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Abstract

We present two variants of Dynamic Epistemic Logic based on a new
formal representation of what it means to know a number.
The Logic of Guessing Games GG formalizes number guessing games and
information updates happening in such games. We discuss many examples
and provide a sound and complete axiomatization of GG.
With Epistemic Crypto Logic ECL we apply the idea of register models
to the analysis of cryptographic protocols. Feasible computation and the
communication between multiple agents can be expressed in the language
itself, allowing for a thorough analysis in one single framework. Our main
example is the famous Diffie-Hellman protocol for secret key distribution
over an insecure network.
For both systems we implement model checking in Haskell. For ECL we
also provide a Monte Carlo algorithm that gives probabilistic results but
runs much faster than the ordinary implementation.
All source code is included as part of the text. The main features and
design choices are highlighted with annotations.





Acknowledgements

First of all, I want to thank Jan van Eijck for sharing the idea of regis-
ter languages with me and supervising this thesis. Without our many
meetings and his continuous motivation it would not exist.
Alexandru Baltag helped me at two different times: I enjoyed his enthusi-
astic Introduction to Modal Logic during my first term and received very
helpful feedback after a presentation of this work.
My gratitude also goes to Maria Aloni for being the chair of my committee,
Joshua Sack for pointing out a crucial mistake and Johan van Benthem
for challenging questions.
I also want to thank Christian Schaffner for his great Introduction to
Modern Cryptography and joining my defense committe last-minute.
I am indebted to the authors of [BDV01] for writing my favorite logic
textbook and Yde Venema in particular for enlightening courses and
supervision of an individual research project.
Once again, Pauline Fleischmann deserves my gratitude for reading and
commenting on a draft of this thesis. I also want to thank Michael Schmidt,
Jan Schejbal and Marten Seemann who provided helpful comments.
Furthermore, I am grateful to all the people who enriched my two years
both in Science Park and the rest of Amsterdam: Swantje, Evante, Simon,
Nadine, Laura, Adriana and last not least Emma.
Finally, I want to thank Anne, Hans and Pia Gattinger for all kinds of
support someone in my situation could ever ask for.





Contents

Introduction 1

1 Foundations 3
1.1 From Modal Logic to Knowledge . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Kripke Frames and Models . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.3 Multiple Agents and Common Knowledge . . . . . . . . . . . . . . 8

1.2 Public Announcements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Product Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.1 Epistemic Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.2 Factual Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Smaller Equivalent Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4.1 Bisimulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4.2 Generated Submodels . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5 Functional Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.6 Relations as Partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Guessing Games 17
2.1 The Number Guessing Game . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 What does it mean to know a number? . . . . . . . . . . . . . . . . 17
2.1.2 Announcements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Axiomatization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5.1 Agents, Propositions and Models . . . . . . . . . . . . . . . . . . . 31
2.5.2 Formulas, Expressions and Commands . . . . . . . . . . . . . . . . 33
2.5.3 Assignments, Evaluating expressions . . . . . . . . . . . . . . . . . 33
2.5.4 Evaluating Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5.5 Product Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.5.6 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.5.7 Rewriting to Command-free Formulas . . . . . . . . . . . . . . . . . 38
2.5.8 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.5.9 A Full Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

VII



3 Epistemic Crypto Logic 45
3.1 Desiderata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.1 Communication: Local Listener Sets . . . . . . . . . . . . . . . . . 45
3.1.2 Computation: Fast Modular Arithmetic . . . . . . . . . . . . . . . 47

3.2 Existing Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.5 Monte Carlo Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6.1 Agents, Propositions and Models . . . . . . . . . . . . . . . . . . . 55
3.6.2 Bisimulation and Generated Submodels . . . . . . . . . . . . . . . . 57
3.6.3 Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.6.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.6.5 Product Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.6.6 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.6.7 Monte Carlo Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 63
3.6.8 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Applications 69
4.1 Small Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1.1 Alice and Bob have Secrets . . . . . . . . . . . . . . . . . . . . . . 69
4.1.2 Tautologies about Undefined Statements . . . . . . . . . . . . . . . 70
4.1.3 Knowing Who is Listening . . . . . . . . . . . . . . . . . . . . . . . 70
4.1.4 Monte Carlo Failure . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.1.5 Generating Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 The Diffie-Hellman key exchange . . . . . . . . . . . . . . . . . . . . . . . 73
4.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3 Man-in-the-Middle vs Diffie-Hellman . . . . . . . . . . . . . . . . . . . . . 76
4.3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 Conclusion and Future Work 79

List of Symbols 83

Bibliography 85

Appendix 89
REL.hs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
MODEXP.hs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
KRIPKEVIS.hs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Installing and running the implementations . . . . . . . . . . . . . . . . . . . . 92



Introduction

What does it mean to know a number?
And why is this an important question?
In this thesis we will relate the question to something we use every day, often without
knowing about it, namely cryptography: When we send and receive emails, text messages
or money, when we make phone calls, when we use credit cards, when we get tickets for
public transport, and so on.
Cryptography consists of secret communication and correct computation. While the
correctness of the latter is usually easy to check within a mathematical framework, proving
that it also leads to the secrecy of the former often poses a challenge. This creates a need
for reliable frameworks of reasoning about cryptography – in the best case yielding formal
proofs that certain assumptions suffice to guarantee secrecy and authenticity.
Our main focus here is what different agents know and what they communicate. We first
formalize an answer to the basic question what it means to know a number. The Guessing
Game Logic should already make the idea both apprehensible and precise. Then we extend
this formalism to a more expressive formal language that describes multi-agent knowledge,
communication and computation in detail. This Epistemic Crypto Logic then allows us to
analyze cryptographic protocols and attacks on them.
Our aim is to contribute to different fields and research communities at the same time:

1. Model checking is a big and established research area but only recently has started
to specifically look at epistemic logics. Our work combines several ideas for domain-
specific optimization, for example representing relations as partitions and encoding
large models as small models with registers.

2. Logical and philosophical debates about knowledge, belief and epistemic reasoning
often revolve around rather artificial or extremely simplified examples. There is
nothing wrong with card games and muddy children, but we think that cryptographic
schemes can also provide very interesting and relevant examples to evaluate different
theories and logics of knowledge.

3. Finally, as mentioned above, the verification of cryptography is both in the interest
of researchers and the general public.

The thesis is structured as follows: In the first chapter we introduce the necessary basics
of modal logic, dynamic epistemic logic and product updates. Readers who are already
familiar with these concepts might want to skip this and jump directly to our original
work in the following chapters.
The second chapter introduces the idea of register models to capture the knowledge of a
number and presents the logic of guessing games GG. We give definitions of syntax and
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semantics, a sound and complete axiomatization and an annotated implementation in
Haskell.
In the third chapter we first discuss which expressive powers a logic for the analysis of
cryptographic protocols should have. We then show how to extend GG to Epistemic Crypto
Logic (ECL) by enriching both the syntax and the semantics in various ways. Again we
also provide all syntactic and semantic definitions and an implementation in Haskell.
In Chapter four it is time to harvest: We discuss several small examples and then show how
the Diffie-Hellman key exchange can be represented and checked in our framework. We
also sketch how our language can be used to analyze attacks on cryptographic protocols.
Finally, in chapter five we conclude what was achieved and provide a multitude of ideas
for further research in different directions.

We use literate programming in the spirit of [Knu84]. Source code of all implementations
is presented as part of the text and available at w4eg.de/malvin/illc/thesis.

CC-BY-NC http://xkcd.com/1323
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Chapter 1

Foundations

In this chapter we introduce the foundations of our work, namely the basic definitions
for dynamic epistemic logic. Since the exact definitions vary from paper to paper and by
now there is a plethora of epistemic logics, we will make sure to provide all the definitions
needed in the later chapters. Still, we assume that the reader is familiar with propositional
and first-order logic, formal definitions of truth/satisfaction and set-theoretic notation.
Symbols and abbreviations are also listed on page 83.
Our introduction is systematic rather than historical. For a history of the development of
dynamic epistemic logic we refer to the introductory chapter in [VVK07]. Readers who
are already familiar with the main concepts might want to skip this chapter and jump
directly to our original work starting in the next chapter.

1.1 From Modal Logic to Knowledge

Building on top of propositional logic, modal logics introduce new connectives to the
language in order to formalize notions of modality. The most-studied modalities are
possibility and necessity, but modal logic in the broader sense deals with various concepts
like provability, temporal relations like before or epistemic modalities like belief and
knowledge.1

Definition 1. We write P for a countable infinite set of propositions and denote the
elements with p, q, r, p1, p2, p3 etc. The basic modal language (L3) over P is given by
the following Backus-Naur Form (BNF):

φ ::= > | p | ¬φ | φ ∧ φ | 3φ

This definition says that a formula can be constructed in one of five ways: The true constant
>, an atomic proposition, a negation of a formula, a conjunction of two formulas or a
single formula prefixed with the symbol 3 which we call diamond and read as “it is possible
that”. Moreover we define the following abbreviations:

⊥ := ¬> φ ∨ ψ := ¬(¬φ ∧ ¬ψ)
2φ := ¬3¬φ φ→ ψ := ¬(φ ∧ ¬ψ)

1See [Gar13] for an overview of different modal logics from a philosophical perspective.
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Throughout this text we take the notion of a proposition as given. Our syntactical
definitions of languages are independent of what propositions actually are and the same
goes for the interpretation in models where our valuations at each possible world contain
a set of propositions. As long as the same P is used in both semantic and syntactic
definitions we can leave concerns about what propositions are aside.

1.1.1 Kripke Frames and Models

Kripke frames and models are the most common structures used to define semantics for
modal logics. They consist of i) a set of possible worlds which are also called states and
despite their stately name have no further structure themselves and ii) a relation on this
set that says which other worlds are reachable (also: accessible). Graphically this can be
represented with simple dots and arrows.

Definition 2. A Kripke frame for basic modal logic is a tuple F = (W,R) where W is a
set of worlds or states and R is a relation on W (i.e. R ⊆ W ×W ) which is also called
accessibility relation. Elements of W are usually called w, v, s, t etc. We write wRv to
say that the relation R holds between w and v. In a set-theoretical framework this just
means (w, v) ∈ R.

Definition 3. A Kripke model for basic modal logic is a Kripke frame for basic modal
logic F together with a valuation function V : W → P(P). We write it asM = (W,R, V )
and say thatM is based on F . Furthermore, we also refer to the elements of W as the
worlds or states of the modelM. A pointed model is a modelM together with one of its
worlds that is marked as the actual world w. We write pointed models asM, w.

We define the meaning of a modal formula like 3p which could for example stand for “It is
possible that p” by referring to the relational structure of the model. The usual definition
stipulates that 3φ is true at a world w if there is a so-called reachable world v such that
wRv and φ is true at v. Besides this condition, we also include the usual semantics for
boolean connectives in the next definition.

Definition 4. The semantics for L3 are given by:

M, w � > :⇐⇒ always
M, w � p :⇐⇒ p ∈ V (w)
M, w � ¬φ :⇐⇒ notM, w � φ
M, w � φ ∧ ψ :⇐⇒ M, w � φ andM, w � ψ
M, w � 3φ :⇐⇒ ∃v : wRv andM, v � φ

We usually assume that “necessary” is the boolean dual of “possible”, i.e. that something
is necessarily true if it is not possible that it is false. This is reflected by the fact that
according to Definition 1 2φ is just an abbreviation for ¬3¬φ. Alternatively, we could
give semantics for 2 directly with the following definition:

M, w � 2φ :⇐⇒ ∀v : If wRv thenM, v � φ

In fact we would have to do so if we dealt with non-classical (e.g. intuitionistic or minimal)
logics, but throughout this text we will always take our underlying propositional logic to
be classical.
Given the semantics we can now define truth and validity of L3 formulas in general.
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Definition 5 (Truth and Validity). We say that φ is true at w inM iffM, w � φ. We
say that φ is true inM iff it is true at all worlds inM. We say that φ is valid on a frame
F iff it is true in all models based on F . We say that φ is valid on a class of frames F iff
it is valid on all F ∈ F. We say that φ is valid and write � φ iff it is valid on the class of
all frames.

Example 6. Consider a Kripke modelM = (W,R) given by the set W = {w, v, s, t} and
the relation R = {(w, s), (w, v)}. To include the valuation into the figure we use circles
instead of dots and write a proposition p below the name of a world iff this proposition is
true there. The relation R is represented by the arrows between the circles. In this case
from w the worlds s and v are reachable but no other connection is given. In particular R
is irreflexive and no world can reach itself.

w
p, q

v
p

s
q

t
q

We can see that 3p is true at w because from there we can reach the world v where p is
true. Formally: M, w � 3p. However we do not have M, w � 2p because we can also
reach the world s where p is false.

An important property of modal logic which we can already observe here is locality : While
the truth of a formula at a certain world can depend on the facts in other worlds, it suffices
to look only at reachable worlds. In the example above we do not have to look at the
world t to evaluate a statement at w. We will make the idea that only a certain part of a
model “matters” precise when we discuss generated submodels in section 1.4.2.
The inconspicuous definitions for box 2 and diamond 3 are surprisingly powerful and
sparked a lot of research from mathematical, logical and philosophical perspectives. One
of the most interesting research areas is correspondence theory which tries to find which
properties of frames can be described with a modal formula and conversely which modal
formulas describe a property of frames.

Definition 7 (Correspondence). We say that a formula φ corresponds to a frame property
P (which is expressible in first-order logic) iff φ is valid on every frame that has the
property P and vice versa any frame on which φ is valid also has the property P .

Before giving some examples of correspondence we define important properties and the
reflexive transitive closure of a relation. The latter is crucial for the notion of common
knowledge which we introduce in Section 1.1.3.

Definition 8. A relation R on a set W is reflexive iff ∀s ∈ W : sRs, symmetric iff
∀s, t : sRt → tRs, transitive iff ∀s, t, u : sRt ∧ tRu → sRu and euclidean iff ∀s, t, u :
sRt∧sRu→ tRu. A relation is called an equivalence relation iff it is transitive, symmetric
and reflexive. The reflexive transitive closure R∗ of a relation R is the least set such that
R ⊆ R∗ and that R∗ is reflexive and transitive.

Theorem 9. If a relation is reflexive and euclidean, then it is an equivalence relation.

Proof. Suppose R is reflexive and euclidean. We have to show that R is symmetric
and transitive. Symmetry: Suppose xRy. By reflexivity we also have xRx. Hence, by
euclideanness we also have yRx. Transitivity: Suppose xRy and yRz. By symmetry we
also have yRx. Hence, by euclideanness we have xRz.
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Theorem 10. The following are examples for correspondences between modal formulas
and frame properties. The duality between 2 and 3 yields two versions for each of the
formulas. Still, note that those are in general not equivalent in the strong sense of having
the same truth conditions but only regarding their validity on frames, i.e. one of them is
valid on a frame iff the other one is.

• p→ 3p and 2p→ p correspond to reflexivity.

• p→ 23p and 32p→ p correspond to symmetry.

• 33p→ 3p and 2p→ 22p correspond to transitivity.

• 3p→ 23p and 32p→ 2p correspond to euclideanness.

Definition 11 (The logic K). The logic K is given by the following axiomatization.

• If φ is a propositional tautology, then ` φ.

• Modus Ponens: If ` φ and ` φ→ ψ, then ` ψ.

• Distributivity: If ` 2(φ→ ψ), then ` 2φ→ 2ψ.

• Necessitation: If ` φ, then ` 2φ.

Correspondence results allow us to find axiomatizations that are sound and complete for
various classes of frames by adding different axioms to K.

Definition 12 (The logic S5). The system S5 (named after the two additional axioms) is
obtained by adding the following two axioms to K.

• ` 2φ→ φ

• ` 3φ→ 23φ

Theorem 13. The axiomatization of S5 is sound and complete for the class of Kripke
frames based on reflexive and euclidean (and therefore: equivalence) relations.

It should be noted however, that a modal logic given by some list of axioms does not
always have to be sound and complete with regard to a class of Kripke frames. The first
examples for such logics in the basic modal language were presented in [Fin74] and [Tho74].
In fact it its not easy to decide which formulas characterize a class of frames and which do
not. The most famous advances in this area are the Sahlqvist correspondence results in
[Sah75] and generalizations thereof.

1.1.2 Knowledge

Instead of possibility and necessity we can also use Kripke structures to model knowledge
about propositions. To do so we take the box-modality, now written as K, as the
fundamental one and define what it means to know something as follows.
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Definition 14. The language of the modal logic of knowledge LK is given by this BNF:

φ ::= > | p | ¬φ | φ ∧ φ | Kφ

and the usual abbreviations for → and ∨. The semantics of LK are the same as those of
L3 in Definition 4 but with the clause for 3 replaced by:

M, w � Kφ :⇐⇒ ∀v ∈ W : wRv → v � φ

Namely, φ is known at world w iff φ is true in all worlds that an be reached from w.

Intuitively we can think of reachable worlds as those which are deemed possible or probable
while non-reachable (or even non-existing) worlds are those which an agent does not even
consider. Again note the locality of modal logic: An agent might know something at a
certain world but not at another in the same model.
The results of correspondence theory which we sketched above now become relevant
for the philosophical and logical debate which properties knowledge has. Knowledge is
truthful. Hence, we would always want the formula Kφ→ φ to be valid which corresponds
to reflexivity. Two other important properties which are discussed by many authors
(see [Sch14] for an overview) are about meta-knowledge, namely positive and negative
introspection. Positive introspection means that whenever something is known, then it
also is known that it is known. In a formula: Kφ→ KKφ. As we have seen above this
formula corresponds to transitivity of R. Negative introspection is concerned with what
is not known and usually a bit more controversial: It means that whenever something is
not known, then it is known that this is not known. Again we can write this as a formula
¬Kφ→ K¬Kφ and observe that this formula corresponds to is euclideanness.
We have shown above (Theorem 9) that reflexivity and euclideanness together imply that
R is an equivalence relation, i.e. it is also symmetric and reflexive. Thus any Kripke
semantics approach to formalize knowledge with truthfulness and negative introspection
will use equivalence relations and any complete proof system will incorporate the validities
of S5, including positive introspection.
The widespread usage of S5 led to the slogan “Knowledge is an equivalence relation.”
which might intuitively make sense but should also be used carefully. Our model surely
contains an equivalence relation, but we should remind ourselves that it is a model and its
properties are not necessarily also properties of knowledge as it is given by the situation
or observation we are modeling. In fact, something like being-an-equivalence-relation can
make the distinction of modeled and model very clear: Already asking the question “Is
knowledge an equivalence relation?” only makes sense within our modeling because the
concept of an equivalence relation is only defined in a formal framework. In contrast, an
informal description of positive introspection like “I know what I know” is a statement
about knowledge itself, not our models. It is by far not trivial but rather a substantial
claim that Kφ→ KKφ captures positive introspection.
In everything that follows we leave aside this philosophical debate and always represent
knowledge with equivalence relations. Our main motivation is that a strong notion of
knowledge fits to the phenomena that we intend to cover here. Furthermore, equivalence
relations are also easier to handle in an actual implementation as we discuss in Section 1.6.
However, this choice is not necessary for model checking per se. We leave it for further
research to find suitable representations and efficient methods for other classes of models.
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1.1.3 Multiple Agents and Common Knowledge

The next generalization of our models is to represent not just the knowledge of a single
agent but a whole set of agents I.

Definition 15. A multi-agent Kripke frame for a set of agents I is a pair (W,R) where
W is a set of worlds and R is a family of relations R = (Ri)i∈I on W .

Definition 16. A multi-agent Kripke model is a multi-agent Kripke frame together with
a valuation V : W → P(P). We writeM = (W,R, V ).
We then include the following clause into our semantics for every agent i ∈ I:

M, w � Kiφ :⇐⇒ ∀v ∈ W : wRiv → v � φ

That is, an agent knows something iff it is true in all worlds which this agent considers
possible according to her very own accessibility relation.
A formula like Kbp should now be read as “Bob knows that p”. The indexed modalities
also allows us to express sentences like “Alice knows that Bob knows that p” by nesting
the connectives of different agents: Ka(Kjp). Furthermore, if we are only concerned with
the three agents, say Alice, Bob and Charlie, then we can formalize “everybody knows
that p” as Kap ∧Kbp ∧Kcp.
One of the strongest notions in epistemic logics is common knowledge for which we
introduce the modality C. This modality is supposed to be even stronger than “everybody
knows”. If φ is common knowledge then everyone knows that φ and everyone knows that
everyone knows that φ. And everyone knows that everyone knows that everyone knows φ.
And so on.
Formally we can define Cφ, the common knowledge of φ, in two ways. On the semantic level
we can interpret C just like the K modalities but with respect to the relation (∪i∈IRi)

∗,
i.e. the transitive reflexive closure of the union of all agents’ relations. A syntactic approach
on the other hand would define C as an abbreviation for the conjunction of any number of
nested knowledge modalities. Note that this conjunction would be an infinite sentence,
thus C still should be added to the language as an additional connective and not as an
abbreviation in order to keep the language finite. Fortunately, we can easily show that the
two ways to define common knowledge are equivalent.

Definition 17 (Semantic Common Knowledge).

M, w � Cφ :⇐⇒ (∪i∈IRi)
∗

Theorem 18 (Syntactic Common Knowledge).

M, w � Cφ ⇐⇒ for any n ∈ N and any (i1, . . . , in) ∈ In: M, w � Ki1 . . . Kinφ

Proof. Left to right: SupposeM, w � Cφ. Then by definition ∀v : w(∪i∈IRi)
∗v → v � φ.

Now fix any n ∈ N and (i1, . . . , in) ∈ In. By (Ri1 ◦ · · · ◦Rin) ⊆ (∪i∈IRi)
∗ we now have in

particular ∀v : w(Ri1 ◦ · · · ◦Rin)v → v � φ which impliesM, w � Ki1 . . . Kinφ.
Right to left, by contraposition: Suppose M, w 2 Cφ. Then by definition there is a
v such that w(∪i∈IRi)

∗v and v 2 φ. Therefore we have an n ∈ N and i1, . . . , in ∈ I
such that w(Ri1 ◦ · · · ◦ Rin)v. Hence, by the semantics from Definition 16 we have
M, w 2 Ki1 . . . Kinφ.

There are many more notions of group knowledge which can be formalized in Kripke
semantics. A detailed discussion can be found in [VVK07, pp. 30-38].
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1.2 Public Announcements
So far our epistemic logic is static: Given a certain model, our agents either know something
or not. We also want to capture the truth conditions of statements about the change of
knowledge due to new information becoming available. Examples are “If it was announced
that it rains every Tuesday, Bob would know that it will rain tomorrow.” and again also
stacked modalities like “If it was revealed that Bob does not know that it rains, Alice would
know that the curtain is closed.” A well-studied framework dealing with such sentences
is the logic of public announcements, revolving around the next definition. Intuitively,
a public announcement of φ removes all possible worlds where φ is false. The following
Definition 19 gives meaning to a new unary connective [!φ] which says that a statement is
true after a truthful public announcement of φ.

Definition 19 (Public Announcement). The result of the public announcement !φ in the
modelM = (W,R, V ) is the modelM!φ = (W ′,R′, V ′) where W ′ := {w ∈ W | M, w � φ},
R′i := Ri ∩ (W ′×W ′) and V ′ := V ∩ (W ′×W ′). Given this definition we add the dynamic
modality !φ to our language and give it the following semantics:

M, w � [!φ]ψ :⇐⇒ M, w � φ impliesM!φ, w � ψ

Here “implies” is a material implication. Hence the operator [!φ] should be thought of as a
box rather than a diamond: [!φ]ψ means that after every truthful public announcement
that φ is true, ψ would be true. If φ is false, then it can never be truthfully announced
and this holds trivially. The restriction to truthful announcements is needed, because
after the announcement we want to evaluate ψ at the same world. This is only possible if
it survives the announcement. The fact that ψ is evaluated in a different model nicely
reflects the use of conditional sentences in our two examples above. We can now formalize
them as [!p]Kbq and [!¬Kbp]Kaq respectively.
All these announcements are public because removing worlds is an update that does
not differentiate between agents. Hence, Definition 19 can only model situations where
everyone can hear the announcement and should be distinguished from private or group
announcements like “If Bob (but not anyone else) was told ...”.
Another important and somewhat surprising property of public announcements is that
they do not always generate common knowledge. That is, only for some formulas φ we
have that [!φ]Cφ is valid. For counterexamples and a detailed discussion of the so-called
successful fragment, see [VVK07, p. 84].

1.3 Product Update

1.3.1 Epistemic Change

The public announcements discussed in the previous section are not the only events which
we want to analyze in our multi-agent models. Consider for example that Alice gets to
know a secret but Bob and Charlie do not. And suppose Alice then tells this secret to Bob
while Charlie is not listening. Both of these events are obviously not public announcements.
In this and the next section we will define actions as which we can represent such events
correctly.
The framework of action structures in [BMS98] provides a canonical way to model almost
arbitrary actions and events, partly inspired by the update semantics developed in [Vel96].
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What matters about an event in the context of epistemic logic is first what happens and
second who knows about it. This motivates the essential idea of action structures: We
describe actions themselves as Kripke structures, very similar to the static situations before
and afterwards.

Definition 20 (Actions). An action structure is a tuple (A,R) where A is a set of so-
called action tokens, R = (Ri)i∈I is a family of equivalence relations on A and furthermore
for any α ∈ A we have a formula pre(α) which is called the precondition of a.
An action is a triple (A,R, α) where (A,R) is an action structure and α ∈ A. We say
that α is actually happening and often write just α to refer to the action as a whole..

Note that we demand action structures to be based on equivalence relations. This is also
done in [BMS98] but not necessary for product updates in general.
Now we can define how to update a model with an action. We implicitly assume that
model and action are defined for the same set of agents.

Definition 21 (Product Update). The product update given by an action (A,R, α) is a
partial function that maps pointed models to pointed models and is defined as follows:

(W,R, V ), w 7→ (W ′,R′, V ′), (w, α) where
W ′ := {(w, α) ∈ W × A | w � pre(α)}
(w, α)R′i(v, β) :⇐⇒ wRiv and αRiβ
V ′(w, α) := V (w)

We writeMα for the result of updatingM with the action α.

That is, an agent will confuse two worlds in the resulting model iff she could not distinguish
the two worlds before and could not distinguish the two different actions.
It is important to remark that the model before and after the product update are not of
the same type, namely our worlds are now pairs of worlds and actions. While this is not a
problem for our formal definitions (where W can be any set), in our implementation we
rewrite a model after the product update into one where the states are of the same type.

