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Abstract

This thesis focusses on the question how compositional language emerged. Two
new models for combinatorial message use are presented. In these models two
agents play a Lewis signalling game. The first model is an adaptation of the
Barrett-Skyrms model[2, 3, 4] for multiple messages. This adaptation allows
for message of arbitrary length and is less likely to get caught in a pooling
equilibrium than existing models do. The second model is an artificial neural
network approach. In this model it is more likely that a signalling strategy with
perfect information transfer emerges and the agents can communicate about
states that are not trained but are similar to the states that are known.
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Chapter 1

Introduction

How did the first word get its meaning? Suppose that that first word was the
imitation of a sound and the answer is simple: it referred to what it sounded
like. But most words we use do not sound like what they refer to, and not all
objects we want to refer to have a sound we can imitate. Human language is a
very advanced system: we can discuss virtually anything. Objects do not have
to be around or even have to exist to refer to them. We can discuss feelings
and fiction: things that are not visible. There is a long journey from the first
intentionally produced noise to the language we use today. This thesis is about
the first steps: how to combine different elements of a message and transfer
meaning.

I will model communication as agents playing signalling games. In these
games, introduced by David Lewis [7] (and therefore also called Lewis games),
two agents have to coordinate an action by using messages. If the agents suc-
ceed, they will receive a reward, if they fail they receive nothing. This theoretical
framework has been used extensively to investigate the emergence communica-
tive systems[14]. Most learning models use holistic messages: the entire sound
or symbol is treated as a single message.

Two models of combinatorial message use will be presented. The combina-
torial messages consist of individual parts that contribute to the meaning of the
whole. The first model is an extension of reinforcement learning models that
have been used successfully for information transfer with holistic messages. The
second is based on artificial neural networks, models that are used in machine
learning for pattern recognition.

The models have several properties in common: The agents have no internal
representation of the game and have no information on the choice of the other
player. The agents learn only from the rewards of the actions they chose. To
learn a strategy, the agents have to explore the different strategies. After the
exploration, the agents should exploit the best strategy and get optimal rewards.

The extension of the reinforcement learning model signals by using sequences
of arbitrary length. Earlier models only used single messages or sequences of
fixed length. The basic version of this model is more successful than the existing
models. The models that have been used so far are susceptible to pooling traps:
suboptimal signalling strategies that are difficult to escape from. In the new
model pooling occurs less often. Some variations of the model are presented as
well.



The neural network model is a new model based on the framework of Cownden[5]
for playing game theoretic games with neural networks. The model is more likely
to learn a signalling system than the existing models. This model will often re-
sult in compositional signalling systems where each message indicates a property
of the state. If a new state with similarity to known states is presented to these
compositional systems, they can communicate successfully about this new state.

The structure of the thesis is as follows: The second chapter introduces
some concepts of language evolution and signalling games. In the third chapter
I discuss my extension of the reinforcement learning model and its results. In
the fourth chapter I present the neural network model and show that it is more
likely to learn a signalling system and that it allows for creative compositionality.



Chapter 2

Background

2.1 Signalling games

In his book Convention[7], David Lewis introduces signalling games. These
games have two players: a sender and a receiver. The sender has some infor-
mation about the world. The receiver needs to know this information to choose
the best action in the current state of the world, but has no direct access to it.
If the receiver chooses the appropriate action, both agents will receive a reward,
S0 it is in the senders interest to aid the receiver. In table 2.1 an example of the
payoffs for such a game can be seen. The agents both receive exactly the same
payoff, so there is no incentive for the sender to deceive the receiver and the
receiver has no reason to distrust the sender. The problem is the following: the
sender and receiver have no language to communicate. The sender has a set of
signals he can use to convey information to the receiver. But these signals have
no predefined meaning, so the receiver will not immediately know which state
is indicated by which signal. By developing a convention the agents can learn
to communicate with the signals.

What exactly the convention is, is arbitrary. If there are two signals, it does
not matter which one the sender uses to indicate state 1, as long as the agents
use the same convention. In figure 2.1 two possible strategies for a situation
with two states, two messages and two actions are shown. On the left is the
strategy where the agent always sends message 1 when he observes state 1.
When the agent receives a message, he will always choose action 1 if he hears
message 1. The other message is exclusively used for the second state. On the
right another strategy is shown, where the messages are used in exactly the
opposite situation. Neither of the strategies is better: in both cases the agents
will receive the payoff because they successfully communicate about the state.

Payoffs  State 1  State 2
Action 1 1 -
Action 2 - 1

Table 2.1: Payoff matrix for a two state, two action signalling
game
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Figure 2.1: Strategies for a 2-state game
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All strategies that result in maximum payoff are called signalling systems.

2.2 Animal signalling

When one compares the signalling game with the rich and complex language
humans use, it might seem an oversimplification. But animal communication
follows this pattern quite often, for example in alarm calls. When one animal
perceives a potential harmful situation, for example a rival group or a predator,
it sounds an alarm call to alert the other animals in the group. These alarm
calls are specific for the type of danger, because each danger requires a different
action. Fight or flight is not the only decision: where to flee or how to fight
depends on the situation.

For each predator, a different tactic is most suitable. Campbell’s monkeys
(Cercopithecus c. campbelli) have several enemies: gaboon vipers, leopards and
crowned eagles [8]. If an leopard is encountered, a common tactic for male and
female Campbell’s monkeys is to climb in a tree and stay there for a while. This
way the monkeys are out of reach for the leopard. Climbing high in a tree is
not a good hiding tactic for aerial predators. If a crowned eagle is spotted, the
female monkeys, who are smaller than the males, will go down in the tree or
hide in the foliage. The males are approximately the same size as the crowned
eagles and will go towards the eagle and attack it. Gaboon vipers are venomous
and all monkeys avoid it by climbing in the trees. For these different enemies,
Campbell’s monkeys have different types of alarm calls [9].

Campbell’s monkeys use very simple composition in their alarm calls. If some
danger is in the area but no imminent treat, male Campbell’s monkeys will use a
specific boom-like sound before the normal alarm call [17]. This communication
is not only between animals of the same species: Diana monkeys live in the
same area and will listen to the alarm calls. They will respond to normal alarm
calls but in cases where the prefix is used they show little response.

Another example of composition is the syntax and semantics of the calls
of black-capped chickadees[14]. Chickadees use a set of four sounds and will
combine these in a specific order. If a call does not use this order, the chickadees
will not respond to it. As long as the sounds follow the order, they may be
repeated or omitted. The length of the repeats contains information: the alarm
calls for larger predators are shorter than the alarm calls for small predators.



