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Abstract

We revisit fixed-parameter tractability, fixed-parameter reducibility
and kernelizability. The standard formulations of their definitions are en-
hanced for greater correctness from a structural complexity point of view.
Doing so makes clear the distinction between fixed-parameter reducibility
and kernelizability. Additionally, these time based definitions are aug-
mented with space based counterparts. We then proceed to introduce an
informativeness property for parameterized problems and define a mea-
sure for the computational complexity of individual instances of param-
eterized problems. By its construction, this measure embodies the idea
that parameters capture complexity. This measure is lower bounded by
the resource bounded Kolmogorov complexity, where the resource bound
depends on the computational complexity of the parameterized problem.
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1 Introduction

We give an informal introduction to the topics this thesis is concerned with,
leaving a formal treatment to the subsequent sections. An overview of the
contents of this thesis is provided, so that the reader can skip some or all of the
thesis, depending on his/her (current) interests.

Computationally hard problems are an integral part of every day life. The
boundary between computationally hard and computationally not hard is a
popular area of exploration in computer science. Although computer science
has an undeniable presence in society, much of its power is a result of advances
in hardware. With computers becoming faster and cheaper, we can take on more
and more computational problems. There are computational problems, however,
for which making computers faster and more plentiful is of little use. While
many such intrinsically intractable problems are known, a definitive separation
of the intractable from the tractable is a major unsolved problem in computer
science. For a large class of problems known as the NP-complete problems,
their presumed intractability is phrased as the statement that they do not lie in
a class known as P. A definitive proof of their intractability would settle the P
versus NP problem, which has been troubling computer scientists at least since
it was formulated by Cook in 1971.

In the 1990s a more detailed view to the study of tractability and intractabil-
ity was introduced. This parameterized take on tractability has proven of use for
both theoretical and practical computer science. Textbooks have appeared both
on the classification of problems in the framework of parameterized complexity
and on algorithm design using methods aimed at fixed-parameter tractability.
Still, we feel that parameterized complexity has far greater potential then is re-
flected in the current body of research.

Most parameterized complexity classes currently studied are derived from
the class of problems that are fixed-parameter tractable in a strong sense with
respect to computation time. We feel that this leaves us with a rather limited
complexity zoo and see an opportunity for the development of more diverse
parameterized complexity classes and corresponding notions of preprocessing.
In this thesis, we will make a humble beginning with such a diversification
by introducing the notion of fixed-parameter tractability with respect to the
working memory requirements of computations.

There are also lines of research to which parameterized complexity con-
tributes invaluable new methods which have yet to find their way into text-
books. One such line of research is that of the distribution of complexity over
the instances of problems. Given an intractable problem, one could wonder how
many instances are responsible for the intractability of that problem. Using pa-
rameter values to keep track of the individual hardness of problem instances,
parameterized complexity provides a framework for the analysis of such ques-
tions.

In this thesis, such questions are looked at from a structural standpoint,
that is, without referring to specific computational problems. Nevertheless,
specific problems are used as examples and to demonstrate results. Structural
considerations have the potential to prove separation results about complexity
classes and thus parameterized complexity might be used as a tool on such an
endeavor too. Even for the P versus NP problem, parameterized complexity
might offer new insights, or at least provide a clean formalism for the formulation
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of existing insights.

This thesis first works its way to an exposition of some central notions of
parameterized complexity in Section 4. While revisiting the basics, we identify
some shortcomings in the customary definitions. In Section 5, the definition of
fixed-parameter tractability with respect to computation time is lifted into the
realm of fixed-parameter tractability with respect to the working memory re-
quirements of computations. The main results and contributions of this thesis
to parameterized complexity are in Section 6 and Section 7. Section 6 points out
a link to descriptive complexity theory which reflects the interpretation of the
parameter as a measure of the complexity of problem instances. Section 7 con-
tains an investigation of what is needed from a parameter to make an arbitrary
problem fixed-parameter tractable. This can be interpreted as an investigation
of the limits of the usability of parameterized complexity, or as a foray into
the kinds of restrictions that could be placed on parameters. For the sake of
comparing our methods to classical methods from probability theory, we stray
from our structural ways and present, in Section 8, an analysis of the parameter
values of a specific graph problem. Compensating for this digression, a funda-
mentally structural approach to parameterized complexity is tried in Section 9,
using a form of reducibility as the central concept. Although of very limited
success, this approach does inspire one of the conjectures listed in the section
on possible future research in structural parameterized complexity, Section 10.

2 History

Parameterized complexity is a young branch of computational complexity the-
ory. We give a brief overview of its history and of its motivation. As the history
of computer science is well documented [19] and references are readily available,
we choose to not clutter the bibliography with references that do not relate to
the subject matter of this thesis.

With the advent of several, alternative, formalizations of the notion of com-
putability in the 1930s, a rigorous study of computability theory became pos-
sible. This was the birth of recursion theory. It was only after digital comput-
ers had materialized in the 1940s and 1950s that questions about tractability
became prevalent in mathematics and computer science. The most operable
formalization of the notion of computability from the point of view of ques-
tions about tractability turned out to be that of Turing, and in the early 1960s
Hartmanis and Stearns put forth the idea of measuring resource usage of Tur-
ing machines as functions of the length of the input provided to them. As
a result, complexity theory came into existence. Halfway the 1960s Edmonds
and Cobham independently argued that any Turing machine that requires an
amount of ‘time’ that is upper bounded by a polynomial in the length of its in-
put should be considered to constitute an effective method. This definition was
widely accepted, despite an apparent objection in the form of the time hierar-
chy theorem of Hartmanis and Stearns. Under the characterization of effective
methods by Edmonds and Cobham, the time hierarchy theorem holds that for
any given polynomial of arbitrary degree, there exists an effective method of
which the running time is not upper bounded by the given polynomial. By the
1970s, the definition of the class P of problems solvable by an effective method
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was firmly established and P was recognized as the complexity class represent-
ing tractability. However, by the 1990s this take on tractability had become
unsatisfactory for a variety of reasons and in a series of four groundbreaking
papers, Downey and Fellows introduced a new standard for tractability: fixed-
parameter tractability. This new notion was formalized in the complexity class
FPT and accompanied by a suitable notion of reducibility, facilitating the struc-
tural study of this new complexity class and its relatives [18]. We will mention
some of the most important arguments in favor of fixed-parameter tractability
as an approach to tractability.

The use of parameters in the specification of problems makes more fine-
grained expressions of complexity possible. With parameters representing met-
rics or other aspects of the input to a Turing machine, it is possible give a de-
scription of the resource requirements of that machine which incorporates these
aspects. Such a description is based not only on the length of the input, but
also on the parameters. In particular, a parameterized analysis can distinguish
complexities that are indistinguishable when expressed as a function of only the
length of the input.

In practice, problems for which no tractable solution is known do not always
pose problems. This is mostly due to the fact that not all possible inputs of
any given length are equally likely to be encountered. In many practical situa-
tions, data tends to be cooperative, save for some relatively small troublesome
part. Keeping the size of such a troublesome part fixed and looking at the com-
plexity behavior for variable input sizes is precisely the fixed-parameter look at
complexity. Thus fixed-parameter tractability promises to give a more realistic
account of tractability in practice. From a theoretical perspective, we could say
that parameterizing problems allows prior knowledge about values of metrics or
of other aspects of problem instances to be taken into account when considering
tractability. Thus fixed-parameter tractability is a way to loosen the constraints
placed on tractability by the classical notion captured by P.

A related motivation for fixed-parameter tractability comes from the desire
to understand sources of intractability. For many problems, intractability is a
result of a combinatorial explosion. That is, a search space related to solving
such a problem has a size that cannot be bounded by any polynomial in the
length of the input to a machine that is supposed to solve the problem. Still,
there may be an upper bound, however big, to the size this search space that
can be expressed in terms of an aspect of the input instead of in terms of the
length of the input. If the length of the input and the aspect are not too strongly
correlated, such an upper bound should be thought of as confining the combi-
natorial explosion. After all, for some inputs of great length the aspect value
may nonetheless indicate a relatively limited search space. This is the case, for
example, when the input specifies a rather redundant problem instance. In such
cases it is often possible to strip away the redundant parts and reduce an in-
stance to its more or less intrinsically hard part. Here, we find a connection
between parameterized complexity theory and preprocessing practice. More-
over, we notice that parameterized complexity enables an investigation of the
distribution of the source of complexity, where this distribution is considered
within problems.

Classically, the study of the internal structure of problems has, for classes
of intractable problems, led to the notion of a natural problem. Specifically,
NP-complete problems are called natural whenever they are p-cylinders, for
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which a definition can be found in Section 7. It is an open problem whether
or not all NP-complete problems are natural. For parameterized versions of
NP-complete problems it is unclear which problems to call natural. In fact,
such structural considerations are seemingly underdeveloped in current param-
eterized complexity research. Suggestions for conditions that should be satisfied
by natural parameterized problems are included in Section 6, but all suggested
conditions are unsatisfactory. Either they exclude problems which we would
want included, or they allow parameterizations such as those constructed in
Section 7, which we would want rejected. Nevertheless some parameteriza-
tions are intuitively more natural than others and research in parameterized
tractability has commonly focussed on those problems that are natural in an
intuitive sense. The alternative program of finding parameterized problems re-
lated to a classically intractable problem that are both natural in some sense
and have favorable fixed-parameter tractability is rarely attempted. Although
several textbooks on parameterized complexity have already appeared and re-
sults have found applications outside academia, the field of parameterized com-
plexity theory is still in flux and its foundations are not yet set in stone.

3 Preliminaries

We review the small number of basic definitions from computer science that are
used in this thesis. None of these definitions is unusual, so the reader familiar
with computer science may skip this section.

Conceptually, complexity theory is about the difficulty of problems. In order
to attempt a formal study, proper definitions are needed. One of the most
common perceptions of a problem in complexity theory [3] is that of a decision
problem, which is the type of problem we will define in this section and study
in this thesis.

In computer science, an alphabet is a finite set and every finite set can serve
as an alphabet. A finite sequence of characters of an alphabet is called a string.
If Σ is an alphabet, the set of all possible strings of d characters of that alphabet
is denoted by Σd. The following notational conventions are used throughout
this thesis.

Definition 1. The natural numbers start at 1. For every natural number n,
the set of all possible nonempty strings of at most n characters of an alphabet
Σ is denoted by Σ≤n. The set of all nonempty finite strings of an alphabet Σ is
denoted by Σ+, where the + is known as the Kleene plus operator.

