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Abstract

The thesis aims at providing a categorical model of modified realizability, under-
stood as an interpretation of extensional Heyting arithmetic in all finite types.
Two variants of the category of partial equivalence relations are studied, namely,
PER∗ and PER∗∗. The former is shown to be not regular, thus not suitable for
our aim. The latter is regular and has enough projectives; it is a good candidate.
Both variants are results of alternating iteration of the cover construction and
the co-cover construction. The cover construction resembles but differs from
the regular completion.
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1 Introduction

1 The goal

The current work aims at providing a categorical model for modified realizability,
understood as an interpretation of extensional Heyting arithmetic in all finite
types.

HAω Heyting arithmetic in all finite types, denoted as HAω, is a many sorted
theory, where the sorts are finite types. Finite types are defined from an atomic
type o, to be thought of as the set of natural numbers, and closed under product
(×) and function space (→). For example, o × o → o is the type consisting of
all computable function indices e that takes two natural numbers as arguments
and produces a natural number as result.

In the language of HAω, there are countably infinitely many variable sym-
bols, each associated with a finite type. There is a constant 0 of type o (abbre-
viated as 0: o), successor S : o→ o, pairing pσ,τ and projections p0,σ,τ , p1,σ,τ for
all finite types σ, τ , combinators kσ,τ , sρ,σ,τ , and recursor rρ : ρ→ (ρ→ o→ ρ)→
o → ρ. Terms are variables, constants and applications st : τ , where s : σ → τ
and t : σ. For each type, there is an equality =τ . Atomic formulas are s =τ t
for s, t : τ ; more complex fomulas are inductively formed by connecting with→,
∧, ∨, ∀xτ and ∃xτ .

The axioms and rules of HAω include axioms and rules of many sorted
first-order intuitionistic logic with equality, together with axioms for arithmetic
and the combinator constants. Concerning application, the axioms for equality
include

y =σ z → xy =τ xz, x =σ→τ y → xz =τ yz.

The extensional version, E-HAω, has an extra axiom scheme about equality:

∀yz(∀x(yx =τ zx)→ y =σ→τ z),

for x, y, z of the suitable types. E-HAω has a model HEO, the hereditarily

effective operations . HEO is inductively defined as a set of pairs (HEOτ ,=τ ),
one for each finite type τ :

HEOo = N, x =o y iff x = y;

HEOσ→τ = {x ∈ N ; ∀yy′(y =σ y
′ → x • y =τ x • y

′)},

x =σ→τ y iff x, y ∈ HEOσ→τ , and for all z ∈ HEOσ, x • z =τ y • z;

HEOσ×τ = {〈x, y〉 ; x ∈ HEOσ ∧ y ∈ HEOτ},

x =σ×τ y iff j1(x) =σ j1(y) and j2(x) =τ j2(y).
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The notatioin x • y means applying computable function with index x to y. The
notation 〈 , 〉 denotes the pairing function, with j1, j2 being the corresponding
unpairing functions.

Modified realizability Realizability is a relation between constructions and log-
ical statements. If a statement φ can be established by exhibiting some con-
struction a, then a realizes φ, and φ is realizable. Formally, constructions are
represented by computations, and statements by formulas.

Modified realizability is an interpretation of HAω in HAω. To each formula
φ in HAω is associated a finite type τ . We have (i) φ : o for atomic formula
φ, (ii) φσ ∧ ψτ : σ × τ , for φ, ψ associated with σ, τ , (iii) φσ → ψτ : σ → τ ,
(iv) ∃xσ(ψτ ) : σ × τ , and (v) ∀xσ(ψτ ) : σ → τ . The essential clause is the
existential one, where the type of witnesses is specified. The purpose of other
clauses is to keep track of the structure of the formula. Then for each formula
φ in HAω, define a formula x mr φ (x modified realizes φ), where x is a term of
the type associated with formula φ.

(i) For atomic φ, x mr φ ≡ φ; [atomic formulas do not need extra information
to judge; x is redundant.]

(ii) x mr (φ ∧ ψ) ≡ (p0x mr φ) ∧ (p1x mr ψ);

(iii) x mr (φ→ ψ) ≡ ∀y((y mr φ)→ (xy mr ψ));

(iv) x mr ∃yφ(y) ≡ p1x mr φ(p0x);

(v) x mr ∀yφ(y) ≡ ∀y(xy mr φ(y)).

The formula xmr φ is considered as a statement completed with the information
x needed for the judgement of φ. Modified realizability can also be regarded
as an interpretation of E-HAω in E-HAω. It is this aspect that we wish to
capture in this thesis.

Categorical analysis The goal of this thesis is to find a category C, such that

C � φ iff HEO � ∃x(x mr φ),

for all φ in HAω. Let AC =
⋃

σ,τ{ACσ,τ}; for all finite types σ, τ ,

ACσ,τ ∀xσ∃yτφ(x, y)→ ∃f σ→τ∀xσφ(x, fx).

Let IP =
⋃

τ{IPτ}; for all finite types τ ,

IPτ (φ→ ∃xτψ(x))→ ∃xτ (φ→ ψ(x)),

where φ is existential free and x does not occur free in φ. By Troelstra [23],

E-HAω +AC+ IP ⊢ φ↔ ∃x(x mr φ).

As HEO is a model of E-HAω, and modified realizability validates AC and
IP, it is necessary that C � E-HAω + AC + IP. For any Heyting category C,
C � ACσ,τ for all sorts σ if the object interpreting τ is internal projective. Under
certain conditions, internal projective objects coincide with projective objects.
The current work tries to find a regular category with enough projective objects,
aiming at E-HAω +AC.
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2 Results

Results are

(i) The cover and co-cover constructions that produce the category of partial
equivalence relations (PER) and its variants;

(ii) A definition of density in minimally initiated limits, the regularity condi-
tion for the cover construction, and the alternation condition for the cover
and co-cover constructions;

(iii) Among the variants, a natural candidate for modified realizability, PER∗,
is not regular, hence could not serve as a model for modified realizability;

(iv) A further variant PER∗∗ is regular and has enough projectives.

3 Related work

Realizability was initiated by Kleene [11] and modified by Kreisel [13, 14]. It
seems that to Kreisel, the importance of his interpretation is the ability to define
realizability with different ranges of realizers [14, §10, the last sentence]. This
may be the reason that he named it ‘generalized realizability’.

Many results in intuitionistic arithmetic and realizability have been obtained
by Anne Troelstra, collected in his 1973 monograph [23]. In Chapter III.4, he
gives a very detailed analysis of modified realizability, with precise citation to
Kreisel’s work. There is also a definition in his later book [24, Exercise 9.6.5].
For more recent literature, see Kohlenbach’s monograph [12] and Streicher’s
lecture notes [22].

The category of partial equivalence relations can be traced back to Eršov’s
Numerierungen [4, §3]a. Dana Scott later suggested the name modest set

for each ‘numbering’, which can be viewed as a partial equivalence relationb.
However, later work on effective topos also used ‘modest’ for objects not being
a subset of N. In view of possible confusion, the current work adopts the name
‘partial equivalence relation’. Much of the application of this category is in
providing semantics for programming languages, especially for polymorphism
[1], where there is no non-trivial set theoretic models that fully embeds into the
category of sets, while respecting products and exponentials.

In the paper Effective Topos [6], Martin Hyland gave effective topos its name,
and showed that the topos is a natural home for constructive mathematics. In
that paper, he also pointed out a full sub-category of the effective topos (§7),
which is equivalent to the category of partial equivalence relations. Since then,
the category has been investigated in many works. Among those, Bauer’s thesis
[2] and Longley’s thesis [15] have been important reference for the writing of
this thesis.

aAn English article on the same topic is available from the Handbook of Computability

Theory [5]. Morphisms are defined on p.479.
bThat Scott suggested the name is mentioned in Rosolini’s paper [20, §3]. It is ‘modest’

because every set being numbered (by natural numbers) has to be countable.
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But the world of realizability toposes is diverse. While the effective topos
generalizes Kleene’s realizability, the modified realizability topos generalizes (in-
tentional) modified realizability. There are also the extensional realizability

topos and the Herbrand topos. If we take the tripos-to-topos approach to de-
fine toposes, then the first step is to fix the collection of possible truth values
for a proposition, in order to define triposes. This is a denotational idea of
semantics: the meaning of a proposition is considered as the collection of ob-
jects that realize it. In the case of the effective topos, each truth value of a
proposition is a subset of natural numbers, as realizers of Kleene’s realizability
are indices of computable functions. For the modified realizability topos, each
truth value is a pair (A,P ), where A is understood as the actual realizers and
P as the potential realizers, A ⊆ P ⊆ N. a The construction then goes on to
obtain the modified realizability topos. The study of this modified realizability
topos began from Hyland and Grayson.b The investigation was joint by Stre-
icher [21] (modelling intensional type theory), Hyland and Ong [7] (generalizing
strong normalization proof), van Oosten [28] (about a larger topos that includes
the modified realizability topos and the effective topos), and Birkedal and van
Oosten [3] (combining modified realizability and relative realizability). For the
extensional realizability topos, each truth value is (A,R), where A ⊆ N and R
an equivalence relation on A [ thus (A,R) form a partial equivalence relation on
N ]. This extensional realizability topos is known to Pitts [18],c and is studied
by van Oosten [27]. For the Herbrand topos, the truth value also consists of
actual realizers and potential realizers, but each realizer here is a finite list of
natural numbers (n1, n2, . . . , nk). This topos is studied by van den Berg [25]
and Johnstone [9].