There are also limited examples of more complicated communication in ani-
mals, though it was not in a natural setting. In various experiments researchers
tried to teach apes to communicate with symbols. Two young pygmy chim-
panzees learned to communicate with symbols and gestures without formal
training, by observing the training or use by other apes[12]. The eldest ape
started to use new combinations of symbols and gestures, for example to re-
quest that two caretakers would play chase together. All other apes only used
verbs when they were one of the agents.

Monkeys are also capable of learning from input when their actions do not
necessarily result in a reward. Yang and Shadlen [16] performed an experiment
where rhesus monkeys had to make a choice between two targets. One of the
targets would result in a reward. The monkeys would be presented four shapes
out of a set of 10 possibilities. Each of these shapes corresponded to a weight
which influenced the probability of the payoff. The monkeys would learn to
choose the target that corresponds to the weights. If the evidence for the targets
was neutral, they would select each target with chance 0.5. Because there
are 10* combinations of shapes, it is not likely that the monkeys learned each
specific combination but that they combined the information of the targets.
This experiments has two results that are important for signalling games: rhesus
monkeys can learn a task when the options do not have a fixed payoff and can
combine information of individual signals.

2.3 Evolutionary dynamics

To analyse the emergence of communicative behaviour, we model communica-
tion as a game theoretic problem. We do not only look at the behaviour of the
individual agents, but also how this behaviour develops in a population. In a
population consisting of agents, all agents play the same game but with possible
different strategies. Players are paired randomly and have no information about
the strategy of their opponent.

2.3.1 Evolutionary stable strategies

An evolutionary stable strategy (ESS) [15], [14, ch. 4] is a strategy such that
in a population of agents using this strategy, a small group of agents with a
different strategy will not have higher payoffs. The agents of the smaller group
are called mutants. A strategy S is evolutionary stable if all mutants do worse
when playing against arbitrary players in the population.This is the case if 7)
payoff for S against S is higher than M against S or i7) S and M do equally well
when playing against S, but S against S results in a higher payoff than S against
M.

Consider the game stag hunt (figure 2.2, left). In this game, players can
cooperate for a big reward or work alone (defect) for a smaller reward. The
highest payoff is when both players cooperate. But if a player cooperates and
the opponent does not, the cooperator is left with nothing and would have been
better off working alone too.

If most agents cooperate, a small group of defectors will not do better: If
fraction p of the population cooperates, the expected payoff for the cooperators



Stag hunt Prisoner’s dilemma

Cooperate Defect Cooperate Defect
Cooperate 3 1 Cooperate 3 4
3 0 3 0
Defect 0 1 Defect 0 1
1 1 4 1

Figure 2.2: Payoff matrices for stag hunt and prisoner’s dilemma

is 3p.! The defectors always receive payoff 1 and will have a lower payoff if p is
close to 1.

On the other hand, if most players defect, p is very low and 3p < 1 and a
small group of cooperators will receive a lower payoff than the main population.

An example of a strategy that is not evolutionary stable is the cooperate
strategy in prisoner’s dilemma (figure 2.2, right). If everybody in the population
cooperates, everybody receives payoff 3. But if a small group of defectors enters
the population, they will perform better. If they encounter a cooperator they
receive payoff 4 instead of 3 and if they encounter a fellow defector they receive 1
instead of 0. It is clear that defecting is an evolutionary stable strategy, because
cooperation will never perform better.

2.3.2 Replicator dynamics

In evolution, three aspects are important: variation, reproduction and inheri-
tance. The concept of evolutionary stability provides some insight in the dif-
ferent strategies, which can be seen as variation in the population. For repro-
duction and inheritance we will look at the replicator dynamics. This assumes
that successful individuals reproduce more and that their offspring will inherit
properties[14]. To model this, assume a population with agents of different
types. At time ¢, the expected payoff for each type S is calculated from the pro-
portions z:(.S) of the types. This expected payoff is the fitness of the type. The
number of offspring each individual gets depends on the fitness. The offspring
are exact copies of the agent, there is no combination of strategies. For the new
generation the proportion is calculated by comparing the fitness of the type to
the average fitness:

211(S) = 24(S) * (Fitness(S)/Average fitness)

Types with a higher than average fitness will make up a larger proportion
of the population for the next generation, while types with lower than average
fitness will have a smaller new generation.

The proportions of a population with two types can be represented on a line.
On one end, it represents a population with only type 1 agents, on the other
end only type 2 agents. The points in between represent a mixed population.

In the case of stag hunt, we have seen that in populations with mainly coop-
erators the cooperators have higher fitness and there will be more cooperators
in the next generation. If there are mostly defectors, the defectors have higher
fitness and the proportion of defectors will grow.

LA cooperator has probability p to encounter a cooperator and receive payoff 3 and prob-
ability 1 — p to encounter a defector and receive payoff 0.
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Figure 2.3: Population dynamics for stag hunt (top) and pris-
oner’s dilemma (bottom). On the left of the line is the popula-
tion with only cooperators, on the right only defectors. Figure
from [14]

For the game stag hunt, there is a situation in which the proportions stay
exactly the same: if 1/3 of the agents cooperates, both types have the same
expected payoff (1). If there are more cooperators, the proportion of cooperators
will grow each round until there are almost no defectors left. If there are more
defectors, this proportion will keep growing until everybody defects.?

In figure 2.3 the replicator dynamics of stag hunt are shown. On the left of
the line the population with only cooperators is represented, on the right is the
population of all defectors. The open point represents the /3 cooperators, 2/3
defectors equilibrium. If the population is not exactly at the point of equilibrium
it will move towards one of the ends.

Below the stag hunt is the situation for prisoner’s dilemma. The open point
on the left represents a population with only cooperators. If there are no defec-
tors, they cannot reproduce either. But if there is a tiny fraction of defectors,
this fraction will grow over the rounds until there are only defectors (on the
right).

The black points are evolutionary stable strategies. The system will move
towards these points. The white (open) points are not evolutionary stable and
a small change in the population will cause the system to move away from this
point.

2.4 Evolutionary dynamics in Lewis signalling
games

In figure 2.1 two possible strategies were shown for a 2 x 2 x 2 signalling game.
But these are not all possibilities, these are only the signalling system: strategies
that result in an optimal payoff if both agents use the same strategy.