N = {1, 2, . . .},

Σ≤n =

n⋃
d=1

Σd,

Σ+ =
⋃
d∈N

Σd.

Note that the unions in the above definition are disjoint. For all n ∈ N, the
following length norm is therefore well-defined on Σ≤n and Σ+.

Definition 2. The length of a string x ∈ Σd is d and denoted by |x|.
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A subset of Σ+ is called a language and comes with its own norm.

Definition 3. The size of a language A ⊆ Σ+ is its cardinality and denoted by
‖A‖.

We call the empty language, ∅, and the full language, Σ+, the trivial lan-
guages. Usually in computer science, Σ+ is extended to include the empty se-
quence and the result of this extension is denoted by Σ?. However, a string of
length 0 is often inconvenient and sometimes even invalidates theorems. In fact,
we would at times like the length of any string x to be at least 2, so that |x|c
increases monotonically as a function of c.

Note that all infinite languages have the same cardinality and there exists
a bijective correspondence between any countably infinite set and any infinite
language. In specific cases, this correspondence can be of a very practical nature.
For instance, a language using one alphabet can be related to a language using
another alphabet by encoding the symbols of the one alphabet in fixed-length
sequences of symbols of the other. Therefore, the following convention does not
limit our results.

Definition 4. Throughout this thesis Σ denotes the binary alphabet, {0, 1},
and log denotes the binary logarithm.

Another case of a practical bijection is that of a language corresponding to
the Cartesian product Σ+×Σ+. Just mapping an element (x, y) of Σ+×Σ+ to
the concatenation of x and y does not define a bijection between Σ+ ×Σ+ and
Σ+, as we do not know where x ends and y begins in the concatenation. A proper
correspondence can be found by using an intermediate self-delimiting language.
A language A is self-delimiting if for every x ∈ A and y ∈ Σ+ we have that the
concatenation of x and y is not in A. Note that no self-delimiting language of size
greater than 1 contains the empty string. A self-delimiting language for which
we have a direct bijective correspondence with Σ+ is the language where, for
all d ∈ N, every x ∈ Σd is represented by the string obtained by concatenating
d − 1 ‘1’s, a ‘0’ and x. If we call this language A, then we have just defined a
correspondence between Σ+ × Σ+ and A× Σ+. From the concatenation of the
components of an element of A×Σ+ it is possible to recover the element itself,
thus all such concatenations form a language that is in bijective correspondence
to A×Σ+ and thus to Σ+ ×Σ+. Calling the bijective mapping from Σ+ ×Σ+

to this language f , the practical use of f is demonstrated by the fact that we
have |f(x, y)| = 2|x|+ |y|, which demonstrates that a well-behaved length norm
can be defined on products of languages.

The language corresponding to Σ+×Σ+ just constructed serves as an exam-
ple of a language that has an interpretation of its elements. An interpretation
that is possible for all strings is given by a correspondence between N and Σ+.
Any string of characters of our binary alphabet can be considered to be the bi-
nary representation of a natural number: ‘0’ corresponds to 1, ‘1’ corresponds to
2, ‘00’ corresponds to 3, ‘01’ corresponds to 4 et cetera. The representation may
appear somewhat strange, but, for n ∈ N, it is just the customary representation
of n+ 1, dropping the leading ‘1’. This interpretation induces an order on Σ+.
Even when a language is associated with an interpretation different from that
as natural numbers, it can be practical from a computational point of view to
nevertheless use the interpretation as natural numbers.
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A more general form of correspondence between languages is via language
maps.

Definition 5. A language map from a language A to a language B is a function
f : Σ+ → Σ+ such that, for all x ∈ Σ+, we have x ∈ A ⇐⇒ f(x) ∈ B.

Sometimes, when the meaning is clear from the context, language maps are
simply called maps. Language maps form the basis of many-one reductions,
which we will simply call reductions in this thesis.

Definition 6. A class of language maps C is a class of reductions if we have:

1. for every language, the identity map on that language is in C;

2. for every two maps in C, their composition is in C.

The language maps from a language A to a language B in C are denoted by
C(A,B).

The properties of a class of reductions make sure that a class of reductions
C defines a preorder �C on all languages: A �C B ⇐⇒ C(A,B) 6= ∅. That is,
the properties of a class of reductions warrant reflexivity and transitivity of the
given preorder. When composition of reductions is associative, languages and
reductions form a category.

Lacking from the discussion so far, but of paramount importance to com-
puter science, is the notion of computability. If any theorem deserves the title
of fundamental theorem of computer science it would be that the class of com-
putable functions is largely invariant under the choice of a formalism for the
underlying notion of computability. This theorem is the result of the Church–
Turing thesis when the Turing machine, or any other equivalent formalism, is
taken as the defining formalization of computability. The prominent formaliza-
tion of computability in this thesis will be a form of pseudocode that we consider
self-explanatory and for which we will not define an interpreter. We will call
a, possibly partial, function computable if there is an algorithm specified in our
pseudocode that computes it.

Definition 7. An algorithm, or procedure is any computable function or spec-
ification thereof according to some formalization of computability.

Thus, there are two kinds of equivalence of algorithms: an extensional one
based on their behavior as a function and an intensional one based on their
specification.

On inputs where a procedure does not terminate, the corresponding com-
putable function is not defined. However, for our purposes we mostly look
at resource bounded computations, in which case we may assume procedures
terminate on all possible inputs. Therefore, we may assume that all resource
bounded computable functions are total functions.

We will be especially interested in decision procedures.

Definition 8. An algorithm f : Σ+ → {true, false} decides membership of a
string x ∈ Σ+ in a language A if we have:

f(x) =

{
true if x ∈ A

false if x /∈ A
.
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An algorithm is a decision procedure if it decides membership of all strings
x ∈ Σ+ in A.

Any language for which there is a decision procedure is called decidable and
the membership question for a string in a decidable language is called a decision
problem. Slightly abusing terminology, we adopt the following definition.

Definition 9. A problem is a language that admits a decision procedure.

Computability and decidability are related and generally the term recursive
is used to designate the overarching concept, but we will not do so here. When
it comes to computability or decidability we are interested in the amount of
some resource required by the computation involved. In particular, we are
interested in the time and space usage of a computation. Here, time usage
stands for the number of atomic computational steps that a computation is
made up of. Space usage stands for the longest length of the specification of the
input-dependent state encountered during a computation. That is, space usage
is about the memory requirement of a computation. We will say a procedure is
computable in time t to indicate that computation of the procedure terminates
after no more than t atomic computational steps. Similar phrases will be used
for the decidability of languages instead of computability of procedures and for
space instead of time. When we focus on the behavior of resource usage more
than on the specifics, we will make use of O-notation. Let f and g be functions
from an arbitrary domain A to N. In a context where we have an implicit
abstraction over a variable x in A, we say that f(x) is in O(g(x)) if there is a
constant c such that for all but finitely many x in A we have f(x) ≤ cg(x). In
this thesis, c can always be chosen so that the inequality holds for all x in A.
We will often use implicit function definitions in place of f and g. Thus, for
example, the phrase ‘the elements (x, y) of a language A are such that |x| is in
O(y2)’ comes to mean the same as the logical expression

∃c : ∀(x, y) : (x, y) ∈ A =⇒ |x| ≤ cy2.

Even more specifically, with f mapping (x, y) to |x| and g mapping (x, y) to y2,
the phrase means the same as the expression

∃c : ∀(x, y) : (x, y) ∈ A =⇒ f(x, y) ≤ cg(x, y).

Similarly, a decision procedure taking input x is said to decide a problem in
space O(s(|x|)) if there is a constant c such that for all x ∈ Σ+ the space
used by the decision procedure is at most cs(|x|). A special phrase is used for
procedures taking input x for which there is a d that does not depend on x such
that the time or space usage of the procedure is in O(|x|d). Such procedures are
said to be computable in polynomial time or space. We want to emphasize that
O-notation is about functions, not about specific function values. Our choice of
notation is motivated by the fact that for the implicit specification of functions
it is convenient to be able to refer to function arguments.

As a running example of a problem, in this thesis we will look at the vertex
cover problem on simple graphs.

Definition 10. A simple graph consists of a finite set V of which the elements
are called vertices and a symmetric anti-reflexive binary relation E on V of
which the related pairs are called edges.
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Simple graphs can be visualized by depicting the vertices as dots and drawing
lines between related vertices. Because E is anti-reflexive, no line will be drawn
from a dot directly to itself.

Definition 11. Given a graph (V,E), a subset V ′ of V is a vertex cover of
(V,E) if for every (v1, v2) ∈ E we have v1 ∈ V ′ or v2 ∈ V ′. The size of a vertex
cover V ′ is the cardinality of V ′.

The vertex cover problem is the language of pairs of a simple graph (V,E)
and a natural number k such that there is a vertex cover of size at most k in
(V,E). Note that there are countably many pairs of a simple graph and a natu-
ral number, so there indeed exists a language admitting such an interpretation.
It is not known whether the vertex cover problem is decidable in polynomial
time. In fact, it is complete for the complexity class NP of problems that
are computable in polynomial time for a formalization of computability that in-
cludes nondeterminism. Here, completeness is taken with respect to polynomial
time reductions known as Karp reductions. Related to the vertex cover prob-
lem is the minimum vertex cover problem, which asks whether a number k is
the smallest possible size of a vertex cover in a graph. For the minimum vertex
cover problem it is not even known whether it is in NP. It is, precisely when
NP equals the class co-NP of problems of which the complement is in NP.

4 Parameterized Complexity

A structural outline of fixed-parameter tractability is given. On the way, we
identify some flaws in the textbook treatments and correct them. The interplay
between several concepts that play a central role in the field of parameterized
complexity theory is explored.

As with all interesting complexity classes, there is a multitude of ways in
which the classes relevant for analysis in parameterized complexity research
can be defined. Characterizations of the classical NP include those via non-
deterministic Turing machines, via certificates and verifiers, and via reductions
and complete problems. Similarly, we will provide several approaches to the
classes most important for this thesis.

Before we do so, some attention needs to be given to the concept of a param-
eterized problem. For this concept, like for many in parameterized complexity
theory, different definitions exist. In this thesis, we will go with the one intro-
duced originally by Downey and Fellows [13,14].

