ◦ αMX,1

= ρMMX

Showing associativity is a little trickier. We note that by naturality of α we have the commutative square

M(MX ⊗ Y )⊗ Z M(MX ⊗ Y ⊗ Z)

MM(X ⊗ Y )⊗ Z M(M(X ⊗ Y )⊗ Z)

αMX⊗Y,Z

M(αX,Y )⊗idZ M(αX,Y ⊗idZ)

αM(X⊗Y ),Z

(1.5)

Expanding M(aX,Y,Z) ◦ α?X⊗Y,Z ◦ (α?X,Y ⊗ idZ) we obtain:

M(M(aX,Y,Z) ◦ αX⊗Y ) ◦ αM(X⊗Y ),Z ◦ (M(αX,Y )⊗ idZ) ◦ (αX,Y ⊗ Z)

and then by computing we get

M(M(aX,Y,Z) ◦ αX⊗Y ) ◦ αM(X⊗Y ),Z ◦ (M(αX,Y )⊗ idZ) ◦ (αX,Y ⊗ Z)

= M(M(aX,Y,Z) ◦ αX⊗Y ◦ (αX,Y ⊗ idZ)) ◦ αMX⊗Y,Z ◦ (αX,Y ⊗ idZ) (1.5)

= M(αX,Y⊗Z ◦ aMX,Y,Z) ◦ αMX⊗Y,Z ◦ (αMX,Y ⊗ idZ) (Associativity of α)

= M(αX,Y⊗Z) ◦ αMX,Y⊗Z ◦ aMMX,Y,Z (Associativity of α)

= α?X,Y⊗Z ◦ aMMX,Y,Z

as required: α? satisfies associativity and is indeed a tensorial strength for MM .

Appropriately for the task at hand, strong functors come with their own notion of natural transformation,

which allows us to ensure the assignment of constant paths interacts coherently with the maps sX , tX , cX , eX

and τX :

Definition 1.8 (Strong Natural Transformation). Given a symmetric monoidal category C and strong func-

tors (M,α), (N, β) : C → C a strong natural transformation σ : (M,α)⇒ (N, β) is a collection of maps

(σX : MX → NX | X in C0)

such that for all X,Y in C the following diagram commutes:

MX ⊗ Y M(X ⊗ Y )

NX ⊗ Y N(X ⊗ Y )

αX,Y

σX⊗idY σX⊗Y

βX,Y

Remark 1.9. Strong functors were introduced by Kock in his and have strong links to the theory of enriched

categories. The interested reader can consult for more information about this connection.
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1.2.2 Constant Paths

With these new notions we are ready to define the next axiom of our framework. The assignment in Top

of constant paths can be extended to a strength given by ((k, φ), y) 7→ (k, ψ) where ψ(x) = (φ(x), y). This

strength has the property that the natural transformations s, t, e, c, τ are strong with respect to it. We thus

demand for the second path object category the existence of a strength α for the endofunctor M such that

the natural transformations s, t, e, c and τ are strong with respect to it. Strength and naturality then exhibit

M1×X as a retraction of MX, and we can interpret α1,X as representing the subobject of constant paths

through X. This idea makes immediate sense in the cases s, t, e and τ since we already know the strengths

of all the functors involved, however we must specify the strength CM is equipped with before we can state

the demand that c is a strong natural transformation. Assuming that s and t are already strong natural

transformations we once again can give a general result constructing a strength.

Proposition 1.10. Given strong functors (M,α), (N,α′) if natural transformations s, t : M ⇒ N are also

strong then there exists a canonical strength for the functor CM,N of Proposition 1.3.

Proof. Since s and t are strong natural transformations we have

(MX ×NX MX)× Y

M(X × Y )×N(X×Y ) M(X × Y ) M(X × Y )

M(X × Y ) N(X × Y )

αX,Y ◦(pX0 ×Y )

αX,Y ◦(pX1 ×Y )

βX,Y

pX×Y0

pX×Y1
tX×Y

sX×Y

(1.6)

Since

tX×Y ◦ αX,Y ◦ (pX0 × idY ) = α′X,Y ◦ (tX × idY ) ◦ (pX0 × idY ) (t a strong natural transformation)

= α′X,Y ◦ (tX ◦ pX0 × idY )

= α′X,Y ◦ (sX ◦ pX1 × idY )

= α′X,Y ◦ (sX × idY ) ◦ (pX1 × idY )

= sX×Y ◦ αX,Y ◦ (pX1 × idY ) (s a strong natural transformation)

We claim (βX,Y | X,Y in C0) is a strength for CM,N . To show naturality we require, given f : X → X ′ and

g : Y → Y ′, that the following diagram commutes

(MX×NXMX)× Y M(X × Y )×N(X×Y ) M(X × Y )

(MX ′ ×NX′ MX ′)× Y ′ M(X ′ × Y ′)×N(X′×Y ′) M(X ′ × Y ′)

βX,Y

CM,N (f)×g CM,N (f×g)

βX′,Y ′
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To show this it is sufficient to show equality upon post-composition with pX×Y0 and pX×Y1 . Let i ∈ {0, 1}.
Then we have:

pX
′×Y ′

i ◦ CM,N (f × g) ◦ βX,Y = M(f × g) ◦ pX×Yi ◦ βX,Y (Commutativity of (1.4))

= M(f × g) ◦ αX,Y ◦ (pXi × idY ) (Commutativity of (1.6))

= αX′,Y ′ ◦ (Mf × g) ◦ (pXi × idY ) (Naturality of α)

= αX′,Y ′ ◦ (pX
′

i ◦ CM,N (f)× g) (Commutativity of (1.4))

= pX
′×Y ′

i ◦ βX′,Y ′ ◦ (CM,N (f)× g) (Commutativity of (1.6))

To prove β satisfies the unitor law we must show that the following diagram commutes:

(MX ×NX MX)× 1 M(X × 1)×N(X×1) M(X × 1)

MX ×NX MX
π
MX×NXMX,1
0

βX,1

CM,N (πX,10 )

It suffices to show equality upon post composition by the projections pX0 and pX1 . We observe that, for

i ∈ {0, 1}, the following diagram commutes:

(MX ×NX MX)× 1 M(X × 1)×N(X×1) M(X × 1) MX ×NX MX

MX × 1 M(X × 1) MX

βX,1

(pXi ×id1)

CM,N (πX,10 )

pX×1
i

pXi

αX,1

πMX,10

M(πX,10 )

The right-hand square commutes by (1.4), the left hand square commutes by (1.6) and the bottom commutes

by the unitor law for α. Hence by taking the two possible paths around the perimeter we obtain the identity

pXi ◦ CM,N (πX,10 ) ◦ βX,1 = πMX,1
0 ◦ (pXi × id1)

We then immediately have

πMX,1
0 ◦ (pX0 × id1) = pXi ◦ π

MX×NXMX,1
0

and so we obtain the required identities: β satisfies the unitor law. Finally we must show associativity is

satisfied. It is sufficient to show equality upon post- composition with the projection maps p
X×(Y×Z)
0 and

p
X×(Y×Z)
1 . Attending to the route around the left-hand side of the pentagon first, we observe, for i ∈ {0, 1},
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that we have the following commutative diagram:

(MX × Y )× Z (CM,N (X)× Y )× Z

M(X × Y )× Z CM,N (X × Y )× Z

M((X × Y )× Z) CM,N ((X × Y )× Z)

M(X × (Y × Z)) CM,N (X × (Y × Z))

αX,Y ×idZ

(pXi ×idY )×idZ

βX,Y ×idZ

α(X×Y ),Z

(pX×Yi ×idZ)

βX×Y,Z

M(aX,Y,Z)

p
(X×Y )×Z
i

CM,N (aX,Y,Z)

p
X×(Y×Z)
i

The top and middle squares are commutative by (1.6) whilst the bottom square commutes by (1.4). Hence

post composition of the left hand side of the β associativity diagram by p
X×(Y×Z)
i is equal to pre-composition

of the left hand side of the α associativity diagram by (pXi × idY )× idZ . Applying α’s associativity we obtain

αX,Y×Z ◦ aMX,Y,Z ◦ ((pXi × idY )× idZ)

To see this is equal to travelling around the right-hand side of the pentagon we observe we have the following

commutative diagram

(CM,N (X)× Y )× Z CM,N (X)× (Y × Z) CM,N (X × (Y × Z))

(MX × Y )× Z MX × (Y × Z) M(X × (Y × Z))

a
CM,N (X),Y,Z

(pXi ×idY )×idZ pXi ×idY×Z

βX,Y×Z

p
X×(Y×Z)
i

aMX,Y,Z αX,Y×Z

The left hand square commutes by naturality of a, whilst the right commutes by (1.6). It follows that β is

associative, and thus a strength for CM,N .

By applying this proposition with N = id we obtain a strength β for CM . Thus the coherence of composition

with respect to the additional structure requires that

c : (CM , β)⇒ (M,α)

. Once again we collect this discussion in a definition:

Definition 1.11 (Has Constant Paths). Given a category E with path objects, we say E has constant paths

if the endofunctor M is equipped with a strength

αX,Y : MX × Y →M(X × Y )

with respect to which s, t, e, c and τ are strong natural transformations:

s : (M,α)⇒ (id, id) t : (M,α)⇒ (id, id)

e : (id, id)⇒ (M,α) c : (CM , β)⇒ (M,α)

τ : (M,α)⇒ (M,α)



Chapter 1. Path Object Categories 18

Hence we have Axiom 2:

Axiom 2: E has constant paths

Example 1.4. We look back to Gpd to give an example of a category satisfying this axiom. We define the

strength αΓ,∆ : ΓI ×∆→ (Γ×∆)I by

αΓ,∆(p : γ → γ′, δ) = (p, idδ) : (γ, δ)→ (γ′, δ)

αΓ,∆((h, k), r) =

(p,idδ)-

(h,r)

?
(q,idδ′ )

-

(k,r)

?

Naturality is straightforward: let f : Γ→ Γ′ and g : ∆→ ∆′. On objects we have

(f × g)I ◦ αΓ,∆(p, δ) = (f(p), idg(δ)) = αΓ′,∆′(f(p), g(δ)) = αΓ′,∆′ ◦ (fI × g)(p, δ)

and naturality on arrows follows immediately by a similar argument: we leave the verification of the unitor and

associativity laws to the reader. That s, t, e, τ are strong natural transformations with respect to this strength

is a straightforward argument, so once more we concentrate on c. Recall that the functor C(·)I : Gpd→ Gpd

was given by

C(·)I (f)(p, q) = (f(p), f(q)) C(·)I (f)(h, j, k) = (f(h), f(k)) : (f(p), f(q))→ (f(p′), f(q′))

By Proposition 1.10 we can compute the strength β for this functor as

βΓ,∆((p, q), δ) = ((p, idδ), (q, idδ))

βΓ,∆((h, j, k), r) =

(p,idδ) - (q,idδ) -

(h,r)

?
(p′,idδ′ )

-

(j,r)

?
(q′,idδ′ )

-

(k,r)

?

Thus we see that with respect to this strength c is a strong natural transformation: on objects we have

αΓ,∆ ◦ (cΓ × id∆)((p, q), δ) = (q ◦ p, idδ) = cΓ×∆((p, idδ), (q, idδ)) = cΓ×∆ ◦ βΓ,∆((p, q), δ)

with verification on arrows similar.

1.3 Axiom 3: Path Contraction

With the material of the previous sections in place, the final axiom is much easier to state. As alluded to

earlier, we ask for a notion of path contraction in the category: that is, the ability to contract paths onto
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one end point in a uniform and coherent way. In the case of Top we can assign to each Moore path (k, φ)

through X the contraction path (k, ψ : R+ → {(r, φ) ∈ R+ × XR+ | ∀s ≥ r(φ(s) = φ(r))}) through the

Moore path space, where for t ≤ k we have ψ(t) = (l − t, φt) where φt(x) = φ(x + t) and for k ≤ t we have

ψ(t) = (0, φk), noting that φk is equal to the constant function at φ(k). Applying the action of the functor

on the codomain map to this path gives the constant path (k, φk) as discussed in the previous section.

Hence for each path ζ in MX we require a path of paths in MMX that starts at ζ and ends on a constant

path at ζ’s end point, and the assignment of this contraction path must respect the existing path object

category structure. This means the assignment η : M ⇒ MM must not only be a natural transformation,

but also a strong natural transformation. There remains the question of the strength on MM but recall we

gave just such a strength α? = M(αX,Y ) ◦ αMX,Y . We can formalise this idea in the following definition:

Definition 1.12 (Has Path Contraction). Given a category E with path objects and constant paths, we say

E has path contraction if there exists a strong natural transformation

η : (M,α)⇒ (MM,α?)

such that the following equations hold:

sMX ◦ ηX = idMX (1.7)

tMX ◦ ηX = eX ◦ tX (1.8)

M(sX) ◦ ηX = idMX (1.9)

M(tX) ◦ ηX = M(π1,X
1 ) ◦ α1,X ◦ (M(!), tX) (1.10)

ηX ◦ eX = eMX ◦ eX (1.11)

This gives us the final axiom for a path object category:

Axiom 3: E has path contraction.

Theorem 1.13. [vdBG12, Proposition 5.1.1] The category Top carries the structure of a path object category.

Example 1.5. We continue our case study in Gpd and show it satisfies the third and final axiom. We define

η : (−)I ⇒ ((−)I)I by

• Objects:

ηΓ(p : γ → γ′) =

γ
p- γ′

γ′

p
?

idγ′
- γ′

idγ′
?
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• Arrows: The morphism

γ γ′

δ δ′

p

h k

q

is sent to the commutative cube

γ′ δ′

γ δ

γ′ δ′

γ′ δ′

k

id

id

p

h

p

q

k

id

k
id

q

We first verify this is a strong natural transformation. Once again we just show the action on objects and

let the reader satisfy herself it works analogously for arrows. We have

ηΓ×∆ ◦ αΓ,∆(p, δ) = ηΓ×∆(p, idδ)

=

(p,idδ) -

(p,idδ)

?
(id,id)

-

(id,id)

?

Similarly we obtain

(αΓ,∆)I ◦ αΓI ,∆ ◦ (ηΓ × id∆)(p, δ) = ((αΓ,∆)I ◦ αΓI ,∆)


p-

p

?
id
-

id

?

, δ



= (αΓ,∆)I


p-

p

?
id
-

id

?

, idδ

 =

(p,idδ) -

(p,idδ)

?
(id,id)

-

(id,id)

?

Finally we show each of the equations is satisfied:

(1.7) sΓI ◦ ηΓ(p : γ → γ′) = sΓI ((p, idγ′) : p→ idγ′) = p = idΓI (p)

(1.8) tΓI ◦ ηΓ(p : γ → γ′) = tΓI ((p, idγ′) : p→ idγ′) = idγ′ = e(γ′) = e ◦ t(p : γ → γ′)

(1.9) (sΓ)I ◦ ηΓ(p : γ → γ′) = (sΓ)I((p, idγ′) : p→ idγ′) = (sΓ)(p, idγ′) = p = idΓI (p)

(1.10) tIΓ ◦ ηΓ(p) = tIΓ(p, idγ′) = idγ′ = M(π1,X
1 ) ◦ α1,Γ(id?, γ

′) = M(π1,X
1 ) ◦ α1,Γ ◦ (!I , tΓ)(p)

(1.11 ηΓ ◦ eΓ(γ) = ηΓ(idγ) = (idγ , idγ) : idγ → idγ = ididγ = eΓI ◦ eΓ(γ)
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Thus we summarise our running example as a theorem:

Theorem 1.14. Gpd is a path object category.

We can now collect the work of this chapter into a single definition for the sake of readability:

Definition 1.15 (Path Object Category). A finitely complete category E is called a path object category if

the following three axioms are satisfied:

• Axiom 1. E has path objects:

There exists a pullback preserving endofunctor M : E → E and natural transformations

s : M ⇒ id t : M ⇒ id

e : id⇒M c : CM ⇒M

τ : M ⇒M

such that, for all X in E

i) X MX MX ×X MXeX

sX

tX

cX is an internal category of E .

ii) τX constitutes an identity-on-objects involution on the internal category MX with

τX ◦ τX = idX τX ◦ eX = eX

sX ◦ τX = tX tX ◦ τ = sX

τX ◦ cX = cX ◦ τ cX

• Axiom 2. E has constant paths:

The endofunctor M comes equipped with a strength

αX,Y : MX × Y →M(X × Y )

with respect to which s, t, e, c and τ are strong natural transformations:

s : (M,α)⇒ (id, id) t : (M,α)⇒ (id, id)

e : (id, id)⇒ (M,α) c : (CM , β)⇒ (M,α)

τ : (M,α)⇒ (M,α)

• Axiom 3. E has path contraction:

There exists a strong natural transformation

η : (M,α)⇒ (MM,α?)
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such that the following equations hold:

sMX ◦ ηX = idMX

tMX ◦ ηX = eX ◦ tX

M(sX) ◦ ηX = idMX

M(tX) ◦ ηX = M(π1,X
1 ) ◦ α1,X ◦ (M(!), tX)

ηX ◦ eX = eMX ◦ eX

Besides the examples of Top and Gpd there are a number of other important examples, proofs of which can

all be found in van den Berg and Garner’s [vdBG12] (in which the definition of path object category was

originally given), with the exception of the final item which appears in [vOar].

Theorem 1.16. The following carry the structure of a path object category:

• The category of simplicial sets sSet; [vdBG12, Section 7]

• The category of chain complexes over a ring R; [vdBG12, Proposition 5.3.2]

• Any interval object category; [vdBG12, Proposition 5.4.3]

• The effective topos. [vOar, Proposition 1.6]

The goal of the first part of this thesis is to add the category of cubical sets with connections to this list. In

order to facilitate this we dedicate the next chapter to a refinement of the path object category axioms that

we prove is enough to yield the requisite structure.



Chapter 2

Nice Path Object Categories

In this chapter we refine the path object category axioms and introduce a new concept: that of a nice path

object category. Nice path object categories have two advantages over the regular kind: first, they allow

us to ignore all issues of path length; second, they allow us to avoid the introduction of tensorial strengths.

Beyond this it seems many examples of path object category structures are already nice path object category

structures, or will be after the introduction of a sensible equivalence relation.

The introduction of tensorial strengths appeared to be vital in the case of Top as Moore paths come equipped

with a notion of length that the path object structure must interact coherently with. Despite this, a close

examination of the example of Gpd reveals that these concerns do not always apply.

Recall that the endofunctor M : Gpd→ Gpd was defined to be exponentiation by the interval groupoid I.

In this case the object of path lengths M1 is trivial, as

M1 = {?}I ∼= {?} = 1

We note further that the constant paths assigned by the strength α1,X coincide with the trivial paths assigned

by the natural transformation e. Thus it appears that our initial intuition and our work-around coincide in

the case of Gpd. This begs the question: might we be able to modify the path object category axioms to

account for this situation? This motivates the following definition:

Definition 2.1 (Nice Path Object Category). A finitely complete category E is called a nice path object

category if the following modified path object category axioms are satisfied:

• Axiom 1. E has path objects:

There exists a pullback preserving endofunctor M : E → E and natural transformations

s : M ⇒ id t : M ⇒ id

e : id⇒M c : CM ⇒M

τ : M ⇒M

such that, for all X in E

23
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i) X MX MX ×X MXeX

sX

tX

cX is an internal category of E .

ii) τX constitutes an identity-on-objects involution on the internal category MX with

τX ◦ τX = idX τX ◦ eX = eX

sX ◦ τX = tX tX ◦ τ = sX

τX ◦ cX = cX ◦ τ cX

• Axiom 2′. E has nice constant paths:

M1 ∼= 1

• Axiom 3′. E has nice path contraction:

There exists a natural transformation

η : M ⇒MM

such that the following equations hold:

sMX ◦ ηX = idMX

tMX ◦ ηX = eX ◦ tX

M(sX) ◦ ηX = idMX

M(tX) ◦ ηX = eX ◦ tX

ηX ◦ eX = eMX ◦ eX

We leave it to the reader to return to the example of Chapter 1 and convince herself of the following theorem:

Theorem 2.2. Gpd is a nice path object category.

We dedicate the remainder of this chapter to proving that this definition is enough to prove an instantiation

of the path object category axioms. We begin by constructing a strength:

Proposition 2.3. Given a nice path object category E there exists a strength α for the endofunctor M .

Proof. Recall that given X and Y in a category with pullbacks the product X × Y can be obtained as the

pullback

X × Y X

Y 1

πX,Y0

πX,Y1

Since M is pullback preserving we thus obtain a natural isomorphism

µX,Y : MX ×MY →M(X × Y )
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from the pullback diagram

MX ×MY

M(X × Y ) MX

MY 1

πMX,MY0

πMX,MY1

µX,Y

M(πX,Y0 )

M(πX,Y1 )

(2.1)

Hence we claim the collection of maps (αX,Y : MX × Y →M(X × Y ) | X,Y in E0) defined

αX,Y = µX,Y ◦ (idMX × eY )

yields a tensorial strength for the endofunctor M . We must satisfy three properties:

• Naturality: Let f : X → X ′ and g : Y → Y ′. We must show that the following diagram commutes:

MX × Y M(X × Y )

MX ′ × Y ′ M(X ′ × Y ′)

αX,Y

Mf×g M(f×g)

αX′,Y ′

By applying the naturality of µ and e we can compute this directly:

M(f × g) ◦ αX,Y = M(f × g) ◦ µX,Y ◦ (idMX × eY )

= µX′,Y ′ ◦ (Mf ×Mg) ◦ (idMX × eY ) (Naturality of µ)

= µX′,Y ′ ◦ (Mf × (Mg ◦ eY ))

= µX′,Y ′ ◦ (Mf × (eY ′ ◦ g)) (Naturality of e)

= µX′,Y ′ ◦ (idMX′ × eY ′) ◦ (Mf × g)

= αX′,Y ′ ◦ (Mf × g)

Hence α is a natural transformation α : M(−)× (−)⇒M((−)× (−)) as required.

• Unitor: Recall that we must show commutativity of the following diagram:

MX × 1 M(X × 1)

MX

αX,1

ιMX M(ιX)
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We remind the reader that for the Cartesian monoidal structure the maps ιX are given by the projections

πX,10 . Hence commutativity follows from the following diagram

MX × 1 MX ×M1 M(X × 1)

MX

(idMX×eY )

πMX,10

µX,1

πMX,M1
0

M(πX,10 )

The triangle on the right commutes by (2.1) whilst the left triangle is commutative by the definition

of idMX × eY .

• Associativity: Recall that we must show commutativity of the following diagram

M((X × Y )× Z)

M(X × Y )× Z

(MX × Y )× Z MX × (Y × Z)

M(X × (Y × Z))

αX×Y,Z

αX,Y ×idZ

aMX,Y,Z

αX,Y×Z

M(aX,Y,Z)

In the Cartesian monoidal structure the natural isomorphism aX,Y,Z is obtained by the universal prop-

erty of the product as follows:

(X × Y )× Z

X × (Y × Z)

X Y × Z

πX,Y0 ◦πX×Y,Z0
πX,Y1 ×idZ

aX,Y,Z

π0
π1

(2.2)

and applying M gives us the identities

M(πX,Y×Z0 ) ◦M(aX,Y,Z) = M(πX,Y0 ) ◦M(πX×Y,Z0 ) (2.3)

M(πX,Y×Z1 ) ◦M(aX,Y,Z) = M(πX,Y1 × idZ) (2.4)

Now since we have that M(X× (Y ×Z)) is the vertex of a pullback it suffices to prove the two different

routes around the associativity diagram are identical upon post-composition with the projection maps

M(πX,Y×Z0 ) and M(πX,Y×Z1 ). We begin with the first of these cases. First observe that the following

diagram is commutative:
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M(X × Y )×MZ M((X × Y )× Z) M(X × (Y × Z))

M(X × Y )× Z M(X × Y ) MX

(MX ×MY )× Z MX ×MY

(MX × Y )× Z MX × Y

µX×Y,Z

π
M(X×Y ),MZ
0

M(aX,Y,Z)

M(πX×Y,Z0 ) M(πX,Y×Z0 )idM(X×Y )×eZ

π
M(X×Y ),Z
0 M(πX,Y0 )

µX,Y ×idZ

πMX×MY,Z0

µX,Y
πMX,MY0

(idMX×eY )×idZ

πMX×Y,Z0

idMX×eY

πMX,Y0

In the left-hand column: the top triangle commutes by (2.1), whilst the lower triangle and squares all

follow by definition. In the right-hand column: the top square commutes by (2.3), the upper triangle

commutes by (2.1) and the lower triangle is an instance of the universal property of the product. Hence

by traversing the perimeter of the diagram in both directions, we obtain the identity:

M(πX,Y×Z0 ) ◦M(aX,Y,Z) ◦ αX×Y,Z ◦ (αX,Y × idZ) = πMX,Y
0 ◦ πMX×Y,Z

0

We also have:

M(πX,Y×Z0 ) ◦ αX,Y×Z ◦ aMX,Y,Z = M(πX,Y×Z0 ) ◦ µX,Y×Z ◦ (idMX × eY×Z) ◦ aMX,Y,Z

= π
MX,M(Y×Z)
0 ◦ (idMX × eY×Z) ◦ aMX,Y,Z (2.1)

= πMX,Y×Z
0 ◦ aMX,Y,Z

= πMX,Y
0 ◦ πMX,Y×Z

0 (2.2)

Hence we indeed have equality upon post-composition with M(πX,Y×Z0 ). Moving to the second case,

we first observe that, for all X,Y in E we have the identity

eX×Y = µX,Y ◦ (eX × eY ) (2.5)

Once again we can verify this by checking we have identity upon post-composition by M(πX,Y0 ) and

M(πX,Y1 ). In the case for M(πX,Y0 ) we have:

M(πX,Y0 ) ◦ µX,Y ◦ (eX × eY ) = πMX,MY
0 ◦ (eX × eY ) 2.1

= eX ◦ πX,Y0

= M(πX,Y0 ) ◦ eX×Y (Naturality of e)
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The analogous argument gives the latter case. With this we can see that the following diagram com-

mutes:

M(X × Y )×MZ M((X × Y )× Z)

M(X × Y )× Z MY ×MZ M(Y × Z) M(X × (Y × Z))

(MX ×MY )× Z Y × Z

(MX × Y )× Z

µX×Y,Z

M(πX,Y1 )×idMZ
M(πX,Y1 ×idZ)

M(aX,Y,Z)idM(X×Y )×eZ

M(πX,Y1 )×eZ

µY,Z

M(πX,Y×Z1 )

µX,Y ×idZ

πMX,MY1 ×eZ

eY ×eZ
eY×Z

(idMX×eY )×idZ

πMX,Y1 ×idZ

In the left-most column: that the upper triangle commutes is immediate, the lower triangle commutes

by (2.1) and the bottom square commutes by definition. In the middle column: the upper square

commutes by naturality of µ and the lower triangle commutes by (2.5). Finally the rightmost triangle

commutes by (2.4), By traversing the perimeter of the diagram in the two possible directions we obtain

the identity:

M(πX,Y×Z1 ) ◦M(aX,Y,Z) ◦ αX×Y,Z ◦ (αX,Y × idZ) = eY×Z ◦ (πMX,Y
1 × idZ)

Conversely we have:

M(πX,Y×Z1 ) ◦ αX,Y×Z ◦ aMX,Y,Z = M(πX,Y×Z1 ) ◦ µX,Y×Z ◦ (idMX × eY×Z) ◦ aMX,Y,Z

= π
MX,M(Y×Z)
1 ◦ (idMX × eY×Z) ◦ aMX,Y,Z (2.1)

= eY×Z ◦ πMX,Y×Z
1 ◦ aMX,Y,Z

= eY×Z ◦ (πMX,Y
1 × idZ) (2.2)

So the two morphisms are also equal under post-composition with M(πX,Y×Z1 ). It follows that the

diagram commutes: α satisfies associativity and is thus a strength for M .