We have mentioned that the modified realizability topos generalizes the in-
tentional modified realizability, i.e., one that has the hereditarily recursive op-

erations (HRO) as a model. As modified realizability can also be understood
extensionally, it is natural to expect an extensional modified realizability topos.
Although this thesis does not enter the study of topos, it is in the same line of
thought — to combine modified realizability and extensionality. It is expected
that the category PER∗∗ can be placed naturally in this envisioned topos.

As remarked in van Oosten’s historical overview on realizability [29], one
feature of the effective topos and related toposes is to model non-classical theory,
including synthetic domain theory, set up by Rosolini [19]; algebraic set theory,
explained in Joyal and Moerdijk [10], with recent work by Moerdijk and van
den Berg [26]; and intuitionistic non-standard arithmetic, Moerdijk [17]. The
reader is encouraged to read this historical essay, as it is an enjoyable experience
in itself.

aSome detail is omitted. See the following references for a precise definition.
bMentioned in Birkedal and van Oosten’s paper on modified and relative realizability [3,

§4.2], and van Oosten’s book on realizability [30, p.103].
cMentioned in van Oosten’s paper [27, §3.1]. The tripos is defined on pp.16–17 in Pitt’s

thesis.
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2 PER variants via

alternating constructions

1 PER and two variants

A partial equivalence relation on N is a symmetric and transitive relation on N,
abbreviated as per. Such a relation can be written as (A,R), where R is the
partial equivalence relation and A = {x ∈ N ; x R x}.

We are interested in partial computable functions that preserve the relation.
Let (A,R), (B,S) be pers, computable function f preserves the relation from
(A,R) to (B,S) if (i) for all x ∈ A, f(x) ↓ with f(x) ∈ B, and (ii) x R y
implies f(x) S f(y). Thus, an equivalence class of A is mapped entirely into an
equivalence class of B. We consider two such functions f, g to be the same, if
for all x ∈ A, f(x) S g(x). Then for each pair of pers, we obtain equivalence
classes [f ] of relation preserving computable functions. The category of pers is
a category where objects are pers (A,R), and morphisms are equivalence classes
of computable functions [f ] : (A,R)→ (B,S) that preserve equivalence relations
on the pers. The composition [g] ◦ [f ] is defined as [gf ] (this is well-defined),
which is associative, with [idA] as identities, where idA(x) = x for all x ∈ A. We
denote the category of pers as PER.

PER is a regular category which is finite co-complete, locally cartesian closed
with natural number objects.

Mono morphism [f ] : (A,R) → (B,S) is a mono iff for all x, y ∈ A, f(x) S
f(y) implies x R y.

Initial object (∅, ∅) is the (only) initial object. For any per (A,R), the only
morphism (∅, ∅)→ (A,R) is the equivalence class of all partial computable
functions.

Binary product (A,R) × (B,S) = (A × B, T ), where A × B denotes the
set {〈x, y〉 ; x ∈ A and y ∈ B}, and 〈x, u〉 T 〈y, v〉 iff x R y and u S v.
Projections are [j1], [j2], where j1 and j2 are the unpairing functions. The
pairing morphism 〈[f ], [g]〉 = [〈f, g〉], with 〈f, g〉 = λx.〈f(x), g(x)〉.

Equalizer the equalizer of [f ], [g] : (A,R)→ (B,S) is [i] : (E,R ∩ E × E)→
(A,R), where E = {x ∈ A ; f(x) S g(x)}, and i is the inclusion A← E. For
any [h] with domain (C,U) that equalizes [f ] and [g], the unique morphism
given by the universal property is [k], where k is set theoretically identical
to h, such that [h] = [i][k]. (We could have written [h]R,U = [i]R,T ◦ [h]T,U ,
with T = R ∩ E × E.)
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Pullback the pullback of [f ] : (A,R) → (C, T ) and [g] : (B,S) → (C, T ) is
(P,U), where P = {(f(x), g(y)) ; f(x) T g(y)}, and U is the equivalence
relation in (A,R)× (B,S) restricted to P . The two pulled back morphisms
are [f ]∗([g]) = [j1i] and [g]∗([f ]) = [j2i], where i is an inclusion.

Epi morphism [f ] : (A,R)→ (B,S) is an epi iff for all y ∈ B, there is x ∈ A
such that f(x) S y.

Terminal object any B ⊆ N with the total relation on B is a terminal object.
The unique morphism from (A,R) to a terminal object is [k], where k is a
constant function on A.

Binary coproduct (A,R)∐ (B,S) = (A∐B, T ), where T = {
(

〈1, x〉, 〈1, y〉
)

;

x R y} ∪ {
(

〈2, x〉, 〈2, y〉
)

; x S y}. Coprojections are [t1], [t2], where ti(x) =
〈i, x〉. The copairing of [f ] and [g] is the equivalence class of copairing [f, g].

Coequalizer the coequalizer of [f ], [g] : (A,R) → (B,S) is [idB ] : (B,S) →
(B, T ), where T is generated from S ∪ {

(

f(x), g(x)
)

; x ∈ A}. For any [h]
that coequalizes [f ] and [g], the unique morphism given by the universal
property is [k], where k is set theoretically identical to h, such that [h] =
[idB ][k].

Pushout The pushout of [f ] : (C, T ) → (A,R) and [g] : (C, T ) → (B,S)
is (A ∐ B,U), where U is the equivalence relation generated from V ∪
{
(

〈1, f(z)〉, 〈2, g(z)〉
)

; z ∈ C}, with V being the equivalence relation in
(A,R)∐ (B,S).

Cover, image Let [f ] : (A,R)→ (B,S). The cover cov[f ] = [idA] : (A,R)→
(A, T ), where T = {(x, y) ; f(x) S f(y)}. The image im[f ] = [g], where g
is set theoretically identical to f , such that [f ] = [g][idA].

Projective (A,=∩A×A) are projectives. If (B,S) is a projective, then it is
isomorphic to some (A,=∩A×A): there are [f ], [g] such that [g][f ] = [idA]
and [f ][g] = [idB ]. In other words, for all x ∈ A, gf(x) = x and for all y ∈ B,
fg(y) S y.

Natural number object (N,=) is a natural number object.

A sub-per is a triple (P,R,A), where (P,R) is a per with P 6= ∅, and A ⊆ P
is a sub-per: x ∈ A and x R y implies y ∈ A. The category of sub-pers has
sub-pers as objects; morphisms are equivalence classes of partial computable
functions [f ] : (P,R,A)→ (Q,S,B) such that (i) f is defined on P and f [P ]⊆Q;
(ii) f preserves the equivalence relation on P ; (iii) f [A] ⊆ B, and (iv) f ∼ g iff
they are essentially the same on A: for all x ∈ A, f(x) S g(x). Composition
[g][f ] = [gf ], and id(P,R,A) = [idP ]. Denote the category of sub-pers as PER∗.
The subcategory of PER with non-empty pers embeds fully into PER∗. For
A 6= ∅, per (A,R) appears as (A,R,A) in PER∗. This is also true with per
(∅, ∅) included, but we need to make an arbitrary choice.
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With a per for potential realizers and a sub-per for actual realizers, PER∗ is
a natural candidate for interpreting modified realiziblity. However, PER∗ is not
regular, which disqualifies it from this very purpose. It is a middle step towards
the appropriate category. A sub-per with quotient is a quadruple (P,R,A, S),
where (P,R,A) is a sub-per, and S a further quotient on A: for all x, y ∈ A,
x R y implies x S y. In the category of sub-pers with quotients, morphisms are
equivalence class of computable functions [f ] : (P,R,A, S) → (Q, T,B,U) that
preserve equivalence relation R, maps A into B and preserve equivalence relation
S; functions f ∼ g iff for all x ∈ A, f(x) U g(x). Composition [g][f ] = [gf ], and
id(P,R,A,S) = [idP ]. The category is denoted as PER∗∗.

2 A pattern in limits and colimits

Notice that a per (A,R) can be described by a surjective function r : A→ A/R;
a class of computable functions [f ] : (A,R) → (B,S) can be described by one
function g : A/R→ B/S.

Define a category S. Objects in S are surjective functions r : A → X with
A ⊆ N. Morphisms are (s, g, r) : r→ s, where g is a function cod r→ cod s such
that gr = sf for some computable function f defined on dom r; we say f tracks

g. Composition (c, h, s)(s, g, r) = (c, hg, r) with identities (r, id cod r, r). The
appearance of s, r in (s, g, r) is significant: it is not necessary that (s, g, r) ≃
(s, g, r1); similarly for s.

Proposition 1 S ≃ PER.

Proof. Define functors F : PER→ S, and G : S → PER. On objects,

F (A,R) = {(x, [x]R) ; x ∈ A},

which is a surjective function. On morphisms, suppose [f ] : (A,R) → (B,S),
F (A,R) = r and F (B,S) = s.

F ([f ]) = (s, g, r) such that gr = sf.

For functor G, suppose r : A→ X is a surjective function with A ⊆ N.

G(r) = (A,R) where x R y iff r(x) = r(y).

