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Abstract

An informational cascade is said to occur when decision-makers ignore their private information, in

favor of information inferred from decisions of predecessors in a sequence. Both experimental and

formal-theoretical studies have shown that informational cascades (rationally) happen. It has also

been shown that the prevalence of cascades is fragile to external influences. This thesis examines

our intuition that cascades are prone to derail when the assessed reliability of predecessors in se-

quence differs. The approach is twofold. We created a way to formally analyze (using tools from

Dynamic Epistemic Logic) the informational flow behind the a informational cascade enhancing

situation under varying perceived reliability of predecessors. The situation we model is the (canon-

ical) urn-example [2]. Secondly, we designed and conducted an experiment in which the effect of

perceived reliability on prevalence of cascades in the laboratory is tested on 300 participants. Re-

sults from both parts show that indeed, the effect of assessed reliability has strong potential to

derail informational cascades and should not be neglected.
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To do just the opposite

is also a form of imitation.
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Chapter 1

Introduction

Before 1995, no fashionable American wanted to be associated with Hush Puppies. Hush Puppies

are those brown suede shoes that look too comfortable to be in fashion (Figure 1.1). In 1995, a

handful of young people living the East Village in New York who wanted to look different started

wearing Hush Puppies. Exactly for the reason that by wearing them they would be different, be-

cause no one else wanted to wear these shoes. Other people who internally considered these shoes

unattractive at first, started to copy them, because the ’cool’ people apparently had reason to think

these shoes were cool enough to wear. By the fall of 1995, the Hush Puppies designers were baffled

by the news that resale shops had opened in New York and that people were desperate to find their

shoes. In 1995, a total of 430,000 pairs of Hush Puppies shoes were sold, in 1996 four times that,

and these figures kept growing for a few years after that [22]. It seems miraculous that so many

people suddenly desperately wanted something that they had never initially bought.

Figure 1.1: Hush Puppies shoe

Situations like this come about more often than we may be aware of. In 1992, Bikhchandani

Hirschleifer and Welch and Banerjee [12], [11], developed models for informational cascades. An
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informational cascade is the situation in which an individual chooses not to perform the action their

private information indicates, because they are led by the actions of their observed predecessors in

some sequence. Real-life examples of this phenomenon lead to the strange conclusion that the sum

of individual conclusions based on pieces of information in a sequence, can yet drive them as a group

further away from the truth [6], [29]. The Hush Puppies example is an example on a larger scale,

but the phenomenon happens on a smaller scale as well. Why do we choose to go to a restaurant

across the street over the one we intended to go to, because this one is much busier? Why are

companies less likely to offer applicants a job after other companies have rejected them for their

private reasons, even though the companies themselves think that the candidates are good? Why

are doctors influenced by knowledge on previously prescribed drugs, although they would based

on their personal knowledge prescribe another type of drug? An answer to these questions can be

found in mathematically based models of informational cascades.

Bayesian rational agents in Bikhchandani et al.’s models [12] compute the best decision in a

binary decision problem to maximize their expected utility. These models show that the seemingly

irrational behavior of letting choices of previous decision-makers override private information, is

not so irrational after all. Several formal models followed after Bikhchandani et al.’s paper, e.g. a

more recent Bayesian probabilistic model by Easley and Kleinberg [16], Dynamic Epistemic Logic

models [38], [1], [6]. In the latter paper [6], Baltag, Christoff, Hansen and Smets use the toolbox

of Dynamic Epistemic Logic to confirm that rational agents who carefully deliberate upon their

available information and who are capable to apply unlimited higher-order reasoning tools, are ra-

tional to comply in cascadal behavior. The main goal of their paper is to show that even if agents

are unboundedly rational and logically omniscient, cascadal behavior is ’unavoidable’ [6]. Results

from research on informational cascades in experimental settings show that people indeed often

end up showing cascadal behavior. The most prominent debate in the experimental research on

informational cascades is on what the rationale behind this behavior is. Is it because we intrin-

sically compute the expected utility of our decision, or do we merely use heuristics that lead to

cascadal behavior? Informational cascades can occur very easily - even when all decision makers

act completely rational. Because of the ease with which this phenomenon can occur, unwanted

outcomes will often result, for example a cascade of people performing the ’wrong’ action. This is

because the imitating behavior is often based on premature conclusions. An informational cascade

is also very fragile. If for some reason (by mistake, cheating, or other situation changing events)

new information appears, the information cascade can easily derail [16].

The strongly emphasized characteristic of this phenomena (in [12]) that it is extremely fragile,

begs a question on factors that influence the prevalence of cascades. P.G. Hansen and Hendricks
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[29] distinguish the possible factors inducing this fragility intro three possibilities:

1. Individuals with true information appear in the cascade

2. New information becomes generally accessible

3. Shifts occur in the underlying value of approving or rejecting a position, norm or behavioral

pattern

This thesis is concerned with one possibility of the nature of this underlying value mentioned in

3) and examines its influence on whether or not informational cascades prevail. Aristotle already

distinguished three aspects of a source, affecting the trust he gains; his logos, his pathos and his

ethos [4]. This thesis will focus on a ’shift in underlying value of approving or rejecting a position’

connected to the last factor: ethos; to what extent can the speaker convey the impression that what

he says is valid and should be trusted. We will examine the influence of the assessed reliability of

predecessors in a cascadal sequence. When we mention assessed reliability (perceived trust, assessed

rationality, and other wordings) in predecessors in this thesis, we choose define this as the deemed

capability to make the right decisions. As Bikchandani et al. pointed out about informational cas-

cades: “to understand the cause of a social change, it is crucial to pay careful attention to the early

leaders [12]”. Take the Hush Puppies example, an important prerequisite for the informational cas-

cade to happen was that the people at the onset were ”cool” people and the following others trusted

their fashion taste. We would be more inclined to follow Jamie Oliver in his restaurant choice than

our neighbor who usually eats fastfood. It makes more sense for companies to reject a job applicant

when his previous rejections were at companies with similar or otherwise highly valued recruit-

ment objections. The influence on doctors’ prescription behavior might be bigger if the previous

prescriptions were done by authorative and senior colleagues. The intuition that the assessment

of how reliable sources of previous information are is of great influence on the prevalence of infor-

mational cascades seems legitimate. Still, this factor has been neglected in both the experimental

and the theoretical history of informational cascades. The aim of this thesis is to examine this

effect and verify or falsify our intuition. The strategy to do this is twofold, both formal-theoretical

and experimental. On the one hand we will establish a formal model using Dynamic Epistemic

Logic, by the use of which we will be able to make predictions on what the influence of fluctuating

assessed reliability of predecessors in sequence is on the prevalence of informational cascades. On

the other hand we will design and conduct an experiment on how assessed reliability of predeces-

sors affects cascadal behavior in real people. Dynamic Epistemic Logic (DEL) is a useful tool to

investigate what happens in information flow. This logical system makes use of Kripke models to
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represent agents’ mental state (beliefs, knowledge,...) in a model consisting of possible states of the

world. Events that happen can trigger changes in (plausibility ordering between) considered worlds.

It seems appropriate to elaborate a bit more on the overarching vision motivating the steps

taken in this thesis. The thesis is based on an intuition. This intuition is that the role that per-

ceived reliability of sources plays in the rise or derail of informational cascades is substantial. We

design and conduct an experiment to examine this intuition in real people’s behavior. To conduct

an experiment, one needs hypotheses on the tendencies we expect in the experiment. One can use

a model to develop a thorough understanding of the situation. Once this thorough understanding

is reached, the model’s predictions can also be of aid in forming hypotheses about tendencies we

expect to detect in real agents’ behavior. We use the toolbox of DEL to identify, clarify, and model

the epistemic states as well as the information flow of agents in case they are in a situation in

which an infomational cascade is expected to arise. The novel part of this thesis is that existing

DEL-style models are adapted to account for the role of assessed reliability in a cascade enhancing

situation. We argue that DEL is an apt tool to take this assessed reliability into account. This

is because the effect of perceived reliability on cascadal behavior relies on the exact flow of infor-

mation. DEL has a pre-eminent capability to make information flow precise. We are aware of the

limitations our logical models have for modelling real people. In line with many logical systems,

our logical models assume agents to be unboundedly rational (infallible in performing the action

maximizing his expected utility and in his higher-order reasoning) and logically omniscient (capable

of using all the information at hand and the conclusions that logically follow from this, with no

cognitive limitations of any kind (memory, computation, etcetera)). We will not take the results of

the model as a one-to-one prediction for real people’s behavior. Rather, we are looking to detect

tendencies incurred by a difference in perceived reliability of predecessors. In case we observe these

tendencies in the outcomes of our cascadal behavior analysis for fully, unboundedly rational and

logically omniscient agents based on DEL, we are curious to see if this translates into the tendencies

in our experimental data. To summarize, we will adapt existing DEL-models to gain insight in the

expected effect of assessed reliability of predecessors in a sequence. We build on the outcomes of

these analyses to form hypotheses. These hypotheses are the basis for the design and conditions

of our experiment, such that the experiment will be able to verify or falsify exactly these hypotheses.

The thesis is organized as follows: Chapter 2 discusses the theoretical background. The first

section of this chapter is on the phenomenon of informational cascades. What does this phenomenon

comprise and where does the concept come from? In this chapter we will also elaborate more on
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the experimental results that have been obtained so far in the history of empirical research on

informational cascades. And we will provide a brief discussion based on work in philosophy on trust

and reliability of others and how this is supposed to influence accepting their testimonies. Chapter

3 discusses the formal-logical background of this thesis. Tools from Dynamic Epistemic Logic have

been used to model informational cascades, this method and the way it analyzes informational

cascades will be discussed here. In Chapter 4 we will outline our own analysis of informational

cascades, using Dynamic Epistemic Logic, to combine the existing model of cascadal behavior with

the notion of perceived reliability. This chapter ends with the results of this analysis. Chapter

5 presents the experimental design we used to evaluate the predictions from Chapter 4 against

real people in our experiment and deals with the results obtained from our experimental research.

Chapter 6 concludes.
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Chapter 2

Theoretical background

In this chapter we will first shed light on what the phenomenon of informational cascades comprises.

The canonical example, both in formal and in experimental research on informational cascades, is

the urn-example. We will treat this example and also its well-known Bayesian analysis in this

chapter. Many experiments have been done to examine various characteristics of informational

cascades - an outline of the experimental history of this phenomenon will be given here. Followed

by a brief treatment of philosophical stances.

2.1 Informational cascades

Origins and clarification of the phenomenon

A situation in which

”individuals rapidly converge on one action on the basis of some but very little

information. If even a little new information arrives, suggesting that a different course

of action is optimal (...), the social equilibrium can radically shift”

With this description the term informational cascades was introduced by Bikhchandani et al. [12].

Simultaneously, Banerjee [11] developed models for informational cascades, and described the con-

cept:

”Paying heed to what everyone else is doing is rational because their decisions may

reflect information that they have and we do not. It then turns out that a likely

consequence of people trying to use this information is what we call herd behavior -

everyone doing what everyone else is doing, even when their private information suggests

doing something quite different.”
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To clarify the concept of informational cascades, a simplified version of the situation is often used

[47]. There are two states of nature, A and B, which are deemed equally likely to decision-makers.

All the decision makers get a private signal, a or b, pointing towards A or B respectively with a

chance of 2
3 . In sequence, the decision-makers are asked to make a prediction on whether state A

or B is the case. The predictions are public, but the signals remain private. Person 1 is expected to

predict according to his signal. Let’s say this is a, his guess in on A. Person 2 will predict according

to his private signal as well. The reasoning is that in case his private signal is a he has two signals

for A: he will guess A. In case it is b, the two signals (prediction of person 1 and his private signal)

rule each other out and the chances are 1
2 for each state. In this case we have a tie - the tie breaking

rule we assume is to follow his private signal: his guess will be on B. The reason we assume this tie

breaking rule is because this is in accordance with the majority of former research. This choice is

backed up by the reason that a private signal provides stronger information, since one can be more

sure of their own observation than of others’ inferred observations [25], [46]. Employing this tie-

break rule also fits empirical evidence better than any other tie-break rule [3], [26]. Let us consider

the case in which the predictions of person 1 and 2 match on A. The third person always has more

information indicating A than B (even if his private signal is b). Therefore, this third person is

expected to announce a guess matching the first two, rendering his announcement uninformative

regarding his private signal. For all subsequent agents, the situation will be just the same - an

informational cascade has started. It is important to note that the decision of all the agents to

follow in this situation is based on as little information provided by only the first two guesses.

‘Reverse’ cascades can easily happen; both the first and second person’s signals point towards the

wrong conclusion (for example, a and a when the state is in fact B with 1
3 ·

1
3 = 1

9 chance), leading

the whole sequence to make the wrong prediction [16].

Urn example

Anderson and Holt turned the simplified version of an informational cascadal setting into a setting

apt to be used both in laboratory experiments and in formal models. This example is the Urn-

example [2], also called the urn-game. We will explain this setting, analogous to the outline in

[16]. An urn filled with balls is placed in front of a room of people. This urn can be of two types;

UrnB is an urn composed of 1 white and 2 black balls, UrnW is an urn composed of 1 black and

2 white balls (the notations UW and UrnW will be used interchangeably in the remaining of this

thesis to indicate the urn filled with a majority of white balls). It is common knowledge that the

urn-type is dependent on a fair coin flip - leaving the chances for each urn-type 50%. That is, ex

ante both urn-types are equally likely. The aim of the game is for every agent to sequentually,
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individually make a correct guess on the type of the urn. The first agent comes towards the urn,

draws one ball, keeps the colour of the ball as private information, but publicly announces his guess

on one of the urn-tupes UrnB or UrnW . In this example, it is assumed that all agents are able

to reason rationally. This first agent rationally uses a simple decision rule, deciding according to

the colour his drawn ball has (his decision is UrnB if he draws a black ball, UrnW if he draws

a white ball). Note that from the action of the first agent, completely transparent inferences can

be made on the colour of his ball. The second agent comes forward. His action depends on the

colour of the ball drawn, suppose it is the same colour as agent 1’s ball, he will perform the same

action as agent 1. Suppose it is not, then the second agent is indifferent between the two urns.

A self-preferring tie-breaking rule is assumed: in case of indifference one will trust their private

observation more than the inference made from a predecessor’s draw. From the second agent’s

choice, too, completely transparent inferences can be made about the colour of his ball. The third

agent comes forward. In case agent 1 and 2 guessed opposite colours, the third agent can infer no

convincing information from their actions and will rationally go with his own ball colour. In case

agent 1 and 2 guessed on the same colour, and agent 3 draws a ball in this same colour - his decision

will be to announce the same colour too. In case agent 1 and 2 guessed the same colour and agent

3 draws the opposite colour, agent 3 is expected to ignore his private information and go with the

urn agent 1 and 2 guessed. This means that if agent 1 and 2 guessed the same colour, no matter

what colour agent 3 draws, he will rationally ignore his own ball colour and go with agent 1 and

2’s guess. An informational cascade has started. When the fourth agent comes forward - agent 1, 2

and 3 have all rationally guessed the same colour, agent 4 can infer from the transparent inference

that agent 1 and 2 both drew the same colour, and can not infer anything from the (uninformative)

guess of agent 3. Agent 4 is then in the same situation as agent 3 and will rationally make the same

guess. This reasoning can be repeated infinitely many times for the agents to follow.

Bayesian analysis of the urn-example

To model the urn-example, a decision problem under uncertainty, Bayesian probability theory

provides us with a way to determine the probability of propositions, in the light of the information

at hand. Bayesian probability theory is concerned with the computation of a posterior probability

given prior probabilities and evidence by using Bayes’ rule. The assumption is that every agent

updates prior beliefs in a proposition influenced by evidence. Let us consider the case of the

urn-example. Bayesian statistical methods enable us to consider the prior probability of the urn

being UrnB or UrnW , the event of a ball draw, the event of an announcement and the posterior

probability in the light of these events. Our outline of the Bayesian analysis of the urn-example is
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analogous to the one in [16]. We will start with some terminology and definitions, followed by an

application of Bayesian statistics to explain cascadal behavior in the urn-example.

Definition 1 [Prior probability, Posterior probability, Bayes’ rule]

• Prior probability P(A) is the probability that event A will happen

• Posterior probability P(A | B) is the probability of event A conditional on event B

• Bayes’ rule Computes the posterior probability of event A.

Bayes’ rule: P(A | B) = P (A) · P (B|A)
P (B)

In the urn-example, the prior probability of the urn being UrnB is equal to the prior probability of

the urn being UrnW ; P(UrnW ) = P(UrnB) = 1
2 . The Bayesian-based explanation of informational

cascades relies on the assumption that each agent’s decision is based on an intrinsic computation of

the probability that the urn is of a certain type, conditional on the ball they draw and the preceding

guesses. If the conditional probability of a certain type of urn is > 1
2 , the agent will guess on this

urn-type. The computation is as follows. Assume agent 1 draws a black ball, the probability of

UrnB is:

P (UrnB |black) = P (UrnB) · P (black|UrnB)
P (black) .

We compute the elements of this formula. P(UrnB)= 1
2 , by definition. P(black| UrnB) = 2

3 , since 2
3

of the content of UrnB is black. P(black) can be computed adding up the probabilities of drawing

the black ball split up for two cases (the urn being UrnB or UrnW );

P (UrnB) · P (black|UrnB) + P (UrnW ) · P (black|UrnW ) = 1
2 ·

2
3 + 1

2 ·
1
3 = 1

2

Thus, the probability of the urn being UrnB after drawing a black ball is

1
2 ·

2
3

1
2

= 2
3

The second agent’s computation for both urn types follows a similar pattern in case he draws the

opposite colour from the first agent’s announcement. In case this agent draws the same colour as

the first agent’s announcement, the probability computation is

P (UrnB |black − black) = P (UrnW · P (black − black|UrnW )
P (black − black)

P (UrnB |black − black) =

1
2 ·

2
3 ·

2
3

(1
2 ·

1
3 ·

1
3) + (1

2 ·
2
3 ·

2
3)

=

2
9
5
18

= 4
5
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The computation of the third agent, then, is in accordance with the intuition that if agent 1 and

2 announce the same guess, agent 3 will announce this same urn as well. For whatever colour of

agent 3’s draws, the conditional probabilities P(UrnB |black − black − black) and P(UrnB |black −

black − black) will be greater than 1
2 . Namely;

P (UrnB |black − black − black) = P (UrnB) · P (black − black − black|UrnB)
P (black − black − black)

=

1
2 · (

2
3 ·

2
3 ·

2
3)

1
2 · (

2
3 ·

2
3 ·

2
3) + 1

2 · (
1
3 ·

1
3 ·

1
3)

= 8
9

Similarly for the sequence black-black-white;

P (UrnB |black − black − white) = P (UrnB) · P (black − black − white|UrnB)
P (black − black − white)

=

1
2 · (

2
3 ·

2
3 ·

1
3)

1
2 · (

2
3 ·

2
3 ·

1
3) + 1

2 · (
1
3 ·

1
3 ·

2
3)

= 2
3

Because in both cases the third agent is expected to announce a guess on UrnB , his announcement

bears no information to subsequent agents. Once three agents have drawn from the urn and

announced the same guess, all the following agents have the same information as the third agent

and their computations will be the exact same. Note that completely symmetric computations can

be done for the other urn-type UrnW in case the evidence is white-white-white or white-white-

black. This Bayesian analysis shows that it is rational for agents to comply in an informational

cascade in case a sequence of preceding individuals makes the same guess.

Experimental history of informational cascades

In the 1950s already, attention was paid to imitating behavior. The most famous experiments

in social psychology on conformity in group settings were a series of experiments conducted by

Solomon Asch [5]. A group of college students was asked to assess the difference in length between

several lines. In fact, all but one agents in the group were actors. Everyone in a sequence before

the participant’s turn gave the wrong answer to the very simple question. 75% of the participants

turned out to conform their action with the rest of the sequence. This shows that people tend to

conform in a social situation with ‘(peer) pressure’. Informational cascade situations are a specific

type of social situation with ‘pressure’, in which a signal derived from a piece of private information

contrasts with the signal inferred from announcements of the rest of the group. A difference be-

tween this situation and Asch’ experiment is that the participants in Asch’ experiments base their
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decision on public information (they all get to see the same lines) while in informational cascadal

situations the private information is not conclusive to solve the decision problem. Informational

cascades have been subject of multiple experimental studies. The urn-example has been generally

used as the pre-eminent laboratory setting for research on informational cascades. Anderson and

Holt conducted the first laboratory urn-experiment [3] to examine whether cascades would develop

and whether participants applied Bayesian reasoning. The situation which they call informational

cascade enhancing is when there is an imbalance in previous announcements (for example, several

announced A’s in a row), incurring the optimal decision to be different from a participant’s private

signal. In Anderson and Holt [3], this situation occured 56 times, out of which 41 information cas-

cades followed. The result that informational cascades develop consistently is replicated by multiple

studies Oberhammer and Stiehler [36] report 104 cascades out of 132 cascade-enhancing situations,

Hung and Plott [31] report 77% cascade prevalence, but this is not corrected for cascade-enhancing

situations, Çelen and Kariv [15] report cascadal behavior in 64.8% of rounds in which it is predicted

by Bayes’ rule.

Anderson and Holt interpret their results to suggest that ”individuals generally used information

efficiently and followed the decisions of others when it was rational’ [3]. By ‘rational’ they mean

in accordance with Bayes’ rule. Anderson and Holt show that in rare cases where people deviated

from Bayes’ rule computations, they often used a counting heuristic: counting the evidence pointing

in a certain direction and follow the action with the highest number of evidence points. Ander-

son and Holt conducted some sessions in which the prior probabilities for the two urn-types were

asymmetric. In this way, one can differentiate between participants applying a counting heuristic

from participants applying Bayes’ rule. In total 115 out of 540 decisions here were inconsistent with

Bayes’ rule, over a third of these can be explained by counting. Use of other heuristics (preference

to maintain the status quo, bias of representativeness) could not be detected in their data [3]. Huck

and Oechssler [30] criticize Anderson and Holt’s conclusions. The participants in the experiment

in [30] showed reasoning in agreement with Bayes’ rule only half of the time. Hardly any subjects

were able to explain how to apply Bayes’ rule. According to Huck and Oechssler, this suggests that

the people who acted in accordance with Bayes’ rule, did so by mere accident. Because their results

were so different from Anderson and Holt’s results, Huck and Oechssler analyzed Anderson and

Holt’s data as well. They did some modifications in the data-analysis to selected only non-trivial

circumstances [30]. Only half of these decisions are in line with Bayesian updating rules, while 65%

was in line with yet another heuristic, the ’follow your own signal’-heuristic. Huck and Oechssler

also argue for the apparent use of the representativeness heuristic in Anderson and Holt’s exper-

imental data - because this heuristic gives the exact same results as applying Bayesian rule and
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is a whole lot easier to apply. The contradictory results of Anderson and Holt [3] and Huck and

Oechssler [30] were the point of departure for a study by Spiwoks et al. [40]. Their study confirms

Huck and Oechssler’s supposition that information cascadal behavior is not often due to a Bayesian

decision-making process.

The majority of research on informational cascades focuses on the rationale behind informational

cascades. Is it due to Bayesian reasoning processes or do we apply some heuristic? Research

projects have focused on other aspects of informational cascades too. Take Hung and Plott’s study,

this examined the relationship between incentives and informational cascades in the urn-example.

Participants were divided into three groups with different reward structures, participants were 1)

rewarded based on their guess being correct or incorrect, 2) rewarded based on whether a majority

of the group guessed correctly, or 3) rewarded based on whether their private guess matched the

majority’s guess. The results in group 1) closely matched the behavior observed in (amongst others)

[3]. In group 2) the participants simply guessed according to their private signal (as such reaching

the highest probability that the majority of the group guesses correctly). In 3) participants simply

copied the guess of the first agent. Kübler and Weiszäcker [33] conducted a depth-of-reasoning

analysis. Their results suggest that the subjects’ depth of reasoning (I think, he thinks, that I

think, that he thinks....) is very limited and that their reasoning gets more and more imprecise

on higher levels. Also, subjects attribute a significantly higher error rate to their opponents as

compared with their own.

The length of the cascade has been shown to have an effect on the prevalence of cascadal

behavior. The results of Kübler and Weiszäcker [33] show that less than 65% engage in a cascade

after two identical guesses, whereas 100% of their participants engage in cascadal behavior after

seven identical guesses. Anderson and Holt’s results suggest a similar effect - two identical guesses

results in 64% cascade prevalance whereas five identical guesses are followed by a cascade in 80%

of the time [3].