Definition 12. A parameterized problem is a subset of Σ+ × Σ+. For (x, k) ∈
Σ+ ×Σ+ we call x the instance and k the parameter. The parameter is usually
interpreted as a natural number.

Throughout this thesis, x and k will denote arbitrary instances and param-
eters of the problems in scope. For convenience we set |x| to twice the number
of characters in x.

The seemingly peculiar choice for the length, |x|, is motivated by the tech-
nical desire to have |x|c grow unbounded as a function of c, regardless of x.
This trait is made possible by our choice because our choice guarantees |x| > 1,
which even holds regardless of our alphabet. The choice does not impact our re-
sults, because we are interested in behavior that is polynomial or logarithmic in
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the length of x and as our definition is linear in the number of characters such
behavior is retained: it is present in terms of the number of characters precisely
if it is present in terms of |x|. Thus the main consequence of our choice is that
our mathematical expressions can become more elegant than when we would
have set |x| to just the number of characters in x. Furthermore, our choice has
a technical interpretation. Since we are dealing with the product Σ+ × Σ+, we
may need to make x self-delimiting in any practical coding scheme. If x has
n characters, this is easily possible in 2n characters by prepending n − 1 ‘1’s
followed by a ‘0’ to x.

Definition 12 was originally also used by by Flum and Grohe [17], although
for their book on parameterized complexity theory [18] they used an alternative
definition. In their case a parameterized problem is a subset of Σ+ equipped
with a parameterization function κ : Σ+ → N that is computable in polynomial
time. The only difference with our definition is that in our case the length of the
parameter is not echoed in the length of the instance. This matters in particular
when the parameter is not computable from the instance in polynomial time. In
such a case, the precise dependency of an algorithm’s complexity on the length of
the instance can be obscured by the presence of a specification of the parameter
in the instance. Thus, for Flum and Grohe parameters are necessarily internal to
the problem. By contrast, our definition allows parameters to capture external
knowledge.

When dealing with parameterized problems, it is often desirable to look at
fixed-parameter values, giving rise to slices of the problem.

Definition 13. The kth slice of a parameterized problem A is the problem

Ak = {x | (x, k) ∈ A}.

The class of parameterized problems of which the slices are in P is known
as slice-wise P, or XP [14,18] and comes in several guises.

Definition 14. A parameterized problem A is in the class nonuniform XP if
there are functions g, e : Σ+ → N and a family of decision procedures, Φ =

{φk}k∈Σ+ such that for each k the slice Ak is decided by φk in time g(k)|x|e(k).
If A is in nonuniform XP by a decidable (without resource bounds) family

Φ, then it is in uniform XP. In this case, we use Φ to indicate the computable
mapping k 7→ φk. Indeed, an indexed family is decidable precisely when the
mapping of index values to their corresponding elements is a computable func-
tion.

If A is in uniform XP by some g, e,Φ such that g and e too are computable,
then it is in strongly uniform XP. When used without modifiers, XP means
strongly uniform XP.

The freedom in the choice of e in the definition of XP makes XP-algorithms
impractical in general. The proper way to stretch the notion of tractability
beyond P into the class of fixed-parameter tractable problems, or FPT is a
further restriction.

Definition 15. When e is taken as a constant in the definitions of the various
versions of XP, we obtain the definitions for nonuniform FPT, uniform FPT,
and strongly uniform FPT.

When used without modifiers, FPT means strongly uniform FPT.
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It may seem as if an even stronger notion of tractability is attained by also
restricting the effect of g to be additive instead of multiplicative. It turns out,
however, that this would lead to the same class FPT. This is a nice robustness
property of FPT.

Lemma 1. Let A be a parameterized problem. The following are equivalent.

1. A is in FPT.

2. There is a decision procedure that, for some computable function g and
constant c, decides A in time g(k)|x|c.

3. There is a decision procedure that, for some computable function g′ and

constant c′, decides A in time g′(k) + |x|c
′
.

Proof. The equivalence 1 ⇐⇒ 2 we get because the decidable families of
decision procedures for slices of A and the decision procedures for A are related
by uncurrying and currying.

The implication 2 =⇒ 3 follows by taking g(k) = g′(k) + 1 and c = c′, for

then we have g(k)|x|c ≥ g′(k) + |x|c
′
. The opposite direction, 2 ⇐= 3, follows

by taking g′(k) = g(k)c+1 and c′ = c+ 1. As either g′(k) or |x|c
′
is bigger than

g(k)|x|c, their sum certainly is.

We remark that the above lemma and proof would be invalid if the empty
string, which has length 0, was allowed as an instance. Unfortunately, param-
eterized problems are commonly defined as subsets of Σ? × Σ? [16, 18] so the
empty string often is allowed.

A direct consequence of the definition of FPT is that FPT is a subset of
XP. To see that it is a strict subset, we turn to the following problem.

Problem (PPAcc). Parameterized polynomial time acceptance.
We define problems by a membership criterion based on an interpretation of

the instance and the parameter.

Instance: x.

Parameter: (φ, e), where φ is a decision procedure and e a natural number.

Criterion: φ accepts x in time |x|e.

We claim that this problem is in XP but not in FPT.

Lemma 2. PPAcc ∈ XP.

Proof. By standard results in simulation via efficient universal Turing machines
[3], we know that for some c it is possible to compute φ(x) from a specification
of φ and x in time O(|x|ce), where the hidden constant depends on the number
of states and tapes used by φ. These numbers can be computed from φ, hence
PPAcc is in strongly uniform XP.

Theorem 3. FPT ⊂ XP.
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Proof. It suffices to show that PPAcc is not in FPT. Suppose for contradiction
that it is. Then, for some c there exists a g such that regardless of φ the slice
PPAcc(φ,c+1) is decidable in time g(φ, c+1)|x|c. However, by the time hierarchy
theorem [3], there exists a slice with a decision procedure φ that runs in time

|x|c+1
, but is outside O(|x|c), contradicting our assumed decidability.

An eminent problem that is not known to be tractable in the classical sense
is the vertex cover problem. The vertex cover problem might not be in P, but
definitely is in FPT, so tractable when parameterized. In fact, the parameter-
ized vertex cover problem is a standard example of a fixed-parameter tractable
problem.

Problem (VC). Vertex cover.

Instance: G, a simple graph.

Parameter: k, a natural number.

Criterion: G contains a vertex cover of size at most k.

Membership of FPT follows directly from a simple algorithm by Sam Buss
[6, 14, 18] which we include here as Algorithm 1. In the algorithm, the time
needed by loop 1 is quadratic in ‖V ‖ and the time needed by loop 2 is determined
by ‖V ′‖, which is upper bounded by a function of the parameter. Therefore,
the algorithm indeed proves that VC is in FPT.

Algorithm 1 An FPT-algorithm for VC.

Input: A graph (V,E) and a parameter k
Output: The presence of a vertex cover of size k in (V,E)
V ′ ← ∅
k ′ ← k
for all v in V do // loop 1
d ← the degree of v
if d > k then // v is necessarily in every cover smaller than k
k ′ ← k ′ − 1

else if d > 0 then // v cannot be ignored
V ′ ← V ′ ∪ {v}

end if
end for
E ′ ← E ∩ (V ′ ×V ′)
if ‖E ′‖ ≤ k ′k then // a cover of size k ′ might be possible
for all subsets, W , of V ′ of size min(k ′, ‖V ′‖) do // loop 2
if W is a vertex cover of E ′ then
return true

end if
end for

end if
return false

The two-part character of Algorithm 1 is a common design pattern in prac-
tical algorithms. The purpose of the first part, loop 1, is to preprocess the in-
put, (V,E). The result of this preprocessing, (V ′, E′), represents a view of the
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input that has been rid of any trivial parts. More generally, it is the goal of
preprocessing to identify the intrinsically hard part of the input.

In Algorithm 1, the preprocessing is of a special kind. Because the size of the
result of the preprocessing can be upper bounded by a function of the parameter,
we have a clean cut in the variables the time needed in both loops depends
upon. For the preprocessing, loop 1, the required time is polynomial in the size
of the instance, whereas an upper bound on the time required by loop 2 can be
determined solely on the basis of the parameter. This kind of preprocessors is
called kernelization.

Definition 16. A language map from one parameterized problem to another,
mapping (x, k) to (x′, k′), is a kernelization if there is a constant c, and a
computable, non-decreasing function h : N→ N such that we have:

1. (x′, k′) is computable in time |x|c;

2. |x′| ≤ h(k) and k′ ≤ h(k) hold.

We call (x′, k′) the kernel of (x, k). A parameterized problem A is kernelizable
if there exists a kernelization from A to itself.

In our case, loop 1 of Algorithm 1 constitutes a kernelization from VC to
itself, showing that VC is kernelizable.

Usually the running time of the language map in the definition of kerneliza-
tions is allowed to depend on the parameter [6,16,18], but this is not necessary
for the fundamental lemma about kernelizability.

Lemma 4. Also equivalent to the statements in Lemma 1 is the following.

4. A is decidable and kernelizable.

Proof. For 3 ⇐= 4, observe that computing the kernel followed by deciding
the kernel, the size of which is bounded by a function, h, of the parameter,
takes |x|c+g(h(k)) time, where g is a bound on the running time of the decision
procedure. As g and h are both computable, their composition is too.

The 2 =⇒ 4 direction is a bit more involved. In case A = ∅ or A = Σ+×Σ+

we can get away with a kernelization mapping all inputs to an arbitrary string.
In all other cases we can take some y ∈ A and n /∈ A. Let φ be the assumed
decision procedure that runs in time g(k)|x|c. We define a kernelization using
φ, y and n as follows.

Input: (x, k)
Output: a kernel of size max(|y|, |n|, g(k) + |k|)
run φ on (x, k) for |x|c+1

steps
if φ has terminated then
return y or n according to the output of φ

else
return (x, k)

end if

By construction, the running time of our algorithm is as required. It remains to
show that whenever φ did not halt within |x|c+1

steps, we have |x| ≤ g(k). This
is true because φ is guaranteed to halt in g(k)|x|c steps, so in this situation we

have |x|c+1
< g(k)|x|c and consequently |x| < g(k) as desired.
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Unfortunately, kernelizations in general are no reductions, so we cannot di-
rectly extract a preorder on problems from them. Kernelizations fall short of
being reductions in that the identity map is not necessarily admitted. In Sec-
tion 7 we will see that it is natural for the length of instances to grow unbounded
given a parameter value. Therefore, it is natural for the identity map to violate
requirement 2 of Definition 16, |x| ≤ h(k), for some x. Nevertheless we are in-
terested in a reduction that somehow relates to parameterized problems and in
particular to FPT and XP. The proper notion is that of fpt-reductions.