The next step is to verify the natural transformations of the nice path object category E are strong with

respect to the strength we have defined. By a result of Kock [Joh97, Proposition 3.1] the strength we have

defined is in fact the unique strength for M that renders e strong, but we can show that s, t, c and τ also

become strong. We begin with the simpler cases.

Proposition 2.4. Given a nice path object category E, the natural transformations s, t : M ⇒ id, e : id⇒M

and τ : M ⇒M are strong natural transformations with respect to the strength given in Proposition 2.3.

Proof. We prove each case in turn:
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• s, t: We only give the proof for s since the argument for t is essentially the same. Recall that we

require commutativity of the following diagram:

MX × Y M(X × Y )

X × Y

αX,Y

sX×idY sX×Y

By the universal property of the product it is sufficient to show equality upon post-composition by the

projections πX,Y0 and πX,Y1 , We have:

πX,Y0 ◦ sX×Y ◦ αX,Y = πX,Y0 ◦ sX×Y ◦ µX,Y ◦ (idMX × eY )

= sX ◦M(πX,Y0 ) ◦ µX,Y ◦ (idMX × eY ) (Naturality of s)

= sX ◦ πMX,MY
0 ◦ (idMX × eY ) (Commutativity of (2.1))

= πX,Y0 ◦ (sX × sY ) ◦ (idMX × eY )

= πX,Y0 ◦ (sX × idY ) (Source of Identities law)

πX,Y1 ◦ sX×Y ◦ αX,Y = πX,Y1 ◦ sX×Y ◦ µX,Y ◦ (idMX × eY )

= sY ◦M(πX,Y1 ) ◦ µX,Y ◦ (idMX × eY ) (Naturality of s)

= sY ◦ πMX,MY
1 ◦ (idMX × eY ) (Commutativity of (2.1))

= πX,Y1 ◦ (sX × sY ) ◦ (idMX × eY )

= πX,Y1 ◦ (sX × idY ) (Source of Identities law)

Hence sX×Y ◦ αX,Y = sX × idY and we have s : (M,α)⇒ (id, id) as required.

• e: We must verify the commutativity of the diagram

X × Y

MX × Y M(X × Y )

eX×idY
eX×Y

αX,Y
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Since M(X×Y ) is the vertex of the pullback (2.1) it is suffices to show equality upon post-composition

with the morphisms M(πX,Y0 ) and M(πX,Y1 ). We have

M(πX,Y0 ) ◦ αX,Y ◦ (eX × idY ) = M(πX,Y0 ) ◦ µX,Y ◦ (eX × eY )

= πMX,MY
0 ◦ (eX × eY ) (Commutativity of 2.1)

= eX ◦ πMX,Y
0

= M(πX,Y0 ) ◦ eX×Y (Naturality of e)

M(πX,Y1 ) ◦ αX,Y ◦ (eX × idY ) = M(πX,Y1 ) ◦ µX,Y ◦ (eX × eY )

= πMX,MY
1 ◦ (eX × eY ) (Commutativity of 2.1)

= eY ◦ πMX,Y
1

= M(πX,Y1 ) ◦ eX×Y (Naturality of e)

Hence eX×Y = αX,Y ◦ (eX × idY ) and e : (id, id)⇒ (M,α) as required.

• τ : We must verify commutativity of the diagram:

MX × Y M(X × Y )

MX × Y M(X × Y )

αX,Y

τX×idY τX×Y

αX,Y

Once again it suffices to show equality upon post composition with the morphisms M(πX,Y0 ) and

M(πX,Y1 ). Thus we have:

M(πX,Y0 ) ◦ αX,Y ◦ (τX × idY ) = M(πX,Y0 ) ◦ µX,Y ◦ (τX × eY )

= πMX,MY
0 ◦ (τX × eY ) (Commutativity of (2.1))

= τX ◦ πMX,Y
0

= τX ◦ πMX,MY
0 ◦ (idMX × eY )

= τX ◦M(πX,Y0 ) ◦ µX,Y ◦ (idMX × eY ) (Commutativity of (2.1))

= M(πX,Y0 ) ◦ τX×Y ◦ αX,Y (Naturality of τ)

M(πX,Y1 ) ◦ αX,Y ◦ (τX × idY ) = M(πX,Y1 ) ◦ µX,Y ◦ (τX × eY )

= πMX,MY
1 ◦ (τX × eY ) (Commutativity of (2.1))

= eY ◦ πMX,Y
1

= τY ◦ eY ◦ πMX,Y
1 (τY ◦ eY = eY )

= τY ◦ πMX,MY
1 ◦ (idMX × eY )

= τY ◦M(πX,Y1 ) ◦ µX,Y ◦ (idMX × eY ) (Commutativity of (2.1))

= M(πX,Y1 ) ◦ τX×Y ◦ αX,Y (Naturality of τ)

Hence αX,Y ◦ (τX × idY ) = τX×Y ◦ αX,Y and τ : (M,α)⇒ (M,α) as required.
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Now in order to show that E satisfies the full second path object category axiom it remains to show the case

for the composition. First we recall some definitions from the previous chapter:

• The functor CM : E → E is defined

– Objects: CM (X) = MX ×X MX

– Arrows: Given f : X → Y we obtain CM (f) from the pullback diagram:

MX ×X MX

MY ×Y MY MY

MY Y

Mf◦pX0

Mf◦pX1

CM (f)

pY0

pY1 tY

sY

(2.6)

• The components for the strength β for the functor CM is given by the pullback diagram

(MX ×X MX)× Y

M(X × Y )×X×Y M(X × Y ) M(X × Y )

M(X × Y ) N(X × Y )

αX,Y ◦(pX0 ×idY )

αX,Y ◦(pX1 ×idY )

βX,Y

pX×Y0

pX×Y1
tX×Y

sX×Y

(2.7)

• The map 〈eY tY , id〉 is defined by the pullback

MY

MY ×Y MY MY

MY Y

idMY

eY tY

〈eY tY ,id〉
pY0

pY1 tY

sY

(2.8)

and satisfies

cY ◦ 〈eY tY , id〉 = idMY (2.9)

Before attending to the proof we will require the following lemma.
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Lemma 2.5. For X,Y in a nice path object category E the following equalities hold:

i) CM (πX,Y0 ) ◦ βX,Y = π
CM (X),Y
0

ii) CM (πX,Y1 ) ◦ βX,Y = 〈eY tY , id〉 ◦ eY ◦ πC
M (X),Y

1

Proof. i) Since MX ×X MX is the vertex of a pullback it is sufficient to prove equality upon post-

composition with pX0 and pX1 . We first observe that for i ∈ {0, 1} we can obtain the following commu-

tative diagrams:

MX ×MY M(X × Y ) MX

(MX ×X MX)× Y M(X × Y )×X×Y M(X × Y ) MX ×X MX

πMX,MY0

µX,Y M(πX,Y0 )

pXi ×eY

βX,Y

pX×Yi

CM (πX,Y0 )

pXi

In both cases we have that the left square commutes by (2.7), the right square commutes by (2.6) and

the top commutes by (2.1). Hence by diagram chasing we obtain

pXi ◦ CM (πX,Y0 ) ◦ βX,Y = πMX,MY
0 ◦ (pXi × eY ) = pXi ◦ π

MX×XMX,Y
0

so we obtain the required identities.

ii) First note that since MY ×Y MY is the vertex of a pullback it suffices to prove equality upon post-

composition with the projections pY0 and pY1 . As in the previous case, letting i ∈ {0, 1} we obtain the

commutative diagrams

MX ×MY M(X × Y ) MY

(MX ×X MX)× Y M(X × Y )×X×Y M(X × Y ) MY ×Y MY

πMX,MY1

µX,Y M(πX,Y1 )

(pXi ×eY )

βX,Y

pX×Yi

CM (πX,Y1 )

pYi

By diagram chasing we obtain the identities:

pYi ◦ CM (πX,Y1 ) ◦ βX,Y = πMX,MY
1 ◦ (pXi × eY ) = eY ◦ πC

M (X),Y
1



Chapter 2. Nice Path Object Categories 33

Now for the case i = 0 note that by (2.8) we have idMY = pY0 ◦ 〈eY tY , id〉. Hence

pY0 ◦ CM (πX,Y1 ) ◦ βX,Y = pY0 ◦ 〈eY tY , id〉 ◦ eY ◦ π
CM (X),Y
1

Similarly for, the case i = 1 we have by the internal category axioms that idY = tY ◦ eY . Hence we

have

pY1 ◦ CM (πX,Y1 ) ◦ βX,Y = eY ◦ πC
M (X),Y

1

= eY ◦ tY ◦ eY ◦ πC
M (X),Y

1

= pY1 ◦ 〈eY tY , id〉 ◦ eY ◦ π
CM (X),Y
1 (Commutativity of (2.8))

It thus follows that

CM (πX,Y1 ) ◦ βX,Y = 〈eY tY , id〉 ◦ eY ◦ πC
M (X),Y

1

We’re now ready to finish the proof that E satisfies the second path object category axiom.

Proposition 2.6. Nice path object categories satisfy the second path object category axiom.

Proof. From our previous propositions it remains to verify that c is a strong natural transformation c :

(CM , β)⇒ (M,α). We must verify the commutativity of the following diagram:

(MX ×X MX)× Y M(X × Y )×X×Y M(X × Y )

MX × Y M(X × Y )

βX,Y

cX×idY cX×Y

αX,Y
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Again, since M(X × Y ) is the vertex of a pullback, it suffices to check equality upon post-composition by

M(πX,Y0 ) and M(πX,Y1 ). We have

M(πX,Y0 ) ◦ αX,Y ◦ (cX × idY ) = M(πX,Y0 ) ◦ µX,Y ◦ (cX × eY )

= πMX,MY
0 ◦ (cX × eY ) (Commutativity of (2.1))

= cX ◦ πC
M (X),Y

0

= cX ◦ CM (πX,Y0 ) ◦ βX,Y Lemma 2.5 i))

= M(πX,Y0 ) ◦ cX×Y ◦ βX,Y (Naturality of c)

M(πX,Y1 ) ◦ αX,Y ◦ (cX × idY ) = M(πX,Y1 ) ◦ µX,Y ◦ (cX × eY )

= πMX,MY
1 ◦ (cX × eY ) (Commutativity of (2.1))

= eY ◦ πC
M (X),Y

1

= cY ◦ 〈eY tY , id〉 ◦ eY ◦ πC
M (X),Y

1 (2.9)

= cY ◦ CM (πX,Y1 ) ◦ βX,Y (Lemma 2.5 ii))

= M(πX,Y1 ) ◦ cX×Y ◦ βX,Y (Naturality of c)

Hence cX×Y ◦ βX,Y = αX,Y ◦ (cX × idY ) and c : (CM , β) ⇒ (M,α) as required. It follows that E satisfies

Axiom 2.

We are now ready to finish the work of this chapter and prove the third and final path object category axiom

is satisfied by a nice path object category E .

Theorem 2.7. If E satisfies the nice path category axioms then E satisfies the path category axioms.

Proof. Let E be a nice path object category. We already have Axiom 1 satisfied by definition and we know

Axiom 2 is satisfied by Proposition 2.6, hence it remains to give the two missing details of Axiom 3. First

we must verify that η is a strong natural transformation η : (M,α) ⇒ (MM,α?), which we recall requires

the commutativity of the following diagram:

MX × Y M(X × Y )

MMX × Y MM(X × Y )

αX,Y

ηX×idY ηX×Y

α?X,Y

We remind the reader that α? was defined

α?X,Y = M(αX,Y ) ◦ αMX,Y

In our particular case we have

α?X,Y = M(µX,Y ) ◦M(idMX × eY ) ◦ µMX,Y ◦ (idMMX × eY )
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Now since M is pullback preserving we have that MM(X × Y ) is the vertex of a pullback. It follows that it

suffices to show equality upon post-composition with the maps MM(πX,Y0 ) and MM(πX,Y1 ). Note also that

from (2.1) we have the commutative diagram

M(MX ×MY )

MM(X × Y ) MMX

MMY 1

M(πMX,MY0 )

M(πMX,MY1 )

M(µX,Y )

MM(πX,Y0 )

MM(πX,Y1 )

(2.10)

Now we have:

MM(πX,Y0 ) ◦ ηX×Y ◦ αX,Y = MM(πX,Y0 ) ◦ ηX×Y ◦ µX,Y ◦ (idMX × eY )

= ηX ◦M(πX,Y0 ) ◦ µX,Y ◦ (idMX × eY ) (Naturality of η)

= ηX ◦ πMX,MY
0 ◦ (idMX × eY ) (Commutativity of (2.1))

= ηX ◦ πMX,Y
0

Now observe that the following diagram commutes:

MX × Y MMX ×MY

MMX M(MX × Y )

MM(X × Y ) M(MX ×MY )

ηX×eY

ηX◦π0

πMMX,MY0

µMX,Y

M(πMX,Y0 )

M(idMX×eY )MM(πX,Y0 )
M(πMX,MY0 )

M(µX,Y )

In the upper square: the upper triangle commutes by definition whilst the lower triangle commutes by (2.1).

In the lower square: the upper triangle commutes once more by definition whilst the lower square commutes

by (2.10). Hence by diagram chasing we can see that

MM(πX,Y0 ) ◦ α?X,Y ◦ (ηX × idY ) = ηX ◦ πMX,Y
0

Hence it follows that

MM(πX,Y0 ) ◦ α?X,Y ◦ (ηX × idY ) = MM(πX,Y0 ) ◦ ηX×Y ◦ αX,Y
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Similarly we have:

MM(πX,Y1 ) ◦ ηX×Y ◦ αX,Y = MM(πX,Y1 ) ◦ ηX,Y ◦ µX,Y ◦ (idMX × eY )

= ηY ◦M(πX,Y1 ) ◦ µX,Y ◦ (idMX × eY ) (Naturality of η)

= ηY ◦ πMX,MY
1 ◦ (idMX × eY ) (Commutativity of (2.1))

= ηY ◦ eY ◦ πMX,Y
1

= eMY ◦ eY ◦ πMX,Y
1 (Axiom 3′)

Now observe that we have commutativity of the following diagram:

M(MX × Y ) M(MX ×MY ) MM(X × Y )

MMX ×MY MY MMY

MX × Y Y MY

M(idMX×eY )

M(πMX,Y1 )

M(µX,Y )

M(πMX,MY1 )
MM(πX,Y1 )

πMMX,MY1

µMX,Y

M(eY )

ηX×eY

πMX,Y1

eY

eY

eMY

In the left-most column: the lower square commutes by definition and the upper triangle commutes by (2.1).

In the central column: the upper square commutes by definition and the lower square commutes by naturality

of e. Finally, the right-most triangle commutes by (2.10).Thus by a diagram chase we see that

MM(πX,Y1 ) ◦ α?X,Y ◦ (ηX × idY ) = eMY ◦ eY ◦ πMX,Y
1

Hence

MM(πX,Y1 ) ◦ ηX×Y ◦ αX,Y = MM(πX,Y1 ) ◦ α?X,Y ◦ (ηX × idY )

Taken together, we have that ηX×Y ◦ αX,Y = α?X,Y ◦ (ηX × idY ) and so η is a strong natural transformation

η : (M,α)⇒ (MM,α?) as required. The final detail necessary to satisfy the third axiom is the identity

M(tX) ◦ ηX = M(π1,X
1 ) ◦ α1,X ◦ (M(!), tX)

We already have by Axiom 3′ that M(tX) ◦ ηX = eX ◦ tX hence we show

M(π1,X
1 ) ◦ α1,X ◦ (M(!), tX) = eX ◦ tX

Observe that the following diagram commutes

MX X MX

M1×X M1×MX M(1×X)

tX

(M !,tX)

eX

πM1,X
1

(idM1×eX) µ1,X

πM1,MX
1

M(π1,X
1 )
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The left triangle and centre square commute by definition, whilst the triangle on the right hand side commutes

by (2.1). Hence we have the required equality: E satisfies the third path object category axiom.



Chapter 3

Path Object Category Structure On

The Category Of Cubical Sets With

Connections

We now prove the key result of the thesis

Theorem 3.1. The category of cubical sets with connections carries the structure of a path object category.

In order to do so we take advantage of the work of the previous chapter, exhibiting a nice path object

category structure for the category of cubical sets with connections, henceforth cSetc. Before we attend

to this proof we give a short introduction to cubical sets with connections: for a more extensive exposition

we recommend the lecture notes [Wil12], the presentation of which we follow. A slightly less accessible, but

more comprehensive account of the construction of the category cSetc can be found in [GM03].

3.1 Cubical Sets With Connections

We obtain the category cSetc as the presheaf category over a category of cubes with connections �c. There are

a number of equivalent constructions of �c (see [GM03, Theorem 5.2] for five) but we choose the presentation

with the most categorical flavour. We first give some definitions

Definition 3.2 (Interval With Contraction Structure and Connections).

1. An interval (I0, I1, i0, i1) in a category C consists of objects I0, I1 in C together with arrows

I0 I1
i0

i1

2. Let C be a category equipped with a monoidal structure (⊗, 1, ε, ι, a) and let Î = (1, I, i0, i1) be an

interval in C. A contraction structure upon Î is an arrow p : I1 → 1 in C such that the following

38
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diagrams commute

1 I

1

i0

id1

p

1 I

1

i1

id1

p

3. Let C be a category equipped with a monoidal structure (⊗, 1, ε, ι, a) and let Î = (1, I, i0, i1, p) be

an interval in C with a contraction structure. An upper connection structure upon Î is an arrow

Γ0 : I ⊗ I → I such that the following diagrams commute (where I is identified with I ⊗ 1 and 1 ⊗ I
via the unitors):

I I ⊗ I

I

idI⊗i0

idI
Γ0

I I1 ⊗ I

I1

i0⊗idI

idI
Γ0

I I ⊗ I

1 I

idI⊗i1

p Γ0

i1

I I ⊗ I

1 I

i1⊗I

p Γ0

i1

It is compatible with the contraction structure p if the following diagram commutes:

I ⊗ I I

I 1

Γ0

idI⊗p p

p

4. Let C be a category equipped with a monoidal structure (⊗, 1, ε, ι, a) and let Î = (1, I, i0, i1, p) be an

interval in C with a contraction structure. A lower connection structure upon Î is an arrow Γ1 : I⊗I → I

such that the following diagrams commute (where once again I is identified with I ⊗ 1 and 1⊗ I):

I I ⊗ I

I

idI⊗i1

idI
Γ1

I I ⊗ I

I

i1⊗idI

idI
Γ1

I I ⊗ I

1 I

idI⊗i0

p Γ1

i0

I I ⊗ I

1 I

i0⊗id1

p Γ1

i0
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It is compatible with the contraction structure p if the following diagram commutes:

I ⊗ I I

I 1

Γ1

idI⊗p p

p

These are natural definitions: when C has a monoidal structure (⊗, 1, ε, ι, a), an interval Î = (= 1, I, i0, i1)

suffices to obtain a notion of homotopy in the category. Further, a contraction structure for Î allows one to

augment this notion with constant homotopies. Finally the presence of compatible upper and lower connection

structures is precisely what is required to add double homotopies. We direct the interested reader to [Wil12,

Sections II.3.3, II.4.2, III.3]. The relevance here is that we can give �c as the free strict monoidal category

upon an interval with contraction and connection structures. We first define the graph Y as follows:

• For all n ∈ ω, a vertex In;

• For every 1 ≤ i ≤ n and δ ∈ {−1, 1} a directed edge fni,δ : In−1 → In;

• For every 1 ≤ i ≤ n, a directed edge dni : In → In−1;

• For every n ≥ 2, 1 ≤ i ≤ n− 1 and δ ∈ {−1, 1} a directed edge Γn−1
i,δ : In → In−1.

We take the free category on this graph and denote it by F (Y). To give this category the strict monoidal

structure where In ⊗ Im = In+m we must quotient by the equivalence relation generated by the following

cocubical relations:

• For any 1 ≤ i ≤ n, 1 ≤ j ≤ n+ 1 and δ, ε ∈ {−1, 1}:

fn+1
j,ε ◦ f

n
i,δ ∼

f
n+1
i,δ ◦ fnj−1,ε if j > i

fn+1
i+1,δ ◦ fnj,ε if j ≤ i

• For any n ≥ 2, 1 ≤ i ≤ n and 1 ≤ j ≤ n− 1:

dn−1
j ◦ dni ∼

d
n−1
i−1 ◦ dnj if j < i

dn−1
i ◦ dnj+1 if j ≥ i

• For any 1 ≤ i, j ≤ n and δ ∈ {−1, 1}:

dnj ◦ fni,δ ∼


id if j = i

fn−1
i,δ ◦ d

n−1
j−1 if j > i

fn−1
i−1,δ ◦ d

n−1
j if j < i
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• For any n ≥ 2, 1 ≤ i ≤ n, 1 ≤ j ≤ n− 1 and δ, ε ∈ {−1, 1}:

Γn−1
j,ε ◦ f

n
i,δ ∼



id if i = j and δ = ε or i = j + 1 and δ = ε

fn−1
j,δ ◦ d

n−1
j if i = j and δ 6= ε or i = j + 1 and δ 6= ε

fn−1
i,δ ◦ Γn−2

j−1,ε if n ≥ 3 and i < j

fn−1
i−1,δ ◦ Γn−2

j,ε if n ≥ 3 and i > j + 1

• For any n ≥ 2, 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n− 1 and δ ∈ {−1, 1}:

dn−1
j ◦ Γn−1

i,δ ∼


dn−1
i ◦ din if i = j

Γn−2
i−1,δ ◦ dnj if n ≥ 3 and j < i

Γn−2
i,δ ◦ dnj+1 if n ≥ 3 and j > i

• For any n ≤ 3, 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n− 2 and δ, ε ∈ {−1, 1}:

Γn−2
j,ε ◦ Γn−1

i,δ ∼


Γn−2
i−1,δ ◦ Γn−1

j,ε if j < i

Γn−2
i,δ ◦ Γn−1

j+1,ε if j > i

Γn−2
i,δ ◦ Γn−2

i+1,δ if j = i and ε = δ

These turn out to be precisely what is required to give an inductive definition of a bifunctor ⊗ on F (Y).

We call the quotient category the category of cubes with connections �c. This category contains a “generic”

interval with contraction structure and connections. Denote by (�c)≤2 the full subcategory of �c containing

the objects I0, I1 and I2. We call this the free- standing interval with a contraction structure and connections.

We obtain the following universal property.

Proposition 3.3. [Wil12, cf Proposition III.3.4.4] Let C be a category equipped with a strict monoidal

structure (⊗, 1). For any functor int : (�c)≤2 → C there is a unique functor can : �c → C preserving the

strict monoidal structure such that the following diagram commutes

(�c)≤2 �c

C

int
can

Definition 3.4 (Category of Cubical Sets With Connections). The category of cubical sets with connections

cSetc is given as the presheaf category Set(�c)op .

If we were to remove all aspects of the construction involving the connection structures we obtain the category

of cubes � and with it cubical sets. We make essential use of the connections in building our nice path object

category structure however. We can give an explicit definition of cubical sets with connections that will be

easier to work with.