An example of a strategy that is not optimal is a pooling strategy, which
can be seen in figure 2.4 (left). The sender will always send the same message,
independent of the state. The receiver always selects the same action, without
listening to the message. Both cases result in expected payoff 0.5 for equiprob-
able states. If another agent with a normally successful signalling strategy

2If we just look at proportions the agents of the other type will not always completely
disappear, because their expected payoff might be smaller than average but still higher than
0. This would be the case in stag hunt, were a defector always receives some payoff. If actual
numbers of agents are used, there will be a moment in time where there is less than one agent
of a certain type and we can safely assume that it disappeared.
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Figure 2.4: Pooling strategy for a 2 state game (left) and an
invading strategy (right)
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Figure 2.5: Mixed strategy (left) and a pure strategy (right) for
a three state game. The mixed strategy is evolutionary stable for
most values of x and y, while the pure strategy can be invaded
by signalling systems.

(displayed on the right) plays with pooling agents, the payoff will still be half:
if the pooling agent sends a message it has no information and if the pooling
agent receives the message he will not use the information. But for two states,
these pooling strategies are not evolutionary stable. The invading, “smarter”
agents will not do better against the general population, but will do better when
playing each other. The non-pooling strategies are evolutionary stable.

Thus far, the strategies discussed are pure strategies: the agents always
select the same option in the same situation. There are, however, also mixed
strategies: agents choose their actions based on a probability. In figure 2.5 on the
left an example can be seen for a three state game. This example is immediately
a problematic one: this strategy is suboptimal, but it is evolutionary stable for
most values of z and y. The expected payoff is 2/3 for this strategy, but it is
not possible for a pure strategy to do better when playing against this mixed
strategy.

If the values for « and y are 0 or 1 (as they are in the strategy on the right),
the strategy is not stable and can be invaded. A signalling system that uses
message two in state two will do equally well against this pooling strategy, but
will have higher payoff when playing against other optimal strategies. But for
other values for  and y, no pure strategy can successfully invade the population.



2.5 Reinforcement learning

Evolutionary dynamics tells us why some strategies will survive and thrive,
while others will die out. This does not explain how these strategies emerged
in the first place. At the level of individual agents, strategies can emerge by
reinforcement learning. In reinforcement learning, actions that had good results
in the past will be more likely to be selected again.

There are various models of reinforcement learning. One model is Roth-Erev
reinforcement [10], where agents learn from their previous actions. The agent
start by selecting actions randomly and keeps track of the rewards. The prob-
ability if selecting an action again is proportional to the accumulated rewards.
In this thesis Roth-Erev reinforcement will be used.

This process is also called urn learning, because it can be visualised as draw-
ing balls from an urn. In the case of a signalling game, the sender has an urn
for each possible state. In each urn are balls that represent the messages. The
sender perceives the state and draws a ball from the corresponding urn. If
the receiver chooses the correct action, both receive payoff. The sender puts
the message ball back in the urn, but adds more balls of the same type. The
number of balls is proportional to the payoff. If no payoff was received, only
the original ball is put back and the urn stays the same. When repeating this
process, there will be more balls corresponding to the successful messages in
the urn, making it more likely to draw these balls. The receiver has an urn for
each message and these urns contain action balls. When hearing a message, the
receiver consults the appropriate urn and performs the action corresponding to
the ball that was drawn. Updating the receiver follows the same procedure as
the sender.

Unless otherwise specified, the urns start with 1 ball of each type and the
payoff for successful communication is also 1. Other proportions can be used as
well, including negative payoff where balls are removed [2].

For 2 x 2 x 2 games with equiprobable states Roth-Erev reinforcement is very
successful and will always converge to a signalling system[1]. If the states have
unequal probabilities, this result no longer holds. The agents will not always
develop a signalling strategy with meaningful messages and simply select the
action that corresponds to the most likely state. For probabilities that are not
far apart (0.6 for one state, 0.4 for the other) this happens not very often, but
in more extreme inequalities it is very common.

Reinforcement learning is not always successful for games with more states.
For a 3 x 3 x 3 game, pooling occurs in roughly 10% of the cases. This is
even worse for larger games, for 8 states over half of the runs end in a pooling
equilibrium.

2.6 Variations on the basic urn learning model

The games presented so far had exactly as many messages as states. If there are
less messages than states, the agents cannot communicate perfectly. In a game
with 3 equiprobable states and two messages the maximum expected payoff is
2/3. An example of such a strategy is shown in figure 2.6. Experiments show
that in case of such an information bottleneck the agents will learn to use the
available messages effectively. With very few exceptions the payoff of the agents

10
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Figure 2.6: Signalling with too few (left) and extra (right) mes-
sages

approached the best possible rate[2].

If there is a surplus of messages, agents can communicate perfectly. The
extra messages may be unused, or be used as synonyms (figure 2.6). The success
of games with extra messages is higher than of games with exactly enough
messages [2]. Therefore it is relevant to look at models that are able to generate
more messages.

2.6.1 Skyrm’s message innovation

The sender has urns for each state and starts with balls for each message and a
magic ball. If the sender draws a message ball, the play is as usual. When the
magic ball is drawn, a new message is invented and sent to the receiver. The
receiver will choose a random action.

If this new message results in payoff, the new message is kept. All state
urns get a ball for the new message and the actual state will get reinforced as
well. The receiver will add a new urn for this message and reinforce it with the
successful action. The magic ball is replaced in the state urn.

If the new message is not successful, only the magic ball is replaced and no
other balls are added to the sender urns. When the magic ball is drawn again,
the same message may be used again but treated as a new message.

Simulations show that if the sender starts without messages and only a
magic ball, a signalling system will develop. After 100000 plays between 5 and
25 messages were invented. Most of the plays used a smaller subset of the
messages and other messages were rarely used. The set of messages that are
frequently used may be larger than the set of states, synonyms will occur.

2.6.2 Barrett-Skyrms multiple sender model

The assumption that agents always can invent new messages, potentially in-
finitely many, is not always realistic. Most animals have physical restrictions on

11
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Figure 2.7: A strategy for two senders to convey information
about four states with only two messages. The receiver will
combine the information of the two senders and have perfect
information

the variation in sound production and can only produce a limited set of signals.

Skyrms [14] introduced a model with two senders. Each sender has only
two messages and cannot communicate all information about four states. By
pooling two states to one message the sender can provide some information,
increasing the expected payoff to 0.5. That is only if the senders use the same
pooling strategy: if they pool their messages differently, sender 1 may indicate
that s or s3 is the case, while sender 2 can indicate that s; or s is the case.
When the receiver combines this information he will know that s; is the actual
state.

The receiver knows which message is sent by which sender, resulting in four
unique combinations. Effectively the receiver learns to interpret an ordered pair
of messages. The role of the two senders can be performed by a single sender
producing a signal twice.