On morphisms,

G(s, g, r) = {computable functions f defined on dom r

such that f [dom r] ⊆ dom s and gr = sf}.

Show GF and FG each gives a natural isomorphism. We have GF (A,R) =
(A,R). For naturality, suppose

GF ([f ]) = F (s, g, r) = [f ′]
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for some appropriate r, s, g and f ′. Then sf ′ = gr = sf , hence [f ] = [f ′]. For
the other composition, it is easy to see that FG(r) = r−1r. As r is surjective,
the inverse r−1 is a set isomorphism, and (r−1r, r−1, r) in the category S is
tracked by idA. Thus FG(r) = r−1r ≃ r in S. For naturality, suppose

FG(s, g, r) = [f ] = (s−1s, g′, r−1r)

for some appropriate f and g′. Then

g′r−1r = s−1sf = s−1gr.

By surjectivity of r, we get g′r−1 = s−1g, and

(s−1s, g′, r−1r)(r−1r, r−1, r) = (s−1s, s−1, s)(s, g, r).

The morphism (r−1r, r−1, r) in the equation is thought of as the component σr
of a natural transformation σ; so for (s−1s, s−1, s).

Describe limits and colimits in this new representation.

Binary product r ×PER s = r × s, where r × s is the unique morphism
dom r × dom s→ cod r × cod s in Set given by the universal property.

Equalizer The equalizer of (c, f, d) and (c, g, d) is (d, h, e), where h is a equal-
izer of f and g in Set. Let inclusion h0 be an equalizer of fd and gd, then
e is the unique morphism domh0 → domh given by the universal property.

Binary coproduct r ∐PER s = r ∐ s, where r ∐ s is the unique morphism
dom r ∐ dom s→ cod r ∐ cod s in Set given by the universal property.

Coequalizer The coequalizer of (c, f, d) and (c, g, d) is (hc, h, c), where h is
a coequalizer of f , g in Set.

Define a category S∗. Every object in S∗ is a pair of functions (m, r),
where r : P → X is a surjective function with P ∈ N, and m : X1 → X is an
injective function withX non-empty. Morphisms are ((n, s), h, (m, r)) : (m, r)→
(n, s), where h is a function domm→ domn such that for some functions g, f
(i) nh = gm, gr = sf , and (ii) f is a computable function defined on dom r with
f [dom r] ⊆ dom s. We call h the essential morphism of ((n, s), h, (m, r)), and
say g, f witness ((n, s), h, (m, r)).

m

h g

r

f computable
n s

Proposition 2 S∗ ≃ PER∗.

8



Proof. Define F : PER∗ → S∗ and G : S∗ → PER∗.

F (P,R,A) = (m, r), where

r = {(x, [x]R) ; x ∈ P}, and

m is the inclusion {[x]R ; x ∈ A} → {[x]R ; x ∈ P}.

F ([f ]) is defined as ((n, s), h, (m, r)) such that the commuting requirement is
satisfied. Define G.

G(m, r) = (dom r,R,A), where

R = {(x, y) ; r(x) = r(y)}, and

A = {x ∈ dom r ; there is y such that m(y) = r(x)}.

G((n, s), h, (m, r)) is defined as the class of computable functions that satisfy
the commuting requirement. GF (P,R,A) = (P,R,A); FG(m, r) = (m′, r′) ≃
(m, r), where codm′ ≃ codm, domm′ ≃ domm and both isomorphisms in
domm′ ≃ domm are tracked by id dom r.

Proposition 3 In PER∗,

(i) (m, r) × (n, s) = (m × n, r × s). Projections have essential morphisms
π1, π2 from domm× domn. Pairing 〈((m, r), f, (l, q)), ((n, s), g, (l, q))〉 =
((m× n, r × s), 〈f, g〉, (l, q)).

(ii) The equalizer of parallel morphisms ((n, c), f, (m, d)) and ((n, c), g, (m, d))
is ((m, d), h, (mh, d)), where h is an equalizer of f and g.

(iii) (m, r)∐ (n, s) = (m∐n, r∐s). Coprojections have essential morphisms ρ1,
ρ2 to domm ∐ domn. Copairing of morphisms with essential morphisms
f, g has essential morphism [f, g].

(iv) The coequalizer of parallel morphisms ((n, c), f, (m, d)) and ((n, c), g, (m,
d)) is ((l, h1c), h, (n, c)), where h is an coequalizer of f and g, function h1
is a coequalizer of nf and ng, and l is the unique morphism codh→ codh1
given by the universal property of coequalizer.

All limits and colimits for essential morphisms are calculated in Set.

Proof. (i) Given monic m,n, morphism m × n is monic in any category, so
(m × n, r × s) is an object in PER∗. Projection π(m,r) is witnessed by π cod r,
π dom r. Suppose ((m, r), f, (l, q)) and ((n, s), g, (l, q)) are witnessed by f1, f0
and g1, g0, respetively. Then the copairing is witnessed by 〈f1, g1〉, 〈f0, g0〉.
Uniqueness of the copairing comes from uniqueness of 〈f, g〉.

(ii) Function m in (m, d) is monic in Set. As an equalizer, h is monic, so mh
is monic and (mh, d) is an object in PER∗. Morphism ((m, d), h, (mh, d)) is wit-
nessed by id cod d, id dom d. Suppose ((m, d), k, (l, e)) equalizes ((n, c), f, (m, d))
and ((n, c), g, (m, d)). Then k equalizes f and g, and there is i with k = hi. Let
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k be witnessed by k1, k0. We have ((mh, d), i, (l, e)) witnessed by k1, k0, and
((m, d), k, (l, e)) is the composition of ((m, d), h, (mh, d)) and ((mh, d), i, (l, e)).

(iii) Given monic m, n, morphism m ∐ n is monic in Set. The rest of the
proof is a dual of (i).

(iv) Morphism ((l, h1c), h, (n, c)) is witnessed by h1, id dom c. Suppose ((p, e), k,
(n, c)) coequalizes ((n, c), f, (m, d)) and ((n, c), g, (m, d)), and is witnessed by k1,
k0. Then there is i such that ((p, e), k, (n, c)) is a composition of ((p, e), i, (l, h1c)
and ((l, h1c), h, (n, c)), where ((p, e), i, (l, h1c) is witnessed by i1, k0, with i1 the
function in k1 = i1h1.

In the new form of PER, objects are epis, while in PER∗, monos are added.
The injective functions part in equalizer of PER∗ is dual to the surjective func-
tions in coequalizer of PER; similarly for coequalizer of PER∗ and equalizer of
PER. In fact, the two categories can be obtained from dual constructions.

We translate limits and colimits in PER∗ back to a concrete form for later
reference.

Binary product (P,R,A) × (Q,S,B) = (P × Q, T,A × B), where x T y iff
x R y and x S y. Projections are [π1], [π2]. Pairing 〈[f ], [g]〉 = [〈f, g〉].

Equalizer The equalizer of [f ], [g] : (P,R,A)→ (Q,S,B) is [idP ] : (P,R,A1)→
(P,R,A), where A1 = {x ∈ A ; f(x) S g(x)}.

Binary coproduct (P,R,A) ∐ (Q,S,B) = (P ∐ Q, T,A ∐ B), where T =
{((1, x), (1, y)) ; x R y} ∪ {((2, x), (2, y)) ; x S y}. Coprojections are [ρ1],
[ρ2]. The copairing of [f ] and [g] is the equivalence class of copairing [f, g].

Coequalizer The coequalizer of [f ], [g] : (P,R,A)→ (Q,S,B) is [idQ] : (Q,S,
B)→ (Q, T,B), where T is generated from S ∪ {(f(x), g(x)) ; x ∈ A}.

3 PER∗ is not regular

Work in PER∗.

Proposition 4 [f ] : (P,R,A)→ (Q,S,B) and [g] form isomorphisms iff
gf(x) R x on A and fg(y) S y on B.

Proposition 5 [f ] : (P,R,A)→ (Q,S,B) is monic iff for all x, y ∈ A, f(x) S
f(y) implies x R y.

Proof. Show sufficiency. Suppose for all x, y ∈ A, f(x) S f(y) implies x R y.
Let [f ][g] = [f ][h], with domain (U, T, C). Then for any u ∈ C, fg(u) S fh(u),
and g(u) R h(u). Thus g ∼ h.

For necessity, suppose [f ] is monic. Form a sub-per (X,T,C), where

X = {(x, y) ∈ P × P ; f(x) S f(y)},

(x, y) T (z, w) iff x R z and y R w, and

C = X ∩ (A×A),
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with p, q being projections P × P → P restricted to X. We have fp ∼ fq, thus
p ∼ q by monicity. Let x, y ∈ A and f(x) S f(y). Then p(x, y) R q(x, y), hence
x R y.

Proposition 6 1. Let (P,R,A) and (P, S,A) be sub-pers. If R,S coincide
on P \A, and S is a quotient of R on A, then [idP ] : (P,R,A)→ (P, S,A)
is a cover.

2. Any cover is isomorphic to some [idP ] as described above. Let [f ] :
(P,R,A) → (Q, T,B) be a cover, then [f ] ≃ [idP ] : (P,R,A) → (P, S,A),
where R,S coincide on P \ A, and x S y on A iff f(x) T f(y) on B. The
isomorphism is given by [f ]T,S : (P, S,A)→ (Q, T,B).