Example 22. The public announcement of φ is given by the action ({α},R, α) where
pre(α) = φ and ∀i ∈ A : Ri := {(α, α)}. It is easy to check that this action and definition
19 are equivalent. Note in particular that only φ-worlds survive the action and the relation
is the same for all agents.

1.3.2 Factual Change

Action structures so far allow us to model quite a few different events, but they are
restricted to epistemic change. This means they can change what agents know but not
what is actually the case. Yet, an announcement like “I am now thinking of a secret
number...” does not merely tell other agents that they do not know this number. Instead
it introduces the variable itself, bringing something completely new into the conversation.
We want to model this as the creation of a variable.
Therefore, we also need a way to model factual change. This is done by adding valuation
changes to the action structures and can be done in various ways. In [BEK06] factual
change is represented by substitutions of formulas for atomic sentences. In this framework
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the substitution σ := {p 7→ q, q 7→ p} for example swaps the truth values of p and q. We
get that (p ∨ q)→ [σ](p ∨ q) is a validity but (p→ q)→ [σ](p→ q) is not.
The models we will discuss here have more complex valuations, i.e. for each world the
valuation is the usual set of true propositions plus additional information, for example
which values some variable can take or who is listening. Actions should also be able
to change these parts of the valuation. We will thus not represent factual change as
substitutions but as functions that map valuations to valuations. This allows us to define
the new valuation after an update as the sequential execution of the previous valuation
function and the change function. For any given kind of valuation we define actions with
factual change as follows.

Definition 23 (Actions with factual change). An action structure with factual change
is a tuple (A,R) where A is a set of so-called action tokens, R = (Ri)i∈I is a family of
equivalence relations on A and furthermore for any α ∈ A we have a formula pre(α), called
the precondition of α, and a function changeα which maps valuations to valuations.
An action with factual change is a triple (A,R, α) where (A,R) is an action structure
with factual change and α is an element α ∈ A. Again we also write just α to refer to the
action as a whole and say that α is actually happening.

Definition 24 (Product Update with factual change). The product update with factual
change given by an action with factual change (A,R, α) is a function that maps models to
models and is defined as follows.

(W,R, V ), w 7→ (W ′,R′, V ′), (w, α) where
W ′ := {(w, α) ∈ W × A | w � pre(α)}
(w, α)R′i(v, β) :⇐⇒ wRiv and αRiβ
V ′(w, α) := (changeα ◦ V )(w)

Again we writeMα for the result of updatingM with the action α.

Example 25. Consider models with valuation functions that map worlds to sets of
propositions X ⊆ P. Let ({α, β},R, β) be an action defined as follows. Note that we
leave out the reflexive arrows in the drawing and see Definition 33 for the notation of the
relations as partitions.

pre(α) := >, changeα := id,

pre(β) := >, changeβ(X) :=

{
X \ {p} if p ∈ X
X ∪ {p} otherwise

and Ri :=

{
{α | β} if i = a
{αβ} otherwise

α β

I \ {a}

Then β changes the truth value of p and tells agent a about the change. All other agents
will not know the truth value of p any longer, i.e. the formula [β]¬Kip is valid for all i 6= a.
But note that a does not necessarily know the truth value of p after the update. In fact the
formula (Kap ∨Ka¬p) is invariant under β.

Given this definition and example, one might wonder if our approach is more or less
general than the original in [BEK06] and the answer is indeed nontrivial. While mapping
valuations to valuations on first sight seems more powerful than a substitution of formulas,
it is in fact less expressive. Example 26 shows that substitutions are more expressive
because via epistemic formulas they can also refer to the valuation somewhere else.
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Example 26 (Expressive power of substitution actions). Consider the action “Hey Bob,
if you know whether p is the case, please wave!” and let q be a proposition that represents
if Bob is waving. Assuming that Bob follows the order, we can formalize this action as
the substitution {q 7→ (Kbp ∨ Kb¬p)}. But it can not be represented as a map between
valuations in general: The new valuation at a world does not only depend on the old
valuation at this world but – because it is an epistemic statement – also depends on the
truth values of p at other worlds in the old model. When defining the action as a function
on valuations, these would not be available.

For the other direction, namely to see that all our actions could also be represented
as substitutions, first note that for valuations of the type X ⊆ P our maps are just
substitutions of boolean formulas for propositions. For complex valuations, we can argue
that they are just encodings for “normal” boolean valuations in bigger models: The local
listener set Lw = {a} that we introduce in Definition 66 could also be viewed as just
another way to write down a valuation that makes the atomic sentence La true and for
all i 6= a the atomic sentence Li false at w. Therefore, also a change function working on
valuations with such listener sets can be represented as a substitution of boolean formulas
for some of the Lis. Similar arguments can be given for the registers and constraint sets
we introduce in Definitions 44 and 66. Hence, our representation of factual changes as
valuation-maps just restricts the approach in [BMS98, BEK06] to boolean combinations
of non-epistemic statements and we can still rely on the results presented there.
There is a lot more to say about actions, in particular about their status as syntactic or
semantic objects and the general language with operators for every possible action model.
As the definitions above suffice for our purposes, we just refer to [VVK07, Chapter 6].

1.4 Smaller Equivalent Models
Many actions increase the size of our models because they create multiple copies of worlds.
Especially after multiple updates we can end up in huge models that are hard to analyze.
Do we have to deal with these huge models? The answer is: no. Two well-established
notions from modal logic will be helpful here, namely bisimulation and generated submodels.
These ideas provide a way to find equivalent models in the sense that they satisfy exactly
the same formulas as the original models. Moreover, if models are redundant, these
methods can give us smaller models that are easier to handle. We will use them in Section
3.6.2 to increase the efficiency of our implementation.

1.4.1 Bisimulation

Definition 27 (Bisimulation). A non-empty relation Z ⊆ W ×W ′ is called a bisimulation
betweenM1 = (W,R, V ) andM2 = (W ′,R′, V ′) iff

(i) If wZw′ then V (w) = V ′(w′).

(ii) If wZw′ and wRiv, then there is a v′ ∈ W ′ such that vZv′ and w′R′iv′.

(iii) If wZw′ and w′R′iv′, then there is a v ∈ W such that vZv′ and wRiv.

If such a Z exists with w1Zw2 we say that M1, w1 is bisimilar to M2, w2 and use the
binary relation symbol ↔ as inM1, w1↔M2, w2.
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The following example of two models for normal modal logic shows that sometimes very
large or even infinite models can be bisimilar to small ones.

Example 28. LetM1 = (N, <, f) andM2 := (2, {(0, 1), (1, 1)}, f�2) where

f(n) :=

{
∅ if n = 0
{p} otherwise

Then we can easily check that Z := {(0, 0)}∪{(k, 1) | 0 6= k ∈ N}, drawn below with dashed
arrows, is a bisimulation and for exampleM1, 0↔M2, 0.

0 1
p

0 1
p

2
p

3
p

. . .M1:

M2:

Bisimulation is a most interesting notion for modal logics in general because of the following
theorem which also holds for many modal logics without global modalities.

Theorem 29. IfM1, w↔M2, w2, then for all φ we haveM1, w1 � φ iffM2, w2 � φ.

Proof. By induction on the complexity of φ. See [BDV01, Theorem 2.20, p. 67].

The concept of bisimulation comes with a useful complexity result: Minimal bisimilar
models can be obtained efficiently and [Eij14] provides a generic implementation which we
will employ in Section 3.6.2

1.4.2 Generated Submodels

Again we consider two models which are similar in some sense.

Example 30. LetM = (N \ {0}, <, f) where f(n) :=

{
∅ if n = 0
{p} otherwise .

1
p

2
p

3
p

. . .

LetM′ = (N, <, f).

0 1
p

2
p

3
p

. . .

Note that all worlds inM can be identified with worlds inM′. Moreover theM′-pendants
of all worlds ofM can only reach worlds which are also inM. In this situation we call
M a generated submodel according to the following definition.
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Definition 31. Given two models M = (W,R, V ) and M′ = (W ′,R′, V ′) We say that
M is a generated submodel ofM′ iff W ⊆ W ′, R′ = R∩ (W ×W ) and V ′ = V�W .

The expected and useful result about generated submodels is that truth of modal formulas
is preserved to generated submodels. Again, a warning should be made that this does not
hold for modal languages with the global modality.

Theorem 32. IfM is a generated submodel ofM′ and w a world inM then for all φ
we haveM, w � φ iffM′, w � φ.

Proof. By induction on φ. Alternatively and as noted in [BDV01, Proposition 2.6, p. 56], it
suffices to show that generated submodels induce a bisimulation to the original model.

1.5 Functional Programming
For our implementations we use the functional programming language Haskell which is
particularly suited for logical and mathematical programming for several reasons.

• Functional style fits our purpose much better than imperative. Examples of the
latter are C++ and Python. Where in those languages we “tell” the computer what
to do, in Haskell we rather define the intended result.

• The Syntax of Haskell is often close to mathematical notation. Two examples should
illustrate this point. First, consider the set of even natural numbers. Here is how a
definition in a text book might look like and how to define it in Haskell:

E := {x ∗ 2 | x ∈ N} e = [ x*2 | x <- [0..] ]

Second, the characteristic function of {1, 5} as we know it and in Haskell:

f(x) :=

{
1 if x ∈ {1, 5}
0 otherwise f x = if (elem x [1,5]) then 1 else 0

• Haskell is statically typed which means that everything our programs are dealing
with has a type. Examples of types are integers, strings and lists. Also our concepts
of propositions, agents, models and formulas will be represented as types.

• The ghc compiler we are using offers “lazy” evaluation. This means that functions
are only called and computations only made if they are actually needed. This fits
nicely to the locality of modal logic: Whatever might occur in a structure but does
not matter for the evaluation of a formula can be ignored.

We will not provide an introduction to Haskell here but refer to existing literature. A book
which nicely teaches both foundations of logic and their implementation in Haskell at the
same time is [Dv04].
There also is a plethora of good online resources which is summarized at

www.haskell.org/haskellwiki/Learning_Haskell.

One can also try out simple examples in a browser on www.tryhaskell.org.
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1.6 Relations as Partitions
Equivalence relations are isomorphic to partitions and very often mathematicians like to
identify these isomorphic structures or just call them two different ways to refer to the
same object. But from a computational perspective it matters a lot of which type our
objects are because a concise data structure can be read and modified faster than a more
complicated structure with unnecessary redundancy.
For example, consider a simple S5 frame and two different representations in Haskell:

1 2 3

relation = [ (1,1), (2,2), (2,3), (3,2), (3,3) ]
partition = [ [1], [2,3] ]

We can see that the representation as a partition is much more concise. As we are
only concerned with equivalence relations throughout this thesis, we can use it in our
implementations. For a detailed discussion of relations as partitions, see [Eij14].
To keep our formal definitions succinct as well we also define the following notation for
equivalence relations as partitions.

Definition 33 (Equivalence Relations as Partitions). To simplify the definition of equiva-
lence relations, we write partitions like

α1,1 . . . α1,n1 | . . . | αm,1 . . . αm,nm

to denote the corresponding equivalence relation given in standard set-theoretic notation:

{(αk,i, αk,j) | k ≤ m and i, j ≤ nm}

Example 34. A partition of three elements into two classes of size one and two expands
to an equivalence relation with five elements:

α | βγ corresponds to {(α, α), (β, β), (β, γ), (γ, β), (γ, γ)}
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Chapter 2

Guessing Games

2.1 The Number Guessing Game

2.1.1 What does it mean to know a number?

To explore this question we consider the following number guessing game, played between
Jan and his twin daughters Gaia and Rosa.

jan: “I have a number in mind, in the range from one to ten. You may take turns
guessing. Whoever guesses the number first wins.”

gaia: “I love this game!”
rosa: “Me too, can I guess first?”
jan: “Okay, go ahead.”

Example 35. A naive representation of this game can be given as a multi-agent Kripke
model with ten worlds. The actual world – where the number happens to be 6 – is indicated
by a box. At the start we have a total graph which represents the ignorance of the twins.

6

1

2
3

4

5

7
8

9

10

Example 36. Now suppose the following exchange takes place:

rosa: “Eight?”
jan: “No.”
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This results in an update of the model: The possibility 8 drops out, and this is common
knowledge among the twins because they both hear Jans reply:

6

1

2
3

4

5

7 9

10

And so on. But as the twins get older they refuse to play the game like this and a slight
change of rules is necessary to regain their trust:

jan: “I have a number in mind, in the range from one to ten. You may take turns
guessing. Whoever guesses the number first gets the toy. It is Gaia’s turn to
start, for last time we played this game Rosa started the guessing.”

gaia: “But how can we know you are not cheating on us? Please write down the
number before we start guessing, so you can show it to us afterwards as a
proof.”

jan: “Okay.” [Jan writes a number on a piece of paper, hidden from Gaia and Rosa.]
gaia: “Is it five?”
jan: “No.”
rosa: “Is it six?”
jan: “Yes, Rosa. You have won.” [Jan shows the piece of paper with a 6 on it as a proof.]

At the point where the twins demand that the secret number gets written down, and that
Jan shows it as a proof that he was honest, the important notion of a register arises. The
register allows Jan to prove that he really knew the number and that he had fixed it before
the guessing started. In particular, he did not just accept Rosa’s guess because he wanted
her to win.
So what is it that Jan knew when we say that he knew the number? Let us say: Jan
can see the difference between a register with the correct number written in it, and the
same register with some different number written on it. If someone else would change the
number on the piece of paper during the game, Jan would realize it, but Gaia and Rosa
would not.
We can now see that to represent the game in a Kripke model it is in fact enough to have
two possible worlds and such a register. In the actual world the register n has the value 6
and in the other world it can be anything else in the range which was agreed upon earlier.
Jan knows n, the two children do not know n. This leads to the following register model
in which we indicate the actual world by a double circle.
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Example 37 (Register Model). In this model the real value of p is 6 which we can see in
the actual world 1 where p is true. In 0 however, p is false and the value can be anything
else, but not 6. Furthermore, the connections for Gaia and Rosa tell us that they do not
have access to the register and do not know the value of p.

Agents: Jan, Gaia, Rosa

1
p

p = 6

0

1 ≤ p ≤ 10 and p 6∈ {6}

Gaia

Rosa

The way we will talk about such register models yields a clash of notation and speech
when it comes to “the value of p”. We have to distinguish the truth value of p and the
numeric value assigned to p. However, it will usually be clear from the context what we
mean and we will not introduce separate notation.

2.1.2 Announcements

Suppose now Gaia makes a guess.

gaia: “Ten?”
jan: “No.”

Because Rosa is also present, this is a public announcement and the following example
makes precise what happens.

Example 38 (Announcing Negative Information). If the register model from example 37
is updated with the announcement !p 6= 10 everyone will know that the value of p is not 10.
The resulting register model reflects this:

Agents: Jan, Gaia, Rosa

2

1 ≤ p ≤ 10 and p 6∈ {6, 10}

1
p

p = 6

Gaia

Rosa

The only change that has taken place is that in the world where p is false we added the
restriction that p may not be 10.
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Example 39. When the true value is guessed we only have one world left.

rosa: “Is it six?”

jan: “Yes, you guessed it!”

Agents: Jan, Gaia, Rosa

1
p

p = 6

Example 40. We can also represent the moment when Gaia prepares to announce a guess
but has not yet revealed it to the others. We write p1 for the guess of Gaia. She knows her
guess, but Jan and Rosa do not know it yet:

Agents: Jan, Gaia, Rosa

5
p1

p1 = 5
1 ≤ p ≤ 10 and p 6∈ {6, 10}

4
p1, p
p1 = 5
p = 6

2

1 ≤ p1 ≤ 10 and p1 6∈ {5}
1 ≤ p ≤ 10 and p 6∈ {6, 10}

1
p

1 ≤ p1 ≤ 10 and p1 6∈ {5}
p = 6

Gaia

Rosa

Jan

Rosa

Rosa

Jan

Rosa

Gaia

Rosa

Rosa

In particular we can see that Rosa knows the least because she is confusing all worlds with
each other while Jan and Gaia both know something, namely p and p1 respectively.

This model might already seem a bit complicated but note that without registers, it would
blow up to a much bigger model in which we would have 100 worlds. More generally, if we
want to model a situation with k many variables each of which can have a value from 1
to m, then we would get a “naive” Kripke frame with mk possible worlds while our new
representation only needs 2k many worlds.

Example 41. Suppose now that Gaia tells someone else about her guess who also knows
Jan’s secret Number. And suppose then this person announces (truthfully) to everyone
that Gaia’s next guess will be wrong. This means that p 6= p1 is announced in the situation
before Gaia has revealed her guess. The model of Example 40 changes into the following:
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Agents: Jan, Gaia, Rosa

7
p

1 ≤ p1 ≤ 10 and p1 6∈ {5}
p = 6
p 6= p1

4
p1, p
p1 = 5
p = 6

11
p1

p1 = 5
1 ≤ p ≤ 10 and p 6∈ {6, 10}

p 6= p1

8

1 ≤ p1 ≤ 10 and p1 6∈ {5}
1 ≤ p ≤ 10 and p 6∈ {6, 10}

p 6= p1

Rosa

Gaia

Rosa
Jan

Rosa

Jan

Rosa

Gaia

Rosa

Rosa

Note that Rosa still neither knows the value of p nor p1 but she does know that p 6= p1.

Example 42. If Gaia reveals the contents of her register by means of the announcement
p1 = 5, the model of Example 40 changes into the following.

Agents: Jan, Gaia, Rosa

3
p1

p1 = 5
1 ≤ p ≤ 10 and p 6∈ {6, 10}

0
p1, p
p1 = 5
p = 6

Gaia

Rosa

Jan can now state that the guess is wrong, by means of the announcement n 6= g. The
result is a model that is just like above, except for the fact at world 5 that p 6∈ {6, 5, 10}
(the possibility p = 5 has dropped out).

2.2 Syntax

Registers are like names for numbers, and the referential puzzles that are well known
from the philosophy of language [Fre92, Qui60, Kri72] reappear in the present context.
Just compare p = q with “Hesperus is Phosphorus”, and see that creating a register and
writing a number in it can be viewed as a baptism, just like “Let’s call this bright object
in the sky that is visible just after sundown Hesperus.” Register equality statements are
like name equality statements. The number equality statement n = n can be compared
to “Hesperus is Hesperus.”, and the truth of such trivial equality statements should be
common knowledge in any register model.
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Definition 43 (Register Language for Guessing Games). Let p range over the set of
propositions P, let N range over N and let i range over the finite set of agents I. The
register language for guessing games LGG consists of the following formulas, commands
and expressions.

φ ::= > | p | p = E | ¬φ | φ ∧ φ | Kiφ | Gφ | 〈C〉φ

C ::= !p = E | !p 6= E | p i← N | A;A

E ::= p | N

Again we also define some abbreviations. Let ⊥ := ¬>. For any φ and any command C we
define [C]φ := ¬〈C〉¬φ and for any φ and ψ we let φ∨ψ := ¬(¬φ∧¬ψ), φ→ ψ := ¬(¬φ∧ψ)
and φ↔ ψ := (φ→ ψ)∧ (ψ → φ). For any p and E, let p 6= E := ¬(p = E). Furthermore,
we define the epistemic diamond by K̂iφ := ¬Ki¬φ.

A new element in this language is the unary connective G which we will interpret as the
global modality. It states that φ is true at all worlds in our model, i.e. its interpretation
is always the total relation. The global modality is particularly useful to find reduction
axioms for announcements and register creation; see Theorem 56 for details.
We purposely do not introduce common knowledge (based on the the reflexive-transitive
closure of the union of all epistemic relations) here, because it complicates the axiomatiza-
tion. Concretely, the reduction schemes P6, N6 and R8 in Theorem 56 are no longer valid
if G is the common knowledge operator. Still, note that we do interpret G as common
knowledge in the extended framework of ECL in Chapter 3.

2.3 Semantics

Definition 44 (Guessing Game Models). A guessing game model for I and P is a tuple
M = (W,R, V ) where

• (W,R) is a multi-agent S5 frame for I according to Definition 15,

• V is a valuation function for some Q ⊆ P (the global set of used variables): It
assigns to each world w ∈ W a valuation which is a tuple (Pw, fw, C

+
w , C

−
w ) where

– Pw ⊆ P (the basic propositions true at w),

– fw is a function on Q that assigns to each q ∈ Q a triple (n,m,X) with
n,m ∈ Z, n ≤ m, X ⊆ Z, satisfying two constraints:

(i) whenever q ∈ Pw then for fw(q) = (n,m,X) we have n = m and X = ∅
(ii) whenever p ∈ Pv ∩ Pw for v, w ∈ W then fv(p) = fw(p),

– C+
w is a subset of Q2 (the equality constraints of w)

– C−w is another subset of Q2 (the inequality constraints of w) which is consistent
with C+

w according to definition 45 below.

We refer to parts of guessing game models in various ways:
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• In cases where it is clear or does not matter which world we are talking about we
leave out w and just write valuations as (P, f, C+, C−).

• The triple fw(q) to which we also refer by (f 0
w(q), f 1

w(q), f 2
w(q)) is called the range of

q in w. Its elements are the lower bound n, upper bound m, and a list of excluded
values X. Translated to standard notation, fw(p) = (n,m,X) means that the set of
possible values for p at the world p is {x ∈ N | x 6∈ X ∧ n ≤ x ≤ m}.

• The sets C+
w and C−w are the positive and negative equality constraints at w, in the

following sense: (p, q) ∈ C+
w expresses that p and q have the same values at w and

(p, q) ∈ C−w expresses that p and q have different values at w.

Definition 45 (Consistency of Constraints). An equality constraint set C+ is consistent
with an inequality constraint set C− iff there is no (p, q) ∈ C− which is also in the transitive
symmetric reflexive closure of C+ on P.

Example 46. The constraint sets C+ = {(p, q), (r, s)} and C− = {(p, r)} are consistent.
In contrast, C+ = {(p, q), (q, r)} and C− = {(p, r)} are not.

Definition 47. An assignment is a function that maps propositions to integers. An
assignment h agrees with a world w (notation w( h or h (w) iff

• for all q ∈ Q: f 0
w(q) ≤ h(q) ≤ f 1

w(q) and h(q) 6∈ f 2
w(q),

• h satisfies the positive constraints C+
w : if (p, q) ∈ C+

w then h(p) = h(q) and

• h satisfies the negative constraints C−w : if (p, q) ∈ C−w then h(p) 6= h(q).

Example 48 (Agreement and disagreement). Again consider the following two-world
model where everyone knows p1 but only Jan knows p.

Agents: Jan, Gaia, Rosa

3
p1

p1 = 5
1 ≤ p ≤ 10 and p 6∈ {6, 10}

0
p1, p
p1 = 5
p = 6

Gaia

Rosa

According to Definition 47 we have that:

• The function h = {p 7→ 6, p1 7→ 5} agrees with 0, but not with 3.

• The function h′ = {p 7→ 3, p1 7→ 5} agrees with 3 but not with 0.
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Definition 49 (Interpretation of LGG in Register Models). We define the satisfaction
relation M, w, h |= φ. Let M = (W,R, V, A) be a register model, w ∈ W and h an
assignment that agrees with w. Inductively we define for all φ ∈ LGG:

M, w, h |= > always
M, w, h |= p iff p ∈ Pw

M, w, h |= p1 = p2 iff h(p1) = h(p2)

M, w, h |= p = N iff h(p) = N

M, w, h |= ¬φ iff notM, w, h |= φ

M, w, h |= φ1 ∧ φ2 iff M, w, h |= φ1 andM, w, h |= φ2

M, w, h |= Kiφ iff wRiw
′ implies that for all h′ (w′ :M, w′, h′ |= φ

M, w, h |= Gφ iff for all w′ ∈ W and all h′ (w′ :M, w′, h′ |= φ

M, w, h |= 〈! p = E〉φ iff M, w, h |= p = E andM!p=E, (w, α), h |= φ

M, w, h |= 〈! p 6= E〉φ iff M, w, h |= p 6= E andM!p 6=E, (w, α), h |= φ

M, w, h |= 〈p i← N〉φ iff M, w, h |= G¬p andMp
i←N , (w, α), h ∪ {(p,N)} |= φ

M, w, h |= 〈A1;A2〉φ iff M, w, h |= 〈A1〉〈A2〉φ

where the modelsM!p=E,M!p 6=E andMp
i←N are given by actions with factual change as

introduced in Definition 23 and specified in the following three definitions.

Definition 50 (M!p=E). This update represents “You guessed it” and reveals positive
information. The update is only defined for truthful announcements, i.e. if p = E is true at
the actual world. It is given by the following two action structures, depending on whether
E is a number or another variable.
If E is a number,M!p=N is the result of restrictingM to the worlds where p = N is true:

({α},R, α) where pre(α) := (p = N)
changeα := id
Ri := α for all i ∈ I

If E is another variable, M!p=q is obtained by restricting M to the worlds where p and
q have the same truth value. Furthermore, in worlds where p and q are both false the
constraint (p, q) is added to C+(w).

({α, β},R, α) where pre(α) := p ∧ q ∧ (p = q)
pre(β) := ¬p ∧ ¬q
changeα := id
changeβ(P, f, C+, C−) := (P, f, C+ ∪ {(p, q)}, C−)
Ri := αβ for all i ∈ I

Definition 51 (M!p 6=E). This represents “Your guess was wrong” and reveals negative
information. It is only defined for truthful announcements, i.e. p 6= E has to be true at the
actual world. Again we give two action structures for the cases whether E is a number or
variable.
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If E is a number,M!p 6=N is the result of adding N to the list of excluded values of p at all
worlds where p is false:

({α, β},R, α) where pre(α) := p ∧ (p 6= N)
pre(β) := ¬p
changeα := id
changeβ(P, f, C+, C−) := (P, new(f), C+, C−)

new(f)(q) :=

{
(f 0(p), f 1(p), f 2(p) ∪ {N}) if q = p

f(q) otherwise
Ri := αβ for all i ∈ I

If E is a variable q, thenM!p 6=q is the result of adding the constraint (p, q) to C−(w) for
every world where p ∧ q is false:

({α, β},R, α) where pre(α) := p ∧ q ∧ (p 6= q)
pre(β) := ¬(p ∧ q)
changeα := id
changeβ(P, f, C+, C−) := (P, f, C+, C− ∪ {(p, q)})
Ri := αβ for all i ∈ I

The creation of new registers (“I am thinking of a number ...”) is represented by the
command p a← N . This links p to the number N with the link known only to agent a.
Formally, also this is given by an action structure. Besides the proposition it also depends
on regsize, the globally fixed maximum value any variable can take.
The precondition for register creation is G¬p and makes sure that p has not been introduced
as a register already because then it would have to be true somewhere.