Barrett [4] shows that reinforcement learning is very suitable for this model.
Simulations show that senders learn to convey different information in each
message, resulting in a successful signalling system.
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Chapter 3

Automaton models

3.1 Introduction

In this chapter a model will be presented that makes the step from using simple
holistic messages for signalling to using more complex, compositional messages.
In the simplest case, the longer messages are combinations of the basic messages
and the meaning of the whole cannot be derived from the parts. Franke [6] ar-
gues that this is the case for the Barrett-Skyrms multiple sender model: “There
is no indication in the model that the agents have learned to apply a function
of the meaning of the basic signals of which the complex signal is composed.”

If a complex signalling system is compositional, the messages in the signal
contribute to the meaning of the signal. In the Barrett-Skyrms model the mean-
ing of the signal is derived from the combination of the messages. If a new state
is introduced that has properties in common with the states that are already
known, there is not necessarily a systematic way to indicate this state. If the
messages relate to the properties of the states and both sender and receiver
understand this, a new combination can be used to indicate this state and this
combination will be successful without much reinforcement.

Another problem with the Barrett-Skyrms model is that the signals have a
fixed length. If there are 8 states and 2 messages, every state is indicated by a
signal composed of 3 messages. This is no problem for cheap talk, where there
is no cost attached to using messages. The actual energy investment of making
a noise is not much compared to the profit of evading a predator, but signalling
is not always free for animals. If the sender uses elaborate messages, the chance
of detection by the predator is higher, for example. Even if signalling is free
of cost, sending long message that requires that the receiver hears every part
is not very efficient. Monkeys will repeat their signal several times[17], making
it more likely that the other animals in the group have heard it. Compare “I
think I have seen an eagle” to the repeated message “Eagle! Eagle! Eagle!”

The model presented in this chapter will generate longer signals without
fixed length. In the basic version, this will mostly be a combinatorial signalling
system (like Barrett-Skyrms) and not a compositional system. Some variations
on the model are tried that will make the emergence of a compositional signalling
system more likely.

The model is basically simple: it repeats the process of sending a simple

13



message. Assume a coordination game with four equiprobable states where
the sender has only two messages. Without signalling, the receiver will simply
choose an action without information. In terms of urn learning, the receiver
has a single urn with action balls and the expected payoff is 0.25. There are
only two signals for four states so the receiver has no complete information, but
enough to get an expected payoff of 0.5. There is no reason why the agents
cannot repeat this process. When they successfully do this, more information
can be transferred a and a signalling system can develop.

This model uses Roth-Erev reinforcement learning. The sender creates a
signal by drawing message balls from a sequence of urns. The receiver uses this
message to determine which urn to use for choosing the message. The agents
start with basic messages, but the strategies will grow by using magic balls.
When a magic ball is drawn, the sender gets the option to send an additional
message. After drawing a magic ball, the receiver will listen to a new part of
the signal.

Initially, the sender has the option to either send a signal consisting of a
single message, or do nothing. As the strategy develops, the sender may choose
to add another message, creating a complex signal. The choice of the messages
depends on the state and the previously sent messages.

The receiver will develop a structure that is similar to a deterministic finite
automaton. If the sender uses the empty signal (silence), the receiver chooses
an action immediately, by consulting the urn that corresponds to the start node
of the automaton. If the signal is non-empty and the receiver listens (which
happens after drawing a magic ball), the receiver will consult the urn that
corresponds to the received message.

3.2 Technical framework

3.2.1 Environment

Two agents will play a signalling game. Each round consists of the following
steps:

e A state is selected according to the state probability vector
e The sender generates a message for the state
e The receiver chooses an action for the message

e The agents receive payoff according to the payoff matrix and update their
urns

Two different types of payoff structure will be used. In the simple payoff
structure agents receive payoff 1 if state and action match and payoff 0 otherwise
(table 3.1, left). In the complex payoff structure there is some similarity between
states. This might be in the form of some properties they share. The payoff for
a state will partially be a result of these properties and choosing an action that
fits these properties will also result in a partial payoff. For example, one state is
a pink elephant and the other a normal grey one. They might require different
actions, but in both cases we are talking about a very big animal with a trunk
so there will be some similarity between the actions too. The pink elephant

14
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Figure 3.1: Similarity structure of four states

also has some similarity with a pink pig, but this a less important property and
there is less similarity between these two states.

S1 S9 S3 S4 S1 S92 S3 S4
ap 1 - - - aa 1 p q -
as - 1 - - a p 1 - q
as - - 1 - as q - 1 p
ag - - - 1 ay - q p 1

Table 3.1: Payoffs for four normal states (left) and four related
states (right)

3.2.2 Sender

For the sender, there is a start urn for each state containing the following balls:
message balls for each possible message

terminal balls to finish a message sequence

magic balls to expand a node

In the initial configuration, the sender will send a single message upon draw-
ing a message ball. If the terminal ball is drawn, the empty message is sent.
The magic ball will expand the node and give it children, one for each message.
The child node will have the same number of initial balls as the start urn had,
except that the magic ball will be divided over the children and no longer be in
the parent urn. For example, the start urn started with one ball of each type
and a few rounds are played (figure 3.2). The magic ball is drawn and the node
is expanded (figure 3.3). From now on, if the sender draws a message ball, a
new ball from the appropriate child urn is drawn. After drawing the magic ball
and expanding the node, a new ball is drawn from the same node. If this is
a message ball, the child urn will be used this round. If the terminal symbol
is drawn, the signal that was developed so far is sent. If sending the message
results in payoff, all nodes that were used to generate this message are updated.

The resulting trees will be unbalanced. If a message is rarely used in a state,
it is less likely that a magic ball will be drawn. That makes it also less likely
that this node will expand and that longer signals starting with this message
will form. The expansion of the node is only for the current state. If a node
expands for one state, this is independent of other states.
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Figure 3.2: Sender tree for a single state before expansion of the
start node

my ma
my: 1 my: 1
mao: 1 mo 1
L: 1 1 1
magic:  1/2 magic: /2

Figure 3.3: Sender tree for a single state after expansion of the
start node
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Start

Figure 3.4: Receiver tree before expansion of the start node

3.2.3 Receiver

The receiver starts with a single urn containing the following balls:
action balls for each action

magic balls for expanding nodes

In the initial configuration, the receiver does not listen to any messages
from the sender and draws a ball immediately. In a four action situation this
will result in an average payoff of 0.25 (figure 3.4). When the magic ball is
drawn, the receiver will start listening to the next part of the message if this
is available. The start node will expand by generating children nodes for each
possible message (figure 3.5). In the child nodes the balls of the parent node
are copied, except the magic ball which is divided over the children.