(P,R,A)

(Q, T,B) (P, S,A)

[idP ]
[f ]T,R

[f ]T,S

Proof. 1. Suppose [idP ] = [g][f ], with [g] monic. Let dom([g]) = (Q, T,B),
and denote the above [f ] explicitly as [f ]T,R. Then [g] and [f ]T,S : (P, S,A)→
(Q, T,B) form isomorphisms. Show [f ]T,S satisfies the requirement for mor-
phisms in PER∗. Suppose x S y on A, then gf(x) S x S y S gf(y), and f(x) T
f(y) by [g] monic. The situation for x S y on P \A is trivial. Show [g] and [f ]T,S

form isomorphisms. Suppose x ∈ A, then gf(x) S x for (P, S,A) → (P, S,A)
comes from gf(x) S x for (P,R,A)→ (P, S,A). For fg(y) T y, it follows from
gfg ∼ g and [g] monic.

2. Define S as described, then it is a quotient of R, and [idP ] is a morphism
(P,R,A) → (P, S,A). Also by the definition of S, [f ]T,S is a monic morphism
(P, S,A)→ (Q, T,B), and [f ]T,R = [f ]T,S [idP ]. Thus [f ]T,S is an isomorphism.

Proposition 7 The pullback of [f ] : (P,R,A)→ (U, T, C) and [g] : (Q,S,B)→
(U, T,C) is (P ×Q,L,D) with morphisms [p], [q], where (x, y) L (z, w) iff x R z
and y S w, D = {(x, y) ∈ P × Q ; f(x) T g(y)}, and p, q are the projections
restricted to D.

Fix a, b, c ∈ N. We write hahbhc with hn ∈ {0, 1}, for the set of computable
function indices e such that the halting of e • a, e • b and e • c are as indicated—
0 for halting and 1 otherwise. For example, e ∈ 001 means e • a ↓, e • b ↓ and
e • c ↑. Call two disjoint sets A and B computably distinguishable if there is a
computable function f defined on A∪B such that f [A] and f [B] are computably
separable; call them computably indistinguishable otherwise.

Let A0 = 010, A1 = 011, B0 = 100, B1 = 101. Among the sets, A0 and
A1 are indistinguishable, B0 and B1 are indistinguishable; other pairs of sets
are distinguishable. Let (P,R, P ) be a sub-per formed by those four sets, each
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being an equivalence class. Let f be the computable functional such that given
an index e, value e′ = f(e) is the index of the following function

e′ • x ≃

{

↓ if x = a,

e • x otherwise.

Function f maps A0, A1, B0, B1 into A0, A1, C0 = 000, C1 = 001 respectively.
Let (Z, T, Z) be a sub-per formed by equivalence classes A0, C0, A1 ∪C1. Then
[f ] : (P,R, P ) → (Z, T, Z) is a morphism P → Z in PER∗, and dom(im[f ])
has equivalence classes {A0, B0, A1 ∪ B1}, all actual.

a Notice that A1 ∪ B1 is
indistinguishable from either A0 or B0. Let (Q,S,Q) be the sub-per formed
by equivalence classes A0, C0, indistinguishable from each other. Let g be the
identity function. Then [g] : (Q,S,Q) → (Z, T, Z) is a morphism in PER∗.
Pullback im[f ], [f ] along [g].

A0, C0 A0, B0, A1, B1

A0, C0, A1 ∪ C1

[g] [f ]

The domain of [g]∗([f ]) has equivalence classes

{U × V ; U ∈ {A0, C0}, V ∈ {A0, B0, A1, B1}},

with A0 ×A0 and C0 ×B0 being actual. Morphism im[g]∗([f ]) = [g]∗([f ]). The
domain of [g]∗(im[f ]) has equivalence classes

{U × V ; U ∈ {A0, C0}, V ∈ {A0, B0, A1 ∪B1}},

also with A0 × A0 and C0 × B0 being actual. There is no isomorphism in
PER∗ between im[g]∗([f ]) and [g]∗(im[f ]). More specifically, there is no com-
putable function k that maps any of (−, A1 ∪ B1) into an equivalence class in
dom im[g]∗([f ]) while preserving A0×A0 and C0×B0 (so that [k] : [g]

∗(im[f ])→
im[g]∗([f ]) is a morphism in PER∗).

Let [k] be a morphism [g]∗(im[f ]) → im[g]∗([f ]), preserving A0 × A0 and
C0 × B0. The set A0 × (A1 ∪ B1) cannot be mapped into any of − × B0,
otherwise A0 and A1 ∪ B1 would be distinguishable: take π2k(a0, e), where
a0 ∈ A0 and e ∈ A0 ∪ (A1 ∪ B1). If e ∈ A0, then π2k(a0, e) ∈ A0, as A0 × A0

is preserved by k; if e ∈ A1 ∪B1, then π2k(a0, e) ∈ B0; but sets A0 and B0 are
distinguishable. For the same reason, A0 × (A1 ∪ B1) cannot be mapped into
any of −×B1. In other words, were k to be as wished, A0× (A1 ∪B1) can only
be mapped into −×A0 or −×A1; similarly, C0× (A1∪B1) can only be mapped
into − × B0 or − × B1. However, A0 ∪ A1 and B0 ∪ B1 are distinguishable, it
would mean A0 and C0 were distinguishable under such k: take e ∈ A0 ∪ C0

and b ∈ A1 ∪B1, then π2k(e, b) would show whether e ∈ A0 or e ∈ C0.

Theorem 1 PER∗ is not regular.

aAn equivalence class [x]R is actual in a sub-per (P,R,A) if [x]R ∈ A/R.
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4 The cover and cocover constructions

Proposition 8 In a regular category, covers are closed under composition,
pullback, product, pushout, and coproduct.

Proposition 9 In a regular category, projectives are closed under binary co-
product.

Definition 1 (The cover construction) Let C be a category, C1 be a subcat-
egory of C. The category of covers on (C1, C) is a category where objects are
covers c in C with dom c in C1 and projective in C. Morphisms are (c, f, d) : d→ c
where (i) f : cod d → cod c is a morphism in C, and (ii) f is tracked: there is
a morphism g in C1 with fd = cg. Composition (b, g, c)(c, f, d) = (b, gf, d);
identities are (d, id dom d, d). Denote the category as k(C1, C).

Given object d, c in k(C1, C), there is a bijection between morphisms (c, f, d)
in k(C1, C), and partial equivalence classes [g] defined on the set of morphisms
dom d→ dom c in C1, where g ∼ h iff cg = ch.

Dually, we have the category of co-covers on (C1, C) defined with co-covers
and injectives in C.

Definition 2 (Density) Let C1 be a subcategory of C. Category C1 is dense in

binary products of C, if for any objects a, b in C1, a, b have a product in C implies
they have a product in C1, and the product cone in C1 is also a product cone in
C. Category C1 is dense in regular monos of C, if for any regular mono m in C
with codm in C1, there is m1 in C1 with codm1 = codm, such that (i) m1 ≃ m
in C, and (ii) for any l in C1 with l = m1n in C, the unique morphism n is in C1.

Dualize the definition to obtain density in coproducts and regular epis.

Definition 3 (Regularity condition) Categories (C1, C) satisfy the regularity

condition for the cover construction, if (i) C is regular, (ii) projectives in C are
closed under binary products and regular subobjects, and (iii) C1 is dense in
binary products and regular mono of C.

Proposition 10 (Limit) Let (C1, C) satisfy the regularity condition.

(i) The product of a and b in k(C1, C) is a × b, with dom a × dom b taken
according to density;

(ii) Let (c, f, d), (c, g, d) be morphisms in k(C1, C). Let h be an equalizer of f ,
g in C, h0 be an equalizer of fd and gd taken according to density, and e
be the unique morphism domh0 → domh given by the universal property
of equalizer h. The equalizer of (c, f, d) and (c, g, d) is (d, h, e).

Proof. (i) Morphism a× b is a cover with projective domain. The projections are
(d, π cod d, d× c) and (c, π cod c, d× c), tracked by π dom d and π dom c respectively.
Pairing 〈(d, f, e), (c, g, e)〉 = (d× c, 〈f, g〉, e), where cod〈f, g〉 = cod d× cod c. By
density, π dom d and π dom c are in C1. Suppose f , g are tracked by f1, g1, then
〈f1, g1〉 is in C1 due to density, thus 〈f, g〉 is tracked.
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(ii) Morphisms h, h0, d, e form a pullback square, so e as a pullback of d is
a cover. By density, h0 is in C1. Any unique morphism with codomain domh0
given by the universal property of equalizer h0 is in C1, due to density.

Proposition 11 (Colimit) Let C be a regular category, C1 be a subcategory
of C dense in coproducts.

(i) The coproduct of a and b in k(C1, C) is a ∐ b, with dom a ∐ dom b taken
according to density.

(ii) The coequalizer of (c, f, d) and (c, g, d) in k(C1, C) is (hc, h, c), where h is
a coequalizer of f and g in C.

Proof. (i) Morphism a∐b is a cover with a projective domain. The coprojections
are (a ∐ b, ρ1, a) and (a ∐ b, ρ2, b), tracked by σ1, σ2 respectively. Copairing of
(c, f, a) and (c, g, b) is (c, [f, g], a∐ b). Tracking morphisms and morphisms given
by universal property are in C1 due to density.