Definition 52 (Register Creation). For any modelM the modelMp
i←N is given by the

action structure ({α, β},R, α) toM where

pre(α) := G¬p
pre(β) := G¬p

changeα(P, f, C+, C−) := (P ∪ {p}, f ∪ {(p, (N,N,∅))}, C+, C−)
changeβ(P, f, C+, C−) := (P, f ∪ {(p, (0, regsize, {N}))}, C+, C−)

Ri :=

{
α | β if i = a
αβ otherwise

We can now lift the notion of truth with regard to assignments to truth and falsity at a
world by saying that a formula is true at a world iff it is true with regard to all agreeing
assignments. It is false iff it is false with regard to all agreeing assignments.

Definition 53 (Truth at a world, Validity).

M, w |= φ iff ∀h with w( h :M, w, h |= φ.

A formula φ is valid iff for allM and all w we haveM, w � φ. We then write � φ.

Note that we could additionally introduce a notion of falsification:

M, w =|φ iff ∀h with w( h :M, w, h 6|= φ.

Then formulas could be undecided in the sense thatM, w |= φ andM, w =|φ can both be
false – see Example 54. This will be reflected in our implementation where we use the
data type Maybe Bool. However, for the notion of validity this does not matter and our
logic is still classical, e.g. the law of excluded middle is valid.
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Example 54 (An undecided formula). In the following model, p = 7 is false in 0, but
neither true nor false in 1. Similarly, p 6= 7 is true in 0, but neither true nor false in 1.

0
p

p = 6

1
1 ≤ p ≤ 10
p 6= 6

Gaia

Rosa

This illustrates that the definitions ofM, w |= φ andM, w =|φ create truth value gaps.
However, Ki closes these truth value gaps again. This is because Kiφ does not depend on
the given assignment and becomes false in case that φ is undecided in a reachable world.

Theorem 55. For allM, w, i and φ we have eitherM, w |= Kiφ orM, w =|Kiφ.

Proof. It suffices to observe the following equivalences.

M, w =|Kiφ
iff ∀h with w( h :M, w, h |= ¬Kiφ
iff ∀h with w( h∃w′, h′ with wRiw

′, w′( h′ andM, w′, h′ |= ¬φ
iff ∃h with w( h∃w′, h′ with wRiw

′, w′( h′ andM, w′, h′ |= ¬φ
iff ∃h with w( h andM, w, h 6|= Kiφ
iff M, w 6|= Kiφ

2.4 Axiomatization
We will now present a proof system for the register language for guessing games. We first
provide reduction axioms for all three commands. These are inspired by [BMS98] and
[BEK06]. We then note that all reduction axioms are valid and thereby enable us to find
equivalent command-free formulas for any given formula. Finally, we add our reduction
axioms to a standard axiomatization of S5 for multiple agents with a global modality and
thus obtain a sound and complete system for the logic of guessing games.

Theorem 56. The following reduction schemes are valid.
Positive announcements:

P0) 〈!p = E〉> ↔ (p = E)

P1) 〈!p = E〉q ↔ (p = E ∧ q)

P2) 〈!p = E〉(q = E ′)↔ (q = E ′)

P3) 〈!p = E〉¬φ↔ (p = E ∧ ¬〈!p = E〉φ)

P4) 〈!p = E〉(φ ∧ ψ)↔ (〈!p = E〉φ ∧ 〈!p = E〉ψ)

P5) 〈!p = E〉K̂iφ↔ (p = E ∧ K̂i(〈!p = E〉φ))

P6) 〈!p = E〉Gφ↔ (p = E ∧G(p = E → 〈!p = E〉φ))
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Negative announcements:

N0) 〈!p 6= E〉> ↔ ¬(p = E)

N1) 〈!p 6= E〉q ↔ (¬(p = E) ∧ q)

N2) 〈!p 6= E〉(q = E ′)↔ (¬(p = E) ∧ (q = E ′))

N3) 〈!p 6= E〉¬φ↔ (¬(p = E) ∧ ¬〈!p 6= E〉φ)

N4) 〈!p 6= E〉(φ ∧ ψ)↔ (〈!p 6= E〉φ ∧ 〈!p 6= E〉ψ)

N5) 〈!p 6= E〉K̂iφ↔ (¬(p = E) ∧ K̂i(〈!p 6= E〉φ))

N6) 〈!p 6= E〉Gφ↔ (¬(p = E) ∧G(¬(p = E)→ 〈!p 6= E〉φ))

Register creation:

R0) 〈p i← N〉> ↔ (G¬p)

R1) 〈p i← N〉p↔ (G¬p)

R2) 〈p i← N〉q ↔ (G¬p ∧ q) where p 6= q

R3) For equality statements we consider a few subcases:

R3a1) 〈p i← N〉(p = N)↔ (G¬p)

R3a1’) 〈p i← N〉(p = M)↔ ⊥ where M 6= N

R3a2) 〈p i← N〉(q = M)↔ (G¬p ∧ (q = M)) where p 6= q

R3b1) 〈p i← N〉(p = p)↔ (G¬p)

R3b1’) 〈p i← N〉(p = q)↔ (G¬p ∧ (q = N)) where p 6= q

R3b2) 〈p i← N〉(q = p)↔ (G¬p ∧ (q = N)) where p 6= q

R3b2’) 〈p i← N〉(q = r)↔ (G¬p ∧ (q = r)) where p 6= q and p 6= r

R4) 〈p i← N〉¬φ↔ (G¬p ∧ ¬〈p i← N〉φ)

R5) 〈p i← N〉(φ ∧ ψ)↔ (〈p i← N〉φ ∧ 〈p i← N〉ψ)

R6) 〈p i← N〉(Kiφ)↔ (G¬p ∧Ki(G¬p→ 〈p
i← N〉φ))

R7) 〈p i← N〉(Kjφ)↔ (G¬p ∧Kjφ) where j 6= i

R8) 〈p i← N〉(Gφ)↔ G(〈p i← N〉φ)
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Proof. We show that P6 〈!p = E〉Gφ↔ (p = E ∧G(p = E → 〈!p = E〉φ)) is valid for the
case where E is some N ∈ N. For left-to-right, suppose M, w, h � 〈!p = N〉Gφ. Then
M, w, h � p = N andM!p=N , w, h � Gφ (call this ♥). To showM, w, h � G(p = N →
〈!p = N〉φ), suppose it is not the case. Then there is a world w′ inM and an agreeing
assignment h′ such thatM, w′, h′ � p = N butM, w′, h′ 6� 〈!p = N〉φ. By the first, w′
survives the announcement !p = N and h′ also agrees with it afterwards. Now by the
second we haveM!p=N , w′, h′ 6� φ. But this contradicts ♥. HenceM, w, h � G(p = N →
〈!p = N〉φ) must be the case and the right hand side holds.
For right-to-left, suppose M, w, h � (p = N ∧ G(p = N → 〈!p = N〉φ)). To show
M, w, h � 〈!p = N〉Gφ, suppose it is not the case. By assumption M, w, h � p = N ,
so the announcement does not fail and we have M!p=N , w, h 2 Gφ. This means there
is a w′ in M!p=N with an agreeing h′ such that M!p=N , w′, h′ 2 φ (call this ♥). Only
pairs of worlds and assignments where p = N is true survive the announcement, therefore
M, w′, h′ � p = N . By assumption p = N → 〈!p = N〉φ is globally true in M. Hence
M, w′, h′ � 〈!p = N〉φ and therefore M!p=N , w′, h′ � φ. But this contradicts ♥. Hence
M, w, h � 〈!p = N〉Gφ must hold.
Together we have shown that P6 is valid. Note that we really need the global modality
here and the proof would not work for common knowledge.

Theorem 57. For every formula φ in our language there is a formula ψ such that φ↔ ψ
is valid and ψ does not contain any commands.

Proof sketch. It suffices to note that given any formula, the reduction schemes from
Theorem 56 allow us to “push” the commands inwards until they disappear at the level of
atomic propositions. Then, an appropriate notion of complexity of a formula can be used
for a proof by induction.

Example 58. After any creation of a private register p for the agent Jan with the actual
value 5, Jan knows that p = 5. This statement can be expressed in our register language
and we can see that the reduction schemes allow us to find an equivalent formula which
does not contain any commands.

[p
Jan← 5]KJan(p = 5)

abbrev.≡ ¬〈p Jan← 5〉¬KJan(p = a)
R4
≡ ¬(G¬p ∧ ¬〈p Jan← 5〉KJan(p = 5))
R6≡ ¬(G¬p ∧ ¬(G¬p ∧KJan(G¬p→ 〈p Jan← 5〉(p = 5))))

R3a1≡ ¬(G¬p ∧ ¬(G¬p ∧KJan(G¬p→ G¬p)))

Note that this formula does not contain 5 and we can easily see that it is valid:

≡ ¬(G¬p ∧ ¬(G¬p ∧KJan(>))) ≡ ¬(G¬p ∧ ¬(G¬p ∧ >))
≡ ¬(G¬p ∧ ¬G¬p) ≡ ¬(⊥) ≡ >

Definition 59 (The Logic of Guessing Games). The system GG is given by the following
rules and axiom schemes:

• All instances of propositional tautologies.

• All reduction axioms from Theorem 56.
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• Modus Ponens: ` φ ` φ→ ψ

` ψ

• For all agents i:

– Necessitation: ` φ

` Kiφ

– Distribution: ` Ki(φ→ ψ)→ (Kiφ→ Kiψ)

– Reflexivity: ` Kiφ→ φ

– Euclideanness: ` ¬Kiφ→ Ki¬Kiφ

Note that this is an axiomatization of S5 for all agents. By Theorem 9 and correspon-
dence results also symmetry: ` φ→ Ki¬Ki¬φ and transitivity: ` Kiφ→ KiKiφ are
admissible.

• For the global modality G:

– Necessitation: ` φ

` Gφ

– Distribution: ` G(φ→ ψ)→ (Gφ→ Gψ)

– Reflexivity: ` Gφ→ φ

– Euclideanness: ` ¬Gφ→ G¬Gφ
– Inclusion for all agents i: ` Gφ→ Kiφ

• For all commands C:

– Necessitation: ` φ

` [C]φ

– Distribution: ` [C](φ→ ψ)→ ([C]φ→ [C]ψ)

• For all expressions E and E ′:

– Identity: ` E = E

– Substitution of (locally) equal expressions: ` E = E ′ → (φ(E)→ φ(E ′))

• For all nonequal natural numbers N 6= M : ` N 6= M

Theorem 60 (Completeness). The system GG proves all validities in the register language
for guessing games given by Definition 53. Formally: For all φ ∈ LGG, if � φ, then ` φ.

Proof sketch. By contraposition. We extend the well-known method of Lindenbaum
Lemma, Canonical Models and Truth Lemma to our register models. For a detailed
explanation of the method itself we refer to [VVK07, Chapter 7]. Let L∗GG denote the set
of all command-free formulas of LGG.
Properties of maximally consistent sets: A set of formulas Γ is called consistent iff
Γ 6` ⊥. It is called maximally consistent iff it has no consistent proper superset. If Γ is a
maximally consistent set of L∗GG-formulas, then (i) Γ is deductively closed, (ii) φ ∈ Γ iff
¬φ 6∈ Γ and (iii) for every p there is a unique Np such that p = Np ∈ Γ (N-property).
Lindenbaum Lemma: Every consistent set is a subset of a maxmally consistent set.
Proof sketch. Note that LGG is of countable size and can thus be enumerated. Thus,
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given any consistent Γ we can inductively go through all formulas, adding them to our set
whenever the result is consistent and skipping it otherwise. The limit of this process is a
maximally consistent set.
Canonical Model: For every maximally consistent set Θ ⊆ L∗GG, we define a canonical
modelMΘ := (W,R, V ) where

• W := {Γ ⊂ L∗GG | Γ is maximally consistent and Gφ ∈ Γ iff Gφ ∈ Θ for all φ}.

• For each agent i, let Ri := {(Γ,∆) | Kiφ ∈ Γ iff Kiφ ∈ ∆ for all φ}

• The valuation function V is defined at state Γ as follows:

– PΓ := {p ∈ P | p ∈ Γ}
– fΓ(p) := (Np, Np,∅) using the unique Np from the N-property
– C+

Γ := {(p, q) | p = q ∈ Γ}
– C−Γ := {(p, q) | p 6= q ∈ Γ}

Note that canonical models are guessing game models according to Definition 44. In
particular, the defined relations are equivalence relations and the positive and negative
constraint sets are consistent with each other.
Truth Lemma: For every state Γ in a canonical model MΘ and every command-free
formula φ we have φ ∈ Γ iffMΘ,Γ � φ.
Proof sketch. By induction on complexity of φ. Easy cases are >, p, ¬φ and φ ∧ ψ. For
the cases of p = N and p = q, note that by the N-property above for each state Γ in a
canonical model there is exactly one agreeing assignment which will satisfy all the equality
statements in Γ. Finally, Kiφ is taken care of by the definition of Ri and Gφ by the second
condition in the definition of W which ensures that all states agree on global truth.

Now, to show completeness by contraposition, take any φ ∈ LGG such that 6` φ. As
GG includes all reduction axioms, there is a φ′ ∈ L∗GG such that ` φ ↔ φ′ and thus
6` φ′. Therefore {¬φ′} is consistent and by the Lindenbaum Lemma there is a maximally
consistent set Γ such that ¬φ′ ∈ Γ. Consider the canonical model MΘ. Then by the
Truth Lemma we have thatMΘ,Γ � ¬φ′, henceMΘ,Γ 6� φ′. By Theorem 56 all reduction
axioms are valid, hence we also haveMΘ,Γ 6� φ. Therefore, 6� φ.
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2.5 Implementation

In this section we will implement a Haskell model checker for the presented logic of guessing
games. We first define models and formulas as data types and then translate the semantics
into Haskell functions. Our program can update models with the commands described
above and evaluate formulas on them. Furthermore, we implement a formula rewriting
algorithm based on the reduction schemes given in Theorem 56.
At the end of the section we also provide a visualization for models and formulas – already
the figures of Kripke frames above were generated automatically with this implementation.

10 module GG where
11 -- from ghc:
12 import Data.List
13 -- local files:
14 import REL
15 import KRIPKEVIS

2.5.1 Agents, Propositions and Models

Agents are represented as integers, marked with Ag.

23 data Agent = Ag Integer deriving (Eq ,Ord)
24 jan ,gaia ,rosa :: Agent
25 jan = Ag 0
26 gaia = Ag 1
27 rosa = Ag 2
28

29 instance Enum Agent where
30 fromEnum = (\(Ag n) -> fromIntegral n)
31 toEnum = (\n -> Ag (fromIntegral n))
32

33 instance Show Agent where
34 show (Ag 0) = "Jan"
35 show (Ag 1) = "Gaia"
36 show (Ag 2) = "Rosa"
37 show (Ag n) = "Ag "++( show n)

Also propositions are integers but prefixed with P.

43 data Prp = P Integer deriving (Eq,Ord)
44

45 instance Show Prp where
46 show (P 0) = "p";
47 show (P n) = "p "++( show n);
48

49 prpIndex :: Prp -> Integer
50 prpIndex (P k) = k

The following code lines define states as integers, partitions of them, registers, constraints,
valuations and finally our guessing game models.

56 type State = Integer
57

58 type Partition = [[State]]
59

60 type Register = (Integer ,Integer ,[ Integer ])
61

62 fullregister :: Register
63 fullregister = (1 ,10,[])
64

65 without :: Register -> Integer -> Register
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66 without (low ,high ,excl) n = (low ,high ,nub (n:excl))
67

68 type Constraint = (Prp ,Prp)
69

70 type Valuation = ([Prp],[(Prp ,Register)],[ Constraint ],[ Constraint ])
71

72 data GuessM = Mo
73 [State]
74 [(Agent ,Partition)]
75 [(State ,Valuation)]
76 State
77 deriving (Eq)
78

79 instance Show GuessM where
80 show (Mo sts rel val cur) = "(Mo \n "
81 ++ show sts ++ "\n "
82 ++ show rel ++ "\n "
83 ++ show val ++ "\n "
84 ++ show cur ++ "\n )"

The function m0for generates the blissful ignorance model for a given set of agents.

89 m0for :: [Agent] -> GuessM
90 m0for ags = (Mo
91 [0]
92 [(a ,[[0]]) | a <- ags]
93 [ (0,([] ,[],[],[] )) ]
94 0
95 )

The following are helper functions which provide easy access to certain properties of the
model at the current or another given state.

101 agents :: GuessM -> [Agent]
102 agents (Mo _ rel _ _) = map fst rel
103 states :: GuessM -> [State]
104 states (Mo s _ _ _) = s
105 reachable :: GuessM -> [State]
106 reachable model = nub $ concat $ map (reachableBy model) (agents model)
107 reachableBy :: GuessM -> Agent -> [State]
108 reachableBy (Mo _ rel _ cur) agent
109 = head $ filter (\set -> elem cur set) (apply rel agent)
110 reachableByFrom :: GuessM -> Agent -> State -> [State]
111 reachableByFrom (Mo _ rel _ _) agent state
112 = head $ filter (\set -> elem state set) (apply rel agent)
113 reachableFrom :: GuessM -> State -> [State]
114 reachableFrom model state
115 = nub $ concat $ map (\a -> reachableByFrom model a state) (agents model)
116 size :: GuessM -> Int
117 size (Mo sts _ _ _) = length sts
118 facts :: GuessM -> [Prp]
119 facts (Mo _ _ val cur) = fst4 (apply val cur)
120 factsAt :: GuessM -> State -> [Prp]
121 factsAt (Mo _ _ val _) state = fst4 (apply val state)
122 registers :: GuessM -> [(Prp ,Register)]
123 registers (Mo _ _ val cur) = snd4 (apply val cur)
124 registersAt :: GuessM -> State -> [(Prp ,Register)]
125 registersAt (Mo _ _ val _) state = snd4 (apply val state)
126 posConstraints :: GuessM -> [Constraint]
127 posConstraints (Mo _ _ val cur) = trd4 (apply val cur)
128 posConstraintsAt :: GuessM -> State -> [Constraint]
129 posConstraintsAt (Mo _ _ val _) state = trd4 (apply val state)
130 negConstraints :: GuessM -> [Constraint]
131 negConstraints (Mo _ _ val cur) = fth4 (apply val cur)
132 negConstraintsAt :: GuessM -> State -> [Constraint]
133 negConstraintsAt (Mo _ _ val _) state = fth4 (apply val state)
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2.5.2 Formulas, Expressions and Commands

We now implement the three different layers of the language LGG according to definition
43: Formulas, commands and expressions.

141 data Form = Top | PrpF Prp | Equal Prp Exp
142 | Neg Form | Conj [Form]
143 | K Agent Form | G Form | Com Com Form
144 deriving (Eq ,Ord ,Show)
145

146 data Com = AnnounceEqual Prp Exp
147 | AnnounceNotEqual Prp Exp
148 | Create Prp Agent Integer
149 | Com :- Com
150 deriving (Eq ,Ord ,Show)
151

152 data Exp = PrpE Prp | Nmbr Integer
153 deriving (Eq ,Ord ,Show)

The following functions define disjunctions, implications and boxes as abbreviations.
Implementing these connectives as abbreviations and not as primitives is preferable
because it also means that we do not have to implement separate semantics for them. As
mentioned earlier (see p. 4) this only works because our basis is classical logic.

161 bot :: Form
162 bot = Neg Top
163

164 disj :: [Form] -> Form
165 disj list = Neg $ Conj [ Neg d | d <- list ]
166

167 implies :: Form -> Form -> Form
168 implies a b = disj [Neg a, b]
169

170 box :: Com -> Form -> Form
171 box com form = Neg (Com com (Neg form))

The following helper functions return the set of propositions occurring in a formula,
expression or command, respectively.

177 propsInForm :: Form -> [Prp]
178 propsInForm Top = []
179 propsInForm (PrpF aprop) = [aprop]
180 propsInForm (Equal p e) = nub $ [p] ++ propsInExp e
181 propsInForm (Neg formula) = propsInForm formula
182 propsInForm (Conj formset) = nub $ concat (map propsInForm formset)
183 propsInForm (K _ formula) = propsInForm formula
184 propsInForm (G formula) = propsInForm formula
185 propsInForm (Com c formula) = nub $ (propsInForm formula) ++ (propsInCom c)
186

187 propsInExp :: Exp -> [Prp]
188 propsInExp (PrpE aprop) = [aprop]
189 propsInExp (Nmbr _) = []
190

191 propsInCom :: Com -> [Prp]
192 propsInCom (Create p _ _) = [p]
193 propsInCom (AnnounceEqual p e) = nub $ [p] ++ propsInExp e
194 propsInCom (AnnounceNotEqual p e) = nub $ [p] ++ propsInExp e
195 propsInCom (com1 :- com2) = nub $ propsInCom com1 ++ propsInCom com2

2.5.3 Assignments, Evaluating expressions

This code defines what assignments are, how we evaluate expressions and when an
assignment is consistent with given constraint sets.
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203 type Assignment = [(Prp ,Integer)]
204

205 evalEAss :: Assignment -> Exp -> Integer
206 evalEAss _ (Nmbr n) = n
207 evalEAss ass (PrpE p) = apply ass p
208

209 consistent :: [Constraint] -> [Constraint] -> Assignment -> Bool
210 consistent pcs ncs ass = and [all equal pcs , all (not.equal) ncs]
211 where
212 equal (p1,p2) = ( (apply ass p1) == (apply ass p2) )

Furthermore, we need a way to create assignments. We generate all assignments agreeing
with the actual world in a given model in the loop function called aALoop.

219 allAss :: GuessM -> [Assignment]
220 allAss model = filter (consistent pcs ncs) (aALoop [] (registers model))
221 where
222 pcs = posConstraints model
223 ncs = negConstraints model
224

225 aALoop :: [ Assignment ] -> [ (Prp ,Register) ] -> [ Assignment ]
226 aALoop [] [] = [ [] ]
227 aALoop done [] = done
228 aALoop [] (x:xs) = aALoop [ [ ((fst x),v) ] | v <- reg2lst (snd x) ] xs
229 aALoop done (x:xs) = aALoop [ (((fst x),v):o) | v <- reg2lst (snd x), o <- done ] xs
230

231 reg2lst :: Register -> [Integer]
232 reg2lst (low ,high ,excl) = foldr delete [low..high] excl

At most times we will not need all different complete assignments but only care about which
values they assign to certain variables. The following function takes a set of propositions
as an extra argument and generates partial assignments.

238 allRelevantAss :: GuessM -> [Prp] -> [Assignment]
239 allRelevantAss model props =
240 filter (consistent pcs ncs) (aALoop [] (restrict (registers model) relprops))
241 where
242 relprops = nub $ props ++ (\l -> (map fst l)++(map snd l)) (pcs++ncs)
243 pcs = posConstraints model
244 ncs = negConstraints model
245

246 restrict :: Eq a => [(a,b)] -> [a] -> [(a,b)]
247 restrict rel domain = filter (\pair -> elem (fst pair) domain) rel

The function allRelevantAss could be further optimized by first computing a set of
relevant constraints, namely those which are directly or transitively related to the given
set of propositions. The additional propositions that are relevant could then be obtained
from this possibly smaller set of constraints.
However, one should keep in mind that this computation will also take its resources and
thus overall there might be no gain or even a loss of efficiency. We therefore do not
implement this alternative for now.

2.5.4 Evaluating Formulas

Evaluating formulas with regard to assignments

259 evalAss :: GuessM -> Assignment -> Form -> Bool
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263 evalAss model _ (PrpF p) = (elem p (facts model))
264

265 evalAss _ ass (Equal p e) = (a == b)
266 where a = evalEAss ass (PrpE p)
267 b = evalEAss ass e
268

269 evalAss _ _ Top = True
270 evalAss model ass (Neg f) = not (evalAss model ass f)
271 evalAss model ass (Conj fs) = and (map (evalAss model ass) fs)
272

273 evalAss model _ (G f) = all (\x -> x == Just True) set
274 where set = map (\s -> evalAt model s f) (states model)
275

276 evalAss model _ (K agent f) = all (\x -> x == Just True) set
277 where set = map (\s -> evalAt model s f) (reachableBy model agent)

The next lines implement formulas with commands. It is important to see that our
implementation reflects diamonds and not boxes for the dynamic modalities. Even
stronger, we let the program fail and throw a Haskell exception if the action cannot be
performed or leads to a contradictory actual world (e.g. with no consistent assignments).
This means that the model checker will not make a formula beginning with a failing
command false but instead refuse to continue.
Our motivation for this design choice is that we mainly want to check that protocols lead
to certain results and not whether they can run at all. In all our applications we will run
the protocols only on models where the commands succeed.

288 evalAss model ass (Com com form) =
289 if (assSet /= [])
290 then and results
291 else error ("No compatible assignments!")
292 where
293 newmodel = update model com
294 assSet = filter (subs ass) (allRelevantAss newmodel props)
295 props = nub $ propsInCom com ++ propsInForm form
296 chkFct = (\ newass -> evalAss (newmodel) newass form)
297 results = map chkFct assSet
298 subs a b = all (\x -> (apply a x == apply b x)) (map fst a)

Evaluating formulas at the world level

In principle, on the level of a world we could evaluate all formulas which do not include
statements about expressions without referring to assignment functions. But this would
lead to strange effects, for example the law of excluded middle would not hold any longer
as the following example shows: Suppose we have a sentence φ which is true for some
assignments but false for others. Then φ and its negation would be undefined on the world
level. If we now evaluated a disjunction only on this level, also φ∨¬φ would be undefined
which we clearly do not want. Therefore, to implement Definition 53 also the connectives
which are seemingly assignment-independent have to be evaluated with respect to a certain
assignment function.
The evaluation of formulas on the world level first generates all assignments and then
evaluates the formula with respect to these. Note that we cannot simply use and on the
set of results because this would return False for the case that we have both True and
False in the set results.
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Furthermore, to speed up the evaluation we only consider partial assignments for the
propositions which occur in the formula that is being checked.