Definition 3.5 (Cubical Set With Connections). A cubical set with connections X is comprised of sets

{Xn}n∈ω together with morphisms - henceforth cubical operators - given by
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i) Face Maps: For 1 ≤ i ≤ n and δ ∈ {−1, 1} we have

f i,δn : Xn → Xn−1

ii) Degeneracy Maps: For 1 ≤ i ≤ n we have

din : Xn−1 → Xn

iii) Connection Maps: For n ≥ 2, 1 ≤ i ≤ n− 1 and δ ∈ {−1, 1}, we have

Γi,δn−1 : Xn−1 → Xn

subject to the following cubical identities:

• For any 1 ≤ i ≤ n, 1 ≤ j ≤ n+ 1 and δ, ε ∈ {−1, 1}:

f i,δn ◦ f
j,ε
n+1 =

f j−1,ε
n ◦ f i,δn+1 if j > i

f j,εn ◦ f
i+1,δ
n+1 if j ≤ i

• For any n ≥ 2, 1 ≤ i ≤ n and 1 ≤ j ≤ n− 1:

din ◦ d
j
n−1 =

djn ◦ d
i−1
n−1 if j < i

dj+1
n ◦ din−1 if j ≥ i

• For any 1 ≤ i, j ≤ n and δ ∈ {−1, 1}:

f i,δn ◦ djn =


id if j = i

dj−1
n−1 ◦ f

i,δ
n−1 if j > i

djn−1 ◦ f
i−1,δ
n−1 if j < i

• For any n ≥ 2, 1 ≤ i ≤ n, 1 ≤ j ≤ n− 1 and δ, ε ∈ {−1, 1}:

f i,δn ◦ Γj,εn−1 =



id if i = j and δ = ε or i = j + 1 and δ = ε

djn−1 ◦ f
j,δ
n−1 if i = j and δ 6= ε or i = j + 1 and δ 6= ε

Γj−1,ε
n−2 ◦ f

i,δ
n−1 if n ≥ 3 and i < j

Γj,εn−2 ◦ f
i−1,δ
n−1 if n ≥ 3 and i > j + 1

• For any n ≥ 2, 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n− 1 and δ ∈ {−1, 1}:

Γi,δn−1 ◦ d
j
n−1 =


din ◦ din−1 if i = j

djn ◦ Γi−1,δ
n−2 if n ≥ 3 and j < i

dj+1
n ◦ Γi,δn−2 if n ≥ 3 and j > i
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• For any n ≥ 3, 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n− 2 and δ, ε ∈ {−1, 1}:

Γi,δn−1 ◦ Γj,εn−2 =


Γj,εn−1 ◦ Γi−1,δ

n−2 if j < i

Γj+1,ε
n−1 ◦ Γi,δn−2 if j > i

Γi+1,δ
n−1 ◦ Γi,δn−2 if j = i and ε = δ

Note the reversal of the subscript and superscript to distinguish the operators from the arrows of the graph

F (Y). As is the case in the literature, we will use the same notation for the operators of every cubical set with

connections. Although this takes some getting used to, it is the only feasible way to maintain readability.

We thus give a similar characterisation of the morphisms of cSetc.

Definition 3.6 (Cubical Morphism). A cubical morphism µ : X → Y is a collection of maps µn : Xn → Yn

commuting with the cubical operators.

It will suit us to go back and forth between working with these explicit definitions and utilising the properties

cSetc inherits as a presheaf category. For a cubical set X we call elements ζ of Xn n-cubes. If such an element

can be obtained as the image of an (n − 1)-cube under a degeneracy map, we call it a degenerate n-cube.

We can give some geometric intuitions that explains this nomenclature and will be useful in the work that

follows. Each n-cube has 2n faces, each of which an (n − 1)-cube. The action of a face map f i,εn collapses

an n-cube onto it’s (i, ε)-th face (where (i,−1) and (i, 1) are a pair of parallel faces) forgetting the rest of its

structure. We will often draw a 1-cube ζ as

x0 x1
ζ

Where f1,−1
1 (ζ) = x0 and f1,1

1 (ζ) = x1. Similarly we represent 2-cubes φ as

x0 x1

x2 x3

ζ1

ζ0 φ ζ2

ζ3

where f1,−1
2 (φ) = ζ0, f2,−1

2 (φ) = ζ1, f1,1
2 (φ) = ζ2 and f2,1

2 (φ) = ζ3.The cubical identities thus enforce the

intuition that, for example, collapsing onto ζ1 with f2,1
2 and then collapsing onto x0 with f1,−1

1 is the same

as collapsing onto ζ0 with f1,−1
2 followed by collapsing onto x0 with f1,−1

1 .

Degeneracies allow us to consider n-cubes to be thin (n+ 1)-cubes and the superscript in din determines the

orientation of the degenerate cubes we obtain. Degenerate cubes have a pair of equal opposite faces and all

other faces degeneracies. For example, given a 1-cube

x0 x1
ζ
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We can apply d1
2 to obtain the 2-cube

x0 x0

x1 x1

ζ

d1
1(x0)

d2
1(ζ) ζ

d1
1(x1)

With the identities for compositions of face and degeneracy maps enforcing the idea that the degenerate

faces of such thin cubes are themselves degeneracies of vertices. We will typically use dashed arrows to

represent degeneracies. Finally we come to the structure distinguishing our setting from regular cubical sets:

the connection maps. In essence these are extra degeneracies. The image under a connection map yields a

cube with a pair of equal adjacent faces and all over faces either connection cubes or degenerate cubes. For

example, given a 1-cube ζ, connections allow us to consider diagrams of the form

x0 x1

x1

ζ

ζ

x1 x0

x0

ζ

ζ

as 2-cubes

x0 x1

x1 x1

ζ

ζ Γ1,1
1 (ζ) d1

1(x1)

d1
1(x1)

x1 x0

x0 x0

Γ1,−1
1 (ζ)

ζ

ζ

d1
1(x0)

d1
1(x0)

and the cubical identities involving connections enforce this picture. Of course these intuitions can only take

us so far: the trick is to use low dimensional cases to work out how the combinatorics will work in the general

case.

3.2 Nice Path Object Category Structure

We now complete this section of the thesis by proving

Theorem 3.7. cSetc carries the structure of a nice path object category.

3.2.1 Axiom 1: Path Objects

We begin by defining the notion of path at the centre of the path object category structure we will develop

throughout this section; that of a cubical n-path. In some ways this bears similarity to the simplicial Moore

paths given in [vdBG12, Definition 7.1.1] to show that sSet is a path object category, however because of

the simplified structure we are aiming to obtain, as well as the the flexibility of the connection structure, we

are able to give a much more straightforward notion of path. Another source of inspiration is Brown’s Moore

hyper rectangles on a space [Bro09] the collections of which form a cubical ω-category with an underlying

cubical set with connections and compositions. Before giving a formal definition we can understand the

intuition behind what we will do by way of the case for low dimensions:
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First, cubical 0-paths through a cubical set X will be given by a sequence of 0-cubes x0, . . . , xk “connected”

as the faces of 1-cubes ζ0, . . . , ζk−1. A characteristic example would be

x0 x1 x2 x3 x4
ζ0 ζ1 ζ2 ζ3

(3.1)

By applying the face maps f1,−1
1 and f1,1

1 in a particular order to the sequence ζ0, . . . , ζ3 we are able to

“travel” from the 0-cube x0 to the 0-cube x4. Moving up a dimension, cubical 1-paths will be given by

sequences of 1-cubes ζ0, . . . , ζk “connected” as the faces of 2-cubes φ0, . . . , φk−1. For example

x0 x1 x2

x′0 x′1 x′2

φ0ζ0 φ1ζ1 ζ2 (3.2)

We note that by applying f2,−1
2 to each 2-cube in this 1-path we obtain a 0-path from x0 to x2. Similarly,

f2,1
2 gives us another 0-path from x′0 to x′1. The idea is that 0-paths will be 0-cubes in a cubical set, and

similarly 1-paths will be 1-cubes, with faces given in the way described. A similar argument yields, from the

0-path (3.1), a degenerate 1-path obtained by applying the degeneracy d2
2 to every 1-cube:

x0 x1 x2 x3 x4

x0 x1 x2 x3 x4

ζ0

d1
1(x0)

ζ1 ζ2 ζ3

d1
1(x4)

ζ0 ζ1 ζ2 ζ3

By applying the connection map Γ2,ε
2 to φ0 and φ1 in (3.2) we similarly obtain a 2-path from Γ1,ε

1 (ζ0) to

Γ1,ε
1 (ζ2). These intuitions are enforced by the cubical identities, and by generalising this idea we can imbue

the collection of cubical n-paths with the structure of a cubical set with connections. We introduce the

following definition to formalise our idea and generalise it to all dimensions:

Definition 3.8 (Cubical N-Path). Given a cubical set X, a cubical n-path through X from ζ0 to ζk is a tuple

χ =
((
ζ0, . . . , ζk

)
,
(
φ0, . . . , φk−1

)
,
(
ε0, . . . , εk−1

))
where ζ0, . . . , ζk are n-cubes of X, φ0, . . . , φk−1 are (n+1)-cubes of X, ε0, . . . , εk−1 ∈ {−1, 1} and the following

identities hold:

f1,ε0
n+1(φ0) = ζ0

f1,−ε0
n+1 (φ0) = ζ1 = f1,ε1

n+1(φ1)

f1,−ε1
n+1 (φ1) = ζ2 = f1,ε2

n+1(φ2)

...

f
1,−εk−2

n+1 (φk−2) = ζk−1 = f1,εk−1(φk−1)

f
1,−εk−1

n+1 (φk−1) = ζk

We also allow the case k = 0 to give “trivial” paths
((
ζ0
)
,
( )
,
( ))

.
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Notation 3.2.1. For readability, we denote by
((
~ζ
)
,
(
~φ
)
,
(
~ε
))

the arbitrary cubical n-path((
ζ0, . . . , ζk

)
,
(
φ0, . . . , φk−1

)
,
(
ε0, . . . , εk−1

))
. Abusing this notation slightly, if we wish to highlight a partic-

ular section of an n-path - for example, the n+ 1-cube φi connecting ζi and ζi+1 - we write(( #»

ζ , ζi, ζi+1,
#»

ζ
)
,
( #»

φ, φi,
#»

φ
)
,
(

#»ε , εi,
#»ε
))

Given maps f : Xn → Xm and g : Xn+1 → Xl we write(( #      »

f(ζ)
)
,
( #      »

g(φ)
)
,
(

#»ε
))

=
((
f(ζ1), . . . , f(ζk)

)
,
(
g(φ1), . . . , g(φk−1)

)
,
(
ε0, . . . , εk−1

))

We begin the work of identifying the path objects of cSetc. The obvious candidate is the collections of cubical

n-paths, but this entails giving them the structure of a cubical set with connections. First we quotient the

paths under a useful equivalence relation.

Definition 3.9 ((MX)n). We define (MX)n to be the collection of cubical n-paths through X, quotiented

by the equivalence relation ∼ generated by(( #»

ζ , ξ, ξ,
#»

ζ
)
,
( #»

φ, d1
n+1(ξ),

#»

φ
)
, ( #»ε , δ, #»ε

))
∼
(( #»

ζ
)
,
( #»

φ ),
(

#»ε
))

The idea here is that the degenerate (n+ 1)-cubes d1
n+1(ζ) are“thin”, being that they are n-cubes artificially

considered to be (n+1)-cubes. As such they don’t genuinely represent any distance travelled along the paths.

A cubical n-path with a string of 20 (n+1)-cubes d1
n+1(ζ) in a row is for all intents and purposes identical to

the one with the 20 degenerate cubes removed. A similar trick is used in van Oosten’s [vOar]. The question

of whether the unquotiented case yields a regular path object category structure is an interesting one but we

reserve further remarks on this to the final chapter ”Conclusions and Further Work”.

To avoid overloading the notation we will generally make no distinction between cubical n- paths and their

equivalence classes. We of course have a canonical representative for each class: the cubical n-path with each

degenerate (n + 1)-cube d1
n+1(ζ) removed. In most cases it does no harm to suppose we are working with

these. Nevertheless we will show that the structure we define throughout this section is independent of the

choice of representative: we will first work with representatives and then pass through to the equivalence

classes to show the structure is as we require.

We must now imbue the collection {(MX)n}n∈ω with the structure of a cubical set with connections. In

order to do so, we define face, degeneracy and connection maps and verify they satisfy the cubical identities.

Definition 3.10 (Face Maps). Let 1 ≤ i ≤ n, δ ∈ {−1, 1} and χ =
(( #»

ζ
)
,
( #»

φ
)
,
(

#»ε
))
∈ (MX)n. The face

map f i,δn : (MX)n → (MX)n−1 is defined:

f i,δn (χ) =
(( #            »

f i,δn (ζ)
)
,
( #                  »

f i+1,δ
n+1 (φ))

)
,
(

#»ε
))

We show that this is well defined: that is, given an n-path χ we obtain an (n− 1)-path f i,δn (χ). Clearly each

f i,δn (ζj) is an (n − 1)-cube of X, and each f i+1,δ
n+1 ((φj) is similarly an n-cube. That the tuple satisfies the

(n− 1)-path conditions follows from the cubical identities. For all 1 ≤ i ≤ n we have 1 < i+ 1, so the cubical

identity

f1,εj
n ◦ f i+1,δ

n+1 = f i,δn ◦ f
1,εj
n+1
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holds. Thus it follows:

f1,ε0
n (f i+1,δ

n+1 (φ0)) = f i,δn (f1,ε0
n+1(φ0)) = f i,δn (ζ0)

f1,−ε0
n (f i+1,δ

n+1 (φ0)) = f i,δn (f1,−ε0
n+1 (φ0)) = f i,δn (ζ1) = f1,ε1

n (f i+1,δ
n+1 (φ1)

...

f
1,−εk−2
n (f i+1,δ

n+1 (φk−2)) = f i,δn (f
1,−εk−2

n+1 (φk−2)) = f i,δn (ζk−1) = f
1,εk−1
n (f i+1,δ

n+1 (φk−1))

f
1,−εk−1
n (f i+1,δ

n+1 (φk−1)) = f i,δn (f
1,−εk−1

n+1 (φk)) = f i,δn (ζk)

We must also show the face maps interact appropriately with the equivalence relation. That is, if χ ∼ χ′

then f i,δn (χ) ∼ f i,δn (χ′). It is easy to see that this follows from the cubical identity

f i+1,δ
n+1 ◦ d1

n+1 = d1
n ◦ f i,δn

We then have

f i,δn

(( #»

ζ ,ζi, ζi,
#»

ζ
)
,
( #»

φ, d1
n+1(ζi),

#»

φ
)
,
(

#»ε , ε, #»ε
))

=
(( #            »

f i,δn (ζ), f i,δn (ζi), f
i,δ
n (ζi),

#            »

f i,δn (ζ)
)
,
( #                  »

f i+1,δ
n+1 (φ), f i+1,δ

n+1 ◦ d1
n+1(ζi),

#                  »

f i+1,δ
n+1 (φ)

)
,
(

#»ε , ε, #»ε
))

=
(( #            »

f i,δn (ζ), f i,δn (ζi), f
i,δ
n (ζi),

#            »

f i,δn (ζ)
)
,
( #                  »

f i+1,δ
n+1 (φ), d1

n+1(f i,δn (ζi)),
#                  »

f i+1,δ
n+1 (φ)

)
,
(

#»ε , ε, #»ε
))

∼ f i,δn
(( #»

ζ
)
,
( #»

φ
)
,
(

#»ε
))

Next we define the degeneracy maps.

Definition 3.11 (Degeneracy Maps). Let 1 ≤ i ≤ n and χ =
((
~ζ
)
,
(
~φ
)
,
(
~ε
))
∈ (MX)n−1. The degeneracy

map din : (MX)n−1 → (MX)n is defined

din(χ) =
((
din(~ζ)

)
,
(
di+1
n+1(~φ)

)
,
(
~ε
))

Once again we must show that this is well defined, and this argument is similar to the previous case. First we

verify the image under din is an (n)-path. Clearly each din(ζj) is an n-cube of X and similarly each di+1
n+1(φj)

is an (n+ 1)-cube, so we check that the tuple satisfies the (n)-path conditions. Once again, this follows from

the cubical identities: for 1 ≤ i ≤ n+ 1 we have 1 < i+ 1, hence f
1,εj
n+1 ◦ d

i+1
n+1 = din ◦ f

1,εj
n . Thus we have:

f1,ε0
n+1(di+1

n+1(φ0) = din(f1,ε0
n (φ0)) = din+1(ζ0)

f1,−ε0
n+1 (di+1

n+1(φ0)) = din(f1,−ε0
n (φ0)) = din(ζ1) = f1,ε1

n+1(di+1
n+1(φ1))

...

f
1,−εk−2

n+1 (di+1
n+1(φk−2)) = din(f

1,−εk−2
n (φk−2)) = din(ζk−1) = f

1,εk−1

n+1 (di+1
n+1(φk−1))

f
1,−εk−1

n+1 (di+1
n+1(φk−1) = din(f

1,−εk−1
n (φk−1)) = din(ζk)

We must also show that χ ∼ χ′ implies din(χ) ∼ din(χ′), but this follows immediately from the cubical identity

di+1
n+1 ◦ d1

n = d1
n+1 ◦ din
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with an identical argument to the case for face maps:

din

(( #»

ζ ,ζi, ζi,
#»

ζ
)
,
( #»

φ, d1
n(ζi),

#»

φ
)
,
(

#»ε , ε, #»ε
))

=
(( #         »

din(ζ), din(ζi), d
i
n(ζi),

#         »

din(ζ)
)
,
( #               »

di+1
n+1(φ), di+1

n+1 ◦ d1
n(ζi),

#               »

di+1
n+1(φ)

)
,
(

#»ε , ε, #»ε
))

=
(( #         »

din(ζ), din(ζi), d
i
n(ζi),

#         »

din(ζ)
)
,
( #               »

di+1
n+1(φ), d1

n+1(din(ζi)),
#               »

di+1
n+1(φ)

)
,
(

#»ε , ε, #»ε
))

∼ din
(( #»

ζ
)
,
( #»

φ
)
,
(

#»ε
))

Finally we come to the connection maps.

Definition 3.12 (Connection Maps). Let n ≥ 2, 1 ≤ i ≤ n− 1, δ ∈ {−1, 1} and

χ =
((
~ζ
)
,
(
~φ
)
,
(
~ε
))
∈ (MX)n−1. The connection map Γi,δn−1 : (MX)n−1 → (MX)n is defined

Γi,δn−1(χ) =
((

Γi,δn−1(~ζ)
)
,
(
Γi+1,δ
n (~φ)

)
,
(
~ε
))

For a final time we verify that this is well defined. First we must check the image under Γi,δn−1 is indeed a

cubical n-path. We know immediately that the Γi,δn−1(ζj) are n-cubes, and similarly that the Γi+1,δ
n (φj) are

(n+ 1)-cubes as required. To prove that the path conditions are satisfied we note that n+ 1 ≥ 3 in all cases,

and so we can make use of the cubical identity f
1,εj
n+1 ◦ Γi+1,δ

n = Γin−1 ◦ f
1,εj
n , to obtain:

f1,ε0
n+1(Γi+1,δ

n (φ0)) = Γi,δn−1(f1,ε0
n (φ0)) = Γi,δn−1(ζ0)

f1,−ε0
n+1 (Γi+1,δ

n (φ0)) = Γi,δn−1(f1,−ε0
n (φ0)) = Γi,δn−1(ζ1) = f1,ε1

n+1(Γi+1,δ
n (φ1))

...

f
1,−εk−2

n+1 (Γi+1,δ
n (φk−2)) = Γi,δn−1(f

1,−εk−2
n (φk−2)) = Γi,δn−1(ζk−1) = f

1,εk−1

n+1 (Γi+1,δ
n (φk−1))

f
1,−εk−1

n+1 (Γi+1,δ
n (φk−1)) = Γi,δn−1(f

1,−εk−1
n (φk−1)) = Γi,δn−1(ζk)

In order to show this definition is compatible with the equivalence relation, we note that we have the cubical

identity

Γi+1,δ
n ◦ d1

n = d1
n ◦ Γi,δn−1

Then, in much the same way as the cases for the face and degeneracy maps we have:

Γi,δn−1

(( #»

ζ , ζi, ζi,
#»

ζ
)
,
( #»

φ, d1
n(ζi),

#»

φ
)
,
(

#»ε , ε, #»ε
))

=
(( #               »

Γi,δn−1(ζ),Γi,δn−1(ζi),Γ
i,δ
n−1(ζi),

#               »

Γi,δn−1(ζ)
)
,
( #                  »

Γi+1,δ
n (φ),Γi+1,δ

n ◦ d1
n(ζi),

#                  »

Γi+1,δ
n (φ)

)
,
(

#»ε , ε, #»ε
))

=
(( #               »

Γi,δn−1(ζ),Γi,δn−1(ζi),Γ
i,δ
n−1(ζi),

#               »

Γi,δn−1(ζ)
)
,
( #                  »

Γi+1,δ
n (φ), d1

n(Γi+1,δ
n−1 (ζi)),

#                  »

Γi+1,δ
n (φ)

)
,
(

#»ε , ε, #»ε
))

∼ Γi,δn−1

(( #»

ζ
)
,
( #»

φ
)
,
(

#»ε
))

With all of the cubical operators defined we have

Proposition 3.13. MX = {(MX)n}n∈ω together with the face, degeneracy and connection maps defined

above is a cubical set with connections.
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Proof. It is sufficient to verify the cubical identities hold for the maps defined above - but this follows

immediately from the definitions and the structure on X.

From this we obtain the path objects MX. We extend this assignment to an endofunctor M . Let µ : X → Y

be a cubical morphism. For n ∈ ω and χ =
((
~ζ
)
,
(
~φ
)
,
(
~ε
))
∈ (MX)n we define M(µ)n : (MX)n → (MY )n

by

M(µ)n(χ) =
(( #         »

µn(ζ)
)
,
( #                »

µn+1(φ)
)
,
(

#»ε
))

To see this maps cubical n-paths of X to cubical n-paths of Y we note that by definition the components of

µ commute with the cubical operators. It then follows that

f1,ε0
n+1(µn+1(φ0)) = µn(f1,ε0

n+1(φ0)) = µn(ζ0)

f1,−ε0
n+1 (µn+1(φ0)) = µn(f1,−ε0

n+1 (φ0)) = µn(ζ1) = f1,ε1
n+1(µn+1(φ1))

...

f
1,−εk−2

n+1 (µn+1(φk−2)) = µn(f
1,−εk−2

n+1 (φk−2)) = µn(ζk−1) = f
1,εk−1

n+1 (µn+1(φk−1))

f
1,−εk−1

n+1 (µn+1(φk−1)) = µn(f
1,−εk−1

n+1 (φk−1)) = µn(ζk)

For much the same reason, the maps (M(µ))n respect the equivalence relations. Hence M(µ) is well defined.

That this assignment is functorial is immediate. With this in place we can begin to prove that cSetC satisfies

the first nice path object category axiom.

Proposition 3.14. The endofunctor M is pullback preserving.

Proof. Suppose we have a pullback

X ×Z Y X

Y Z

q0

q1 µ

ν

in cSetc. We wish to show the image under M is also a pullback. Since cSetc is a presheaf category it

suffices to verify this pointwise, so we suppose we have the following commutative diagram.

Wn

M(X ×Z Y )n (MX)n

(MY )n (MZ)n

gn

hn

M(q0)n

M(q1)n M(µ)n

M(ν)n

Given w ∈Wn we denote the cubical n-paths gn(w) and hn(w) by

gn(w) = ((
#            »

gn(w)0), (
#            »

gn(w)1), (
#            »

gn(w)2)) hn(w) = ((
#             »

hn(w)0), (
#             »

hn(w)1), (
#             »

hn(w)2))
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With the length of the sequence (
#            »

gn(w)0) given by k and the length of the sequence (
#             »

hn(w)0) given by k′. Now

commutativity of this pullback tells us that M(µ)n(gn(w)) ∼ M(ν)n(hn(w)). This means that we can add

degenerate cubes to one path - without loss of generality suppose M(µ)n(gn(w)) and call the modified path

(M(µ)n(gn(w))+ - to obtain equality on the cubical n-paths: (M(µ)n(gn(w))+ = M(ν)n(hn(w)). In turn,

by the commutativity of the cubical operators we may add degenerate cubes to the path gn(w) to obtain a

unique gn(w)+ such that the length of the sequence
#                  »

gn(w)+,0 is k′ and M(µ)n((gn(w)+) = (M(µ)n(gn(w))+ =

M(ν)n(hn(w)). Thus by the definition of M , for 1 ≤ j ≤ k′, 1 ≤ l ≤ k′ − 1 we have

µn(gn(w)+,0
j ) = νn(hn(w)0

j ) µn+1(gn(w)+,1
l ) = νn+1(hn(w)1

l )

This means that the pairs ((gn(w)+,0
j ), hn(w)0

j ) are n-cubes of X ×Z Y and the pairs (gn(w)+,1
l , hn(w)1

l ) are

n+ 1-cubes. We also have the identity, for 1 ≤ l ≤ k − 1,

gn(w)+,2
l = hn(w)2

l

We thus define ε(w)l = gn(w)+,2
l = hn(w)2

l and claim that

σn(w) = ((
#                                           »

(gn(w)+,0, hn(w)0)), (
#                                           »

(gn(w)+,1, hn(w)1)), (
#      »

ε(w)))

yields a cubical n-path through X ×Z Y . We have:

f
1,ε(w)l
n+1 (gn(w)+,1

l , hn(w)1
l ) = (f

1,gn(w)+,2
l

n+1 (gn(w)+,1
l ), f

1,hn(w)2
l

n+1 (hn(w)1
l )) = (gn(w)+,0

l , hn(w)0
l )

f
1,−ε(w)l
n+1 (gn(w)+,1

l , hn(w)1
l ) = (f

1,−gn(w)+,2
l

n+1 (gn(w)+,1
l ), f

1,−hn(w)2
l

n+1 (hn(w)1
l )) = (gn(w)+,0

l+1, hn(w)0
l+1)

as required. Hence we obtain

Wn

M(X ×Z Y )n (MX)n

(MY )n (MZ)n

gn

hn

σn

M(q0)n

M(q1)n M(µ)n

M(ν)n

Commutativity follows straightforwardly from the definition of the projection maps q0, q1 and M ’s action

upon them together with the equivalence relation. Similarly, by direct computation we can see this map

must be unique when we pass to equivalence classes: for any other σ′n such that the diagram commutes, for

all w we necessarily have σn(w) ∼ σ′n(w) so the functions are identical on the equivalence classes. It follows

that M is pullback preserving.
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Next we give the natural transformations s, t : M ⇒ id and e : id → M . Given a cubical set X, n ∈ ω, an

n-cube ζ and a cubical n-path χ =
((
~ζ
)
,
(
~φ
)
,
(
~ε
))

we define

(sX)n(χ) = ζ0 (tX)n(χ) = ζk (eX)n(ζ) =
((
ζ
)
,
( )
,
( ))

To show that, for each cubical set X, sX , tX and eX are cubical morphisms it suffices to show they commute

with the cubical operators: but this is immediate from our definitions. To show naturality, we assume µ :

X ⇒ Y is a cubical morphism. It suffices to check commutativity at n, and once again this is straightforward.