The focus of the bulk of experiments has been on finding the rationale behind cascadal behavior.

No research project thus far has focused on what effect an established opinion of reliability regarding

the people in the sequence might have on the rise of a cascade. Our experiment can therefore provide

insightful results. In our experimental setting, we use the urn-example setup designed by Anderson

and Holt [2], [3], later used in many other projects. Due to conditions put forward by the first

part of our experiment, we use a sequence of only two identical guesses. A percentage of cascade

prevalence of around 64% - 65% will therefore be our point of reference. One experimental setting

by Willinger et al. [46] is here taken to be the most comparable to ours. It has two comparable
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features: 1) the guess of some people in the sequence ’weigh’ more than the guess of other people,

2) the experiments examine a feature that could ’shatter’ informational cascades. There are crucial

differences though. In their setup [46], some people get hold of more private information (two draws

instead of only one) than the rest and make a more informed guess, this is assumed to make their

announcement weigh more. Their setting is not linked with trust in reliability. Willinger et al.’s

results show that a situation in which a more informed agent occurs in the sequence, is indeed able

to shatter an informational cascade. In case this more informed agent played participated, cascades

derailed more often.

2.2 Trust and reliability

Some philosophical background

In the informational cascade setting, agents in the sequence assert whatever they think is the right

conclusion based on the information they have. Their assertion can be viewed as testimonies of a

proposition. The branch of social epistemology is concerned with questions about testimonies and

information transfer in a social setting. Philosophers in this branch thus far have wondered, how

the assessed reliability of testimony sources influences our adoptation of these testimonies.

Hardwig [27] developed an epistemological principle, “the principle of testimony”;

If A has good reasons to believe that B has good reasons to believe φ, then A has good

reasons to believe φ [27]

According to Hardwig this principle is dependent on three things, 1) A’s ’good reasons’ depend on

whether B is truthful or honest, 2) B must be competent, knowledgeable about what constitutes

good reasons in the domain of her expertise, and he must have kept himself up to date with those

reasons, and 3) B must not have a tendency to deceive himself about the extent of his knowledge,

its reliability or its applicability to whether φ. To summarize Hardwig’s conclusion, A must trust

B, otherwise A will not believe that B’s testimony gives him good reason to believe φ: A must have

reason to believe that B is morally and epistemically reliable, to have good reasons to believe φ on

the say-so of B.

Alvin Goldman, known by his great contributions to epistemology, discussed streams in philos-

ophy on the handling of information derived from another person’s testimony [23]. Burge [14] and

Foley [20] argue that each testimony by a person gives a hearer reason to accept this claim, fully

disregarding anything a hearer might know about this person or his abilities. This is in line with

the theories of non-reductionists. Foley [20] claims that it is “reasonable for us to be influenced
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by others even when we have no special information indicating that they are reliable”. Foley’s

opinion is in contrast with claims that the strength of a testimony depends on derivative authority.

This derivative authority suggests that a receiver considers a source authoritive if he has reasons

to believe that their source’s “information, abilities or circumstances put him in an especially good

position” to rightfully assert. According to Foley, people have the epistemic right to trust others

even in the absence of empirical evidence, unless they have stronger evidence indicating otherwise.

Goldman then opposes that if a hearer has evidence on reliability of a source, this can easily bolster

or defeat the hearer’s justification to accept testimony from that source [23]. Goldman does not

make any reductionist-claims, rather he argues that gained empirical evidence about the source of

information’s reliability is clearly relevant, and can even be crucial for overall entitlement to ac-

cept his assertion. Goldman concludes that “the hearer’s all-things-considered justifiedness vis-a-vis

their claims will depend on what he empirically learns about each speaker”. Goldman names several

reasons on which the hearer can base himself in deciding to trust one person more than another.

One of them is highly relevant for the rest of this thesis, namely that the hearer has evidence of

the speaker’s past “track-record”. In this thesis we will take Goldman’s and Hardwig’s stance. Our

intuition is that assessed reliability of a source will affect the acceptance of this source’s assertions.

Reliability assessment of sources is (at least partly) based on the source’s “track-record”.
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Chapter 3

Formal-logical background

In this chapter we will give an introduction to the formal-theoretical tools of Dynamic Epistemic

Logic we will employ in this thesis. Informational cascades, and in particular the urn-example,

have been subject of research in formal modelling of social-informational phenomena. When the

phenomenon informational cascade was first described, its formal analysis was based on tools from

Bayesian probability theory. More details on this analysis we saw in Chapter refchap:theor. Dy-

namic Epistemic Logic turns out to be an apt tool to analyze these social-informational phenomena

as well. Although we expect the reader to have some basic knowledge to be able to read and

understand epistemic logic, we attempt to provide the basic conceptual understanding needed to

comprehend the rest of this thesis. Then, we will elaborate on how the reasoning behind informa-

tional cascades in particular has been modelled in Dynamic Epistemic Logic. Plausibility ordering,

as an alternative to our used probability models, will be discussed. This chapter forms the basis

for our logical models of the so far uncombined concepts of reliability and cascades.

3.1 Dynamic Epistemic Logic

Informational input can influence an agent’s epistemic state in two ways. It can influence what

the agent knows about the world or this information can influence what the agent believes about

the world. An agent’s knowledge is what he considers to be well-established truths. Because these

truths are well-established and the agent is sure about them, incoming information can not decrease

what the agent already knows. What an agent believes is more volatile, this is what he considers

to be the most plausible or probable state of the world given his options. If new information (new

options) comes in, an agent can simply change his beliefs (i.e. expand, revise or contract beliefs).
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In a formal model different types of epistemic events are needed to influence an agent’s modelled

knowledge compared to the events that influence his modelled beliefs.

Knowledge and hard information

Hard information is the incoming information capable to change what agents know as they incor-

porate the information (’learning’) (first described by van Benthem [42]). It is the information

provided by epistemic events conveying completely trustworthy and truthful facts. In line with the

theory of Dynamic Epistemic Logic we call these knowledge transforming events announcements,

they can be private or public. The public announcements can be thought of as actual announce-

ments in public, but also public observations or other general public learning events. Such a public

distribution of truthful facts can eliminate possibilities from the range of possible states of the

world the receiving agent considers. In a model, the public announcement of hard fact φ discards

worlds that fail to satisfy φ. In the models to follow we therefore call φ a precondition. A public

announcement of φ will be written as !φ. A private announcement is a learning event for some

but not all agents. In this section we will describe what formal descriptions and models we use

to formalize the following three stages of ”knowledge change”; 1) The knowledge of agents before

a knowledge-transforming event, 2) The occurrance of the knowledge-transforming event itself, 3)

The knowledge of agents after the knowledge-transforming event. A sequence of Dynamic Epis-

temic Logic-style models will take us through these stages using state models, event models and

the product update.

State models

In the epistemic state model we give a formal representation of the states of the world agents

consider. In the semantics of Dynamic Epistemic Logic we use Kripke models to display the

knowledge of agents [45].

Definition 2 [Kripke Model] A Kripke model is a structure M = (S,Ra,Ψ, ‖ • ‖, s∗) , where

• S is a set of states (or “worlds”). This set of worlds is also called the domain of the model

DM. s* is the actual world.

• Ra is the relation function, yielding for every agent in the set of all agents, all a ∈ A, an

accessibility relation R ⊆ S × S.

• Ψ is the set of atomic propositional sentences (p, q, . . .). These propositions are sentences that
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might or might not hold at a state.

• ‖ • ‖ : Ψ → 2S is the valuation function that tells us the states in which proposition p from

the set of propositions Ψ holds. This function yields the set ‖p‖ ⊆ S.

An Epistemic State Model is a specific type of Kripke model [43].

Definition 3 [Epistemic State Model] In an epistemic state model, we define M as a structure:

(S,A, (∼a)a∈A,Ψ, ‖ • ‖, s∗), such that:

• S is a set of possible states of the world, in which s* is the actual state of the world

• A is a set of agents;

• for each agent a, ∼a ⊆ S × S is an equivalence relation interpreted as agent a’s epistemic

indistinguishability. This captures the agent’s hard information about the actual state of the

world;

• Ψ is the set of atomic propositional sentences (p, q, . . .). These propositions are factual sen-

tences that might or might not hold at a state.

• ‖ • ‖ : Ψ → 2S is a valuation map, telling us the states at which a proposition holds, for

all propositions p ∈ Ψ. Formally, the valuation function is a function from each atomic

proposition p ∈ Ψ to some set of states ‖p‖ ⊆ S.

An example of the graphical notation we use for such an epistemic state model is in Figure 3.1.

The model represents an agent’s epistemic state. The circles represent possible worlds. The worlds

that are considered possible by the agent are connected by the indistinguishability relation, repre-

sented as a line between the states, the state that is the actual state (s*) has a double circle. For

simplicity, loops are not represented. If propositional letters appear in a state, this means that this

propositional sentence holds in this state. We express this by saying that this state s ∈ ‖p‖M, for

p a propositional sentence ∈ Ψ.

s
q all a

t
¬q

Figure 3.1: Epistemic State Model

Event models

We described the situation in which the initial state model, like in Figure 3.1, can change dynam-
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ically through the effect of incoming ’hard’ information. In fact, this new information eliminates

possibilities from the current range of possible worlds. Baltag, Moss and Solecki [7] propose to

model epistemic events in Epistemic Event Models, defined as:

Definition 4 [Epistemic Event Model] We define the event model E as a structure:

(E,A, (∼a)a∈A,Φ, pre, e∗), such that:

• E is a set of actions/events, e* is the actual event

• A is a set of agents;

• for each agent a, ∼a ⊆ E × E is an equivalence relation interpreted as agent a’s epistemic

indistinguishability. This conveys the agent’s hard information on what event is the actual

event,

• pre: E → Φ defines the preconditions for the occurence of a specific event

An example can be viewed in Figure 3.2. Suppose this figure is about the situation in which Jane

observes the colour of a card on the table. The incoming information is private to her. The other

agents know Jane observes the colour of the card, but do not know the colour. It is common

knowledge that this card can be the red card or the blue card, these are the only two possibilities.

Jane’s announcement about her card colour can change all agent’s except for Jane’s knowledge.

The precondition pre is a proposition that has to be satisfied in order for the specific event to take

place. For example; q = ’The card Jane holds is red’, ¬q = ’The card Jane holds is blue’.

ered
q all a6=aJ

eblue
¬q

Figure 3.2: Event Model

Product update

The last stage to formalize is how the occurence of an event affects the epistemic model of the

agents. This is described in the Product Update. The definition for this epistemic product update

[43];

Definition 5 [Epistemic Product Update] Once we have an Epistemic State Model M and Event

Model E , the effect of the update is a new state modelM⊗E= (S′,A, (∼′a)a∈A,Ψ′, ‖ • ‖′, s∗’), such

that:
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• S′ is the new set of states of the world, consisting of all s′ ∈ S × E. s*’ ∈ S × E is the actual

state

• A is the set of agents;

• (∼′a)a∈A satisfies (s, e) ∼′a (t, g) iff both s ∼′a t and e ∼′a g

• Ψ is a set of propositional sentences (facts that might or might not hold at states)

• ‖p‖′ = {(s, e) ∈ S′ : s ∈ ‖p‖} - this means that the valuation for (s, e) ∈ ‖p‖′

in the updated model M ⊗ E is the same as it was for s in M.

An example of the graphical notation of a product updated state model, is in Figure 3.3.

s, er
q all a6=aJ

t, eb
¬q

Figure 3.3: Model after Product Update

3.2 Dynamic Epistemic Logic and informational cascades

To make the information flow in an informational cascade, influenced by assessed reliability of pre-

decessors, more precise, we will use the framework based on Probabilistic Dynamic Epistemic Logic.

This framework was applied by Baltag, Christoff, Hansen and Smets (Baltag et al.) to show that it

is logically ’unavoidable’ and rational for (logically omniscient and unboundedly rational) agents to

engage in an informational cascade in the urn-example [6]. In this section we will introduce Baltag

et al.’s used framework. Their result is irrespective of the debate on whether agents employ prob-

abilistic reasoning or rather use a heuristic like the ’counting’ heuristic, since they show the same

result for both agents employing Bayesian reasoning and agents employing a ’counting’ heuristic.

To formalize the cascadal situation, Baltag et al. [6] use Probabilistic Dynamic Epistemic Logic,

based on van Benthem, Gerbrandy and Kooi [44], assuming that the agent employs probabilistic

reasoning to compute the best urn-guess [3]. The aim of every agent in the urn-game is to make a

correct (individual) guess, based on the publicly announced guesses of earlier agents (if any) and

the observation of their private draw. First agent in sequence, second agent in sequence, third agent

in sequence will be denoted using a1, a2,a3,. . . . Probabilistic DEL-style models can represent the
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course of the example as follows: an agent attaches prior probabilities to the possible urn configu-

rations (probabilistic epistemic state model), a1 draws a ball (probabilistic event model), the ball

draw changes posterior probabilities of the agents’ considered worlds (probabilistic product update),

a1 announces his guess (probabilistic event model), this can change receivers’ beliefs about the urn

configuration (probabilistic product update). This process can be repeated for multiple agents. In

this section we will follow this course and model it with Probabilistic DEL-models.

Logical model of informational cascades: Probabilistic model

We will give an outline of Probabilistic DEL models, analogous to the one in Baltag et al.’s paper

[6]. Let us start with the definition of epistemic state models in the probabilistic setting [6]. What

is added in comparison with the epistemic state model in the previous section, is a probability

measure on each equivalence class. This probability measure Pa tells us how probable all a ∈ A

deem states, given the guesses of previous players (if any) and the colour of their private draw (if

any).

Definition 6 [Probabilistic Epistemic State Models] A probabilistic multi-agent epistemic state

model M is a structure (S,A, (∼a)a∈A, (Pa)a∈A,Ψ, ‖ • ‖, s∗) such that:

• S is a set of states, s* is the actual state

• A is a set of agents;

• for each agent a, ∼a ⊆ S × S is an equivalence relation. This relation connects all the states

considered possible by a.

• for each agent a, Pa : S → [0, 1] is a map that induces a probability measure on each ∼a-

equivalence class.
∑
{Pa(s′) : s′ ∼a s} = 1 for each a ∈ A and each s ∈ S). This gives us the

probability the agent attaches to each world,

• Ψ is a set of atomic propositional sentences(p, q, . . .). These propositions can be seen as facts

that possibly hold at states,

• ‖ • ‖ : Ψ→ P(S) is a valuation map to the states at which a proposition holds, for all p ∈ Ψ.

Formally, the valuation function is a function from each atomic proposition p ∈ Ψ to some

set of states ‖p‖ ⊆ S.

Definition 7 [Epistemic-probabilistic language] We use the epistemic-probabilistic language of Fa-

gin and Halpern [18] [44]. The language L we use, in which p ∈ Ψ are atomic propositions and
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α1, . . . , αn, β stand for arbitrary rational numbers, is:

φ := p | φ | φ ∧ φ | Kaφ | α1 · Pa(φ) + . . .+ αn · Pa(φ) ≥ β

The interpretation of proposition φ in the modelM is ‖φ‖M and simply means that proposition φ

holds at all worlds s ∈ ‖φ‖M.

Probabilities can be represented as a fraction just like in the Bayesian analysis Pa = 4
5 , but it is

simpler and more efficient to represent probabilities as the ’odds’ of states as opposed to one another

as considered by a; their relative likelihood. For example, relative likelihood Pa(s) : Pa(t) = 1 : 2

means that state t is deemed twice as likely as state s by a, and could have been represented by

P (s) = 1
3 and P (t) = 2

3 .

Definition 8 [Relative Likelihood] The relative likelihood (or “odds”) of a state s against a state

t according to agent a, [s : t]a, is defined as

[s : t]a := Pa(s)
Pa(t)

We will adopt this notation. [s]a1 = 4 means the relative likelihood of a state s according to a1

compared to some other state t within the set of states considered by a1 is 4.

New information comes in both when agents draw balls and when they announce their guesses. To

represent this we use probabilistic event models [6], they are the event models we have seen in the

previous section, enriched with a probability assignment.

Definition 9 [Probabilistic Event Model]A probabilistic event model E is a structure

(E,A, (∼a)a∈A, (Pa)a∈A,Φ, pre, e∗) such that:

• E is a set of possible events, e* is the actual event

• A is a set of agents;

• ∼a⊆ E×E is an equivalence relation. This relation connects all the events considered possible

by a.

• Pa gives a probability assignment for each agent a and each ∼a-information cell. When

observing the current event (without using any prior information), agent a assigns probability

Pa(e) to the possibility that in fact e is the event that is currently happening,

• Φ is a set of mutually inconsistent propositions (in our defined probabilistic-epistemic language

L). These propositions are called preconditions.
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• pre assigns a probability distribution pre(•|φ) over E for every proposition φ ∈ Φ. pre

depicts the probability that a certain event e occurs in states given that these states satisfy

the precondition φ: pre(e|φ).

The odds of the possible worlds in the epistemic state model can change due to events and when

agents incorporate the information the event provides. We represent this in the probabilistic product

update model M⊗E , defined as [6]:

Definition 10 [Probabilistic Product Update] Given a probabilistic epistemic state model M=

(S,A, (∼a)a∈A, (Pa)a∈A,Ψ, ‖ • ‖, s∗) and a probabilistic event model E =

(E,A, (∼a)a∈A, (Pa)a∈A,Φ, pre, e∗), the updated state model M⊗E=

(S′,A, (∼′a)a∈A, (P ′a)a∈A,Ψ′, ‖ • ‖′, s∗’), is given by:

• S′ = {(s, e) ∈ S × E | pre(e | s) 6= 0}, s*’ is the actual state out of all s′ ∈ S × E

• Ψ′ = Ψ,

• ‖p‖′ = {(s, e) ∈ S′ : s ∈ ‖p‖},

• (s, e) ∼′a (t, f) iff s ∼a t and e ∼a f,

• P ′a(s, e) = Pa(s)·Pa(e)·pre(e|s)∑
{Pa(t)·Pa(f)·pre(f |t):s∼at,e∼af}

, where pre(e | s) :=
∑
{pre(e | φ) : φ ∈ Φ

such that s ∈ ‖φ‖M}

The posterior probabilities we compute in the product update can also be expressed in their relative

likelihood, computed by the following rule:

[(s, e) : (t : f)]a = [s : t]a · [e : f ]a ·
pre(e|s)
pre(f |t)

For a specific state, the relative odds of the state after product update with an event will be

computed with this rule:

[(s, e)]a = [s]a · [e]a · pre(e|s)

The graphical notation Baltag et al. employ for these probabilistic DEL-models is almost the same

as the graphical notation of epistemic states and events in the previous section. Each possible world

is a circle. Each event is a square. The lines are replaced with arrows indicating the probability

ordering, the arrows point from worlds with lower odds to worlds with higher odds. Odds are

written on the arrows or next to the state. The proposition true at the state (either UW or UB in
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this case) is represented in the state. Double circles (squares) indicate the actual world, based on

the knowledge of the modeller. We will go through an example to illustrate the models [6]. Note

that in this example, a ‘reverse cascade’ (explained in Chapter 2) develops. The initial situation is

in Figure 3.4. At the onset the probabilities of sW and sB are equal.

sW
UW

oo
1:1(all a)

// sB
UB

Figure 3.4: Initial model in the urn-setting

The first agent draws a white ball: an event depicted in Figure 3.5.

w1 pre(UW ) = 2

pre(UB) = 1
oo

1:1(all a6=a1)
// b1 pre(UW ) = 1

pre(UB) = 2

Figure 3.5: Event model of the first agent drawing a ball

All the agents know the first agent drew a ball, but they do not know the colour of the drawn ball,

since this is private information for the drawer. The states in which a draw can form evidence for

the proposition that holds in the state, become more likely to all agents (this makes a lot of sense,

statistically it is more likely that the urn is in fact UW in case a white ball is drawn, and that the

urn is in fact UB in case a black ball is drawn). Except for a1, because he knows what in fact the

colour of his drawn ball was. For a1 the upper and the lower half of the model in Figure 3.6 are

distinguishable.

sW , w1
UW

oo 2:1(all a)

OO
2:1(all a6=a1)

ee

1:1(all a6=a1)

%%

sB , w1
UB

2:1(all a6=a1)
��

99

yy
sW , b1
UW

sB , b1
UB

//2:1(all a)

Figure 3.6: Model after product update with a1’s draw

Then a1 announces a guess on UrnW . This is a public announcement !([UW : UB ]a1 > 1]),

expressing that a1 assigns higher odds to urn UW than to UB . a1’s announcement is represented as

an event model with one single event {e!φ}. Note that φ is a formula from the defined language L.
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As we can see in the event model, Baltag et al. [6] assume this announcement has to be truthful

for a1 to perform it. This means that in case φ does not hold at a certain state, this state is

immediately eliminated by the other agents after the announcement of φ. The reason is that all

agents a 6= a1 are assumed to consider a1 infallible. In Figure 3.8 one can see the probabilistic

epistemic state model after a1’s announcement and the elimination of worlds.

[e]a2 = [e]a3 = 1, [e]a1 = 1
e!φ pre(φ) = 1

pre(¬φ) = ⊥

Figure 3.7: Event model of a1’s announcement

sW , w1

UW

oo 2:1(all a) sB , w1

UB

Figure 3.8: Model after product update with a1’s announcement

This course of events can be repeated for the second agent’s turn. He draws a ball and announces

his guess on UrnW . The result of a2’s draw and announcement is in Figure 3.9.

sW , w1, w2

UW

oo 4:1(all a) sB , w1, w2

UB

Figure 3.9: Model after product update with a2’s announcement

Now we consider what happens when a3 observes the colour of his privately drawn ball. Let’s

assume a3 drew black. In Figure 3.11 is the situation after a3 draws a black ball. All other agents

will not be able to distinguish between the upper and lower half of this model, but for a3 only the

lower half is considered. In the lower half of the model, the odds for sW are higher than for sB . For

this reason, a3 is expected to make a public announcement for UrnW !([UW : UB ]a1 > 1]). So even

though a3 drew a black ball, his announcement will be on UrnW . It is clear that his announcement

had been on UrnW too had he drawn a white ball. This means that a3’s announcement bears no

information whatsoever. This situation will keep repeating itself, all agents will always consider

UrnW more probable than UrnB because their input will be the information from a1 and a2’s

announcements and their private draw (following announcement bear no information) - they will

all be in the same situation as a3 [6].
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w3 pre(UW ) = 2

pre(UB) = 1
oo

1:1(all a6=a3)
// b3 pre(UW ) = 1

pre(UB) = 2

Figure 3.10: Event model of the third agent drawing a ball

sW , w1, w2, w3

UW

oo 8:1(all a)

2:1(all a6=a3)

��

ii

2:1(all a6=a3)

sB , w1, w2, w3

UB

2:1(all a6=a3)

��

sW , w1, w2, b3

UW

oo 2:1(all a) sB , w1, w2, b3

UB

Figure 3.11: Model after a3 draws a ball

One could argue that the result of these models only holds for agents who reason according to

Bayesian statistics. Baltag et al. showed that their results can be extended to agents using heuristics

too. They proved that the models for Bayesian reasoners are equivalent to models for agents who

rather choose according to a ‘counting evidence’ heuristic [6]. The logical model based on the

heuristic of ‘counting evidence’ assumes that agents simply count the ‘datapoints’ of evidence they

have seen for each of the urn-types. The agent’s guess is on the urn-type with the largest amount

of evidence. A complete outline of the urn-example in this framework can be found in Appendix B

[6].

Modelling trust in reliability

In Chapter 4 we will take up the probabilistic setting just described. We choose to incorporate

the reliability assessment of predecessors via epistemic event-triggered upgrades on the inherent

probability ordering between the states in the models. How we go about this will become clear in

Chapter 4. We think our representation is a very natural one. However, representing the assessed

reliability this way is pre-eminently a choice we had to make, we had other options. One other

considered option was to implement the more qualitative theory of plausibility orderings, based on

[8], [43], [39], into the ‘counting evidence’ setting in [6]. In this setting, announcements by agents

earlier in the sequence change the plausibility ordering between states in a way that is in accordance

with different upgrade rules. Yet another option had been to use weights to indicate the strength of

evidence an announcement provides for the receiving agent, in line with the weighting justification

setting defined by Fiutek [19]. It goes beyond the scope of this thesis to give an in-depth analysis

of the influence of rationality assessment using these alternative methods. However, we think that
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combining the ’counting’ model (Appendix B) with the ’soft’ information upgrade policies under

the qualitative notion of plausibility orderings would be a very promising alternative line of research

as a follow-up on our analysis in Chapter 4.