316 eval :: GuessM -> Form -> Maybe Bool
317 eval model formula =
318 if (and results)
319 then
320 Just True
321 else
322 if (and $ map not results)
323 then Just False
324 else Nothing
325 where
326 results = [ evalAss model ass formula | ass <- assSet ]
327 assSet = allRelevantAss model (propsInForm formula)
328

329 evalAt :: GuessM -> State -> Form -> Maybe Bool
330 evalAt (Mo sts rel val _) newcur form = eval (Mo sts rel val newcur) form

While our implementation yields a three-valued logic, reflected by the data type Maybe
Bool, it still preserves the law of excluded middle for formulas with undetermined variables,
as the example in Section 4.1.2 shows.

2.5.5 Product Update

The following three type definitions ValChange, ActionS and Action together with the
function productUpdate implement action structures with factual change and product
update as in Definitions 23 and 24 respectively.

340 type ValChange = Valuation -> Valuation
341

342 type ActionS = ( [State], [(State ,Form)], [(State ,ValChange)], [(Agent ,Partition)] )
343

344 type Action = ( ActionS , State )
345

346 productUpdate :: GuessM -> Action -> GuessM
347 productUpdate model@(Mo oldstates oldrel oldval oldcur) (actionStructure ,faction) =
348 let
349 (actions , tests , changes , actrel) = actionStructure
350 startcount = (maximum oldstates) + 1
351 newstatesTriples = concat [ copiesOf (s,a) | s <- oldstates , a <- actions ]
352 copiesOf (s,a) = if (evalAt model s (apply tests a) == Just True)
353 then [ (s,a,(a*startcount + s)) ]
354 else [ ]
355 newstates = map trd3 newstatesTriples
356 newValFor (s,a,t) = (t, (apply changes a) (apply oldval s))
357 newval = map newValFor newstatesTriples
358 listFor a = cartProd (apply oldrel a) (apply actrel a)
359 newPartsFor a = [ cartProd as bs | (as,bs) <- listFor a ]
360 translSingle pair = map trd3 $ take 1 (copiesOf (pair))
361 transEqClass list = concat $ map translSingle list
362 nTransPartsFor a = map transEqClass (newPartsFor a)
363 newrel = [ (a, nTransPartsFor a) | a <- (agents model) ]
364 newcur = trd3 $ head $ copiesOf (oldcur ,faction)
365 factTest = apply tests faction
366 in
367 if (sort $ nub (agents model)) == (sort $ nub (map fst actrel))
368 then if (eval model factTest == Just True)
369 then (Mo newstates newrel newval newcur)
370 else error ("The actual precondition ’" ++ (show factTest) ++ "’ is false!")
371 else error "Agent sets of model and actionStructure are not the same!"

Note that we do not run any optimization on the result. We include minimizing under
bisimulation and generated submodels in our later implementation of ECL.
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2.5.6 Commands

Every command is evaluated on a model and the result is again a model. Using the
implementation of productUpdate we can easily give definitions for our commands. The
following implements !p = E as given in Definition 50 and !p 6= E as in Definition 51.

384 update :: GuessM -> Com -> GuessM
385

386 update model (AnnounceEqual p (Nmbr n)) = productUpdate model action
387 where
388 action = ( ( [0],
389 [(0, Equal p (Nmbr n))],
390 [(0,id )],
391 actrel ), 0 )
392 actrel = [ (i ,[[0]]) | i <- (agents model) ]
393

394 update model (AnnounceEqual p (PrpE q)) = productUpdate model action
395 where
396 action = ( ( [0,1],
397 [(0,Conj[PrpF p,PrpF q,Equal p (PrpE q)]) ,(1,Conj[Neg (PrpF p),Neg (PrpF q)])],
398 [(0,id ) ,(1,addPC )],
399 actrel ), 0 )
400 addPC = \(fcts ,regs ,pc ,nc) -> (fcts ,regs ,(p,q):pc ,nc)
401 actrel = [ (i,[[0 ,1]]) | i <- (agents model) ]
402

403 update model (AnnounceNotEqual p (Nmbr n)) = productUpdate model action
404 where
405 action = ( ( [0,1],
406 [(0,Conj [PrpF p, Neg $ Equal p (Nmbr n)]), (1,Neg (PrpF p))],
407 [(0,id ), (1,exclN )],
408 actrel ), 0 )
409 exclN = \(fcts , regs , nc, pc) -> (fcts , map change regs , nc , pc)
410 change (prp ,reg) = if (prp == p) then (prp ,without reg n) else (prp ,reg)
411 actrel = [ (i,[[0 ,1]]) | i <- (agents model) ]
412

413 update model (AnnounceNotEqual p (PrpE q)) = productUpdate model action
414 where
415 action = ( ( [0,1],
416 [(0,Conj[PrpF p,PrpF q,Neg$Equal p (PrpE q)]) ,(1,Neg(Conj[PrpF p,PrpF q]))],
417 [(0,id ) ,(1,addNC )],
418 actrel ), 0 )
419 addNC = \(fcts , regs , pc, nc) -> (fcts , regs , pc , ((p,q):nc))
420 actrel = [ (i,[[0 ,1]]) | i <- (agents model) ]

It remains to define register creation. Note that both actions in the action model have the
same precondition, namely that the used proposition is almost-globally false.

426 update model (Create prp agent n) = productUpdate model action
427 where
428 pre = G (Neg (PrpF prp))
429 action = ( ( [0,1], [ (0, pre ), (1, pre ) ],
430 [ (0, addFct), (1, addReg) ], actrel ), 0 )
431 addFct = \(fcts ,reg ,pc ,nc) -> (prp:fcts ,(prp ,(n, n,[ ])):reg ,pc,nc)
432 addReg = \(fcts ,reg ,pc ,nc) -> ( fcts ,(prp ,(1,10,[n])):reg ,pc ,nc)
433 others = delete agent (agents model)
434 actrel = [ (agent ,[[0] ,[1]]) ] ++ [ (i,[[0 ,1]]) | i <- others ]

Finally, we implement the command ; which allows us to write longer chains of commands
as one instead of repeating update over and over again.

440 update model (comA :- comB) = update (update model comA) comB
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2.5.7 Rewriting to Command-free Formulas

To automatically rewrite formulas to equivalent but command-free formulas we now
implement all reduction schemes from Theorem 56. The function rew performs one
replacement step and pushes the commands further inside. First, formulas which do not
start with a command do not have to be rewritten, but their subformulas should be:

449 rew :: Form -> Form
450 rew (Top) = Top
451 rew (PrpF q) = PrpF q
452 rew (Equal p e) = Equal p e
453 rew (Neg formula) = Neg (rew formula)
454 rew (Conj forms) = Conj (map rew forms)
455 rew (K i formula) = K i (rew formula)
456 rew (G formula) = G (rew formula)

For positive Announcements we use P0 to P6. Unfortunately, the scheme P5 for formulas
of the shape 〈!p = E〉K̂iφ can not be implemented easily because the epistemic diamond
is not a primitive in our formula data type. We therefore use an alternative reduction
scheme which uses the command diamond and the epistemic box and is of the same shape
as P6. While this mixed axiom is not equivalent to P5 in general, it is still valid in our S5
setting and the proof is almost the same as the one for P6 given on page 28.

464 rew (Com (AnnounceEqual p e) Top) = Equal p e
465 rew (Com (AnnounceEqual p e) (PrpF q)) = Conj [Equal p e, PrpF q]
466 rew (Com (AnnounceEqual _ _) (Equal q f)) = Equal q f
467 rew (Com (AnnounceEqual p e) (Neg form)) =
468 Conj [Equal p e, Neg $ (Com (AnnounceEqual p e) form)]
469 rew (Com (AnnounceEqual p e) (Conj forms)) =
470 Conj (map (\f -> (Com (AnnounceEqual p e) f)) forms)
471 rew (Com (AnnounceEqual p e) (K i form)) =
472 Conj [Equal p e, K i (implies (Equal p e) (Com (AnnounceEqual p e) form))]
473 rew (Com (AnnounceEqual p e) (G form)) =
474 Conj [Equal p e, G (implies (Equal p e) (Com (AnnounceEqual p e) form))]

For negative announcements we use N0 to N6. Again note that the fifth line implements a
mixed reduction scheme and not the original N5 from above.

479 rew (Com (AnnounceNotEqual p e) Top) = Neg (Equal p e)
480 rew (Com (AnnounceNotEqual p e) (PrpF q)) = Conj [Neg (Equal p e), PrpF q]
481 rew (Com (AnnounceNotEqual p e) (Equal q f)) = Conj [Neg (Equal p e), Equal q f]
482 rew (Com (AnnounceNotEqual p e) (Neg f)) =
483 Conj [Neg (Equal p e), Neg (Com (AnnounceNotEqual p e) f)]
484 rew (Com (AnnounceNotEqual p e) (Conj fs)) =
485 Conj (map (\f -> (Com (AnnounceNotEqual p e) f)) fs)
486 rew (Com (AnnounceNotEqual p e) (K i f)) =
487 Conj [Neg (Equal p e), K i (implies (Neg (Equal p e)) (Com (AnnounceNotEqual p e) f)

)]
488 rew (Com (AnnounceNotEqual p e) (G f)) =
489 Conj [Neg (Equal p e), G (implies (Neg (Equal p e)) (Com (AnnounceNotEqual p e) f))]

Finally, the rewriting axioms R0 to R8 deal with register creation. Particularly interesting
are the different cases of R3:

495 rew (Com (Create p _ _) Top ) = G (Neg (PrpF p))
496 rew (Com (Create p _ _) (PrpF q) ) =
497 if (p==q)
498 then G (Neg (PrpF p))
499 else Conj [G (Neg (PrpF p)), PrpF q]
500 rew (Com (Create p _ n) (Equal q (Nmbr m))) =
501 if (p==q)
502 then
503 if (n==m)
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504 then G (Neg (PrpF p)) -- R3a1
505 else bot -- R3a1 ’
506 else
507 Conj [G (Neg (PrpF p)), Equal q (Nmbr m)] -- R3a2
508 rew (Com (Create p _ n) (Equal q (PrpE r))) =
509 if (p==q)
510 then
511 if (r==p)
512 then G (Neg (PrpF p)) -- R3b1
513 else Conj [G (Neg (PrpF p)), Equal q (Nmbr n)] -- R3b1 ’
514 else
515 if (r==p)
516 then Conj [G (Neg (PrpF p)), Equal q (Nmbr n)] -- R3b2
517 else Conj [G (Neg (PrpF p)), Equal q (PrpE r)] -- R3b2 ’
518 rew (Com (Create p i n) (Neg form)) =
519 Conj [G (Neg (PrpF p)), Neg (Com (Create p i n) form)]
520 rew (Com (Create p i n) (Conj forms)) =
521 Conj (map (\f -> (Com (Create p i n) f)) forms)
522 rew (Com (Create p i n) (K j form)) =
523 if (i==j)
524 then Conj [G (Neg (PrpF p)), K i (implies (G (Neg (PrpF p))) (Com (Create p i n)

form))]
525 else Conj [G (Neg (PrpF p)), K j form]
526 rew (Com (Create p i n) (G form)) = G (Com (Create p i n) form)

Now that we have a function on formulas which performs one step of rewriting, we know
that the command-free formulas are exactly the fixed points of this function. Luckily, this
observation can directly be translated into Haskell. A single-line definition suffices to get
the least fixed point under rew.

533 cmdFree :: Form -> Form
534 cmdFree = lfp rew

Example 61. As a short example what the function cmdFree does, consider the formula
which we also used in Example 58, namely [p

a← 5]Ka(p = 5).

*GGEXAMPLE > cmdFree (box (Create (P 0) jan 5) (K jan (Equal (P 0) (Nmbr 5))))
Neg (Conj [G (Neg (PrpF p)),Neg (Conj [G (Neg (PrpF p)),K Jan (Neg (Conj [Neg (Neg (G

(Neg (PrpF p)))),Neg (G (Neg (PrpF p)))]))])])

In a more human-readable form (obtained by using ggTexForm, see p. 41), and after
removing unnecessary brackets and the double negation, this is the formula:

¬(G¬p ∧ ¬(G¬p ∧KJan(¬(G¬p ∧ ¬(G¬p)))))

Remember that φ→ ψ is just an abbreviation for ¬(φ ∧ ¬ψ). We can thus see that this
formula is indeed equivalent to the one which we had produced manually:

¬(G¬p ∧ ¬(G¬p ∧KJan(G¬p→ G¬p)))
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2.5.8 Visualization

In order to use the functions provided by KRIPKEVIS which is listed in Appendix 5 we
first define functions that take propositions, valuations and the global information about
models as input and return a string that can be used in LATEX source code. Note that the
constants begintab, newline and endtab are already defined in KRIPKEVIS.

574 ggShowProp :: Prp -> String
575 ggShowProp prp = replace (replace (show prp) " 0" "") " " "_"
576

577 ggShowCnstr :: [Constraint] -> [Constraint] -> String
578 ggShowCnstr [] [] = ""
579 ggShowCnstr pcs ncs = sepBy (positives ++ negatives) " \\text{ and } "
580 where
581 positives = map (niceCon " = ") pcs
582 negatives = map (niceCon " \\neq ") ncs
583 niceCon b (pA ,pB) = " $ " ++ (ggShowProp pA) ++ b ++ (ggShowProp pB) ++ " $ "
584

585 ggShowVal :: Valuation -> String
586 ggShowVal (fcts ,reg ,pcs ,ncs) = sepBy [niceprops ,nicereg ,( ggShowCnstr pcs ncs)] newline
587 where
588 nicereg = sepBy (map niceregSingle reg) newline
589 niceregSingle (p,(n,m,x)) = if (n /= m)
590 then "$" ++ (show n) ++ "\\leq " ++ (ggShowProp p) ++ "\\leq " ++ (show m) ++ "

$ and $ "++( ggShowProp p)++"\\not\\in \\{" ++ (sepBy (map show (sort x)) ","
) ++ "\\} $"

591 else " $ " ++ (ggShowProp p) ++ "=" ++ (show n) ++ " $ "
592 niceprops = " $ " ++ sepBy (map ggShowProp fcts) "," ++ " $ "
593

594 ggInfo :: GuessM -> String
595 ggInfo m = begintab ++ "Agents: " ++ (sepBy (map show (agents m)) ", ") ++ endtab

Now we can define our own visualization functions which write LATEX code to a file or
directly compile it and open the result. For details see the listing of KRIPKEVIS in the
appendix on page 91.

601 ggTexModel :: GuessM -> String -> IO String
602 ggTexModel model@(Mo sts rel val cur) =
603 texModel show show ggShowVal (ggInfo model) (VisModel sts rel val cur)
604

605 ggDispModel :: GuessM -> IO String
606 ggDispModel model@(Mo sts rel val cur) =
607 dispModel show show ggShowVal (ggInfo model) (VisModel sts rel val cur)
608

609 ggTexForm :: Form -> String
610 ggTexForm Top = "\\top"
611 ggTexForm (PrpF p) = show p
612 ggTexForm (Equal p e) = show p ++ "=" ++ (ggTexExp e)
613 ggTexForm (Neg f) = " \\lnot ( " ++ ggTexForm f ++ " ) "
614 ggTexForm (Conj forms) = "(" ++ (sepBy (map ggTexForm forms) " \\land ") ++ ")"
615 ggTexForm (K i f) = " K_{\\ text{" ++ show i ++ "}} " ++ "(" ++ ggTexForm f ++ ")"
616 ggTexForm (G f) = " G " ++ ggTexForm f
617 ggTexForm (Com c f) = "\\ langle " ++ (ggTexCom c) ++ "\\ rangle " ++ ggTexForm f
618

619 ggTexExp :: Exp -> String
620 ggTexExp (Nmbr n) = show n
621 ggTexExp (PrpE p) = show p
622

623 ggTexCom :: Com -> String
624 ggTexCom (Create p i n) = " " ++ show p ++ " \\ stackrel{"++( show i)++"}{\\

leftarrow} " ++ show n ++ " "
625 ggTexCom (AnnounceEqual p e) = " ! " ++ show p ++ " = " ++ (ggTexExp e) ++ " "
626 ggTexCom (AnnounceNotEqual p e) = " ! " ++ show p ++ " \neq " ++ (ggTexExp e) ++ " "
627 ggTexCom (com1 :- com2) = ggTexCom com1 ++ " ; " ++ ggTexCom com2
628

629 ggDispForm :: Form -> IO String
630 ggDispForm form = dispTexCode (" \\[ " ++ (ggTexForm form) ++ " \\] ")
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2.5.9 A Full Example

To conclude our implementation of GG we will present one complete round of the game
and visualize all the stages of the game. To allow for easy modification, all code of this
subsection is placed in a separate module.

8 module GGEXAMPLE
9 where

10 import GG

0. We start with the blissful-ignorance model m0 for Jan, Gaia and Rosa.

21 m0, m1 , m2 , m3 :: GuessM
22 m0 = m0for [jan ,gaia ,rosa]

Agents: Jan, Gaia, Rosa

0

1. Our first update creates a register p for Jan with his secret number 6.

31 m1 = update m0 (Create (P 0) jan 6)

Agents: Jan, Gaia, Rosa

1

1 ≤ p ≤ 10 and p 6∈ {6}

0
p

p = 6

Gaia

Rosa

We can check that Jan knows p but Gaia and Rosa do not:

*GGEXAMPLE > eval m1 (K jan (PrpF (P 0)))
True
*GGEXAMPLE > eval m1 (K gaia (PrpF (P 0)))
False
*GGEXAMPLE > eval m1 (K rosa (PrpF (P 0)))
False

Concerning meta-knowledge we can already observe a subtlety. Gaia does not know
that Jan knows that p, but she knows that he nows whether p which we can formalize
as φ = KJanp ∨KJan¬p.

*GGEXAMPLE > eval m1 (K rosa (K jan (PrpF (P 0))))
False
*GGEXAMPLE > phi <- return $ disj [K jan (PrpF (P 0)), K jan (Neg (PrpF (P 0)))]
*GGEXAMPLE > eval m1 (K rosa phi)
True
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2. Suppose Rosa guesses 10, but it is wrong. Hence p 6= 10 is announced.

59 m2 = update m1 (AnnounceNotEqual (P 0) (Nmbr 10) )

Agents: Jan, Gaia, Rosa

3

1 ≤ p ≤ 10 and p 6∈ {6, 10}

0
p

p = 6

Gaia

Rosa

It is easy to check that now everyone knows that p 6= 10.

*GGEXAMPLE > map (\i -> eval m2 (K i (Neg$Equal (P 0) (Nmbr 10)))) (agents m3)
[Just True ,Just True ,Just True]

3. Next we consider the moment right before Gaia guesses 5. Her guess is saved in the
new register p1 and we get a model with four possible worlds. We can see that Rosa
knows the least because she can not distinguish any of the worlds from another.

75 m3 = update m2 (Create (P 1) gaia 5)

Agents: Jan, Gaia, Rosa

7

1 ≤ p1 ≤ 10 and p1 6∈ {5}
1 ≤ p ≤ 10 and p 6∈ {6, 10}

4
p

1 ≤ p1 ≤ 10 and p1 6∈ {5}
p = 6

3
p1

p1 = 5
1 ≤ p ≤ 10 and p 6∈ {6, 10}

0
p1, p
p1 = 5
p = 6

Jan

Rosa

Rosa

Gaia

Rosa

Gaia

Rosa

Rosa

Jan

Rosa

Now it is the case that p 6= p1 but nobody knows.

*GGEXAMPLE > eval m3 (Neg $ Equal (P 0) (PrpE (P 1)))
Just True
*GGEXAMPLE > map (\i -> eval m3 (K i (Neg$Equal (P 0) (PrpE (P 1))))) (agents m3)
[Just False ,Just False ,Just False]
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4. Now suppose someone else announces truthfully that Gaia’s guess will be wrong.
Note that for simplicity we do not include this extra agent in our model.

95 m4 = update m3 (AnnounceNotEqual (P 0) (PrpE (P 1) ) )

Agents: Jan, Gaia, Rosa

15

1 ≤ p1 ≤ 10 and p1 6∈ {5}
1 ≤ p ≤ 10 and p 6∈ {6, 10}

p 6= p1

12
p

1 ≤ p1 ≤ 10 and p1 6∈ {5}
p = 6
p 6= p1

11
p1

p1 = 5
1 ≤ p ≤ 10 and p 6∈ {6, 10}

p 6= p1

0
p1, p
p1 = 5
p = 6

Jan

Rosa

Rosa

Rosa

Gaia

Rosa

Jan

Rosa

Gaia

Rosa

Note that it could not have been announced that the guess will be right, because
that is false in the previous model:

*GGEXAMPLE > update m3 (AnnounceEqual (P 0) (PrpE (P 1) ) )
*** Exception: The actual precondition ’Conj [PrpF p,PrpF p 1,Equal p (PrpE p 1)

]’ is false!

5. When Gaias guess is announced we get back to a model with two possible worlds.

110 m5 = update m4 (AnnounceEqual (P 1) (Nmbr 5))

Agents: Jan, Gaia, Rosa

11
p1

p1 = 5
1 ≤ p ≤ 10 and p 6∈ {6, 10}

p 6= p1

0
p1, p
p1 = 5
p = 6

Gaia

Rosa

In this model, everyone knows that p1 is not the right guess, i.e. not equal to p.

*GGEXAMPLE > map (\i -> eval m5 (K i (Neg$Equal (P 0) (PrpE (P 1))))) (agents m5)
[Just True ,Just True ,Just True]
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6. Finally, suppose Rosa makes a correct guess and thereby ends the game. This means
that p = 6 is announced, resulting in a single world.

125 m6 = update m5 (AnnounceEqual (P 0) (Nmbr 6))

Agents: Jan, Gaia, Rosa

0
p1, p
p1 = 5
p = 6

The following code generates all drawings used in this subsection.

133 main :: IO ()
134 main = do
135 ignore <- ggTexModel m0 "m0"
136 putStrLn ignore
137 ignore <- ggTexModel m1 "m1"
138 putStrLn ignore
139 ignore <- ggTexModel m2 "m2"
140 putStrLn ignore
141 ignore <- ggTexModel m3 "m3"
142 putStrLn ignore
143 ignore <- ggTexModel m4 "m4"
144 putStrLn ignore
145 ignore <- ggTexModel m5 "m5"
146 putStrLn ignore
147 ignore <- ggTexModel m6 "m6"
148 putStrLn ignore
149 putStrLn "Done."
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Chapter 3

Epistemic Crypto Logic

The guessing games from the previous chapter elucidate which situations we can represent
using register models. But while GG allows us to analyze games and puzzles very nicely,
we can not yet represent complex protocols as they occur in cryptography – both our
language and our models can not express enough communication and computation.
Thus, in this chapter we will elaborate on the shortcomings and define a new system
called ECL (short for Epistemic Crypto Logic) in which we can be more specific about
communication that is taking place and also allow our agents to do some computation on
the values of registers.

3.1 Desiderata

3.1.1 Communication: Local Listener Sets

In models for LGG the equality and inequality constraints are local. Hence, in principle we
already can model a situation where one agent knows whether two variables are different,
and another does not, while none of the two knows the actual value of any of the two
variables. But such a situation would have been unreachable in the sense that no sequence
of commands available in LGG describes an update that yields this model. This is because
in GG announcements of equality or inequality always reach all agents likewise. There is
no way to send a message only to specific agents, which is an essential building block for
cryptographic protocols. To model situations where announcements do not reach everyone
(for example because someone is not paying attention or a message is sent via a secret
channel) we will now add a local set of listeners to our valuations.
Channels between agents did not appear in number guessing games, but cryptographic
protocols often describe them explicitly as in “Alice opens a channel to Bob in order to
send him a message...”. To model this precisely one could use local sets of channels which
each are represented as a pair of agents. However, this would only suffice to model honest
one-to-one communication and provide no way to represent eavesdropping situations. One
could then add more structure to bring eavesdropping back into the picture but instead we
can also simplify the models and remove structure, namely by ignoring channels completely.
Our models for LECL contain a local set of listeners which represents who is listening
to whatever is announced by anyone. We can think of all listening agents being in the
same room or - for a more technical analogy - a simple network hub rebroadcasting every
package it receives to all connected clients.
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The main idea is borrowed from [DHLS13]. In our new models for each w ∈ W we get a
valuation that is a tuple (Pw, Lw, fw, C

+
w , C

−
w ) where Lw ⊆ I is the set of listeners at w. The

design choice for a local and not global set of listeners also allows us to model knowledge
about who is listening. We can thus model a well-known situation from cryptography:
Alice and Bob might very well believe that they are communicating privately when in fact
Eve is spying on them. A detailed example is given in Section 4.1.3. In fact local listener
sets are a bit too general and it seems reasonable to add a constraint, namely that all
agents are self-aware about their attention. Every agent should know whether herself is
listening or not.

Definition 62 (Self-Awareness Constraint). We say that a model with local listener sets
Lw for each world w satisfies the self-awareness constraint iff for all agents i and all worlds
v and w such that vRiw we have that i ∈ Lv iff i ∈ Lw.

We also add a new nullary connective Li to the language which expresses that agent i is
listening. The abbreviation LG says that exactly the agents in the set G are listening.
The listener set should also determine what happens when new information is announced.
Hence, we have to give new interpretations to ! p = E and ! p 6= E as they are only received
by the local set of listeners. Basically the modifications described in Definitions 50 and 51
have to be done on copies of the previous worlds. Then we update the knowledge relations
such that all listeners can distinguish the new worlds from their originals but everyone
who was not paying attention confuses them.
The actions Open and Close add and remove agents from the listener set. Despite
not having channels in our models their names were inspired by the usual phrases in
cryptography. We can think of Openi as a call for attention “Hey i, come here and listen!”
and Closei as the order to not listen any more “Okay i, you can go now or shut your ears.”
Two assumptions are crucial to the meaning of these commands: First, we assume that
the agents always follow an order to listen or not listen. Second, if any agent is listening
to announcements already, they will also hear calls for attention, no matter if they are the
recipients, while other agents who are neither listening nor being addressed will not know
who has been added to the listener set. This means that also Open and Close create
copies of worlds and the order of calling for attention is relevant. In general the command
Opena;Openb can lead to a different result than Openb;Opena.
Unfortunately, our interpretations of the communication commands are no longer single
action structures as in Definition 23, because not only the actions have to be filtered by
preconditions but also the relation between them depend on who is listening in the original
model. Therefore, our interpretation of Openi depends on Lw where w is the current
world and is not given by one single action structure.
This might seem worrisome, but our semantics are still well-defined and the implementation
we give in Section 3.6 does what we want. What we have to give up is the easy embedding
into the framework of [BMS98] or [BEK06]. An axiomatization of ECL will thus be more
difficult than the one we gave for GG and we do not provide one here. However, we give
a short argument that essentially our framework is still working with the same kind of
actions.
A solution to fit our logic back into the well-known frameworks is the following syntactic
trick. First, for any G ⊆ I, define the command GOpeni which describes the action of
calling for the attention of i when the current set of listeners is G. This is just Definition
69 with G instead of Lw and the precondition LG. The command will fail whenever the
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set of listeners is not G and any formula of the form 〈GOpeni〉φ will be false. Then we let
Openi :=

⋃
G⊆I GOpeni where

⋃
is the PDL-style union. Alternatively, in order to keep

∪ out of our language we can define 〈Openi〉φ as an abbreviation:

〈Openi〉φ :=
∨
G⊆I

〈GOpeni〉φ

This yields the same truth conditions for 〈Openi〉φ as our definitions in the next section
because 〈α ∪ β〉φ↔ 〈α〉φ ∨ 〈β〉φ is a validity in PDL. Similarly, [α ∪ β]φ↔ [α]φ ∧ [β]φ is
a PDL-validity and transfers to [Openi]:

[Openi]φ↔
∧
G⊆I

[GOpeni]φ

In the same way, we could first define GClosei, G!p = E and G!p 6= E and let their general
variants be the appropriate unions.
Admittedly, this is not very beautiful, but it does the job and saves the claim that our
logic is not more expressive than those presented in [BMS98] and [BEK06]. More elegant
solutions might be obtained by using other existing literature on dynamic updates of
relations, see Section 5.