We have

(sY )n ◦M(µ)n(χ) = (sY )n

(( #         »

µn(ζ)
)
,
( #                »

µn+1(φ)
)
,
(

#»ε
))

= µn(ζ0) = (sX)n ◦ µn(χ)

(tY )n ◦M(µ)n(χ) = (tY )n

(( #         »

µn(ζ)
)
,
( #                »

µn+1(φ)
)
,
(

#»ε
))

= µn(ζk) = (tX)n ◦ µn(χ)

(eY )n ◦ µn(ζ) =
((
µn(ζ)

)
,
( )
,
( ))

= M(µ)n ◦ (eX)n(ζ)

So s, t, e are natural transformations as required. With s and t defined we are able to determine the pullback

MX ×X MX MX

MX X

pX0

pX1 tX

sX

Computing directly in Set we have

(MX ×X MX)n = {(χ, χ′) ∈ (MX)n × (MX)n | (tX)n(χ) = (sX)n(χ′)}

Thus an n-cube of MX ×MX is given by a pair of cubical n-paths through X

χ =
((
ζ0, . . . , ζk

)
,
( #»

φ
)
,
(

#»ε
))

χ′ =
((
ζk, ζ

′
1, . . . , ζ

′
k′
)
,
( #»

φ′
)
,
( #»

ε′
))

As short-hand for this situation we say χ and χ′ are compatible. Since

f
1,−εk−1

n+1 (φk−1) = ζk = f
1,ε′0
n+1(φ′0)

we can construct a new n-path through X by concatenation of the (n + 1)-cubes, pasting at the shared

n-cube:

(cX)n(χ, χ′) =
((
ζ0, . . . , ζk, ζ

′
1, . . . , ζ

′
k′
)
,
( #»

φ,
#»

φ′
)
,
(

#»ε ,
#»

ε′
))

We introduce the notation χ · χ′ for (cX)n(χ, χ′). Keeping X fixed, we claim the collection of maps (cX)n :

(MX ×X MX)n → (MX)n defined in this way constitutes a cubical morphism cX : MX ×X MX → MX.

Once again it is sufficient to show commutativity with the cubical operators: we attend only to the face maps
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as the argument is identical for degeneracy and connection maps:

f i,δn ◦ (cX)n(χ, χ′) =
((
f i,δn (ζ0), . . . , f i,δn (ζk), f i,δn (ζ ′1), . . . , f i,δn (ζ ′k′)

)
,
( #                  »

f i+1,δ
n+1 (φ),

#                    »

f i+1,δ
n+1 (φ′)

)
,
(

#»ε ,
#»

ε′
))

= (cX)n−1(f i,δn (χ), f i,δn (χ′)) = (cX)n−1 ◦ f i,δn (χ, χ′)

We thus claim that the collection of cubical morphisms

c = (cX : MX ×X MX →MX | X in cSetc)

constitutes a natural transformation c : CM ⇒M . Let µ : X ⇒ Y be a cubical morphism. We wish to show

commutativity of the diagram:

(MX ×MX)n (MY ×Y MY )n

(MX)n (MY )n

CM (µ)n

(cX)n (cY )n

M(µ)n

Recall that the components CM (µ)n are defined via the pullback

(MX ×X MX)n

(MY ×Y MY )n (MY )n

(MY )n Yn

M(µ)n◦(pX0 )n

M(µ)n◦(pX1 )n

CM (µ)n

(pY0 )n

(pY1 )n (tY )n

(sY )n

Computing directly we have that

CM (µ)n(χ, χ′) = (M(µ)n(χ),M(µ)n(χ′))

=

((( #         »

µn(ζ)
)
,
( #                »

µn+1(φ)
)
,
(

#»ε
))
,
((
µn(ζk),

#           »

µn(ζ ′)
)
,
( #                 »

µn+1(φ′)
)
,
( #»

ε′ )
))

Hence it follows that

(cY )n ◦ CM (µ)n(χ, χ′) =
((
µn(ζ0), . . . , µn(ζk), µn(ζ ′1), . . . , µn(ζ ′k′)

)
,
( #                »

µn+1(φ),
#                 »

µn+1(φ′)
)
,
(

#»ε ,
#»

ε′
))

= (cX)n ◦M(µ)n(χ, χ′)

as required: c is a natural transformation. It is also immediate from the definitions that all of these natural

transformations respect the equivalence relation. With this we have everything in place to verify the internal

category properties.

Proposition 3.15. The morphisms sX , tX , eX , cX equip MX with the structure of an internal category.
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Proof. We must verify each of the internal category axioms. As usual, it is sufficient to check commutativity

of the diagrams at n.

• Source/Target of Identities: We must show that the diagrams

Xn (MX)n

Xn

idXn

(eX))n

(sX)n

Xn (MX)n

Xn

idXn

(eX))n

(tX)n

commute. We have

(sX)n ◦ (eX)n(ζ) = (sX)n

((
ζ
)
,
( )
,
( ))

= ζ

(tX)n ◦ (eX)n(ζ) = (tX)n

((
ζ
)
,
( )
,
( ))

= ζ

• Source/Target of Composition: We must show that the diagrams

(MX ×X MX)n MX

(MX)n X

(cX)n

(pX0 )n (sX)n

(sX)n

(MX ×X MX)n MX

(MX)n X

(cX)n

(pX1 )n (tX)n

(tX)n

commute. Given compatible cubical n-paths χ and χ′ we have

(sX)n ◦ (cX)n(χ, χ′) = ζ0 = (sX)n ◦ (pX0 )n(χ, χ′)

(tX)n ◦ (cX)n(χ, χ′) = ζ ′k′ = (tX)n ◦ (pX1 )n(χ, χ′)

• Left/Right Identity Laws: The next diagram we require to commute is given by

(MX)n (MX ×X MX)n (MX)n

(MX)n

〈id,eXtX〉n

id(MX)n

(cX)n

〈eXsX ,id〉n

id(MX)n

Recall that we obtain the morphisms 〈id, eXtX〉 and 〈eXsX , id〉 are obtained as follows:

(MX)n

(MX ×X MX)n MX

MX X

id(MX)n

(eX)n◦(tX)n

〈id,eXtX〉n
(pX0 )n

(pX1 )n (tX)n

(sX)n

(MX)n

(MX ×X MX)n MX

MX X

(eX)n◦(sX)n

id(MX)n

〈eXsX ,id〉n
(pX0 )n

(pX1 )n (tX)n

(sX)n
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Computing directly we see that

〈id, eXtX〉n(χ) =
(
χ,
((
ζk
)
,
( )
,
( )))

〈eXsX , id〉n(χ) =
(((

ζ0
)
,
( )
,
( ))

, χ
)

So we have

(cX)n ◦ 〈id, eXtx〉n(χ) =
((
ζ0, . . . , ζk

)
,
(
φ0, . . . , φk−1

)
,
(
ε0, . . . , εk−1

))
= χ

(cX)n ◦ 〈eXsX , id〉n(χ) =
((
ζ0, . . . , ζk

)
,
(
φ0, . . . , φk−1

)
,
(
ε0, . . . , εk−1

))
= χ

• Associativity: Finally we require commutativity of

(MX ×X MX ×X MX)n MX ×C0 MX

MX ×X MX MX

〈cX ,id〉n

〈id,cn〉n (cX)n

(cX)n

It is straightforward to verify, given a compatible triple (χ, χ′, χ′′) ∈ (MX×XMX×XMX)n, we have

〈cX , id〉n(χ, χ′, χ′′) = (χ · χ′, χ′′) 〈id, cX〉n(χ, χ′, χ′′) = (χ, χ′ · χ′′)

and so commutativity follows from the obvious fact that concatenation is associative

It follows that we have an internal category X MX MX ×X MXeX

sX

tX

cX

The final piece of data we require in order to satisfy the first axiom is the natural transformation τ : M ⇒M

such that, for every X in cSetc, τX is an identity-on-objects involution of the internal category MX. The

maps (τX)n : (MX)n → (MX)n are defined:

(τX)n(χ) =
(

(ζk, . . . , ζ0), (φk−1, . . . , φ0), (−εk−1, . . . ,−ε0)
)

It follows immediately from the definitions that τX commutes with the cubical operators, and is thus a cubical

morphism. That the collection of maps τX constitutes a natural transformation follows analogously: due to
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the similarity to previous arguments we leave these simple details to the reader. We require:

τX ◦ τX = idX τX ◦ eX = eX

sX ◦ τX = tX tX ◦ τ = sX

τX ◦ cX = cX ◦ τ cX

That τX ◦ τX = idX holds is immediate from the definition. We have

(τX)n ◦ (sX)n(χ) = ζk = (tX)n(χ) (τX)n ◦ (tX)n(χ) = ζ0 = (sX)n(χ)

For a compatible pair (χ, χ′) it is straightforward to compute that

(τ cX)n(χ, χ′) = ((τX)n(χ′), (τX)n(χ))

so we obtain

(τX)n ◦ (cX)n(χ, χ′) = (τX)n(χ · χ′) = (τX)n(χ′) · (τX)n(χ) = cX ◦ (τ cX)n(χ, χ′)

Finally we obtain the remaining identity:

(τX)n ◦ (eX)n(ζ) = τX

((
ζ
)
,
( )
,
( ))

=
((
ζ
)
,
( )
,
( ))

= (eX)n(ζ)

It follows that cSetc satisfies the first nice path object category axiom.

3.2.2 Axiom 2: Nice Constant Paths

Next we must show that M1 ∼= 1, and in order to do so we investigate what the terminal object in cSetc

looks like. Making use of the fact cSet is a presheaf category we obtain the following lemma as a particular

instance of the pointwise computation of limits in presheaf categories.

Lemma 3.16. In a presheaf category SetC
op

, a presheaf X is terminal iff for every C in C0 X(C) is a

singleton.

We thus define 1 from scratch

Definition 3.17 (Terminal Cubical Set). The terminal cubical set 1 is defined

• For all n ∈ ω: 1n = {n}

• For all 1 ≤ i ≤ n and δ ∈ {−1, 1}: f i,δn (n) = n− 1

• For all 1 ≤ i ≤ n: din(n− 1) = n

• For all n ≥ 2, 1 ≤ i ≤ n− 1 and δ ∈ {−1, 1}: Γi,δn−1(n− 1) = n

That this definition satisfies the cubical identities follows trivially; that it is terminal follows from Lemma

3.16. Another way of looking at 1 is as the degenerate cubical set generated from a single vertex. It follows
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that every cubical n-path of 1 is of the form((
n, . . . , n

)
,
(
n+ 1, . . . , n+ 1),

(
#»ε
))

Under the equivalence relation we have that for each n there exists a single equivalence class containing

the path
((
n
)
,
( )
,
( ))

. Hence applying Lemma 3.16 again gives us that M1 is also terminal, and thus

isomorphic to 1: cSetc satisfies the second nice path category axiom.

3.2.3 Axiom 3: Nice Path Contraction

For the final axiom we must construct the natural transformation that contracts paths. It is here that we

make essential use of the connection structure on our cubical sets. Before we delve into the combinatorics

we illustrate the intuition behind our argument by looking at the case in low dimensions. We look back to

the example (3.1) given at the start of the section:

x0 x1 x2 x3 x4
ζ0 ζ1 ζ2 ζ3

The idea is to give a 1-path which has as one of its faces (3.1) and as the other the same path with ζ0

removed. By applying a connection map to ζ0 and degeneracy maps elsewhere we can achieve this:

x0 x1 x2 x3 x4

x1 x1 x2 x3 x4

ζ0

ζ0 Γ d d

ζ1 ζ2

d

ζ3

d1
1(x1) ζ1 ζ2 ζ3

By iterating this idea we obtain the following picture

x0 x1 x2 x3 x4

x1 x1 x2 x3 x4

x2 x2 x3 x4

x3 x3 x4

x4 x4

ζ0

ζ0 Γ d d

ζ1 ζ2

d

ζ3

d1
1(x4)

d1
1(x1)

Γ d

ζ1 ζ2

d

ζ3

d1
1(x4)ζ1

Γ

d1
1(x2) ζ2

ζ2 d

ζ3

d1
1(x4)

d1
1(x3)

Γζ3

ζ3

d1
1(x4)

d1
1(x4)

where each row of squares is a 2-path. This gives us a 0-path through MX, and by applying the equivalence

relation it has our original path as source and the trivial path at x4 as its target. Not only this, but by the

definition of M on cubical morphisms we have that the image under M(sX)1 is the original path and the

image under M(tX)1 is the trivial path at x4 (again by the equivalence relation) and this is precisely what

we require. We now tackle the problem in full generality and make this idea precise. First we introduce two

contraction operators on cubical n-paths.

Definition 3.18 (Contraction Operators). Let χ =
(

(ζ0, . . . , ζk), (φ0, . . . , φk−1), (ε0, . . . , εk−1)
)

be a cubical

n-path through a cubical set X with k ≥ 1. We define
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• χ− to be the cubical n-path given by
(

(ζ1, . . . , ζk), (φ1, . . . , φk−1), (ε1, . . . , εk−1)
)

• Θ(χ) to be the cubical (n+ 1)-path given by((
φ0, d

1
n+1(ζ1), . . . , d1

n+1(ζk)
)
,
(
Γ1,ε0
n+1(φ0), d2

n+2(φ1), . . . , d2
n+2(φk−1)

)
,
(
ε0, . . . , εk−1

))
We first verify that this definition makes sense. It’s obvious that for a cubical n-path χ, χ− is also an n-path.

That Θ(−) yields (n + 1)-paths is a little less immediate however, and so we compute directly. First recall

that the following cubical identities hold

f1,δ
n+2 ◦ Γ1,δ

n+1 = id f1,−δ
n+2 ◦ Γ1,δ

n+1 = d1
n+1 ◦ f

1,−δ
n+1 f1,δ

n+2 ◦ d2
n+2 = d1

n+1 ◦ f
1,δ
n+1

We then have

f1,ε0
n+2(Γ1,ε0

n+1(φ0)) = φ0

f1,−ε0
n+2 (Γ1,ε0

n+1(φ0)) = d1
n+1(f1,−ε0

n+1 (φ0)) = d1
n+1(ζ1) = d1

n+1(f1,ε1
n+1(φ1)) = f1,ε1

n+2(d2
n+2(φ1))

f1,−ε1
n+2 (d2

n+2(φ1)) = d1
n+1(f1,−ε1

n+1 (φ1)) = d1
n+1(ζ2) = d1

n+1(f1,ε2
n+1(φ2)) = f1,ε2

n+2(d2
n+2(φ2))

...

f
1,−εk−1

n+2 (d2
n+2(φk−1)) = d1

n+1(f1,−εk−1(φk−1)) = d1
n+1(ζk)

And so Θ(χ) is indeed an (n + 1)-path. With that out of the way we now justify our operators’ suggestive

name by way of a lemma.

Lemma 3.19. Let χ =
(

(ζ0, . . . , ζk), (φ0, . . . , φk−1), (ε0, . . . , εk−1)
)

be a cubical n-path through X with k ≥ 1.

Then

i)

f1,ε0
n+1(Θ(χ)) = χ

ii)

f1,−ε0
n+1 (Θ(χ)) ∼ χ−

Proof. We compute directly, noting that we have the cubical identities

f i,δn+1 ◦ din+1 = id f i+1,δ
n+2 ◦ Γi,δn+1 = id f i+1,−δ

n+2 ◦ Γi,δn+1 = din+1 ◦ f
i,−δ
n+1

i) f1,ε0
n+1(Θ(χ)) = χ:

f1,ε0
n+1(Θ(χ)) =

((
f1,ε0
n+1(φ0),

#                                 »

f1,ε0
n+1 ◦ d1

n+1(ζ)
)
,
(
f2,ε0
n+2 ◦ Γ1,ε0

n+1(φ0),
#                                 »

f2,ε0
n+2 ◦ d2

n+2(φ)
)
,
(

#»ε
))

=
((
ζ0, . . . , ζk

)
,
(
φ0, . . . , φk−1

)
,
(

#»ε
))

= χ



Chapter 3. Path Object Category Structure On The Category Of Cubical Sets With Connections 58

ii) f1,−ε0
n+1 (Θ(χ)) ∼ χ−:

f1,−ε0
n+1 (Θ(χ)) =

(
f1,−ε0
n+1 (φ0),

#                                    »

f1,−ε0
n+1 ◦ d1

n+1(ζ)
)
,
(
f2,−ε0
n+2 ◦ Γ1,ε0

n+1(φ0),
#                                     »

f2,−ε0
n+2 ◦ d2

n+2(φ)
)
,
(

#»ε
))

=
((
ζ1, ζ1, . . . , ζk

)
,
(
d1
n+1 ◦ f

1,−ε0
n+1 (φ0), φ1, . . . , φk−1

)
,
(

#»ε
))

=
((
ζ1, ζ1, . . . , ζk

)
,
(
d1
n+1(ζ1), φ1, . . . , φk−1

)
,
(

#»ε
))

∼ χ−

Notation 3.2.2. Given a cubical n-path χ through X, we define χ−j for 0 ≤ j ≤ k by

i) χ−0 = χ ii) χ−1 = χ− iii) χ−i+1 = (χ−i)−

Note that χ−k = (eX)n(tX)n(χ) - precisely what we wish to contract our paths to. We thus set

(ηX)n(χ) =
((
χ−0 , . . . , χ−k

)
,
(
Θ(χ−0), . . . ,Θ(χ−k−1)

)
,
(

#»ε
))

By Lemma 3.19, this indeed gives us an assignment (ηX)n : (MX)n → (MMX)n. There are a number of

things left to check before we can see if the Axiom 3 identities are satisfied. Firstly, that this assignment

is independent of choice of representative; secondly, that each ηX is a cubical morphism and finally that η

constitutes a natural transformation. The following lemma shows that the contraction operators themselves

don’t respect the equivalence relation, but we can use it to show the map (ηX)n does.

Lemma 3.20.

1. Let χ ∼ χ′ with χ =
(( #»

ζ
)
,
( #»

φ
)
,
(

#»ε
))

and χ′ =
((
ζ0, ζ0,

#»

ζ ),
(
d1
n+1(ζ0),

#»

φ
)
,
(
ε, #»ε

))
. Then Θ(χ′) ∼

d1
n+1(χ).

2. Let χ ∼ χ′ with χ =
(( #»

ζ
)
,
( #»

φ
)
,
(

#»ε
))

, χ′ =
(( #»

ζ , ζi, ζi,
#»

ζ
)
,
( #»

φ, d1
n+1(ζi),

#»

φ
)
,
(

#»ε , ε, #»ε
))

and i > 0.

Then Θ(χ) ∼ Θ(χ′).

Proof. We compute both cases directly:

1. First note that we have the cubical identity Γ1,ε
n+1 ◦ d1

n+1 = d1
n+2 ◦ d1

n+1. It thus follows that

Θ(χ′) =
((
d1
n+1(ζ0), d1

n+1(ζ0), . . . , d1
n+1(ζk)

)
,
(
Γ1,ε
n+1(d1

n+1(ζ0)),
#               »

d2
n+2(φ)

)
,
(
ε, #»ε

))
=
((
d1
n+1(ζ0), d1

n+1(ζ0), . . . , d1
n+1(ζk)

)
,
(
d1
n+2(d1

n+1(ζ0)),
#               »

d2
n+2(φ)

)
,
(
ε, #»ε

))
∼ d1

n+1(χ)
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2. We note that we have the cubical identity d2
n+2 ◦ d1

n+1 = d1
n+2 ◦ d1

n+1. That Θ(χ) ∼ Θ(χ′) then follows

from a similar computation to the previous case:

Θ(χ′) =

((
φ0,

#               »

d1
n+1(ζ), d1

n+1(ζi), d
1
n+1(ζi),

#               »

d1
n+1(ζ)

)
,(

Γ1,ε
n+1(φ0),

#               »

d2
n+2(φ), d2

n+2(d1
n+1(ζi)),

#               »

d2
n+2(φ)

)
,
(

#»ε , ε, #»ε
))

=

((
φ0,

#               »

d1
n+1(ζ), d1

n+1(ζi), d
1
n+1(ζi),

#               »

d1
n+1(ζ)

)
,(

Γ1,ε
n+1(φ0),

#               »

d2
n+2(φ), d1

n+2(d1
n+1(ζi)),

#               »

d2
n+2(φ)

)
,
(

#»ε , ε, #»ε
))

∼ Θ(χ)

Corollary 3.21. For cubical n-paths χ, χ′ through X, if χ ∼ χ′ then (ηX)n(χ) ∼ (ηX)n(χ′).

Proof. Without loss of generality we assume χ =
(( #»

ζ
)
,
( #»

φ
)
,
(

#»ε
))

and

χ′ =
(( #»

ζ , ζi, ζi,
#»

ζ
)
,
( #»

φ, d1
n+1(ζi),

#»

φ
)
,
(

#»ε , ε, #»ε
))

with no other degenerate (n + 1)-cubes occurring. We can

make the following observations immediately:

i) χ−j ∼ (χ′)−j for 0 ≤ j ≤ i

ii) χ−j = (χ′)−j+1 for i ≤ j ≤ k − 1

Applying the previous lemma and our observations we have that

i) Θ((χ′)−j ) ∼ Θ(χ−j ) for 0 ≤ j < i

ii) Θ((χ′)−i) ∼ d1
n+1(χi)

iii) Θ(χ′)−j+1 = Θ(χ−j ) for i ≤ j ≤ k − 1

Hence we have

(ηX)n(χ′) =
(( #              »

(χ′)−(·)
)
,
( #                 »

Θ(χ−(·))
)
,
(

#»ε , ε, #»ε
))

=
(( #       »

χ−(·) , χ−i , χ−i ,
#       »

χ−(·)
)
,
( #                 »

Θ(χ−(·)), d1
n+1(χ−i),

#                 »

Θ(χ−(·))
)
,
(

#»ε , ε, #»ε
))

∼
(( #       »

χ−(·)
)
,
( #                 »

Θ(χ−(·))
)
,
(

#»ε
))

= (ηX)n(χ)

It follows that the maps (ηX)n are well defined.

Next we must show the components of ηX commute with the cubical operators. To prove this it suffices to

show they commute with the contraction operators in the appropriate way. That this is the case with (−)−

is obvious, but we require slightly more argument for Θ(−).
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Lemma 3.22.

1. Let 1 ≤ i ≤ n, δ ∈ {−1, 1} and χ ∈ (MX)n. Then f i+1,δ
n+1 (Θ(χ)) = Θ(f i,δn (χ)).

2. Let 1 ≤ i ≤ n and χ ∈ (MX)n−1. Then di+1
n+1(Θ(χ)) = Θ(din(χ)).

3. Let n ≥ 2, 1 ≤ i ≤ n− 1, δ ∈ {−1, 1} and χ ∈ (MX)n−1. Then

Γi+1,δ
n (Θ(χ)) = Θ(Γi,δn−1(χ))

.

Proof.