’Soft’ information and upgrade rules

The epistemic relation ∼a in the Probabilistic DEL-style models we saw in Section 3.1 is an equiva-

lence relation, indicating the relationship between possible worlds as indistinguishable to the agent.

We know this relation is meant as a notion of an agent’s knowledge; if state s is the actual state

of the world, agent a knows all states t that are indistinguishable from s (t ∈ S such that s ∼a t).

When agents in a sequence perform the action of announcing their guess on one of the two urn-

types, in Baltag et al.’s paper [6] this announcement is interpreted as a public announcement of

’hard’ information; this information changes what the receiving agents know. A public announce-

ment of ’hard’ information eliminates all worlds incompatible with the announced proposition. This

assumption in Baltag et al. is important and possibly controversial, because it requires that the

agent blindly trusts in the reliability of his predecessor’s announcement. While ’hard’ information

is the incoming information that changes what agents know, other types of information can also

change what agents believe. ’Soft’ information is the incoming information that does not change

what agents know, but rather what agents believe or consider more plausible or probable. This ’soft’

information makes specific states of the world more plausible or more probable to be the actual

state of the world. In a model, therefore, the public announcement of ’soft’ fact φ makes worlds that

satisfy φ more plausible or more probable than worlds that fail to satisfy φ. The models based on

Probabilistic DEL we saw, already presume some ordering between states, based on the quantitive

notion of probability. A more qualitative account to represent such an ordering uses plausibility

orders, without inducing them from assigned probabilities in the model. The plausibility ordering

between possible worlds changes when new information comes in, but not as radically as updates

with ’hard’ information. The ordering is changed by means of (less radical) policies for upgrade

[43], [8].

We give a brief description of the qualitative notion of plausibility ordering. The setting that we

describe here is the single-agent, not the multi-agent case. A multi-agent plausibility order, in

contrast, also displays agents’ uncertainty about other agents’ knowledge and belief. Should we

want to formalize the multi-agent case of plausibility orders, the notion of trust graphs can be

used. It would be too far-fetched to go into much more detail here, for a detailed description of this

multi-agent case we refer the interested reader to [39]. A plausibility order represents the epistemic
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state of an agent, hierarchized on how plausible the agent deems every state in the set of states.

We define a plausibility order O on the set of all states S as a pair O := (S, ≤O) in which O ⊆ S is

the set of possible worlds in the domain of the ordering and ≤O is the plausibility relation between

states [8], [43], [39]. The ≤O relation is a well-preorder1 which necessarily has at least one lowest

element. The lower the state in this ordering, the more plausible the state is considered by the

agent: for s, t ∈ O, s ≤O t means state s is considered at least as plausible as t. Assuming this

plausibility ordering enables us to account for the idea that an agent can distinguish in epistemic

judgment between different states, without discarding them. This is exactly what happens when

’soft’ information comes in.

Baltag et al. [8] in a paper on doxastic attitudes as belief-revision policies, use the notation

bestO for the ≤O-minimal elements of the set of all states O. To denote the best world(s) in which

proposition φ is satisfied, we use bestOφ, which denotes the ≤O-minimal elements of φ. Formally:

bestOφ := {w ∈ φ ∩O | ∀v ∈ φ ∩O : w ≤O v}

When we consider announcements as the distribution of ’soft’ information, we can say that we be-

lieve proposition φ in case proposition φ holds in all worlds that are most plausible to us [43]; agents

believe the propositions that are true in their bestO worlds. According to this definition of ’accept-

ing’, an agent with original epistemic state S, who accepts a propositional input φ, will transform

her epistemic state to an order Sτφ such that bestSτφ ⊆ φ [39]. The τ in this definition corresponds

to the ’black box’ strategy that is handled between the input of proposition φ combined with the

original epistemic state, and the output epistemic state. Baltag et al. [8] argue that different belief

revision strategies correspond to policies of how an agent incorporates new information into his

epistemic state, dependent on how reliable the source is deemed. The policies corresponding to a

(highly) trusted source in [8] can be dualized to indicate that the source is distrusted: the agent

upgrades ’to the contrary’. In Table 3.1 we selected and defined a few of these policies. For more

policy descriptions, we refer the interested reader to [8] or [39].

1A well-preorder is defined as a pre-order, a binary reflexive and transitive relation, such that every non-empty

subset has minimal elements [9].
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Degrees of trust and the corresponding upgrade rules after φ is announced [39], [8]
Upgrade

symbol

Type of trust in

reliability

Definition of class Explanation

⇑ Strong trust If φ ∩ S 6= ∅, then Sτφ 6=

∅ and for all w, v ∈ Sτφ :

if w ∈ φ, v /∈ φ then w <Sτφ

v

This upgrade indicates that

the receiver strongly trusts

the reliability of the an-

nouncer. This upgrade pro-

motes all φ-worlds.
↑ Minimal trust If φ ∩ S 6= ∅, then Sτφ 6= ∅

and bestSτφ ⊆ φ

This upgrade indicates that

the receiver considers the

announcer slightly reliable.

This upgrade promotes the

best φ-world(s).
↑id No trust If φ ∩ S 6= ∅, then Sτφ 6= ∅,

and Sτφ =: S

This upgrade indicates that

the receiver thinks the an-

nouncer is unreliable, and

leaves its announcement

aside. This upgrade maps

every plausibility order to

itself.
↑¬ Minimal distrust If ¬φ ∩ S 6= ∅, then Sτφ 6= ∅

and bestSτ¬φ ⊆ ¬φ

This upgrade indicates that

the receiver considers the an-

nouncer slightly unreliable.

This upgrade promotes the

best ¬φ-world(s).
⇑¬ Strong distrust If ¬φ ∩ S 6= ∅, then Sτφ 6=

∅ and for all w, v ∈ Sτφ :

if w ∈ ¬φ, v /∈ ¬φ then

w <Sτφ v

This upgrade indicates that

the receiver strongly distrusts

the reliability of the an-

nouncer. This upgrade pro-

motes all ¬φ-worlds.
Table 3.1: A selection of degrees of trust in reliability and their policies
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Chapter 4

Perceived reliability and

informational cascades

The aim of this thesis is to examine whether variable assessed reliability of predecessors in a sequence

of decision-makers is expected to influence cascadal behavior. As mentioned earlier, our approach

is twofold. In Chapter 5 we give an extensive outline of our experimental setting especially designed

to identify the influence of trust in the capabilities of a predecessor on the rise of cascadal behavior.

This initial setting (before we know the outcomes of our analysis) is outlined in this chapter, or

more details we refer to Chapter 5.. The experiment will be adjusted based upon the hypotheses

drawn from the results in this chapter. Our starting point is the logical framework in [6] in which

an informational cascade is formalized by means of Probabilistic DEL (Section 3.2). We will make

adjustments to this model in order to account for the influence of perceived reliability on the

rise of cascadal behavior. Henceforth, the assumption in [6] that other agents are considered

’infallible’ is dropped. In Baltag et al.’s setting, agents learn from other agents’ announcement in

an irrevocable, un-revisable way [10]. In our setting, agents learn from other agents’ announcement

in a revocable, revisable way - dependent on how reliable the source is perceived. This changes the

model transformation connected to product update, because no possible worlds are eliminated by

announcements, worlds only become more or less probable. The product update we saw in [6] in

Section 3.1 we change into a (softer) upgrade. An upgrade changes the plausibility ranking of worlds

upon the receipt of information. Although a plausibility ordering is a merely qualitative notion,

Baltag et al.’s models [6] intrinsically already have a ‘plausibility’ ordering, but then based on the

more quantitative notion of probability. It is a natural step to modify this analysis of informational

cascades in which worlds are eliminated on the basis of public announcements, towards an analysis
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of informational cascades in which the probability ordering within a set of worlds is upgraded

dependent on how reliable the source is assessed. This is what we will do in this chapter. With this

formalization we attempt to make predictions with regards to what choices a fully, unboundedly

rational participant would make, dependent on how much trust he has in the reliability of his

information sources. On the basis of the outcomes of this analysis for different configurations of

perceived reliability of predecessors, we will form hypotheses to test these tendencies on real people

in our experiment. The experiment will be designed and built carefully to be able to test exactly

these hypotheses.

4.1 Preliminaries

Situation

The participant in our experiment is the third person in a sequence of agents to make the binary

guess on whether the urn in front of him is UrnW (two white balls, one black) or UrnB (two black

balls, one white). The aim of the game (this is common knowledge) is for each individual to make

a correct individual guess on the urn-type. The first agent (a1) and second agent (a2) in this urn-

game make the same guess. Now it is time for the third person (the participant in our experiment)

to announce his guess. Important to know, is that the participant in the experiment (a3) has met

a1 and a2 before. Before the urn-game, they played a game of Higher-Lower. This game is played

such that a3 establish an opinion of how reliable the co-players are. A brief explanation of this

game: The participant (a3) is teamed up with four different agents. The goal of this game is to

make a correct guess on whether the next throw of the dice is higher or lower than the current dice

throw, but also to make the same guess as the teammate. Only if both conditions are met (the

participant makes the same guess as his teammate, and their guesses are correct) - they win a round

of the Higher-Lower game. The experimental design will be such that some of a3’s teammates make

highly irrational moves in this Higher-Lower game (for instance, they guess ‘lower’ when the first

dice throw was 1), other teammates made particularly good and rational moves. This means that,

next to the guess of the two predecessors, the established trust in reliability of the co-players plays

a role in the decision problem of a3. For the other players (a1 and a2) this extra factor did not

play a role in their decision, since they have never met each other before and henceforth we will

assume they have no reason to distrust their co-players, hence they trust these co-players. a3 is

pre-eminently informed on this imbalance in information.
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Formalization method and assumptions

The Probabilistic DEL models we employ, inherently have an ordering of states based on their

probabilities (relative likelihood). We incorporate three different attitudes of trust the third agent

can have towards a1 and a2 into this setting; 1) strong trust, 2) no trust, 3) strong distrust in a’s

reliability.

1. a3 thinks a is strongly rational/strongly reliable, he will take his announcement as support

when making a decision

2. a3 thinks a is irrational/unreliable, he will leave a’s announcement aside when making a

decision,

3. a3 thinks a is systematically wrong (strongly irrational/strongly unreliable), he will take a’s

announcements as support for the opposite of his statement when making a decision.

These attitudes will influence the ordering of states, triggered by epistemic events. The symbols

used correspond to the symbols in Table 3.1. The corresponding attitudes for ↑ and ⇑ would be

too difficult to distinguish in our experiment, similar as the distinction between ⇑¬ and ↑¬, hence

we will focus in this case only on ⇑ and ⇑¬.1

For example, consider a proposition α announced by a1 (where α = “My guess is that the actual

urn is UrnW ”). This α is translated (analogously with [6]) as: ([UW : UB ]a1 > 1) = [UW ]a1 > [UB ]a1

and means that a1 assigns higher odds to the summed worlds in his equivalence cell in which UW

holds than worlds in which UB holds. If a1 is strongly trusted by a3, his announcement of α is

handled by a3 as ⇑ α, which means that a3 will perform a soft upgrade (using the rule corresponding

to a3’s opinion that a1 is reliable) with the information that α is the case. If a1 is not trusted by

a3, his announcement of α is handled as ↑id α which means that a3 does not take his announcement

seriously and leaves it aside; rather treating the situation as if nothing was announced. If a1 is

strongly distrusted by a3, his announcement of α is handled as ⇑¬ α by a3, which means that a3

will perfom a soft upgrade with the opposite of a1’s announcement. We vary properties of the event

models for announcements depending on the reliability a3 attaches to the agent in question. Just

like in Baltag et al., the event of a1 and a2’s draw will make the states in which a draw can form

evidence for the state more probable.

Let us start with an explanation of the event models in case of strong trust and strong distrust

in reliability (⇑ and ⇑¬). In the event model of a1’s announcement we represent the fact that a3

1Although it would be interesting to design an experiment that would test exactly this difference between cascadal

behavior in strong trust and minimal trust/strong distrust and minimal distrust, it goes beyond the scope of this

thesis.
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strongly trusts a1 by saying that out of a3’s considered events, the event in which a1’s announcement

correctly reflects ‘a1’s reality’ (that is, a3 considers a1’s information), is more probable to a3 than

the event in which a1’s information in fact reflects that the opposite of his announcement is the

case. If a3 strongly distrusts a1 the event in which a1’s announcement does not reflect ‘his reality’

is more probable to a3. E = {e1, e2}, pre(e1|α) = 1, pre(e1|¬α) = 0, pre(e2|α) = 0, pre(e2|¬α) =

1. e1 depicts the first situation (a1’s announcement reflects ‘his (a1’s reality’), in e2 a1 is perceived

as if he conveys the opposite message of what his information indicates. Trust in reliability in our

models is represented in terms of an uncertainty between these events, in which more probability

is attached to the event corresponding to the receiver’s reliability assessment of the sourse. The

odds in the event model of a1’s announcement [e1 : e2]a3 are [4 : 1]a3 when a3 strongly trusts a1.

When a3 strongly distrusts a1 [e1 : e2]a3 = [1 : 4]a3 . This relative likelihood of [4 : 1] and [1 : 4]

did not come out of nowhere, we carefully computed this number 4, corresponding to P = 4
5 for

e1 against P= 1
5 for e2 and the other way around for the negative attitude. The minimal satisfied

result we needed from the relative likelihood of the world that is expected to be actual by a3 was

that a3 should comply in a cascade in case his attitude towards both a1 and a2 is ⇑. In case a3’s

probabilities for e1 and e2 in case he employed ⇑ were 2
3 and 1

3 respectively, no cascade arose. In

case these probabilities were 3
4 and 1

4 , no cascade arose. The least difference in odds we needed to

obtain this result, was obtained with 4
5 (event expected to be actual by a3) and 1

5 (the alternative

considered event not expected to be actual).

Now let us consider the case in which a3 has no trust in a1 (a1’s announcement is handled with

↑id). In this case a3 considers an extra event, in which pre = 1 no matter if a1’s reality reflects α or

¬α: E = {e1, e2, e3}, pre(e1|α) = 1, pre(e1|¬α) = 0, pre(e2|α) = 0, pre(e2|¬α) = 1, pre(e3|α∨¬α)

= 1. a3’s attitude of leaving a1’s announcement aside is ensured when a3 handles odds [4 : 1]

for [e3 : e2] and for [e3 : e1]. This results in a3’s relative likelihood attached to both urn-types

remaining exactly the same after the upgrade with a1’s announcement.

We found it important to make the formalization such that it enables us to resemble the exact

same situation in the design of our experimental setting. We model three rounds of the urn-game.

In the first round, a1 privately draws a ball and guesses on one of the urn-types. In this round we

model a1’s, a2’s and a3’s epistemic state, because all three epistemic states are important in the

decision problem. We assume a2 does not have any knowledge on who a1 is and has never met him

before. Therefore, we assume that a2 interprets a1’s signal as coming from a trusted agent (he uses

rule ⇑). This is because, if agents have never met each other before, we assume they give each other

the benefit of the doubt and they trust them. Note that in the experiment we will ensure that a3

is aware of the fact that a2 interprets a1’s as a trusted source (because a3 is told explicitly that a1
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and a2 have never met before). This assumption could be a bit controversial, for example in case

a2 is deemed irrational by a3, it could be that a3 thinks a2 is irrational in interpreting signals as

well. As a modeller’s assumption, we chose to let irrationality play parts in choosing a signal, that

is; if a2 is deemed irrational by a3 this is an irrationality in determining his guess rather than in

interpreting a1’s signal. We are aware that this modelling assumption excludes the possibility of

’double’ irrationality by a2 (to let a3 think that a2 is both irrational in interpreting a1’s signal and

in choosing the right guess based on the information at hand).

Note that agents’ task in the game is to draw one ball and make one announcement, after

this announcement they never return in the game. Therefore also in our formalization, after a1’s

announcement he withdraws from the game and does not return. In the second round, a2 privately

draws a ball and makes a guess announcement. In this round we model a2’s and a3’s epistemic

states. a2 withdraws from the game after his announcement. In the third round, a3 (the participant

in our experiment) draws a ball. In this round, we only model a3’s epistemic state. Based on a3’s

epistemic state we will analyze what his most rational announcement would be. The structure of

the situation is such that a1 and a2 withdraw from the game after their announcement. Because

a3’s activity in the game is not until after a1 and a2’s withdrawal, it is irrelevant for us what a1 and

a2 think of a3’s attitude towards other agents. For simplicity, we choose to simplify what attitudes

a1 and a2’s consider a3 to employ. In our models, a1 and a2 ascribe to a3 the attitude he in fact

has. Because this consideration of a1 and a2 is irrelevant, this does not affect our model outcomes’

validity in any way.

Our drawing convention is similar to the one in Baltag et al.’s paper [6]. To keep the models

tidy and clear, we choose not to display reflexive and transitive arrows. We will draw possible

worlds beloninging to the same equivalence cell. Arrows point from lower odds to higher odds.

The actual world2 is indicated with a double circle or a double square. The probabilities that the

different agents attach to the worlds are displayed next to the concerned world in terms of relative

likelihoods (odds).

4.2 Outlined analysis

We use Probabilistic DEL to formalize the setting in which a3 has two predecessors in the urn-game;

a1 and a2. We decided a3 can handle three policies towards each one of these predecessors. We
2For determining the actual world in the outlines in this chapter we choose to assume a3 is right in his judgment;

in case another agent is not trusted or strongly distrusted his announcement is indeed different from what this agent’s

private draw indicates. This choice is irrelevant for the model’s predictions.

37



model all nine policy configurations. In this chapter we give an extensive outline of our formalization

for two example policy configurations a3 could handle for his predecessors in the sequence. These

configurations are ⇑⇑ and ↑id⇑¬. The outcomes and predictions of a3’s cascadal behavior in other

upgrade rule configurations are displayed in Table 4.1. The full outlines of the models for all upgrade

rule configurations are moved to Appendix A due to space constraints. We strongly encourage the

interested reader to take a look at these outlines in Appendix A too, to see our mode of operations

and compare the results for different configurations of perceived reliability of predecessors.

The first situation we will outline is the situation in which a3 considers agent a1 and a2 to be

very reliable sources. The announcement of a1 and a2 are both handled as public announcements

from a truthful source: a1 ⇑ a2 ⇑.

⇑⇑

Initial situation

[s]a1 = [s]a2

= [s]a3 = 1
sW
UW

oo
all a

// sB
UB

[s]a1 = [s]a2

= [s]a3 = 1

Figure 4.1: Situation before any agent has drawn any ball

The properties of model M0 are:

• S = {sW , sB}, s* = (sW )

• A = {a1, a2, a3}

• [sW ]a1 = [sW ]a2 = [sW ]a3 =[sB ]a1 = [sB ]a2 = [sB ]a3 = 1

• Ψ = {UW , UB}

• ‖UW ‖M = {sW }, ‖UB‖M = {sB}.

In the initial situation, all agents a1, a2, a3 have no information that helps them to distinguish

between the two urn-types. Both urn-types are exactly equally likely; all of them attach the same

odds to both possible worlds sW and sB .

Event: a1 draws a ball

[e]a2 = [e]a3 = 1, [e]a1 = 1
w1 pre(UW ) = 2

pre(UB) = 1
oo

a2,a3
// b1 pre(UW ) = 1

pre(UB) = 2
[e]a2 = [e]a3 = 1, [e]a1 = 1

Figure 4.2: Event model of a1’s draw
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The properties of the event model E0 are:

• E = {w1, b1}, e* = w1

• A = {a1, a2, a3}

• [w1]a3 = [b1]a3 = 1, [b1]a2 =[w1]a2 = 1, [w1]a1 = 1, [b1]a1 = 1 - for a1 the events are distin-

guishable.

• Φ = {UW , UB}

• pre(b1|UB) = 2, pre(b1|UW ) = 1, pre(w1|UB) = 1, pre(w1|UW ) = 2

Agent a1 draws a ball and observes its colour. a3 and a2 have no idea of the colour of this ball. The

preconditions in the event model will affect the probability ordering of the states a2 and a3 consider

when the upgrade will be performed, through the preconditions pre. In case a1 drew white, states

in which proposition UW holds (sW ) become more probable for a2 and a3 (pre= 2 for worlds in

which UW holds). In case of b1, states in which proposition UB holds (sB) become more probable

for a2 and a3 (pre = 2 for worlds in which UB holds). This precondition ensures that, although

agents a2 and a3 do not know the colour of the drawn ball, they consider it more likely that a1

drew a white ball in case UW holds and a black ball in case UB holds. For a1, the two events are

distinguishable, since he knows the colour of his draw. a1 can therefore neglect the left or right half

of the event model.
Upgrade of a1’s draw

[s]a1 = [s]a2

= [s]a3 = 2
sW , w1
UW

oo all a sB , w1
UB

all a6=a1

��

[s]a1 = [s]a2

= [s]a3 = 1

[s]a1 = [s]a2

= [s]a3 = 1
sW , b1
UW

zz

all a6=a1

::

all a6=a1

OO

sB , b1
UB

$$

dd

//all a [s]a1 = [s]a2

= [s]a3 = 2

Figure 4.3: Situation after upgrade with a1’s draw

The properties of model M0 ⊗ E0 = M1 are:

• S = {(sW , w1), (sW , b1), (sB , w1), (sB , b1)}, s*= (sW , w1)

• A = {a1, a2, a3}
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• [sW , w1]a2 = [sW , w1]a3 = 2, [sB , w1]a2 = [sB , w1]a3 = 1, [sW , w1]a2 = [sW , w1]a3 = 1,

[sB , w1]a2 = [sB , w1]a3 = 2. [sW , w1]a1 = 2, [sB , w1]a1 = 1, [sW , b1]a1 = 1, [sB , b1]a1 = 1

- for a1 the events are distinguishable.

• Ψ = {UW , UB}

• ‖UW ‖M = {(sW , w1), (sW , b1)}, ‖UB‖M = {(sB , w1), (sB , b1)}.

In the upgrade after an event we compute the relative likelihood of a state; [(s, e)] =[s] · [e] ·pre(e|s).

An example: [(sW , w1)]a1 = 1·1·2 = 2. In the upgraded situation after a1’s draw a2 and a3 consider

the state in which a draw can form evidence for the proposition that holds in the state more probable.

Event: a1 announces his guess

[e]a2 = [e]a3 = 4, [e]a1 = 1
e1 pre(α) = 1

pre(¬α) = 0
oo

a2,a3

e2 pre(α) = 0

pre(¬α) = 1
[e]a2 = [e]a3 = 1, [e]a1 = 1

Figure 4.4: Event model of a1’s guess announcement

The properties of the event model E1 are:

• E = {e1, e2}, e* = e1

• A = {a1, a2, a3}

• [e1]a3 = [e1]a2 = 4, [e2]a2 =[e2]a3 = 1. [e1]a1 = 1, [e2]a1 = 1 - the events are distinguishable

for a1.

• Φ = {α,¬α}

• pre(e1|α) = 1, pre(e1|¬α) = 0, pre(e2|α) = 0, pre(e2|¬α) = 1
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Agent a1 announces his guess on an urn-type. This event model represents the attitudes of the

agents have towards a1, because it determines the way a2 and a3 handle a1’s announcement. In

both events e1 and e2 agent a1 announces α = ”My guess is urn white” = Pa1(UW ) > Pa1(UB).

The difference between the events, and the representation of the attitudes of a2 and a3 towards a1,

is in the preconditions pre. a1 knows what event is the actual event (because if e1 is the case, he

does not consider any other option possible, similar if e2 is the case), hence for a1 we only have

reflexive loops - he assigns odds 1 to all events. a2 and a3 on the other hand, consider both events

possible, but they consider either e1 or e2 more probable - depending on their attitude towards

a1. In this case a2 and a3 think a1 is reliable, therefore they consider e1 four times more probable

than e2. Since we will assume in the experiment that a2 and a1 have no information about each

other, a2’s attitude is assumed to always assess e1 more probable: a2 has no reason to distrust the

reliability a1. After his guess announcement, a1 withdraws from the game. In the models after the

upgrade therefore only a2 and a3’s state models are represented, a1 is eliminated.