Example 63 (Sending a Message). Our goal is to encode an act of communication from
one agent to another in the form of “a sends φ to b”. The whole sequence of commands is:

?Kaφ; Openb; !φ; Closeb

We first use ?Kaφ to test whether Kaφ is true in the actual world, because agent a should
only be able to communicate φ to someone if she knows it. Second, Openb ensure that b is
listening. Then the announcement !φ is made. Note that we still only allow announcements
of equality and inequality statements, so φ has to be of the form p = E or p 6= E. Finally,
Closeb removes b from the set of agents that are listening.
We note that, as far as b is concerned, the information φ could come from anywhere, which
means our models provide no authentication. Furthermore, also anyone besides b who is
listening already receives the info, i.e. the communication is not secret.

3.1.2 Computation: Fast Modular Arithmetic

The second direction in which we want to extend the guessing game language is the second
part of cryptographic protocols: Computation. We note that in LGG we can only say that
Jan knows the value of a variable p but not that he knows the value of an expression like
p+ 5 or p+ q. We will now include such statements and also extend our semantics in a
way that we get the consequences one would expect: If Jan knows p then he should also
know the value of p+ 5.
A question which arises now is which calculations we want to allow. Besides keeping the
language small our selection of expressions is motivated from a practical perspective on
cryptography: Which arithmetic operations can be efficiently implemented? What are
reasonable assumptions about the computational power of our agents that will play the
role both of honest parties and adversaries? We only add statements to our language that
capture feasible computation, given by the existing fast algorithms. Concretely, we allow
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primality testing (e.g., the probabilistic Miller-Rabin test [Mil76, Rab80]), co-primality
testing (Euclid’s GCD algorithm) as well as addition, multiplication and exponentiation
modulo (see the example below, and compare [DK02, PP10]).
By leaving out other operations we implicitly import articles of faith from public key
cryptography, that for example factorization, discrete logarithm, etc. are not feasible (see
[KL08, p. 271]).
We can then refine the meaning of “knowing a number” to two different conditions that
can both be checked on Kripke semantics: An agent knows (i) the numbers that have a
unique value in an accessible register, and (ii) the numbers that she can feasibly compute
from numbers she knows. In section 4.2 we will see that this fragment of arithmetic is
already expressive enough for a real-world protocol.

Example 64 (Fast modular exponentiation). The algorithm is based on repeatedly squaring
modulo N . For example x33 mod 5 can be computed by first computing x32 (mod 5) in five
steps by means of repeatedly squaring modulo 5:

x mod N  x2 mod 5 x4 mod 5 . . . x32 mod 5.

and then in one last step x33 mod 5 = (x32 mod 5)× x mod 5.

3.2 Existing Literature
An implementation of model checking for DEL with factual change via substitutions was
done by Floor Sietsma in [Sie07]. It is also written in Haskell and based on the model
checker DEMO by Jan van Eijck which was published in [Eij07]. While our implementation
does not use code from either of the two, it is still very much inspired by this work.
A module which we do import here is EREL from [Eij14]. It was originally made to optimize
DEMO-S5, a separate version of the already mentioned model checker which works on
equivalence relations. As it provides bisimulation minimization for models with any kind
of valuation, we can also employ it for our implementation of ECL.
A similar framework as the one we are presenting here has been studied by Francien
Dechesne and Yanjing Wang in [DW07]. While their framework is also based on DEL
and action structures, it still differs from our system in many aspects. First, instead of
modular arithmetic which we use to describe computation, in Dechesne and Wang’s system
all agents are equipped with “cryptographic reasoning”: The set of messages which an
agent knows is closed under simple derivation rules, namely concatenation, splitting and
applying hash functions. Another limitation of their framework concerns statements about
knowledge:

“By not having several worlds with the same message distribution, we will not
be able to model higher order statements like ‘A does not know that B knows
that A has [the message] m’.”[DW07, p. 8]

In contrast, our models here can be any Kripke structure and in particular they might
include duplicate worlds with different relations. Hence, we can also model situations with
interesting meta-, meta-meta- statements and so on.
In some sense we are directly continuing the work in [DW07] because they state that their
ultimate goal is “to build up a dynamic epistemic framework of security verification with
tool support” and suggest that a “good candidate tool is DEMO”[DW07, p. 12].
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3.3 Syntax
Definition 65 (Register Language for Cryptographic Protocols). Let p range over P, let
N range over N and let i range over a finite set of agents I. The register language for
cryptographic protocols LECL consists of the following three layers which we call formulas,
expressions and commands.

φ ::= > | p | Li | p = E | ¬φ | φ ∧ φ | Kiφ | Gφ | 〈C〉φ | PrimeE | CoprimeEE

C ::= p
i← E | Openi | Closei | !p | !p = N | !p = p | !p 6= N | !p 6= p | ?φ

E ::= p | N | E + E mod E | E × E mod E | EE mod E

Furthermore, we use the same abbreviations ⊥, ∨, →, ↔ and [C] as in Definition 43. For
any G ⊆ I we let LG abbreviate that G are the listeners: LG :=

∧
i∈G Li ∧

∧
i/∈G ¬Li.

3.4 Semantics
Definition 66. (Crypto Models) A crypto model for a finite set of agents I and the set
of propositions P is a tupleM = (W,R, V ) where

• (W,R) is a multi-agent S5 frame for I according to Definition 15,

• V is a valuation function for some Q ⊆ P (the global set of used variables): It
assigns to each world w ∈ W a valuation which is a tuple (Pw, Lw, fw, C

+
w , C

−
w ) where

– Pw ⊆ P (the basic propositions true at w),
– Lw ⊆ I (the agents listening at w) satisfying self-awareness as in Definition 62,
– fw is a function on Q that assigns to each q ∈ Q a triple (n,m,X) with
n,m ∈ N, n ≤ m, X ⊆ N, satisfying two constraints:
(i) whenever q ∈ Pw then for fw(q) = (n,m,X) we have n = m and X = ∅
(ii) whenever p ∈ Pv ∩ Pw for v, w ∈ W then fv(p) = fw(p),

– C+
w is a subset of Q2 (the equality constraints of w)

– C−w is another subset of Q2 (the inequality constraints of w) which is consistent
with C+

w according to Definition 45 above.

The meaning of G will now be given by the reflexive-transitive closure of the union of all
relations. We refer to this relation by R∗ :=

(⋃
i∈I Ri

)∗.
The following definition provides the semantics for +, ×, mod and exponentiation by
importing them from a theory of arithmetic which we take to be given.

Definition 67 (Lifting assignment functions). Given an assignment function h that is
defined on a set of proposition letters Q ⊆ P, we inductively define h′ on the set of all
expressions built out of elements of Q and natural numbers:

h′(E) :=


n if E = n for some n ∈ N
h(p) if E = p for some p ∈ Q

h′(F ) + h′(G) mod h′(H) if E = F +G mod H for some F,G,H
h′(F )× h′(G) mod h′(H) if E = F ×G mod H for some F,G,H
h′(F )h

′(G) mod h′(H) if E = FG mod H for some F,G,H
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Here +, ×, mod and exponentiation each occur as two formally different symbols. Only
on the right side they are symbols from LECL. On the left side they refer to their ordinary
meaning. Because h′ extends h, from now on we will just write h for both.

Definition 68. (Interpretation of LECL in crypto models) We define the satisfaction
relationM, w, h |= φ saying that φ is true at w with regard to h. LetM = (W,R, V ) be
a crypto model, w ∈ W and h an assignment that agrees with w in the sense of Definition
47. Inductively we define for all φ ∈ LECL:

M, w, h |= > always
M, w, h |= p iff p ∈ Pw
M, w, h |= Li iff i ∈ Lw

M, w, h |= p = E iff h(p) = h(E)
M, w, h |= ¬φ iff notM, w, h |= φ

M, w, h |= φ1 ∧ φ2 iff M, w, h |= φ1 andM, w, h |= φ2

M, w, h |= Kiφ iff wRiw
′ implies that for all h′ (w′ :M, w′, h′ |= φ

M, w, h |= Gφ iff wR∗w′ implies that for all h′ (w′ :M, w′, h′ |= φ
M, w, h |= 〈Openi〉φ iff MOpeni , (w, α), h |= φ
M, w, h |= 〈Closei〉φ iff MClosei , (w, α), h |= φ
M, w, h |= 〈! p〉φ iff M, w, h |= p andM!p, (w, α), h |= φ

M, w, h |= 〈! p = E〉φ iff M, w, h |= p = E andM!p=E, (w, α), h |= φ
M, w, h |= 〈! p 6= E〉φ iff M, w, h |= p 6= E andM!p 6=E, (w, α), h |= φ

M, w, h |= 〈p i← N〉φ iff M, w, h |= G¬p andMp
i←N , (w, α), h ∪ {(p,N)} |= φ

M, w, h |= 〈?ψ〉φ iff M, w, h |= ψ ∧ φ
M, w, h |= 〈A1;A2〉φ iff M, w, h |= 〈A1〉〈A2〉φ
M, w, h |= PrimeE iff h(E) is a prime number

M, w, h |= CoprimeE1E2 iff h(E1) and h(E2) are coprime

where the models with superscripts are given by the Definitions 69 and 71.

Note that G is no longer the global modality but the common knowledge operator. This
change is in order to keep the truth of our formulas invariant under bisimulation and
generated submodels – a very useful property for optimizing our model checking algorithms.
It is also one of the reasons why the axiomatization of GG does not directly generalize to
ECL. See Section 5 on how to axiomatize announcements and common knowledge.
As noted in Section 3.1.1 we can no longer define the meaning of communication commands
as one single action structure because we have to refer to the current listener set of the
model in which we are interpreting the command. The following definition therefore
strictly speaking provides schemes for the actions.

Definition 69. (Action Structures for ECL) The updates fromM toMOpeni,MClosei,
M!p=E and M!p6=E are given by the following schemes of action structures with factual
change, depending on the current set of listeners Lw.

(i) Openi is given by ({α, β},R, α) where

pre(α) := > changeα(P,L, f, C+, C−) := (P,L ∪ {i}, f, C+, C−)
pre(β) := > changeβ := id

Rj :=

{
α | β if j ∈ Lw ∪ {i}
αβ otherwise
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(ii) Closei is given by the same action structure as Openi up to a different change of
the valuation at α, namely changeα(P,L, f, C+, C−) := (P,L \ {i}, f, C+, C−).

(iii) The command !p is the same as !p = h(p) where h is some agreeing assignment.

(iv) The command !p = N is given by ({α, β},R, α) where

pre(α) := (p = N) changeα := id
pre(β) := ¬(p = N) changeβ := id

Rj :=

{
α | β if j ∈ Lw
αβ otherwise

(v) The command !p = q is given by ({α, β, γ},R, α) where

pre(α) := p ∧ q ∧ (p = q) changeα := id
pre(β) := ¬p ∧ ¬q changeβ(P, f, C+, C−) := (P, f, C+ ∪ {(p, q)}, C−)
pre(γ) := > changeγ := id

Rj :=

{
αβ | γ if j ∈ Lw
αβγ otherwise

(vi) The command !p 6= N is given by ({α, β, γ},R, α) where

pre(α) := p ∧ (p 6= N) changeα := id
pre(β) := ¬p changeβ(P, f, C+, C−) := (P, new(f), C+, C−)
pre(γ) := > changeγ := id

new(f)(q) :=

{
(f 0(p), f 1(p), f 2(p) ∪ {N}) if q = p

f(q) otherwise

Rj :=

{
αβ | γ if j ∈ Lw
αβγ otherwise

(vii) The command !p 6= q is given by ({α, β, γ},R, α) where

pre(α) := p ∧ q ∧ (p 6= q) changeα := id
pre(β) := ¬(p ∧ q) changeβ(P, f, C+, C−) := (P, f, C+, C− ∪ {(p, q)})
pre(γ) := > changeγ := id

Rj :=

{
αβ | γ if j ∈ Lw
αβγ otherwise

It follows from these definitions that for example the command !p 6= q can only be executed
successfully atM, w iffM, w � p 6= E.
This concludes our definitions for communication in LECL and it remains to define register
creation. The following generalizes Definition 52: The function changing the valuation
now also copies the listener set and we allow the value of any determined expression to be
mapped to the variable.

Definition 70 (Determined Expressions). We say that an expression E is determined at
world w inM iff for all h and h′ that agree with w we have h(E) = h′(E). If this is the
case we also write JEKM,w for the value of E at w inM.

51



Definition 71 (Register creation). For any pointed crypto model M, w where E is
determined at w the action p i← E is given by ({α, β},R, α) where

N := JEKM,w

pre(α) := G¬p
pre(β) := G¬p

changeα(P,L, f, C+, C−) := (P ∪ {p}, L, f ∪ {(p, (N,N,∅))}, C+, C−)
changeβ(P,L, f, C+, C−) := (P,L, f ∪ {(p, (0, regsize, {N}))}, C+, C−)

Ri :=

{
{α | β} if i = a
{αβ} otherwise

We emphasize that this action maps the value of E and not E itself to the register. It is
important to realize that we only check that the expression is determined at the current
world. In particular this does not mean that the agent for whom we are creating a register
has all the necessary information to evaluate the expression. For now we leave this to
be checked in the specification of a protocol and do not include it into our semantics. In
Section 5 we also discuss the alternative idea of adding a general precondition.

Definition 72 (World-level Truth and Validity for ECL). For any φ ∈ LECL we define:

M, w |= φ iff ∀h with w( h :M, w, h |= φ.
M, w =|φ iff ∀h with w( h :M, w, h 6|= φ.

A formula φ is valid iff for allM, w we have thatM, w � φ. We then write � φ.

Again, this definition creates truth value gaps which are closed by epistemic modalities.

3.5 Monte Carlo Methods

Register models allow us to focus on what matters: Instead of creating possible worlds for
all possible values we only double the amount of worlds for every variable, creating one
world where it has the actual value and one where it can have any other. This becomes
very useful if we allow larger and larger numbers as they occur in real world applications
of cryptography. A good example is the OpenPGP standard defined in [CDF+07] which is
widely used for encryption and authentication of emails. Most implementations of it allow
keys of a length up to 4096 bits which means that numbers up to 24096 can occur.
But so far we only have an easier representation and visualization. To verify or falsify a
formula on a register model we still have to go through just as many possibilities as we
would have to on normal Kripke models. The only difference is that we now call these
possibilities assignments instead of possible worlds.
This is where so-called Monte Carlo methods can help us, by providing an easier way to
verify or falsify formulas. They are based on the observation that situations where the
registers do not contain the correct information are vastly more probable than situations
with the correct values. To illustrate this, in the following model we count the agreeing
assignments at each world in the result of p a← 5; q

b← 5, given a register size of 8.
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0
q, p
q = 5
p = 5

1
p

0 ≤ q ≤ 256 and q 6∈ {5}
p = 5

2
q

q = 5
0 ≤ p ≤ 256 and p 6∈ {5}

3
0 ≤ q ≤ 256 and q 6∈ {5}
0 ≤ p ≤ 256 and p 6∈ {5}

Bob

Alice

Bob

Alice

1

256

256

65536

Now suppose we want to check whether KaKb(p = q) is true or false at 0. That is, we
want to know if Alice knows that Bob knows that p = q. Because Alice confuses 0 and 1
and Bob confuses 1 and 3 this means we will also have to check the statement p = q at
the world 3. But do we really have to go through 65536 different assignments? We argue
that this is not necessary. If we randomly pick an assignment h that agrees with 3 we get
the following probabilities:

P (h(p) = h(q)) =
255

65536
≈ 0.389%

P (h(p) 6= h(q)) =
65281

65536
≈ 99.611%

When we are checking p = q at 3 in order to check KaKb(p = q) at 0 we are particularly
interested in assignments h for which h(p) 6= h(q): Finding one of them suffices to say that
KaKb(p = q) is false at 0.
Hence such statements can be checked by means of an approximate model checking
algorithm. Because the results obtained in this way are probabilistic we call this a Monte
Carlo method. More generally, they are based on this idea:

M, w |≈ φ iff for “enough” h with w( h :M, w, h |= φ.

The symbol |≈ can be read as “probably makes true” or “probably models”. To specify
“enough” we choose a rather small n ∈ N – our implementation in section 3.6.7 uses
n = 2. Then to evaluate a statement at a world w we first randomly generate a list of n
assignments h1, . . . , hn that all agree with w. For each hi in the list we checkM, w, hi |≈ φ
which is the same as � from Definition 68 up to the clause for commands and modalities
which are explained in the next definition. We then say that φ is probably true/false iff it
is true/false with regard to hi for all i ≤ n while in any mixed case it is undefined.
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Definition 73 (Monte Carlo Update and Semantics). The Monte Carlo update of a crypto
modelM, w with an action is the same as the product update according to Definition 24 up
to the change that W ′ := {(w, α) ∈ W × A | w |≈ pre(α)}. That is, also the preconditions
are to be checked with regard to n randomly picked and not all assignments. For formulas
of the following shapes we define:

M, w, h |≈ ¬φ iff notM, w, h |≈ φ
M, w, h |≈ φ1 ∧ φ2 iff M, w, h |≈ φ1 andM, w, h |≈ φ2

M, w, h |≈ Kiφ iff (w,w′) ∈ Ri impliesM, w′ |≈ φ
M, w, h |≈ Gφ iff (w,w′) ∈ R∗ impliesM, w′ |≈ φ

M, w, h |≈ 〈Openi〉φ iff MOpeni , w, h |≈ φ
M, w, h |≈ 〈Closei〉φ iff MClosei , w, h |≈ φ
M, w, h |≈ 〈! p = E〉φ iff M, w, h |≈ p = E andMp=E, w, h |≈ φ
M, w, h |≈ 〈! p 6= E〉φ iff M, w, h |≈ p 6= E andMp 6=E, w, h |≈ φ

M, w, h |≈ 〈p i← N〉φ iff Mp
i←N , w, (h ∪ {(p,N)}) |≈ φ

M, w, h |≈ 〈A1;A2〉φ iff M, w, h |≈ 〈A1〉〈A2〉φ
where the models with superscripts are given by the Monte Carlo update with the actions
described in Definitions 69 and 71. For all other formulas φ we define:

M, w, h |≈ φ iff M, w, h � φ

Definition 74 (Monte Carlo Truth). Fix a number n > 0 and assume that agreeing
assignments can be picked randomly. We say that φ is probably true atM, w and write
M, w |≈ φ iff for n randomly picked assignments h1, . . . , hn we haveM, w, hi |≈ φ.

For many interesting formulas the probability of disagreement between |≈ and � can be
made arbitrarily small by using a larger n. The choice of n then provides a trade-off
between computation time and reliability. Furthermore, the probability gets better for
larger register sizes.
Among the formulas which can be checked this way is our formalization of the Diffie-
Hellman key exchange in Section 4.2. Relying on such results can also be compared to
articles of faith of cryptanalysis where for example brute force attacks on number secrets
are assumed to be impossible.
However, the results of a Monte Carlo algorithm should be used carefully. As the next
example shows, it is also easy to come up with models and formulas for which a probabilistic
method will almost certainly return the wrong result.

Example 75 (Monte Carlo Failure). Consider the formula 〈p a← 4〉Kb(p 6= 8), evaluated
on a blissful ignorance model for Alice and Bob and using a registersize of 232. This means
that Kb(p 6= 8) has to be checked in the following model:

0
p

p = 4

1
0 ≤ p ≤ 4294967296

and p 6∈ {4}
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Here there are 4294967295 assignments that agree with the world 1. Only one of them
renders p 6= 8 false. Our algorithm will thus most probably say that Bob knows that p 6= 8.
Indeed we can reproduce this failure in our implementation of the Monte Carlo evaluation,
see Section 4.1.4.

This example shows that the reliability of Monte Carlo methods varies for different types
of formulas. Many cases are unproblematic, including the combinations of equality and
knowledge statements which we will use to describe cryptographic protocols and their
result. For inequalities and the knowledge thereof, probabilities should be taken into
account. The details can be worked out in a probabilistic logic of communication and
change as presented in [Ach14, Chapter 5], but we will not do so here.

3.6 Implementation

This section contains our implementation of ECL. We first define the necessary data types,
this time based on our valuations with local listener sets. Then we go on to write evaluation
functions for expressions, formulas and commands. After the normal implementation
we will also provide a Monte Carlo evaluation. Whenever the logic and therefore the
implementation do not differ substantially from the one presented in Section 2.5 we keep
our annotations to a minimum. We import the same modules as in GG and some more:
Libraries for plotting and primality testing from ghc, the module EREL from [Eij14] and
our own libraries for modular exponentiation and pseudo-randomness.

12 module ECL where
13 -- from ghc:
14 import Data.List
15 import Data.Numbers.Primes
16 import Graphics.Gnuplot.Simple
17 -- local files:
18 import REL
19 import MODEXP
20 import RAND
21 import EREL (minimize ,convertMapping)
22 import KRIPKEVIS

3.6.1 Agents, Propositions and Models

28 data Agent = Ag Integer deriving (Eq ,Ord)
29 alice , bob , carol , dave , eve , mallory :: Agent
30 alice = Ag 0; bob = Ag 1;
31 carol = Ag 2; dave = Ag 3;
32 eve = Ag 4; mallory = Ag 5
33

34 instance Enum Agent where
35 fromEnum = (\(Ag n) -> fromIntegral n)
36 toEnum = (\n -> Ag (fromIntegral n))
37

38 instance Show Agent where
39 show (Ag 0) = "Alice"; show (Ag 1) = "Bob"
40 show (Ag 2) = "Carol"; show (Ag 3) = "Dave"
41 show (Ag 4) = "Eve"; show (Ag 5) = "Mallory"
42 show (Ag n) = (’a’: show n)

We use four different letters for propositions and enumerate them with prpIndex.
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48 data Prp = P Integer | Q Integer | R Integer | S Integer deriving (Eq,Ord)
49 instance Show Prp where
50 show (P 0) = "p"; show (P n) = "p "++( show n)
51 show (Q 0) = "q"; show (Q n) = "q "++( show n)
52 show (R 0) = "r"; show (R n) = "r "++( show n);
53 show (S 0) = "s"; show (S n) = "s "++( show n);
54

55 prpIndex :: Prp -> Integer
56 prpIndex (P k) = k*4
57 prpIndex (Q k) = k*4 + 1
58 prpIndex (R k) = k*4 + 2
59 prpIndex (S k) = k*4 + 3

Before models we introduce data types for states, partitions, registers and constraints. It
is also here that we fix a global registersize of 28.

67 type State = Integer
68 type Partition = [[State ]]
69 type Register = (Integer ,Integer ,[ Integer ])
70 type Constraint = (Prp ,Prp)
71

72 registersize :: Integer
73 registersize = 2^(8:: Int)
74

75 fullregister :: Register
76 fullregister = (0,registersize -1,[])
77

78 without :: Register -> Integer -> Register
79 without (low ,high ,excl) n = (low ,high ,nub (n:excl))

A valuation now consists of the facts, listeners, some registers, positive constraints and
negative constraints. The next code also defines pointed models, how to show them and
the blissful ignorance model for any set of agents.

85 type Valuation = ([Prp],[Agent ],[(Prp ,Register)],[ Constraint ],[ Constraint ])
86

87 data CryptoM = Mo [State] [(Agent ,Partition)] [(State ,Valuation)] State deriving (Eq)
88

89 instance Show CryptoM where
90 show (Mo sts rel val cur) = "(Mo "
91 ++ show sts ++ "\n "
92 ++ show rel ++ "\n "
93 ++ show val ++ "\n "
94 ++ show cur ++ " )"
95

96 cm0for :: [Agent] -> CryptoM
97 cm0for ags = (Mo
98 [0]
99 [(a ,[[0]]) | a <- ags]

100 [ (0,([] ,[],[],[],[] )) ]
101 0 )

The following functions provide convenient access to various properties of our models.