Definition 17. A language map from one parameterized problem to another,
mapping (x, k) to (x′, k′), is an fpt-reduction if there are constants c, d, and
computable, non-decreasing functions g, h : N→ N, such that we have:

1. (x′, k′) is computable in time g(k)|x|c;

2. |x′| ≤ |x|d and k′ ≤ h(k) hold.

The difference between fpt-reductions and kernelizations is subtle but im-
portant. Additionally, looking at Definition 14 and Definition 15 it should be
obvious that fpt-reductions are the most restrictive of several similar types of
reductions, the least restrictive of which being nonuniform xp-reductions. Of-
ten, results can be readily rephrased in terms of another reduction, but we will
stick to fpt-reductions in this thesis.

The definition of fpt-reduction above is not standard, but it is correct.

Theorem 5. The language maps that are fpt-reductions are reductions. More
specifically, the identity map is an fpt-reduction and the class of fpt-reductions
is closed under composition.

Proof. We will present a proof only of the last statement. Let f1 and f2 be
fpt-reductions of signatures that admit the composition f2◦f1. We will subscript
all auxiliary symbols from the definition according to the map they belong to.

1. The composition f2 ◦ f1 is computable in time g1(k)|x|c1 + g2(k
′)|x′|c2 ≤

g1(k)|x|c1 + g2(h1(k))|x|d1c2 . Hence f2 ◦ f1 is computable in time g(k)|x|c,
with c = c1 + d1c2 and g(k) = g1(k) + g2(h1(k)).

2. For f2(f1(x, k)) = (x′′, k′′), we find |x′′| ≤ |x′|d2 ≤ |x|d1d2 and k′′ ≤
h2(k

′) ≤ h2(h1(k)). Hence |x′′| ≤ |x|d and k′′ ≤ h(k), with d = d1d2 and
h = h2 ◦ h1.

Standard definitions [14, 18] omit the first part of requirement 2 of Defini-

tion 17, |x′| ≤ |x|d. However, this requirement is essential for Theorem 5. In
the classical setting of Karp reductions the bound on the size of the result of
the reduction was not necessary because it was implied by the bound on the
computation time. With fpt-reductions, though, the computation time may de-
pend on the parameter and the bound on the size of the result of the reduction
must be made explicitly.

Just as P is the minimal class for Karp reductions in the sense that there are
no nonempty, strict subsets of P that are closed under Karp reductions, FPT
is the minimal class for fpt-reductions.
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Lemma 6. Also equivalent to the statements in Lemma 1 and Lemma 4 is the
following.

5. A is fpt-reducible to every nontrivial parameterized problem.

Proof. For 2 ⇐= 5, consider the singleton parameterized problem {y} and let
f be an fpt-reduction to {y}, which exists by assumption. We define a decision
procedure for A as follows.

Input: (x, k)
Output: true or false, consistent with (x, k) ∈ A
if f(x, k) = y then
return true

else
return false

end if

Computing f(x, k) is possible within the time bound of an acceptable decision
procedure, as is testing for equality to the constant y. Hence, this decision
procedure satisfies our requirements.

Similarly, for 2 =⇒ 5, let φ be the assumed decision procedure that
runs in time g(k)|x|c, let B be any nontrivial parameterized problem and take
y ∈ B and n /∈ B. We define an fpt-reduction from A to B as follows.

Input: (x, k)
Output: a member of B if (x, k) ∈ A and a non-member otherwise
if φ(x, k) then
return y

else
return n

end if

The running time is immediately seen to be acceptable and as the output is
of constant maximum size, max(|y|, |n|), requirement 2 of Definition 17 is also
satisfied.

Corollary 7. FPT is closed under fpt-reductions.

Note that XP too is closed under fpt-reductions. Because of Theorem 3 and
Corollary 7 not every problem in XP is complete for XP under fpt-reductions.
Therefore, it is nice to know problems that are complete for XP.

Lemma 8. PPAcc is complete for XP under fpt-reductions.

Proof. Having proved Lemma 2, only hardness of PPAcc under fpt-reductions
needs to be proved.

Let A be in XP by some g, e,Φ. We claim that the mapping (x, k) 7→
(x, (Φ(k), e(k) + log g(k))) is an fpt-reduction from A to PPAcc. The time
needed to compute this mapping depends only linearly on |x|, as does the size
of the output. By computability of g, e and Φ, both the parameter dependency
of the computation time and the size of (Φ(k), e(k) + log g(k)) can be upper
bounded by a computable function of k. Thus all that remains to be shown is
that this mapping is indeed a language map. To see that it is, recall that Φ(k)

decides Ak in time g(k)|x|e(k). Because g(k)|x|e(k) ≤ |x|e(k)+log g(k)
holds, we
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find that (x, k) is in A precisely if Φ(k) accepts x in time |x|e(k)+log g(k)
, which is

the defining criterion of PPAcc stated in terms of the output of our mapping.
Hence, the mapping is indeed an fpt-reduction.

A similar proof was given by Flum and Grohe [18] for a different prob-
lem, p-Exp-DTM-Halt. However, their definition of fpt-reduction omitted
the first part of requirement 2 of Definition 17. Under our improved defini-
tion, their proof fails. The situation is made even more difficult because their
definition of a parameterized problem forbids a correction of their definition of
fpt-reduction. We interpret these difficulties as an indication of the correctness
of our definitions and the superiority of PPAcc over p-Exp-DTM-Halt.

We note that the statements of Lemma 1, Lemma 4 and Lemma 6 can be
extended even further. Other characterizations of FPT include one via advice to
oracle machines [1,9,14], one via circuits [13,14,18], and one via model-checking
problems for fragments of first-order logic [17]. As these notions will not be
explored in this thesis, we refrain from including their details.

Apart from VC, many more problems are known to be in FPT. Extensive
lists are available in the literature [14, Appendix A] and will not be included
here.

5 Fixed-Parameter Space Tractability

Complementary to the analysis of fixed-parameter tractability with respect to
running time is the analysis of fixed-parameter tractability with respect to mem-
ory usage. We extend our framework with classes for fixed-parameter space
complexity and investigate the connection between time motivated and space
motivated classes. A discussion of the practical aspects of fixed-parameter space
tractability is also included.

Modern day challenges in handling big data, such as when data is too big
to fit in active, fast memory, suggest an increasingly important role for the
study of space complexity. We feel that classically, space tractability is best
captured by the class, L, of problems decidable in logarithmic space [3]. In
the previous section, we introduced the class FPT to allow a more refined
analysis of time tractability than was possible through the study of P. A similar
program is possible for space tractability. Contrary to the development of FPT,
this program has a rather messy and scattered history. One of the earliest
mentions of parameterized space tractability was a remark in the fourth of the
founding papers of parameterized complexity theory by Downey and Fellows [1].
Unfortunately, the definition found there was that of slice-wise L, which we
consider impractical for the same reason we considered XP impractical. The
same authors were part of a group that later published a proper treatment of
parameterized space complexity [9]. However, we feel that their framework
of oracle machines taking advice does not properly reflect the very practical
significance of fixed-parameter space tractability. In the works of Flum and
Grohe [17,18], the class of fixed-parameter space tractable problems appears as
para-L. While their textbook [18] only makes very brief mention of the class in
an exercise, their foundational paper [17] contains some actual results, as well
as a definition of an associated reduction. Like in the case of fpt-reductions,
though, the definition that is put forward is defective.
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We will structure our analysis of parameterized space complexity the same
way we built up our understanding of parameterized time complexity in the
previous section. The class of parameterized problems of which the slices are in
L we will call slice-wise L, or XL. Again, different variants exist.

Definition 18. A parameterized problem A is in the class nonuniform XL if
there are functions g, e : Σ+ → N and a family of decision procedures, Φ =
{φk}k∈Σ+ such that for each k the slice Ak is decided by φk in space g(k) +
e(k) log |x|.

If A is in nonuniform XL by a decidable (without resource bounds) family
Φ, then it is in uniform XL. In this case, we use Φ to indicate the computable
mapping k 7→ φk.

If A is in uniform XL by some g, e,Φ such that g and e too are computable,
then it is in strongly uniform XL. When used without modifiers, XL means
strongly uniform XL.

The class of fixed-parameter space tractable problems, or FPST is a restric-
tion of XL.

Definition 19. When e is taken as a constant in the definitions of the vari-
ous versions of XL, we obtain the definitions for nonuniform FPST, uniform
FPST, and strongly uniform FPST.

When used without modifiers, FPST means strongly uniform FPST.

The connection between the space motivated classes XL and FPST, and
the time motivated classes XP and FPT reminds of the familiar [3] connection
between L and P.

Theorem 9. XL ⊆ XP and FPST ⊆ FPT.

Proof. We will only prove XL ⊆ XP. The proof of FPST ⊆ FPT is subsumed
and recovered by taking e constant.

A computation on (x, k) that terminates after having used at most g(k) +
e(k) log |x| space can have been in at most

O
(
2g(k)+e(k) log |x|

)
= O

(
2g(k)|x|e(k)

)
different configurations during the computation, where the hidden constant de-
pends on the computation procedure. Indeed, if not, the computation would end
up looping forever. Finding the terminating computation through these configu-
rations can be done in linear time [3], hence for every XL-algorithm, there exists
an XP algorithm. In other words, every problem in XL is in XP as desired.

Summarizing our knowledge of the strongly uniform parameterized complex-
ity classes we get the diagram in Figure 1. The diagram can be amalgamated
with similar lattices for the uniform and nonuniform classes.

Unfortunately, the space hierarchy theorem [3] is not strong enough to sep-
arate FPST from XL [9] in the same way we separated FPT from XP. We
remark that a further strengthening of our parameterized classes might facili-
tate more powerful diagonalization theorems. Concretely, we propose restricting
the strongly uniform classes to those where the problems are strongly uniform
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FPST
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XP

XL

Figure 1: The containment order of selected classes of parameterized complexity.

for some constructible g, e. Of course, in the setting of time complexity ‘con-
structible’ would be time constructible and in that of space complexity it would
be space constructible.