Upgrade of a1’s announcement

[s]a2 = [s]a3 = 8
, [s]a1 = 2

sWw1, e1
UW

oo a1,a2,a3 sBw1, e1
UB

OO
a2,a3

[s]a2 = [s]a3 = 4
, [s]a1 = 1

[s]a2 = [s]a3 = 1
, [s]a1 = 1

sW b1, e2
UW

a2,a3

99

a2,a3

OO

sBb1, e2
UB

ee

//a1,a2,a3 [s]a2 = [s]a3 = 2
, [s]a1 = 2

Figure 4.5: Situation after upgrade with a1’s guess announcement

The properties of model M1 ⊗ E1 = M2 are:

• S = {(sWw1, e1), (sW b1, e1), (sBw1, e2), (sBb1, e2)}, s*=(sW , w1)

• A = {a1, a2, a3}

• [sWw1, e1]a2 = [sWw1, e1]a3 = 8, [sBw1, e1]a2 = [sBw1, e1]a3 = 4, [sBb1, e2]a2 = [sBb1, e2]a3

= 2, [sBw1, e2]a2 = [sBw1, e2]a3 = 1. [sWw1, e1]a1 = 2, [sW b1, e2]a1 = 1, [sBw1, e2]a1 = 1,

[sBb1, e2]a1 = 2. a1 can distinguish between the events.

• Ψ = {UW , UB}

• ‖UW ‖M = {(sW , w1), (sW , b1)}, ‖UB‖M = {(sB , w1), (sB , b1)}.
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The relative likelihood of the states combined with event e1 or e2 is computed with: [(s,e)] =[s] ·

[e] · pre(e|s). An example: [(sBw1, e1)]a3 = 2 · 4 · 1 = 8. pre is 1 for the states in which α holds if

they are upgraded with e1, and pre is 1 for the states in which ¬α holds if they are upgraded with

e2, otherwise pre is 0. As we can see in the upgraded model in Figure 4.5, in the situation after

a1’s guess announcement the state in which a1 acted in accordance with e1 (and thus in accordance

with a2 and a3’s reliability assessment of a1) are considered more probable. a2 and a3 can not

distinguish between states (sBw1) - (sBb1) and (sWw1) - (sW b1), because the colour of a1’s draw

remains private. We will represent this in a collapsed model (Figure 4.6) consisting of (sW ) and

(sB) for which the relative likelihoods are simply [(sW )]a =
∑

[s] ∀s ∈ ‖UW ‖ such that [s]a > 0 and

[(sB)]a =
∑

[s], ∀s ∈ ‖UB‖ such that [s]a > 0. The reason we can do this collapse is because a1 is

no longer represented in what follows, because he has withdrawn from the game. We will perform

a model collapse after every guess announcement (and withdrawal of the announcer).

[s]a2

= [s]a3 = 9
sW
UW

oo a2,a3 sB
UB

[s]a2

= [s]a3 = 6

Figure 4.6: a2 and a3’s collapsed state model after a1’s guess

The properties of collapsed model M2 are:

• S = {(sW ), (sB)}, s* = (sW )

• A = {a2, a3}

• [sW ]a3 = [sW ]a2= 9, [sB ]a3 = [sB ]a2= 6,

• Ψ = {UW , UB}

• ‖UW ‖M = {(sW )}, ‖UB‖M = {(sB)}.

Event: a2 draws a ball

[e]a2 = [e]a3 = 1
w2 pre(UW ) = 2

pre(UB) = 1
oo

a3
// b2 pre(UW ) = 2

pre(UB) = 1
[e]a2 = [e]a3 = 1

Figure 4.7: Event model of a2’s draw

The properties of the event model E2 are:

• E = {w2, b2}, e* = w2
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• A = {a2, a3}

• [w2]a3 = [b2]a3 = 1. [w2]a2 = 1, [b2]a2 = 1. For a2 the events are distinguishable.

• Φ = {UW , UB}

• pre(b2|UB) = 2, pre(b2|UW ) = 1, pre(w2|UB) = 1, pre(w2|UW ) = 2

Agent a2 draws a ball and observes its colour. a3 has no idea of the colour of this ball. The

preconditions in the event model will affect the probability ordering of the states a3 considers in

the upgrade, through the preconditions pre. In case a2 drew white, states in which proposition UW
holds (sW ) become more probable for a3 (pre= 2). In case of b2, states in which proposition UB

holds (sB) become more probable for a3 (pre = 2). This precondition ensures that, although agent

a3 does not know the colour of the drawn ball, he considers it more likely that a2 drew a white ball

in case UW holds and a black ball in case UB holds. For a2 the events b2 and w2 are distinguishable,

since he knows what the colour of his ball was. He will therefore be able to neglect the left or right

half of the model in Figure 4.7.

Upgrade of a2’s draw

[s]a2 = 18, [s]a3 = 18 sW , w2
UW

oo a2,a3 sB , w2
UB

a3

��

[s]a2 = 6, [s]a3 = 6

[s]a2 = 9, [s]a3 = 9 sW , b2
UW

zz

a3a3

OO

sB , b2
UB

dd

//a2,a3 [s]a2 = 12, [s]a3 = 12

Figure 4.8: Situation after upgrade with a2’s draw

The properties of model M2 ⊗ E2 = M3 are:

• S = {(sW , w2), (sW , b2), (sB , w2), (sB , b2)}, s* = (sw, w2)

• A = {a2, a3}

• [sW , w2]a3 = 18, [sW , b2]a3 = 9, [sb, w2]a3 = 6, [sB , b2]a3 = 12.

[sB , b2]a2 = 12, [sW , b2]a2 = 9, [sW , w2]a2 = 18, [sB , w2]a2 = 6. For a2 the upper and lower

half of the model are distinguishable.

• Ψ = {UW , UB}

43



• ‖UW ‖M = {(sW , w2), (sW , b2)}, ‖UB‖M = {(sB , w2), (sB , b2)}.

We compute the relative likelihood of a state; [(s,e)] =[s] · [e] · pre(e|s). In the upgraded situation

after a2’s draw a3 considers the states in which a draw can possibly form evidence for the true

proposition in that state more probable.

Event: a2 announces his guess

[e]a3 = 4, [e]a2 = 1
f1 pre(β) = 1

pre(¬β) = 0
oo

a3

f2 pre(β) = 0

pre(¬β) = 1
[e]a3 = 1, [e]a2 = 1

Figure 4.9: Event model of a2’s guess announcement

The properties of the event model E3 are:

• E = {f1, f2}, e* = f1

• A = {a2, a3}

• [f1]a3 = 4, [f2]a3 = 1. [f1]a2 = 1, [f2]a2 = 1 - for a2 the events are distinguishable.

• Φ = {β,¬β}

• pre(f1|β) = 1, pre(f1|¬β) = 0, pre(f2|β) = 1, pre(f2|¬β) = 0

Agent a2 announces his guess on an urn-type. This event model represents the attitude of a3 towards

a2. In both events f1 and f2 agent a2 announces β = ”My guess is urn white” = Pa2(UW ) > Pa2(UB).

In this specific case a3 thinks a2 is reliable, therefore he considers f1 four times more probable than

f2. For a2 the events are distinguishable, hence he assigns equal odds to both events. After his

guess announcement, a2 withdraws from the game. In the models after the upgrade therefore only

a3’s state model is represented, a2 is eliminated.

Upgrade of a2’s announcement

[s]a3 = 72, [s]a2 = 18 sWw2, f1
UW

oo a2,a3 sBw2, f1
UB

OO
a3

[s]a3 = 24, [s]a2 = 6

[s]a3 = 9, [s]a2 = 9 sW b2, f2
UW

a3

99

a3

OO

sBb2, f2
UB

ee

//a2,a3 [s]a3 = 12, [s]a2 = 12

Figure 4.10: Situation after upgrade with a2’s guess announcement
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The properties of model M3 ⊗ E3 = M4 are:

• S = {(sWw2, f1), (sW b2, f1), (sBw2, f2), (sBb2, f2)}, s* = (sWw2, f1)

• A = {a3, a2}

• [sWw2, f1]a3 = 72, [sBw2, f1]a3 = 24, [sW b2, f2]a3 = 9, [sBb2, f2]a3 = 12. [sWw2, f1]a2 = 18,

[sBw2, f1]a2 = 6, [sW b2, f2]a2 = 9, [sBb2, f2]a2 = 12. a2 can distinguish between the events.

• Ψ = {UW , UB}

• ‖UW ‖M = {(sWw1, f1), (sW b1, f2)}, ‖UB‖M = {(sBw1, f1), (sBb2, f2)}.

The relative likelihood of the states combined with event f1 or f2 is computed with: [(s, f)] =[s] ·

[f ] · pre(f |s). pre in this case is 1 for the states in which β holds if they are upgraded with f1, and

pre is 1 for the states in which ¬β holds if they are upgraded with f2, otherwise pre is 0. Now

after a2’s guess announcement the states in which a2’s announcement reflects ’his reality’ are more

probable to a3, because he thinks a2’s announcement was reliable. a3 can not distinguish between

states (sBw2, f1) - (sBb2, f2) and (sWw2, f1) - (sW b2, f2), because the colour of a2’s draw remains

private. We will represent this in a collapsed model (Figure 4.11) consisting of (sW ) and (sB) for

which the relative likelihoods for a3 are simply [(sW )]a =
∑

[s] ∀s ∈ ‖UW ‖M and [(sB)]a =
∑

[s],

∀s ∈ ‖UB‖M.

[s]a3 = 81 sW
UW

oo a3 sB
UB

[s]a3 = 36

Figure 4.11: a3’s collapsed state model after a2’s guess

The properties of collapsed model M2 are:

• S = {(sW ), (sB)}, s* = (sW )

• A = {a3}

• [sW ]a3 = 81, [sB ]a3 = 36,

• Ψ = {UW , UB}

• ‖UW ‖M = {(sW )}, ‖UB‖M = {(sB)}.
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Event: a3 draws a white ball

[s]a3 = 1
w3 pre(UW ) = 2

pre(UB) = 1
b3 pre(UW ) = 1

pre(UB) = 2
[s]a3 = 1

Figure 4.12: Event model of a3’s white draw

The properties of the event model E4 are:

• E = {w3, b3}, e* = w3

• A = {a3}

• [b3]a3 = 1 and [w3]a3 = 1. For a3 the events are distinguishable.

• Φ = {UW , UB}

• pre(b3|UB) = 2, pre(b3|UW ) = 1, pre(w3|UB) = 1, pre(w3|UW ) = 2

Upgrade: a3’s white draw

[s]a3 = 162 sW , w3
UW

oo a3 sB , w3
UB

[s]a3 = 36

Figure 4.13: Situation after upgrade with a3’s white draw

The properties of model M4 ⊗ E4 = M5 are:

• S = {(sW , w3), (sB , w3)}, s* = (sW , w3)

• A = {a3}

• [sW , w3]a3 = 162, [sB , w3]a3 = 36

• Ψ = {UW , UB}

• ‖UW ‖M = {(sW , w3), ‖UB‖M = {(sB , w3)}.

Agent a3 draws a ball. He knows the colour of his private draw is white. Therefore, his model

is upgraded only with the white draw w3. We compute the relative likelihood of a state; [(s, e)]

=[s] · [e] · pre(e|s). In the upgraded situation after as’s draw, Pa3(UW ) = 162 > Pa3(UB) = 36. a3

will announce a guess on UrnW if he drew a white ball.
Event: a3 draws a black ball
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[s]a3 = 1
w3 pre(UW ) = 2

pre(UB) = 1
b3 pre(UW ) = 1

pre(UB) = 2
[s]a3 = 1

Figure 4.14: Event model of a3’s black draw

The properties of the event model E4 are:

• E = {w3, b3}, e* = b3

• A = {a3}

• [b3]a3 = 1 and [w3]a3 = 1. For a3 the events are distinguishable.

• Φ = {UW , UB}

• pre(b3|UB) = 2, pre(b3|UW ) = 1, pre(w3|UB) = 1, pre(w3|UW ) = 2

Upgrade: a3’s black draw

[s]a3 = 81 sW , b3
UW

sB , b3
UB

a3oo [s]a3 = 72

Figure 4.15: Situation after upgrade with a3’s black draw

The properties of model M4 ⊗ E4 = M5 are:

• S = {(sW , b3), (sB , b3)}, s* = (sW , b3)

• A = {a3}

• [sW , b3]a3 = 81, [sB , b3]a3 = 72

• Ψ = {UW , UB}

• ‖UW ‖M = {(sW , b3), ‖UB‖M = {(sB , b3)}.

Agent a3 draws a ball. He knows the colour of his private draw is black. Therefore, his model

is upgraded only with the black draw b3. We compute the relative likelihood of a state; [(s, e)]

=[s] · [e] · pre(e|s). In the upgraded situation after a3’s draw, Pa3(UW ) = 81 > Pa3(UB) = 72. a3

will announce a guess on UrnW if he drew a black ball.
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The second situation we will outline is the situation in which a3 considers agent a1 very unreli-

able (’systematically wrong’) and a2 unreliable. The announcement of a1 is handled with upgrade

rule ⇑¬, a2’s announcement is handled with upgrade rule ↑id.

⇑¬↑id

Initial situation

[s]a1 = [s]a2

= [s]a3 = 1
sW
UW

oo
all a

// sB
UB

[s]a1 = [s]a2

= [s]a3 = 1

Figure 4.16: Situation before any agent has drawn any ball

The properties of model M0 are:

• S = {sW , sB}, s* = (sB)

• A = {a1, a2, a3}

• [sW ]a1 = [sW ]a2 = [sW ]a3 =[sB ]a1 = [sB ]a2 = [sB ]a3 = 1

• Ψ = {UW , UB}

• ‖UW ‖M = {sW }, ‖UB‖M = {sB}.

In the initial situation, all agents a1, a2, a3 have no information that helps them to distinguish

between the two urn-types. All of them attach the same odds to both possible worlds sW and sB .

Event: a1 draws a ball

[e]a2 = [e]a3 = 1, [e]a1 = 1
w1 pre(UW ) = 2

pre(UB) = 1
oo

a2,a3
// b1 pre(UW ) = 1

pre(UB) = 2
[e]a2 = [e]a3 = 1, [e]a1 = 1

Figure 4.17: Event model of a1’s draw

The properties of the event model E0 are:

• E = {w1, b1} , e*= b1

• A = {a1, a2, a3}

• [w1]a3 = [b1]a3 = 1, [b1]a2 =[w1]a2 = 1, [w1]a1 = 1, [b1]a1 = 1. For a1 the events are distin-

guishable.
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• Φ = {UW , UB}

• pre(b1|UB) = 2, pre(b1|UW ) = 1, pre(w1|UB) = 1, pre(w1|UW ) = 2

Agent a1 draws a ball and observes its colour. a3 and a2 have no idea of the colour of this ball.

The event model will affect the probability ordering of the states a2 and a3 consider in the upgrade,

through the preconditions pre. a2 and a3 consider the case in which a1 drew white, states in which

proposition UW holds (sW ) become more probable for a2 and a3 (pre= 2). In their considered case

of b1, states in which proposition UB holds (sB) become more probable for a2 and a3 (pre = 2).

This precondition ensures that, although agents a2 and a3 do not know the colour of the drawn

ball, they consider it more likely that a1 drew a white ball in case UW holds and a black ball in

case UB holds. For a1, the two events are distinguishable, since he knows the colour of his draw.

a1 can therefore neglect the left or right half of the event model.
Upgrade of a1’s draw

[s]a1 = [s]a2

= [s]a3 = 2
sW , w1
UW

oo a1,a2,a3 sB , w1
UB

a2,a3

��

[s]a1 = [s]a2

= [s]a3 = 1

[s]a1 = [s]a2

= [s]a3 = 1
sW , b1
UW

zz

a2,a3

::

a2,a3

OO

sB , b1
UB

$$

dd

//a1,a2,a3 [s]a1 = [s]a2

= [s]a3 = 2

Figure 4.18: Situation after upgrade with a1’s draw

The properties of model M0 ⊗ E0 = M1 are:

• S = {(sW , w1), (sW , b1), (sB , w1), (sB , b1)}, s* = (sB , b1)

• A = {a1, a2, a3}

• [sW , w1]a2 = 2, [sW , w1]a3 = 2, [sB , w1]a2 =1, [sB , w1]a3 = 1, [sW , w1]a2 =2, [sW , w1]a3 = 2,

[sB , w1]a2 =1, [sB , w1]a3 = 1. [sW , w1]a1 = 1, [sW , b1]a1 = 1, [sB , w1]a1 = 1, [sB , b1]a1 = 1.

a1 can distinguish between the events.

• Ψ = {UW , UB}

• ‖UW ‖M = {(sW , w1), (sW , b1)}, ‖UB‖M = {(sB , w1), (sB , b1)}.

In the upgrade after an event we compute the relative likelihood of a state; [(s, e)] =[s] · [e] ·pre(e|s).

In the upgraded situation after a1’s draw a2 and a3 consider the state in which a draw can form

evidence for the proposition that holds in the state more probable.
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Event: a1 announces his guess

[e]a3 = 1, [e]a2 = 4, [e]a1 = 1
e1 pre(α) = 1

pre(¬α) = 0
a3 // e2 pre(α) = 0

pre(¬α) = 1
[e]a3 = 4, [e]a2 = 1, [e]a1 = 1a2oo

Figure 4.19: Event model of a1’s guess announcement

The properties of the event model E1 are:

• E = {e1, e2}, e* = e2

• A = {a1, a2, a3}

• [e1]a3 =1, [e1]a2 = 4, [e2]a2 = 1, [e2]a3 = 4. [e1]a1 = 1, [e2]a1 = 1, for a1 the events are

distinguishable.

• Φ = {α,¬α}

• pre(e1|α) = 1, pre(e1|¬α) = 0, pre(e2|α) = 1, pre(e2|¬α) = 0

Agent a1 announces his guess on an urn-type. This event model represents the attitude a2 and

a3 have towards a1, because this determines the way a2 and a3 handle a1’s announcement in

this event model. In both events e1 and e2 agent a1 announces α = ”My guess is urn white” =

Pa1(UW ) > Pa1(UB). The difference between the events, and the representation of the attitudes of

a2 and a3 towards a1, is in the preconditions pre. In this case a2 thinks a1 is reliable, because we

assumed that a2 has no established opinion towards a1 and therefore has no reason to distrust him.

Hence, a2 is assumed to trust a1 and therefore a2 considers e1 four times more probable than e2.

a3 in this situation thinks a1 is highly unreliable (⇑¬) and considers e2 four times more probable

than e1. For a1 the events are distinguishable. After his guess announcement, a1 withdraws from

the game. In the models after the upgrade therefore only a2 and a3’s state models are represented,

a1 is eliminated.
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Upgrade of a1’s announcement

[s]a2 = 8
, [s]a3 = 2, [s]a1 = 2

sWw1, e1
UW

oo a2,a3

a3

�� a3%%

sBw1, e1
UB

a3

��
a3
yy

[s]a2 = 4
, [s]a3 = 1, [s]a1 = 1

[s]a2 = 1
, [s]a3 = 4, [s]a1 = 1

sW b1, e2
UW

a2 99

a2

OO

sBb1, e2
UB

a2

OOa2
ee

//a2,a3 [s]a2 = 2
, [s]a3 = 8, [s]a1 = 2

Figure 4.20: Situation after upgrade with a1’s guess announcement

The properties of model M1 ⊗ E1 = M2 are:

• S = {(sW , w1), (sW , b1), (sB , w1), (sB , b1)}, s* = (sB , b1)

• A = {a2, a3}

• [sW , w1]a2 = [sW , w1]a3 = 2, [sB , w1]a2 = [sB , w1]a3 = 1, [sW , w1]a2 = [sW , w1]a3 = 1,

[sB , w1]a2 = [sB , w1]a3 = 2. [sW , w1]a1 = 2, [sW , b1]a1 = 1, [sB , w1]a1 = 1, [sB , b1]a1 =

2. For a1 the events are distinguishable.

• Ψ = {UW , UB}

• ‖UW ‖M = {(sW , w1), (sW , b1)}, ‖UB‖M = {(sB , w1), (sB , b1)}.

The relative likelihood of the states combined with event e1 or e2 is computed with: [(s,e)] =[s] ·

[e] · pre(e|s). pre in this case is 1 for the states in which α holds if they are upgraded with e1, and

pre is 1 for the states in which ¬α holds if they are upgraded with e2, otherwise pre is 0. As we can

see in the upgraded model in Figure 4.5, the upgraded situation after a1’s guess announcement the

state in which a1’s announcement reflected ‘his (a1’s) reality’ is more probable to a2. For a3 the

states in which a1’s announcement did not reflect ‘his (a1’s) reality’ has become more probable. a2

and a3 can not distinguish between states (sBw1) - (sBb1) and (sWw1) - (sW b1), because the colour

of a1’s draw remains private. We will represent this in a collapsed model (Figure 4.21) consisting

of (sW ) and (sB) for which the relative likelihoods are simply [(sW )]a =
∑

[s] ∀s ∈ ‖UW ‖M and

[(sB)]a =
∑

[s], ∀s ∈ ‖UB‖M.
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[s]a2 = 9
, [s]a3 = 6

sW
UW

a3 // sB
UB

a2oo [s]a2 = 6
, [s]a3 = 9

Figure 4.21: a2 and a3’s collapsed state model after a1’s guess

The properties of collapsed model M2 are:

• S = {(sW ), (sB)}, s* = (sB)

• A = {a2, a3}

• [sW ]a3 = 6, [sW ]a2= 9, [sB ]a3 = 9, [sB ]a2= 6,

• Ψ = {UW , UB}

• ‖UW ‖M = {(sW )}, ‖UB‖M = {(sB)}.

Event: a2 draws a ball

[e]a2 = [e]a3 = 1
w2 pre(UW ) = 2

pre(UB) = 1
oo

a3
// b2 pre(UW ) = 2

pre(UB) = 1
[e]a2 = [e]a3 = 1

Figure 4.22: Event model of a2’s draw

The properties of the event model E2 are:

• E = {w2, b2}, e* = b2

• A = {a2, a3}

• [w2]a3 = [b2]a3 = 1. [w2]a2 = 1, [b2]a2 = 1. For a2 the events are distinguishable.

• Φ = {UW , UB}

• pre(b2|UB) = 2, pre(b2|UW ) = 1, pre(w2|UB) = 1, pre(w2|UW ) = 2
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Agent a2 draws a ball and observes its colour. a3 has no idea of the colour of this ball. The

preconditions in the event model will affect the probability ordering of the states a3 considers in

the upgrade, through the preconditions pre. In case a2 drew white, states in which proposition

UW holds (sW ) become more probable for a3 (pre= 2). In case of b2, states in which proposition

UB holds (sB) become more probable for a3 (pre = 2). This precondition ensures that, although

agents a3 does not know the colour of the drawn ball, he of course considers it more likely that a2

drew a white ball in case UW holds and a black ball in case UB holds. For a2 the events b2 and

w2 are distinguishable, since he knows what the colour of his ball was. He will therefore be able to

distinguish between the left and right half of the model in Figure 4.22.
Upgrade of a2’s draw

[s]a2 = 18, [s]a3 = 12 sW , w2
UW

oo a2,a3 sB , w2
UB

a3

��

[s]a2 = 6, [s]a3 = 9

[s]a2 = 9, [s]a3 = 6 sW , b2
UW

a3

::

a3

OO

sB , b2
UB

$$

//a2,a3 [s]a2 = 12, [s]a3 = 18

Figure 4.23: Situation after upgrade with a2’s draw

The properties of model M2 ⊗ E2 = M3 are:

• S = {(sW , w2), (sW , b2), (sB , w2), (sB , b2)}, s* = (sB , b2)

• A = {a2, a3}

• [sW , w2]a3 = 12, [sW , b2]a3 =6, [sb, w2]a3 =9, [sB , b2]a3 = 18.

[sB , b2]a2 = 12, [sW , b2]a2 = 9, [sW , w2]a2 = 18, [sB , w2]a2 = 6. For a2 the events are distin-

guishable.

• Ψ = {UW , UB}

• ‖UW ‖M = {(sW , w2), (sW , b2)}, ‖UB‖M = {(sB , w2), (sB , b2)}.

We compute the relative likelihood of a state; [(s, e)] =[s] · [e] · pre(e|s). In the upgraded situation

after a2’s draw a3 considers the states in which a draw can possibly form evidence for the true

proposition in that state more probable.

Event: a2 announces his guess
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[e]a2 = 1, [e]a3 = 1 [e]a2 = 1, [e]a3 = 1

f1 pre(β) = 1

pre(¬β) = 0
a3

**

f2 pre(β) = 0

pre(¬β) = 1
a3

tt

//a3oo

f3 pre(β ∨ ¬β) = 1

[e]a2 = 1, [e]a3 = 4

Figure 4.24: Event model of a2’s guess announcement

The properties of the event model E3 are:

• E = {f1, f2, f3}, e* = f2

• A = {a2, a3}

• [f1]a3 = 1, [f2]a3 = 1, [f3]a3 = 4. [f1]a2 = 1, [f2]a2 = 1, [f3]a2 = 1. For a2 the events are

distinguishable.