107 states :: CryptoM -> [State]
108 states (Mo sts _ _ _) = sts
109 agents :: CryptoM -> [Agent]
110 agents (Mo _ rel _ _) = map fst rel
111 reachable :: CryptoM -> [State]
112 reachable model = nub $ concat $ map (reachableBy model) (agents model)
113 reachableBy :: CryptoM -> Agent -> [State]
114 reachableBy (Mo _ rel _ cur) agent
115 = head $ filter (\set -> elem cur set) (apply rel agent)
116 reachableByFrom :: CryptoM -> Agent -> State -> [State]
117 reachableByFrom (Mo _ rel _ _) agent state
118 = head $ filter (\set -> elem state set) (apply rel agent)
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119 reachableFrom :: CryptoM -> State -> [State]
120 reachableFrom model state
121 = nub $ concat $ map (\a -> reachableByFrom model a state) (agents model)
122 size :: CryptoM -> Int
123 size (Mo sts _ _ _) = length sts
124 facts :: CryptoM -> [Prp]
125 facts (Mo _ _ val cur) = fst5 (apply val cur)
126 factsAt :: CryptoM -> State -> [Prp]
127 factsAt (Mo _ _ val _) state = fst5 (apply val state)
128 listeners :: CryptoM -> [Agent]
129 listeners (Mo _ _ val cur) = snd5 (apply val cur)
130 listenersAt :: CryptoM -> State -> [Agent]
131 listenersAt (Mo _ _ val _) state = snd5 (apply val state)
132 nonlisteners :: CryptoM -> [Agent]
133 nonlisteners model = foldr delete (agents model) (listeners model)
134 nonlistenersAt :: CryptoM -> State -> [Agent]
135 nonlistenersAt model state = foldr delete (agents model) (listenersAt model state)
136 registers :: CryptoM -> [(Prp ,Register)]
137 registers (Mo _ _ val cur) = trd5 (apply val cur)
138 registersAt :: CryptoM -> State -> [(Prp ,Register)]
139 registersAt (Mo _ _ val _) state = trd5 (apply val state)
140 posConstraints :: CryptoM -> [Constraint]
141 posConstraints (Mo _ _ val cur) = fth5 (apply val cur)
142 posConstraintsAt :: CryptoM -> State -> [Constraint]
143 posConstraintsAt (Mo _ _ val _) state = fth5 (apply val state)
144 negConstraints :: CryptoM -> [Constraint]
145 negConstraints (Mo _ _ val cur) = fft5 (apply val cur)
146 negConstraintsAt :: CryptoM -> State -> [Constraint]
147 negConstraintsAt (Mo _ _ val _) state = fft5 (apply val state)

This function changes the current world of a model. It will only be used for testing because
our language does not contain any commands that change change the actual world.

153 makeActual :: CryptoM -> State -> CryptoM
154 makeActual (Mo sts rel val _) newcur = if (elem newcur sts)
155 then (Mo sts rel val newcur)
156 else error ("World "++( show newcur)++" does not exist in this model!")

3.6.2 Bisimulation and Generated Submodels

The following generates smaller equivalent models using the methods from Section 1.4.
Our function bisiMin employs convertMapping from the module EREL from [Eij14] to
obtain a bisimilar model. Note that we have to track the mapping of worlds to set the
correct actual world in the new model. The function genMin finds the generated submodel
by marking all reachable worlds until it reaches a fixpoint.

167 bisiMin :: CryptoM -> CryptoM
168 bisiMin (Mo oldstates oldrel oldval oldcur) = (Mo newstates newrel newval newcur)
169 where
170 newval = nub $ map (\(x,v) -> (apply bisim x, v)) newvalEntries
171 newvalEntries = filter (\x -> (elem (apply bisim (fst x)) newstates)) oldval
172 newstates = nub $ map (apply bisim) oldstates
173 (newrel ,bisim) = convertMapping [0..] $ minimize oldrel oldval
174 newcur = apply bisim oldcur
175

176 genMin :: CryptoM -> CryptoM
177 genMin model@(Mo _ oldrel oldval cur) = (Mo newstates newrel newval cur)
178 where
179 newstates = lfp (\set -> mark set) (reachable model)
180 newval = filter (\x -> elem (fst x) newstates) oldval
181 newrel = [ (a, newrelfor a) | a <- agents model ]
182 newrelfor a = filter (\part -> elem (head part) newstates) (apply oldrel a)
183 mark marked = nub $ concat $ map (reachableFrom model) marked
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3.6.3 Formulas

The following data types represent all three layers of the language LECL according to
Definition 65.

191 data Form = Top | PrpF Prp | L Agent | Equal Exp Exp
192 | Neg Form | Conj [Form]
193 | K Agent Form | G Form
194 | Com Com Form
195 | Prime Exp | Coprime Exp Exp
196 deriving (Eq ,Ord ,Show)
197

198 data Com = Open Agent | Close Agent
199 | Create Prp Agent Exp | CreateSized Prp Agent Exp Integer
200 | Announce Prp | AnnounceEqual Prp Exp | AnnounceNotEqual Prp Exp
201 | Test Form | Com :- Com
202 deriving (Eq ,Ord ,Show)
203

204 data Exp = PrpE Prp | Nmbr Integer
205 | PlusMod Exp Exp Exp | TimesMod Exp Exp Exp | PowerMod Exp Exp Exp
206 deriving (Eq ,Ord ,Show)

Disjunctions, implications and boxes are again defined as abbreviations and the helper
function lst2cmd allows us to specify longer commands as lists:

212 bot :: Form
213 bot = Neg Top
214

215 disj :: [Form] -> Form
216 disj list = Neg $ Conj [ Neg d | d <- list ]
217

218 implies :: Form -> Form -> Form
219 implies a b = disj [Neg a, b]
220

221 box :: Com -> Form -> Form
222 box com form = Neg ( Com com ( Neg form ) )
223

224 lst2cmd :: [Com] -> Com
225 lst2cmd [] = error "empty list"
226 lst2cmd [c] = c
227 lst2cmd [c1,c2] = c1 :- c2
228 lst2cmd (c1:c2s) = c1 :- (lst2cmd c2s)

The following functions compute the set of propositions occurring in a formula.

234 propsInForm :: Form -> [Prp]
235 propsInForm Top = []
236 propsInForm (PrpF aprop) = [aprop]
237 propsInForm (Neg formula) = propsInForm formula
238 propsInForm (Conj forms) = nub $ concat (map propsInForm forms)
239 propsInForm (K _ formula) = propsInForm formula
240 propsInForm (G formula) = propsInForm formula
241 propsInForm (L _ ) = []
242 propsInForm (Com c formula) = nub $ (propsInForm formula) ++ (propsInCom c)
243 propsInForm (Equal a b) = nub $ propsInExp a ++ propsInExp b
244 propsInForm (Prime a) = propsInExp a
245 propsInForm (Coprime a b) = nub $ propsInExp a ++ propsInExp b

The same is needed for expressions and now includes more cases in GG.

251 propsInExp :: Exp -> [Prp]
252 propsInExp (PrpE aprop) = [aprop]
253 propsInExp (Nmbr _) = []
254 propsInExp (PlusMod a b c) = nub $ concat $ map propsInExp [a,b,c]
255 propsInExp (TimesMod a b c) = nub $ concat $ map propsInExp [a,b,c]
256 propsInExp (PowerMod a b c) = nub $ concat $ map propsInExp [a,b,c]
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Also to list the propositions occurring in a command we need some additional cases.

262 propsInCom :: Com -> [Prp]
263 propsInCom (Open _) = []
264 propsInCom (Close _) = []
265 propsInCom (Create p _ e) = nub $ [p] ++ propsInExp e
266 propsInCom (CreateSized p _ e _) = nub $ [p] ++ propsInExp e
267 propsInCom (Announce p) = [p]
268 propsInCom (AnnounceEqual p e) = nub $ [p] ++ propsInExp e
269 propsInCom (AnnounceNotEqual p e) = nub $ [p] ++ propsInExp e
270 propsInCom (comA :- comB) = nub $ propsInCom comA ++ propsInCom comB
271 propsInCom (Test f) = nub $ propsInForm f

The following implements definition 67. For addition, multiplication and modulo we use
the built-in functions of Haskell which are efficient enough for our purposes. In contrast,
the built-in exponentiation function ˆ is rather slow. Instead we use exM which is a fast
algorithm for modular exponentiation from the module MODEXP which is listed in the
appendix (p. 90).

280 type Assignment = [(Prp ,Integer)]
281 evalEAss :: Assignment -> Exp -> Integer
282 evalEAss _ (Nmbr n) = n
283 evalEAss ass (PrpE p) = apply ass p
284 evalEAss ass (PlusMod a b m) =
285 mod ( (evalEAss ass a) + (evalEAss ass b) ) (evalEAss ass m)
286 evalEAss ass (TimesMod a b m) =
287 mod ( (evalEAss ass a) * (evalEAss ass b) ) (evalEAss ass m)
288 evalEAss ass (PowerMod a b m) =
289 exM (evalEAss ass a) (evalEAss ass b) (evalEAss ass m)

Next, we define consistency and generate partial assignments. As in the previous implemen-
tation we use aALoop to build up assignments step by step, dealing with one propositional
variable at a time.

296 consistent :: [Constraint] -> [Constraint] -> Assignment -> Bool
297 consistent pcs ncs ass = and [all equal pcs , all (not.equal) ncs]
298 where
299 equal (p1,p2) = ( (apply ass p1) == (apply ass p2) )
300

301 allAss :: CryptoM -> [Assignment]
302 allAss model = filter (consistent pcs ncs) (aALoop [] (registers model))
303 where
304 pcs = posConstraints model
305 ncs = negConstraints model
306

307 aALoop :: [ Assignment ] -> [ (Prp ,Register) ] -> [ Assignment ]
308 aALoop [] [] = [ [] ]
309 aALoop done [] = done
310 aALoop [] (x:xs) = aALoop [ [ ((fst x),v) ] | v <- reg2lst (snd x) ] xs
311 aALoop done (x:xs) = aALoop [ (((fst x),v):o) | v <- reg2lst (snd x), o <- done ] xs
312

313 reg2lst :: Register -> [Integer]
314 reg2lst (low ,high ,excl) = foldr delete [low..high] excl
315

316 allRelevantAss :: CryptoM -> [Prp] -> [Assignment]
317 allRelevantAss model props =
318 filter (consistent pcs ncs) (aALoop [] (restrict (registers model) relprops))
319 where
320 relprops = nub $ props ++ (\l -> (map fst l)++(map snd l)) (pcs++ncs)
321 pcs = posConstraints model
322 ncs = negConstraints model
323

324 restrict :: Eq a => [(a,b)] -> [a] -> [(a,b)]
325 restrict rel domain = filter (\pair -> elem (fst pair) domain) rel
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3.6.4 Evaluation

As for GG we implement evaluation of formulas with regard to assignments and on the
world-level. New cases of formulas are the primality tests and the atomic propositions for
listening. The truth value of some formulas only depend on the model or the assignment
but not both. This allows us to use the _ sign in their Haskell definitions.

336 evalAss :: CryptoM -> Assignment -> Form -> Bool
337

338 evalAss _ _ Top = True
339 evalAss model _ (PrpF prp) = elem prp (facts model)
340 evalAss _ ass (Equal a b) = (evalEAss ass a) == (evalEAss ass b)
341 evalAss _ ass (Prime e) = isPrime (evalEAss ass e)
342 evalAss _ ass (Coprime a b) = (gcd (evalEAss ass a) (evalEAss ass b) == 1)
343 evalAss model ass (Neg form) = not (evalAssMC model ass form)
344 evalAss model ass (Conj forms) = and (map (evalAssMC model ass) forms)
345

346 evalAss model _ (K agent form) = and results
347 where results = map evalthere (reachableBy model agent)
348 evalthere = (\v -> (evalAt model v form==Just True))
349

350 evalAss model _ (G form) = and results
351 where results = map evalthere (states (genMin model))
352 evalthere = (\v -> (evalAt model v form==Just True))
353

354 evalAss model _ (L agent) = elem agent (listeners model)
355

356 evalAss model ass (Com com form) =
357 if (assSet /= [])
358 then and results
359 else error ("No compatible assignments!")
360 where
361 newmodel = update model com
362 assSet = filter (subs ass) (allRelevantAss newmodel props)
363 props = nub $ propsInCom com ++ propsInForm form
364 chkFct = (\ newass -> evalAss (newmodel) newass form)
365 results = map chkFct assSet
366 subs a b = all (\x -> (apply a x == apply b x)) (map fst a)

As in GG, the evaluation at the world level returns a Maybe Bool.

372 eval :: CryptoM -> Form -> Maybe Bool
373 eval model formula =
374 if (and results)
375 then
376 Just True
377 else
378 if (and $ map not results)
379 then Just False
380 else Nothing
381 where
382 results = [ evalAss model ass formula | ass <- assSet ]
383 assSet = allRelevantAss model (propsInForm formula)
384

385 evalAt :: CryptoM -> State -> Form -> Maybe Bool
386 evalAt (Mo sts rel val _) newcur form = eval (Mo sts rel val newcur) form

For convenience we also implement an abbreviation which evaluates a given formula at all
states of a model and returns a list of results. This is mainly useful for testing and does
not have a counterpart in our formal definitions of ECL.

392 evalAtAll :: CryptoM -> Form -> [(State ,Maybe Bool)]
393 evalAtAll m form = zip (states m) (map (\w -> evalAt m w form) (states m))
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3.6.5 Product Update

We now implement actions and updates with factual change as given by Definitions 23
and 24 respectively. Note that we can not use the code from our implementation of GG
because the data types GuessM and CryptoM are different. Furthermore, we want to use
the same function in our Monte Carlo implementation in Section 3.6.7. Therefore we also
parameterize on the function used to evaluate the preconditions.

405 type ValChange = Valuation -> Valuation
406 type ActionS = ( [State], [(State ,Form)], [(State ,ValChange)], [(Agent ,Partition)] )
407 type Action = (ActionS ,State)
408

409 productUpdateWithEvAtFct ::
410 (CryptoM -> State -> Form -> Maybe Bool) -> CryptoM -> Action -> CryptoM
411 productUpdateWithEvAtFct evAtFct model (actionStructure ,faction) =
412 let
413 (Mo oldstates oldrel oldval oldcur) = model
414 (actions , tests , changes , actrel) = actionStructure
415 startcount = (maximum oldstates) + 1
416 copiesOf (s,a) = if (evAtFct model s (apply tests a) == Just True)
417 then [ (s,a,(a*startcount + s)) ]
418 else [ ]
419 newstatesTriples = concat [ copiesOf (s,a) | s <- oldstates , a <- actions ]
420 newstates = map trd3 newstatesTriples
421 newValFor (s,a,t) = (t, (apply changes a) (apply oldval s))
422 newval = map newValFor newstatesTriples
423 listFor ag = cartProd (apply oldrel ag) (apply actrel ag)
424 newPartsFor ag = [ cartProd as bs | (as,bs) <- listFor ag ]
425 translSingle pair = filter (\x-> elem x newstates) $ map trd3 $ copiesOf (pair)
426 transEqClass list = concat $ map translSingle list
427 nTransPartsFor ag = filter (\x-> x/=[]) $ map transEqClass (newPartsFor ag)
428 newrel = [ (a, nTransPartsFor a) | a <- (agents model) ]
429 newcur = trd3 $ head $ copiesOf (oldcur ,faction)
430 factTest = apply tests faction
431 in
432 if (sort $ nub (agents model)) == (sort $ nub (map fst actrel))
433 then if (evAtFct model oldcur factTest == Just True)
434 then genMin $ bisiMin $ (Mo newstates newrel newval newcur)
435 else error ("Actual precondition ’" ++ (show factTest) ++ "’ is false!")
436 else error "Agents of model and actionStructure are not the same!"
437

438 productUpdate :: CryptoM -> Action -> CryptoM
439 productUpdate = productUpdateWithEvAtFct evalAt

Note the commands genMin and bisiMin in front of the new model. In contrast to the
previous implementation, this time we optimize the result of any product update under
bisimulation and submodel generation. This will ensure our models do not get redundant.

3.6.6 Commands

The implementation of commands gives us another reason not to use the syntactic trick
of interpreting the command Openi as a PDL-style union of {GOpeni | G ⊆ I} as
described in Section 3.1.1. Directly translating this idea into Haskell code would make our
implementation unnecessarily complicated and inefficient. Instead we follow definition 69
and interpret the commands depending on the listener set at the current world.

453 openAction , closeAction :: CryptoM -> Agent -> Action
454 openAction model a = (([0,1], [(0,Top) ,(1,Top)], [(0,id) ,(1,addLst)], actrel), 1)
455 where
456 addLst = \(fs ,lstnrs ,reg ,pcs ,ncs) -> (fs,nub(a:lstnrs),reg ,pcs ,ncs)
457 actrel = [ (i ,[[0] ,[1]]) | i <- hear ] ++ [ (i,[[0 ,1]]) | i <- dumb ]
458 hear = nub (a : listeners model)
459 dumb = foldr delete (agents model) hear
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460

461 closeAction model a = (([0,1], [(0,Top) ,(1,Top)], [(0,id) ,(1,remLst)], actrel), 1)
462 where
463 remLst = \(fs,lstnrs ,reg ,pcs ,ncs) -> (fs,delete a lstnrs ,reg ,pcs ,ncs)
464 hear = nub (a : listeners model)
465 dumb = foldr delete (agents model) hear
466 actrel = [ (i ,[[0] ,[1]]) | i <- hear ] ++ [ (i,[[0 ,1]]) | i <- dumb ]
467

468 announceAction :: CryptoM -> Prp -> Action
469 announceAction model p = ( ( [0,1],
470 [ (0,PrpF p), (1,Neg $ (PrpF p)) ],
471 [ (0,id ), (1,id ) ], actrel ), 0 )
472 where
473 actrel = [ (j ,[[0] ,[1]]) | j <- (listeners model) ]
474 ++ [ (j,[ [0,1] ]) | j <- (nonlisteners model) ]
475

476 announceEqualNAction , announceNotEqualNAction :: CryptoM -> Prp -> Integer -> Action
477 announceEqualNAction model p n = ( ( [0,1],
478 [ (0,Equal (PrpE p) (Nmbr n)), (1,Neg $ Equal (PrpE p) (Nmbr n)) ],
479 [ (0,id ), (1,id ) ], actrel ), 0 )
480 where
481 actrel = [ (j ,[[0] ,[1]]) | j <- (listeners model) ]
482 ++ [ (j,[ [0,1] ]) | j <- (nonlisteners model) ]
483

484 announceEqualPAction , announceNotEqualPAction :: CryptoM -> Prp -> Prp -> Action
485 announceEqualPAction model p q = ( ( [0,1,2],
486 [ (0,Conj[PrpF p,PrpF q,Equal (PrpE p) (PrpE q)]),
487 (1,Conj[Neg (PrpF p),Neg (PrpF q)]),
488 (2,Top) ],
489 [ (0,id), (1,addPC), (2,id) ], actrel ), 0 )
490 where
491 addPC = \(fcts ,ls,regs ,pc,nc) -> (fcts ,ls,regs ,(p,q):pc,nc)
492 actrel = [ (j,[[0 ,1] ,[2]]) | j <- (listeners model) ]
493 ++ [ (j,[ [0,1,2] ]) | j <- (nonlisteners model) ]
494

495 announceNotEqualNAction model p n = ( ( [0,1],
496 [(0,Conj [PrpF p, Neg $ Equal (PrpE p) (Nmbr n)]),
497 (1,Neg (PrpF p)),
498 (2,Top) ],
499 [(0,id), (1,exclN), (2,id) ], actrel ), 0 )
500 where
501 exclN = \(fcts ,ls,regs ,ncs ,pcs) -> (fcts ,ls, map change regs ,ncs ,pcs)
502 change (prp ,reg) = if (prp == p) then (prp ,without reg n) else (prp ,reg)
503 actrel = [ (j,[[0 ,1] ,[2]]) | j <- (listeners model) ]
504 ++ [ (j,[ [0,1,2] ]) | j <- (nonlisteners model) ]
505

506 announceNotEqualPAction model p q = ( ( [0,1,2],
507 [(0,Conj[PrpF p, PrpF q, Neg $ Equal (PrpE p) (PrpE q)]),
508 (1,Neg(Conj[PrpF p,PrpF q])),
509 (2,Top)],
510 [(0,id), (1,addNC), (2,id)], actrel ), 0 )
511 where
512 addNC = \(fcts ,ls,regs ,pcs ,ncs) -> (fcts ,ls,regs ,pcs ,((p,q):ncs))
513 actrel = [ (j,[[0 ,1] ,[2]]) | j <- (listeners model) ]
514 ++ [ (j,[ [0,1,2] ]) | j <- (nonlisteners model) ]
515

516 testAction :: CryptoM -> Form -> Action
517 testAction model form = ( ( [0,1],
518 [ (0,form), (1,Neg form) ],
519 [ (0,id ), (1,id ) ], actrel ), 0 )
520 where
521 actrel = [ (j,[[0 ,1]]) | j <- (agents model) ]

To allow for easier benchmarking of our implementation later on, we make the action
structure for p i← E slightly more general: We add the register size as an additional
parameter in the command CreateSized. The command Create is then just the instance
of the former using the globally fixed registersize.
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Also note that we now set the lower bound of registers to 0 instead of 1 as we did in the
guessing games. This is particularly useful in combination with modular arithmetic.

530 createSizedAction :: CryptoM -> Prp -> Agent -> Exp -> Integer -> Action
531 createSizedAction model p i e regmax = ( ( [0,1],
532 [ (0, pre ), (1, pre ) ],
533 [ (0, addFct), (1, addReg) ],
534 actrel ), 0 )
535 where
536 assSet = allRelevantAss model (propsInExp e)
537 ass = if (assSet /= []) then (head assSet) else error "No assignment."
538 n = evalEAss ass e
539 pre = G (Neg (PrpF p))
540 addFct = \(fcts ,ls ,reg ,pc,nc) -> (p:fcts ,ls ,(p,(n,n ,[ ])):reg ,pc,nc)
541 addReg = \(fcts ,ls ,reg ,pc,nc) -> ( fcts ,ls ,(p,(0,regmax ,[n])):reg ,pc ,nc)
542 others = delete i (agents model)
543 actrel = [ (i ,[[0] ,[1]]) ] ++ [ (j,[[0 ,1]]) | j <- others ]

Now that all actions are defined we only need to link the commands to them.

549 update :: CryptoM -> Com -> CryptoM
550 update model (com1 :- com2) = update (update model com1) com2
551 update model (Open a) = productUpdate model (openAction model a)
552 update model (Close a) = productUpdate model (closeAction model a)
553 update model (Announce p) = productUpdate model (announceAction model p)
554 update model (Test form) = productUpdate model (testAction model form)
555 update model (Create p i e) = update model (CreateSized p i e registersize)
556 update model (CreateSized p i e regmax) =
557 productUpdate model (createSizedAction model p i e regmax)
558 update model (AnnounceEqual p (Nmbr n)) =
559 productUpdate model (announceEqualNAction model p n)
560 update model (AnnounceEqual p (PrpE q)) =
561 productUpdate model (announceEqualPAction model p q)
562 update model (AnnounceNotEqual p (Nmbr n)) =
563 productUpdate model (announceNotEqualNAction model p n)
564 update model (AnnounceNotEqual p (PrpE q)) =
565 productUpdate model (announceNotEqualPAction model p q)
566 update _ _ = error "Update is not defined for this expression."

The following function is useful for testing chains of commands. It updates a given model
with a list of commands, showing the size of the model and all registers after every step.
After the last command it also evaluates a given formula on the final model.

575 stepwiseUpdateEval :: CryptoM -> [Com] -> Form -> String
576 stepwiseUpdateEval model [] f = (show f) ++ " is " ++ (show $ eval model f)
577 stepwiseUpdateEval model (x:xs) f = "After "++( show x)++":"
578 ++"\n size="++( show $ size nextm)
579 ++"\n regs="++( show $ map (\(p,reg) -> (p,(head $ reg2lst reg))) (registers nextm))
580 ++"\n\n"++( stepwiseUpdateEval nextm xs f)
581 where nextm = update model x

3.6.7 Monte Carlo Evaluation

Checking all statements with regard to all (relevant) possible assignments is not very
efficient. One could even say that our implementation as it is until here gives up the original
idea of what it means to know a number because checking all assignments only differs
notationally from using a many-worlds approach. In fact our models and assignments are
just encodings of much larger ordinary Kripke models and our model checker implicitly
unravels the encoded models.
Fortunately, we can trade absolute certainty for the amount of work. We implement the
ideas from Section 3.5 and define Monte Carlo algorithms to evaluate formulas. While there
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is no need to revise the evaluation of expressions, we also have to rewrite the evaluation of
commands because otherwise the preconditions of actions would still be checked using the
normal methods. We fix a very small number of randomly picked assignments to be used
in every step. This variable is used globally throughout the remaining code.

595 assAmount :: Integer
596 assAmount = 2

Pseudo-randomly picking relevant assignments

First we have to come up with a way to pick assignments randomly. In order to avoid
using monads we fix a set of 10000 random numbers. The module RAND provides the list
myRandSeed10000. For tests where the desired number of assignments plus the highest
prpIndex reaches more than 10000, we repeat the set under the map n+.

607 myRandSeed :: [Integer]
608 myRandSeed = concat $ [ map (n+) myRandSeed10000 | n <- [0..] ]

Using this seed and given another integer we pseudo-randomly generate a partial relevant
assignment. Note that we do not check for consistency yet but for now ignore the positive
and negative constraints.

616 rndRelAssSingle :: CryptoM -> [Prp] -> Integer -> Assignment
617 rndRelAssSingle model givenprops seed = [ (p, pickFor p) | p <- props ]
618 where
619 modprops = map fst (registers model)
620 props = filter (\x -> (elem x modprops)) givenprops
621 domFor p = reg2lst (apply (registers model) p)
622 lenFor p = fromIntegral $ length (domFor p)
623 seedFor p = mod (seed*( myRandSeed !!( fromIntegral $ (prpIndex p+seed)))) (lenFor p)
624 pickFor p = (domFor p)!!( fromIntegral $ seedFor p)

In formal notation, rndRelAssSingle works as follows. As input it takes a pointed model
M, w and an additional integer seed n ≥ 1. Furthermore it employs a constant infinite list
M of random numbers which in our implementation is given by myRandSeed. For any p let
idx(p) be the index of p as implemented by prpIndex on page 56. For any ordered set of
numbers A we write A[k] for its k-th element. In Haskell the notation is A!!k. We write
Hw(p) for the set of values that p can take at w. Then the output of rndRelAssSingle
applied toM and n is the assignment function defined by

Vn(p) := Hw(p) [ n ·M[idx(p) + n] mod |domp| ]

The following function then pseudo-randomly generates a given number of assignments,
incrementing the integer seed n ≥ 1 in every step. It is now that we also make sure they
are consistent with the constraints. Note that there might be duplicates.

643 rndRelAss :: CryptoM -> [Prp] -> Integer -> [Assignment]
644 rndRelAss model props amount = take (fromIntegral amount) consSet
645 where
646 pcs = posConstraints model
647 ncs = negConstraints model
648 consSet = filter (consistent pcs ncs) fullSet
649 fullSet = [ rndRelAssSingle model props seed | seed <- [1..] ]
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It is clear that myRandSeed, our list of random numbers is finite and gets repeated. Still,
as the sequential seed keeps increasing, different numbers will be picked for different
propositions and thus the assignments will not repeat after 10000 steps but much later.

How random are our assignments?