The classical and open question L
?
= P has an immediate equivalent in

the realm of parameterized complexity theory, namely whether nonuniform XL
equals nonuniform XP. Indeed, if we have L = P, then slices of a parameterized
problem are in L if and only if they are in P, and vice versa. It is possible to drop
the nonuniformity predicate, because given a P-algorithm we can effectively
construct a reduction running in logarithmic space to the circuit value problem
[3] and if L = P holds there exists an L-algorithm for the circuit value problem.
Indeed, the concatenation of the reduction and the algorithm for the circuit
value problem constitutes an effective transformation of arbitrary P-algorithms
to L-algorithms, approving the omission of the nonuniformity predicate. In
addition, looking closely at our transformation, we see that if L = P holds
it is possible to bound the value of the constant coefficient of a logarithmic
space complexity based on the exponent in the associated polynomial space

complexity, showing that FPST
?
= FPT too is equivalent to L

?
= P, as claimed

by Flum and Grohe [18].
Cai, Chen, Downey and Fellows state that equality of L and P is furthermore

equivalent to equality of XL and FPT [9]. However, if this claim holds we
would conclude that equality of L and P implies equality of FPT and XP, but
that is forbidden by Theorem 3. Thus they would have proven L 6= P. One
shortcoming we note in their proof is the assumption that FPT is closed under
xl-reductions, a type of reduction we will deal with shortly. Such a property of
FPT is yet to be proven.

Just as we have fpt-reductions and their relatives for the analysis of param-
eterized time complexity, we have reductions for the analysis of parameterized
space complexity too. Also, just as standard definitions of fpt-reduction had
a shortcoming, standard definitions of reductions for parameterized space com-
plexity [9, 15,17] have one.

Definition 20. A language map from one parameterized problem to another,
mapping (x, k) to (x′, k′), is an fpst-reduction if there are constants c, d, and
computable, non-decreasing functions g, h : N→ N, such that we have:

1. each character of (x′, k′) is uniformly computable in space g(k)+ c log |x|,
independent of all other characters;

2. |x′| ≤ |x|d and k′ ≤ h(k) hold.
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The shortcoming of standard definitions is once more in requirement 2 of the
above reduction, of which the first part, |x′| ≤ |x|d, is usually unjustly omitted.

Definition 20 generalizes to related reductions for all of our parameterized
space complexity classes and each of these classes is minimal for its correspond-
ing reduction, analogous to what we found in Lemma 6. The somewhat contrived
space usage limit is an established [3] way to make these reductions actual re-
ductions. With the more intuitive requirement of computability of (x′, k′) in its
entirety in space g(k) + c log |x|, there might not be enough space to actually
hold (x′, k′), and an equivalent of Theorem 5 would not be possible.

Theorem 10. The language maps that are fpst-reductions are reductions.

Proof. Like before, it suffices to prove only that the class of fpst-reductions is
closed under composition. Let f1 and f2 be fpst-reductions of signatures that
admit the composition f2 ◦ f1. We will subscript all auxiliary symbols from the
definition according to the map they belong to.

1. We alter the procedure for computing f2 so that each time a character of
(x′, k′) influences its computation, it is computed from (x, k) by means of
f1 and an index in (x′, k′). By the time bound used in Theorem 9, (x′, k′)
has a length in O(2g1(k)|x|c1) so the space needed to keep an index in
memory is no more than g1(k)+c1 log |x| plus a constant. Up to a constant
that is of no significance, this yields a procedure for computing f2 ◦ f1
in space 2g1(k) + 2c1 log |x| + g2(k

′) + c2 log |x′| ≤ 2g1(k) + 2c1 log |x| +
g2(h1(k)) + d1c2 log |x|. Hence each character of f2 ◦ f1 is computable in
space g(k) + c log |x| with c = 2c1 + d1c2 and g(k) = 2g1(k) + g2(h1(k)).

2. Identical to the corresponding part of the proof of Theorem 5.

A related characterization of tractability by kernelizations is possible in the
case of fixed-parameter space tractability too.

Definition 21. A language map from one parameterized problem to another,
mapping (x, k) to (x′, k′), is a space kernelization if there is a constant c, and a
computable, non-decreasing function h : N→ N such that we have:

1. each character of (x′, k′) is uniformly computable in space c log |x|, inde-
pendent of all other characters;

2. |x′| ≤ h(k) and k′ ≤ h(k) hold.

We call (x′, k′) the space kernel of (x, k). A parameterized problem A is space
kernelizable if there exists a space kernelization from A to itself.

A more practical version of the first requirement requires (x′, k′) to be com-
putable by a logarithmic space computation with a write-only means of present-
ing its output, such as a printer. In the setting of deterministic computation, we
can use addressable write-only variables for output. This enables the use of
pseudocode in our analysis: we disallow the use of a call stack, and recur-
sion with it, produce the output in designated write-only output variables, and
limit the space usage of all other variables. Although not presented in this way
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Algorithm 2 A space kernelization for VC. The input consists of a number
of vertices, n, and an adjacency matrix, (Xi,j)0≤i<j<n, for a simple graph of
n vertices. All variables except X ′, which is only written to, are restricted to
using O(log n) space. The degree of the ith vertex in accordance with adjacency
matrix X is written as deg(i : X). Conceptually, the algorithm is no different
from Algorithm 1.

Input: An undirected adjacency matrix n, (Xi,j)0≤i<j<n and a parameter k
Output: A space kernel (n ′,X ′), k ′ of (n,X), k
n ′ ← 0
k ′ ← k // without loss of generality, we assume k ≤ n
for all i in {0, 1, . . . , n− 1} do // first, determine n ′ and k ′

if deg(i : X) > k then
k ′ ← k ′ − 1

else if deg(i : X) > 0 then
n ′ ← n ′ + 1

end if
end for
if n ′ ≤ 2k ′k then // a cover of size k ′ might be possible
i ′ ← 0
j ′ ← 0
for all i in {0, 1, . . . , n− 1} do
if 0 < deg(i : X) < k then
for all j in {i+ 1, i+ 2, . . . , n− 1} do
if 0 < deg(j : X) < k then
X ′

i′,j ′ ← Xi,j // X ′ is a write-only variable
j ′ ← j ′ + 1

end if
end for
i ′ ← i ′ + 1

end if
end for

else // construct a trivial rejecting space kernel
n ′ ← 1
X ′

0,0 ← true
k ′ ← 0

end if
return (n ′,X ′), k ′
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before, space kernelizations are very real. An example is Algorithm 2, which
shows that VC is space kernelizable.

Of course, space kernelizability interests us because it is related to space
tractability.

Lemma 11. A parameterized problem is in FPST if and only if it is decidable
and space kernelizable.

Proof. The proof is the same as that of Lemma 4, except that instead of running
φ with a time bound of |x|c+1

, we run φ with a space bound of (c + 1) log |x|
and abort as soon as φ tries to use more space. If φ did not terminate, we
have (c+1) log |x| < g(k)+ c log |x| and consequently |x| < 2g(k). The mapping
k 7→ 2g(k) meets the requirements on h in definition 21 of being computable and
non-decreasing.

Note that the bound on the size of the kernel that this proof provides is
exponential in g, which is to be expected in light of the proof of Theorem 9.
However, the bound is not very tight, as can be seen from our kernelization for
VC. Both Algorithm 1 and Algorithm 2 provide a kernel of size O(k4). Since
the unparameterized version of VC is complete for NP under Karp reductions,
it is unlikely that the size of a polynomial kernel [6] corresponds to the running
time component g of an FPT-algorithm, as that would imply P = NP.

Like kernelizations in the case of time tractability, space kernelizations have
a practical interpretation. Consider a data provider connected to a communi-
cation channel [11], such as a computer storage device or a database server in a
network, that provides structured data, say in the form of graphs. If we ask it a
graph with the intention of checking whether it has a vertex cover of some size,
the applicability of space kernelization becomes apparent. Without using space
kernelization there is no guaranteed limit on the amount of data that needs to
be transfered as a result of the query. If, however, we notify the provider of our
intention and the provider implements space kernelization, it is sufficient for the
provider to yield a space kernel, thus obtaining a guarantee on the amount of
data to be transfered. The important observation is that this does not move
the computational burden in terms of usage of space resources onto the data
provider, because the space kernelization algorithm requires only a logarithmic
amount of space and the space kernel can be communicated directly, without
storing it on the side of the data provider. In general, this suggests that it
is beneficial for data providers to implement a rich query language, enabling
specification of intended data usage and its associated opportunities for em-
ploying space kernelization. This pattern is of course already in use in many
different forms. Computer storage devices are almost always addressable and
many database query languages have high expressive power. Thus we can think
of space kernelizations as a means of limiting data transfer and we have found
a practical application of the analysis of fixed-parameter space tractability.

In the search for parameterized problems that are in FPSTmost effort is put
in analyzing parameterized problems of which the unparameterized version is
hard in some classical sense. We have already seen thatVC is in FPST, which is
exciting because the unparameterized vertex cover problem is complete for NP
under Karp reductions, thus classically hard, especially with respect to space
usage, as all inclusions in L ⊆ P ⊆ NP are believed to be strict. Unfortunately,
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the notion of a parameterized problem being natural is not stable under loga-
rithmic space reductions, thus the inclusion of VC in FPST does not directly
give us the inclusion in FPST of all natural parameterized versions of problems
in NP. Additionally, Flum and Grohe [17] showed that completeness for FPST
is not a very interesting property since trivial parameterizations of problems in
L are already complete for FPST. Luckily, though, there are also nontrivial pa-
rameterizations that are natural, as we have with VC. In the limited research
on parameterized space complexity, already quite a few parameterized problems
of which the parameter is undoubtedly natural are classified [9, 15]. We will
focus here on stretching the notion of parameterizations being natural, adding
parameters until we can prove that a problem is in FPST.

The longest path problem is NP-complete and in FPT when given the
obvious parameterization consisting of the desired path length [6]. A more
generously parameterized version is the following.

Problem ((l, d)-Path). Longest path.

Instance: G, a directed graph.

Parameter: (l, d).

Criterion: G does not contain a path of length l and the maximum outdegree
in G is d.

First, note that it is possible to verify whether d is the maximum outdegree
in G in O(log |G|) space. Next, any path of length l in a graph G with maximum
outdegree d can be specified as a starting vertex plus a list of the l consecutive
outbound edges. This specification takes O(log |G|+ l log d) space. Conversely,
in O(log |G| + l log d) space it is possible to enumerate all potential paths of
length l in G. Verifying that no such potential path is present in the graph is
the inverse of testing if any such potential path is present in the graph, which
consists of the following checks.