• Φ = {β,¬β}

• pre(f1|β) = 1, pre(f1|¬β) = 1. pre(f2|β) = 0, pre(f2|¬β) = 1. pre(f3|β ∨ ¬β) = 1.

Agent a2 announces his guess on an urn-type. This event model represents the attitude of a3

towards a2. In this case, a3 considers a2 unreliable and leaves his guess announcement aside. This

is represented in this event model, a3 attaches more probability to f3, the odds [sW : sB ] do not

change due to this announcement. a2’s epistemic state model does not change with his own guess

announcement. The events are distinguishable for a2; he knows which event is the actual event.

Upgrade of a2’s announcement
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//a2,a3 [s]a2 = 12, [s]a3 = 72

Figure 4.25: Situation after upgrade with a2’s guess announcement

The properties of model M3 ⊗ E3 = M4 are:

• S = {(sWw2, f1), (sW b2, f1), (sBw2, f2), (sBb2, f2), (sWw2, f3), (sW b2, f3), (sBw2, f3), (sBb2, f3)},

s*=(sBb2, f2)

• A = {a2, a3}

• [sWw2, f3]a3 = 48, [sW b2, f3]a3 = 24, [sBw2, f3]a3 = 36, [sBb2, f3]a3 = 72.

[sWw2, f1]a3 = 12, [sW b2, f2]a3 = 6, [sBw2, f1]a3 = 9, [sBb2, f2]a3 = 18.

[sWw2, f3]a2 = 18, [sW b2, f3]a2 = 9, [sBw2, f3]a2 = 6, [sBb2, f3]a2 = 12. [sBw2, f1]a2 = 6,

[sWw2, f1]a2 = 18, [sBb2, f2]a2 = 12, [sW b2, f2]a2 = 9. For a2 the events are distinguishable.

• Ψ = {UW , UB}

• ‖UW ‖M = {(sWw2, f1), (sWw2, f3), (sW b2, 21), (sW b2, f3)},

‖UB‖M = {(sBw2, f1), (sBw2, f3), (sBb2, f2), (sBb2, f3)}

Because a3 thinks a2 is unreliable, he leaves his announcement aside, he considers f3 four times

more probable than the other events. a2 can distinguish between the events. a3 can not distinguish

between states (sBw2, f3) - (sBb2, f3) and (sWw2, f3) - (sW b2, f3), because the colour of a2’s draw

remains private. After his guess announcement, a2 withdraws from the game. We will represent

this in a collapsed model (Figure 4.26) consisting of (sW ) and (sB) for which the relative likelihoods

are simply [(sW )]a =
∑

[s] ∀s ∈ ‖UW ‖M and [(sB)]a =
∑

[s], ∀s ∈ ‖UB‖M.
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[s]a3 = 90 sW
UW

a3 // sB
UB

[s]a3 = 135

Figure 4.26: a3’s collapsed state model after a2’s guess

The properties of collapsed model M4 are:

• S = {(sW ), (sB)}, s* = (sB)

• A = {a3}

• [sW ]a3 = 90, [sB ]a3 = 135

• Ψ = {UW , UB}

• ‖UW ‖M = {(sW )}, ‖UB‖M = {(sB)}.

Event: a3 draws a white ball

[e]a3 = 1
w3 pre(UW ) = 2

pre(UB) = 1
b3 pre(UW ) = 1

pre(UB) = 2
[e]a3 = 1

Figure 4.27: Event model of a3’s white draw

The properties of the event model E4 are:

• E = {w3, b3}, e* = w3

• A = {a3}

• [w3]a3 = 1, [b3]a3 = 1. For a3 the events are distinguishable.

• Φ = {UW , UB}

• pre(b3|UB) = 2, pre(b3|UW ) = 1, pre(w3|UB) = 1, pre(w3|UW ) = 2

Upgrade: a3’s white draw

[s]a3 = 180
sW , w3
UW

oo a3 sB , w3
UB

[s]a3 = 135

Figure 4.28: Situation after upgrade with a3’s white draw

The properties of model M4 ⊗ E4 = M5 are:
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• S = {(sW , w3), (sB , w3)}, s* = (sB , w3)

• A = {a3}

• [sW , w3]a3 = 180, [sB , w3]a3 = 135

• Ψ = {UW , UB}

• ‖UW ‖M = {(sW , w3), ‖UB‖M = {(sB , w3)}.

Agent a3 draws a ball. He knows the colour of his private draw is white. Therefore, his model

is upgraded only with the white draw w3. We compute the relative likelihood of a state; [(s, e)]

=[s] · [e] · pre(e|s). In the upgraded situation after as’s draw, Pa3(UW ) = 180 > Pa3(UB) = 135. a3

will announce a guess on UrnW if he drew a white ball.
Event: a3 draws a black ball

[e]a3 = 1
w3 pre(UW ) = 2

pre(UB) = 1
b3 pre(UW ) = 1

pre(UB) = 2
[e]a3 = 1

Figure 4.29: Event model of a3’s black draw

The properties of the event model E4 are:

• E = {w3, b3}, e* = b3

• A = {a3}

• [w3]a3 = 1, [b3]a3 = 1. For a3 the events are distinguishable.

• Φ = {UW , UB}

• pre(b3|UB) = 2, pre(b3|UW ) = 1, pre(w3|UB) = 1, pre(w3|UW ) = 2

Upgrade: a3’s black draw

[s]a3 = 90
sW , b3
UW

sB , b3
UB

[s]a3 = 270//a3

Figure 4.30: Situation after upgrade with a3’s black draw

The properties of model M4 ⊗ E4 = M5 are:

• S = {(sW , b3), (sB , b3)}, s* = (sB , b3)
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• A = {a3}

• [sW , b3]a3 = 90, [sB , b3]a3 = 270

• Ψ = {UW , UB}

• ‖UW ‖M = {(sW , b3), ‖UB‖M = {(sB , b3)}.

Agent a3 draws a ball. He knows the colour of his private draw is black. Therefore, his model

is upgraded only with the black draw b3. We compute the relative likelihood of a state; [(s, e)]

=[s] · [e] · pre(e|s). In the upgraded situation after a3’s draw, Pa3(UW ) = 90 < Pa3(UB) = 270. a3

will announce a guess on UrnB if he drew a black ball.

Outcome of the formal analysis

We conducted the same analyses for the rest of the nine configurations of reliability assessments of

predecessors in a cascadal sequence, based on our selected three policies. We once again refer to

Appendix A, where one can find the formal outlines for the other possible configurations of ratio-

nality assessment we consider for the third agent to have towards his predecessors. In Table 4.1

we give an overview of the outcomes. This table shows what (according to our Probabilistic DEL-

analysis) the announcement of a fully rational and logical omniscient agent would be if he were

the third in row, dependent on his opinion about his predecessors. Several interesting conclusions

can be drawn from these outcomes. It makes sense for the third agent to refrain from cascadal

behavior as long as he has distrust in one of his two predecessors. The more the third agent dis-

trusts his predecessors, the stronger this effect gets (as can be seen in the corresponding odds),

but a slight distrust (policy ↑id) is enough to let a3 refrain from cascadal behavior. Something

interesting can be observed in case the third agent has strong distrust in both his predecessors and

he thinks they are systematically wrong (rule ⇑¬). If in this case the third agent’s draw is coloured

white and the announcements of a1 and a1 are on urn-type UrnW , a3 is expected to announce a

guess opposite to both the guessed urn-types and what his private draw indicates; a guess on UrnB .

The strong effect of the factor of assessed reliability we can see in Table 4.1 is an interesting result

in itself, because it shows the extreme fragility of informational cascades. This fragility of cascades

influenced by rationality assessment has never been analyzed in any formal model before. The

contribution of this thesis is not only in this formal model. The formal results are complemented

by experimental results to further substantiate the intuition that variable rationality assessment of

predecessors in sequence can derail informational cascades. As mentioned before, we do not expect

all participants in our experiment to behave exactly like the agents we analyzed in our models. We
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do expect to detect tendencies in our participants’ decisions corresponding to the results from our

formal analysis. These tendencies we hope to find in the percentage of participants complying in

an informational cascades, in varying conditions of trust in the reliability of predecessors.

Predictions for a3 after sequence of announcements white, white
Upgrade

rules

[sW : sB]

after w3

[sW : sB]

after b3

Guess if w3 Guess if b3 Cascade?

⇑ ⇑ 162 : 36

= 9 : 2

81 : 72

= 9 : 8

White White Cascade

⇑ ↑id 270 : 90

= 3 : 1

135 : 180

= 3 : 4

White Black No cascade

↑id ⇑ 270 : 90

= 3 : 1

135 : 180

= 3 : 4

White Black No cascade

⇑¬ ⇑ 108 : 54

= 2 : 1

54 : 108

= 1 : 2

White Black No cascade

⇑ ⇑¬ 108 : 54

= 2 : 1

54 : 108

= 1 : 2

White Black No cascade

↑id ↑id 450 : 225

= 2 : 1

225 : 450

= 1 : 2

White Black No cascade

↑id ⇑¬ 180 : 135

= 4 : 3

90 : 270

= 1 : 3

White Black No cascade

⇑¬ ↑id 180 : 135

= 4 : 3

90 : 270

= 1 : 3

White Black No cascade

⇑¬ ⇑¬ 72 : 81

= 8 : 9

36 : 162

= 2 : 9

Black Black Opposite cascade

Table 4.1: The outcomes of our formal analysis of cascadal behavior using Probabilistic DEL
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Chapter 5

Experiment

Our experiment is designed to test our initial intuition that assessed rationality of predecessors in

a sequence of actions, has an effect on the prevalence of informational cascades. In Chapter 4 we

used tools from Probabilistic DEL to formally analyze how engagement in cascades for rational

agents is influenced by reliability of predecessors. The announcements predicted by analysis based

on Probabilistic Dynamic Epistemic Logic are repeated in Table 5.1. The main predictions on the

announcement of a fully, unboundedly rational agent in the role of third agent in the urn-game

sequence, drawn from our formal analysis:

• The models predict cascadal behavior when both predecessors are assessed reliable

• The models predict that in case both predecessors are assessed unreliable (this could be either

corresponding to ↑id or ⇑¬), the third person will rather not engage in a cascade.

• The models predict that even only one distrusted (either ↑id or ⇑¬) person (an ’intruder’, if

you wish) in the sequence is already likely to derail a cascade.

• The models predict that when both predecessors are assessed systematically wrong (⇑¬), op-

posite cascades will emerge. An opposite cascade means that after sequence of announcements

white,white and a white coloured private draw, the third agent announces a guess on UrnB

because he strongly distrusts the two announcements.

These outcomes are the roots for the hypotheses in Table 5.2, and are as such the basis for the

setup of conditions in our experiment.

We designed an (online) experiment in which participants play the urn-game. The participants

are divided into a test-group and a control-group. The test-group plays a game of Higher-Lower

with the agents that will later be their predecessors in the urn-game sequence. In this Higher-Lower
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game (more details on this game will follow later), some co-players make very bad moves in order

to win the game, other agents make the best moves in order to win the game. In this way, trust in

reliability of the co-players is established. After this Higher-Lower game, the urn-game is played in

different conditions, varying in who the predecessors in sequence are and whether they were ’good’

or ’bad’ players in the Higher-Lower game. The control-group only plays the urn-game, they have

no established opinion on their co-players to start with.

Predictions for a3 after sequence of announcements white, white
Upgrade

rules

[sW : sB]

after w3

[sW : sB]

after b3

Guess if w3 Guess if b3 Cascade?

⇑ ⇑ 162 : 36

= 9 : 2

81 : 72

= 9 : 8

White White Cascade

⇑ ↑id 270 : 90

= 3 : 1

135 : 180

= 3 : 4

White Black No cascade

↑id ⇑ 270 : 90

= 3 : 1

135 : 180

= 3 : 4

White Black No cascade

⇑¬ ⇑ 108 : 54

= 2 : 1

54 : 108

= 1 : 2

White Black No cascade

⇑ ⇑¬ 108 : 54

= 2 : 1

54 : 108

= 1 : 2

White Black No cascade

↑id ↑id 450 : 225

= 2 : 1

225 : 450

= 1 : 2

White Black No cascade

↑id ⇑¬ 180 : 135

= 4 : 3

90 : 270

= 1 : 3

White Black No cascade

⇑¬ ↑id 180 : 135

= 4 : 3

90 : 270

= 1 : 3

White Black No cascade

⇑¬ ⇑¬ 72 : 81

= 8 : 9

36 : 162

= 2 : 9

Black Black Opposite cascade

Table 5.1: The outcomes of our formal analysis of cascadal behavior using Probabilistic DEL
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Experimental conditions and corresponding hypotheses
Condition Condition description Hypothesis
I - Trusted

White, White,

Black

Participant plays the urn-game with

Chris and James - co-players who are

assessed reliable.

Hypothesis I: Participants will ignore

their own signal and follow their pre-

decessors’ guesses more often than in

control condition V
II - Distrusted

White, White,

Black

Participant plays the urn-game with

Leo and James - Leo is assessed unreli-

able, James is assessed reliable

Hypothesis II: Participants will follow

their own signal and ignore their prede-

cessors’ guesses more often than in the

control condition V
III - Mixed

White, White,

Black

Participant plays the urn-game with

Leo and James - Leo is assessed unreli-

able, James is assessed reliable

Hypothesis III: Participants will follow

their own signal and ignore their prede-

cessors’ guesses more often than in the

control condition V (but less often than

in condition II)
IV - Distrusted

White, White,

White

Participant plays the urn-game with

Kevin and Leo - coplayers who are as-

sessed unreliable. The guesses of Kevin

and Leo are the same as the partici-

pant’s private information in this con-

dition.

Hypothesis IV: Participants who as-

sessed Kevin and Leo ’systematically

wrong’ will guess according to an op-

posite cascade more often than partici-

pants in the control condition VI

V - Control

White, White,

Black

Participant plays the urn-game with

Kevin, Leo, James and Chris and has

never met them before

Control condition

VI - Control

White, White,

White

Participant plays the urn-game with

Kevin, Leo, James and Chris and has

never met them before.

Control condition

Table 5.2: Experimental conditions and their corresponding hypothesis

We assert to assessed reliability. How does this translate to the attitudes participants in our

experiment establish towards their co-players? In the experiment we ask the participants to choose

between three attitudes towards each co-player. These attitudes of reliability are directly connected

to the attitudes we distinguished in the formal analysis; 1) trust in reliability, 2) no trust in

reliability, 3) distrust in reliability. More specifically, we ask the participants (in the test-group)

to choose from the following options for each co-player, after playing the Higher-Lower game with

them:
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• I think Kevin’s judgments are reliable, in the future I will take Kevin’s judgments as support

for making the decision he suggests

• I think Kevin’s judgments are not reliable, in the future I will ignore Kevin’s judgments when

making a decision

• I think Kevin’s judgments are systematically wrong, in the future I will take Kevin’s judgments

as support for making the opposite decision of what he suggests.

This way we connect the attitudes the participants have derived from the first part in the experiment

to the attitudes in the formal analysis. Following their own indicated reliability judgment, we can

ascribe attitudes towards predecessors to the participants, and link them to their cascadal behavior.

If the participant does not establish the desired attitudes in the Higher-Lower game (for example,

Leo made very irrational moves, but the participant still considers Leo reliable), this participant is

excluded from our analysis.1

5.1 Methods and Materials

Participants

Before the onset of the experiment we conducted an a priori power analysis for the statistical tests

we employed to analyze our results. We were looking to get a medium effect size (f = 0.25). The

power (1-β) we were looking to get was 0.9. This analysis informed us that we would need a sample

size of 270 for this experiment. We used Amazon Mechanical Turk to recruit participants for our

experiment. Because we expected some participants to be excluded for analysis, 315 participants

completed (any condition in) our task. Next to exclusion following from failing an attention check

question (these participants are not included in the total of 315), several of the 315 participants

were excluded for any of the following reasons: not the needed/expected trust establishment (13

participants) or indicated that they did not fully understand the urn-game and ranked themselves

below 4 in their performance on the urn-game (14 participants).

The results of 288 participants over our 6 conditions remained and were used in our analyses.

All of the participants were from the United States, with English as their native language (except

for one Philippinian, native language English too). 40% of the participants were male. The average

participant’s age was 40.6 (σ = 12.4) years old, the youngest person participating was 20 years

old, the oldest 74. When it comes to religion and political affiliation, 52% considered themselves
1This rarely happened, in only 13 out of 310 participants in total!
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Christian, 34% non-religious, 3% new-age spiritualist, 3% Buddhist, 1% Hinduist and 3% other

religions. For political affiliations multiple options per person could be selected, 46% considered

themselves Democrat, 26% Liberal, 19% Republican, 8% considered themself politically ’right’, 5%

considered themselves politically ’left’, 17% had a political affiliation not mentioned in this list

(’other’). All participants received a payment of $0.75 for the task 2, which is average payment on

Amazon Mechanical Turk. We selected only participants of over 18 years old, living in the United

States and with a Mechanical Turk approval rate of over 95%.3
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Figure 5.1: Our participants distributed over their religion and political affiliation

Apparatus and Material

This experiment was conducted using Amazon Mechanical Turk (MTurk) and Qualtrics. The

experiment was designed by ourself. The graphically designed experiment was programmed in

Qualtrics to serve as a survey. This survey was linked to MTurk to recruit participants. Our

experiment was fully computerized and the participants were well aware that their co-players were
2The duration of the task was 20-25 minutes for the test-group, 15-20 minutes for the control-group
3This means that from all the tasks they completed on Mechanical Turk, 95% is successfully approved by requesters
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not actual players, but computerized and programmed by the designers of the experiment. We

asked the participants to imagine they were playing both games with actual players.

Validity of Amazon Mechanical Turk

MTurk is an online market place for getting tasks done by others. Behind the website is a workforce

of over 500,000 workers (in 2011) from over 190 countries [13]. Virtually every task that can be

done via computers can be put on MTurk. Research has been done on MTurk’s value in academic

empirical research. Analyses of demographic characteristics shows that MTurk participants are

at least as diverse and more representative of the population than participants in other typical

Internet-studies or traditional studies in the laboratory (mainly using college students as their

subjects) [13], [37]. Comparing research shows that workers on MTurk generally appear to respond

to experimental stimuli in a manner consistent with prior research in laboratory settings [37], [32],

[24]. A potential drawback is that unsupervised subjects tend to be less attentive than subjects in

a lab [37]. We added some attention check questions, to identify subjects who failed to pay close

attention, an example in Figure 5.2.4

Figure 5.2: Example of an attention check

General setup of Part I

The first part is meant for participants to establish a judgment on the reliability of the other players.

In the first part, the participants play the Higher-Lower game in four different teams consisting of

themself together with one of their co-players: Chris, Kevin, Leo, James.5 Three game-rounds are

played in each team. The goal of the game-round is to make the same guess as your co-player and

together make the right guess - then you win a round. There is no means to communicate with

the teammate. The participants are instructed to do their best to win every round. Because the

’winning’ or ’losing’ of a round is highly dependent on the choice of the teammate, the participants
4If participants failed an attention check, they were immediately excluded from the rest of the experiment
5So all participants play the game ’teamed up’ with all four co-players in a row
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are forced to pay attention to the teammate’s choices. After every three game-rounds with a

teammate, the participant is asked to judge the reliability of this teammate.

General setup of Part II

In the second part of the experiment the participants play the urn-game that is well-known from

the experimental history on informational cascades. In the urn-game, nature has decided on one

out of two urn-types. The goal of the game is to make a correct guess on the urn’s type. All players

can base their guess on both information inferred from previous guesses of their predecessors in the

sequence (for the participant; a combination of two co-players out of Chris,James, Kevin or Leo)

and his own private information: one ball-draw from the urn. In this experiment, the goal of Part

II is to examine the effect of Part I on the prevalence of cascades. The urn-game (in all conditions)

consists of 16 decision problems for the participant. The 16 decision problems are almost identical.

We created some difference between them by varying the order within their two predecessors (who

are fixed per condition), the colour of the items to draw, the shape of the items to draw (for

example, the sequence can be ’guess on black’, ’guess on black’, ’private draw white’ with the items

shaped as balls, but it can also be ’guess on yellow’, ’guess on yellow’, ’private draw green’ with

the items shaped as triangles). We varied only features of the experiment that are irrelevant for

the cascadal behavior.6 The decision to make always remains the same. In condition I-III and

VI this decision problem always consists of two of the same guesses in sequence, while the signal

derived from the private draw differs. Conditions I-III and VI differ in whether the predecessors in

sequence are assessed reliable or unreliable by the participants based on the first part. Conditions

IV and V differ from these other conditions only in the composition of their sequence (their private

draw indicates the same colour as the two guesses in sequence). We always get 16 data points

per participant on the same tested variable to measure whether the participant tends to engage in

cascades - dependent on the reliability of his predecessors.

Procedure

The experiment is designed with a between-subject design. The experiment consists of two parts.

Four of the conditions consist of both of the two parts. The other two conditions are the control

condition, they only saw the second part which is conceptually identical to the baseline experiment

conducted by Anderson and Holt [3]. The duration of the experiment was around 20 minutes for
6That is, it does not matter for the decision problem of the third agent whether (for example) draws are balls or

triangles
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condition I-IV, around 15 minutes for control-conditions V-VI. In the first part the participants

played the Higher-Lower game, designed such that the participants develop an assessment of reli-

ability of their co-players. Reliability assessment is measured by a choice between three reliability

assessments (as described earlier) for each co-player. Next to this qualitative judgment, we asked

all participants to numerically rank each teammate on ’to what extent they think this teammate

performed the way they would perform themself’. This numerical judgment is repeated in a few

marked position in the urn-game, for the participant to have a ’reminder’ of who each participant

was. We asked this question because we found it interesting to see whether this coincides with

the qualitative reliability judgments.7 8 The participant’s numerical ranking of co-players was re-

peated in the games in Part II - in this way it also functioned as a ’reminder’ of who the co-players

were again. In the second part the participants played the urn-game with the same co-players,

set up analogously with experiments like Anderson and Holt [3], and other projects [31],[15], [30].

Participants are randomly assigned to one of the six conditions.

The course of Part I (only displayed in condition I-IV):

• Participants are introduced to their co-players: Chris, Kevin, Leo, James.

• Participants get instructions on the Higher-Lower game. Figure 5.3 and Figure 5.4.

• An example trial of the Higher-Lower game is played

• Four sets (randomly ordered) of three games of Higher-Lower are played. Each in a different

team with a different co-player as teammate. In a game, first a dice is displayed, for example

with number 2. The player is asked to guess Higher or Lower for the next dice throw. After

the guess, on the next page the guess of their teammate as well as the next dice throw are

displayed. Accompanied by the one of the following texts:

– ’Congratulations, you both guessed the game, your guesses were correct, you win this

round!’

– ’Ahhh, you and your teammate did not make the same guess, your guess was incorrect,

you lost this round’
7Interestingly, this indeed almost coincided. For example, all participants (except for one) in the ’trusted’ condition

I ranked James and Chris (’rational’ players) 8, 9 or 10 on this measurement of similarity to how they would perform

themself. This seems to suggest that people consider others reliable when they act according to how they would.

Clearly, it is premature to draw this conclusion from our derived information and it needs to be substantiated by

further research.
8People who answered a later question to rank their own performance in the game lower than 4 were excluded

from our analysis, because we considered including their reliability assessment of other players to be misleading.
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– ’Ahhh, you and your opponent did not make the same guess, your teammate’s guess was

incorrect, you lost this round’

– ’Ahhh, your guesses were incorrect, you lost this round’

Figure 5.3: First screen of instructions of the Higher-Lower game
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Figure 5.4: Instructed course of the Higher-Lower game

Figure 5.5 to Figure 5.10 show the course of the game, dependent on the guess of the partic-

ipant. In the example in the Figure 5.5 to Figure 5.7, the participant is teamed up with Leo,

an unreliable player. In Figure 5.8 to Figure 5.10, the participant is teamed up with James,

a reliable player.
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Figure 5.5: The first screen of a Higher-Lower game round

Figure 5.6: The screen a participant sees when he rationally guessed ’higher’
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Figure 5.7: The screen a participant sees when he irrationally guessed ’lower’

Figure 5.8: The first screen of a Higher-Lower game round
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Figure 5.9: The screen a participant sees when he rationally guessed ’higher’

Figure 5.10: The screen a participant sees when he irrationally guessed ’lower’
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• After each set of three rounds in a team with one of the co-players, the participant is asked

to judge their teammate in two questions:

– How would you rank Kevin on the basis of performing like you would perform yourself? Rank

from 1 - 10.