We should check that rndRelAss really generates random assignments. To do so we plot
the values that get assigned to two variables which each have a a register allowing any
number (up to the registersize n) except 0.

660 rndTestModel :: Integer -> CryptoM
661 rndTestModel n = ( Mo [0] [ (alice ,[[0]]) ]
662 [ (0,([],[],[ ((P 0) ,(0,n,[0])), ((Q 0) ,(0,n,[0])) ],[],[])) ] 0 )
663

664 rndTestRun :: Integer -> Integer -> IO ()
665 rndTestRun rs amount = plotListStyle arg1 arg2 coords
666 where
667 arg1 = [EPS filename , XRange (0, fromIntegral rs), YRange (0, fromIntegral rs)]
668 arg2 = (defaultStyle {plotType = Points , lineSpec = CustomStyle [LineTitle ((show

amount)++" assignments for two variables")]})
669 coords = map (\list -> (head list , head $ tail list)) numbers
670 numbers = map (\list -> (map snd list)) assSet
671 assSet = rndRelAss model [(P 0) ,(Q 0)] amount
672 model = (rndTestModel rs)
673 filename = "img/rndtest_"++( show rs)++"_regsize_"++( show amount)++"ass.eps"
674

675 rndTestAllRuns :: IO ()
676 rndTestAllRuns = do
677 rndTestRun (2^(8:: Int)) 100
678 rndTestRun (2^(8:: Int)) 1000
679 rndTestRun (2^(8:: Int)) 3000

Now we call rndTestAllRuns to generate the following three plots on which we can see
that the assignments are fairly randomly picked:
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100, 1000 and 3000 random assignments for a registersize of 28.

In contrast, if we use the following very similar line in the definition of rndRelAssSingle
on page 64, a clear pattern becomes visible:

seedFor p = mod (seed * myRandSeed !!( fromIntegral $ (prpIndex p))) (lenFor p)
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100, 1000 and 3000 not-so-random assignments for a registersize of 28.
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We can also relate our test for “real randomness” to the usage of pseudorandomness as in
cryptography (See for example [KL08, p. 70]): An adversary could easily distinguish these
assignments from truly random ones that e.g. were obtained by rolling a die. Moreover,
this would enable her to systematically come up with models and formulas for which our
Monte Carlo algorithm would always return wrong results.

Monte Carlo Evaluation

The following implements Definitions 73 and 74.

711 evalAssMC :: CryptoM -> Assignment -> Form -> Bool
712

713 evalAssMC model _ (PrpF prp) = elem prp (facts model)
714 evalAssMC _ ass (Equal a b) = (evalEAss ass a) == (evalEAss ass b)
715 evalAssMC _ ass (Prime e) = isPrime (evalEAss ass e)
716 evalAssMC _ ass (Coprime a b) = (gcd (evalEAss ass a) (evalEAss ass b) == 1)
717 evalAssMC _ _ Top = True
718 evalAssMC model ass (Neg form) = not (evalAssMC model ass form)
719 evalAssMC model ass (Conj forms) = and (map (evalAssMC model ass) forms)
720

721 evalAssMC model _ (K i form) = and results
722 where results = map (\v -> (evalMCAt model v form==Just True)) (reachableBy model i)
723

724 evalAssMC model _ (G form) = and results
725 where results = map (\v -> (evalMCAt model v form==Just True)) (states $ genMin

model)
726

727 evalAssMC model _ (L agent) = elem agent (listeners model)
728

729 evalAssMC model ass (Com com form) =
730 if (assSet /= [])
731 then and results
732 else error ("No compatible assignments!")
733 where
734 newmodel = updateMC model com
735 assSet = filter (subset ass) (rndRelAss newmodel props assAmount)
736 props = nub $ propsInCom com ++ propsInForm form
737 chkFct = (\ newass -> evalAssMC newmodel newass form)
738 results = map chkFct assSet
739 subset assA assB = all (\x -> (apply assA x == apply assB x)) (map fst assA)
740

741 evalMC :: CryptoM -> Form -> Maybe Bool
742 evalMC model formula =
743 if (and results)
744 then
745 Just True
746 else
747 if (all (\x -> x== False) results)
748 then Just False
749 else Nothing
750 where
751 results = [ evalAssMC model ass formula | ass <- assSet ]
752 assSet = rndRelAss model (propsInForm formula) assAmount
753

754 evalMCAt :: CryptoM -> State -> Form -> Maybe Bool
755 evalMCAt (Mo sts rel val _) nc f = evalMC (Mo sts rel val nc) f
756

757 evalMCAtAll :: CryptoM -> Form -> [(State ,Maybe Bool)]
758 evalMCAtAll m form = zip (states m) (map (\w -> evalMCAt m w form) (states m))

Monte Carlo Updates

Now two generalizations of our previous code come in handy. First, we can define the
Monte-Carlo update simply by replacing evalAt with evalMCAt.
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767 productUpdateMC :: CryptoM -> Action -> CryptoM
768 productUpdateMC = productUpdateWithEvAtFct evalMCAt

Second, because we specified the action structures separately from the interpretation of
commands we do not have to repeat them here. We can simply run productUpdateMC
with the the same actions.

775 updateMC :: CryptoM -> Com -> CryptoM
776 updateMC model (com1 :- com2) = updateMC (updateMC model com1) com2
777 updateMC model (Open a) = productUpdateMC model (openAction model a)
778 updateMC model (Close a) = productUpdateMC model (closeAction model a)
779 updateMC model (Announce p) = productUpdateMC model (announceAction model p)
780 updateMC model (Test form) = productUpdateMC model (testAction model form)
781 updateMC model (Create p i e) = updateMC model (CreateSized p i e registersize)
782 updateMC model (CreateSized p i e regmax) =
783 productUpdateMC model (createSizedAction model p i e regmax)
784 updateMC model (AnnounceEqual p (Nmbr n)) =
785 productUpdateMC model (announceEqualNAction model p n)
786 updateMC model (AnnounceEqual p (PrpE q)) =
787 productUpdateMC model (announceEqualPAction model p q)
788 updateMC model (AnnounceNotEqual p (Nmbr n)) =
789 productUpdateMC model (announceNotEqualNAction model p n)
790 updateMC model (AnnounceNotEqual p (PrpE q)) =
791 productUpdateMC model (announceNotEqualPAction model p q)
792 updateMC _ _ = error "Update is not defined for this expression."

We also implement the function stepwiseUpdateEval from page 63 again with Monte
Carlo methods.

799 stepwiseUpdateEvalMC :: CryptoM -> [Com] -> Form -> String
800 stepwiseUpdateEvalMC model [] f = (show f) ++ " is " ++ (show $ evalMC model f)
801 stepwiseUpdateEvalMC model (x:xs) f = "After "++( show x)++":"
802 ++"\n size = "++( show $ size nextmodel)
803 ++" // regs = "++( show $ map (\(p,reg) -> (p,(head $ reg2lst reg))) (registers

nextmodel))
804 ++"\n\n"++( stepwiseUpdateEvalMC nextmodel xs f)
805 where nextmodel = updateMC model x

3.6.8 Visualization

The following helper functions produce LATEX-strings from our new valuations.

813 eclShowProp :: Prp -> String
814 eclShowProp prp = replace (replace (show prp) " 0" "") " " "_"
815

816 eclShowConstraints :: [Constraint] -> [Constraint] -> String
817 eclShowConstraints [] [] = ""
818 eclShowConstraints pcs ncs =
819 sepBy (positives ++ negatives) " \\text{ and } "
820 where
821 positives = map (niceconSingle " = ") pcs
822 negatives = map (niceconSingle " \\neq ") ncs
823 niceconSingle b (prpA ,prpB) = " $ " ++ (eclShowProp prpA) ++ b ++ (eclShowProp

prpB) ++ " $ "
824

825 eclShowVal :: Valuation -> String
826 eclShowVal (fcts ,lstnrs ,regs ,pcs ,ncs) =
827 sepBy nonEmptyItems newline
828 where
829 nonEmptyItems = filter (\x -> x/="") items
830 items = [nicefacts , nicelisteners , nicereg , eclShowConstraints pcs ncs]
831 nicelisteners = sepBy (map show lstnrs) ", "
832 nicefacts = sepBy (map show fcts) ", "
833 nicereg = concat $ map eclShowReg regs
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834

835 eclShowReg :: (Prp ,Register) -> String
836 eclShowReg (prp ,(low ,high ,excl)) =
837 if (low /= high)
838 then
839 " $ " ++ (show low) ++ " \\leq " ++ (show prp) ++ " \\leq " ++ (show high) ++ "

\\text{ and }"++( show prp)++"\\not\\in \\{" ++ (concat $ map show excl) ++ "
\\} $ " ++ newline

840 else
841 " $ " ++ (show prp) ++ "=" ++ (show low) ++ " $ " ++ newline
842

843 eclInfo :: CryptoM -> String
844 eclInfo model = begintab ++ "Agents: " ++ (sepBy (map show (agents model)) ", ") ++

endtab

The few lines below employ KRIPKEVIS which can be found in the appendix on page 91.

850 eclTexModel :: CryptoM -> String -> IO String
851 eclTexModel model = texModel show show eclShowVal (eclInfo model) visModel
852 where
853 (Mo sts rel val cur) = model
854 visModel = (VisModel sts rel val cur)
855

856 eclDispModel :: CryptoM -> IO String
857 eclDispModel model = dispModel show show eclShowVal (eclInfo model) visModel
858 where
859 (Mo sts rel val cur) = model
860 visModel = (VisModel sts rel val cur)

68



Chapter 4

Applications

4.1 Small Examples

3 module ECLEXAMPLE where
4 import ECL

4.1.1 Alice and Bob have Secrets

We start with the blissful ignorance model for Alice and Bob.

13 m0 :: CryptoM
14 m0 = cm0for [alice ,bob]

*ECLEXAMPLE > m0
(Mo [0]

[(Alice ,[[0]]) ,(Bob ,[[0]])]
[(0 ,([] ,[] ,[] ,[] ,[]))]
0 )

Agents: Alice, Bob

0

Now we let both Alice and Bob come up with a secret number and call the result m1.

31 m1 :: CryptoM
32 m1 = update m0 (Create (Q 0) alice (Nmbr 7) :- Create (P 0) bob (Nmbr 4))

Agents: Alice, Bob

3
0 ≤ p ≤ 256 and p 6∈ {4}
0 ≤ q ≤ 256 and q 6∈ {7}

2
q

0 ≤ p ≤ 256 and p 6∈ {4}
q = 7

1
p

p = 4
0 ≤ q ≤ 256 and q 6∈ {7}

0
p, q
p = 4
q = 7

Alice
Bob

Alice Bob
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4.1.2 Tautologies about Undefined Statements

The following example shows that our agents also know tautologies if they do not know the
values of variables used to formulate them. In the model m1 (from the previous example)
both Alice and Bob do not know that p 6= q.

*ECLEXAMPLE > eval m1 (K alice (Neg $ Equal (PrpE (P 0)) (PrpE (Q 0))))
Just False
*ECLEXAMPLE > eval m1 (K bob (Neg $ Equal (PrpE (P 0)) (PrpE (Q 0))))
Just False

We can also see that in the three non-actual worlds of m1 both the sentence p = q and its
negation p 6= q are undefined:

*ECLEXAMPLE > evalAtAll m1 (Equal (PrpE (P 0)) (PrpE (Q 0)))
[(0,Just False) ,(2,Nothing) ,(1,Nothing) ,(3,Nothing)]
*ECLEXAMPLE > evalAtAll m1 (Neg $ Equal (PrpE (P 0)) (PrpE (Q 0)))
[(0,Just True) ,(2,Nothing) ,(1,Nothing) ,(3,Nothing)]

Still, the disjunction of the equality and its negation is a tautology and true everywhere.
Furthermore, both Alice and Bob know that it is true even though they do not know
about p and q respectively.

59 equality , tautology :: Form
60 equality = Equal (PrpE (P 0)) (PrpE (Q 0))
61 tautology = disj [ equality , Neg equality ]

*ECLEXAMPLE > evalAtAll m1 tautology
[(0,Just True) ,(2,Just True) ,(1,Just True) ,(3,Just True)]
*ECLEXAMPLE > eval m1 (K bob tautology)
Just True
*ECLEXAMPLE > eval m1 (K alice tautology)
Just True

4.1.3 Knowing Who is Listening

The following model shows that two agents can but do not have to know if the other agent
is listening. In particular this does not contradict the self-awareness constraint.

79 mL :: CryptoM
80 mL = update (cm0for [alice ,bob]) (Open alice :- Open bob)

*ECLEXAMPLE > eval mL (K alice (L bob))
Just True
*ECLEXAMPLE > eval mL (K bob (L alice))
Just False

Agents: Alice, Bob

3
Bob, Alice

2
Bob

Bob

This example already suggests that the order in which agents start listening is important.
In particular all agents but one have to be called for attention twice in order to let everyone
know that everyone is listening. However, once we reach a situation where everyone is
listening and this is common knowledge according to definition 17 the model we obtain is
bisimilar to a one-world model. The following sequence of updates shows this effect of our
built-in optimization.
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100 mAttention0 , mAttention1 , mAttention2 , mAttention3 , mAttention4 , mAttention5 ::
CryptoM

101

102 mAttention0 = cm0for [alice ,bob ,carol]
103 mAttention1 = update mAttention0 (Open alice)

Agents: Alice, Bob, Carol

0

Agents: Alice, Bob, Carol

1
Alice0

Bob

Carol

112 mAttention2 = update mAttention1 (Open bob)

Agents: Alice, Bob, Carol

3
Bob, Alice

2
Bob

1
Alice

0

Carol

Bob

CarolBob

Carol

Carol

Carol

Carol

117 mAttention3 = update mAttention2 (Open carol)

Agents: Alice, Bob, Carol

7
Carol, Bob, Alice

6
Carol, Bob

5
Carol, Alice

4
Carol Bob

Carol

Carol

Carol

Carol

Carol

Bob

Carol

122 mAttention4 = update mAttention3 (Open bob)
123 mAttention5 = update mAttention4 (Open alice)

Agents: Alice, Bob, Carol

5
Bob, Carol, Alice

4
Bob, Carol

Bob

Carol

Agents: Alice, Bob, Carol

2
Alice, Bob, Carol
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While the last two updates do not change facts, they still induce epistemic change. Only
after the last update Bob and Carol know that Alice is listening. More generally, we have
the following theorem.

Theorem 76. For any set of agents {a1, . . . , an} = G ⊆ I the sequence of ECL-commands

Opena1 ;Opena2 ; . . . ;Openan−1
;Openan ;Openan−1

. . . ;Opena2 ;Opena1

generates common knowledge among G that everyone in G is listening.

Proof. Note that Open commands do not have a precondition and therefore never fail.
Suppose after running the command there would be a formula of the shape Ki1 . . . KimLn
for some n ∈ G that is false. But Ln has to be true because Openn was executed at least
once. Hence suppose that KimLn is false. Then there is an im-reachable world where Ln
is false. But this cannot be because the sequence contains an Openn command after an
Openim command. Iterating this reasoning for m steps leads to a contradiction.

4.1.4 Monte Carlo Failure

In section 3.5 we gave an example for a model and a formula which a Monte Carlo algorithm
most probably judges wrong. The following shows that our implementation indeed falls
into this trap.

*ECL > eval (update (cm0for [alice ,bob]) (Create (P 0) bob (Nmbr 4))) (K bob (Neg (
Equal (PrpE (P 0)) (Nmbr 8))))

Just True
*ECL > eval (update (cm0for [alice ,bob]) (Create (P 0) bob (Nmbr 4))) (K alice (Neg (

Equal (PrpE (P 0)) (Nmbr 8))))
Just False
*ECL > evalMC (update (cm0for [alice ,bob]) (Create (P 0) bob (Nmbr 4))) (K alice (Neg )

Equal (PrpE (P 0)) (Nmbr 8))))
Just True

4.1.5 Generating Drawings

The following code generates all drawings used in this section.

170 main :: IO ()
171 main = do
172 s1 <- eclTexModel m0 "ECLm0"
173 putStrLn s1
174 s2 <- eclTexModel m1 "ECLm1"
175 putStrLn s2
176 s3 <- eclTexModel mAttention0 "mAttention0"
177 putStrLn s3
178 s4 <- eclTexModel mAttention1 "mAttention1"
179 putStrLn s4
180 s5 <- eclTexModel mAttention2 "mAttention2"
181 putStrLn s5
182 s6 <- eclTexModel mAttention3 "mAttention3"
183 putStrLn s6
184 s7 <- eclTexModel mAttention4 "mAttention4"
185 putStrLn s7
186 s8 <- eclTexModel mAttention5 "mAttention5"
187 putStrLn s8
188 putStrLn "Done."
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4.2 The Diffie-Hellman key exchange

4.2.1 Definition

Whitfield Diffie and Martin Hellman revolutionized the field of cryptography with their
proposal for public key encodings in [DH76]. Here is their famous protocol for establishing
a shared secret key over an insecure channel:

Definition 77 (Diffie-Hellman Key Exchange Over Insecure Channel).

1. Alice and Bob agree on a prime p and a base g < p such that g and p−1 are coprime.

2. Alice picks a secret a and sends ga mod p = A to Bob.

3. Bob picks a secret b and sends gb mod p = B to Alice.

4. Alice calculates k = Ba mod p.

5. Bob calculates k = Ab mod p.

6. They now have a shared key k because k = (ga)b = (gb)a mod p.

The established key k can then be used by Alice and Bob to encrypt and decrypt messages
before and after they are sent via the insecure channel, respectively. Let p be the prime that
Alice and Bob have agreed on, and let k be their shared key. Then a message represented
as the number m is encoded as

m× k mod p.

Such messages can efficiently be decoded by both Alice and Bob as follows. Alice knows p,
k, gb and a. She decodes cipher c with

c× (gb)(p−1)−a mod p.

This yields the correct m because of Fermat’s Little Theorem (see below). We have:

(ga)(p−1)−b = ga((p−1)−b) = ga(p−1) × g−ab = (gp−1)a × g−ab Fermat
= 1a × g−ab = g−ab mod p

And therefore:

c× (ga)(p−1)−b = (m× gab)× g−ab = m× (gab × g−ab) = m mod p.

Similarly, Bob knows p, k, ga and b and can decode a cipher c with c× (ga)(p−1)−b mod p.

Theorem 78 (Fermat’s Little Theorem). If p is prime, then for every a such that 1 ≤ a < p
we have ap−1 = 1 mod p.

The language LECL as given in Definition 65 allows us to formulate the entire Diffie-Hellman
key exchange and its goal as a register language protocol. For this section we fix a set
of three agents Alice, Bob and Eve. The parameters g, p,N,M are the public base and
prime and the private numbers of Alice and Bob, respectively.
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Definition 79 (Diffie-Hellman Key Exchange in ECL). For any g, p,N,M ∈ N such that
p is prime, g ∈ [1..p] and g and (p− 1) are coprime, let DHg,p,N,M abbreviate the following
sequence of commands.

q1
a← N ; r1

a← (gq1 mod p) ;
Openb ; !r1 ; Closeb ;

q2
b←M ; r2

b← (gq2 mod p) ;
Opena ; !r2 ; Closea ;

s1
a← r2

q1 mod p ;

s2
b← r1

q2 mod p

The goal of the key-exchange ψDH consists of three conjuncts, namely that the values of s1

and s2 are equal, Alice and Bob know them and Eve does not.

ψDH := (s1 = s2) ∧ (Kas1 ∧Kbs2) ∧ (¬Kes1 ∧ ¬Kes2)

The claim that a pointed modelM,m allows a successful run of the key-exchange with the
parameters g, p, N and M is now given byM,m � 〈DHg,p,N,M〉ψDH.

4.2.2 Implementation

2 import Data.Numbers.Primes
3 import Criterion.Main
4 import ECL

To run the D-H key exchange in our implementation we first define the starting model,
the command and the goal of the protocol.

10 dhStart :: CryptoM
11 dhStart = update (cm0for [alice ,bob ,eve]) (Open eve)
12

13 dhCommandList :: (Integer ,Integer ,Integer ,Integer) -> Integer -> [Com]
14 dhCommandList (popen ,gopen ,asecret ,bsecret) regmax = [
15 CreateSized (Q 1) alice (Nmbr asecret) regmax ,
16 CreateSized (R 1) alice (PowerMod (Nmbr gopen) (PrpE (Q 1)) (Nmbr popen)) regmax ,
17 (Open bob), (Announce (R 1)), (Close bob),
18 CreateSized (Q 2) bob (Nmbr bsecret) regmax ,
19 CreateSized (R 2) bob (PowerMod (Nmbr gopen) (PrpE (Q 2)) (Nmbr popen)) regmax ,
20 (Open alice), (Announce (R 2)), (Close alice),
21 CreateSized (S 1) alice (PowerMod (PrpE (R 2)) (Nmbr asecret) (Nmbr popen)) regmax ,
22 CreateSized (S 2) bob (PowerMod (PrpE (R 1)) (Nmbr bsecret) (Nmbr popen)) regmax
23 ]
24

25 dhCommand :: (Integer ,Integer ,Integer ,Integer) -> Integer -> Com
26 dhCommand (popen ,gopen ,asecret ,bsecret) regmax =
27 if and [ isPrime popen , gopen <= popen , gcd (popen -1) gopen == 1 ]
28 then lst2cmd $ dhCommandList (popen ,gopen ,asecret ,bsecret) regmax
29 else error ("Invalid Diffie -Hellman parameters!")
30

31 dhGoal :: Form
32 dhGoal = Conj [
33 Equal (PrpE (S 1)) (PrpE (S 2)),
34 K alice (PrpF (S 1)), K bob (PrpF (S 2)),
35 Neg (K eve (PrpF (S 1))), Neg (K eve (PrpF (S 2)))
36 ]

We now call dhCommand with the public parameters p, g and the private keys a and b for
Alice and Bob respectively. We provide a concrete example and a set which contains all
possible runs of the protocol. The latter should be used carefully – depending on the
registersize it becomes unmanageably big.
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42 dhSample :: (Integer ,Integer ,Integer ,Integer)
43 dhSample = (23,5,6,15)
44 allPrimes :: [Integer]
45 allPrimes = filter (registersize >) (take (fromIntegral registersize) primes)
46 dhAllSamples :: [(Integer ,Integer ,Integer ,Integer)]
47 dhAllSamples = [ (p,g,a,b) | p <- allPrimes , g<-allN , a<-allN , b<-allN ]
48 where allN = [0.. registersize]

We can now run the protocol and check the result.

*Main > eval dhStart (Com (dhCommand dhSample registersize) dhGoal)
Just True
*Main > evalMC dhStart (Com (dhCommand dhSample registersize) dhGoal)
Just True

By varying registersize and timing the computation we can observe the difference
between the normal and the Monte Carlo evaluation methods. The following table shows
how many seconds the commands take to complete in ghci with the option :set +s.

registersize Normal Monte Carlo
210 4.07 5.42
211 6.72 5.50
212 12.02 5.53

For a more thorough runtime analysis we use the criterion library by Bryan O’Sullivan
which can be found at github.com/bos/criterion. The main routine listed below is a
benchmark measuring the runtime of eval and evalMC on registers from 8 to 16 bit.

75 main :: IO ()
76 main = defaultMain $ concat [ [
77 bench (show n) $ nf (eval dhStart) (Com (dhCommand dhSample (2^n)) dhGoal),
78 bench (show n) $ nf (evalMC dhStart) (Com (dhCommand dhSample (2^n)) dhGoal)
79 ] | n <- [8..(16:: Integer)] ]

ghc -O --make DH.lhs
./DH -g -s 20 -u DH_results.csv

We compile the program using the -O switch to activate all optimizations that ghc offers.
Hence the resulting program DH is much faster than interactively testing the module with
ghci. A sample of the average results that get written into DH_results.csv is listed in the
following table. We can observe that for a small registersize the normal implementation
is faster. This is to be expected because it does not have to spend time on the generation
of random assignments. However, we can see again that from 211 onwards the Monte
Carlo algorithm is faster while the normal one roughly doubles its runtime whenever
registersize is doubled.

registersize Normal Monte Carlo
28 1.07 2.74
29 1.36 2.82
210 2.13 3.41
211 3.59 3.24
212 5.17 2.8
213 11.56 3.28
214 22.66 3.57
215 44.44 4.1
216 81.26 3.52
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4.3 Man-in-the-Middle vs Diffie-Hellman

4.3.1 Definition

It is essential that at the end of the DH protocol we have s1 = s2 and the protocol is
secure against passive eavesdroppers like Eve. But suppose now that a malicious agent
called Mallory can not only obtain but also alter the messages between Alice and Bob.
The following table shows a Man-in-the-Middle (MitM) attack as in [DY83]. Mallory can
trick Alice and Bob into generating two separate keys with him instead of each other. We
write x← for randomly choosing a secret. The symbols x−→ and x←− indicate that an agent
sends x to the neighboring agent right or left respectively.

Definition 80 (Man-in-the-Middle Attack on Diffie-Hellman Key Exchange).
Alice Mallory Bob

q1 ←; r1 = gq1 mod p
r1−→ q′1 ←, r′1 = gq

′
1 mod p

r′1−→ q2 ←; r2 = gq2 mod p

q′2 ←; r′2 = gq
′
2 mod p

r2←−
r′2←−

s1 = r′2
q1 = gq

′
2q1 s′1 = r1

q′2 = gq1q
′
2; s′2 = r2

q′1 = gq2q
′
1 s2 = r′1

q2 = gq
′
1q2

We write r′1 instead of r1 after the value has been altered by Mallory, but this is supposed
to be unknown to Bob. We can thus see that Alice and Bob behave exactly as in Definition
77 before, but in general we end up with s1 = s′1 6= s′2 = s2. Any later message sent from
Alice to Bob could now be s′1-decrypted and s′2-encrypted by Mallory.
To represent this attack in our framework we have to tackle a few questions. How can
we model the interception of communication? Are the commands Openi and Closei
expressive enough? How do we represent r′1 and r′2?
Our design choice for now is to model attacks as additional commands and substitutions
of variables. In particular for the MitM attack we insert additional commands before the
two communication lines and replace for example s1 with s′1 in every line afterwards. The
additional parameter O is the secret value used by Mallory as q′1 and q′2 above.