(ii) The coequalizer h is a cover, so hc is a cover with a projective domain.
Morphism h is tracked by id dom c. For any (b, k, d) coequalizing (c, f, d) and
(c, g, d), let k be tracked by k0, then the unique morphism given by the equalizer
h is also tracked by k0.

Proposition 12 (Monicity) Let (C1, C) satisfy the regularity condition. Then
(c, f, d) is monic in k(C1, C) iff f is monic in C.

Proof. Show necessity. The forgetful functor F− : k(C1, C)→ C, mapping
(c, f, d) to f , preserves binary products and equalizers, thus preserves pullbacks
and monos.

Proposition 13 (Cover) Let (C1, C) satisfy the regularity condition.

(i) If k is a cover in C, then (kd, k, d) are covers in k(C1, C).

(ii) Morphism (c, h, d) in k(C1, C) is a cover only if it is isomorphic to some
(kd, k, d) where k is a cover in C.

Proof. (i) Suppose k is a cover, then it is a coequalizer of its kernel pair a1, a2.
Pullback d × d along 〈a1, a2〉 to obtain cover e, then (kd, k, d) is a coequalizer
of (d, ai, e) [k is tracked by id dom d]. Suppose (kd, k, d) can be factored as
(kd, j, b)(b, h, d) with (kd, j, b) monic. Then (b, h, d) coequalizes (d, ai, e) and
the monic (kd, j, b) has a section, thus an isomorphism.

(ii) Factor h as imh ◦ covh, then (c, imh, covh ◦d) is a morphism in k(C1, C),
in which imh is tracked by any morphism that tracks h. imh is monic, so
(c, imh, covh ◦ d) is monic, thus an isomorphism. Take k = covh.

Proposition 14 (Cover-image factorization) Let (C1, C) satisfy the regularity
condition. Let (c, f, d) be a morphism in k(C1, C), then the cover of (c, f, d) is
(cov f ◦ d, cov f, d), and the image is (c, im f, cov f ◦ d).

14



Proof. Let f be tracked by f0. Then cov f in (cov f ◦ d, cov f, d) is tracked by
id dom d, and im f in (c, im f, cov f ◦ d) is tracked by f0.

We can characterize projective objects now. Let C1 be a subcategory of C.
Category C1 is dense in co-covers, if for any co-cover k in C with cod k in C1,
there is k1 in C1 with cod k1 = cod k, such that (i) k1 ≃ k in C, and (ii) for any
l in C1 with l = k1j in C, morphism j is in C1.

Theorem 2 (Projective object, Bauer) Let (C1, C) satisfy the regularity con-
dition.

(i) Identities in C1 are projective in k(C1, C).

(ii) If additionally, C has co-images with projectives closed under coimage-
cocover factorization, and C1 is dense in co-covers. then p is a projective
in k(C1, C) only if p ≃ i for some identity i.

(iii) Every object in k(C1, C) is covered by a projective object.

Proof. (i) Let i be an identity in C1, (kd, k, d) be a cover, and (kd, f, i) be a
morphism where f is tracked by f0. Then (kd, f, i) = (kd, k, d)(d, df0, i), and
df0 in (d, df0, i) is tracked by f0.

(ii) Morphism (p, p, id dom p) is a cover in k(C1, C), and p is projective, so
(p, p, id dom p) has a section (id dom p, s, p), in which s is tracked by some s0.
Take the coimage-cocover factorization of s so that the co-cover is in C1, and
let x be the domain of cocov s. We have (p, p ◦ cocov s, idx), (idx, coim s, p)
being a pair of isomorphisms: (i) coim s is tracked by coim s ◦ p, given by
cocov s ◦ coim s ◦ p = s0 and density; (ii) p ◦ cocov s, coim s form isomorphisms,
because coim s is an epi that has a retraction. Take i = idx.

coim s

p

coim s ◦ p

cocov s

idx

cocov s

p

id dom p

id dom p

p

(iii) Every object c is covered by (c, c, id dom c).

See Bauer’s thesis [2]*Theorem 1.3.4 for the original proof.

Proposition 15 (Pullback) The pullback of (c, f, a) and (c, g, b) in k(C1, C) is
(a, π cod a ◦ i, e) and (b, π cod b ◦ i, e), given by a product followed by an equalizer.
Morphisms f , g, π cod a ◦ i, π cod b ◦ i form a pullback square in C. Let f be
tracked by f0, morphism g by g0, and i by i0 [in (a × b, i, e)], then fa, gb,
π dom a ◦ i0, π dom b ◦ i0 form a pullback square, so for cf0, cg0, π dom a ◦ i0 and
π dom b ◦ i0.

15



Theorem 3 Let (C1, C) satisfy the regularity condition. Then k(C1, C) is reg-
ular.

Proof. Show covers are stable under pullback. Let (kb, k, b) be a cover. Pull it
back along (kb, f, a), obtaining (a, l, e), then l is a cover, tracked by some l0.
We show a ≃ al0 = le, so that (a, l, e) ≃ (le, l, e) in k(C1, C), hence a cover. The
non-obvious direction is, there is l1 with al0l1 = a. Let f0 tracks f . We have

(kb)id dom b ◦ f0 = (kb)f0 ◦ id dom a,

and l0 is in the pullback square given by (kb)id dom b and (kb)f0, so there is l1
such that l0l1 = id dom a. This l1 is in C1 due to density. Thus al0l1 = a and
a ≃ al0 = le. Therefore (a, l, e) ≃ (le, l, e) is a cover. (In the diagram, f/f0
means f is tracked by f0.)

b e

kb a

k/id dom b l/l0

f/f0

The cover construction looks similar to regular completion: both construc-
tions take equivalence classes of morphisms and produce regular categories.
However, the cover construction k(C1, C) is not necessarily a regular comple-
tion of C1. A regular category is the result of a regular completion exactly when
every object is covered by a projective and embeds into a projective, and the full
subcategory of projectives are closed under finite limits. Let N1 be the category
of subsets of N, with morphisms f : X → Y , where f is a computable function
defined on X and f [X] ⊆ Y . The category PER ≃ k(N1,Set), but not every
object embeds into a projective. In PER, a morphism (c,m, d) is monic iff m
is monic in Set. Embedding every object into projectives would mean for any
cover d in Set, there were a monic m such that (id codm,m, d) were in PER —
there were a computable function n with md = n. This is not the case, as we
can take d to be the characterising function for the the halting problem.

5 Generalization to functors

For any category C, define q(C) to be the full subcategory of C containing all
objects covered by some projective object; define p(C) to be the full subcat-
egory of projectives. For regular completion, we have reg(C) ≃ reg p reg(C).
Assume (C1, C) satisfy the regularity condition for the following proposition and
its corollaries.

Proposition 16 k(C, C) ≃ q C.

Proof. Define F+ : q C → k(C, C). On objects,

F+(x) =

{

idx, if x is projective in C,

any cover c : p→ x with projective p, otherwise.
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On morphisms, F+(f) = (F+(cod f), f, F+(dom f)). Functor F− : k(C, C) →
q C is forgetful. On objects, F−(c) = cod c; on morphisms, F−(c, f, d) = f .
Composition F−F+ is an identity. F+F−(c) = c′ ≃ c, because dom c′ = dom c,
and both c′, c are covers with projective domains.

Corollary 1 q C is regular, with projectives closed under finite limits.

Generalize the cover construction with functor.

Definition 4 (The cover construction) For any faithful functor I, define cat-
egory k(I): objects are (c, c1) where c is a cover in cod I with projective
domain, and c1 is an object in dom I with I(c1) = dom c; morphisms are
((c, c1), f, (d, d1)) : (d, d1) → (c, c1) where f is a morphism in cod I, such that
for some g : d1 → c1 in dom I, fd = c ◦ I(g). Define k(I) as a functor k(I) →
k(id cod I), mapping morphisms ((c, c1), f, (d, d1)) to ((c, I(c1)), f, (d, I(d1))).

The previous notation k(C1, C) is a special case when I is an inclusion functor.
The objects c1, d1 in the generalized definition did not appear explicitly in this
special case, because they are the domains of c, d.

Definition 5 (Minimal object) An object i is minimal if cod f = i implies
f = idi. A category isminimally initiated if for any object j, there is a morphism
f : i → j with i minimal. A diagram F is minimally initiated if domF is
minimally initiated.

For example, {∗, ∗} and ∗ → ∗ ← ∗ are minimally initiated, but ∗ ←→ ∗ is
not.

Definition 6 (Density) Let I be a functor, F be a finite diagram where domF
is minimally initiated and codF = cod I. Let n be the set of minimal objects
in domF , and let {zi}i∈n be a set of dom I objects with I(zi) = F (i) for i ∈ n.
Functor I is dense in the limit of F at {zi}i, if there are dom I morphisms
{ai}i∈n with dom ai = x and cod ai = zi, such that (i) {F (f) ◦ I(ai)}j and
I(x) form a limiting cone in cod I, where j ∈ ob(domF ) and f : i → j is any
morphism with i minimal, and (ii) for any cone {F (f) ◦ I(bi)}j with vertex I(y)
on the same diagram, where dom bi = y and cod bi = zi, there is c : y → x in
dom I, such that aic = bi for i ∈ n.