1. All specified outbound edges are present in G.

2. The specification specifies an actual path, that is, it does not contain loops.

Given a specification of a path in O(l log d) space, the first check can be im-
plemented by a simple graph traversal in O(log |G|) additional space, but the
second is slightly more involved. A space efficient way of checking whether no
loops are specified is by sequentially generating all pairs of vertices along the
potential path and check whether no pair is made up of the same vertex twice.
This too can be implemented in O(log |G|) additional space, hence we kept our
space usage within O(log |G|+ l log d) and have found an FPST-algorithm for
(l, d)-Path.

In a similar fashion, we can find a parameterization of the connectivity prob-
lem, which is complete for NL [3], with which the connectivity problem ends
up in FPST.

Problem ((l, d)-STCon). Connectivity.

Instance: (G, s, t), where G is a directed graph containing vertices s and t.

Parameter: (l, d).
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Criterion: There is a path inG from s to t of length at most l and the maximum
outdegree in G is d.

Arguably a more natural parameterization would be one that excludes the
maximum outdegree, d. In that parameterization, the problem has been studied
by Elberfeld, Stockhusen and Tantau [15]. Their investigation focussed on the
amount of nondeterminism needed by a decision procedure as a function of the
parameter and was part of studying a parameterized analogue of NL. Our pa-
rameterized version, (l, d)-STCon, of the connectivity problem, however, needs
no nondeterminism and is in FPST. Like before, all paths of length at most l,
starting at s can be specified in O(l log d) space. Checking that a potential path
contains no loops is not necessary for this problem. The only checks that need
to be performed are whether the potential path is present in G and whether it
ends in t. As these are possible in space O(log |G|), it follows that (l, d)-STCon
is in FPST. Of course, this is comes as no surprise considering our result with
(l, d)-Path, but we do feel the indication that the path length and outdegree
play a substantial role in the space complexity of the connectivity problem is
noteworthy.

The final problem we will discuss here is the circuit value problem, which is
P-complete [3]. In light of the previous two problems, we think of a circuit as
a labeled directed acyclic graph, and our parameterization looks as follows.

Problem ((h, d)-CV). Circuit value.

Instance: (C, x), where C is a circuit and x a suitable input to C.

Parameter: (h, d).

Criterion: C outputs true on x, the height of C is h and the maximum fan-out
in C is d.

We claim that (h, d)-CV is in FPST. Since the height of the circuit equals
its maximum path length, it is possible to specify each path through the circuit
in O(h log d) space, much like we did with the previous two problems. Moreover,
we can execute a depth-first traversal of the circuit in O(h log d) space and
retain partial outputs for all gates along a path within that space bound. Being
able to keep track of partial outputs is crucial and hinges on the fact that the
operations at the gates of the circuit are associative. Associativity allows us to
merge the outputs of two inputs to a gate of arbitrary fan-in into a single partial
output. Thus, partial outputs are of constant size and we see that indeed we can
compute the output of a circuit C given input x in O(log |C|+h log d) space by
doing a depth-first traversal. Hence, (h, d)-CV is in FPST.

There is a difference between the role of the parameter d in the first two prob-
lems and in the last problem. In (l, d)-Path and (l, d)-STCon the parameter d
can be substituted for an alternative parameter d′, the maximum indegree in G.
However, replacing the parameter d in (h, d)-CV by a parameter d′ represent-
ing the maximum fan-in in C, we run into trouble. In that case, the number
of gates in the circuit can be upper bounded by a function of the parameters,
|C| ≤ (d′)h, which, as we will see in Section 7, makes the problem trivially a
member of FPST. The same complication does not occur when parameterizing
the way we did, by the maximum fan-out. This tells us that the space complex-
ity of instances of the circuit value problem relates in a significant way to their
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maximum fan-out. This reminds us of a result obtained by the probabilistic
method [26], in particular as a consequence of Lovśz local lemma, for the sat-
isfiability problem [21,27]. Namely, without clauses of a formula in conjunctive
normal form sharing variables, the formula is satisfiable. Of course, on such for-
mulas the satisfiability problem is easily decided. It appears that this is part of
a more general result regarding the linkage between the outdegree in a directed
acyclic graph and the complexity of problems defined on them.

6 Two-Part Codes

Descriptive complexity is involved in our study of parameterized complexity.
Using some original definitions this involvement opens the door for structural
parameterized complexity theory.

What makes a natural problem natural is best left a matter of aesthetics, but
for parameterized problems Cai, Chen, Downey and Fellows hint at a property
that would make a good requirement [9].

Definition 22. A parameterized problem A is smooth if, for the appropriate n
and all k1, k2 ∈ Nn, we have:

k1 ≤ k2 =⇒ Ak1 ⊆ Ak2 ,

where the first inequality is taken componentwise. A smooth parameterized
problem A is said to converge to the problem

A∞ =
⋃

k∈Σ+

Ak.

The three problems of the previous section, (l, d)-Path, (l, d)-STCon and
(h, d)-CV, as well as VC are all smooth. Informally, a parameterized prob-
lem, A, being smooth suggests that its slices approximate A∞ from below. For
(l, d)-STCon and (h, d)-CV this is certainly true. Both exhibit convergence to
their classical counterparts. For the other two parameterized problems, how-
ever, the convergence would be to Σ+. Cai, Chen, Downey and Fellows name
parameterized problems of the former sort standardized and observe that all pa-
rameterized problems can be turned into standardized ones. This can be done
by copying all or part of the parameter into the instance. For example, a stan-
dardized version of (l, d)-Path is the following.

Problem. Standardized longest path.

Instance: (G, l), where G is a directed graph.

Parameter: (k, d).

Criterion: G does not contain a path of length l, the maximum outdegree in
G is d and we have l ≤ k.

We remark that the alternative definition of parameterized problems by
Flum and Grohe [18] can be thought of as forcing all parameterized problems
to be standardized.
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The standardized problems that receive the most study are those for which
fixed-parameter tractability results are known, whereas classical tractability re-
sults for the problems they converge to are not. The parameter of such stan-
dardized problems represents a source of complexity. However, there may be
different fixed-parameter tractable standardized problems that converge to the
same problem that is potentially intractable in the classical sense. For the ver-
tex cover problem, Jansen and Bodlaender [24] have provided a parameterization
different from VC such that the parameterized problem is still kernelizable, thus
fixed-parameter tractable. Question about the possibility of essentially different
sources of complexity embodied by different fixed-parameter tractable standard-
ized problems converging to the same potentially classically intractable problem
are not prevalent in current fixed-parameter complexity research.

For all of our smooth parameterized problems there exists an upper bound
to the parameter value with which an instance first occurs. These upper bounds
only depend on the size of the instance. The existence of such upper bounds in
practical applications of parameterized complexity theory is no surprise, because
at some point the parameter dependent part of a complexity measure will start
to dominate the part dependent on the instance size. Indeed, if this were not
the case, the parameter had little to offer anyway.

The approximating characteristics of parameterized problems have been
studied more formally in the context of polynomial time approximation schemes
[14, 18]. Given an optimization problem, there is a strong connection between
it having an efficient polynomial time approximation scheme and it being fixed-
parameter tractable when parameterized by the potential value of optimal so-
lutions.

Here, we will pursue a development of the informal notion of approximation
by slices, independent of more classical approximation schemes. When provided
a smooth parameterized problem A and an x ∈ Σ+ that is eventually in a slice
of A, we interpret the parameter values with which x is in A as capturing some
upper bound on the resource complexity of x in A. Certainly, bigger parameter
values grant more of the resource at hand. This view motivates a complexity
driven description of the instance x by means of a two-part code. The first part
of the code specifies a slice and with it a complexity, the second part specifies
an index within that slice.

Definition 23. We denote the index of some x ∈ Σ+ in a problem B by
rank(x : B) = ‖{y | y ∈ B ∧ y ≤ x}‖, where the inequality is the inequality
induced by the standard encoding of N in Σ+. The parameter complexity of an
instance x with respect to a parameterized problem A is

pc(x : A) = min
{
2|k|+ |rank(x : Ak)|

∣∣ (x, k) ∈ A
}
.

We take the minimum of the empty set to be ∞.

The constant 2 in front of the specification of the slice is there to be able to
tell the two parts of the code apart. If a parameterized problem converges to
Σ+, the parameter complexity with respect to that problem is never ∞.

In light of the minimum description length principle [22], we can think of
the parameter complexity as a way of selecting the most representative slice.
Then, slices take the role of models and the parameter complexity is a well-
understood two-part code. There is also a more practical approach to param-
eter complexity. Since the parameter complexity is based upon an actual way
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of encoding instances, it relates to a compression method whenever the param-
eterized problem is decidable. For example, in the case of VC, it tells us that
we can encode a graph as the size of a vertex cover in the graph followed by
an encoding that is only possible for graphs with a vertex cover of the given
size. Immediately, we see that for smooth parameterized problems the slice se-
lected by the parameter complexity will always be the first slice containing x.
Based on this, we can boost the compression performance by not working with
the smooth parameterized problem, but a cleaned up variant.

Definition 24. The purification of a smooth parameterized problem A is the
problem

A℘ = {(x, k) | (x, k) ∈ A ∧ (x, k − 1) /∈ A}.

In the purification of a problem, instances only occur with their lowest pa-
rameter value. An important fact about purifications is that if a smooth param-
eterized problem is in one of our parameterized complexity classes, its purifica-
tion is too. This is a consequence of the fact that our parameterized complexity
classes are closed under finite applications of set-theoretic operations, including
complementation.

Now, for VC, the encoding of an instance x associated with pc(x : VC℘)
consists of the size of a minimum vertex cover followed by an encoding that is
only possible for graphs with a minimum vertex cover of the given size. In situ-
ations where vertex covers play a central role, this is a highly efficient encoding
scheme. Note, though, that this encoding scheme internalizes all computational
difficulty in the instances. Any smooth parameterized problem becomes com-
putationally trivial when defined for inputs following the encoding associated
with the problem. For example, given a graph encoded using the size of its min-
imum vertex cover, it is trivial to determine if it contains a vertex cover of any
given size.

There is a relationship between parameter complexity and Kolmogorov com-
plexity, the latter of which we will indicate by Ct,s, where t and s represent time
and space bounds respectively [26].