– Which of the following three statements best describes your attitude towards Kevin?

∗ I think Kevin’s judgments are reliable, in the future I will take Kevin’s judgments as

support for making the decision he suggests

∗ I think Kevin’s judgments are not reliable, in the future I will ignore Kevin’s judgments

when making a decision

∗ I think Kevin’s judgments are systematically wrong, in the future I will take Kevin’s

judgments as support for making the opposite decision of what he suggests.

• An overview of the participant’s ranking of co-players is given. Figure 5.11

Figure 5.11: Ranking of co-players repeated

• Participants are asked whether they fully understood the Higher-Lower game, and are asked

to rank themselves from 1 - 10 in whether they were good at this game.

• The second part is announced, but before it starts the co-players and their rankings are shown

once more and the reliability judgments indicated by the participants are repeated.
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Figure 5.12: Assessment of co-players’ reliability repeated

The course of Part II (All participants):

• Participants get instructions on the Urn-Game, similar instructions to the Urn-game in [3].

Figure 5.13 and Figure 5.14

Figure 5.13: Explanation of the game as shown to participants in Condition I-IV
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Figure 5.14: Explanation of the game as shown to participants in Condition I-IV

• An example trial of the urn-game is played

• The participants are explicitly instructed that the co-players do not have any information or

opinion about each other (participants developing ideas about this could influence the results)

• A few multiple-choice questions are asked to highlight some important features of the game

– What do fellow participants in sequence publicly announce?

– After their private draw, do players return the ball back into the urn or do they not

return the ball back into the urn?

– Do the other players know as much about each other as you know about them (stated

differently for V and VI)?

• The participant’s ranking of co-players in numbers is repeated (You ranked Chris 7 on to what

extent he performed like you would perform yourself, You ranked...)

• The game-rounds begin. A game-round looks as follows:

– The guess of the first person is displayed (for example; Chris: ’My guess is Urn Black)

– The guess of the second person is displayed (for example; James: ’My guess is Urn Black)

– The colour of your private draw is displayed (for example; Your draw: a white ball!)
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– The participant’s ranking of the co-players before him in the urn-game sequence is dis-

payed

– A summary: Chris’ guess is ’urn black’, James’ guess is ’urn black’, your private draw

is white.

– The question: Which urn-type do you guess on?

Figure 5.15: Draw of the first person in sequence
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Figure 5.16: Draw of the second person in sequence

Figure 5.17: Private draw displayed
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Figure 5.18: Ranking repeated, sequence repeated, and the participant’s choice

• The urn-game consists of 16 of these rounds. Which co-players form the sequence, is dependent

on the condition.

• The participant is asked whether he fully understood the game. Also, a ranking of their own

performance in the urn game is asked.

• Several exit questions on (amongst others) age, religion and political affiliation are asked.
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5.2 Experimental results

Unit of measurement

To analyze whether or not hypotheses I-III hold, we use a measurement for the prevalence of cas-

cades. We calculate the times participants engage in an informational cascade (they abandon their

private information in favour of a guess on the same urn-type as their predecessor) as a percentage

of the total amount of rounds in the urn-game. If a participant scores 100% on this measure, it

means that in 16 of the 16 rounds he made the same guess as his predecessors, disregarding his

private signal indicating the other urn-type. For the analysis of hypothesis IV, we redefine the

measurement we use. The situation we are after, is namely not a ’cascade’ by definition. It is

the situation in which a sequence of two co-players announce the same guess (”majority black”,

”majority black”), and your private information indicates the same (coloured ”black”), but because

of assessed unreliabillity of both co-players the participant guesses the opposite of all three signals:

”majority white”. This analysis is interesting because the emergence of opposite cascades is a dis-

tinguishing prediction of our models. We will therefore measure the prevalence of these ”opposite

cascades”; we calculate the times participants engage in an opposite informational cascade as a

percentage of the total amount of rounds in the urn-game. Note that using these measurements we

will be able to compare tendencies influenced by reliability assessments in the formal analysis to

the tendencies observed in the experimental data.

Descriptives

In Table 5.3 the descriptives of all six experimental conditions are displayed. N is the sample size,

M is the mean prevalence of cascades, S is the standard deviation and SE is the standard error of

the mean.
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Descriptives of the six experimental conditions
Condition Sample

size

Mean and standard er-

ror of prevalence of

cascades
I - Trusted

White, White, Black

N = 50 M = 74, S = 37, SE = 5.23

II - Distrusted

White, White, Black

N = 50 M = 16, S = 30, SE = 4.24

III - Mixed

White, White, Black

N = 47 M = 37, S = 41, SE = 5.98

IV - Distrusted

White, White, White

N = 42 M (opposite cascades) =

39, S = 43, SE = 6.63
V - Control

White, White, Black

N = 45 M = 56, S = 40, SE = 5.96

VI - Control

White, White, White

N = 49 M (opposite cascades) =

15, S = 28, SE = 4
Table 5.3: Experimental conditions and their descriptives
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Results derived from inferential statistics

We used inferential statistical methods to test our hypotheses, which are repeated in Table 5.4. As

mentioned before, we are looking to report tendencies in our experimental data and whether or

not they correspond to the tendencies in the outcomes of our formal analysis using Probabilistic

DEL. These tendencies we attempt to detect by means of statistical analysis to compare results

from different conditions described in Table 5.4.

Experimental conditions and corresponding hypotheses
Condition Condition description Hypothesis
I - Trusted

White, White,

Black

Participant plays the urn-game with

Chris and James - co-players who are

assessed reliable.

Hypothesis I: Participants will ignore

their own signal and follow their pre-

decessors’ guesses more often than in

control condition V
II - Distrusted

White, White,

Black

Participant plays the urn-game with

Leo and James - Leo is assessed unreli-

able, James is assessed reliable

Hypothesis II: Participants will follow

their own signal and ignore their prede-

cessors’ guesses more often than in the

control condition V
III - Mixed

White, White,

Black

Participant plays the urn-game with

Leo and James - Leo is assessed unreli-

able, James is assessed reliable

Hypothesis III: Participants will follow

their own signal and ignore their prede-

cessors’ guesses more often than in the

control condition V (but less often than

in condition II)
IV - Distrusted

White, White,

White

Participant plays the urn-game with

Kevin and Leo - coplayers who are as-

sessed unreliable. The guesses of Kevin

and Leo are the same as the partici-

pant’s private information in this con-

dition.

Hypothesis IV: Participants who as-

sessed Kevin and Leo ’systematically

wrong’ will guess according to an op-

posite cascade more often than partici-

pants in the control condition VI

V - Control

White, White,

Black

Participant plays the urn-game with

Kevin, Leo, James and Chris and has

never met them before

Control condition

VI - Control

White, White,

White

Participant plays the urn-game with

Kevin, Leo, James and Chris and has

never met them before.

Control condition

Table 5.4: Experimental conditions and their corresponding hypothesis
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An ANOVA-test showed that the prevalence of cascades was significantly different (F(5,277) =

24.704, p < 0.001) between our conditions. To verify or falsify our hypotheses on more specific

differences, we conducted independent sample t-tests comparing data from conditions. To test

Hypothesis I, we compared the prevalence of cascades in condition I with the prevalence in control

condition V. On average, the prevalence of cascades in participants in condition I (M = 74, S=

37), in which the predecessors are considered reliable, is higher than in the control condition (M

= 56, S= 40). This difference was significant (t(90) = 2.28, p = 0.026, r= 0.055). This verifies

hypothesis I: assessed reliability of predecessors in sequence positively influences the rise of cascadal

behavior. To test Hypothesis II we compared prevalence of cascades in condition II, predecessors are

considered unreliable, to the control condition (M = 56, S= 40). The average prevalence in condition

II (M= 16, S = 30), turned out to be significantly (t(93) = -5.66, p < 0.001, r=0.256) lower than

in the control condition. Hypothesis II is verified: assessed unreliability of predecessors in sequence

negatively influences the rise of cascadal behavior. To test Hypothesis III we compare condition

III, in this condition one predecessor is considered unreliable, the other is considered reliable by the

participant, to the control condition V. In condition III the mean prevalence of cascades (M= 37,

S = 41) is significantly lower than in the control condition (t(90) = 2.3, p=0.023, r=0.056). This

means that hypothesis III holds: distrust in only one predecessor significantly lowers the cascadal

behavior of later guessers in sequence. Although both the mixed condition (III, M= 37, S = 41)

and the distrusted condition (II, M= 16, S = 30) have significantly lower prevalence of cascades, the

difference between these two conditions is significant too. The prevalence of cascades in condition

II is significantly lower (t(95) = 2.92, p=0.004, r=0.082) than in condition III. This means that

two distrusted predecessors in sequence turn out to result in a significantly lower prevalence of

cascadal behavior than only one distrusted predecessor in sequence. To test our hypothesis IV,

we will compare this prevalence of ”opposite cascades” in condition IV (M=15, S = 28), to the

prevalence of opposite cascades in control condition VI (M=39, S = 43). In case the predecessors

are considered unreliable (either the assessment corresponding to ⇑¬ or ↑id) (condition IV) the

prevalence of opposite cascades is significantly higher (t(89) = 3.21, p=0.002, r=0.104) than in the

control condition. To fortify the accuracy of the model prediction and our hypothesis, we show that

this is mainly due to the participants who considered their predecessors systematically wrong (⇑¬).

A Mann-Whitney U-test showed that within this group (N=18, M = 53, S = 42) opposite cascades

occured significantly more (U = 202, p < 0.001) than the control group (M=39, S = 43). On

the contrary, within the group that considered their predecessors not per definition systematically

wrong (↑id or one ⇑¬ and one ↑id, N=24, M= 29, S = 41) the prevalence of opposite cascades was

not significantly higher (U = 493, p = 0.202) than the control group VI: this verifies hypothesis IV.
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Figure 5.19: The prevalence of cascades per condition. Asteriskes: * = significant (0.01 < p <

0.05), ** = very significant (0.001 < p < 0.01), *** = extremely significant (0.0001 < p < 0.001)

I = Trusted, II = Distrusted WWB, III = Mixed, IV = Distrusted WWW, V = Control WWB, VI = Control WWW

The reason we used Mann-Whitney U-tests instead of t-tests here, is that the sample size of these

subgroups (N=18 and N=24) is smaller than 30 and both groups were not normally distributed.

We also checked whether interesting correlations existed between gender or age and prevalence of

cascades. For age this was not significant (p = 0.052) and for gender there was no significant

correlation with prevalence of cascades either (p = 0.920).

Discussion on the experiment

All our hypotheses, based on predictions from our models, are beautifully verified by statistical anal-

yses on our obtained data (Table 5.5). The conclusions we can draw from the statistical analyses will

be repeated and discussed here. In the control condition the mean prevalence of cascades is 56%.

This is a little low in comparison with earlier results: Anderson and Holt [3] report participants

engage in a cascade in 64% of similar cases with two predecessors, just like 65% was observed by

Kübler and Weiszäcker [33]. The fact that our experiment was computerized could have influenced

results. We anticipated that conformity and imitation could be less strong when the co-players are

not real players and they do not really ’bond’ with them. We therefore tried our best to constantly

make the participants aware of the recurring co-players and to let our participants ’get to know’ the

co-players, to weaken the influence of this feature. Actual bonding in a laboratory setting (where

participants know or think their co-players are real people) is still likely to enhance imitation and

conformity. The result of 56% is therefore not very surprising and still very
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Results of the statistical analysis of our hypotheses
Hypothesis Verified/

Falsified

Compared

conditions

Statistical significance

of verification
Hypothesis I: Participants will

ignore their own signal and fol-

low their predecessors’ guesses

more often than in control con-

dition V

Verified I and V t(90) = 2.28, p = 0.026,

r= 0.055

Hypothesis II: Participants will

follow their own signal and ig-

nore their predecessors’ guesses

more often than in the control

condition V

Verified II and V t(93) = -5.66, p < 0.001,

r=0.256

Hypothesis III: Participants will

follow their own signal and ig-

nore their predecessors’ guesses

more often than in the control

condition V (- but arguably ex-

pected less often than in condi-

tion II)

Verified III and V t(90) = 2.3, p = 0.023,

r=0.056

Hypothesis IV: Participants who

assessed Kevin and Leo ’system-

atically wrong’ will guess ac-

cording to a reverse cascade (a

guess that is opposite from what

the sequence of guesses indicates)

more often than participants in

the control condition VI

Verified IV and VI

and

Group ⇑¬⇑¬

within IV and

VI

t(89) = 3.21, p = 0.002,

r=0.104

and

U = 202, p < 0.001

Table 5.5: Hypotheses and the statistical significance of the verification
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substantial. In accordance with our hypothesis I, when participants have established trust in judg-

ments of their predecessors in sequence they are more likely to engage in a cascade. Hypothesis II

has been verified too: when participants have established a form of distrust in judgments of their

predecessors in sequence their likeliness to engage in a cascade drops. Hypothesis III regarded the

situation in which one predecessor in sequence is distrusted (this examines the effect of a distrusted

’intruder’ in sequence), our data shows that indeed this sequence leads to significantly less cascadal

behavior than the control condition. In case predecessors in sequence are very much distrusted,

even if the guesses of the predecessors and the private information all point towards one urn-type,

an ”opposite” cascade is significantly more likely to arise than in the control condition.

A possible critical remark on our experiment is that by asking our participants how they assess

the reliability of their predecessors, we hint them that they should do something with this. To

harness against this criticism, we would say 1) that every participant is free to choose from the

options he has, we do not steer them in any direction of judgments, 2) the participants know it

is their job to make a correct guess on the urn. The way they handle the predecessors’ guesses

will therefore still be the way they think they should handle these judgments in order to make the

correct guess. This is exactly the reasoning we wanted to test.

One could say that the situation in our experiment is not a very natural setting, and that this

could decrease the generality of the results. We agree that indeed the situation is not natural, so

we think that a more natural situation could even enhance the behavior that participants already

showed in our experiment! We considered giving our participants a story about their co-players in

which we explained who they were (for example, that they were a math professor or someone who

believed in elves and fairies). However, we think our setting is more natural than this suggested

setting, because in our setting the reliability judgment arose completely naturally in our participants

from playing the game, we did not push them in any direction. An even more natural setting would

be to, for example, let our participants play the urn-game with a little child who clearly does not

understand the rules of the game. It would be interesting to see whether this would give different

results.

Also we were curious to see how strong relationship development and trust establishment would

be in this task, which was just something Mechanical Turkers did, maybe “in between other stuff”

- as (maybe) opposed to dedication in a laboratory task. Especially for the payment of $0.75 for

performing the whole task (this is average payment for MTurk) we were afraid the participants would

maybe not be as much “engaged” in the task as in a laboratory experiment in which participants are

awarded credits or substantially higher payments. Previous research on the great value of MTurk
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experimental results in academic research [37], [32], [24] reassured us of the potential of MTurk for

our project. Now we are even more reassured, given the results of our own experiment. We would

of course be very curious to see how much stronger the effect would be in a laboratory experiment.

The setting we have created in our experiment is quite extreme, an investigation of whether

our results would persist in a more subtle situation would be very valuable. For example, in our

experiment the co-players are either very rational or very irrational. We think it would be interesting

to analyze different levels of rationality in further research.

It would be interesting to broaden the scope from ‘rationality’ to ‘capability of higher order

reasoning’. In the first part of the experiment, then, participants would play a game from which

the capabilities of their predecessors to perform higher order reasoning (I think, he thinks, that I

think, that he thinks...) become clear. The influence of the established judgment of the capacities

to perform this higher-order reasoning could then influence how much the participant relies on

predecessors’ announcements in the urn-game. The urn-game setting would then be modified into a

setting in which higher order reasoning is needed. We already tried to do a step in this direction in

a version of our experiment we initially developed. In this experimental setting we used the Marble

Drop game as the first part of the experiment. In the Marble Drop game [35] participants have to

reason about other players’ actions in order to find out whether they can reach their aimed score.

This game is quite involved and our pilot run of the experiment unfortunately showed that it was

too involved for Mechanical Turk research: irrational moves by the opponent were rarely detected,

even despite extensive practice rounds. We were forced to modify the experiment. A laboratory

setting, rather than online, in which the participants get an even more extensive explanation and

take more time for the task, would be more suitable for this purpose. Unfortunately, this was

outside the scope of this research project.

Our results can provide an extra dimension for research in the area of informational cascades.

The effect of ’who’ the predecessors are and what their relationship with the decision-maker is, can

not be neglected. In our opinion, our results gives rise to a new interesting direction of research

that could be pursued (more about this in Chapter 6 of the thesis).
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Chapter 6

Concluding remarks

6.1 Synthesis

Informational cascades are a popular topic of research. Many branches of academia have shed their

light on the phenomenon; economics, mathematics, informatics and computer science, and social

psychology, sociology and other behavioral sciences for more empirical conclusions. The focus of

experimental research has been on finding the rationale behind informational cascade. Regardless of

what this rationale is, interesting questions on the rise of cascades remain. Informational cascades

are known to be very fragile, they are prone to derail influenced by the slightest changes. In this

thesis we put this fragility to the test. We examine our hypothesis that the tendency of an agent

to comply in an informational cascade is influenced by judgments on how reliable others earlier in

sequence are deemed. The situation in which two agents make the same guess, and the third agent

is about to make his decision is our starting point. This is a typical cascadal situation, because this

third agent is (based on both formal and empirical earlier results) expected to start an informational

cascade. The reasoning process behind this situation we put into a formal model using the tools

provided by Dynamic Epistemic Logic (DEL). DEL is an apt tool to make the events that happen in

the depicted situation precise; a sequence of (Probabilistic) DEL-style models are used to represent

the information flow in different steps in the situation. Baltag et al. [6] already put forward a logical

model for informational cascades using DEL. This model is very insightful, but it only considers

the option that the third agent thinks the first two agents are completely infallible (as if they are

robots or computers). In our formal analysis, we distinguished three attitudes the third agent

might have towards his predecessor: 1) strong trust in reliability, 2) no trust in reliability, 3) strong

distrust in reliability. We incorporated these attitudes into a sequence of state and event models
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using Probabilistic DEL, this way we were able to make very precise where the deemed rationality

of predecessors becomes visible for this third agent. This formalization showed the influence of

fluctuating assessed rationality of predecessors. The most important take-aways from the formal

analysis were that: 1) cascadal behavior is expected when both predecessors are assessed reliable,

2) if both predecessors are assessed unreliable (either ‘unreliable’ or ‘systematically wrong’) no

cascade is expected, 3) even one slightly distrusted agent (an intruder, if you wish) in the sequence,

while the other predecessor is trusted, results in predicted derail of the cascade, 4) two predecessors

who are deemed highly irrational (’systematically wrong’) are predicted to cause an “opposite

cascade”. These outcomes of the formal analysis led to the design of several conditions within our

experiment. Participants were divided into a test-group and a control-group. The participants

in the test-group played a game of Higher-Lower in the first part of the experiment. Teamed up

with one other player, they made a guess on whether the next dice throw would be higher or lower

than the current dice throw. In case their own guess was correct, and they guess was the same

as their team mate’s guess, they won the round. Two of the teammates constantly made rational

decisions (for example guessed ’Higher’ in case the first throw was 2), two of them constantly

made irrational decisions. From this first part, the participants established trust or distrust in the

reliability of the other players. In the second part the participants in the test-group played the

urn-game, a canonical example of an informational cascade setting, with the same players. The

participants in the control-group only played the game in the second part (the urn-game), therefore

they had no established reliability assessment. Different configurations of co-players in second part

of the different conditions (four different test conditions in total) made it possible to compare the

actions of participants when their co-players in the urn-game varied in deemed reliability judgments.

Following the participant’s own indicated reliability judgment, we can ascribe the participants

attitudes towards predecessors, and link this to their cascadal behavior. Our models’ predictions

and our initial hypothesis turned out to be beautifully verified by the data we collected. It turned

out that participants with two deemed ’reliable’ predecessors showed a tendency to comply in an

informational cascade significantly more often than participants in the control-condition (with no

pre-established opinion). Participants with two ‘unreliable’ and ’systematically wrong’ predecessors

significantly less often followed their predecessors’ guesses, in accordance with our model predictions.

Our formal analysis showed that even one ‘unreliable’ predecessors could derail a cascade, indeed

this is confirmed by our experimental data too. Namely, in the ‘mixed’ condition in which one

predecessor was assessed reliable and the other was assessed ’unreliable’ or ’systematically wrong’

significantly less cascades happened than in the control condition. Our analysis showed, though,

that this effect was not as strong as when both predecessors are deemed unreliable (or ‘systematically
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wrong’). The prevalence of opposite cascades (after sequence of announcements white,white and

a white coloured private draw, the third agent announces a guess on UrnB because he strongly

distrusts the two announcements) was predicted when two predecessors are deemed ‘systematically

wrong’. Based on our analysis, opposite cascades do indeed occur significantly more often in the

group of participants for which the two predecessors are deemed ’systematically wrong’. This

confirmed the last hypothesis we derived from the formal analysis.

6.2 Discussion and further research

We performed the steps taken in this thesis with care. We believe we have showed that the topic of

trust in reliability in informational cascades has great potential, and with this research project the

topic is only in its infancy. As with every research project, there are of course points for discussion.

We have already mentioned some in the discussion section of Section 5, and we will list some more

here.

• Added value of the logical model - Although we have seen fruitful results of logical

analysis combined with experimental results (for example Gierasimczuk et al. [21], Égré et

al. [17]), we are aware that it is not commonplace to use logical models to pronounce on

behavior of real people. Often times in cognitive science and psychology mathematical and

computational techniques are used to model agents’ reasoning. We agree with Szymanik and

Verbrugge [41] that “in the long run, it will be necessary for the success of cognitive science

to adopt some of the unifying perspective that logic can provide”. For the purpose of this

specific project, we would definitely argue that the logical models provide an added value com-

pared to conducting the experiment alone. DEL is a very strong tool to give precise insight

in information flow. The reasoning behind informational cascades is profoundly a reasoning

led by the flow of information. The logical models provided a thorough understanding of

the informational cascade setting under varying reliability assessments. We also feel that the

outcomes of the DEL models provided us with hypotheses for the experiment in a natural

and useful way. The formal analysis resulted in clear predictions from which we were able

to distill tendencies for fully rational agents. The hypotheses we formed, were translations

of these observed tendencies to examine whether these tendencies would persist also in real

agents’ behavior. We would not claim there were no alternatives. In fact, we would encourage

to use other tools to make the cascadal reasoning influenced by reliability assessment precise.

In our opinion however, given the strong results of the comparison between tendencies derived
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from our logical analysis and the tendencies that showed from our data, logic has shown its

worth to serve as a modelling principle for this purpose.

• What happens after a3 - This thesis is about the fragility of informational cascades due to

varying reliability assessment of predecessors in a sequence. It shows that indeed, informa-

tional cascades are likely to derail when at least one of the predecessors in the sequence not

trusted. However, we do not show the actual derail. Our analysis does not go any further

than the third agent. It does not show how we could use reliability assessments to intervene

in informational cascades, for example. And it does not show what the third, fourth and

fifth agent do... It would be interesting to take the conclusions of this thesis further in this

direction.

• Reward - This suggestion is triggered by the result in [31]; we think that the rewarding

system can completely turn the participants’ behavior around. A very interesting research

question would be to examine the interplay between trust in reliability and the different reward

systems. In our setting of the urn-game, every agent’s aim is to individually make a correct

guess. Should we modify this to, for example, the ‘majority’ reward system [31] (participants

are rewarded in case their guess is the same as the majority of guesses), this would change our

formal models and our experiment - and therefore most likely also the results! In our models

namely, we assumed that agents do not consider the future after their own announcement (for

example a1 did not consider the reliability of a3 and the higher-order reasoning of a3 about

a1’s reliability, etcetera). We would sincerely be very curious to see the result.

• Trust revision - We have not addressed trust revision in this thesis, because it was outside

the scope. In our setting there is no room for agents to revise their opinion on the reliability

of other agents. An interesting line of research would be to incorporate trust revision (in

different ways, for example being either forgiving or strict) into our setting. We would have

to incorporate some feedback on the other agents’ performance in the urn-game, such that an

agent can come to know a was not that irrational after all...