Functor I is dense in minimally initiated finite limits , if for any finite di-
agram F with domF minimally initiated and codF = cod I, and any set of
dom I objects {zi}i∈n with I(zi) = F (i) for i ∈ n, where n is the set of minimal
objects in domF , the functor I is dense in limF at {zi}i.

A cone (µ, x) is a weak limit , if for any cone (ν, y) on the same diagram, there
is a morphism a : (ν, y)→ (µ, x). Uniqueness of this morphism is not required.

Proposition 17 Let I be a functor with cod I finitely complete. (i) If I
is dense in minimally initiated finite limits, then dom I has weak limits for
minimally initiated finite diagrams. (ii) If I is faithful and dense in minimally
initiated finite limits, then I has limits for minimally initiated finite diagrams
and preserves pullbacks.
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Proof. (i) Let F be a minimally initiated finite diagram with codF = dom I.
Then IF is a minimally initiated finite diagram. We get weak limits by density.

(ii) For any cone ν on F , Iν is a cone on IF . Let c be the morphism ν → µ
given by density, where µ is a weak limit, then I(c) is the unique morphism Iν→
Iµ. If I is faithful, then c is unique, thus µ is a limit. By the above argument,
if λ = limF , then the cone µ given by density is isomorphic to λ, hence Iλ ≃
Iµ = lim(IF ). Thus I preserves minimally initiated finite limits. Diagrams for
pullback cones are minimally initiated, thus I preserves pullbacks.

Functor I is dense in finite products if it is dense in nullary, unary and binary
products. Density in nullary products gives weak terminal objects. Density in
unary products is trivial: for any object z in dom I, object I(z) is the unary
product in cod I, and I(idz) is the projection; for any f with cod f = z, we have
idz ◦ f = f .

Proposition 18 Let I be a functor. I is dense in minimally initiated finite
limits iff it is dense in finite products and equalizers.

Proof. Show sufficiency. Suppose I is dense in finite products and equalizers.
Let F be a minimally initiated finite diagram, n be the set of minimal objects
in domF , and {zi}i∈n be a set of dom I objects such that I(zi) = F (i) for i ∈ n.
Construct the limit in cod I as follows, according to density. (1) Take

∏

i I(zi)
for i ∈ n, obtaining {pi}i with I(pi) = πi for i ∈ n. (2) For every object j in
domF , construct the equalizer of

{F (f)π dom f ; cod f = j and dom f minimal},

obtaining gj with cod(I(gj)) =
∏

i I(zi) for each j. (3) Construct the fibred
product of all I(gj): construct

∏

j dom I(gj), obtaining sj with I(sj) being the

projections σj ; construct the equalizer of {I(gj)◦σj ; j ∈ ob(domF )}, obtaining
h. Claim: µj = F (f)I(p dom f )I(gj)I(sj)I(h) is a limiting cone component at j,
where f is any morphism with cod f = j and a minimal domain.

Show {µj}j is a cone. Let f : j → k be a morphism in domF with no
constraint on j, k. Take e : i→ j with i minimal,

µk = F (fe)µi = F (f)F (e)µi = F (f)µj .

Suppose (ν, y) is a cone on F . By universal properties of the limits, we get unique
morphisms from y to

∏

i zi, dom(I(gj)) and dom(I(h)), thus µ is limiting. If
there are morphisms {bi}i in dom I with dom bi = w, cod bi = zi and I(bi) = νi
for i ∈ n, then by the same tracing process, we get c : w → domh such that
pigjsjhc = bi.

The usual way of constructing limits by products and equalizers does not
work for this proposition.

Functor I is dense in covers , if for any cover c in cod I and any object z with
I(z) = dom c, there is c1 in dom I with dom c1 = z, such that (i) I(c1) ≃ c, and
(ii) if I(e1) = d ◦ I(c1), then there is d1 in dom I with I(d1) = d and e1 = d1c1.
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Proposition 19 Let I be faithful, pullback preserving, and dense in covers.
Then given a cover c in cod I and an object z with I(z) = dom c, the morphism
c1 taken according to density is a cover in dom I.

Proof. Suppose c1 = mb with m monic. Functor I preserves pullbacks, so I(m)
is monic, hence an isomorphism in cod I. We have I(b) = I(m)−1I(c1), thus by
density, there is n with b = nc1 and I(n) = I(m)−1. Then I(mn) = I(id cod b)
and I(nm) = I(id cod c). By faithfulness, m,n form isomorphisms, thus c1 is a
cover in dom I.

Recall that k(I) is a functor k(I)→ k(id cod I), mapping morphisms ((c, c1), f,
(d, d1)) to ((c, dom c), f, (d, dom d)). Define p(I) as the inclusion functor
p(dom I)→ cod I.

Theorem 4 Let I be a faithful functor where (i) dom I and cod I have enough
projectives, (ii) I preserves covers and projectives, and (iii) I is dense in covers.
Then I ≃ kp(I).

Proof. We have cod I ≃ codkp(I) = k(id cod I), because cod I has enough pro-
jectives so that q(cod I) = cod I [Proposition 16]. Denote the witnessing func-
tors as F+, F−. Functor F+ maps morphism f to (idcod f , f, iddom f ), and F

−

is forgetful, mapping (c, f, d) to f . [Strictly speaking, we should have written
((c, dom c), f, (d, dom d)) instead of (c, f, d).]

For dom I ≃ domkp(I), define functor G+ on dom I, and G− on domkp(I).
On morphisms,

G+(f) =
(

(I(c), dom c), I(f), (I(d), dom d)
)

,

where c covers cod f by a projective, and d covers dom f by a projective. The
morphism I(f) is tracked by some g in p(dom I), because c is a cover, and dom d
is projective. For G−, suppose ((c, y), f, (d, x)) is a morphism in domkp(I).
Then c, d are covers in cod I. Take c1, d1 in dom I according to density in
covers, at y, x respectively, so that I(c1) ≃ c and I(d1) ≃ d. Let f have track-
ing morphism g1 in p(dom I). By density in covers, there is f1 in dom I with
I(f1)I(d1) = I(c1)I(g1) [morphism I(c1)I(g1) factor through I(d1) via f ]. De-
fine G−((c, y), f, (d, x)) = f1.

≃

f

d

I(d1)
I(g1)

≃

c

I(c1)

I(f1) I

G+

K =kp(I)
G−

F+

F−

G−G+(x) = G−(I(c1), p) = cod c2, where c1 covers x by p, dom c2 = p, and
I(c1) ≃ I(c2) with c2 taken according to density. Faithful functor reflects iso-
morphisms, so cod c1 ≃ cod c2, thus G

−G+(x) ≃ x. For the other composition,
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G+G−(c, y) = G+(cod c1) = (I(c2), dom c2), where c1 is a cover taken according
to density at y, and c2 is a cover given by dom I having enough projectives. We
have c ≃ I(c2) because cod c ≃ cod I(c1) = cod I(c2), and c, c2 are covers with
projective domains in dom I [so that there are tracking morphisms].

Let K = kp(I). Show F+I ≃KG+ and IG− ≃ F−K. Let f be a morphism
in dom I.

F+I(f) = (id dom I(f), I(f), id cod I(f)),

KG+(f) = K((I(c), dom c), I(f), (I(d), dom d))

= (I(c), I(f), I(d)).

The results are isomorphic in codK due to covers and projectives. For IG− ≃
F−K, let ((c, y), f, (d, x)) be a morphism in domK.

IG−((c, y), f, (d, x)) = I(f1),

F−K((c, y), f, (d, x)) = F−(c, f, d) = f.

Let d1 be the morphism taken according to density to obtain G−((c, y), f,
(d, x)) = f1. We get f ≃ I(f1) by d, I(d1) being covers, hence epic.

Category dom I in the theorem is not necessarily regular, thus the cover-
construction alone does not guarantee regularity. The ambient category is sig-
nificant.

By dualizing the definition and propositions, we have the co-cover construc-
tion for faithful functors, density of maximally terminated finite limits, and the
condition for recovering a category by a co-cover construction from its injective
objects.

Definition 7 (The co-cover construction) For any faithful functor I, define
category j(I): objects are (c, c1) where c is a co-cover in cod I with injective
codomain, and c1 is an object in dom I with I(c1) = cod c; morphisms are
((c, c1), f, (d, d1)) : (d, d1) → (c, c1) where f is a morphism in cod I, such that
for some g : d1 → c1 in dom I, cf = I(g) ◦ d. Define j(I) as a functor j(I) →
j(id cod I), mapping morphisms ((c, c1), f, (d, d1)) to ((c, I(c1)), f, (d, I(d1))).

6 Alternation

Definition 8 (Regularity condition) A functor I satisfies the regularity con-
dition for the cover construction, if (i) I is faithful, (ii) cod I is regular, (iii) pro-
jectives in cod I are closed under finite products and regular subobjects, and
(iv) I is dense in finite products and regular monos.

Proposition 20 Let I satisfy the regularity condition. (i) domk(I) is regular.
(ii) k(I) is dense in finite products, regular monos and regular epis. (iii) If I is
dense in finite coproducts, then k(I) is dense in finite coproducts.
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Proof. (i) The argument for an inclusion functor I generalizes. During the
argument, we need the functor I to preserve monos. As I is faithful and dense
in finite products and regular monos, I preserves pullbacks, hence preserves
monos.