1. We first note that we have the following cubical identities:

• Since i ≥ 1, we have i+ 1 > 1 and i+ 2 > 2. Hence

f i+1,δ
n+1 ◦ d1

n+1 = d1
n ◦ f i,δn f i+2,δ

n+2 ◦ d2
n+2 = d2

n+1 ◦ f
i+1,δ
n+1

• Since 1 ≤ i ≤ n we have n+ 2 ≥ 3 and i+ 2 ≥ 1 + 1. Hence

f i+2,δ
n+2 ◦ Γ1,ε0

n+1 = Γ1,ε0
n ◦ f i+1

n+1

Hence we have

f i+1,δ
n+1 (Θ(χ)) =

((
f i+1,δ
n+1 (φ0),

#                                    »

f i+1,δ
n+1 ◦ d1

n+1(ζ)
)
,
(
f i+2,δ
n+2 ◦ Γ1,ε0

n+1(φ0),
#                                    »

f i+2,δ
n+2 ◦ d2

n+2(φ)
)
,
(

#»ε
))

=
((
f i+1,δ
n+1 (φ0),

#                       »

d1
n(f i,δn (ζ))

)
,
(
Γ1,ε0
n (f i+1

n+1(φ0)),
#                                »

d2
n+1(f i+1

n+1(φ))
)
,
(

#»ε
))

= Θ(f i,δn (χ))

2. Next we verify the degeneracy maps. Once again we note that some relevant cubical identities hold

• Since i ≥ 1 we have i+ 1 > 1 and i+ 2 > 2. Hence

di+1
n+1 ◦ d1

n = d1
n+1 ◦ din di+2

n+2 ◦ d2
n+1 = d2

n+2 ◦ di+1
n+1

• Since 1 ≤ i ≤ n we have n+ 2 ≥ 3 and i+ 1 > 1. Hence

Γ1,ε0
n+1 ◦ d

i+1
n+1 = di+2

n+2 ◦ Γ1,ε0
n

It then follows that

di+1
n+1(Θ(χ)) =

((
di+1
n+1(φ0),

#                           »

di+1
n+1 ◦ d1

n(ζ)
)
,
(
di+2
n+2 ◦ Γ1,ε0

n (φ0),
#                                 »

di+2
n+2 ◦ d2

n+1(φ)
)
,
(

#»ε
))

=
((
di+1
n+1(φ0),

#                          »

d1
n+1(din(ζ))

)
,
(
Γ1,ε0
n+1(di+1

n+1(φ0)),
#                                   »

d2
n+2(di+1

n+1((φ))
)
,
(

#»ε
))

= Θ(din(χ))
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3. Finally we attend to the connection maps. In this case the pertinent cubical identities are as follows:

• Since i ≥ 1 we have i+ 1 > 1 and i+ 2 > 2. Hence

Γi+1,δ
n ◦ d1

n = d1
n ◦ Γi,δn−1 Γi+2,δ

n+1 ◦ d2
n+1 = d2

n+1 ◦ Γi+1,δ
n

• Since i+ 2 > 1 we have

Γi+2,δ
n+1 ◦ Γ1,ε0

n = Γ1,ε0
n+1 ◦ Γi+1,δ

n

Hence

Γi+1,δ
n (Θ(χ)) =

((
Γi+1,δ
n (φ0),

#                              »

Γi+1,δ
n ◦ d1

n(ζ)
)
,
(
Γi+2,δ
n+1 ◦ Γ1,ε0

n (φ0),
#                                    »

Γi+2,δ
n+1 ◦ d2

n+1(φ)
)
,
(

#»ε
))

=
((

Γi+1,δ
n (φ0),

#                          »

d1
n(Γi,δn−1(ζ))

)
,
(
Γ1,ε0
n+1(Γi+1,δ

n (φ0)),
#                                   »

d2
n+1(Γi+1,δ

n (φ))
)
,
(

#»ε
))

= Θ(Γi,δn−1(χ))

Thus the fact that each ηX is a cubical morphism follows immediately:

Corollary 3.23. For each cubical set X, ηX is a cubical morphism.

Proof. We must show the components of ηX commute with the cubical operators. This is straightforward

by the previous lemma and we restrict attention to the face map case since all three follow from an identical

argument:

f i,δn ◦ (ηX)n(χ) = f i,δn

((
χ−0 , . . . , χ−k

)
,
(
Θ(χ−0), . . . ,Θ(χ−k−1)

)
,
(

#»ε
))

=
(( #                     »

f i,δn (χ−(·))
)
,
( #                                     »

f i+1,δ
n+1 (Θ(χ−(·)))

)
,
(

#»ε
))

=
(( #                          »

(f i,δn (χ))−(·)
)
,
( #                                 »

(Θ(f i,δn (χ−(·)))
)
,
(

#»ε
))

= (ηX)n−1 ◦ f i,δn (χ)

We’re left with the final verification:

Proposition 3.24. The collection of cubical morphisms η = (ηX : MX →MMX | X in cSetc) constitutes

a natural transformation η : M ⇒MM .

Proof. Let µ : X → Y be a cubical morphism. We require the commutativity of the following diagram

(MX)n (MMX)n

(MX)n (MMY )n

(ηX)n

M(µ)n MM(µ)n

(ηY )n
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It follows immediately from the definition of M(µ)n that

M(µ)n(χ−) = (M(µ)n(χ))− M(µ)n+1(Θ(χ)) = Θ(M(µ)n(χ))

Hence by these identities we have

MM(µ)n ◦ (ηX)n(χ) = MM(µ)n

((
χ−0 , . . . , χ−k

)
,
(
Θ(χ−0), . . . ,Θ(χ−k−1)

)
,
(

#»ε
))

=
(( #                              »

M(µ)n(χ−(·))
)
,
( #                                             »

M(µ)n+1(Θ(χ−(·)))
)
,
(

#»ε
))

=
(( #                                   »

(M(µ)n(χ))−(·)
)
,
( #                                       »

Θ(M(µ)n(χ−(·)))
)
,
(
ε
))

= (ηY )n ◦M(µ)n(χ)

It follows that η is a natural transformation.

With this in place all that remains is to verify the requisite identities for Axiom 3 and thus finish our proof

that cSetc is a nice path object category.

Proposition 3.25. The natural transformation η : M ⇒ MM satisfies the nice path object category con-

traction identities. Hence cSetc satisfies the third nice path object category axiom.

Proof. We compute each in turn, once again noting that it is sufficient to compute each identity at n. We

obtain the identities

sMX ◦ ηX = idMX tMX ◦ ηX = eX ◦ tX

immediately, since we have

(sMX)n ◦ (ηX)n(χ) = χ (tMX)n ◦ (ηX)n(χ) = (eX)n ◦ (tX)n(χ)

Next we must show M(sX) ◦ ηX = idMX . Computing directly, we obtain

M(sX)n ◦ (ηX)n(χ) =
(( #                           »

(sX)n(χ−(·))
)
,
( #                                           »

(sX)n+1(Θ(χ−(·)))
)
,
(

#»ε
))

=
((
ζ0, . . . , ζk

)
,
(
φ0, . . . , φk−1

)
,
(

#»ε
))

= χ

Similarly we attend to M(tX) ◦ ηX = eX ◦ tX :

M(tX)n ◦ (ηX)n(χ) =
(( #                           »

(tX)n(χ−(·))
)
,
( #                                          »

(tX)n+1(Θ(χ−(·)))
)
,
(

#»ε
))

=
((

(tX)n(χ), . . . , (tX)n(χ)
)
,
(
d1
n+1((tX)n(χ)), . . . , d1

n+1((tX)n(χ))
)
,
(

#»ε
))

∼
((

(tX)n(χ)
)
,
( )
,
( ))

= (eX)n ◦ (tX)n(χ)

Finally we require ηX ◦ eX = eMX ◦ eX - but this is immediate:

(ηX)n ◦ (eX)n(ζ) =
((
eX(ζ)

)
,
( )
,
( ))

= (eMX)n ◦ (eX)n(ζ)
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Hence the nice contraction identities hold: cSetc satisfies the third nice path object category axiom.

As an immediate corollary we obtain Theorem 3.1, and this concludes the first part of the thesis. We dedicate

the second half to constructing a model of type theory using this structure.



Part II

Constructing A Model Of Type

Theory

64



Chapter 4

Categorical Semantics

We begin the second half of the thesis by giving the categorical semantics we use to model type theory.

There are many options: Dybjer’s categories with families [Dyb95], Cartmell’s contextual categories [Car86],

Awodey’s natural models [Awo14] and Pitts’ type categories [Pit00] to name a few. For essentially aesthetic

reasons we choose to go with the latter in this thesis, though this state of affairs should not alarm the reader:

these approaches are all essentially equivalent - for example, see [Awo14] for the equivalence between natural

models and categories with families. Though the focus of the thesis is away from syntax - and for that

reason we leave discussion of this area to Appendix B - the reader may desire a suitable reference to help

contextualise the work we do. For this we recommend [NPS90].

4.1 Type Categories

Definition 4.1 (Type Category). A type category consists of the following data

• A category C of contexts and context morphisms with a terminal object 1.

• For each Γ ∈ C0, a collection TyC(Γ) of types in context Γ.

• For each A ∈ TyC(Γ) an extended context Γ.A ∈ C0 and a dependent projection πA : Γ.A→ Γ.

• For each f : ∆→ Γ in C and A ∈ TyC(Γ), a type A[f ] ∈ Ty(∆) and a morphism

f+ : ∆.A[f ]→ Γ.A

making the following square into a pullback

∆.A[f ] Γ.A

∆ Γ

f+

πA[f] πA

f

65
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A type category is said to be split if it satisfies the coherence axioms

A[idΓ] = A (idΓ)+ = idΓ.A

A[fg] = A[f ][g] (fg)+ = f+g+

The only thing missing is an interpretation of terms. We obtain these as sections of the projection maps πA.

Definition 4.2 (Global Section). Given a type category C, a context X in C and a type A in TypeC(X) a

global section of A is a morphism a : X → X.A satisfying πA ◦ a = idX . We denote this by a ∈X A.

Note that we are able to extend the definition of [f ] to global sections. Suppose f : Y → X with A in

TypeC(X) and a ∈X A. Then we have

πA ◦ (a ◦ f) = idX ◦ f = f = f ◦ idY

Hence by the universal property of the pullback we have a unique a[f ] : Y → Y.A[f ] such that the diagram

Y

Y.A[f ] X.A

Y X

a◦f

idY

a[f ]

f+

πA[f] πA

f

commutes. This gives that πA[f ] ◦ a[f ] = idY so a[f ] ∈Y A[f ] and so substitution of terms is also modelled.

With this data satisfied it is straightforward to give an inductive construction that models dependent types,

taking care of substitution with the pullback condition. Interpreting the terminal object as the empty context,

we can use context extension to construct well formed contexts in C. Terms are given as global sections of

types, and substitution of types and terms is taken care of by the substitution pullbacks described above.

Definitional equality is then actual equality in C. We have:

Theorem 4.3 ([Pit00]). A split type category has the necessary structure to soundly model dependent types.

The exact details of the model construction are given in Chapter 6 of [Pit00]. The type categories we develop

in the course of this thesis will not be split, given that substitution in them will be given by pullback and

hence the coherence axioms will hold up to natural isomorphism instead. This coherence issue can be happily

swept under the rug though: by [Hof95] we have that any type category may be replaced by a split type

category ‘equivalent’ to the original in a suitable way.

What is missing from our exposition so far are the type constructors that give dependent type theories their

characteristic expressiveness. In this thesis we work towards modelling a fragment of intuitionistic type

theory containing the basic inference rules and the axioms governing identity types. A brief introduction

to this system can be found in Appendix B. Identity types are the novel feature of such type theories that

allow us to express propositional equality in the logic and the aspect of particular interest when it comes to

modelling type theory. For reference we give the rules governing identity types for the system:
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Identity Formation
a, b : A

IdA(a, b)
Id− Form;

Identity Introduction
a : A

rA(a) : IdA(a, a)
Id− Intro;

Identity Elimination

x, y : A, z : IdA(x, y),∆(x, y, p) ` C(x, y, z) type

a : A,∆(a, a, rA(a)) ` d(a) : C(a, a, rA(a))

a, b : A ` p : IdA(a, b)
Id-Elim

∆(a, b, p) ` Jd(a, b, p) : C(a, b, p)

Identity Coherence

∆, x : C ` a(x), b(x) : A(x) c : C
Id Coherence

∆ ` IdA(x)(a(x), b(x))[c/x] = IdA[c](a[c/x], b[c/x])

∆, x : C ` a(x) : A(x) c : C
r coherence

∆ ` rA(x)(a(x))[c/x] = rA[c/x](a[c/x]) : IdA[c/x](a[c/x], a[c/x])

x, y : A, z : IdA(x, y),∆(x, y, p) ` C(x, y, z) type

x : A,∆(x, x, r(x)) ` d(x) : C(x, x, r(x)) a : A
J Coherence

∆(a, a, r(a)) ` Jd(a, a, r(a)) = d(a) : C(a, a, r(a))

We note the addition of the extra contextual parameter ∆ in the elimination rules. Supposing we included

the rules governing product types in our fragment this would be equivalent to the usual rules: we can take

take the product type of the types in context ∆ and C to obtain a new dependent type C ′ and hence obtain

the usual formulation of the rule. However without product types we require this strictly stronger formulation

in order to derive the non-trivial properties of the identity types. Now for a type category to model type

constructors it requires additional operations that reflect the constructor’s derivation rules. Before specifying

precisely the conditions necessary to model these rules we introduce some notation:

Given A,B ∈ Ty(Γ) we denote B[πA] ∈ Ty(Γ.A) by the abbreviation B+. This gives us the pullback square:

Γ.A.B+ Γ.B

Γ.A Γ

(πA)+

πB+ πB

πA
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Letting A = B, the identity arrow idΓ.A gives a pullback cone inducing the diagonal morphism δA : Γ.A →
Γ.A.A+ :

Γ.A

Γ.A.A+ Γ.A

Γ.A Γ

idΓ.A

idΓ.A

δA

(πA)+

πA+ πA

πA

which by commutativity satisfies

πA+ ◦ δA = (πA)+ ◦ δA = idΓ.A

Thus to interpret identity types in a type category we require the satisfaction of the conditions in the following

definition:

Definition 4.4 (C Has Identity Types). [vdBG12] A type category C has identity types if the following

conditions are satisfied:

• Formation: For each A ∈ Ty(Γ) a type IdA ∈ Ty(Γ.A.A+)

• Introduction: For each A ∈ Ty(Γ), an arrow

rA : Γ.A→ Γ.A.A+.IdA

whose composite with πIdA is δA.

• Elimination/Computation: For each C ∈ Ty(Γ.A.A+.IdA) and commutative diagram

Γ.A Γ.A.A+.IdA.C

Γ.A.A+.IdA Γ.A.A+.IdA

d

rA πC

id

a diagonal filler J(C, d) rendering the following diagram commutative:

Γ.A Γ.A.A+.IdA.C

Γ.A.A+.IdA Γ.A.A+.IdA

d

rA πC

id

J(C,d)
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• Substitution: For every morphism f : ∆ → Γ in C we have IdA[f++] = IdA[f ] together with the

commutativity of the following squares:

∆.A[f ] ∆.A[f ].A[f ]+.IdA[f ]

Γ.A Γ.A.A+.IdA

rA[f]

f+ f+++

rA

∆.A[f ].A[f ]+.IdA[f ] ∆.A[f ].A[f ]+.IdA[f ].C[f+++]

Γ.A.A+.IdA Γ.A.A+.IdA.C

J(C[f ],d[f ])

f+++ f+++

J(C,d)

where d[f ] is the morphism defined by the pullback

∆.A[f ]

∆.A[f ].A[f ]+.IdA[f ].C[f ] Γ.A.A+.IdA.C

∆.A[f ].A[f ]+.IdA[f ] Γ.A.A+.IdA

df+

rA[f]

d[f ]

f++++

πC[f+++] πC

f+++

We can strengthen the definition to account for contextual parameters:

Definition 4.5 (C Has Strong Identity Types). A type category C has strong identity types if for every

A ∈ Ty(Γ) there are given IdA and rA as above, but now for every

B1 ∈ Ty(Γ.A.A+.IdA)

...

Bn ∈ Ty(Γ.A.A+.IdA.B1 . . . Bn−1)

C ∈ Ty(Γ.A.A+.IdA.B1 . . . Bn−1.Bn)

and commutative diagram

Γ.A.∆[rA] Γ.A.A+.IdA.∆.C

Γ.A.A+.IdA.∆ Γ.A.A+.IdA.∆

d

(rA)+···+ πC

id
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with ∆ abbreviating the context B1, . . . , Bn, we have a diagonal filler J(∆, C, d) rendering the diagram

Γ.A.∆[rA] Γ.A.A+.IdA.∆.C

Γ.A.A+.IdA.∆ Γ.A.A+.IdA.∆

d

(rA)+···+ πC

id

J(∆,C,d)

commutative, with the structure stable under substitution as in the previous definition.

We call such a type category a categorical model of identity types or a categorical model of intensional type

theory. By a modification of [War08, Theorem 2.48] we can see that the process producing the corresponding

split type category from a non-split one also yields an identity type structure whenever the original type

category had one, so once again we are able to ignore issues of coherence.

4.2 Model Categories

Introduced by Quillen in [Qui67], model categories abstract away topological properties to provide a general

framework within which homotopy theory can be developed. An accessible introduction can be found in

[Hov00]. In recent years interpretations of type theory in model categories have motivated the composite

field homotopy type theory as well as the univalent foundations research programme [IAS13]. Although we will

not make explicit use of model categories in the remainder of the thesis, the model category interpretation of

type theory is the key motivation behind the construction of homotopy theoretic models that we will embark

upon in the next chapter, as well as providing a non-trivial instantiation of a type category. To state the

definition we first require some additional concepts.

Definition 4.6 (Lifting Properties). Let u : A → B and f : X → Y . We say u has the left lifting property

with respect to f (respectively f has the right lifting property with respect to u) if for every commutative

square

A X

B Y

h

u f

k

there exists a diagonal filler s : B → X rendering the following diagram commutative:

A X

B Y

h

u f

k

s

We denote this by u t f .

If M is any collection of morphisms in C we denote by tM the collection of morphisms with the left lifting

property with respect to all maps inM; analogouslyMt denotes the collection of morphisms with the right

lifting property with respect to all maps in M.
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Definition 4.7 (Weak Factorisation System). A weak factorisation system on a category C is a pair of classes

of morphisms (L,R) closed under retracts, such that the following properties are satisfied:

1. (Factorisation) Every morphism f : X → Y of C can be factored as f = pi with i ∈ L and p ∈ R:

X P

Y

i

f p

2. (Lifting) L =t R and R = Lt

We call morphisms in L left maps, whilst morphisms in R are called right maps.

We can derive a useful closure property for any weak factorisation system:

Lemma 4.8. For any weak factorisation system (L,R), the class R is closed under taking pullbacks.

Proof. Let r : X → Z be a right map and suppose we have f : Y → Z such that the pullback

W X

Y Z

f

r r

f

exists. Suppose we have a left map l : A→ B and a commutative square

A W

B Y

h

l r

k

By looking at the composite of this square and the pullback we obtain a diagonal filler j : B → X rendering

the following diagram commutative

A X

B Z

f◦h

l rj

f◦k
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We thus obtain from the universal property of the pullback the morphism s : B →W as follows:

B

W X

Y Z

j

k

s

f

r r

f

We claim this renders the following diagram commutative

A W

B Y

h

l r

k

s

The lower triangle is given immediately by commutativity of the diagram defining s, whereas for the upper

triangle is suffices to verify identity holds upon post-composition with the projection maps f and r. We have

rsl = kl = rh fsl = jl = fh

as required.

The link between weak factorisation systems and intensional type theory has been explored by Garner and

Gambino in [GG08]. There they prove that any dependent type theory with identity types admits a non-

trivial weak factorisation system. In the other direction, the interpretation of type theory in model categories

is based upon one of the weak factorisation systems that comprises part of the model structure: before we

get ahead of ourselves we give the full definition.

Definition 4.9 (Model Category). A model structure on a bicomplete category C is a triple of classes of

morphisms (Cof, F ib,W ) - cofibrations, fibrations and weak equivalences respectively - such that:

1. (Retracts): Each distinguished class of arrows is closed under retracts in the arrow category C→.

Specifically, f : U → V is a retract of g : X → Y in C→ if arrows i0, r0, i1, r1 exist such that the

following diagram commutes

U X U

V Y V

i0

f

r0

g f

i1 r1

with r0 ◦ i0 = idU and r1 ◦ i1 = idV ;
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2. (2-Out-Of-3) Given a commutative triangle

A B

C

f

h g

if any two out of f, g, h are weak equivalences than so too is the third;

3. (W.F.S) (Cof, F ib ∩W ) and (Cof ∩W,Fib) are weak factorisation systems on C.

We call a bicomplete category C together with a model structure a model category. A morphism f is an

acyclic fibration if it is in Fib ∩W ; analogously f is an acyclic cofibration if it is in Cof ∩W . We call an

object A fibrant if the unique map !A : A→ 1 is a fibration. The dual notion of a cofibrant object is obtained

when the unique map 0→ A is a cofibration.

Motivating examples of model categories can be found in the categories of groupoids, topological spaces and

simplicial sets. We simply state the model structures of each, as a full exposition of the definitions involved

would take us too far off course. The interested reader may consult the cited references for the full details.

Theorem 4.10.

• [And78] The classical model structure on the category Gpd is given by

– Cof: The class of all functors injective on objects.

– Fib: The class of isofibrations.

– W: The class of equivalences of categories.

• [Hov00] The classical model structure on the category Top is given by

– Cof: The smallest saturated class containing the boundary inclusions Sn−1 ↪→ Dn

– Fib: The class of maps that have the right lifting property with respect to all inclusions i0 : Dn ↪→
Dn × I that include the n-disk as Dn × {0} - the Serre Fibrations.

– W: The class of weak homotopy equivalences.

• [GM96] The classical model structure on the category sSet is given by

– Cof: The class of all monos.

– Fib: The class of all Kan fibrations - maps a : A→ I such that ink t a for all n, k ∈ N.

– W: The class of all maps f : X → Y whose geometric realization is a homotopy equivalence.

We thus construct a type category from the structure of a model category.

Theorem 4.11. For any model category C there exists a type category with C as its category of contexts.

Proof. Let C be a model category. We give the following data to obtain a type category:
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• We take C as the category of contexts and by completeness we have the terminal object 1;

• For each object X in C we a type A in context X is represented by a fibration f : dom(f)→ X;

• For an object X and a type A over X represented by f : dom(f)→ X we obtain the extended context

X.A as dom(f) and the dependent projection πA : X.A→ X as f .

• Given a type A represented by the fibration πA : X.A → X and an arrow f : Y → X we obtain the

type A[f ] and the substitution map f+ by taking the pullback

Y.A[f ] X.A

Y X

f+

πA[f] πA

f

noting that πA[f ] : Y.A[f ]→ Y is a fibration by Lemma 4.8.

The question is, can this type category model identity types? The answer is sadly no, but it is a qualified no

as we can in fact meet half the criteria. In [AW09] Awodey and Warren give the idea behind a proof that

requires strengthening in order to coherently model identity types. We can sketch this idea after we have the

following definition.

Definition 4.12 ((Very Good) Path Object). In a model category C a (very good) path object AI consists

of a factorisation

X XI

X ×X

r

δ
p

of the diagonal map δ : X → X ×X as a weak equivalence r followed by a fibration p.

In Gpd and Top path objects are given by exponentiation by a suitable “interval space”, whilst in sSet

the same method works when the object in question is a Kan complex - a fibrant object of the model

structure. In all cases path objects exist but they may not be uniquely determined or functorial. The idea

is to interpret IdA as the fibration p : (X.A)I → X.A.A+ and rA as r. This clearly satisfies the first two

conditions. Moreover, because rA is a trivial cofibration together with the fact that (Cof ∩W,Fib) is a weak

factorisation system we have that the required filler for the elimination/computation square exists.

The problem with this argument, however, is that although the fillers exist there is no guarantee that they

are coherent - that is, satisfy the substitution squares. To soundly model the type theory we require the

assignment to be stable under substitution, which in our case means stable under pullback. There are a

number of possible solutions that rectify this situation: one is developed in Warren’s PhD thesis [War08],

and involving restricting the fibrations we interpret to be identity types to a suitably well behaved subset

allowing pullback stability of fillers. Streicher gives an alternative solution in [Str14] by lifting a Grothendieck

universe to a type theoretic universe. This gives a “generic” filler that induces a series of pullback stable
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fillers as required. The solution we use constitutes the next chapter of the thesis; van den Berg and Garner’s

homotopy theoretic model framework. It is in within this framework that we will give our model of type

theory in the category of cubical sets with connections.



Chapter 5

Homotopy Theoretic Models

In this chapter we solve the issue highlighted at the end of the previous chapter by providing the modifications

required to strengthen Awodey’s idea to a proof. Essentially we need a type category to have enough structure

to specify choices of diagonal fillers in such way that they are functorial and stable under pullback, thus

allowing us to satisfy the substitution squares. Presenting this argument has the dual purpose of introducing

the framework within which we will build our model of type theory from the path object category structure.

5.1 Cloven Weak Factorisation Systems

In constructing the type category from an arbitrary model categories we only made use of the weak fac-

torisation system (Cof ∩W,Fib). It thus makes sense that in order to resolve the identity type issue we

should strengthen our notion of weak factorisation system. This is achieved by the introduction of cloven

weak factorisation systems:

Definition 5.1 (Cloven Weak Factorisation System). A cloven weak factorisation system on a category C is

specified by the following data:

• For each f : X → Y in C a choice of factorisation:

X Pf

Y

λf

f
ρf

• For each commutative square

U X

V Y

h

f g

k

76
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a choice of diagonal filler P (h, k) : Pf → Pg rendering the following diagram commutative

U Pg

Pf Y

λg◦h

λf ρg

k◦ρf

P (h,k) (5.1)

and such that the assignment (h, k) 7→ P (h, k) is functorial in (h, k);

• For each f : X → Y , choices of diagonal fillers σf : Pf → Pλf and πf : Pρf → Pf rendering the

following diagrams commutative:

X Pλf

Pf Pf

λλf

λf ρλf

idPf

σf

Pf Pf

Pρf Y

idPf

λρf ρf

ρρf

πf

We show that this is a strengthening of the notion of weak factorisation system by giving the w.f.s induced

by a cloven W.F.S. First some definitions:

Definition 5.2 (Cloven Maps). Given a cloven weak factorisation system on a category C, a cloven L-map

structure on a morphism f : X → Y of C is a map s : Y → Pf rendering the following diagram commutative

X Pf

Y Y

λf

f ρf

idY

s (5.2)

We say (f, s) : X → Y is a cloven L-map. Correspondingly, a cloven R-map structure on f is given by a

map p : Pf → X rendering the following diagram commutative:

X X

Pf Y

idX

λf f

ρf

p (5.3)

and we call (f, p) : X → Y a cloven R-map.