By copying the contents of the parent node to the children, the receiver uses
the available information. Suppose the agents have developed a system with
only length 1 messages for a four state game. Some information is transferred,
for example that m; indicates s; or sy and the node for [m;] will have more balls
for a; and as. When the agents start using longer messages, it is most likely
that the messages starting with m; will be indicating s; and s9. By copying the
contents of the parent node, the probability of selecting a; or as will be more
likely in the nodes for [my,m] and [mq, ms]. If a new urn would be used, all
action would be equiprobable and the information that is already in the system
would not be used.

After a branch of the tree is developed, the receiver will always use this if
the signal is long enough. Once the choice is made to listen to a part of the
signal, the receiver will always do this.

3.2.4 Variations on the basic model

To improve the compositionality of the resulting signalling system, some vari-
ations on the model were tried. One of these variations was to exclude empty
messages. The sender did not get a terminal ball in the start urn and would
always send at least one message. The new children urns would have a terminal
ball in their initial configuration, as before.
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Start

my ma2
ai: 3 a: 3
a9 2 as 2
as: 1 as: 1
Qaq: 2 Qaq: 2
magic: /2 magic:  1/2

Figure 3.5: Receiver tree for a single state after expansion of
the start node

Updating incomplete messages for the receiver

In the basic receiver model, only the urn that is used for the decision is updated.
Consider a signalling system for a four state game where [0, 0] indicates state
1 and [0, 1] indicates state 2. What would it mean if the receiver hears [0]7 It
could be that the sender is uncertain whether state 1 or 2 is the case. Another
option is that the sender actually sent [0,0] or [0, 1], but there is noise and the
receiver only heard the first part.

In the current framework the sender has perfect information of the state and
the receiver hears the message perfectly. It is still possible that the sender uses
[0] once in a while, because all urns contain terminal symbols.

For the receiver only the urns for [0,0] and [0, 1] are updated and urn [0]
might contain balls of all types. If the magic balls were used very early in the
learning process and the agents started using longer messages from the begin-
ning, the urn [0] was updated only a few times. If all actions are equiprobable,
the expected payoff is 0.25. But the sender uses messages starting with 0 only
for states 1 and 2. By updating the urns the receiver passes while parsing the
message, the expected payoff can be 0.5.

If a node receives payoff p for action a, its parent node receives payoff rp for
a feedback rate r and updates action a with this payoff (figure 3.6). This way,
the initial messages of the signals will have meaning on their own and not only
in combination with the other messages in the signal.

Updating with state similarity

In the basic model, there is no relation between the messages for similar states.
This means that the resulting signalling system might not be systematic. In a
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Start

Update action a with r%p —>

Update action a with p —»

Figure 3.6: Receiver tree with extra update on parent nodes.
After receiving message [mi, m1] the receiver performed action
a with payoff p. The node for this message is updated in the
usual manner and the parent nodes will be updated with rate r.

systematic system composition will occur more often. This allows the agents
to communicate about states that have not been reinforced, but are similar to
states that have occurred in the past. In normal reinforcement learning the
updates only influence the states that are used. By spill-over reinforcement
learning [6] similar states will be updated as well.

If a state-action combination resulted in payoff, similar states will be rein-
forced as well. Each state will be updated with payoff proportional to their
similarity with the state that was actually used. The similarity with states is
between 0 (no similarity) and 1 (the state itself, possibly indistinguishable other
states) and given as a vector. In figure 3.7 an example can be seen. For all states
that have some similarity with the actual state, the path of the message that
was used is reinforced.

For the receiver the actions will be updated according to similarity. For a
matching game we assume that for two states s,, s,, their respective optimal
actions a,, a,, have the same similarity as the states. If action a; resulted in
payoff p, action as with similarity ¢ will be updated with pgq.

If the parent nodes of the final node are updated as well, these two measures
will be combined. If a; was used node [mj, m1] and the parent nodes are updated
with rate r, then ay will be updated in [m;] with pgr.

Updating with message similarity

One of the problems with the basic model is that messages do not have the
same meaning on the same position in a signal. If the first message indicates
the most important property of the states, we would like the second message to
consistently indicate another property of the states. In the basic model this is
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S1 52 53 54
Update with p Update with pq No update Update with pr
Figure 3.7: Sender trees for updating according to state sim-
ilarity. Sending [mg,m1] in state 1 resulted in payoff p. The

similarity of the states with respect to s; is [1,¢,0,r] and the
trees for the states are updated accordingly.

not necessary: The choice of messages in the branches of the tree is independent
for the siblings. If the agents would use a prefix to indicate a property like
“nearby” or “far away”, the choice of signals for the predators would differ
depending on the prefix.

Therefore signals will be updated according to similarity. If two signals end
with the same message, there is some degree of similarity. This degree depends
on parameter s and how much the signals have in common. If two signals have
distance n to a common ancestor node, the similarity is s"~! (figure 3.8).

3.3 Methods

The sender starts with one magic ball, one terminal ball and one message ball
for each message. The receiver starts with one magic ball and one action ball
for each action.

The simulations for the basic model were done with 103 trials per setting
and 10° steps per trial. The agents played a Lewis signalling game with n
equiprobable states and an equal number of actions.

A run is considered failed if the average payoff over the 10° plays is 0.8 or
less. The results are compared with the Barrett-Skyrms model[2] and normal
urn learning.’

The variations on the basic model were only tested for 100 trials in a four
state , 2 message game. Each trial had 10° plays. Some trials used costly
messaging. For each message in the signal cost ¢ was subtracted from the
payoff. No negative payoffs were given, the minimum payoff was 0.

1In Barrett’s papers the results for the multiple sender model are compared to regular urn
learning. There is some inconsistency in the tables with the failure rates, most likely due to
inconsistent use of the term failure. The data in this thesis is from a new experiment with
the same setup. The distribution of the average payoffs is very similar to Barrett’s results,
but the failure rate is different.
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Start

1 s 52 52
Figure 3.8: Updating according to similarity of the signals. Only
signals with the same length and same end message have this
similarity.

Number of states n = Automaton model Automaton model Urn learning with n

with 2 messages with n messages messages
3-state 0.004 0.001 0.1
4-state 0.054 0.002 0.187
8-state 0.068 0 0.064

Table 3.2: Failure rates for signalling games

3.4 Results

Table 3.2 shows that the basic model is results in successful signalling systems.
The results are better if there are more messages available, but with only two
messages the model performs better or the same as regular urn learning. The
automaton model is less likely to end in a pooling trap, as can be seen in
table 3.3.