Lemma 12. For every decidable parameterized problem A there exists a con-
stant c and bounds t, s such that for all x we have

Ct,s(x) ≤ pc(x : A) + c.

Proof. We may assume pc(x : A) <∞. Let (k, i) be an encoding of x according
to its parameter complexity with respect to A. That is, |(k, i)| = pc(x : A) and
x is the ith element of Ak. By decidability of A, it is possible to generate all
members of Ak in order. In particular, we can find the ith element of Ak. As
functions of (k, i), the time and space needed for this reconstruction of x depend
solely on the time and space needed by a decision procedure for A.

The claim follows, with the additive constant c depending on the above
procedure, which in turn depends on A.

This relationship can be put to use in parameterized problems where we
have some upper bounding property of the parameter complexity. This upper
bounding property comes in the form of a slice-wise density characterisation
that relates to slices being sparse, but is a little more general.
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Definition 25. A parameterized problem A is informative if there exists a
function f : Σ+ → N such that for every parameter k ∈ Σ+ and constant c ∈ N
we have

‖(Ak ∩ Σ≤cf(k))‖ ≤ ‖Σ≤c(f(k)−1)‖. (1)

More specifically, we then say that A is f -informative.

Note that for an informative smooth parameterized problem A, the above
limit is not required to hold for A∞. Relating to the works of Sipser, Li and
Vitányi [26] we note that a parameterized problem is informative if its slices are
meager with a uniform rate of convergence. In any informative parameterized
problem, the initial segments of each slice get increasingly empty as they grow in
size. This should be thought of as instance sizes outgrowing parameter values.
From this perspective, informative parameterized problems make sense because
the additional resources provided by a parameter do not scale with the size of
the instances and are thus only expected to aid decision for a limited subset
of elements. In general, thinking about the distribution on the instance size
that a parameter value induces may provide insight, even when a parameterized
problem is not informative.

Since finite unions of meager problems are again meager, a parameterized
problem is informative if and only if its purification is informative. This is po-
tentially helpful in proving parameterized problems informative. Many param-
eterized problems are informative and a proof can often be given via a combi-
natorial argument. We will do so for VC.

Lemma 13. Under standard encodings of labeled graphs, VC, and thus VC℘

too, is informative.

Proof. For readability, we will not track all constants, additive or multiplicative,
through this proof.

Standard, bijective, encoding by means of an adjacency matrix of labeled
simple graphs with n vertices shows that there are 2O(n2) different such graphs.
We want to know how many of these graphs have a vertex cover of size k. An
upper bound on this number is provided by looking at an alternative encoding
of graphs with n vertices and a vertex cover of size k. These graphs can be
encoded by giving k vertices that make up a vertex cover followed by a reduced
adjacency matrix of size k × n. A specification of all the edges in this way is
possible by definition of a vertex cover. The k vertices of the vertex cover can
be specified within length k log n. Every graph of n vertices with a vertex cover
of size k thus admits a specification, although not uniquely, of length O(kn).
Proving that (1) holds for VC is now possible by giving a function f so that for
all constants c the number of graphs having a vertex cover of size k and a size
cf(k) specification under the standard encoding is less than 2c(f(k)−1). Ignoring
some constants, we may thus set n =

√
cf(k) =

√
c
√

f(k) and by the alternative

coding we get an upper bound to the number of graphs of 2k
√
c
√

f(n). Focussing
on the exponents and moving the factors depending on c to one side, this leaves
us to find a function f so that, regardless of c, we have

k
√

f(n) ≤
√
c(f(k)− 1).

The function f(k) = k2 + 2 behaves as desired and we may conclude that VC
is O(k2)-informative.
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Informative parameterized problems provide a bridge between classical com-
plexity theory and parameterized complexity theory. We have seen param-
eterized problems that are in FPST and FPT, but converging to classical
problems in NP. If every such parameterized problem is informative, the addi-
tional resources granted by the parameter are apparently essential for slice-wise
tractability and aid only a limited number of instances. In other words, there
are instances of the classical problem requiring arbitrary additional resources,
showing that the classical problem is indeed intractable. Of course, this line of
reasoning asks for all parameterized problems in some class to be informative,
which is a highly nontrivial question. The following general result is a conse-
quence of Lemma 12, but we point out that the lemma requires the parameter-
ized problem to be decidable, so the result is only usable for strongly uniform
parameterized complexity classes.

Theorem 14. For any decidable f -informative parameterized problem A con-
verging to Σ+, random strings make hard instances. Here, a hard instance
is an instance x that only occurs with parameter values k for which |x| is in
O(|k|f(k)).

Proof. Let x be a string that cannot be compressed by more than a given con-
stant. By Lemma 12, we get that this means that there is a constant r such
that |x| − r ≤ pc(x : A) holds. Suppose that x is in Ak. We prove that |x| is in
O(|k|f(k)) with the hidden constant depending on r. By equation 1, the sec-
ond part of the two-part code compresses strings of length cf(k) by at least c
characters. Since x cannot be compressed by more than r characters and the
first part of the two-part code has length 2|k|, the length of x is upper bounded
by (r + 2|k|)f(k).

By the incompressibility theorem [22,26] there are strings of any length that
cannot be compressed by more than a given constant. Thus there are infinitely
many hard instances for any informative parameterized problem.

It would be more attractive if we could define hardness of an instance x as
x only occurring with parameter values k for which |x| is in O(f(k)). This
strengthening of Theorem 14 may well be possible, at least for a particular
class of parameterized problems. A good candidate for such a class is the class
of smooth parameterized problems. On these problems we can push the enve-
lope of compression efficiency by looking at compressibility with respect to the
purification of problems. Nevertheless, the definition used does a fair job cap-
turing hardness. In algorithms, the dependency on the parameter is often of a
big enough magnitude for the additional factor |k| to be irrelevant.

The restriction on the convergence of A to Σ+ in Theorem 14 could be
loosened. Indeed, with minor modifications the same proof holds for parame-
terized problems converging to any exponentially dense problem. As this is not
the major value of the theorem, we valued clarity more than generality in this
matter.

The inspiration for Theorem 14 is a paper by Buhrman and Orponen [7].
In that paper similar statements are proven based on instance complexity [20,
28], which is upper bounded up to a constant by Kolmogorov complexity. A
major difference between their work and ours is that our construction makes
no mention of any particular resource or complexity class. Instead, we extract
our result from equation 1 which is fundamentally of a parameterized nature
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and held by parameterized problems without a fixed reference to any particular
complexity class.

7 Arbitrary Problems Made Tractable

When used as a tool to identify hardness inside problems, parameterized com-
plexity theory extends existing research. Much of the existing structural com-
plexity theory has a place in structural parameterized complexity theory and
new light is shed on old conjectures.

Given enough parametric leeway, every decidable problem becomes tractable
with respect to any resource. For example, if A is a decidable problem, then
the parameterized problem {(x, |x|) | x ∈ A} is in FPT and FPST since the
time and space needed to decide any instance can be expressed as functions of
the time and space needed by a decision procedure for A, which are functions
of the parameter exclusively. This yields the following theorem.

Theorem 15. Any decidable problem is in FPT and in FPST when parame-
terized as A so that there is a finite upper bound on max{|x| | x ∈ Ak} that is
computable as a function of k.

Proof. We will prove the statement for FPT. Proving the statement for FPST
goes in an entirely similar way.

Let φ be a decision procedure for the original problem that decides potential
members of length at most n in time t(n) and let n(k) be the computable finite
upper bound to max{|x| | x ∈ Ak}. The following algorithm is a decision
procedure for A.

Input: (x, k)
Output: true or false, consistent with (x, k) ∈ A
run φ on x for t(n(k)) steps
if φ has terminated then
return the output of φ

else
return false

end if

We claim that this is an FPT-algorithm, which is a nontrivial claim since t
and n need not be time constructible. The running time of the algorithm has
two constituents. The first is the time spent by computing t(n(k)), which is
expressible as a function of k. The second is the time spent by simulating φ
for t(n(k)) steps, which is also expressible as a function of k. Hence the entire
running time is expressible as a function of k. By Lemma 1 we thus get that A
is in FPT by setting g to the function obtained and taking c equal to zero.

It is precisely this theorem that made us consider parameterizing circuits
by their height and maximum fan-in unacceptable in Section 5. However, given
a constant height and maximum fan-out, without restricting the fan-in, there
are infinitely many circuits that realize these constant constraints. Thus it is
impossible to compute an upper bound to size of a circuit from its height and
maximum fan-out.
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Theorem 15 pertains to classes of strongly uniform fixed-parameter tractabil-
ity. A slight relaxation gives a similar result for classes of uniform fixed-
parameter tractability.

Theorem 16. Any decidable problem is in uniform FPT and in uniform
FPST when parameterized so that all slices of the parameterized problem are
finite.

Proof. Let A be the parameterized problem of which all slices are finite. Define
n(k) as max{|x| | x ∈ Ak}, which is finite for all values of k. The proof is now
identical to the proof of Theorem 15, although n, and consequently g too, is not
necessarily computable. The version of Lemma 1 about uniform FPT, where g
need not be computable, states precisely what one would expect.

In Theorem 15 and Theorem 16 all slices of the parameterized problem at
hand were finite. Complementary versions of the theorems are available when
all slices are cofinite, looking at upper bounds for max{|x| | x /∈ Ak}.

For some problems Theorem 16 is as general as it gets, as no infinite subsets
of these problems are in P or L. As a characterization of problems, this property
plays a role in classical structural complexity theory [4]. We will include a few
relevant definitions here.

Definition 26. An algorithm that outputs either true, false or ⊥ is a partial
decision procedure. A partial decision procedure is said to decide the elements
on which it outputs either true or false and to be inconclusive otherwise.

A partial decision procedure is consistent with a problem B if it correctly
decides the elements of B on which it is not inconclusive.

Definition 27. An infinite subset C of Σ+ is a complexity core for a problem B
if no partial decision procedure that is consistent with B and runs in polynomial
time decides infinitely many elements of C.

Definition 28. A problem B is P-immune if B is a complexity core for itself,
and P-bi-immune if, additionally, Σ+\B is a complexity core for B too.

We augment these definitions in a straightforward manner to not only cater
for time tractability, but for space tractability as well.

Definition 29. An infinite subset C of Σ+ is a space complexity core for a
problem B if no partial decision procedure that is consistent with B and runs
in logarithmic space decides infinitely many elements of C.