We can thus reformulate the last condition in the definition of cloven weak factorisation: for all f : X → Y

there exists a choice of cloven L-map structure σf for λf and a choice of cloven R-map structure πf for ρf .

That we denote these structured maps to be L-maps and R-maps is no coincidence:
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Proposition 5.3. Every cloven weak factorisation system has an underlying weak factorisation system whose

two classes of maps are given by

L = {f : A→ B | there is a cloven L-map structure on f}

R = {g : C → D | there is a cloven R-map structure on g}

Furthermore, this weak factorisation system has a canonical choice of diagonal fillers.

Proof. We show each axiom is satisfied in turn.

• Closed under retracts: We verify the case for L: the case for R is similar and thus left to the reader.

Suppose g : X → Y is in L and has a retract f : U → V : thus we have a commutative diagram

U X U

V Y V

i0

f

r0

g f

i1 r1

with r0 ◦ i0 = idU and r1 ◦ i1 = idV . We then have a choice of fillers P (i0, i1) : Pf → Pg and

P (r0, r1) : Pg → Pf such that the following diagrams commute:

U Pg

Pf Y

λg◦i0

λf ρg

i1◦ρf

P (i0,i1)

X Pf

Pg V

λf◦r0

λg ρf

r1◦ρg

P (r0,r1)

Since g is in L we have a cloven L-map structure on g given by s : Y → Pg. We thus claim that s′ =

P (r0, r1)◦ s◦ i1 gives a cloven L-map structure on f . That this is the case follows from straightforward

computations using the above diagrams and functorality of P (−,−), and we leave this to the reader.

• Factorisation: By definition, for every f : X → Y there is a factorisation f = ρf ◦ λf with (ρf , πf ) a

cloven R-map and (λf , σf ) a cloven L-map.

• Fillers: Suppose we have f in L and g in R with a commutative diagram

U X

V Y

h

f g

k
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and let s be a cloven L-map structure on f and p a cloven R-map structure on g. We then have a

canonical choice of diagonal filler j = p ◦ P (h, k) ◦ s for (f, s) and (g, p):

p ◦ P (h, k) ◦ s ◦ f = p ◦ P (h, k) ◦ λf (Commutativity of (5.2))

= p ◦ λg ◦ h (Commutativity of (5.1))

= h (Commutativity of (5.3))

g ◦ p ◦ P (h, k) ◦ s = ρg ◦ P (h, k) ◦ s (Commutativity of (5.3))

= k ◦ ρf ◦ s (Commutativity of (5.1))

= k (Commutativity of (5.2))

Hence f t g as required.

With this taken care of we can essentially mimic the type category construction of Theorem 4.11 to give a

type category for any complete category C equipped with a cloven weak factorisation system.

Theorem 5.4. Let C be a complete category equipped with a cloven weak factorisation system. Then there

is a type category whose category of contexts is C.

Proof. We list the requisite structure:

• Empty Context: By completeness we have terminal object 1;

• Types: A type A ∈ Ty(Γ) is given by a cloven R-map (f, p) : dom(f)→ Γ;

• Context Extension: For a type A ∈ Ty(Γ) represented by a cloven R- map (f, p) : dom(f)→ Γ we take

Γ.A = dom(f) and πA = f ;

• Substitution: Let f : ∆→ Γ with A ∈ Ty(Γ) given by a cloven R-map (πA, p) : Γ.A→ Γ. We can take

the pullback

∆.A[f ] Γ.A

∆ Γ

f+

πA[f] πA

f

That πA[f ] can be equipped with a cloven R-map structure follows from Proposition 5.3 together with

Lemma 4.8, but we note that there is a canonical choice of cloven R-map structure for πA[f ]. Since

p is a cloven R-map structure for πA we have, in particular, that πA ◦ p = ρρπA . We also have,

by commutativity of the pullback square, a choice of diagonal filler P (f+, f) rendering the following
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diagram commutative:

∆.A[f ] PλπA

PλπA[f]
Γ

λπA◦f
+

λπA[f]
ρπA

f◦ρπA[f]

P (f+,f)

Hence by the universal property of the pullback we obtain a morphism p[f ] : PπA[f ] → ∆.A[f ] as

follows:

PπA[f ]

∆.A[f ] Γ.A

∆ Γ

p◦P (f+,f)

ρπA[f]

p[f ]

f+

πA[f] πA

f

(5.4)

We claim p[f ] is a cloven R-map structure for πA[f ]. We must verify commutativity of the diagram:

∆.A[f ] ∆.A[f ]

PπA[f ] ∆

id

λπA[f]
πA[f]

ρπA[f]

p[f ]

We note that the lower triangle commutes immediately by (5.4). For the upper triangle it suffices to

show we have equality upon post-composition by the projection maps f+ and πA[f ]. We have

f+ ◦ p[f ] ◦ λπA[f]
= p ◦ P (f+, f) ◦ λπA[f]

= p ◦ λπA ◦ f+ = f+

πA[f ] ◦ p[f ] ◦ λπA[f]
= ρπA[f]

◦ λπA[f]
= πA[f ]

as required. Hence we interpret A[f ] as the cloven R-map (πA[f ], p[f ]) : ∆.A[f ]→ ∆.

For this type category to interpret identity types we require our cloven weak factorisation system to satisfy

a few more properties.

5.2 Diagonal Factorisations

The next step is to specify a choice of factorisations for the diagonal maps δf . With these in tow we can

mimic the interpretation of identity types sketched at the end of the previous chapter. We will require certain

regularity principles for these choices in order for substitution to be modelled soundly, and to express these

we need to fit our cloven L and R-maps into their own categories.
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Definition 5.5 (Morphism Of Cloven Maps). Given cloven L-maps (f, s) : X → Y and (g, t) : Z → W a

morphism of cloven L-maps (h, k) : (f, s)→ (g, t) is given by a commutative square

X Z

Y W

h

f g

k

with the additional property that the following square commutes

Y Pf

W Pg

s

k P (h,k)

t

Dually, given cloven R-maps (f, p) : X → Y and (g, r) : Z → W a morphism (h, k) : (f, p) → (g, r) is a

commutative square as above, with the additional property that the following square commutes

Pf Pg

X W

P (h,k)

p r

h

This notion allows us to prove a number of properties that we give in the following lemma.

Lemma 5.6.

1. Given a cloven weak factorisation system on a category C there exist a category L-MapC comprised of

cloven L-maps and morphisms of cloven L-maps and a category R-MapC comprised of cloven R-maps

and morphism of cloven R-maps.

2. Precomposition by a morphism of cloven L-maps sends canonical fillers to canonical fillers; postcompo-

sition by a morphism of cloven R-maps sends canonical fillers to canonical fillers.

3. The morphism p[f ] of (5.4) is the unique such cloven R-map structure on p turning the pullback square

into a morphism of cloven R-maps.

Proof. 1. By defining id(f,p) = (iddom(f), idcod(f)) and (h′, k′) ◦ (h, k) = (h′ ◦h, k′ ◦k) we obtain categories

L- MapC and R-MapC. We have the commutative composite:

X Z Z ′

Y W W ′

h

f g

h′

g′

k

k′
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Then in the case of L-maps the commutative composite

Y Pf

W Pg

W ′ Pg′

s

k P (h,k)

t

k′ P (h′,k′)

t′

and in the case of R-maps the commutative composite

Pf Pg Pg′

X W W ′

P (h,k)

p

P (h′,k′)

r g′

h h′

The functorality of the assignment P (h, k) thus completes the proof that this notion of composition is

well defined.

2. Suppose we have a cloven L-map (f, s) : U → V and an R-map (g, p) : X → Y . As before, given a

commutative square

U X

V Y

h

f g

k

we have a canonical choice of filler given by p ◦ P (h, k) ◦ s. Supposing we have a morphism of cloven

L-maps (i, j) : (f ′, s′)→ (f, s) we obtain the commutative composite:

U ′ X

V ′ Y

hi

f ′ g

kj

We then have an obvious choice of filler given by precomposing the canonical choice for the original

diagram p ◦P (h, k) ◦ s with the map j. By the defining property of the cloven morphism it follows that

p ◦ P (h, k) ◦ s ◦ j = p ◦ P (h, k) ◦ P (i, j) ◦ s′

= p ◦ P (hi, kj) ◦ s′

That is, the canonical choice of filler for the composite diagram. This works analogously for morphisms

of cloven R-maps and post-composition.
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3. Finally we note that by commutativity of (5.4) (f+, f) : (πA[f ], p[f ])→ (πA, p) is a morphism of cloven

R-maps. Not only this, but by the universal property of the pullback p[f ] is the unique cloven R-map

structure on πA[f ] such that (f+, f) is a morphism of R-maps. We collect the preceding discussion in

a lemma.

Taken together, this shows that this notion of morphism is a good one, and equipped with the data given

thus far we have tight control over our canonical choice of fillers. With one more property we will be able

to prove that our type category has identity types. Recall that given a morphism f : X → Y we obtain the

diagonal map δf from the following pullback

X

X ×Y X X

X Y

idX

idX

δf

f

f

Definition 5.7 (Choice Of Diagonal Factorisations). A cloven weak factorisation system has a choice of

diagonal factorisations if, for every clovenR-map (f, p) : X → Y of C we have an assignment of a factorisation

of δf :

X I(f) X ×Y X
if jf

together with an assignment of a cloven L-map structure on if and a cloven R-map structure on jf . This

choice is functorial if this assignment can be extended to a functor I : R-MapE →R-MapE ×E L-MapE .

That is, for every morphism of cloven R-maps (h, k) : (f, p) → (g, r) there is given a map I(h, k) functorial

in h, k such that the following squares commute:

X U

I(f) I(g)

h

if ig

I(h,k)

I(f) I(g)

X ×Y X U ×V U

I(h,k)

jf jg

h×kh

(5.5)

with the left hand square a morphism of cloven L-maps and the right hand square a morphism of cloven

R-maps. Finally the choice is stable if the square

I(f) I(g)

X ×Y X Z ×W Z

I(h,k)

jf jg

h×kh

is a pullback whenever the underlying commutative square of the morphism of R- maps (h, k) is.
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Theorem 5.8. Given a cloven weak factorisation system for a category C, if there exists a functorial and

stable choice of diagonal factorisations then the associated type category of Theorem 5.4 has identity types.

Proof. We show each property can be satisfied case by case.

• Formation/Introduction: Let A ∈ Ty(Γ) be given by a cloven R-map (πA, p) : Γ.A → Γ. By the

substitution property of the type category we have that the following square is a pullback:

Γ.A.A+ Γ.A

Γ.A Γ

(πA)+

πA+ πA

πA

We thus obtain the diagonal map δπA : Γ.A→ Γ.A.A+ and use our choice of diagonal factorisation to

obtain

Γ.A I(πA) Γ.A.A+
iπA jπA

together with an assigned s and p making (iπA , s) a cloven L-map and (jπA , p) a cloven R-map. We thus

take (jπA , p) to be the identity type IdA ∈ Ty(Γ.A.A+), making I(πA) = Γ.A.A+.IdA and jπA = πIdA .

We can then take iπA as the introduction morphism rA : Γ.A→ Γ.A.A+.IdA, and clearly πIdA◦rA = δπA

as required.

• Elimination/Computation: Suppose C ∈ Ty(Γ.A.A+.IdA) and we have a commutative square

Γ.A Γ.A.A+.IdA.C

Γ.A.A+.IdA Γ.A.A+.IdA

d

rA πC

id

Since πC has a cloven R-map structure p and rA has a cloven L- map structure s, by Proposition 5.3

we have a canonical choice of filler J(C, d) = p ◦ P (d, id) ◦ s : Γ.A.A+.IdA → Γ.A.A+.IdA.C.

• Substitution:

1. IdA[f++] = IdA[f ]: We first note that Lemma 5.6 iii), the pullback square

∆.A[f ] Γ.A

∆ Γ

f+

πA[f] πA

f

(5.6)

is a morphism of cloven R-maps when πA and πA[f ] are equipped with their assigned cloven R-

map structures. By functorality of the choice of diagonal factorisations we obtain the commutative
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square

∆.A[f ].A[f ]+.IdA[f ] Γ.A.A+.IdA

∆.A[f ].A[f ]+ Γ.A.A+

I(f+,f)

πIdA[f]
πIdA

f++

underlying a morphism of R-maps. By stability this square is a pullback and so I(f+, f) = f+++

. We then note that since the assigned R-map structure on πA[f ] is the unique such structure

making the square a morphism of R-maps it follows that it is identical to the assigned R-map

structure for πIdA[f++] and hence the required identity holds.

2. Commutativity of

∆.A[f ] ∆.A[f ].A[f ]+.IdA[f ]

Γ.A Γ.A.A+.IdA

rA[f]

f+ f+++

rA

As in the previous case we note that (5.6) is a morphism of R-maps. Thus functorality of the

choice of diagonal factorisations establishes the requisite square’s commutativity, as it is precisely

the left hand commutative square of (5.5).

3. Commutativity of

∆.A[f ].A[f ]+.IdA[f ] ∆.A[f ].A[f ]+.IdA[f ].C[f+++]

Γ.A.A+.IdA Γ.A.A+.IdA.C

J(C[f ],d[f ])

f+++ f++++

J(C,d)

First note by functorality the commutative square of 2. is a morphism of L-maps from rA[f ]

to rA. By naturality of canonical fillers with respect to morphisms of cloven L-maps we have that

J(C, d) ◦ f+++ is the canonical filler of the square:

∆.A[f ] Γ.A.A+.IdC

∆.A[f ].A[f ]+.IdA[f ] Γ.A.A+.IdC

df+

rA[f] πC

f+++

Similarly we have that the commutative square

∆.A[f ].A[f ]+.IdA[f ].C[f ] Γ.A.A+.IdA.C

∆.A[f ].A[f ]+.IdA[f ] Γ.A.A+.IdA

f++++

πC[f+++] πC

f+++
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underlies a morphism of cloven R-maps. Using naturality of canonical fillers with respect to cloven

R-maps we have that f++++ ◦ J(C[f ], d[f ]) is the canonical filler of the square.

∆.A[f ] Γ.A.A+.IdC

∆.A[f ].A[f ]+.IdA[f ] Γ.A.A+.IdC

f++++d[f ]

rA[f] πC

f+++

Observing that df+ = f++++d[f ] thus gives the required commutativity.

5.3 The Frobenius Property

We require one further property in order to model the strong identity types, and thus obtain a sound

categorical model of identity types. We must be able to replicate these arguments in the presence of contextual

parameters, and in order to do this we require a particular stability property of our cloven maps.

Definition 5.9 (Frobenius Property). A cloven weak factorisation system for a category E has the Frobenius

property if, given a pullback of a cloven L-map (i, q) : X → A and a cloven R-map (f, p) : B → A

f?(X) X

B A

f

i i

f

the map i can be equipped with a cloven L-map structure. We say this is functorial if the assignment extends

to a functor R- MapE ×E L-MapE → L-MapE .

We suggestively compile the definitions given thus far under the name homotopy theoretic model of identity

types.

Definition 5.10 (Homotopy Theoretic Model Of Identity Types). A category C is a homotopy theoretic

model of identity types if it can be equipped with a cloven weak factorisation system satisfying the functorial

Frobenius property such that a functorial and stable choice of diagonal factorisations exists.

We thus complete the chapter and justify this terminology by proving that such a category models strong

identity types

Theorem 5.11. The associated type category to a homotopy theoretic model of identity types is a categorical

model of identity types.

Proof. By Theorem 5.8 it suffices to show the following property is satisfied: for every
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B1 ∈ Ty(Γ.A.A+.IdA)

...

Bn ∈ Ty(Γ.A.A+.IdA.B1 . . . Bn−1)

C ∈ Ty(Γ.A.A+.IdA.B1 . . . Bn−1.Bn)

and commutative diagram

Γ.A.∆[rA] Γ.A.A+.IdA.∆.C

Γ.A.A+.IdA.∆ Γ.A.A+.IdA.∆

d

(rA)+···+ πC

id

with ∆ abbreviating the context B1, . . . , Bn, we have a diagonal filler J(∆, C, d) rendering the diagram

Γ.A.∆[rA] Γ.A.A+.IdA.∆.C

Γ.A.A+.IdA.∆ Γ.A.A+.IdA.∆

d

(rA)+···+ πC

id

J(∆,C,d)

We first note that the Frobenius property exhibits (rA)+ as a cloven L-map structure. We have the pullback

Γ.A.B1[rA] Γ.A.A+.IdA.B1

Γ.A Γ.A.A+.IdA

(rA)+

πB1[rA] πB1
πB1

rA

and we know rA has an assigned cloven L-map structure and πB1
an assigned cloven R-map structure. Hence

(rA)+ is assigned a cloven L- map structure by functorality. Repeatedly applying this argument we obtain

an assigned cloven L-map structure of (rA)+···+. Since πC has an assigned cloven R-map structure we have a

canonical choice of diagonal filler J(∆, C, d) for the square as required. To see that the analogous substitution

conditions hold it suffices to once again use repeated applications of the Frobenius property and apply the

arguments of the previous Theorem: functorality guarantees the requisite identities hold.

We now have a set of conditions that allow us to produce sound models of intensional types. We dedicate

the penultimate chapter of the thesis to showing these conditions can be satisfied by constructions on the

path object category structure. We thus obtain a model of type theory in cubical sets with connections.



Chapter 6

Constructing A Homotopy Theoretic

Model

We now complete the thesis by producing a homotopy theoretic model from a path object category structure.

Before we delve into the construction it will help us to use the path object category structure to introduce

some homotopy theoretic notions with which to work.

6.1 Homotopy In Path Object Categories

Definition 6.1 (Homotopy). Let f, g : X → Y be morphisms in a path object category E . A homotopy

θ : f ⇒ g is a morphism X →MY such that the following diagrams commute

X Y X Y

MY MY

f

θ θ

g

sY tY

Proposition 6.2. For each X,Y in E there is a category E(X,Y ) given by

• Objects Morphisms f : X → Y

• Arrows Homotopies θ : f ⇒ g

Proof. We use the structure of the internal category to define composition of homotopies. Suppose we have

f, g, h : X → Y with θ : f ⇒ g and θ′ : g ⇒ h. In particular. since tY ◦ θ = sY ◦ θ′ we have the pullback

diagram

88
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X

MY ×Y MY MY

MY Y

θ

θ′

〈θ,θ′〉

πY0

πY1 tY

sY

Hence we define the composition θ′ ◦1 θ = cY ◦ 〈θ, θ′〉 : X →MY . By the internal category identities and the

commutativity of the diagram we have

sY ◦ cY ◦ 〈θ, θ′〉 = sY ◦ πY0 ◦ 〈θ, θ′〉 = sY ◦ θ = f

tY ◦ cY ◦ 〈θ, θ′〉 = tY ◦ πY1 ◦ 〈θ, θ′〉 = tY ◦ θ′ = h

So we indeed have θ′ ◦1 θ : f ⇒ h. To give the identities of the category we take idf = eY ◦ f . Then by the

rules of source and target of identities in an internal category we have

sY ◦ eY ◦ f = idY ◦ f = f = idY ◦ f = tY ◦ eY ◦ f

so Idf : f ⇒ f and it is straight forward to see this satisfies the identity axioms. Similarly we inherit

associativity of composition from the analogous internal category axiom.

We also have a notion of whiskering for our homotopies: suppose we have

W X Y Z
f

g

h

k
θ

Then we can obtain an E(W,Y )-morphism θ.f : gf ⇒ hf by the arrow θ ◦ f :

W Y X Y

MY MY

gf

θ◦f θ◦f

hf

sY tY

Similarly, we obtain an E(X,Z)-morphism k.θ : kg ⇒ kh by the arrow M(k)◦θ: we have commuting diagrams

X Y X Y

MY MY

kg

M(k)◦θ M(k)◦θ

kh

sY tY



Chapter 6. Constructing A Homotopy Theoretic Model 90

obtained via the naturality of s and t. It is straightforward to verify the following coherence properties of

these operations:

Lemma 6.3. The operations θ.f and k.θ are functorial in θ. Further they satisfy the following coherence

equations:

θ.(f.f ′) = (θ.f).f ′, θ.idX = θ

(k′.k).θ idY .θ = θ

Finally we have a “reversal” operation (−)◦ given by the involutions τX . Given θ : f ⇒ Y we have θ◦ : g ⇒ f

given by the arrow τY ◦ θ. We obtain the diagrams

X Y X Y

MY MY

g

τY ◦θ τY ◦θ

f

sY tY

since sY ◦ τY = tY and tY ◦ τY = sY .

With a notion of homotopy we can also define strong deformation retracts in our path object categories.

Definition 6.4 (Strong Deformation Retract). Given a map f : X → Y in a path object category E , a strong

deformation retraction is a retraction k : Y → X of f together with a homotopy θ : idY ⇒ fk which is trivial

on X: θ.f = idf . A strong deformation retract is a map f equipped with a strong deformation retraction.

We can unpack this definition to see that k : Y → X and θ : idY ⇒ fk together constitute a strong

deformation retract on f iff the following diagrams commute:

• Retraction

X X

Y

idX

f
k

(6.1)

• Homotopy

Y Y Y Y

MY MY

idY

θ θ

fk

sY tY (6.2)

• Trivial On X
X

Y MY

f
idf=eY ◦f

θ

(6.3)
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6.2 Constructing The Model

Equipped with these notions we construct a homotopy theoretic model from the path object category data.

For reasons of length, we sketch some of the details, concentrating on the parts of the argument either omitted

from the original exposition in [vdBG12] or crucially involving parts of the path object category structure.

6.2.1 The Cloven Weak Factorisation System

The first step in our construction is to equip an arbitrary path object category with a cloven weak factorisation

system. Recall that a cloven weak factorisation system on a category E is given by the following data

1. For each morphism f : X → Y in E a choice of factorisation

X Pf Y
λf ρf

2. For every commutative square of the form

U X

V Y

h

f g

k

(6.4)

a diagonal filler P (h, k) : Pf → Pg making the diagram

U X

V Y

λg◦h

λf ρg

k◦ρf

P (h,k) (6.5)

commute, such that the assignment (h, k) 7→ P (h, k) is functorial in h, k;

3. For each morphism f : X → Y , a choice of cloven L-map structure σf on λf and a choice of cloven

R-map structure πf on ρf .

Where a cloven L-map structure s and a cloven R-map structure p on a morphism x : X → Y are given by

diagonal fillers rendering the following squares commutative

X Pf

Y Y

λx

x ρx

idY

s

X X

Pf Y

idX

λf f

ρf

p (6.6)

We begin with the choice of factorisations.
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Lemma 6.5. For each morphism f : X → Y in a path object category E there exists a choice of factorisation

X Pf Y
λf ρf

Proof. : Let f : X → Y be an arrow in E . We define the required factorisation by first taking a pullback

Pf MY

X Y

pf

qf tY

f

(6.7)

We have that tY ◦ eY ◦ f = idY ◦ f = f = f ◦ idX so we can obtain λf from the universal property of the

pullback:

X

Pf MY

X Y

eY ◦f

idX

λf

pf

qf tY

f

(6.8)

Now defining ρf = sY ◦ pf , by the source/target property of the maps eY together with the commutativity

of (6.8) we have

ρf ◦ λf = sY ◦ pf ◦ λf = sY ◦ eY ◦ f = idY ◦ f = f

as required.

Next we give the diagonal fillers P (h, k).

Lemma 6.6. For the factorisations of Lemma 6.5, given a commutative square of the form (6.4) there exists

a diagonal filler P (h, k) : Pf → Pg making the diagram (6.5) commute, with the assignment (h, k) 7→ P (h, k)

functorial in h and k.

Proof. Suppose we have a commutative square of the form (6.4). Using the notation from the pullback of

the previous lemma, we have

tY ◦M(k) ◦ pf = k ◦ tV ◦ pf (Naturality of t )

= k ◦ f ◦ qf (Commutativity of (6.7))

= g ◦ h ◦ qf (Commutativity of (6.4))
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Hence we obtain the map P (h, k) : Pf → Pg by the universal property of the pullback:

Pf

Pg MY

X Y

M(k)◦pf

h◦qf

P (h,k)

pg

qg tY

f

(6.9)

That this assignment is functorial follows from the functorality of M . It remains to verify that the diagram

(6.5) commutes. For the upper triangle it suffices to check identity holds upon post-composition with the

projection maps pg and qg. For qg we simply use the commutativity of the pullback diagrams:

qg ◦ P (h, k) ◦ λf = h ◦ qf ◦ λf = h = qg ◦ λg ◦ h

Whilst for pg we can compute

pg ◦ λg ◦ h = eY ◦ g ◦ h (Commutativity of (6.8))

= eY ◦ k ◦ f (Commutativity of (6.4))

= M(k) ◦ eV ◦ f (Naturality of e)

= M(h) ◦ pf ◦ λf (Commutativity of (6.8))

= pg ◦ P (h, k) ◦ λf (Commutativity of (6.9))

This completes the proof that the upper triangle commutes. For the lower triangle we straightforwardly

compute

ρg ◦ P (h, k) = sY ◦ pg ◦ P (h, k)

= sY ◦M(k) ◦ pf (Commutativity of (6.9))

= k ◦ sV ◦ pf (Naturality of s)

= k ◦ ρf

Before we prove the final property required for the cloven weak factorisation system we can give a charac-

terisation of the cloven L-maps in path object categories that utilises the internal notion of homotopy we

developed.