It seems that the empty message, that is allowed in the basic model, influ-
ences the results. For the variation without empty messages pooling occurred
only in 1 out of 100 trials for the four message variant.

The resulting strategies do not follow a clear pattern. In figure 3.9 the
strategies for a sender and receiver of a successful run of a four state, 2 message
game without empty messages. For the sender 100 messages for each state
were collected. For the receiver, 100 action choices for each possible message
with maximum length 3 were collected. Not each strategy for the receiver is
representative. Message [1,1,0] is rarely used by the sender and few updates
have been done for this message. In this strategy the sender uses messages that
start with O for three states, while messages staring with 1 are mostly used for
a single state. This pattern is very common in the basic model.

In table 3.4 the results for some variations are shown for 100 trials each. For
a few of these variations the development of the average payoff during the trial
is plotted in figure 3.10.
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Success rate in-  2-message 8-message Barrett’s 8-term

terval automaton automaton 2-term/3-sender urn learning
model

[0.0,0.5) 0.0 0.0 0.0 0.0

[0.5,0.625) 0.004 0.0 0.001 0.0

[0.625,0.75) 0.048 0.0 0.081 0.047

[0.75,0.875) 0.404 0.01 0.589 0.545

[0.875,1.0] 0.544 0.99 0.329 0.408

Table 3.3: Distribution of signal success rate for 8-state/8-action
games

sender

other n .

[1,1,1] L receiver

[171’0] N | T T T T
[171] B B

[1,0,1] +— =

[1,0,0] =
[1?0] T B

[0,1,1
0,1,0
0,1
0,0,1
[0,0,0
0,0

EEEett:

60 80 100 0 20 40 60 80 100

Number of runs Number of runs

o
)
(aw]
W
(en]

Figure 3.9: Sender and receiver strategies for a four state game
with two messages. The run had a signal success rate of 0.999.
The category “other” contains all sequences with length 4 or
longer.
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Cost  Average Payoff Relative Payoff ~Average length Failure Rate

0 0.991 0.991 2.61 0.01
0.05 0.884 0.955 2.185 0.02
0.1 0.814 0.958 1.818 0
0.2 0.675 0.964 1.545 0.05

The relative payoff with respect to the maximum possible payoff for costly signalling.
The agents will learn to signal with shorter messages if the costly signalling is used.

Feedbackrate —Average Payoff Average Length Failure Rate

0 0.991 2.61 0.01
0.1 0.982 2.65 0.0
0.25 0.959 2.76 0.02
0.5 0.936 2.89 0.03

Updating the parent nodes has a slight negative effect on the success and results in
longer messages.

P q Average Payoff Average Length Failure Rate

0 0 0.991 2.61 0.02
0.1 0.1 0.724 2.60 1.0
0.25 0.25 0.463 2.63 1.0
0.1 0.25 0.571 2.64 1.0

Results for spillover between states with a simple payoff matrix.

Table 3.4: Results for the variations of the basic model.

Introducing cost leads to shorter signals, which is expected. When agents
use shorter signals, fewer nodes are used and these will be trained more and
converge faster. This can be seen in the figure.

Updating the parent nodes for the receiver results in longer messages and
slightly lower payoff in the noise free environment. However, strategies like
figure 3.11 are more common. These strategies are more systematic and will
most likely have better results in an environment with noise.

The resulting signalling systems are not compositional. It is not the case
that similar states are consistently indicated by the same message at the same
position. This makes it unlikely that successful creative compositionality will
occur for models with these variations and parameters. If a state is not rein-
forced, but is similar to other states that have been reinforced, the chance of

successful communication is still small.
(143
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Figure 3.10: Average success rate during 25 trials for four vari-
ations on the model. The structure of the payoff i p = 0.25,
q = 0.1. The cost is 0.2. The feedback rate to the parent nodes
is 0.5. All variations have no empty messages.
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Figure 3.11: Strategies in a trial with feedback 0.5 to parent
nodes.
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Chapter 4

Neural Networks

4.1 Introduction

The models in the previous chapter were not very good at generalising over
structured state spaces. In basic reinforcement learning the agents will only
learn for the states that actually occurred and will not use any connection with
other states. The variations on the models were an attempt to solve this, but
it was not very successful.

A computational model that is very good at recognising patterns is the ar-
tificial neural network. These networks are inspired by the structure of neurons
in the brain. Artificial neural networks consist of layers of nodes in a weighted
network. The nodes receive input and will be activated if the input exceeds a
threshold. The activated nodes will in turn determine the input of the nodes
they are connected to. The final layer, the output layer, will determine which
action is chosen.

Artificial neural networks learn by training and are very suitable for su-
pervised learning tasks where a training set of stimuli with correct answers is
available. After training, the network is able to predict the outcomes for similar
stimuli. An application of this would be handwriting recognition. The input is
the pixel information of handwriting and the output is a character.

This is very different from the unsupervised learning task of playing sig-
nalling games. Not only are there multiple signalling systems possible, the only
feedback the agents have is payoff.

Neural networks have been used by Cownden et al. [5] to play game theo-
retic games. In their experiment agents learned a strategy in an environment
where the payoff depended on both the environment and the other player’s
strategy. They used a population of agents that played several rounds of games.
The game was not fixed, but either prisoners dilemma or stag hunt (as seen
in figure 2.2). Both games have the options to cooperate or defect, but have
different characteristics and therefore different strategies. As input the agents
had perceptual cues that indicated which environment is the case. There are
11 different environments and in each environment, the probability of playing
each game is different. The players have no information on which game they
are playing in the current round. The experiment is done for two cases: in the
first the agents are in the same environment during the entire session. In the
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second, the players could be in any environment and receive information on the
environment.

In both settings, the agents learn to cooperate in environments with mainly
stag hunt games and defect in environments with a higher probability of playing
prisoners dilemma.

Important in this setup is what the output nodes represent: the expected
payoff of choosing an action. The choice for an action is made based on these
values and the network will learn by updating the outputs with the payoff that
was actually received.

We want to explore a similar setup for agents playing signalling games. An
important difference will be the type of input: in the strategic game setup, the
agents have the same role and receive the same input. This input represents the
same environment during the entire session. The agents play against a random
player each round and do not know which. The agents have no information on
the action of their opponent, their only feedback is the received payoff. The
agents will learn the a strategy for each environment, this depends on the strat-
egy of the other players.

The signalling games are with two fixed agents that have different roles,
sender and receiver. They will only learn from each other. The receiver is only
informed of the choice of message of the sender, which can refer to a different
state in every turn. The sender receives no feedback on the interpretation of
the receiver and the receiver does not learn which state the sender referred to.