(ii) For density in nullary products, let z be a weak terminal object in dom I
given by density. [z is in fact terminal due to faithfulness of I.] Then (id1, z)
is the object in domk(I) needed by density in nullary products, where 1 is the
terminal object in cod I. Density in unary products is trivial. For density in
binary products, let (a, x), (b, y) be objects in domk(I). By density, there is
z with I(z) = dom a × dom b, and (a × b, z) is the object needed by density in
binary products. Similarly for regular monos. For density in regular epis, let
((kc, dom c), k, (c, dom c)) be an object in codk(I), and let (c, x) be an object
in domk(I) with I(x) = dom c. Then ((kc, x), k, (c, x)) is the morphism needed
by density in regular epis. It is important that k is tracked by an identity idx.

(iii) This is a similar argument as in the product case.

Corollary 2 Let I satisfy the regularity condition. Then k(I) is a faithful
regular functor where (i) domk(I) and codk have enough projectives, (ii) k(I)
preserves covers and projectives, and (iii) k(I) is dense in covers.

Proof. Faithfulness is by construction. Suppose (d, x), (c, y) are objects in
domk(I), with morphisms ((c, y), f, (d, x)) and ((c, y), g, (d, x)). If the mor-
phisms are mapped to the same morphism by k(I), namely ((c, dom c), h, (d,
dom d)), then f = g = h.

Let J = k(I). Categories dom J and cod J are regular, and J preserves
finite products and equalizers due to density and faithfulness. Let ((kc, x), k,
(c, x)) be a cover in dom J , then ((kc, dom c), k, (c, dom c)) is a cover in cod J .
Thus covers are preserved and J is a regular functor. Projectives in dom J are
(idu, x) modulo isomorphism, and J(idu, x) = (idu, u) is projective in cod J .
Thus J preserves projectives. For dom J and cod J having enough projectives,
we can use the argument in the inclusion functor case.

By the previous proposition, J is dense in regular epis, hence dense in covers,
as cod J is regular.

Corollary 3 Let I satisfy the regularity condition. k(I) ≃ kpk(I).

Proof. Functor k(I) satisfies the condition in Theorem 4, in the previous section.

This is an analogue of reg(C) ≃ reg p reg(C), where reg(C) is the regular
completion of C.

Definition 9 (Co-regularity condition) A functor I satisfies the co-regularity
condition for the co-cover construction, if (i) I is faithful, (ii) cod I is regular,
(iii) injectives in cod I are closed under finite coproducts and regular quotient
objects, and (iv) I is dense in finite coproducts and regular epis.

The condition is dual to the regular condition for the cover construction.
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Proposition 21 Let I satisfy the following conditions: (i) the regularity con-
dition for the cover construction, (ii) the co-regularity condition for the co-cover
construction, except that density in regular epis is not required, and (iii) cod I
has enough projectives and injectives. Then k(I) satisfies the regularity and
co-regularity condition, and codk(I) has enough projectives and injectives.

Proof. By possessing enough projectives, cod I ≃ codk(I). The cover construc-
tion gives density in regular epis, thus k(I) satisfies the co-regularity condi-
tion.

If I has the property described in the proposition, the cover construction
and the co-cover construction can alternate. Let j(I) denote the co-cover con-
struction on functor I. Define

I(0) = I, I(2k+1) = k(I(2k)), I(2k+2) = j(I(2k+1)).

Then we obtain a series of functors I(n), where I(2k+1) is regular with enough
projectives, and projectives are exactly objects in I(2k) up to isomorphism;
similarly for I(2k+2). Alternatively, define

I0 = I, I2k+1 = F− ◦ k(I2k), I2k+2 = E− ◦ j(I2k+1),

where F− is the isomorphic forgetful functor codk(I2k)→ cod I, and E− is the
corresponding functor cod j(I2k+1)→ cod I for the co-cover construction. Then
an object in In is a pair (c, x), where c is an n-tuple with c2k+1 a cover and c2k+2

a co-cover, and x an object in dom I with I(x) = dom c1. Morphisms in dom In
are ((c, y), f, (d, x)) : (d, x)→ (c, y), where f is a morphism in cod I, and there
are (fi)0≤i<n in cod I and g : x→ y in dom I, such that (i) f2i+1d2i+1 = c2i+1f2i
(let fn = f , same below), (ii) f2i+1d2i+2 = c2i+2f2i+2, and (iii) I(g) = f0.

I(x)

I(y)

f

d2k+1

f2k

· · ·
d2

f2 f1

d1

I(g)

c2k+1
· · · c2 c1

As each of the functors F− and E− is an isomorphism, I(n) ≃ In.
Call the conditions in the previous proposition the alternation condition for

the cover and co-cover constructions.

Theorem 5 Let I be the inclusion functor N1 → Set.

(i) I satisfies the alternation condition.

(ii) dom I1 ≃ PER, dom I2 ≃ PER∗ and dom I3 ≃ PER∗∗.

(iii) PER∗∗ is a regular category with enough projectives, where projectives
are exactly objects in PER∗ up to isomorphism.
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Proof. (i) is a straightforward verification. For (ii), cases I1, I2 are essentially
proved in Section 2; similar proof works for I3. (iii) follows from the property
of the cover construction.

Proposition 22 Let I satisfy the alternation condition. Functor I2k+1 is a
regular and co-cartesian functor, and I2k+2 is a co-regular and cartesian functor.

Proof. Functor k(I2k) is faithful, dense in finite coproducts and regular epis,
thus it is co-cartesian. Functor F− is isomorphic, so I2k+1 = F− ◦ k(I2k) is
regular and co-cartesian. Dualize for I2k+2.

Let I satisfy the alternation condition. Some categorical structures in dom I2k+1

are as follows.

Mono ((c, y), f, (d, x)) is monic iff f is monic.

Initial object If (c, x) is an initial object, then cod c2k+1 = 0.

Binary product (a, x)× (b, y) = ((ai × bi)i, x× y).

Equalizer The equalizer of ((c, y), f, (d, x)) and ((c, y), g, (d, x)) is ((d, x), h,
(e, w)), where h is the equalizer of f, g. If k = 0, let h1 be the equalizer of
fd1, gd1 taken according to density, then e1 is unique morphism given by
the equalizer h. If k > 0, let h1 be any equalizer of fd1, gd1, then e2k+1 is
the unique morphism given by the equalizer h, e2k = d2k ◦ h1, and ei = di
for i < 2k.

Epi ((c, y), f, (d, x)) is epic iff f is epic.

Terminal object If (c, x) is a terminal object, then cod c2k+1 = 1.

Binary coproduct (a, x)∐ (b, y) = ((ai ∐ bi)i, x∐ y).

Coequalizer The coequalizer of ((c, y), f, (d, x)) and ((c, y), g, (d, x)) is
((b, y), h, (c, y)), where h is the coequalizer of f, g, morphism b2k+1 = hc2k+1

and bi = ci for i < 2k + 1.

mu
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3 Conclusion

We have shown,

(i) The category PER∗, where every object is formed by a per and a sub-per,
is not regular, hence cannot serve as a model of modified realizability.

(ii) The category PER∗∗, where sub-pers are equipped with a further quotient,
is regular and has enough projectives. It is a likely candidate for modelling
modified realizability with extensional equality.

(iii) Both PER∗ and PER∗∗ can be constructed by alternating constructions,
consisting of a cover construction and the dual form co-cover construc-
tion, where the cover construction resembles but differs from the regular
completion.

Future work

Concerning modelling modified realizability with extensional equality, an imme-
diate task is to characterize the locally cartesian closed structure in PER∗∗, and
confirm that PER∗∗

� AC. To this end, results in modified assemblies could
help. For example, in Streicher’s Investigations into Intensional Type Theory,
it is shown that the category of modified assemblies is locally cartesion closed
and regular (Thm 3.2, p.88).a After that, we can try to show the equivalence
of PER∗∗

� φ and HEO � ∃x(x mr φ) for any E-HAω formula φ.
By the alternating constructions, we have a family of PER variants. A very

basic question is: are they different? We could try to answer by asking succe-
sive, more specific questions. Assuming the alternation condition, we know that
categories obtained by cover constructions are regular. We could ask, are all
categories obtained from the co-cover construction not regular? If this is true,
then we separate the cover-constructed categories from the co-cover-constructed
ones. To answer this question, it is natural to seek for a generalization of the
proof that shows irregularity of PER∗. This could be an interesting computabil-
ity theory exercise in its own. After this separation, we could ask, within each of
the separated families, are all member categories different? One possible strat-
egy could be, show that PER and PER∗∗ are different (as we are expecting),
then try to show that the co-cover construction followed by a cover construction
preserve this difference.

In our investigation, the co-cover construction seems to produce categories
with less pleasing properties. However, this could well be caused by the way we

aModified assemblies are called modified realizability sets (mr-sets) there.
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choose to observe them: we do pullbacks, ask for regularity, ask for adjoints of
pullbacks, ask for quotients, etc.. In general, we are asking for less information

— we would like to keep the essential and discard detail. The co-cover construc-
tion is the opposite: by separating subobjects, more information is added. The
smaller the subobject is, the more precise we get. Maybe we can let those cate-
gories play their strength? For example, do pushouts, ask for co-regularity, ask
for adjoints of pushouts, ask for subobjects, etc., and see do they also capture
interesting notions?