Lemma 6.7. In a path object category, a map f : X → Y has a cloven L-structure s with respect to the

factorisation of Lemma 6.5 iff it has a strong deformation retract (θ, k).
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Proof. First assume we have a strong deformation retraction (θ, k) for f . From the target homotopy diagram

6.2 we obtain s : Y → Pf from the universal property of the pullback:

Y

Pf MY

X Y

θ

k

s

pf

qf tY

f

(6.10)

We claim s is a cloven L-map structure for f , thus making the left hand diagram of (6.6) commute. For the

upper triangle it is sufficient to verify equality upon post-composition with the projection maps pf and qf .

Since θ is trivial on X we have

pF ◦ s ◦ f = θ ◦ f = eY ◦ f = pf ◦ λf

Whilst the fact that k is a retraction of f gives us

qf ◦ s ◦ f = k ◦ f = idX = qf ◦ λf

For the lower triangle, since θ : idY ⇒ fk we have

ρf ◦ s = sY ◦ pf ◦ s = sY ◦ θ = idY

Hence s is a cloven-L-map structure for f as required. Conversely assume (f, s) is a cloven L-map. Defining

θ = pf ◦s and k = qf ◦s we claim (θ, k) gives a strong deformation retract on f - we leave the straightforward

computations to the reader.

Using this we can prove that the final condition for the cloven weak factorisation system holds:

Lemma 6.8. For each f : X → Y in a path object category E there exists a choice of cloven L-structure σf

on λf and a choice of cloven R-structure πf on ρf with respect to the choice of factorisation given in Lemma

6.5.

Proof. We first attend to the cloven L-structure on λf . By Lemma 6.7 it suffices to give a choice of strong

deformation retract. We already have a retraction qf : Pf → X of λf from the pullback defining it. Hence

we seek θλf : idPf ⇒ λf ◦ qf . Observe that the following diagram commutes

Pf MY MMY

M1×X M1× Y MY

MX

pf

(M !◦pf ,qf ) (M1,tY )

ηY

M(tY )

idM1×f

M(π1)◦α1,X

M(π1)◦α1,Y

M(f)
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The right hand square commutes by the third path object category axiom, the left hand square commutes

by 6.8 and the bottom triangle commutes by naturality of α. Recall also that M is a pullback preserving

functor. Hence we obtain θf from the universal property of the pullback diagram:

Pf

MPf MMY

MX MY

ηY ◦pf

α1,X◦(M !◦pf ,qf )

θf

M(pf )

M(qf ) M(tY )

M(f)

(6.11)

It remains to verify that θ satisfies the requisite properties:

• Homotopy: We wish to establish that θ : idPf ⇒ λfqf . Thus for the source homotopy diagram we

require sPf ◦ θf = idPf : equivalently, that we have identity upon post-composition with the projection

maps pf and qf . We have

pf ◦ sPf ◦ θf = sMY ◦ ηM(pf ) ◦ θf (Naturality of s)

= sMY ◦ ηY ◦ pf (Commutativity of 6.11)

= idMY ◦ pf (Path Object Category Axiom 3)

= pf

qf ◦ sPf ◦ θf = sX ◦M(qf ) ◦ θf (Naturality of s)

= sX ◦ α1,X ◦ (M ! ◦ pf , qf ) (Commutativity of 6.11)

= (s1 × idX) ◦ (M ! ◦ pf , qf ) (s is a strong natural transformation)

= qf

We can establish that the target homotopy diagram commutes in a similar fashion and we leave this

detail to the reader.
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• Trivial On X: Finally we require that θf ◦ λf = ePf ◦ λf and again it suffices to verify this identity

upon post-composition with the projection maps M(pf ) and M(qf ):

M(pf ) ◦ θf ◦ λf = ηY ◦ pf ◦ λf (Commutativity of 6.11)

= ηY ◦ eY ◦ f (Commutativity of 6.8)

= eMY ◦ eY ◦ f (Path Object Category Axiom 3)

= eMY ◦ pf ◦ λf (Commutativity of 6.8)

= M(pf ) ◦ ePf ◦ λf (Naturality of e)

M(qf ) ◦ θf ◦ λf = α1,x ◦ (M !Y ◦ pf ◦ λf , qf ◦ λf ) (Commutativity of 6.11)

= α1,X(M !Y ◦ eY ◦ f, idX) (Commutativity of 6.8)

= α1,X(e1◦!Y ◦ f, idX) (Naturality of e)

= α1,X(e1◦!X , idX) (1 is terminal)

= eX ◦ idMX (e is a strong natural transformation)

= eX ◦ qf ◦ λf (qf is a retraction of λf )

= M(qf ) ◦ ePf ◦ λf (Naturality of e)

This takes care of the choice of L-structure σf for λf . Next we construct a cloven R-map structure πf for ρf .

First note that the factorisation pullback for ρf allows us to obtain a map 〈pρf , pf ◦qρf 〉 : Pρf →MY ×Y MY

from the universal property of the composition pullback diagram of MY:

Pρf

MY ×X MY MY

MY Y

pρf

pf◦qρf

〈pρf ,pf◦qρf 〉

pY0

pY1 tY

sY

(6.12)

Now we have that

tY ◦ cY ◦ 〈pρf , pf ◦ qρf 〉 = tY ◦ pY1 ◦ 〈pρf , pf ◦ qρf 〉 (Target diagram of composition)

= tY ◦ pf ◦ qρf (Commutativity of 6.12)

= f ◦ qf ◦ qρf (Commutativity of 6.8)
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Hence we obtain πf :

Pρf

Pf MY

X Y

cY ◦〈pρf ,pf◦qρf 〉

qf◦qρf

πf

pf

qf tY

f

(6.13)

It remains to show that πf renders the right-hand diagram of (6.6) commutative for the case x = ρf , p = πf .

Once again, for the upper triangle we verify identity upon post-composition by the projection maps pf and

qf .

pf ◦ πf ◦ λρf = cY ◦ 〈pρf , pf ◦ qρf 〉 ◦ λρf (Commutativity of 6.13)

= cY ◦ 〈pρf ◦ λρf , pf ◦ qρf ◦ λρf 〉

= cY ◦ 〈eY ◦ ρf , pf 〉 (Commutativity of (6.8))

= cY ◦ 〈eY ◦ sY , idMY 〉 ◦ pf

= pf (Right Identity Law)

qf ◦ πf ◦ λρf = qf ◦ qρf ◦ λρf (Commutativity of 6.13)

= qf (Commutativity of (6.8))

For the lower triangle we can straightforwardly compute:

ρf ◦ πf = sY ◦ pf ◦ πf

= sY ◦ cY ◦ 〈pρf , pf ◦ qρf 〉 (Commutativity of 6.13)

= sY ◦ π0 ◦ 〈pρf , pf ◦ qρf 〉 (Source of composition law)

= sY ◦ pρf (Commutativity of 6.12)

= ρρf

Hence πf is indeed a cloven R-structure for ρf as required.

With all of these lemmas together we have established:

Theorem 6.9. A path object category E may be equipped with the structure of a cloven weak factorisation

system.

We will henceforth refer to this as the associated cloven w.f.s of the path object category E .
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6.2.2 Diagonal Factorisations

Next we must give a stable and functorial choice of diagonal factorisations. Recall that given a morphism

f : X → Y we obtain the diagonal map δf from the following pullback

X

X ×Y X X

X Y

idX

idX

δf

f

f

Then a choice of diagonal factorisations gives, for every cloven R-map (f, p) : X → Y in E a factorisation of

δf :

X I(f) X ×Y X
if jf

such that if is assigned a cloven L-map structure and jf is assigned a cloven R-map structure. This choice

is functorial if the assignment can be extended to a functor I : R-MapE →R-MapE ×E L-MapE . Finally

the choice is stable if the square

I(f) I(g)

X ×Y X Z ×W Z

I(h,k)

jf jg

h×kh

is a pullback whenever the underlying commutative square of the morphism of R-maps (h, k) is. Before we

can construct this data we require two definitions. The first is that of an indexed functor.

Definition 6.10 (Indexed Functor). Given a finitely complete category E , an E-indexed functor M (−) :

E/(−)→ E/(−) consists of a family of functors MΓ : E/Γ→ E/Γ indexed by the objects of E commuting up

to coherent isomorphism with the pullback functors f? : E/Γ→ E/∆ induced by morphisms f : ∆→ Γ of E .

We similarly have an indexed notion of natural transformation.

Definition 6.11 (Indexed Natural Transformation). Given a finitely complete category E and E-indexed

functors M (−), N (−) : E → E , a E-indexed natural transformation µ(−) : M (−) ⇒ N (−) consists of a family of

natural transformations µΓ : MΓ ⇒ NΓ indexed by the objects of E commuting up to coherent isomorphism

with the pullback functors f? : E/Γ→ E/∆ induced by morphisms f : ∆→ Γ of E .

Remark 6.12. Readers with a deeper background in category theory may notice that these are far more

restricted notions of indexed functors and natural transformations than is usual. In fact taking the slices of

a category is a particular instantiation of a more general phenomenon: that of an indexed category. As we

only require this particular instance for our present purposes we omit the broader definitions and instead

direct the interested reader to [Joh02, Section B1].

With these definitions we are able to state a result of Paré’s reported by Johnstone in [Joh97].
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Proposition 6.13. 1. Given a finitely complete category E and a pullback preserving endofunctor M

equipped with a strength α there exists a unique (up to canonical isomorphism) extension to an indexed

functor M (−) : E/(−)→ E/(−) such that each MΓ is pullback preserving.

2. For any strong natural transformation µ : (M,α)⇒ (N, β) with the underlying functors M and N pull-

back preserving functors, there exists a unique (up to canonical isomorphism) extension to an indexed

natural transformation µ(−) : M (−) ⇒ N (−).

Proof. We omit the full details of the proof, directing the reader instead to [Joh97, Proposition 3.3]. However

we give the definitions of the indexed functors and natural transformations for future use.

1. Let (M,α) : E → E be a strong endofunctor with M pullback preserving. Given Y in E we define the

functor MY as follows

• Objects: Let f : X → Y be a morphism in E . We define MY (f) by taking a pullback as follows

MY (f) MX

M1× Y MY

jMf

(kMf ,MY (f)) M(f)

M(π1,Y
1 )◦α1,Y

Thus yielding an arrow MY (f) : MY (f)→ Y .

• Arrows: Let

X U

Y

h

f g
be a commutative triangle in E . By the universal property

of the pullback we obtain

MY (f)

MY (g) MU

M1× Y MY

M(h)◦jMf

(kMf ,M
Y (f))

MY (h)

jMg

(kMg ,M
Y (g)) M(g)

M(π1,Y
1 )◦α1,Y

yielding a commutative triangle

MY (f) MY (g)

Γ

MY (h)

MY (f) MY (g)

2. Let µ : (M,α) ⇒ (N, β) be a strong natural transformation with the underlying functors pullback

preserving. Given f : X → Y , we obtain a morphism µYf : MY (f)→ NY (f) by the universal property
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of the pullback:

MY (f) MX

NY (f) NX

M1× Y MY

N1× Y NY

jMf

(kMf ,M
Y (f))

µYf
µX

M(f)

jNf

(kNf ,N
Y (f))

N(f)

µ1×idY

M(π1,Y
1 )◦α1,Y

µY

N(π1,Y
1 )◦β1,Y

(6.14)

To see this is the case, note that the front and back face commute because they’re pullbacks, the

right hand face commutes by naturality and the bottom face commutes by strength of µ. Hence from

commutativity of the diagram we obtain the commutative triangle

MY (f) NY (f)

Y

µYf

MY (f) NY (f)

as

required.

Applying this proposition we see that the data of path object category axiom 1 is indexed. This manifests itself

as indexed internal subcategories [vdBG12, Proposition 6.1.2] but we omit these details, instead describing

enough of this structure to define the diagonal factorisations.

Proposition 6.14. The associated cloven weak factorisation system for a path object category E has a choice

of diagonal factorisations.

Proof. Let (f, p) : X → Y be a cloven R-map of E . We first observe that the commutative square

X X

1× Y Y

idX

(!,f) f

π1,Y
1

is a pullback. Thus plugging the natural transformations s, t and e into the diagram (6.14) for f : X → Y

we obtain components sYf , t
Y
f : MY (f)→ X and eYf : X →MY (f) together with the identities

sYf = sX ◦ jMf tYf = tX ◦ jYf eX = jMf ◦ eYf

It then follows that

sYf ◦ eYf = sX ◦ jMf ◦ eYf = sX ◦ eX = idX

tYf ◦ eYf = tX ◦ jMf ◦ eYf = tX ◦ eX = idX
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We also have, by commutativity of (6.14), the following identity

f ◦ sYf = MY (f) = f ◦ tYf

inducing a unique map 〈sYf , tYf 〉 from the universal property of the pullback:

MY (f)

X ×Y X X

X Y

sYf

tYf

〈sYf ,t
Y
f 〉

f

f

It thus follows that the diagonal map δf : X → X ×Y X can be factored as

X MY (f) X ×Y X
eYf 〈sYf ,t

Y
f 〉

We omit the (rather lengthy) proof that eYf and 〈sYf , tYf 〉 can be equipped with a cloven L and R structure

respectively, instead directing the interested reader to [vdBG12, Lemma 6.2.3 - 6.2.4]

To show this choice of diagonal factorisations satisfies the functorality condition we must prove another inter-

esting property of path object categories: functor categories based on path object categories are themselves

path object categories. Not only this, but the cloven L and R-maps of these functor path object categories

have a useful characterisation.

Lemma 6.15. Given a path object category E and any other category C:

1. The functor category EC is a path object category.

2. The category of R-maps R- MapEC of the associated cloven w.f.s of EC is given by the functor category

R-MapE
C. Similarly, L-MapEC is given by L-MapE

C.

Proof.

1. Let E be a path object category with pullback preserving endofunctor M , strength α and strong natural

transformations s, t, e, c and τ . For an arbitrary category C we may define the path object structure as

follows:

• Let F : C → E be a functor, µ : F ⇒ G a natural transformation and C an object in C. Then the

pullback preserving endofunctor M→ is defined

M→(F ) = M ◦ F M→(µ)C = M(µC)
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• Let F : C → E be a functor and C an object in C. Then we obtain the internal category

F M→F M→F ×F M→Fe→F

s→F

t→F

c→F

as follows:

(s→F )C = sF (C) (t→F )C = tF (C)

(e→F )C = eF (C) (c→F )C = cF (C)

whilst we similarly obtain the involution τ→F as (τ→F )C = τF (C).

• Let F,G : C → E be functors and C and object in C. Then we obtain the components of the

strength α→ as

(α→F,G)C = αF (C),G(C)

whilst the contraction natural transformation η→ is given by (η→F )C = ηF (C).

That this data satisfies the path object category axioms can be computed pointwise, but we immediately

see that each property is inherited from E ’s path object category structure. We leave this simple

verification to the reader.

2. We restrict attention to R-maps since the proof for L-maps is dual. First assume µ : F ⇒ G is a

natural transformation between functors F : C → E . Looking at the factorisation of µ pointwise it is

straightforward to verify that (λµ)C = λµC and (ρµ)C = ρµC : by the definition of the internal category

maps for EC , we define (λµ)C by the pullback

F (C)

PµC MG(C)

F (C) G(C)

(e→G )C◦µC=eG(C)◦µC

idF (C)

(λµ)C=λµC
pµC

qµC (t→G )C=tG(C)

µC

and we then have

(ρµ)C = (s→G )C ◦ pµC = sG(C) ◦ pµC = ρµC

We can give a functor P : C → E by sending objects C to PµC and arrows f to P (Ff,Gf) - that

this is functorial follows from the fact that the assignment (h, k) 7→ P (h, k) is. Thus a cloven R-map

structure p on µ is a natural transformation p : P ⇒ F comprised of components pC : PµC → F (C)

making the following diagrams commute

F (C) F (C)

PµC G(C)

idF (C)

λµC µC

ρµC

pC
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In other words, each pC gives a cloven R-map structure for µC . We thus have an assignment C 7→
(µC , pC) for each cloven R-map (µ, p) of EC . To see that this can be extended to a functor C →
R-MapE , let f : C → C ′ be a morphism in C. By naturality we have the commutative square

F (C) F (C ′)

G(C) G(C ′)

Ff

µC µC′

Gf

and for this to give the data for a morphism of R-maps we require commutativity of the diagram

PµC PµC′

F (C) F (C ′)

P (Ff,Gf)

pC pC′

Ff

but this is precisely the statement of p’s naturality. Similarly we can take any functor X : C →
R-MapE and induce an R-map of EC . For C in C we have X(C) = (X(C)0, X(C)1) where X(C)0

is a morphism in E and X(C)1 a cloven R-map structure upon it. Similarly for f : C → C ′ we have

X(f) = (X(f)0, X(f)1) where

dom(X(C)0) dom(X(C ′)0)

cod(X(C)0) cod(X(C ′)0)

X(f)0

X(C)0 X(C′)1

X(f)1

gives a map of R-maps X(C)→ X(C ′). Then we can obtain a cloven R-map of EC as follows. Define

functors F,G : C → E by

F (C) = dom(X(C)0) F (f) = X(f)0

G(C) = cod(X(C)0) G(f) = X(f)1

Functorality of these definitions follows immediately from functorality of X. We then have a natural

transformations µ : F ⇒ G and p : Pµ(−) ⇒ F given by µC = X(C)0 and pC = X(C)1 respectively. It

is easy to see these are well defined by using the fact X(f) is a morphism of R-maps, and we can use

the same property to show p is a cloven R-structure for µ. This correspondence forms an equivalence

of categories, and we leave the remaining details to the reader.

Proposition 6.16. The choice of diagonal factorisations given in Proposition 6.14 is functorial and stable.

Proof. By the previous lemma we have that, given a path object category E and any category C, the functor

category EC is a path object category with the corresponding category of R-maps given by R- MapE
C . We
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thus consider the case for C = R-MapE . In particular, we have the “generic” R-map corresponding to the

identity functor R-MapE →R-MapE : a cloven R-map of ER-MapE given by (x, p) where

dom(x, p) = dom(x) dom(h, k) = h

cod(x, p) = cod(x) cod(h, k) = k

x : dom⇒ cod p : P x(−) ⇒ dom

With the components of x(x,p) = x and p(x,p) = p. Thus applying the construction of Proposition 6.14 to

this cloven R-map yields the required functorality. For stability we once again direct the reader to [vdBG12,

Proposition 6.2.5].

6.2.3 Functorial Frobenius Structure

The last piece of data we require is the functorial Frobenius structure of the associated cloven weak factori-

sation system. Recall that a cloven weak factorisation system for a category E has the Frobenius property if,

given a pullback of a cloven L-map (i, q) : X → A and a cloven R-map (f, p) : B → A

f?(X) X

B A

f

i i

f

the map i can be equipped with a cloven L-map structure. We say this is functorial if the assignment extends

to a functor R- MapE ×E L-MapE → L-MapE .

Before we attend to this we prove a final useful lemma. Recall that we gave a characterisation of maps

equipable with a cloven L-map structure as those that have a strong deformation retract. We can give a

similar criterion for cloven R-map structures by way of a path lifting property : a cloven R-map structure p on

a morphism f : X → Y corresponds precisely to an operation that lifts V -parametrised paths φ : V → MY

to paths in X.

Lemma 6.17. Given a path object category E and a morphism f : X → Y , cloven R-map structures on

f in the associated cloven w.f.s are in bijective correspondence with operations which to every morphism

x : V → Y and homotopy φ : y ⇒ fx : V → Y assign a homotopy φ : φ?(x)⇒ x such that

i) f.φ = φ;

ii) φ is an identity homotopy whenever φ is;

iii) For any map h : W → V : (φh)?(xh) = φ?(x)h and φh = φ.h

Proof. We first note that by the embedding given in the Yoneda lemma, equipping f : X → Y with a cloven

R-map structure p : Pf → X corresponds precisely to giving a natural family of maps E(V, p) : E(V, Pf)→
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E(V,X) making all diagrams of the form

E(V,X) E(V,X)

E(V, Pf) E(V, Y )

id

E(V,λf ) E(V,f)

E(V,ρf )

E(V,p) (6.15)

Now, since Pf is the vertex of a pullback, maps g : V → Pf are in bijective correspondence to commutative

squares of the form

V MY

X Y

φ

x tY

f

(6.16)

Given such a square, we obtain a map g : V → Pf by the universal property of the pullback. Conversely, if we

have g : V → Pf we can obtain such a square by setting φ = pf ◦g and x = qf ◦g. Commutative squares of this

sort are themselves in bijective correspondence with homotopies φ : y ⇒ fx : V → Y . Given such a homotopy,

the target diagram gives precisely such a commutative square and conversely setting y = sY ◦ φ makes

φ : y ⇒ fx a homotopy. Hence we claim that giving a natural family of maps E(V, p) : E(V, Pf)→ E(V,X)

is equivalent to providing, for every homotopy φ : y ⇒ fx : V → Y , a morphism φ?(x) : V → X satisfying

the following conditions:

1. f ◦ φ?(x) = y;

2. If φ is the identity homotopy fx⇒ fx then φ?(x) = x;

3. For any h : W → V we have (φh)?(xh) = φ?(x)h

First assume we have such a natural family and let φ : y ⇒ fx be a homotopy. From the target diagram we

obtain a commutative square (6.16) corresponding to a map g : V → Pf , and we define φ?(x) = E(V, p)(g).

By the commutativity of the lower triangle in (6.15) we have

f.φ?(x) = f ◦ E(V, p)(g) = E(V, f)(E(V, p)(g)) = E(V, ρf )(g)

= ρf ◦ g = sY ◦ pf ◦ g = sY ◦ φ = y

hence 1. holds. Assuming φ is the identity homotopy eY ◦ fx with y = fx, the morphism induced by the

commutative square given in the target diagram is λf ◦ x. Thus by commutativity of the upper square in

(6.15)

φ?(x) = E(V, p)(λf ◦ x) = E(V, p)(E(V, λf )(x)) = x
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and so we obtain 2. Finally, letting h : W → V , if g is the morphism induced by the square (6.16), it follows

from the universal property of the pullback that the induced map from the commutative square

W MY

X Y

φh

xh tY

f

is given by gh. Thus by naturality of the maps E(V, p) we have

(φh)?(xh) = E(W,p)(gh) = E(V, p)(g) ◦ h = φ?(x)h

and so the third criterion is satisfied. In the other direction we assume we have such an operation. A

morphism g : V → Pf corresponds to the homotopy pfg : sY pfg ⇒ qfg, hence we have a family of maps

defined E(V, (pf )?(qf ))(g) = (pf )?(qf )g = (pfg)?(qfg). To see that this renders the requisite diagrams

commutative, first consider x : V → X. By condition 1. we have

E(V, (pf )?(qf )) ◦ E(V, λf )(x) = (pfλfx)?(qfλfx) = (eY ◦ fx)?(x) = x

giving us commutativity of the upper triangle. For the lower triangle, consider g : V → Pf . By condition 2.

we have

E(V, f) ◦ E(V, (pf )?(qf ))(g) = f.(pfg)?(qfg) = sY pfg = ρfg = E(V, ρf )(g)

hence the diagram commutes. Naturality follows immediately from our definition and condition 3. That

these constructions are inverse to each other can be straightforwardly verified.

We can now strengthen this characterisation to the statement of the lemma. One direction is obvious, so

suppose we have a cloven R-map structure on f : X → Y . From our previous work this corresponds uniquely

to an assignment φ?(x) : V → X for every homotopy φ : y ⇒ fx : V → Y that satisfies properties 1-3. So

let φ : y ⇒ fx be a homotopy, corresponding uniquely to a morphism g : V → Pf . Recall in Lemma 6.8

that we had a morphism θf : Pf → MPf defined from the diagram (6.11) to give the strong deformation

retraction for λf . As it is a homotopy θf : idPf ⇒ λf ◦ qf we have

sPf ◦ θf = idPf tPf ◦ θf = λf ◦ qf

We thus define a morphism l = M(p) ◦ θf and claim that φ = lg satisfies the requirements of the lemma.

We must first verify that φ is a homotopy φ?(x)⇒ x. We have, by naturality of s together with the identity

given above:

sX ◦ φ = sX ◦M(p) ◦ θf ◦ g = p ◦ sPf ◦ θf ◦ g = pg = E(V, p)(g) = φ?(x)

Similarly, by the naturality of t, the identity given above and the fact p is a cloven R-map structure on f we

have:

tX ◦ φ = tX ◦M(p) ◦ θf ◦ g = p ◦ tPf ◦ θf ◦ g = p ◦ λf ◦ qf ◦ g = qf ◦ g = x

We show i − iii) are satisfied. First we require f.φ = φ. That is, M(f) ◦ φ = φ. Using the fact p is a

cloven R-map structure together with the diagram (6.11) is easy to compute that M(f) ◦ l = pf . Hence

M(f) ◦ φ = pf ◦ g = φ as required. Next, we assume φ = eY ◦ fx. Once again this entails that the



Chapter 6. Constructing A Homotopy Theoretic Model 107

corresponding morphism g : V → Pf is given by λf ◦ x. Now since θf is a strong deformation retraction for

λf , by triviality on X we have θf ◦ λf = ePf ◦ λf . Hence

φ = lλfx = M(p) ◦ θf ◦ λfx = M(p) ◦ ePf ◦ λfx = eX ◦ p ◦ λfx = eX ◦ x

That is, φ is the identity homotopy for x. Finally we must show, given h : V → W , that φh = φh - but

this is clearly true. Note that if g is the morphism corresponding to φ : y ⇒ fx then gh corresponds to

φh : yh⇒ fxh. Hence φh = lgh = φh, and we’re done.