In both games, the players are not informed of possible payoffs of the options
that were not used.

4.2 Technical framework for simple Lewis game

4.2.1 Environment

In the simple game, a single state, message and action is used each round. These
items are represented by binary vectors with exactly one 1. For example, state
[0,0,1,0] represents s3 in a four state game.

Each round of the game has the following steps:

e A state is selected according to the state probability vector
e The sender generates a message
e The receiver selects an action for the message

e If the state and action match, the agents get payoff 1, otherwise 0. Both
agents update the weights of their network according to this payoff

4.2.2 Agents

The agents are feed forward neural networks (schematic representation in fig-
ure 4.1). The setup is the same for both sender and receiver, only the number
of input and output elements might differ.

Each network has an input layer, a hidden layer and an output layer. Every
non-output layer has a bias node which has a constant activation for all trials.
This node receives no input and is connected to the next layer the usual way.
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The input layer gets activated by a vector. This activates the hidden layer
according to the weights of the connections. Before training, these weights are
set at random values.

Hj=o() W' I + b))

Here o is the logistic sigmoid function. This function maps R — (0,1) and
is a threshold function.

1
o(X) = 1+ exp(—x)

The output layer is activated by a linear function. The output layer will
represent the expected payoff from each action and therefore the values will be
in R.

Op = > W7 Hj+ b}
J

For the sender, the number of input and output nodes is equal to the number
of states and messages, respectively. For the receiver, the number of input and
output nodes are equal to the number of messages and actions, respectively. For
both agents, the size of the hidden layer is twice the size of the input layer. The
size of the hidden layer is related to the complexity of the function the agents
will learn. To categorise data points that are divided by a linear function only
a few hidden layer nodes are needed, or even none. If the function that needs
to be learned is more complex, more hidden layer nodes are necessary.

For both agents, the output nodes will represent the expected payoff of choos-
ing this action. These expected payoffs are translated to action probabilities by
the softmax function:

exp(0; /1)
>, exp(0;/7)

The temperature 7 influences the exploration. In reinforcement learning
the agent should explore all possible actions in the beginning, with possible
suboptimal payoff. After sufficient exploration, the agent should always use the
action with the highest expected payoff. Initially, the game is played with high
temperature to explore and gradually the temperature is lowered.

For chosen message m,, or action a,, the agents receive payoff p. Output
node O, should be the expected payoff. The error in this approximation has
to be minimised. This is done by adjusting the weights with a method called
backpropagation[11]. The gradient of the squared error e? is determined and
the weights are moved accordingly, scaled by the learning rate. The appropriate
learning rate is found experimentally.

P(az) =

62 — (p _ On)2
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Figure 4.1: Network Structure for simple Lewis games
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4.3 Technical framework for Lewis game with
complex states

4.3.1 Environment

In the complex game, states and actions are not represented by a number but
by a vector of their properties. For each game, the number of properties is fixed.
Each position in a vector represents a property: if the state has this property,
the value is 1, otherwise it is 0. The vector [1,0] represents a state that has
property 1 but not property 2 in an environment with 2 properties.

The states are drawn according to a state distribution function. This is
independent of the properties: the probability of [1,1] is independent of [1,0]
and [0, 1]. If necessary, the state distribution can be based on a distribution of
the properties, for example probability 0.6 for property 1 and 0.2 for property
2 results in probability 0.12 for state [1, 1].

The actions of the receivers are vectors of the same type. The payoffs are
specified by a payoff matrix that has an entry for each possible state.

4.3.2 Agents

The agents can send signals that consist of multiple messages. The signals have
no syntax, it is a set of words without structure. To achieve this, the number
of output nodes is doubled. Each pair of output nodes represents a message :
one node estimates the expected payoff of using this message, the other node
the payoff of excluding it. The softmax function is applied pairwise, resulting
in a probability for each message. For each message this probability is used to
determine whether it is part of the signal. The signal is represented as a binary
vector where 1 indicates that a message is used. [1,0, 1] represents messages 1
and 3 being used and message 2 being left out.

The receiver will select properties of actions in the same manner as the
sender selects messages for the signal. The setup of the network is visualised in
figure 4.2.

4.4 Methods

The neural network was implemented in the PyBrain machine learning library
for Python [13].

Unless otherwise specified, the agents played a signalling game with the same
number of states, messages and actions (simple) or the same number of state
properties and messages (complex).

For each run, the weights of the networks were set randomly. The trial
consists of two phases: learning and testing. The number of learning steps
depends on the number of states to keep the number of training steps in the
same order for every state. This was set at 1000 steps per state. After training,
the system is tested for 1000 steps without updating.

For all simple games the learning rate is 0.15 and for all complex games 0.1.
The start temperature is 15 for all games. The temperature decreases every
round until a minimum temperature is reached. The decrease and minimum
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states temperature minimum average failure

decrease temperature success rate
2 0.06 0.03 0.997 0.005
3 0.03 0.03 0.962 0.11
4 0.015 0.06 0.938 0.235
8 0.01 0.06 0.846 0.305

Table 4.1: Succes rates for the simple Lewis game

vary per game and are determined experimentally. Due to the many possible
variations in these settings, it is not certain that these values are optimal.

The temperature decrease is an important variable in playing signalling
games. Before training, some choice options have much lower expected pay-
off than others due to the random assignment of the weights. If the network has
a short exploration period, these seemingly unprofitable choices are rarely used.
In the test setting the agents had exactly enough messages to avoid pooling
states and not using some messages will result in pooling and lower payoffs.

In high temperature, the choice probabilities are almost equal. If the net-
works stay too long in this exploration phase, the expected payoff will be equal
for all choices: 1/n for n options. When the temperature decreases, the choice
probabilities will remain almost equal and the agents will continue to act ran-
domly. It is important that the agents explore all options, but also settle on a
convention quickly.

The data is collected for 200 runs per setting. A run is considered failed is
the average payoff over the test steps is less than 0.8.

To analyse the pooling behaviour, the test results are classified with respect
to the expected payoffs of pooling equilibria. This indicates the number of
inefficient used messages. The precise form of pooling is not determined. For
example, an eight state game with three states pooled together has the same
expected payoff as the same game with two states pooled together twice. A four
state game with payoff 0.8 is classified as using 1 state inefficiently because it is
closest to expected payoff of 0.75.

For the complex experiments, the resulting signalling system was tested for
compositionality. For this the following definition was used: a signalling system
is compositional iff for every pair of completely distinct states, the sender uses
completely distinct messages.