• Other ways to model trust in reliability - We already mentioned in Chapter 3 that

our choice for Probabilistic DEL is pre-eminently a choice we had to make. It would be

interesting to employ other tools (also other than logic, for example Bayesian probability

tools or mathematical methods for expressing weights like Lehrer and Wagner [34]). A first

alternative suggestion would be to incorporate a multi-agent variant of the qualitative notion
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of plausibility orderings into, for example, the ‘counting evidence’ setting in which no natural

plausibility or probability ordering is present.

• Heuristics - Our result is supposed to be irrespective of what heuristic the agents are sup-

posed to employ (this is relevant because no consensus has been reached on this topic within

the experimental history of informational cascades yet), but our model is based on agents

using Bayesian reasoning. This Bayesian reasoning together with the ’counting evidence’

heuristic seem to be the heuristic most often detected in empirical results [3]. An extension

to model agents who employ the ’counting’ heuristic is natural (and is supposed to have the

same result [6]). Other extensions (for example to the representativeness heuristic, claimed

to be detected in their data by Huck and Oechssler [30]) would be valuable and interesting

too.

• Other socio-epistemic information phenomena - Our project strongly focused on the

phenomenon of informational cascades. Other socio-epistemic information phenomena in

which I expect perceived trust to play a role exist. Hendricks et al. very interestingly dwell

upon these phenomena in [29], [26]. We will argue that also in the research concerning

these other socio-epistemic information phenomena, information on the effect of exactly who

the surrounding people are and how reliable they are deemed, lacks. We will expand upon

this for the phenomena bystander effect and pluralistic ignorance. Take the bystander effect.

This regards the situation in which multiple witnesses do nothing in case of an ’emergency’

situation, because all the other witnesses just stand and do nothing as well. Hendricks’ [28]

website shows a video of an experiment on this bystander (‘lemming’) effect, in which a tour

guide with a group passes someone falling on the street. If the tour guide decides to stop and

help, the whole group helps too. If the tour guide decides to walk on, the whole group follows

without doubt. Interestingly, in their project they varied the type of people who fell, showing

that when the falling person wears shabby clothes people are less likely to help him. But, it

would be very interesting to also vary the types of people who are ‘followed’. In the given

example, a difference could be made between a tour guide who comes across as very stupid,

mean or arrogant, and a tour guide who comes across as very sensitive, responsible and nice.

In fact, the fact that the person who is followed is a tour guide can be varied too, a tour

guide is expected to have some authority. It would be very interesting to see the difference

between a group of people with a tour guide to follow, and a group without a tour guide.

We also expect the same effect to rise in pluralistic ignorance. The example often used to

explain this phenomenon [29] is what happens when a teacher asks a class of students which

91



one of them did not fully understand the homework. If no other students raise their hand,

every individual tends not to raise their hand. But if every individual reasons this way, of

course no student raises their hand. In this phenomenon too, the effect of who the others are

is expected to matter. An example of an interesting setting would be to examine the derail

of pluralistic ignorance by letting one person raise his hand. It would then be interesting to

vary who this person is: a person known to be the most intelligent person in class, or a person

known to be the least intelligent person in class, for example.

We find it striking that the factor of perceived reliability had never been subject of informational

cascade research before. The strong results of our research project on the ease with which a cascade

can derail because of this factor, confirm that indeed this factor should not be neglected in the

theory around informational cascades anymore. There are many directions to take from this result.

We strongly encourage researchers to take these directions, and would be very curious to see the

results!
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Appendix A

Outline of urn-example models for

remaining configurations

After two extensively treated examples in Chapter 4, we will give a more compact outline of all

graphical models for the other upgrade rule configurations (⇑↑id, ↑id⇑,⇑⇑¬, etc...), without com-

ments and without an explanation of the model properties.

⇑↑id

Initial situation

[s]a1 = [s]a2

= [s]a3 = 1
sW
UW

oo
all a

// sB
UB

[s]a1 = [s]a2

= [s]a3 = 1

Figure A.1: Situation before any agent has drawn any ball

Event: a1 draws a ball

[e]a2 = [e]a3 = 1, [e]a1 = 1
w1 pre(UW ) = 2

pre(UB) = 1
oo

a2,a3
// b1 pre(UW ) = 1

pre(UB) = 2
[e]a2 = [e]a3 = 1, [e]a1 = 1

Figure A.2: Event model of a1’s draw

Upgrade of a1’s draw
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[s]a1 = [s]a2

= [s]a3 = 2
sW , w1
UW

oo all a sB , w1
UB

all a6=a1

��

[s]a1 = [s]a2

= [s]a3 = 1

[s]a1 = [s]a2

= [s]a3 = 1
sW , b1
UW

zz

all a6=a1

::

all a6=a1

OO

sB , b1
UB

$$

dd

//all a [s]a1 = [s]a2

= [s]a3 = 2

Figure A.3: Situation after upgrade with a1’s draw

Event: a1 announces his guess

[e]a2 = [e]a3 = 4, [e]a1 = 1
e1 pre(α) = 1

pre(¬α) = 0
oo

a2,a3

e2 pre(α) = 0

pre(¬α) = 1
[e2]a2 = [e2]a3 = 1, [e2]a1 = 1

Figure A.4: Event model of a1’s guess announcement

Upgrade of a1’s announcement

[s]a2 = [s]a3 = 8
, [s]a1 = 2

sWw1, e1
UW

oo a1,a2,a3 sBw1, e1
UB

OO
a2,a3

[s]a2 = [s]a3 = 4
, [s]a1 = 1

[s]a2 = [s]a3 = 1
, [s]a1 = 1

sW b1, e2
UW

a2,a3

99

a2,a3

OO

sBb1, e2
UB

ee

//a1,a2,a3 [s]a2 = [s]a3 = 2
, [s]a1 = 2

Figure A.5: Situation after upgrade with a1’s guess announcement

[s]a2

= [s]a3 = 9
sW
UW

oo a2,a3 sB
UB

[s]a2

= [s]a3 = 6

Figure A.6: a2 and a3’s collapsed state model after a1’s guess

Event: a2 draws a ball
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[e]a2 = [e]a3 = 1
w2 pre(UW ) = 2

pre(UB) = 1
oo

a3
// b2 pre(UW ) = 2

pre(UB) = 1
[e]a2 = [e]a3 = 1

Figure A.7: Event model of a2’s draw

Upgrade of a2’s draw

[s]a2 = 18, [s]a3 = 18 sW , w2
UW

oo a2,a3 sB , w2
UB

a3

��

[s]a2 = 6, [s]a3 = 6

[s]a2 = 9, [s]a3 = 9 sW , b2
UW

zz

a3a3

OO

sB , b2
UB

dd

//a2,a3 [s]a2 = 12, [s]a3 = 12

Figure A.8: Situation after upgrade with a2’s draw

Event: a2 announces his guess

[e]a2 = 1, [e]a3 = 1 [e]a2 = 1, [e]a3 = 1

f1 pre(β) = 1

pre(¬β) = 0
a3

**

f2 pre(β) = 0

pre(¬β) = 1
a3

tt

//a3oo

f3 pre(β ∨ ¬β) = 1

[e]a2 = 1, [e]a3 = 4

Figure A.9: Event model of a2’s guess announcement

Upgrade of a2’s announcement
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[s]a2 = 18, [s]a3 = 18
sWw2, f1

UW

oo a2,a3
sBw2, f1

UB

a3

��

[s]a2 = 6, [s]a3 = 6

[s]a2 = 9, [s]a3 = 9
sW b2, f2

UW

a2,a3 //

xx

a3a3

OO

a3

��
a3

''

sBb2, f2

UB

gg

a3

��xx

[s]a2 = 12, [s]a3 = 12

[s]a2 = 18, [s]a3 = 72
sWw2, f3

UW

oo a2,a3
sBw2, f3

UB

a3

��

[s]a2 = 6, [s]a3 = 24

[s]a2 = 9, [s]a3 = 36
sW b2, f3

UW

xx

a3a3

OO

sBb2, f3

UB

gg

//a2,a3 [s]a2 = 12, [s]a3 = 48

Figure A.10: Situation after upgrade with a2’s guess announcement

[s]a3 = 135 sW
UW

oo a3 sB
UB

[s]a3 = 90

Figure A.11: a3’s collapsed state model after a2’s guess

Event: a3 draws a white ball

[e]a3 = 1
w3 pre(UW ) = 2

pre(UB) = 1
b3 pre(UW ) = 1

pre(UB) = 2
[e]a3 = 1

Figure A.12: Event model of a3’s white draw

Upgrade: a3’s white draw

[s]a3 = 270
sW , w3
UW

oo a3 sB , w3
UB

[s]a3 = 90

Figure A.13: Situation after upgrade with a3’s white draw

Event: a3 draws a black ball
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[e]a3 = 1
w3 pre(UW ) = 2

pre(UB) = 1
b3 pre(UW ) = 1

pre(UB) = 2
[e]a3 = 1

Figure A.14: Event model of a3’s black draw

Upgrade: a3’s black draw

[s]a3 = 135
sW , b3
UW

sB , b3
UB

[s]a3 = 180//a3

Figure A.15: Situation after upgrade with a3’s black draw

↑id⇑

Initial situation

[s]a1 = [s]a2

= [s]a3 = 1
sW
UW

oo
all a

// sB
UB

[s]a1 = [s]a2

= [s]a3 = 1

Figure A.16: Situation before any agent has drawn any ball

Event: a1 draws a ball

[e]a2 = [e]a3 = 1, [e]a1 = 1
w1 pre(UW ) = 2

pre(UB) = 1
oo

a2,a3
// b1 pre(UW ) = 1

pre(UB) = 2
[e]a2 = [e]a3 = 1, [e]a1 = 1

Figure A.17: Event model of a1’s draw

Upgrade of a1’s draw
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[s]a1 = [s]a2

= [s]a3 = 2
sW , w1
UW

oo all a sB , w1
UB

all a6=a1

��

[s]a1 = [s]a2

= [s]a3 = 1

[s]a1 = [s]a2

= [s]a3 = 1
sW , b1
UW

zz

all a6=a1

::

all a6=a1

OO

sB , b1
UB

$$

dd

//all a [s]a1 = [s]a2

= [s]a3 = 2

Figure A.18: Situation after upgrade with a1’s draw

Event: a1 announces his guess

[e]a1 = 1, [e]a2 = 4, [e]a3 = 1 [e]a1 = 1, [e]a2 = 1, [e]a3 = 1

e1 pre(α) = 1

pre(¬α) = 0 kk
a2
a3

++

e2 pre(α) = 0

pre(¬α) = 133

a2
a3

ss

//a3oo
a2oo

e3 pre(α ∨ ¬α) = 1

[e]a1 = [e]a2 = 1, [e]a3 = 4

Figure A.19: Event model of a1’s guess announcement

Upgrade of a1’s announcement
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[s]a1 = 2, [s]a2 = 8, [s]a3 = 2
sWw1, e1

UW

oo a1,a2,a3

OO

a2,a3

sBw1, e1

UB

a3

��

[s]a1 = 1, [s]a2 = 4, [s]a3 = 1

[s]a1 = 1, [s]a2 = 1, [s]a3 = 1
sW b1, e2

UW

a2

::

zz

a3

::

a1,a2,a3 //

a2,a3

��

a2,a3

$$

sBb1, e2

UB

a2

OO

a2

dd

$$

dd

zz

a2

OO

a2,a3

��

[s]a1 = 2, [s]a2 = 2, [s]a3 = 2

[s]a1 = 2, [s]a2 = 8, [s]a3 = 8
sWw1, e3

UW dd

$$

sBw1, e3

UB

a3

��

a1,a2,a3oo

OO

a2

[s]a1 = 1, [s]a2 = 4, [s]a3 = 4

[s]a1 = 1, [s]a2 = 1, [s]a3 = 4
sW b1, e3

UW

a1,a2,a3 //

zz

a3

::
a2

::

a2,a3

OO

sBb1, e3

UB

a2

dd

[s]a1 = 2, [s]a2 = 2, [s]a3 = 8

Figure A.20: Situation after upgrade with a1’s guess announcement

[s]a2 = 18, [s]a3 = 15 sW
UW

oo a3 // sB
UBa2oo [s]a2 = 12, [s]a3 = 15

Figure A.21: a2 and a3’s collapsed state model after a1’s guess

Event: a2 draws a ball

[e]a2 = [s]a3 = 1
w2 pre(UW ) = 2

pre(UB) = 1
oo

a3
// b2 pre(UW ) = 2

pre(UB) = 1
[e]a2 = [s]a3 = 1

Figure A.22: Event model of a2’s draw

Upgrade of a2’s draw
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[s]a2 = 32, [s]a3 = 30 sW , w2
UW

oo a2,a3 sB , w2
UB

a3

��

[s]a2 = 12, [s]a3 = 15

[s]a2 = 18, [s]a3 = 15 sW , b2
UW

zz

a3

::

a3

OO

sB , b2
UB

$$

dd

//a2,a3 [s]a2 = 24, [s]a3 = 30

Figure A.23: Situation after upgrade with a2’s draw

Event: a2 announces his guess

[e]a3 = 4, [e]a2 = 1
f1 pre(β) = 1

pre(¬β) = 0
oo

a3

f2 pre(β) = 0

pre(¬β) = 1
[e]a3 = 1, [e]a1 = 1

Figure A.24: Event model of a2’s guess announcement

Upgrade of a2’s announcement

[s]a2 = 32, [s]a3 = 120
sWw2, f1

UW

oo a2,a3
sBw2, f1

UB
OO
a3

[s]a2 = 12, [s]a3 = 60

[s]a2 = 18, [s]a3 = 15
sW b2, f2

UW

a3

88

a3

OO

sBb2, f2

UB

gg

//a2,a3 [s]a2 = 24, [s]a3 = 30

Figure A.25: Situation after upgrade with a2’s guess announcement

[s]a3 = 135 sW
UW

oo a3 sB
UB

[s]a3 = 90

Figure A.26: a3’s collapsed state model after a2’s guess

Event: a3 draws a white ball

[e]a3 = 1
w3 pre(UW ) = 2

pre(UB) = 1
b3 pre(UW ) = 1

pre(UB) = 2
[e]a3 = 1

Figure A.27: Event model of a3’s white draw
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Upgrade: a3’s white draw

[s]a3 = 270
sW , w3
UW

oo a3 sB , w3
UB

[s]a3 = 90

Figure A.28: Situation after upgrade with a3’s white draw

Event: a3 draws a black ball

[e]a3 = 1
w3 pre(UW ) = 2

pre(UB) = 1
b3 pre(UW ) = 1

pre(UB) = 2
[e]a3 = 1

Figure A.29: Event model of a3’s black draw

Upgrade: a3’s black draw

[s]a3 = 135
sW , b3

UW

sB , b3

UB
[s]a3 = 180//a3

Figure A.30: Situation after upgrade with a3’s black draw

⇑¬⇑

Initial situation

[s]a1 = [s]a2

= [s]a3 = 1

sW

UW
oo

all a
// sB

UB

[s]a1 = [s]a2

= [s]a3 = 1

Figure A.31: Situation before any agent has drawn any ball

Event: a1 draws a ball

[e]a2 = [e]a3 = 1, [e]a1 = 1
w1 pre(UW ) = 2

pre(UB) = 1
oo

a2,a3
// b1 pre(UW ) = 1

pre(UB) = 2
[e]a2 = [e]a3 = 1, [e]a1 = 1

Figure A.32: Event model of a1’s draw

Upgrade of a1’s draw

101



[s]a1 = [s]a2

= [s]a3 = 2
sW , w1
UW

oo all a sB , w1
UB

all a6=a1

��

[s]a1 = [s]a2

= [s]a3 = 1

[s]a1 = [s]a2

= [s]a3 = 1
sW , b1
UW

zz

all a6=a1

::

all a6=a1

OO

sB , b1
UB

$$

dd

//all a [s]a1 = [s]a2

= [s]a3 = 2

Figure A.33: Situation after upgrade with a1’s draw

Event: a1 announces his guess

[e]a3 = 1, [e]a2 = 4, [e]a1 = 1
e1 pre(α) = 1

pre(¬α) = 0
a3 // e2 pre(α) = 0

pre(¬α) = 1
[e]a3 = 4, [e]a2 = 1, [e]a1 = 1a2oo

Figure A.34: Event model of a1’s guess announcement

Upgrade of a1’s announcement

[s]a2 = 8
, [s]a3 = 2, [s]a1 = 2

sWw1, e1
UW

oo a1,a2,a3

a3

�� a3%%

sBw1, e1
UB

a3

��

99

a3
yy

[s]a2 = 4
, [s]a3 = 1, [s]a1 = 1

[s]a2 = 1
, [s]a3 = 4, [s]a1 = 1

sW b1, e2
UW

a2 99

a2

OO

sBb1, e2
UB

a2

OOa2
ee

//a1,a2,a3 [s]a2 = 2
, [s]a3 = 8, [s]a1 = 2

Figure A.35: Situation after upgrade with a1’s guess announcement

[s]a2 = 9
, [s]a3 = 6

sW
UW

a3 // sB
UB

a2oo [s]a2 = 6
, [s]a3 = 9

Figure A.36: a2 and a3’s collapsed state model after a1’s guess

Event: a2 draws a ball
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[e]a2 = [e]a3 = 1
w2 pre(UW ) = 2

pre(UB) = 1
oo

a3
// b2 pre(UW ) = 2

pre(UB) = 1
[e]a2 = [e]a3 = 1

Figure A.37: Event model of a2’s draw

Upgrade of a2’s draw

[s]a2 = 18, [s]a3 = 12
sW , w2

UW

oo a2,a3
sB , w2

UB

a3

��

[s]a2 = 6, [s]a3 = 9

[s]a2 = 9, [s]a3 = 6
sW , b2

UW

a3

::

a3

OO

sB , b2

UB

$$

//a2,a3 [s]a2 = 12, [s]a3 = 18

Figure A.38: Situation after upgrade with a2’s draw

Event: a2 announces his guess

[e]a3 = 4, [e]a2 = 1
f1 pre(α) = 1

pre(¬α) = 0
f2 pre(α) = 0

pre(¬α) = 1
[e]a3 = 1, [e]a2 = 1a3oo

Figure A.39: Event model of a2’s guess announcement

Upgrade of a2’s announcement

[s]a2 = 18, [s]a3 = 48
sWw2, f1

UW

oo a2,a3
sBw2, f1

UB
OO
a3

[s]a2 = 6, [s]a3 = 36

[s]a2 = 9, [s]a3 = 6
sW b2, f2

UW

a3

88

a3

OO

sBb2, f2

UB

gg

//a2,a3 [s]a2 = 12, [s]a3 = 18

Figure A.40: Situation after upgrade with a2’s guess announcement

[s]a3 = 54 sW
UW

oo a3 // sB
UB

[s]a3 = 54

Figure A.41: a3’s collapsed state model after a2’s guess
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Event: a3 draws a white ball

[e]a3 = 1
w3 pre(UW ) = 2

pre(UB) = 1
b3 pre(UW ) = 1

pre(UB) = 2
[e]a3 = 1

Figure A.42: Event model of a3’s white draw

Upgrade: a3’s white draw

[s]a3 = 108
sW , w3
UW

oo a3 sB , w3
UB

[s]a3 = 54

Figure A.43: Situation after upgrade with a3’s white draw

Event: a3 draws a black ball

[e]a3 = 1
w3 pre(UW ) = 2

pre(UB) = 1
b3 pre(UW ) = 1

pre(UB) = 2
[e]a3 = 1

Figure A.44: Event model of a3’s black draw

Upgrade: a3’s black draw

[s]a3 = 54
sW , b3

UW

sB , b3

UB
[s]a3 = 108//a3

Figure A.45: Situation after upgrade with a3’s black draw

⇑⇑¬

Initial situation

[s]a1 = [s]a2

= [s]a3 = 1

sW

UW
oo

all a
// sB

UB

[s]a1 = [s]a2

= [s]a3 = 1

Figure A.46: Situation before any agent has drawn any ball
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Event: a1 draws a ball

[e]a2 = [e]a3 = 1, [e]a1 = 1
w1 pre(UW ) = 2

pre(UB) = 1
oo

a2,a3
// b1 pre(UW ) = 1

pre(UB) = 2
[e]a2 = [e]a3 = 1, [e]a1 = 1

Figure A.47: Event model of a1’s draw

Upgrade of a1’s draw

[s]a1 = [s]a2

= [s]a3 = 2
sW , w1

UW

oo all a
sB , w1

UB

all a6=a1

��

[s]a1 = [s]a2

= [s]a3 = 1

[s]a1 = [s]a2

= [s]a3 = 1
sW , b1

UW

zz

all a6=a1

::

all a6=a1

OO

sB , b1

UB

$$

dd

//all a
[s]a1 = [s]a2

= [s]a3 = 2

Figure A.48: Situation after upgrade with a1’s draw

Event: a1 announces his guess

[e]a2 = [e]a3 = 4, [e]a1 = 1
e1 pre(α) = 1

pre(¬α) = 0
oo

a2,a3

e2 pre(α) = 0

pre(¬α) = 1
[e]a2 = [e]a3 = 1, [e]a1 = 1

Figure A.49: Event model of a1’s guess announcement

Upgrade of a1’s announcement

[s]a2 = [s]a3 = 8
, [s]a1 = 2

sWw1, e1
UW

oo a1,a2,a3 sBw1, e1
UB

OO
a2,a3

[s]a2 = [s]a3 = 4
, [s]a1 = 1

[s]a2 = [s]a3 = 1
, [s]a1 = 1

sW b1, e2
UW

a2,a3

99

a2,a3

OO

sBb1, e2
UB

ee

//a1,a2,a3 [s]a2 = [s]a3 = 2
, [s]a1 = 2

Figure A.50: Situation after upgrade with a1’s guess announcement
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[s]a2

= [s]a3 = 9
sW
UW

oo a2,a3 sB
UB

[s]a2

= [s]a3 = 6

Figure A.51: a2 and a3’s collapsed state model after a1’s guess

Event: a2 draws a ball

[e]a2 = [e]a3 = 1
w2 pre(UW ) = 2

pre(UB) = 1
oo

a3
// b2 pre(UW ) = 2

pre(UB) = 1
[e]a2 = [e]a3 = 1

Figure A.52: Event model of a2’s draw

Upgrade of a2’s draw

[s]a2 = 18, [s]a3 = 18 sW , w2
UW

oo a2,a3 sB , w2
UB

a3

��

[s]a2 = 6, [s]a3 = 6

[s]a2 = 9, [s]a3 = 9 sW , b2
UW

zz

a3a3

OO

sB , b2
UB

dd

//a2,a3 [s]a2 = 12, [s]a3 = 12

Figure A.53: Situation after upgrade with a2’s draw

Event: a2 announces his guess

[e]a2 = 1, [e]a3 = 1
f1 pre(α) = 1

pre(¬α) = 0
f2 pre(α) = 0

pre(¬α) = 1
[e]a2 = 1, [e]a3 = 4//a3

Figure A.54: Event model of a2’s guess announcement

Upgrade of a2’s announcement
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[s]a2 = 18, [s]a3 = 18
sWw2, f1

UW

oo a2,a3
sBw2, f1

UB

a3

��

[s]a2 = 6, [s]a3 = 6

[s]a2 = 9, [s]a3 = 36
sW b2, f2

UW

xx

a3

��
a3

sBb2, f2

UB

''
//a2,a3 [s]a2 = 12, [s]a3 = 48

Figure A.55: Situation after upgrade with a2’s guess announcement

[s]a3 = 54 sW
UW

oo a3 // sB
UB

[s]a3 = 54

Figure A.56: a3’s collapsed state model after a2’s guess

Event: a3 draws a white ball

[e]a3 = 1
w3 pre(UW ) = 2

pre(UB) = 1
b3 pre(UW ) = 1

pre(UB) = 2
[e]a3 = 1

Figure A.57: Event model of a3’s white draw

Upgrade: a3’s white draw

[s]a3 = 108
sW , w3
UW

oo a3 sB , w3
UB

[s]a3 = 54

Figure A.58: Situation after upgrade with a3’s white draw

Event: a3 draws a black ball

[e]a3 = 1
w3 pre(UW ) = 2

pre(UB) = 1
b3 pre(UW ) = 1

pre(UB) = 2
[e]a3 = 1

Figure A.59: Event model of a3’s black draw

Upgrade: a3’s black draw
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[s]a3 = 54
sW , b3