We could also put more attention into the alternating construction itself.
The alternating construction presented here seems to be offset by one. Ob-
jects in PER are partial equivalence relations, but we start the alternating
constructions by performing a cover-construction, which corresponds to a total
equivalence relation. There could be an initial co-cover construction, produc-
ing (N1,Set) from some (C1, C), where C1 has only one object N with minor
modification. The minor modification in consideration is N ∪ {⊥}, i.e., adding
a helper element representing divergence. Some effort is needed to getting the
definition of this monoidal category right. If case of difficulty, we may find that
relations, with its categorical counterpart, allegories, could be of help. There
are also notions about partial computable functionals that we could make use
of, e.g., call-by-name, call-by-value [16, §4].

In the big picture of the elephant (the world of realizability toposes), we
can ask several questions: can we define an extensional modified realizability
topos, where PER∗∗ fits in naturally? What is the relation of the effective
topos, the modified realizability topos, the extensional realizability topos, and
the possible extensional modified realizability topos? More specifically, can we
lift the cover construction up to the topos level? Speaking of the cover and
co-cover constructions, it is hoped that the cover and co-cover constructions
can unify some variants of realizability, as the value of a more general theory
lies in providing simpler explanation. If that turns out to be successful, then by
making the picture a bit more regular, the constructions can show their non-
trivial value, rather than merely being another species in the zoo of categorical
constructions.
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Terminology and facts

of basic category theory

A morphism k is a cover if whenever k = mh with m monic, m is an isomor-
phism. In other words, the only subobject of the codomain that k can factor
through is an isomorphism. Let f = ik. Morphism i is an image of f , if when-
ever f = jh and j monic, i = jm with m monic. In other words, i is the least
subobject that f factors through. It follows that k is a cover. An object P
is projective if for any cover k and morphism f : P → cod k, there is g with
f = kg. A category is regular if it has finite limits and images, and covers are
stable under pullback. The dual notions are co-cover , coimage, injectives, and
co-regularity .

Proposition 23 (i) Covers are epic. (ii) Every mono with a section is an
isomorphism. (iii) Regular epis are covers.

Proof. (i) Take equalizer. (ii) Call the section s; consider ms ◦m. (iii) If regular
epi e factors as mn with m monic, then n equalizes the pair of morphisms
defining the regularity of e. By universal property of equalizer e, the monic m
has a section, thus an isomorphism.

Proposition 24 In a regular category, covers are closed under (i) composition,
(ii) pullback, and (iii) product.

Proof. (i) Let e = cd with c, d being covers. Factor e as im e ◦ cov e. Let
d1, d2 be the kernel pair of d, and e1, e2 be the kernel pair of e. By the
universal property of pullback, there is morphism a with eia = di. Thus cov e
coequalizes di, and there is b with bd = cov e (given by coequalizer d). We have
cd = im e ◦ bd, so c = im e ◦ b and im e is an isomorphism. Thus e ≃ cov e is
a cover. (ii) By definition. (iii) Suppose a, b are covers. Decompose a × b
as (id cod a × b)(a × id dom b). Morphism a × id dom b is a pullback of a along
projection, thus a cover; similarly for id cod a × b. So a× b is a cover.

Proposition 25 In a regular category, covers are regular epis.

See the Compendium [8], Prop. 1.3.4 for a proof.

Proposition 24 (Continued) In a regular category, covers are closed under
(iv) pushout and (v) coproduct.

Proof. (iv) Regular epis are stable under pushout. Take kernel pairs of regular
epi e and its push out f , obtaining a commuting square containing 〈e1, e2〉 and
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〈f1, f2〉 (ei, fi are the kernel pairs). Assume a morphism coequalizing fi; use
the pushout diagram to obtain the needed unique morphism. (v) Dualize the
proof in the product case.

Proposition 26 In a regular category, (i) an object x is projective iff any
cover with codomain x has a section. (ii) projectives are closed under binary
coproduct.

Proof. (i) Pullback the cover. (ii) Let x, y be projectives, k be a cover with
cod k = x ∐ y. Then there are a, b with ak = ρx and bk = ρy. The copairing
[a, b] is a section of k.

Proposition 27 (Monicity) (i) In any category, a morphism f is monic iff its
kernel pair are identities. (ii) A functor preserving pullbacks preserves monos.
(iii) Let (C1, C) satisfy the regularity condition for the cover construction. Then
f is monic in C1 iff it is monic in C.

Proof. (i) Show necessity. By monicity, suppose the kernel pair of f are a, a.
By f ◦ id dom f equals itself, we get b with ab = id dom f . By faba equals itself,
we get ba = id dom a. Thus a is an isomorphism and id dom f are the kernel pairs.
(ii) By (i). (iii) By density, the inclusion functor C1 → C preserves products and
equalizers, thus preserving pullbacks and monos.

Let C be a category with finite limits. The regular completion of C is a cat-
egory where objects are morphisms in C, and every morphism is an equivalence
class [g] : d → c in which (i) g : dom d → dom c is a morphism in C such that
cg equalizes the kernel pair of d, and (ii) g1 ∼ g2 iff cg1 = cg2. The resulting
category of C is denoted as reg(C). We say a category has enough projectives if
every object is covered by a projective object: for any object x, there is a cover
p→ x with p projective. We say an object x embeds into a projective object if
there is a mono x→ p with p projective.

Proposition 28 (Carboni, Vitale) Let C be a category with finite limits. The
regular completion reg(C) has the following properties: (i) it is regular, (ii) it
has enough projectives, (iii) projectives in reg(C) are closed under finite limits,
and (iv) every object in reg(C) embeds into a projective object. Conversely, if a
regular category D has the above properties, then D ≃ reg(P), where P is the
full subcategory of projectives in D.a

Proof sketch. In reg(C), (1) [f ] : d → c is monic iff the kernel pairs of cf and
d coincide, (2) if e is a split epi, then [e] is a cover, and (3) the cover-image
factorization of [f ]c,d is [f ]c,cf [idx]cf,d, where [f ]c,d abbreviates [f ] : d→ c, and
x = dom d = dom f . Then for all object y in C, idy is projective in reg(C1):
for any cover [k]c,d, its image [k]c,ck is an isomorphism and k is a split epi; use
the section to define the needed factor in the definition of a projective object.
Every object f in reg(C) is covered by [idx] : idx → f , where x = dom f . Every
object f is embedded into a projective object by [f ] : f → idy, where y = cod f .

aThis form is taken from the Compendium [8], Remarks 1.3.10(b).
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For finite limits, the functor I : x 7→ idx is full and faithful, so it preserves finite
limits.

For the converse, define functors F : C → reg(P) and G : reg(P) → C. For
objects x in C, define F (x) = mc, where m embeds x into a projective, and c
covers x by a projective. For morphisms f : x → y, suppose F (x) = nd and
F (y) = mc. Then F (f) is defined as the class of morphisms g : dom d→ dom c
such that fd = cg. Since d is the coequalizer of the kernel pair of nd, the
composition cg = fd coequalizes the kernel pair of nd.

For objects a in reg(P) (a morphism between projectives in C), define G(a) as
the image of a; for morphisms [g] : a→ b, define G([g]) as the unique morphism
dom im a→ dom im b. It is given by the universal property of coequalizer cov a,
as cov b ◦ g coequalizes the kernel pair of a.

GF (x) ≃ x, because the cover-image factorization in a regular category is
unique up to isomorphism. FG(a) = a′ ≃ a, because for g : dom a → dom a′

and h : dom a′ → dom a given by the projectives, cov a ◦ hg = cov a, thus hg is
an identity, so for gh.

Proposition 29 Let L be a full functor where every object in codL is covered
by some L(x) and embedded into some L(y). For any functor F with domF =
domL and codF regular, if F = GL with G preserving covers and monos, then
G is unique.

Proof. Suppose G, G1 satisfy the property in the conclusion. Let g be a mor-
phism in codL. Cover-embed dom g properly with d,m, cover-embed cod g
properly with c, n, then we get G(d) ≃ G1(d) and G(n) ≃ G1(n), using fullness
of L and regularity of codF . We have ngc = L(f) for some f , and G(ngc) =
G1(ngc) = F (f). Covers are epic, thus G(ng) ≃ G1(ng) and G(g) ≃ G1(g).

Proposition 30 Let L be a full cartesian embedding functor with the fol-
lowing universal property: for any cartesian functor F with domF = domL
and codF regular, there is a unique regular functor F̃ with F = F̃L. Then
codL ≃ reg(domL). (The Compendium [8], Theorem 1.3.9.)

Proof. Let R be the inclusion domL → reg(domL). Define L̃ as L̃(c, [g], d) =
L(cod cov d)→ L(cod cov c) given by the universal property of cov d [being co-

equalizer of its kernel pair]. We can verify that L = L̃R with L̃ regular. Let

R̃ be the unique regular functor with R = R̃L. Then R = R̃L = R̃L̃R with
R̃L̃ regular, thus preserving covers and monos. We also have R = id codR ◦ R,
thus R̃L̃ ≃ id codR, as R has the property that every object in codR is covered
by some R(x) and embedded into some R(y). Similarly, L̃R̃ ≃ id codL. Thus
codL ≃ codR = reg(domL).
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