Note the similarity here with the homotopy lifting property that characterises the fibrations of the model

structure on Top. Recall that in the type category constructed from a model category, types are interpreted

as fibrations, whilst in the homotopy theoretic model types are interpreted as cloven R-maps. In this way we

can draw a connection between the two approaches: despite the abstraction we’re back in a similar situation

to our starting point. We use this lifting property to prove the associated cloven weak factorisation system

is functorially Frobenius.

Proposition 6.18. Given a path object category E, the associated cloven weak factorisation system is func-

torially Frobenius.

Proof. Let (f, p) : B → A be a cloven R-map, (i, q) : X → A a cloven L-map, and consider the pullback

square

f?X X

B A

f

i i

f

By lemma 6.7 the Frobenius property is satisfied if we can give a strong deformation retraction for i. This

lemma also tells us that we have a strong deformation retraction (θ, k) for i, whilst the previous lemma gives

us that we have an operation uniquely corresponding to p assigning to every homotopy φ : y ⇒ x : V → A a

homotopy φ : φ(x)⇒ x such that

i) f.φ = φ;

ii) If φ is an identity homotopy then φ is;

iii) For any h : W → V we have (φh)?(xh) = φ?(x)h and φh = φ.h

Hence we consider φ = (θf)◦ : ikf ⇒ f : B → A and apply the path lifting property. We have a homotopy

φ(idB) : φ?(idB) ⇒ idB such that f.φ = φ, which in turn necessitates that fφ?(idB) = ikf . Hence by the
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universal property of the pullback we have a map:

B

f?X X

A B

kf

φ?(idB)

k

f

i i

f

We thus define θ = (φ)◦ : idB ⇒ φ?(idB). By commutativity of the pullback diagram we have ik = φ?(idB)

so we have satisfied the homotopy criterion for a strong deformation retract. To see that k is a retract

of i it suffices to show identity upon post composition with the pullback projections f and i, and this is

straightforward using the commutativity of the diagram and the conditions for the path lifting property.

Finally we require θ ◦ i = idi = eA ◦ i. By applying the reversal operation (−)◦ to both sides this is equivalent

to showing that φ◦ i = idi. By the third condition of the path lifting property we have φ◦ i = φi and utilising

the commutativity of the pullback square we have

φi = (θf)◦i = (θfi)◦ = (θif)◦ = (idif )◦ = idif

Hence applying the second condition of the path lifting property gives us that φi = idi as required: (θ, k) is

a strong deformation retract and so i can be equipped with a cloven L-map structure.

To obtain functorality, we simply invoke Lemma 6.15 and use a similar argument to that of Proposition 6.16,

this time considering the case where C = R-MapE ×E L-MapE . As this is a pullback it comes equipped

with two projection functors, one into L-MapE and one into R-MapE . These then correspond to a cloven

L map and a cloven R map of ER-MapE×EL-MapE upon which we can apply the preceding argument. This

gives functorality and thus completes the proof.

We can thus summarise the work of this chapter, as well as the thesis.

Theorem 6.19. Path object categories may be equipped with the structure of a homotopy theoretic model of

identity types.

Corollary 6.20. For any path object category E there is a categorical model of identity types with E as its

category of contexts.

Corollary 6.21. There is a categorical model of identity types with cSetc as its category of contexts.



Chapter 7

Conclusions And Further Work

In this thesis we established a path object category structure on the category of cubical sets cSetc and

utilising the general construction given in Part II from this we were able to give a categorical model of

identity types with cSetc as its category of contexts. In the process we introduced the new notion of a nice

path object category, a simplification of the original path object category axioms that nonetheless produces

the full path object category structure. Our original motivation in pursuing this construction was to bring

the cubical set model of [BCH14] into the general framework given in [vdBG12] but our model has some key

differences from the one presented there. Most apparent is the presence of connections, additional structure

that the authors of [BCH14] do not make use of in their construction. It is still an open question as to whether

the category cSet of cubical sets has a path object category structure, and the essential use of connections

for giving path contraction in our proof shows that a very different notion of path would be required if it

is indeed the case. The other distinction is that in our model there is no restriction on which cubical sets

may be interpreted as contexts. This mirrors the situation with the model of simplicial sets developed in

[vdBG12] which is distinguished from the model given in [Str14] in precisely the same way. We now highlight

some possible directions for future research in this area:

1. Eliminating The Equivalence Relation: One question we might ask is whether we give a nice path object

category structure on cSetc without using an equivalence relation. If we are to keep the same notion

of path then we have M1 6∼= 1 and so we will not be able to give an instantiation of a nice path object

category structure. We might, however, be able to give a regular path object category structure for

cSetc. Recall that the terminal cubical set 1 was defined by

• For all n ∈ ω: 1n = {n}

• For all 1 ≤ i ≤ n and δ ∈ {−1, 1}: f i,δn (n) = n− 1

• For all 1 ≤ i ≤ n: din(n− 1) = n

• For all n ≥ 2, 1 ≤ i ≤ n− 1 and δ ∈ {−1, 1}: Γi,δn−1(n− 1) = n

and thus all cubical n-paths through 1 are of the form((
n, . . . , n

)
,
(
n+ 1, . . . , n+ 1

)(
#»ε
))

109
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We might define a strength that takes such a path in which n occurs k times with orientations #»ε together

with an n-cube ζ and returns the n-path through X given by
((
ζ, . . . , ζ

)
,
(
d1
n+1(ζ), . . . , d1

n+1(ζ)
)
,
(

#»ε
))

.

This is the only feasible definition of constant cubical n-path and with this practically all of our original

argument goes through with the contraction identity tMX ◦ ηX = eX ◦ tX as a notable exception: can

a modification be made to solve this issue?

2. Creating Equivalence Relations: In the other direction, we might look to existing path object categories

and see if their proofs can be simplified - or if new, more economical nice path object category structures

can be identified - by quotienting by an appropriate equivalence relation . For one example, recall that

the path object category structure on Top was given by taking MX to be the Moore path space given

by

{(r, φ) ∈ R+ ×XR+ | ∀s ≥ r(φ(s) = φ(r))}

together with the subspace topology inherited from the usual topology on R+ ×XR+ Suppose instead

that we take the quotient space given by the following equivalence relation on Moore path spaces: for

a topological space X and x ∈ X define conXx : R+ → X as conXx (r) = x for all r. We thus define the

equivalence relation on Moore paths generated by

(k, conXx ) ∼ (l, conXx )

for all k, l ∈ R+. It then follows immediately that M1 ∼= 1 and this also solves the issue we highlighted

in the development of path object category axiom 2. It only remains to show that the existing structure

operates appropriately with the equivalence relation and remains continuous with respect to the quotient

topology. Perhaps a more interesting propsect is the case for simplicial sets. Although our proposal

here is only a slight improvement over the original proof for topological spaces, there may be scope for

greatly simplifying in the case of simplicial sets, as the original proof [vdBG12, Section 7.] is extremely

complex. One option would be to use a more restricted notion of path in the same manner as the

cubical sets with connections proof, perhaps by only considering paths comprised of simplices joined in

a restricted number of orientations.

3. Identifying Path Object Categories: Perhaps the most obvious direction for future work is the identi-

fication of (nice) path object category structures in other categories. As in this thesis, we can look to

existing models of intensional type theory to direct our work. Alternatively, we might look to existing

path object category structures as inspiration. We give two suggestions encompassing each of these

approaches.

(a) The Category of Categories Cat: In [Lam14] LaMarche gives a model of intensional Martin-Löf

type theory in Cat. In order to do so he defines a notion of path together with a path endofunctor

that associates to each category X a category comprised of paths through X. The similarity with

the path object category structure should be immediately apparent, and it would be interesting

to investigate whether this assignment can be brought into the path object category framework.

(b) The Category of Equilogical Spaces: An equilogical space is a T0 topological space together with an

(arbitrary) equivalence relation ∼ on its points. It comes equipped with a notion of morphism that

yields a category: a morphism of equilogical spaces f : (X,∼) → (Y,≡) is a continuous function

f : X → Y such that x ∼ y implies f(x) ≡ f(y). In [BBS04] an interpretation of type theory was

given in equilogical spaces, but this type theory did not include identity types. Might a clever
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choice of equivalence relation allow us to apply something analogous to the path object category

structure construction of Top to the category of equilogical spaces?

4. Expanding The Fragment : The final direction we give for future work is something we wished to achieve

in this thesis but unfortunately time constraints did not allow us to pursue it. Given that we have

produced a model of a fragment of Martin-Löf type theory, it would be of interest to expand the

construction to model the whole language. In theory this should be straightforward, as the modelling

of identity types is the genuinely difficult part of the endeavour and we already obtain sigma types by

the closure of right maps under composition.



Appendix A

Category Theory

In this appendix we give the necessary category theoretic preliminaries to read the thesis. This is not

intended to be a comprehensive introduction to any of the topics presented but instead an opportunity to

fix notation and nomenclature, as well as guide the reader towards the concepts she will require. For a

thorough introduction to category theory we recommend [Awo06], [Lan71] and [vO95], upon which this brief

presentation is based.

A.1 Basics

A category C is a collection of objects C0 and a collection of arrows C1 together with maps dom, cod : C1 → C0

assigning to each arrow f a domain dom(f) and codomain cod(f) in C0, such that the following axioms are

satisfied:

• Composition: Given arrows f , g with cod(f) = dom(g) there exists a unique arrow

g ◦ f : dom(f)→ cod(g)

• Associativity: Given arrows f, g, h with cod(f) = dom(g) and cod(g) = dom(h) we have

h ◦ (g ◦ f) = (h ◦ g) ◦ f

• Identity: For every object X there exists an identity arrow idX such that, given arrows f, g with

dom(f) = X = cod(g) we have

f ◦ idX = f idX ◦ g = g

In this thesis we denote arbitrary objects by upper case letters A,B,C, . . . ,X, Y, Z and arbitrary morphisms

by f, g, h. We will also refer to arrows interchangeably as morphisms, and use f : X → Y or X
f→ Y to

denote that dom(f) = X and cod(f) = Y . For arbitrary categories we use calligraphic capital letters: C, D,

E . For concrete categories of mathematical structures we use boldface: for example we have the category

112



Appendix A. Category Theory 113

of sets and functions Set and the category of topological spaces and continuous functions Top. Given any

category C we can obtain the dual or opposite category Cop by formally reversing the direction of arrows. By

passing to the opposite category we can dualise many results and definitions.

We can distinguish some special species of arrow that generalise familiar set theoretic properties of functions.

We call an arrow f : X → Y a monomorphism if it is left cancellable: for any pair of arrows g, h : Z → X such

that fg = fh we have g = h. Dually we have the notion of an epimorphism; a right cancellable morphism.

If we have arrows f : X → Y and g : Y → X such that gf = idX we call f a section of g and g a retraction

of f . An isomorphism f : X → Y is an invertible arrow: that is, there exists an arrow g : Y → X such that

gf = idX and fg = idY . We can also give a generalisation of singleton and empty set. A terminal object 1

in C is an object such that for any other object A of C there exists a unique arrow !A : A → 1. Dually we

have the notion of initial object.

The appropriate notion of morphism between categories is called a functor. Given categories C and D, a

functor F : C → D is given by a pair of maps F0 : C0 → D0 and F1 : C1 → C1 that interacts coherently with

the category structure:

• For all arrows f : X → Y , F1(f) : F0(X)→ F1(Y )

• For all objects X, F1(idX) = idF0(X)

• For all arrows f : X → Y , g : Y → Z, F1(g ◦ f) = F1(g) ◦ F1(f)

Where the context is clear we drop the subscript and simply refer to both actions of the functor as F. A

functor that is injective on arrows is called faithful, whilst a functor that is surjective on arrows is called full.

If a functor is full and faithful and injective on objects we call it an embedding.

Note that the composition of functors is again a functor and there also exists, for every category C, an identity

functor idC : C → C that given by taking the identity on both objects and arrows. Thus the collection of

categories together with the functors between them forms a category Cat.

One important example of a functor is given by the hom-set functors. Given objects X,Y in a category we

denote the collection of all arrows X → Y by C(X,Y ). If this collection is set-sized we call it a hom-set,

and if all such collections are set-sized we call the category locally small. If the collection of objects C0 is

also a set we call the category small. In both cases we then have emphhom-set functors for each object C:

C(−, C) : Cop → Set and C(C,−) : C → Set. These send an object D to the hom-sets C(D,C) and C(C,D)

respectively, whilst for arrows we have

C(f : D → D′, C)(g : D′ → C) = gf : D → C

C(C, f : D → D′)(g : C → D) = fg : C → D′

Another we make use of is the constant functor : for an object D of D, ∆D : C → D is defined by sending all

objects to D and all arrows to idD.

Next we give a notion of morphism between functors. Given functors F,G : C → D, a natural transformation

µ : F ⇒ G is given by a collection of C-indexed maps

(µX : F (X)→ G(X) | X in C0)
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satisfying the following naturality condition: given any arrow f : X → Y , the following diagram commutes:

F (X) G(X)

F (Y ) G(Y )

µX

F (f) G(f)

µY

We denote arbitrary natural transformations by greek letters µ, ν, η. A natural isomorphism is a natural

transformation µ : F ⇒ G such that every component is an isomorphism: we say F and G are naturally

isomorphic. With this we can give the correct notion of equivalence for categories: an equivalence of categories

between C and D is a pair of functors F : C → D and G : D → C such that there exist natural isomorphisms

F ◦G ' idD and G ◦ F ' idC .

A.2 Limits

A diagram in D of type C is a functor F : C → D. We call C the index of the diagram. Given a diagram

F : C → D, we define a cone for F to be a pair (D,µ), consisting of an object D of D (the vertex of the cone)

together with a natural transformation µ : ∆D ⇒ F . This gives, for every f : C → C ′ in C a commutative

triangle

D

F (C) F (C ′)

µC
µC′

F (f)

Cones for a diagram F also come with a notion of morphism yielding a category Cone(F ). A map of cones

f : (D,µ)→ (D′, ν) is given by a morphism f : D → D′ in D such that, for all C in C we have a commutative

triangle

D

F (C) D′

µC
f

νC

In the category Cone(F ) identities and composition of morphisms coincide with that of D and it is a straight-

forward exercise to verify that this satisfies the category axioms. We can now give the definition of a limit

(or limiting cone): a limit for a diagram F : C → D is a terminal object in the category Cone(F ). We say D
has limits of type C if limiting cones exist for every diagram with index C. While this definition may seem

intimidatingly abstract, it allows us to bring a whole swathe of interesting mathematical phenomena into a

single framework. Not only this, using the fact that limits are terminal objects allows us to uniquely define

morphisms whenever we have a cone for the relevant diagram. We demonstrate this idea with the following

two examples, which we choose for their relevance to this thesis.

1. Binary Products: We first give the category theoretic analogue of the Cartesian product. Denote by

2 the discrete category on the set {0, 1}. A diagram F: 2 → D picks out two objects of the target

category - say A and B - and we thus see that a limit for F is given by a pair (A× B, (µA, µB)) with
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the following universal property: for any object C together with arrows f : C → A and g : C → B

there exists a unique morphism (f, g) : C → A×B rendering the following diagram commutative:

C

A×B

A B

f g
(f,g)

µA µB

We call A×B the binary product of A and B. Throughout this thesis we use the notation µA = πA,B0

and µB = πA,B1 and call these morphisms the projection maps of the product A×B.

2. Pullbacks Next we see a categorical analogue of both set theoretic intersection and inverse image.

Denote by J the category

x

y z

a

b

. A diagram F : J → D picks out a pair of arrows f : X → Z

and g : Y → Z and a cone (D,µ) for such a functor gives a commutative square

D X

Y Z

µX

µY f

g

A limit for this cone is thus given by a pair (X ×Z Y, (µX , µY )) such that f ◦ µX = g ◦ µY with the

following universal property: given any other object Z with morphisms h0 : Z → X and h1 : Z → Y

satisfying fh0 = gh1, there exists a unique morphism 〈h0, h1〉 : Z → X ×Z Y rendering the following

diagram commutative:

Z

X ×Y Z X

Y Z

h0

h1

〈h0,h1〉

µX

µY f

g

We call µX and µY the projection maps of the pullback X×Y Z. As we will so frequently use pullbacks

to define both objects and morphisms it suits us to keep the notation variable; instead we always make

clear from the context that the diagrams in question are pullbacks.

Note that the vertices of limits are defined up to natural isomorphism, as they are obtained via terminal

objects. Even so, in many cases we have a canonical choice of vertex. For example in the category Set the

product of sets A and B is given by the Cartesian product A×B = {(a, b) | a ∈ A, b ∈ B}. Staying in Set,

the pullback of functions f : X → Z and g : Y → Z is given by {(x, y) ∈ X × Y | f(x) = g(y)}. If, like Set,

limits exist for all diagrams of type C where C is a small, discrete category we say the category has products;

analogously we say a category has pullbacks if limits exist for all diagrams of type J. More generally, if a
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category D has all limits of type C for all small categories C then we call it complete. Letting G : D → E be

a functor we say G preserves limits of type C if for every diagram F : C → D with limit (D,µ) we have that

(G(D), G(µ)) is a limit for the diagram GF : C → E .

There are a few useful lemmas pertaining to products and pullbacks that we will make use of throughout the

thesis:

Lemma A.1 (Pasting Lemma). Let

A B C

X Y Z

be a commutative diagram. If the right hand square is a pullback then the outer rectangle is a pullback iff the

left hand square is a pullback.

Proof. Diagram chase.

Lemma A.2. If a category C has terminal object 1 and pullbacks then it has products.

Proof. We obtain the binary product A×B from the pullback

A×B A

B 1

πA,B0

πA,B1
!A

!B

It is straightforward to verify that this satisfies the universal property of the product. We can then define

n-ary products for n ≥ 3 by a straightforward inductive argument.

Lemma A.3. Given f, g : X → Y where Y is a pullback with projections p0, p1 we have f = g iff pif = pig

for i ∈ {0, 1}.

Proof. The left-to-right direction is immediate so we assume pif = pig for i ∈ {0, 1}. Then since both f and

g suffice to complete the diagram

X

Y A

B C

p0f=p0g

p1f=p1g

p0

p1

and render it commutative, by the universal property of the pullback necessarily f = g.
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The analogous result holds for products. Though we make no use of them in this thesis it is worth noting

that by passing to the opposite category we can dualise all of the notions of this section to give colimits. A

category with all small colimits is called cocomplete and a category with all small limits and colimits is called

bicomplete.

A.3 Categorical Constructions

In this final section of our category theory rundown we give some categorical constructions that yield new

categories from old. Again we restrict attention to those we make use of in the course of the thesis.

1. Slice Category : Given a category C and an object C in C we can define the slice category C/C as follows:

as objects we take arrows in C with codomain C; as arrows we take commutative triangles of the form

X Y

C

h

f g

Composition and identity are inherited from C.

2. Quotient Category : We define a congruence relation on a category C by specifying for each pair of

objects X,Y an equivalence relation ∼X,Y on C(X,Y ) such that

• For f, g : X → Y and h : Y → Z if f ∼X,Y g then hf ∼X,Z hg

• For f : X → Y and g, h : Y → Z if g ∼Y,Z h then gf ∼X,Z hf

Given such a relation on C we can form the quotient category C/ ∼ by taking the objects to be the

same as those of C and taking equivalence classes of C-morphisms as arrows.

3. Functor Category : It is straightforward to verify that the collection of functors C → D together

with natural transformations constitute a category: the functor category CD. This has some useful

properties. For example, if the category C has (co)limits of type E then so too does CD. Further these

limits can be computed pointwise: to give a limit for a diagram F : E → CD it suffices to compute the

limit in C at an arbitrary C. Details of this can be found in [vO95, Section 3.3].

4. Presheaf Category We first give one of the most fundamental results in category theory. Given a

locally small category C, we can define the Yoneda Functor Y(−) : C → Set. On objects C we have

YC = C(−, C), whilst for arrows f : C → C ′ we obtain a natural transformation Yf : C(−, C)⇒ C(−, C ′)
given by post-composition by f . We have:

Lemma A.4. [Yoneda Lemma] Given a locally small category C, for any object C and any functor

F : Cop → Set there is an isomorphism SetC
op

(YC , F ) ' FC natural in F and C.

Proof. [Awo06, Lemma 8.2 p 162]

and from this we obtain:
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Corollary A.5. The Yoneda functor is an embedding.

Proof. The Yoneda functor is clearly injective on objects, whilst for all objects C,D of C Lemma A.4

gives

C(C,D) = yD(C) ' SetC
op

(yC , yD)

It follows that the Yoneda embedding gives a representation of any locally small category C within

the category of set valued functors on Cop. We call categories of the form SetC
op

presheaf categories,

and these have some extremely desirable properties. Given that they are functors categories and Set

is bicomplete we have that presheaf categories are bicomplete. Further, these limits can be computed

pointwise. The Yoneda embedding also preserves all limits in C.
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Type Theory

We briefly present the fragment of intuitionistic type theory we model in the thesis. For a comprehensive

introduction to the full system we recommend [NPS90]. Type theory consists of rules for making judgements

of the following six forms:

Judgements Governing Contexts

Γ context Γ = ∆ context

Specifying when Γ is a well formed context and when well formed contexts Γ and ∆ are definitionally

equal.

Judgements Governing Types

A type A = B type

Specifying when A is a well formed type and when well formed types A and B are definitionally equal.

Judgements Governing Terms

a : A a = b : A

Specifying when a is a well formed term of type A and when well formed terms a and b of type A are

definitionally equal.

Contexts are finite lists of variable declarations x0 : A0, . . . , xn : An such that FV (Ai) ⊆ {x0, . . . , xi−1}
when 0 ≤ i ≤ n. Judgements may be made in the presence of a context Γ (Γ ` J ) by taking the variable

declarations as assumptions. For example, we have the axiom

x : A ` B(x) type a : A

B(a) type

saying that given a dependent type B(x) over A, for each term a : A we have a type B(a). This is the depen-

dency characteristic of the Martin-Löf formulation of type theory. The axioms governing the construction of

119
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well formed contexts are given as follows:

( ) context
Empty

Γ ` A type

(Γ, x : A) context
Extension

Note that the order the variable declarations of a context appear in is crucial, as each type Ai in the list

may depend on declarations earlier in the list to be given as well formed types. The remaining rules can

be split into three categories: structural rules, equality rules and logical rules. For readability we omit the

ambient context Γ common to both antecedent and consequent. We first give the structural rules governing

substitution and weakening:

Variable Declaration
A type

x : A ` x : A
Var Dec

Weakening
B type

∆ ` B type
Weak

Substitution

a : A x : A,∆ ` b(x) : B(x)

∆[a/x] ` B[a/x] type
Type Sub

a : A x : A,∆ ` b(x) : B(x)

∆[a/x] ` b[a/x] : B[a/x]
Term Sub

We have the following equality rules governing the definitional equality congruence relation:

Equality Between Types

A type

A = A
Type Ref A = B

B = A
Type Sym A = B B = C

A = C
Type Trans

Equality Between Terms

a : A
a = a : A

Term Ref
a = b : A
b = a : A

Term Sym a = b : A b = c : A
a = c : A

Term Trans

Conversion

a : A A = B
a : B

Term Conv
a = b : A A = B

a = b : B
Conv Equality

Substitution

a = a′ : A x : A ` B(x) type

B[a/x] = B[a′/x] type

a = a′ x : A ` b(x) : B(x)

b[a/x] = b[a′/x] : B(a)

a : A x : A ` B(x) = C(x) type

B(a) = C(a) type

a : A x : A ` b(x) = c(x) : B(x)

b(a) = c(a) : B(a)
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These substitution rules also come in a form for simultaneous substitution of n terms for all n: we omit

these from this presentation as they are entirely analogous to those above. Finally we come to the logical

rules governing type constructors that give the language additional expressivity. These rules have the same

structure for each constructor: a formation rule governing the conditions under which the new type can be

constructed; an introduction rule governing the introduction of canonical terms of the type; an elimination

rule giving an inductive procedure to prove propositions about arbitrary terms with respect to the new type

and finally coherence rules governing substitution in the new terms and types. In this thesis we concentrate

on the fragment that has only the rules governing strong identity types as logical rules:

Identity Formation
a, b : A

IdA(a, b)
Id− Form;

Identity Introduction
a : A

rA(a) : IdA(a, a)
Id− Intro;

Identity Elimination

x, y : A, z : IdA(x, y),∆(x, y, p) ` C(x, y, z) type

a : A,∆(a, a, rA(a)) ` d(a) : C(a, a, rA(a))

a, b : A ` p : IdA(a, b)
Id-Elim

∆(a, b, p) ` Jd(a, b, p) : C(a, b, p)

Identity Coherence

∆, x : C ` a(x), b(x) : A(x) c : C
Id Coherence

∆ ` IdA(x)(a(x), b(x))[c/x] = IdA[c](a[c/x], b[c/x])

∆, x : C ` a(x) : A(x) c : C
r coherence

∆ ` rA(x)(a(x))[c/x] = rA[c/x](a[c/x]) : IdA[c/x](a[c/x], a[c/x])

x, y : A, z : IdA(x, y),∆(x, y, p) ` C(x, y, z) type

x : A,∆(x, x, r(x)) ` d(x) : C(x, x, r(x)) a : A
J Coherence

∆(a, a, r(a)) ` Jd(a, a, r(a)) = d(a) : C(a, a, r(a))
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