UW

sB , b3

UB
[s]a3 = 108//a3

Figure A.60: Situation after upgrade with a3’s black draw

↑id↑id

Initial situation

[s]a1 = [s]a2

= [s]a3 = 1

sW

UW
oo

all a
// sB

UB

[s]a1 = [s]a2

= [s]a3 = 1

Figure A.61: Situation before any agent has drawn any ball

Event: a1 draws a ball

[e]a2 = [e]a3 = 1, [e]a1 = 1
w1 pre(UW ) = 2

pre(UB) = 1
oo

a2,a3
// b1 pre(UW ) = 1

pre(UB) = 2
[e]a2 = [e]a3 = 1, [e]a1 = 1

Figure A.62: Event model of a1’s draw

Upgrade of a1’s draw

[s]a1 = [s]a2

= [s]a3 = 2
sW , w1
UW

oo all a sB , w1
UB

all a6=a1

��

[s]a1 = [s]a2

= [s]a3 = 1

[s]a1 = [s]a2

= [s]a3 = 1
sW , b1
UW

zz

all a6=a1

::

all a6=a1

OO

sB , b1
UB

$$

dd

//all a [s]a1 = [s]a2

= [s]a3 = 2

Figure A.63: Situation after upgrade with a1’s draw

Event: a1 announces his guess
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[e]a1 = 1, [e]a2 = 4, [e]a3 = 1 [e]a1 = 1, [e]a2 = 1, [e]a3 = 1

e1 pre(α) = 1

pre(¬α) = 0 kk
a2
a3

++

e2 pre(α) = 0

pre(¬α) = 133

a2
a3

ss

//a3oo
a2oo

e3 pre(α ∨ ¬α) = 1

[e]a1 = [e]a2 = 1, [e]a3 = 4

Figure A.64: Event model of a1’s guess announcement

Upgrade of a1’s announcement

[s]a1 = 2, [s]a2 = 8, [s]a3 = 2
sWw1, e1

UW

oo a1,a2,a3

OO

a2,a3

sBw1, e1

UB

a3

��

[s]a1 = 1, [s]a2 = 4, [s]a3 = 1

[s]a1 = 1, [s]a2 = 1, [s]a3 = 1
sW b1, e2

UW

a2

::

zz

a3

::

a1,a2,a3 //

a2,a3

��

a2,a3

$$

sBb1, e2

UB

a2

OO

a2

dd

$$

dd

zz

a2

OO

a2,a3

��

[s]a1 = 2, [s]a2 = 2, [s]a3 = 2

[s]a1 = 2, [s]a2 = 8, [s]a3 = 8
sWw1, e3

UW dd

$$

a3

��

sBw1, e3

UB

a3

��

a1,a2,a3oo

OO

a2

[s]a1 = 1, [s]a2 = 4, [s]a3 = 4

[s]a1 = 1, [s]a2 = 1, [s]a3 = 4
sW b1, e3

UW

a1,a2,a3 //

zz

a3

::
a2

::

a2

OO

sBb1, e3

UB

a2

dd

[s]a1 = 2, [s]a2 = 2, [s]a3 = 8

Figure A.65: Situation after upgrade with a1’s guess announcement

[s]a2 = 18, [s]a3 = 15 sW
UW

oo a3 // sB
UBa2oo [s]a2 = 12, [s]a3 = 15

Figure A.66: a2 and a3’s collapsed state model after a1’s guess
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Event: a2 draws a ball

[e]a2 = [e]a3 = 1
w2 pre(UW ) = 2

pre(UB) = 1
oo

a3
// b2 pre(UW ) = 1

pre(UB) = 2
[e]a2 = [e]a3 = 1

Figure A.67: Event model of a2’s draw

Upgrade of a2’s draw

[s]a2 = 32, [s]a3 = 30 sW , w2
UW

oo a2,a3 sB , w2
UB

a3

��

[s]a2 = 12, [s]a3 = 15

[s]a2 = 18, [s]a3 = 15 sW , b2
UW

zz

a3

::

a3

OO

sB , b2
UB

$$

dd

//a2,a3 [s]a2 = 24, [s]a3 = 30

Figure A.68: Situation after upgrade with a2’s draw

Event: a2 announces his guess

[e]a2 = 1, [e]a3 = 1 [e]a2 = 1, [e]a3 = 1

f1 pre(β) = 1

pre(¬β) = 0
a3

**

f2 pre(β) = 0

pre(¬β) = 1
a3

tt

//a3oo

f3 pre(β ∨ ¬β) = 1

[e]a2 = 1, [e]a3 = 4

Figure A.69: Event model of a2’s guess announcement

Upgrade of a2’s announcement
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[s]a2 = 32, [s]a3 = 30 sWw2, f1
UW

sBw2, f1
UB

a3

��

a2,a3oo [s]a2 = 12, [s]a3 = 15

[s]a2 = 18, [s]a3 = 15 sW b2, f2
UW

vv
a3

66

a3

OO

a3

��
a3

((

sBb2, f2
UB

((

hh

//a2,a3

a3

��vv

[s]a2 = 24, [s]a3 = 30

[s]a2 = 32, [s]a3 = 120 sWw2, f3
UW

oo a2,a3 sBw2, f3
UB

a3

��

[s]a2 = 12, [s]a3 = 60

[s]a2 = 18, [s]a3 = 60 sW b2, f3
UW

a3

66

a3

OO

sBb2, f3
UB

hh

//a2a3 , [s]a2 = 24, [s]a3 = 120

Figure A.70: Situation after upgrade with a2’s guess announcement

[s]a3 = 225 sW
UW

oo a3 // sB
UB

[s]a3 = 225

Figure A.71: a3’s collapsed state model after a2’s guess

Event: a3 draws a white ball

[e]a3 = 1
w3 pre(UW ) = 2

pre(UB) = 1
b3 pre(UW ) = 1

pre(UB) = 2
[e]a3 = 1

Figure A.72: Event model of a3’s white draw

Upgrade: a3’s white draw

[s]a3 = 450
sW , w3
UW

oo a3 sB , w3
UB

[s]a3 = 225

Figure A.73: Situation after upgrade with a3’s white draw

Event: a3 draws a black ball
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[e]a3 = 1
w3 pre(UW ) = 2

pre(UB) = 1
b3 pre(UW ) = 1

pre(UB) = 2
[e]a3 = 1

Figure A.74: Event model of a3’s black draw

Upgrade: a3’s black draw

[s]a3 = 225
sW , b3
UW

sB , b3
UB

[s]a3 = 450//a3

Figure A.75: Situation after upgrade with a3’s black draw

↑id⇑¬

Initial situation

[s]a1 = [s]a2

= [s]a3 = 1
sW
UW

oo
all a

// sB
UB

[s]a1 = [s]a2

= [s]a3 = 1

Figure A.76: Situation before any agent has drawn any ball

Event: a1 draws a ball

[e]a2 = [e]a3 = 1, [e]a1 = 1
w1 pre(UW ) = 2

pre(UB) = 1
oo

a2,a3
// b1 pre(UW ) = 1

pre(UB) = 2
[e]a2 = [e]a3 = 1, [e]a1 = 1

Figure A.77: Event model of a1’s draw

Upgrade of a1’s draw
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[s]a1 = [s]a2

= [s]a3 = 2
sW , w1
UW

oo all a sB , w1
UB

all a6=a1

��

[s]a1 = [s]a2

= [s]a3 = 1

[s]a1 = [s]a2

= [s]a3 = 1
sW , b1
UW

zz

all a6=a1

::

all a6=a1

OO

sB , b1
UB

$$

dd

//all a [s]a1 = [s]a2

= [s]a3 = 2

Figure A.78: Situation after upgrade with a1’s draw

Event: a1 announces his guess

[e]a1 = 1, [e]a2 = 4, [e]a3 = 1 [e]a1 = 1, [e]a2 = 1, [e]a3 = 1

e1 pre(α) = 1

pre(¬α) = 0 kk
a2
a3

++

e2 pre(α) = 0

pre(¬α) = 133

a2
a3

ss

//a3oo
a2oo

e3 pre(α ∨ ¬α) = 1

[e]a1 = [e]a2 = 1, [e]a3 = 4

Figure A.79: Event model of a1’s guess announcement

Upgrade of a1’s announcement
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[s]a1 = 2, [s]a2 = 8, [s]a3 = 2
sWw1, e1

UW

oo a1,a2,a3

OO

a2,a3

sBw1, e1

UB

a3

��

[s]a1 = 1, [s]a2 = 4, [s]a3 = 1

[s]a1 = 1, [s]a2 = 1, [s]a3 = 1
sW b1, e2

UW

a2

::

zz

a3

::

a1,a2,a3 //

a2,a3

��

a2,a3

$$

sBb1, e2

UB

a2

OO

a2

dd

$$

dd

zz

a2

OO

a2,a3

��

[s]a1 = 2, [s]a2 = 2, [s]a3 = 2

[s]a1 = 2, [s]a2 = 8, [s]a3 = 8
sWw1, e3

UW dd

$$

a3

��

sBw1, e3

UB

a3

��

a1,a2,a3oo

OO

a2

[s]a1 = 1, [s]a2 = 4, [s]a3 = 4

[s]a1 = 1, [s]a2 = 1, [s]a3 = 4
sW b1, e3

UW

a1,a2,a3 //

zz

a3

::
a2

::

a2

OO

sBb1, e3

UB

a2

dd

[s]a1 = 2, [s]a2 = 2, [s]a3 = 8

Figure A.80: Situation after upgrade with a1’s guess announcement

[s]a2 = 18, [s]a3 = 15 sW
UW

oo a3 // sB
UBa2oo [s]a2 = 12, [s]a3 = 15

Figure A.81: a2 and a3’s collapsed state model after a1’s guess

Event: a2 draws a ball

[e]a2 = [e]a3 = 1
w2 pre(UW ) = 2

pre(UB) = 1
oo

a3
// b2 pre(UW ) = 1

pre(UB) = 2
[e]a2 = [e]a3 = 1

Figure A.82: Event model of a2’s draw

Upgrade of a2’s draw
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[s]a2 = 32, [s]a3 = 30 sW , w2
UW

oo a2,a3 sB , w2
UB

a3

��

[s]a2 = 12, [s]a3 = 15

[s]a2 = 18, [s]a3 = 15 sW , b2
UW

zz

a3

::

a3

OO

sB , b2
UB

$$

dd

//a2,a3 [s]a2 = 24, [s]a3 = 30

Figure A.83: Situation after upgrade with a2’s draw

Event: a2 announces his guess

[e]a2 = 1, [e]a3 = 1
f1 pre(β) = 1

pre(¬β) = 0
f2 pre(β) = 0

pre(¬β) = 1
[e]a2 = 1, [e]a3 = 4//a3

Figure A.84: Event model of a2’s guess announcement

Upgrade of a2’s announcement

[s]a2 = 32, [s]a3 = 30
sWw2, f1

UW

oo a2,a3
sBw2, f1

UB

a3

��

[s]a2 = 12, [s]a3 = 15

[s]a2 = 18, [s]a3 = 60
sW b2, f2

UW

xx

a3

��
a3

sBb2, f2

UB

''
//a2,a3 [s]a2 = 24, [s]a3 = 120

Figure A.85: Situation after upgrade with a2’s guess announcement

[s]a3 = 90 sW
UW

a3 // sB
UB

[s]a3 = 135

Figure A.86: a3’s collapsed state model after a2’s guess

Event: a3 draws a white ball

[e]a3 = 1
w3 pre(UW ) = 2

pre(UB) = 1
b3 pre(UW ) = 1

pre(UB) = 2
[e]a3 = 1

Figure A.87: Event model of a3’s white draw
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Upgrade: a3’s white draw

[s]a3 = 180
sW , w3
UW

oo a3 sB , w3
UB

[s]a3 = 135

Figure A.88: Situation after upgrade with a3’s white draw

Event: a3 draws a black ball

[e]a3 = 1
w3 pre(UW ) = 2

pre(UB) = 1
b3 pre(UW ) = 1

pre(UB) = 2
[e]a3 = 1

Figure A.89: Event model of a3’s black draw

Upgrade: a3’s black draw

[s]a3 = 90
sW , b3
UW

sB , b3
UB

[s]a3 = 270//a3

Figure A.90: Situation after upgrade with a3’s black draw

⇑¬⇑¬

Initial situation

[s]a1 = [s]a2

= [s]a3 = 1
sW
UW

oo
all a

// sB
UB

[s]a1 = [s]a2

= [s]a3 = 1

Figure A.91: Situation before any agent has drawn any ball

Event: a1 draws a ball

[e]a2 = [e]a3 = 1, [e]a1 = 1
w1 pre(UW ) = 2

pre(UB) = 1
oo

a2,a3
// b1 pre(UW ) = 1

pre(UB) = 2
[e]a2 = [e]a3 = 1, [e]a1 = 1

Figure A.92: Event model of a1’s draw

116



Upgrade of a1’s draw

[s]a1 = [s]a2

= [s]a3 = 2
sW , w1
UW

oo all a sB , w1
UB

all a6=a1

��

[s]a1 = [s]a2

= [s]a3 = 1

[s]a1 = [s]a2

= [s]a3 = 1
sW , b1
UW

zz

all a6=a1

::

all a6=a1

OO

sB , b1
UB

$$

dd

//all a [s]a1 = [s]a2

= [s]a3 = 2

Figure A.93: Situation after upgrade with a1’s draw

Event: a1 announces his guess

[e]a3 = 1, [e]a2 = 4, [e]a1 = 1
e1 pre(α) = 1

pre(¬α) = 0
a3 // e2 pre(α) = 0

pre(¬α) = 1
[e]a3 = 4, [e]a2 = 1, [e]a1 = 1a2oo

Figure A.94: Event model of a1’s guess announcement

Upgrade of a1’s announcement

[s]a2 = 8
, [s]a3 = 2, [s]a1 = 2

sWw1, e1
UW

oo a1,a2,a3

a3

�� a3%%

sBw1, e1
UB

a3

��
a3
yy

[s]a2 = 4
, [s]a3 = 1, [s]a1 = 1

[s]a2 = 1
, [s]a3 = 4, [s]a1 = 1

sW b1, e2
UW

a2 99

a2

OO

sBb1, e2
UB

a2

OOa2
ee

//a1,a2,a3 [s]a2 = 2
, [s]a3 = 8, [s]a1 = 2

Figure A.95: Situation after upgrade with a1’s guess announcement

[s]a2 = 9
, [s]a3 = 6

sW
UW

a3 // sB
UB

a2oo [s]a2 = 6
, [s]a3 = 9

Figure A.96: a2 and a3’s collapsed state model after a1’s guess

Event: a2 draws a ball
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[e]a2 = [e]a3 = 1
w2 pre(UW ) = 2

pre(UB) = 1
oo

a3
// b2 pre(UW ) = 1

pre(UB) = 2
[e]a2 = [e]a3 = 1

Figure A.97: Event model of a2’s draw

Upgrade of a2’s draw

[s]a2 = 18, [s]a3 = 12 sW , w2
UW

oo a2,a3 sB , w2
UB

a3

��

[s]a2 = 6, [s]a3 = 9

[s]a2 = 9, [s]a3 = 6 sW , b2
UW

a3

::

a3

OO

sB , b2
UB

$$

//a2,a3 [s]a2 = 12, [s]a3 = 18

Figure A.98: Situation after upgrade with a2’s draw

Event: a2 announces his guess

[e]a2 = 1, [e]a3 = 1
f1 pre(β) = 1

pre(¬β) = 0
f2 pre(β) = 0

pre(¬β) = 1
[e]a2 = 1, [e]a3 = 4//a3

Figure A.99: Event model of a2’s guess announcement

Upgrade of a2’s announcement

[s]a2 = 18, [s]a3 = 12
sWw2, f1

UW

oo a2,a3
sBw2, f1

UB

a3

��

[s]a2 = 6, [s]a3 = 9

[s]a2 = 9, [s]a3 = 24
sW b2, f2

UW

xx

a3

��
a3

sBb2, f2

UB

''
//a2,a3 [s]a2 = 12, [s]a3 = 72

Figure A.100: Situation after upgrade with a2’s guess announcement

[s]a3 = 36 sW
UW

a3 // sB
UB

[s]a3 = 81

Figure A.101: a3’s collapsed state model after a2’s guess
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Event: a3 draws a white ball

[e]a3 = 1
w3 pre(UW ) = 2

pre(UB) = 1
b3 pre(UW ) = 1

pre(UB) = 2
[e]a3 = 1

Figure A.102: Event model of a3’s white draw

Upgrade: a3’s white draw

[s]a3 = 72
sW , w3
UW

a3 // sB , w3
UB

[s]a3 = 81

Figure A.103: Situation after upgrade with a3’s white draw

Event: a3 draws a black ball

[e]a3 = 1
w3 pre(UW ) = 2

pre(UB) = 1
b3 pre(UW ) = 1

pre(UB) = 2
[e]a3 = 1

Figure A.104: Event model of a3’s black draw

Upgrade: a3’s black draw

[s]a3 = 36
sW , b3
UW

sB , b3
UB

[s]a3 = 162//a3

Figure A.105: Situation after upgrade with a3’s black draw
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Appendix B

Formalization of ‘Counting’

Models

Agents who are assumed to employ the ’counting’ heuristic, simply count the evidence for and

against their options in the binary decision. In the urn-example, they count the signals (announce-

ments of earlier agents and the colour of their private draw) for UrnW and for UrnB . To formalize

the reasoning corresponding to this heuristic, Baltag et al. use tools from Dynamic Epistemic

Logic. That is, they use the epistemic state model, event model and update model. To represent

the situation before any ball has been drawn, a specific epistemic state model is used. To be able

to account for an agent’s evidence ’count’, an evidence counting function f is added.

Definition 11 [Counting Epistemic State Models] A counting multi-agent epistemic model M is

a structure (S,A, (∼a)a∈A, f,Φ, ‖ • ‖, s∗) such that:

• S is a set of states, s* is the actual state

• A is a set of agents;

• for each agent a, ∼a ⊆ S × S is an equivalence relation interpreted as agent a’s epistemic

indistinguishability.

• f : S → N is an “evidence-counting” function, assigning a natural number to each state in S,

• Φ is a set of atomic propositional sentences. These propositions are pairwise inconsistent

(namely, they say that the urn is either of type UrnW or UrnB)
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• ‖ • ‖ : Ψ→ P(S) is a valuation map telling us the states at which a proposition holds, for all

p ∈ Ψ. Formally, the valuation function is a function from each atomic proposition p ∈ Ψ to

some set of states ‖p‖ ⊆ S.

The graphical notation is the same as the graphical notation of epistemic states that we have seen

earlier in this thesis. In the counting models, the proposition true at the state (either UW or UB
in this case) is represented in the state, followed by the evidence the agent has for the proposition

(for example UW ; 0 means f(sW ) = 0; the agent has no evidence for the actual urn being UW ).

The extra circle indicates the actual world, based on the knowledge of the modeller. The situation

at the onset of the urn-game is in Figure B.1.

sW
UW ; 0 all a

sB
UB ; 0

Figure B.1: Initial model in the urn-setting

Baltag et al. use the counting event model to represent draws. The precondition pre in this case is

an evidence counting function. The formal details of this model:

Definition 12 [Counting Event Model] We define the event model Me as a structure:

(E,A, (∼a)a∈A,Φ, pre, e∗), such that:

• E is a set of actions/events, e* is the actual event

• A is a set of agents;

• for each agent a, ∼a ⊆ E × E is an equivalence relation interpreted as agent a’s epistemic

indistinguishability. This captures the agent’s hard information about what is the actual

event.

• Φ is a set of atomic propositional sentences. These propositions are pairwise inconsistent

(namely, they say that the urn is either of type UrnW or UrnB)

• pre : E → (Φ→ (N∪⊥)) is the function from E to functions from Φ to the natural numbers

(representing the evidence count, extended with ⊥ which represents incompatibility of pre

with φ - for example pre can indicate that a certain urn-type has to have the largest amount

of evidence for the agent to announce this urn-type)
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The graphical representation is in Figure B.2. For each of the possible events ∈ E (draw is white

w1 or draw is black b1) this model says what strength of evidence (pre) for all φ ∈ Φ it provides.

All agents except for a1 have no information as to what the colour of the drawn ball is.

w1 pre(UW ) = 1

pre(UB) = 0
all a6=a1

b1 pre(UW ) = 0

pre(UB) = 1

Figure B.2: Event model of the first draw

When this drawing event happens, the agents’ epistemic state models are influenced. All possible

states of the world combined with all possible events become the new set of possible worlds. This is

represented by the Product Update. This product update causes changes in the agent’s epistemic

state model. The resulting model after product update in the urn-example is in Figure B.3. De-

pending on pre, the evidence strength, the evidence f for proposition φ changes because of the draw;

for the drawing agent only. For all the other agents, the only thing that changes is the number of

possible states in the model.

Definition 13 [Counting Product Update] Given a counting epistemic model

M= (S,A, (∼a)a∈A, f,Ψ, ‖ • ‖, s∗), and a counting event model E =(E,A, (∼a)a∈A, pre, e∗), we

define the product update

M⊗E = (S′,A, (≤′a)a∈A, f ′,Ψ′, ‖ • ‖, s∗’) by

• S′ = {(s, e) ∈ S × E | pre(s, e) 6= ⊥}, s*’ is the actual state

• Ψ′ = Ψ,

• ‖p‖′ = {(s, e) ∈ S′ : s ∈ ‖p‖},

• (s, e) ∼a (t, f) iff s ∼a t and e ∼a f,

• f ′((s, e)) = f(s) + pre(s, e), for (s, e) ∈ S′,
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sW , w1
UW ; 1

all a sB , w1
UB ; 0

all a6=a1

sW , b1
UW ; 1

all a6=a1all a6=a1

sB , b1
UB ; 1

all a

Figure B.3: Situation after product update with a1’s draw

The next event happening is that the first agent announces his guess on an urn-type. In the

counting model Baltag et al. assume that the agent handles a counting heuristic, which simply says

that his announcement will be on the proposition φ ∈ Φ for which the sum of f ’s in his considered

worlds is the highest. The formal representation of this rule is the following:

‖φ <a ψ‖M = {s ∈ S | f(a, s, ‖φ‖M) < f(a, s, ‖ψ‖M)},

in which M and f are defined as:

M = (S, (∼a)a∈A, f,Ψ, ‖ • ‖, s∗)

f(a, s, T ) :=
∑
{f(t) : t ∈ T such that t ∼a s}.

This means that if agent a1 announces a guess on UrnW , this is the same as announcing f(UrnW ) >

f(UrnB) in the states the agent considers. After this announcement, the states in which this

proposition is not true are removed from the mental representation of states of the rest of the

agents. If agents a 6= a1 hear the announcement of a1 for UrnW - this announcement is taken

to be absolutely infallible such that the possibility that the actual world is any of the worlds in

disaccordance with this announcement is completely ruled out by the elimination of these worlds.

This assumption ascribes a strong belief in the reliability of the other agents to their modelled

agents. An example of the graphical representation of the effect of the first agent announcing his

guess can be found in Figure B.4

sW , w1
UW ; 1

all a sB , w1
UB ; 0

Figure B.4: Model after a1’s announcement and the product update

The second agent’s draw and announcement look more or less the same as described for the first

agent. The effect of a2’s draw are in Figure B.5. The effect of a2’s announcement is in Figure B.6.
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sW , w1, w2
UW ; 2

all a

all a6=a2 all a6=a2

sB , w1, w2
UB ; 0
all a6=a2

sW , w1, b2
UW ; 1

all a6=a2
sB , w1, b2
UB ; 1

Figure B.5: Model after a2’s draw and the product update

sW , w1, w2
UW ; 2

all a sB , w1, w2
UB ; 0

Figure B.6: Model after a2’s announcement and the product update

For the theory of informational cascades the most interesting part is the third person’s draw and

announcement, in case the first two agents have made the same guess. In the current example,

agent 1 and 2 have both guessed on UrnW . The model predictions of Baltag et al. coincide

with what literature on informational cascades describes; the third agent is expected to make a

guess on UrnW too. Both possibilities of a3’s private draw are represented in Figure ??. In both

cases f(UW ) > f(UB) and thus an announcement on UrnW will follow. For the other agents, no

worlds are eliminated after this announcement, because in all their possible worlds f(UW ) > f(UB)

holds. That is, the announcement of a3 does not provide any additional information on his private

draw for all the other agents. This reasoning could continue for all subsequent agents too - their

announcement is just as uninformative as a3’s announcement. The expectation is that all agents

keep guessing on UrnW , and the models will keep growing exponentially.

sW , w1, w2, w3

UW ; 3
all a

all a6=a3 all a6=a3

sB , w1, w2, w3

UB ; 0
all a6=a3

sW , w1, w2, b3

UW ; 2
all a

sB , w1, w2, b3

UB ; 1

Figure B.7: Counting model after a3 draws a ball
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