Definition 81 (MitM Attack on Diffie-Hellman Key Exchange in ECL). For any given
parameters g, p,N,M,O ∈ N such that p is prime, g ∈ [1..p] and g and (p−1) are coprime,
let DHMITMg,p,N,M abbreviate the following sequence of commands.

q1
a← N ; r1

a← (gq1 mod p) ; Openm ; !r1 ; Closem ;

q′1
m← O ; r′1

m← (gq
′
1 mod p) ; Openb ; !r′1 ; Closeb ;

q2
b←M ; r2

b← (gq2 mod p) ; Openm ; !r2 ; Closem ;

q′2
m← O ; r′2

m← (gq
′
2 mod p) ; Opena ; !r′2 ; Closea ;

s1
a← r′2

q1 mod p ; s2
b← r′1

q2 mod p ; s′1
m← r1

q′2 mod p ; s′2
m← r2

q′1 mod p

The goal of the attack ψDHMITM is again a conjunction of multiple claims. The values of
s1 and s2 should not be the same, but they are equal to s′1 and s′2 which are both known by
Mallory.

ψDHMITM := (s1 6= s2 ∧ s1 = s′1 ∧ s2 = s′2 ∧Kms
′
1 ∧Kms

′
2)

The claim that a pointed model M,m allows a successful run of the attack with the
parameters g, p, N , M , O is now given byM,m � 〈DHMITMg,p,N,M,O〉ψDHMITM.

76



4.3.2 Implementation

In the following code we represent r′1 by R 11, r′2 by R 22 and so on. Also note that
instead of creating private registers for the secret numbers we use the variables asecret,
bsecret and msecret directly in order to keep the model size small.

6 import Data.Numbers.Primes
7 import ECL
8

9 dhMitmStart :: CryptoM
10 dhMitmStart = cm0for [alice ,bob ,mallory]
11

12 dhMitmCommandList :: (Integer ,Integer ,Integer ,Integer ,Integer) -> Integer -> [Com]
13 dhMitmCommandList (popen ,gopen ,asecret ,bsecret ,msecret) rs = [
14 CreateSized (R 1) alice (PowerMod (Nmbr gopen) (Nmbr asecret) (Nmbr popen)) rs,
15 Open mallory , Announce (R 1), Close mallory ,
16 CreateSized (R 11) mallory (PowerMod (Nmbr gopen) (Nmbr msecret) (Nmbr popen)) rs,
17 Open bob , Announce (R 11), Close bob ,
18 CreateSized (R 2) bob (PowerMod (Nmbr gopen) (Nmbr bsecret) (Nmbr popen)) rs ,
19 Open mallory , Announce (R 2), Close mallory ,
20 CreateSized (R 22) mallory (PowerMod (Nmbr gopen) (Nmbr msecret) (Nmbr popen)) rs,
21 Open alice , Announce (R 22), Close alice ,
22 CreateSized (S 1) alice (PowerMod (PrpE (R 22)) (Nmbr asecret) (Nmbr popen)) rs ,
23 CreateSized (S 2) bob (PowerMod (PrpE (R 11)) (Nmbr bsecret) (Nmbr popen)) rs,
24 CreateSized (S 11) mallory (PowerMod (PrpE (R 1)) (Nmbr msecret) (Nmbr popen)) rs,
25 CreateSized (S 22) mallory (PowerMod (PrpE (R 2)) (Nmbr msecret) (Nmbr popen)) rs
26 ]
27

28 dhMitmCommand :: (Integer ,Integer ,Integer ,Integer ,Integer) -> Integer -> Com
29 dhMitmCommand (popen ,gopen ,asecret ,bsecret ,msecret) rs =
30 if and [ isPrime popen , gopen <= popen , gcd (popen -1) gopen == 1 ]
31 then lst2cmd $ dhMitmCommandList (popen ,gopen ,asecret ,bsecret ,msecret) rs
32 else error ("Invalid Diffie -Hellman parameters!")
33

34 dhMitmSample :: (Integer ,Integer ,Integer ,Integer ,Integer)
35 dhMitmSample = (23,5,6,15,13)
36

37 dhMitmGoal :: Form
38 dhMitmGoal = Conj [
39 Neg $ Equal (PrpE (S 1)) (PrpE (S 2)),
40 Equal (PrpE (S 1)) (PrpE (S 11)),
41 Equal (PrpE (S 2)) (PrpE (S 22)),
42 K mallory (PrpF (S 11)),
43 K mallory (PrpF (S 22))
44 ]

Because the whole command takes almost two days to run with a registersize of 28, we use
the function stepwiseUpdateEvalMC from page 67 to observe the process as the updates
are executed one after another. Lazy evaluation of Haskell ensures that the intermediate
results are printed as soon as they are available, even though the goal formula only gets
evaluated on the last model. Finally, note that we do all this using the fast Monte Carlo
methods – the normal implementation is unable to cope with such huge models.

51 main :: IO ()
52 main = do
53 putStr $ stepwiseUpdateEvalMC dhMitmStart (dhMitmCommandList dhMitmSample

registersize) dhMitmGoal

$ ghc -O --make DHMITM.lhs && (date +%F\ @\ %T; ./ DHMITM ;date +%F\ @\ %T)
[7 of 7] Compiling Main ( DHMITM.lhs , DHMITM.o )
Linking DHMITM ...
2014 -05 -27 @ 14:48:38
After CreateSized r 1 Alice (PowerMod (Nmbr 5) (Nmbr 6) (Nmbr 23)) 256:

size = 2 // regs = [(r 1,8)]

After Open Mallory:
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size = 4 // regs = [(r 1,8)]

After Announce r 1:
size = 4 // regs = [(r 1,8)]

After Close Mallory:
size = 4 // regs = [(r 1,8)]

After CreateSized r 11 Mallory (PowerMod (Nmbr 5) (Nmbr 13) (Nmbr 23)) 256:
size = 8 // regs = [(r 11,21) ,(r 1,8)]

After Open Bob:
size = 16 // regs = [(r 11,21) ,(r 1,8)]

After Announce r 11:
size = 16 // regs = [(r 11,21) ,(r 1,8)]

After Close Bob:
size = 16 // regs = [(r 11,21) ,(r 1,8)]

After CreateSized r 2 Bob (PowerMod (Nmbr 5) (Nmbr 15) (Nmbr 23)) 256:
size = 32 // regs = [(r 2,19) ,(r 11 ,21) ,(r 1,8)]

After Open Mallory:
size = 48 // regs = [(r 2,19) ,(r 11 ,21) ,(r 1,8)]

After Announce r 2:
size = 48 // regs = [(r 2,19) ,(r 11 ,21) ,(r 1,8)]

After Close Mallory:
size = 48 // regs = [(r 2,19) ,(r 11 ,21) ,(r 1,8)]

After CreateSized r 22 Mallory (PowerMod (Nmbr 5) (Nmbr 13) (Nmbr 23)) 256:
size = 96 // regs = [(r 22,21) ,(r 2,19) ,(r 11,21) ,(r 1,8)]

After Open Alice:
size = 192 // regs = [(r 22 ,21) ,(r 2,19) ,(r 11 ,21) ,(r 1,8)]

After Announce r 22:
size = 192 // regs = [(r 22 ,21) ,(r 2,19) ,(r 11 ,21) ,(r 1,8)]

After Close Alice:
size = 192 // regs = [(r 22 ,21) ,(r 2,19) ,(r 11 ,21) ,(r 1,8)]

After CreateSized s 1 Alice (PowerMod (PrpE r 22) (Nmbr 6) (Nmbr 23)) 256:
size = 384 // regs = [(s 1,18) ,(r 22,21) ,(r 2,19) ,(r 11,21) ,(r 1,8)]

After CreateSized s 2 Bob (PowerMod (PrpE r 11) (Nmbr 15) (Nmbr 23)) 256:
size = 768 // regs = [(s 2,7) ,(s 1,18) ,(r 22,21) ,(r 2,19) ,(r 11,21) ,(r 1,8)]

After CreateSized s 11 Mallory (PowerMod (PrpE r 1) (Nmbr 13) (Nmbr 23)) 256:
size = 1536 // regs = [(s 11,18) ,(s 2,7) ,(s 1,18) ,(r 22,21) ,(r 2,19) ,(r 11,21) ,(r

1,8)]

After CreateSized s 22 Mallory (PowerMod (PrpE r 2) (Nmbr 13) (Nmbr 23)) 256:
size = 3072 // regs = [(s 22,7) ,(s 11,18) ,(s 2,7) ,(s 1,18) ,(r 22,21) ,(r 2,19) ,(r

11,21) ,(r 1,8)]

Conj [Neg (Equal (PrpE s 1) (PrpE s 2)),Equal (PrpE s 1) (PrpE s 11),Equal (PrpE s 2)
(PrpE s 22),K Mallory (PrpF s 11),K Mallory (PrpF s 22)] is Just True

2014 -05 -29 @ 10:31:41
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Chapter 5

Conclusion and Future Work

Combining several ideas from the literature on Dynamic Epistemic Logic, we defined and
implemented two systems based on a new representation of what it means to know a
number. The register models we presented can encode Kripke frames of exponentially
larger size and allow us to focus on the relevant information in multi-agent situations.
The logic GG can represent knowledge and updates in guessing games. It shows in a
simple setting how announcements of equalities and inequalities can be defined as action
structures for the product update of register models. Our main technical result is a sound
and complete axiomatization of GG using reduction axioms.
The second system we presented is Epistemic Crypto Logic, short ECL. It allows the
analysis of directed communication and explicit computation as part of the language.
Announcements to local sets of listeners and calls for attention are defined as action
structures. We gave no axiomatization for ECL so far but sketched how it could be
obtained via general axiomatizations for action structures. We also defined so-called Monte
Carlo Semantics that allow us to estimate the truth of certain formulas without going
through all assignments.
Real-world protocols can be translated to ECL and we did so for the Diffie-Hellman key
exchange as a prime example that is both well-studied and used in practice.
For both GG and ECL we implemented model checking in Haskell. All examples and
drawings of Kripke models have been generated with our program. Furthermore, we ran
several experiments on our formalization of the Diffie-Hellman key exchange and could
verify the efficiency of the proposed Monte Carlo method.

Coming to the end, we sketch some ideas how the presented work can be continued.

1. An obvious gap in our work on ECL is the missing axiomatization. So far we were
unable to extend the GG system from Section 2.4 to a sound and complete system
for ECL. But given that ECL is based on structures for which [BMS98] provides a
general axiomatization, we expect that such a system can be found.

First, to obtain a sound and complete axiomatization for common knowledge instead
of the global modality as it occurred in GG, one can employ relativized common
knowledge as it is described in [BEK06, p. 1633].

Second, the main difficulty is the introduction of local listener sets that forces us
to revise the reduction axioms for announcements and to find reduction axioms
for Open and Close. The syntactic trick we discussed in Section 3.1.1 seems to
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make an aesthetic axiomatization impossible. A promising base for axiomatizing
ECL seems to be [DHLS13, Section 6] which also includes adding and removing of
listeners.

The following idea generalizing the framework of action structures might also yield
a solution: So far we have preconditions on the different elements in an action
structure. Why not do the same for the edges between them? We could then define
announcements to the current set of listeners as an action model with two elements
α and β where the bidirectional edges αRiβ have the precondition ¬Li for all i ∈ I.
In an S5-based approach the precondition of an edge has to hold at both ends for
the edge to appear in the product. A similar alternative might be to use Arrow
Update Logic from [KR11] where updates on accessibility relations can depend on
which formulas are true at the two worlds that are connected by an edge.

It is notable that this idea has been suggested earlier, also motivated by security
protocols: “A promising extension is to introduce conditional epistemic relations in
the action model which depend on the epistemic states of the agents.”[DW07]

2. We no longer include a global anchor function in to our models as previously suggested
in [Gat13]. Instead we follow the motto of modal logic to “keep things local” and
can connect to research in abstract modal logic. For example our GG models can be
seen as coalgebras (See [Ven06]) for this functor:

X 7→ (P(P)× (N× N× P(N))P ×P2 ×P2)× P(X)I

3. Both in LGG and LECL announcements are restricted to equality and inequality
statements. In particular we can express but not announce the following sentences:

p ∨ q “Either p or q is true.”
Kbp ∨Kb¬p “Bob knows whether p.”
¬Ka(p = q) “Alice does not know if p and q have the same numeric value.”

To model these correctly one would like to allow arbitrary announcements of the
form [!φ] as presented in Section 1.2. However, deleting the worlds where φ is false
is not the right thing to do in our framework, because φ could also be undecided
in some worlds. Instead we need appropriate modifications on the valuation for
each type of formula, as we presented them for announcements of equalities and
inequalities.

A strategy to find the right action structures for announcements could be to first
observe what the effect of the announcement in the big unraveled model is and then
try to encode the resulting big model into a register model again.

4. For simplicity we did not add modalities for common knowledge to GG and ECL.
As presented in [VVK07, Section 7.7], common knowledge and action structures
can be combined in an axiomatizable logic. Hence a desirable generalization of our
logics would be to include the modality C to the language and explore the interplay
of common knowledge and registers. As [WKvE09] shows there are interesting use
cases for such logics, for example one would want to verify that common knowledge
of the protocol does not endanger its security.
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5. At the beginning of Section 3.1.1 we saw that some situations could be modeled
in our framework but were unreachable with commands in LGG. We can ask the
same question about LECL: Given our set of commands, which models are reachable
from one-world models of blissful ignorance and which are not? And an interesting
follow-up question: Are there formulas which are valid on all reachable models but
not on arbitrary ECL-models?

6. Our Definition 71 for register creation does not demand an agent for which a register
is created to know how to evaluate the given expression. Intuitively, this means that
registers are created for and not by agents. To really represent the latter, one could
add the precondition to p i← E that E is determined in all worlds which i confuses
with the actual one.

7. Our implementation can be extended in various ways including the following.

(a) Given an axiomatization based on reduction schemes, one could also implement
rewriting to command-free formulas for LECL.

(b) The Monte Carlo evaluation functions could be altered to not just return a truth
value but also say how reliable the result is according to the probabilities we
briefly sketched in section 3.5. Working out the details of such an implementation
would also allow us to find the “Monte Carlo fragment”, i.e. the set of formulas
for which � and |≈ coincide.

(c) Throughout our experiments we sticked to relatively small registersizes. Es-
pecially the generation of random assignments should be improved for large
numbers.

8. Finally, an ambitious goal would be to find attacks on a given protocol automatically.
This could be done by defining a protocol as a list of commands with designated
attack-points, for example whenever communication occurs. An attack on this
protocol then would be a list of sequences meant to be inserted at these points. And
just like a protocol, also an attack has a goal which can be stated as a formula.

Now, an ideal implementation for automated attack finding would take as input
the protocol and an attack goal and a set of allowed commands. By brute-forcing
the combinations of commands that can be inserted at the attack points, it should
then be able to find attacks like the Man-in-the-Middle attack on the Diffie-Hellman
protocol. However, we have to admit that at this stage our implementation is too
slow to make this practical. Further optimization is needed.
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List of Symbols

Symbol Usage

φ, ψ, ξ, χ, . . . Formulas
3 Basic modality “possible”
2 Dual basic modality “necessary”
K Knowledge modality
Ki Knowledge modality for agent i

a, b, i, j, . . . Agents
α, β, γ, . . . Actions
C, C1, C2, . . . Commands

K Basic Normal Modal Logic
S5 Modal Logic on equivalence relations
DEL Dynamic Epistemic Logic
GG Guessing Game Logic
ECL Epistemic Crypto Logic
PDL Propositional Dynamic Logic

L3 Basic Modal Language
LGG Language for Guessing Games
LECL Language for Cryptographic Protocols

F Frames
M,M1,M2 Models
Mα Model after product update with α
F Classes of frames
M Classes of models

N The set of natural numbers {0, 1, 2, 3, . . . }
P Powerset functor
dom Domain of a function
◦ Consecutive execution of functions
f�X Restriction of f to the set X
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Appendix

REL.hs

This module contains various functions to work with relations and tuples: Closure oper-
ations, getting specific elements of a tuple, applying a relation, the Cartesian product,
replacing elements in a list and separating strings with a given separator.

10 module REL where
11 import Data.List
12

13 -- a is a type variable , we allow all kinds of relations:
14 type Rel a = [(a,a)]
15

16 concatRel :: Eq a => Rel a -> Rel a -> Rel a
17 concatRel r s = nub [ (x,z) | (x,y) <- r, (w,z) <- s, y == w ]
18

19 lfp :: Eq a => (a -> a) -> a -> a -- least fixed point
20 lfp f x | x == f x = x
21 | otherwise = lfp f (f x)
22

23 dom :: Eq a => Rel a -> [a] -- "domain"
24 dom r = nub (foldr (\ (x,y) -> ([x,y]++)) [] r)
25

26 rtc :: Eq a => Rel a -> Rel a -- reflexive -transitive closure
27 rtc r = lfp (\ s -> (s ‘union ‘ (concatRel r s))) i
28 where xs = dom r
29 i = [(x,x) | x <- xs ]
30

31 symc :: Eq a => Rel a -> Rel a -- symmetric closure
32 symc r = nub $ r ++ [ (y,x) | (x,y) <- r ]
33

34 rtsc :: Eq a => Rel a -> Rel a -- reflexive -transitive -symmetric closure
35 rtsc r = symc (rtc r)
36

37 -- fst and friends for triples , quadruples and quintuples:
38 fst3 :: (a,b,c) -> a
39 fst3 (a,_,_) = a
40

41 snd3 :: (a,b,c) -> b
42 snd3 (_,b,_) = b
43

44 trd3 :: (a,b,c) -> c
45 trd3 (_,_,c) = c
46

47 fst4 :: (a,b,c,d) -> a
48 fst4 (a,_,_,_) = a
49

50 snd4 :: (a,b,c,d) -> b
51 snd4 (_,b,_,_) = b
52

53 trd4 :: (a,b,c,d) -> c
54 trd4 (_,_,c,_) = c
55

56 fth4 :: (a,b,c,d) -> d
57 fth4 (_,_,_,d) = d
58
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59 fst5 :: (a,b,c,d,e) -> a
60 fst5 (a,_,_,_,_) = a
61

62 snd5 :: (a,b,c,d,e) -> b
63 snd5 (_,b,_,_,_) = b
64

65 trd5 :: (a,b,c,d,e) -> c
66 trd5 (_,_,c,_,_) = c
67

68 fth5 :: (a,b,c,d,e) -> d
69 fth5 (_,_,_,d,_) = d
70

71 fft5 :: (a,b,c,d,e) -> e
72 fft5 (_,_,_,_,e) = e
73

74 relevant :: Ord a => Eq a => Rel a -> Rel a -- relevant part of a relation
75 relevant r = filter (\p -> not $ impl p) s
76 where s = filter (\(x,y) -> (x < y)) r
77 impl (a,b) = any (\c -> ( elem (a,c) s && elem (c,b) s )) (dom r)
78

79 apply :: Show a => Eq a => [(a,b)] -> a -> b -- apply a relation , return the first
match

80 apply rel left =
81 if (elem left ( map fst rel ))
82 then snd $ head $ filter (\(a,_) -> a==left) rel
83 else
84 error ("apply failed: Relation is not defined at "++( show left)++" but only at "

++ show (map fst rel) )
85

86 cartProd :: [a] -> [b] -> [(a,b)] -- Cartesian product
87 cartProd xs ys = [ (x,y) | x <- xs, y <- ys ]
88

89 replace :: Eq a => [a] -> [a] -> [a] -> [a] -- replace an element in a list
90 replace [] _ _ = []
91 replace s search repl =
92 if take (length search) s == search
93 then repl ++ (replace (drop (length search) s) search repl)
94 else [head s] ++ (replace (tail s) search repl)
95

96 sepBy :: [String] -> String -> String -- separating a set of elements with a separator
97 sepBy [] _ = ""
98 sepBy [x] _ = x
99 sepBy (now:todo) sep = sepByStep todo sep now

100 sepByStep :: [String] -> String -> String -> String
101 sepByStep [] _ done = done
102 sepByStep (now:todo) sep done = sepByStep todo sep (done ++ sep ++ now)

MODEXP.hs

Given a, b and n, this algorithm from [CLRS09, p. 957] efficiently computes ab mod n.
Based on joint work with Nadine Theiler for course homework in 2013.

18 module MODEXP where
19

20 exM :: Integer -> Integer -> Integer -> Integer
21 exM a b n = exM ’ a (toBin b) n 1
22

23 exM ’ :: Integer -> [Integer] -> Integer -> Integer -> Integer
24 exM ’ _ [] _ d = d
25 exM ’ a (b_i:b_rest) n d
26 | b_i == 1 = exM ’ a b_rest n (mod ((mod (d*d) n)*a) n)
27 | otherwise = exM ’ a b_rest n (mod (d*d) n)
28

29 toBin :: Integer -> [ Integer ]
30 toBin 0 = [ 0 ]
31 toBin n = toBin (quot n 2) ++ [rem n 2]
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KRIPKEVIS.hs

The following module creates visualizations of Kripke models. It is independent of the
valuation type because it takes several functions to translate different parts of the models
into strings. The module heavily employs Graphviz from www.graphviz.org which is
discussed in detail in [GN00].

27 module KRIPKEVIS where
28 import Data.List
29 import System.IO
30 import System.Process
31

32 begintab ,endtab ,newline :: String
33 begintab = "\\\\ begin{tabular }{c}"
34 endtab = "\\\\ end{tabular}"
35 newline = " \\\\\\\\[0 pt] "
36

37 type PartitionOf a = [[a]]
38

39 data VisModel a b c = VisModel [a] [(b,PartitionOf a)] [(a,c)] a
40

41 stringModel :: Ord a => Eq a => Eq b => Show a => Show b =>
42 (a -> String) -> (b -> String) -> (c -> String) -> String
43 -> VisModel a b c
44 -> String
45 stringModel showState showAgents showVal information model =
46 "graph G { \n\
47 \ node [shape=doublecircle ,label =\""
48 ++ labelof cur ++ "\"] w" ++ showState cur ++ ";\n"
49 ++ concat [ ndlinefor s | s <- otherstates ]
50 ++ " rankdir=LR; \n size =\"6 ,5!\" \n"
51 ++ concat [ " w" ++ show x ++" -- w"++ show y
52 ++"[ label = \""++ showAgents a ++"\" ]; \n"
53 | (a,x,y) <- edges ]
54 ++ " label = \""++ information ++"\"; \n "
55 ++ "} \n"
56 where
57 (VisModel states rel val cur) = model
58 labelof s = begintab ++ "\\\\ textbf{" ++ showState s ++ "}" ++ newline ++ showVal

(visApply val s) ++ endtab
59 ndlinefor s = " node [shape=circle ,label =\""
60 ++ labelof s ++ "\"] w" ++ show s ++ ";\n"
61 otherstates = delete cur states
62 edges = nub $ concat $ concat $ concat [ [ [ if (x < y) then [(a,x,y)] else [] | x

<- part , y <- part ] | part <- (visApply rel a) ] | a <- (agents model) ]
63 agents (VisModel _ rel ’ _ _) = map fst rel ’
64

65 dotModel :: Ord a => Eq a => Eq b => Show a => Show b =>
66 (a -> String) -> (b -> String) -> (c -> String) -> String
67 -> VisModel a b c
68 -> String -> IO String
69 dotModel showState showAgents showVal info model filename =
70 let gstring = stringModel showState showAgents showVal info model
71 in do
72 newFile <- openFile (filename) WriteMode
73 hPutStrLn newFile gstring
74 hClose newFile
75 return ("Model was DOT ’d to "++ filename)
76

77 texModel :: Ord a => Eq a => Eq b => Show a => Show b =>
78 (a -> String) -> (b -> String) -> (c -> String) -> String
79 -> VisModel a b c
80 -> String -> IO String
81 texModel showState showAgents showVal info model filename =
82 do
83 forget <- dotModel showState showAgents showVal info model ("tex/"++ filename ++".

dot")
84 putStrLn forget
85 _ <- system ("cd tex/; dot2tex --figonly -ftikz -traw -p --autosize -w --
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usepdflatex "++ filename ++".dot > "++ filename ++".tex;" )
86 return ("Model was TeX ’d to tex/" ++ filename ++ ".tex")
87

88 dispModel :: Ord a => Eq a => Eq b => Show a => Show b =>
89 (a -> String) -> (b -> String) -> (c -> String) -> String
90 -> VisModel a b c
91 -> IO String
92 dispModel showState showAgents showVal info model =
93 do
94 forget <- dotModel showState showAgents showVal info model "tmp/temp.dot"
95 putStrLn forget
96 _ <- system ("cd tmp/; dot2tex -ftikz -traw -p --autosize -w --usepdflatex temp.

dot > temp.tex; pdflatex -interaction=nonstopmode temp.tex > temp.pdflatex.log
; okular temp.pdf;" )

97 return ("Model was TeX ’d and shown.")
98

99 minimalHeader :: String
100 minimalHeader = "\\ documentclass [12pt]{ article} \n\
101 \ \\ usepackage[utf8]{ inputenc} \n\
102 \ \\ usepackage[vcentering ,papersize ={16cm ,9cm},total ={15cm ,8cm}]{ geometry} \n\
103 \ \\begin{document} \n"
104 minimalFooter :: String
105 minimalFooter = "\n \\end{document} \n"
106

107 dispTexCode :: String -> IO String
108 dispTexCode code = do
109 newFile <- openFile ("tmp/code.tex") WriteMode
110 hPutStrLn newFile (minimalHeader ++ code ++ minimalFooter)
111 hClose newFile
112 _ <- system ("cd tmp/; pdflatex -interaction=nonstopmode code.tex > code.pdflatex.

log; okular code.pdf;" )
113 return ("Code was TeX ’d and shown.")
114

115 -- A helper function to apply relations:
116

117 visApply :: Show a => Eq a => [(a,b)] -> a -> b
118 visApply rel left =
119 if (elem left ( map fst rel ))
120 then snd $ head $ filter (\(a,_) -> a==left) rel
121 else
122 error ("Applying of a relation failed. Cannot visualize this.")

Installing and running the implementations
To use the presented implementations of GG and ECL, LATEX, Haskell, graphviz and gnuplot
should be installed. On current versions of Debian this can be achieved with:

sudo apt -get install texlive -latex -extra graphviz gnuplot ghc cabal -install

We also use some Haskell libraries which can be installed by:

cabal update
cabal install process gnuplot primes criterion

Now you can download and run the implementation:

wget https ://www.w4eg.de/malvin/illc/thesis/code.zip
unzip code.zip; cd code
ghci ECL.lhs # or ghci GG.lhs} for the implementation of GG

Information and errata will be available at https://www.w4eg.de/malvin/illc/thesis.
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