4.5 Results

4.5.1 Simple game

The results in table 4.1 show that successful signalling in a simple game is
possible. When these results and the pooling data from table 4.2 are compared
with the results from reinforcement learning, it shows that pooling occurs more
often in the neural networks. This might be a result of the chosen parameters
for the experiments.
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states Number of inefficient messages

n 0 1 2 3 4
2 995 0.005 - - -
3 0.89 0.11 0 - -
4 765 0.235 0.0 0.0 -
8 165 0.52  0.26  0.05 0.005

Table 4.2: Percentage of pooling for the simple Lewis game.

states Reinforcement Learning Neural Networks

Failure rate Signalling systems Failure rate Signalling systems

4 0.187 0.835 0.185 0.815
8 0.064 0.408 0.385 0.615
16 0.03 ~ 0.072 0.405 0.515

Table 4.3: Comparison for basic RL and neural networks with
complex states. Data for 16 state RL from [4]

4.5.2 Complex game

Purely based on the failure rates and average payoff the neural network also
performs worse on the complex games (table 4.3). That is, basic reinforcement
learning is more likely to have an average payoff of at least 0.8.

For games with more states several of the pooling equilibria result in a
payoff > 0.8 and are considered a success. Signalling systems become rare for
reinforcement learning when the number of states goes up. Only approximately
7% of the 16-state games ends in a signalling system.! This is not the case
for neural networks: over half of the networks learn a signalling system for
the 16-state game and even more for the game with less states. All of the
signalling systems are compositional, they have completely distinct messages
for completely distinct states.

In this first experiment the available number of messages is minimal: it is not
possible to have signalling system with less messages. With extra messages it is
not necessary to use all combinations. In table 4.4 is shown that extra messages
do not influence the success of the system much.? The successful trials do not
necessarily have a compositional signalling system.

4.5.3 Creative compositionality

Compositional language is particular useful in situations where the agents have
not seen a particular stimulus before, but there is similarity with previously
encountered stimuli. This situation is simulated by omitting one or more states

n Barrett’s work [4] the proportion of games that is in the [0.95, 1] payoff interval is given,
this is 0.072. In theory this is equal to the proportion of signalling systems.

2These trails have temperature decrease and minimum temperature 0.06 and a hidden
layer twice the size of the input. These are not optimal parameters for the learning task and
therefore the success rates are overall slightly lower than in table 4.3.
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properties messages average payoff failure rate signalling systems compositionality

2 3 0.891 0.295 0.705 0.37
2 4 0.911 0.275 0.725 0.17
3 6 0.718 0.545 0.335 0.02
3 8 0.724 0.57 0.345 0

Table 4.4: Success rates for games with extra messages
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Figure 4.3: Payoff for a single missing state in games with 2
(left) and 3 (right) properties

from the training data. After training, the system was tested only on the missing
states without updating the weights of the network.

In figure 4.3 can be seen that networks that have more success on the training
set are also more likely to use new signals successfully.

If the previously untrained states have at least 0.8 payoff over the test steps,
we consider the creative composition successful. We consider this only for the
runs that had at least 0.95 payoff on the training set.

In table 4.5 can be seen that the structure of the training set is important.
If two states are untrained, but have no overlap in properties, the performance
is not much worse than when a single state is untrained. When there is more
overlap between untrained states, it becomes very hard to communicate about
these states.

If the agents have more messages available, it is less important to use these
messages in a systematic way, making successful composition less likely. Using
4 messages in a 3 property state shows that there is less successful creativity
when there are extra messages, but it still occurs.
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Properties Messages Missing states Creative success

2 2 [0, 0] 0.43
2 2 [0,0], [1,1] 0.19
3 3 [0,0,0] 0.95
3 3 [0,0,0], [1,1,1] 0.80
3 3 [0,0,0], [0,0,1] 0.22
3 3 [0,0,0], [0,0,1], [1,1,1] 0.17
3 4 [0,0,0] 0.33
3 4 [0,0,0], [1,1,1] 0.23
3 4 [0,0,0], [0,0,1], [1,1,1] 0.05

Table 4.5: Creative success of games with payoff > 0.95.
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Chapter 5

Conclusions and further
work

5.1 Conclusions

The models that have been presented in this thesis each have their advantages.
The automaton model is more successful than regular reinforcement learning.
It does not have a fixed message length, but the length of the sequence is
arbitrary. This allows for arbitrary many signals from a small set of basic
messages. However, the resulting signals are not compositional.

In the neural network model truly compositional systems will emerge for
the majority of the trials. The neural network is also able the generalise over
the properties of the states and use this for new states. If the neural network
does not succeed in learning a signalling system, the results are worse than for
reinforcement learning.

5.2 Further work

The systems that were presented in this thesis have been tested in specific
setups: a single sender and a single receiver that communicate about a finite
set of equiprobable states.

It is important to know how these models will work in a multi agent exper-
iment. Will the agents learn to communicate if they do not always play with
the same opponent? Two agents can coordinate their strategies and develop a
signalling system, but will this also be true for a (small) population of agents?
In the most basic form this can be tested by creating a population of new agents
and seeing what strategies emerge. Another option is a version in which new
agents are introduced in a population of agents that are already trained. If the
agents are slowly replaced by new agents, strategies that are easier to learn will
make up a bigger proportion of the population.

Basic reinforcement learning performs poorly on states that are not equiprob-
able. The results so far predict that the automaton model and the neural net-
work will perform better, but this has not been tested. If neural networks can
successfully communicate about states that have never been seen before, one
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would expect that they can communicate about states that are rarely seen. The
question remains: will a compositional signalling system develop for states that
are not equiprobable? Also, will there develop some pragmatic “smartness” for
stereotypical states? If 80% of the elephants is grey, it would be easier to just
call them elephants and only add an extra signal if this is not the case. Only
the rare pink elephants would be indicated with a longer signal that makes the
colour explicit.

Another question is how noise will influence the syntax of the automaton
models. The messages have been transferred from sender to receiver perfectly.
In the real world, various factors might scramble a signal. If the receivers pay no
attention, they will not register the first part of the message. If there is a lot of
background noise, some parts of the signal will be misheard. Another possibility
is that the receivers do not listen to the complete long signal, but will choose
an action when they have heard only a part of the message. These factors may
influence the syntax of the signal. If the initial part of the signal is not heard
or misheard, the sender might use a prefix to get the attention of the receivers
before using the messages that contain the information. If the receivers act too
soon, it is important to put the information early in the signal. Investigating
these properties might provide insight in the development of syntax.
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