Definition 30. A problem B is L-immune if B is a space complexity core for
itself, and L-bi-immune if, additionally, Σ+\B is a space complexity core for B
too.

The decidable problems on which the FPT part of Theorem 16 is the best
we can do are precisely the P-immune problems and for the FPST part it
are precisely the L-immune problems. However, not all problems outside P
are P-immune and likewise for L. Thus there is room for a generalization of
Theorem 16 in the sense that we can make a statement about the parameterized
tractability of certain parameterized problems of which not all slices are finite.
For this, we will make use of resource bounded instance complexity [20,28].

30



Definition 31. Fix an encoding of algorithms in some formalism [3,22,26] and
denote the encodings of partial decision procedures consistent with a problem B
and running in time t and space s by Mt,s

B . The t, s-bounded instance complexity
of an instance x with respect to a problem B is

ict,s(x : B) = min
{
|φ|
∣∣ φ ∈ Mt,s

B ∧ φ(x) 6= ⊥
}
.

When t or s are omitted, they are taken to be ∞.

Our generalization will be about problems parameterized by resource bounded
instance complexity. For a problem B, the parameterized problem obtained by
parameterizing B by ict,s is the problem {(x, k) | x ∈ B ∧ ict,s(x : B) ≤ k}.
We note that this problem is smooth and converges to B.

Theorem 17. Let t be any polynomial and s the logarithm of any polynomial.
Any decidable problem is in nonuniform FPT and in nonuniform FPST when
parameterized by ict and ics respectively.

Proof. We will prove the statement for nonuniform FPST. Proving the state-
ment for nonuniform FPT goes in an entirely similar way.

Let B be a decidable problem and A the result of parameterizing B by ics.
We define the following sets, dependent on the parameter value k:

Bic≤k = {x | ics(x : B) ≤ k},
M≤k = Ms

B ∩Σ≤k.

With these definitions in place, we find that we have Ak = B∩Bic≤k. Moreover,

x ∈ Bic≤k ⇐⇒ ∃φ ∈M≤k : φ(x) 6= ⊥ (2)

holds. This motivates the following decision procedure forA.

Input: (x, k)
Output: true or false, consistent with (x, k) ∈ A
for all φ in M≤k do // while clearing all workspace after every iteration
if φ(x) 6= ⊥ then
return the output of φ

end if
end for
return false

For a fixed k, this procedure can be implemented by combining all implementa-
tions of the procedures in M≤k so that they are executed sequentially on empty
workspace. This is possible because M≤k is finite, but nonuniform because
in general it is impossible to know M≤k. The space requirement of this im-
plementation equals s plus an overhead depending on s, required to clear all
workspace. Notably, the space needed by our implementation is logarithmic
in |x|. In the case of nonuniform FPT, the running time, t, increases by a
multiplicative constant depending on ‖M≤k‖.

It remains to show that the output of our procedure is correct. Immediately,
by (2) we get that our procedure is correct on Bic≤k. As we have Ak = B∩Bic≤k,
the procedure should output false outside Bic≤k, which it does. Hence, for
every value of k the above describes a construction of a decision procedure for
Ak that runs in logarithmic space, proving that A is in FPST.
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For many interesting problems, parameterizing by resource bounded instance
complexity yields parameterized problems that have infinite slices. This shows
that Theorem 17 is not implied by Theorem 16. As an example of such problems,
we look at problems that showcase a certain degree of redundancy.

Definition 32. Let a problem B and a bijective language map, an isomorphism,
from Σ+ to Σ+ × Σ+ mapping B to B × Σ+ be given.

The problem is a p-cylinder if the isomorphism and its inverse are com-
putable in polynomial time.

The problem is an l-cylinder if the isomorphism and its inverse are com-
putable in logarithmic space.

We will denote the composition of an isomorphism f with projection on the
first component by f1. Thus, if f maps x to (y, z), then f1 maps x to y.

Cylinders are related to paddable problems [2, 4]. Conjectures by Berman
and Hartmanis [5] and by Hartmanis [23] state that all NP-complete problems
are paddable in polynomial time and logarithmic space respectively. Equiva-
lently, these conjectures hold that all NP-complete problems are p-cylinders
and l-cylinders. In support of these conjectures many natural NP-complete
problems have been proven to be p-cylinders and l-cylinders. This is relevant
because in such problems there are levels of resource bounded instance com-
plexity that are reached infinitely often. For a proof, consider an NP-complete
problem B that is a p-cylinder or an l-cylinder by an isomorphism f and fix
some y ∈ B. A partial decision procedure consistent with B that decides in-
finitely many elements is now possible: on input x, output true if we have
f1(x) = y and output ⊥ otherwise. Because f1 maps infinitely many elements
in B to y, this shows that there are infinitely many elements in B with a re-
source bounded instance complexity less than the length of the partial decision
procedure just described.

An alternate take on Theorem 17 that internalizes the above proof that
p-cylinders and l-cylinders, parameterized by resource bounded instance com-
plexity have infinite slices uses cylinders exclusively. For a problem B that is a
cylinder by an isomorphism f we can define the cylinder parameterization of B
by f .

Problem. Cylinder parameterization of B by f .

Instance: x.

Parameter: k.

Criterion: We have x ∈ B and f1(x) ≤ k.

This parameterization of B, too, is smooth and converges to B. Since not
all problems are cylinders, the following theorem is not as broadly applicable
as Theorem 17. On the other hand, the proven tractability is of the strongly
uniform kind, adding to the theorems attractiveness.

Theorem 18. If a decidable problem B is a p-cylinder (l-cylinder) by an iso-
morphism f , then the cylinder parameterization of B by f is in FPT (FPST).

Proof. We will prove that the cylinder parameterization of B by f is kerneliz-
able. As in the proof of Lemma 4, we may assume we have an element n outside
the cylinder parameterization at our disposal. By the restrictions on f , the fol-
lowing constitutes a kernelization.
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Input: (x, k)
Output: a kernel of size max{|n|, |(k, k)|}
if f1(x) ≤ k then
return (f1(x), k)

else
return n

end if

The theorem now follows from Lemma 4 (Lemma 11).

It is known [2] that p-cylinders exist outside P and we have seen that the
padding parameterization of such problems has slices that are infinite. It is also
known that problems outside P have complexity cores [4]. As the intersection
of a complexity core with any slice of a fixed-parameter tractable problem has
to be finite, we can try to construct a complexity core by selecting finitely many
elements from the slices of the purification of a padding parameterization. Let
B be a p-cylinder by an isomorphism f and outside P. Fixing an arbitrary
z ∈ Σ+, consider the subset

Cz = {f−1(y, z) | y ∈ B}

of B. We note that this subset is infinite, yet it contains at most one element of
each slice of the purification of the cylinder parameterization of B by f . In line
with the proof of Theorem 18 the properties of f ensure that C is complete under
Karp reductions for the same complexity classes as B. If the Berman–Hartmanis
conjecture [5] holds and B was NP-complete, this would mean that C is again a
p-cylinder and thus [4] not P-immune. In other words, C cannot be a complexity
core. Furthermore, as C is again a p-cylinder we can repeat the process to find
a strict subset of C which is again NP-complete.

This scheme raises some questions. One question it raises is whether some-
thing similar is possible with l-cylinders and space complexity cores. For a start,
an analogue of the Berman–Hartmanis conjecture for logarithmic space reduc-
tions is available [23]. Another question relates to the densities of the consec-
utive NP-complete problems. The density of B\C may be significally greater
than that of C, which would tell us something structural about what makes a
problem NP-complete.

In this context, we note that by Theorem 14 every decidable exponentially
dense informative parameterized problem has infinitely many different slices.
For problems that are tractable in a parameterized setting this is important, be-
cause if such problems have only finitely many different slices, they are tractable
in a classical setting as well. To wit, the classical problem would be deter-
mined by a finite union of tractable slices of the parameterized problem. This
observation can be thought of as a dual to Theorem 15 and Theorem 16. The
observation even has a nice corollary when combined with NP-complete prob-
lems parameterized by resource bounded instance complexity.

Corollary 19. Let B be an NP-complete problem. We have P = NP if and
only if for some polynomial t the parameterization of B by ict has only finitely
many different slices.

We have found several ways of associating tractable parameterized problems
with arbitrary problems. For problems in NP there is another one, which

33



is noteworthy because it has slices that are potentially infinite, contrary to the
parameterized problems of Theorem 15 and Theorem 16. This parameterization
goes via VC. Let B be in NP and fB a logarithmic space reduction from B
to VC, meaning that for all x we have x ∈ B if and only if fB(x) ∈ VC. The
parameterization via which B is in FPT and FPST that is based on VC is the
following.

Problem. VC parameterization of B.

Instance: x.

Parameter: k.

Criterion: (fB(x), k) ∈ VC.

Because fB can be calculated within the desired resource bounds, this pa-
rameterization defines a tractable parameterized problem. If fB is surjective,
the slices of this problem are infinite. Like VC, the VC parameterization of B is
smooth. Nevertheless, we are not inclined to call it natural for almost any prob-
lem in NP. In characterizing tractability, we note that although by Lemma 4
and Lemma 11 we know that the VC parameterization of a problem in NP is
kernelizable and space kernelizable, there is no immediate strong size bound on
the kernels. For VC, we found that kernels of a size polynomial in the parame-
ter value were possible. However, we can only straightforwardly propagate this
result to the VC parameterization of problems for which there also is a suitable
reduction back to VC. As a result, we find that the VC parameterizations of
NP-complete problems have polynomial kernels [6], but no such result for the
VC parameterizations of other problems in NP.

8 The Parameter Distribution of VC

We use VC to showcase how complexity can be captured in parameters. When
parameters capture complexity, the distribution of parameters doubles as a dis-
tribution of complexity. Facts about the distribution of parameters can be
proven both by using parameterized complexity theory and by using classical
probability theory.

The classical vertex cover problem is complete for NP under Karp reduc-
tions and logarithmic space reductions. On a graph (V,E) a brute force search
through all subsets of V can be performed in time O(2‖V ‖), with ‖V ‖ being
in O(

√
|(V,E)|) under standard encodings of labeled graphs. As a function of

just |(V,E)| this bound on the running time is about as good as it gets for the
vertex cover problem. Invoking the parameter in VC, we can give a more con-
cise bound. In Algorithm 1 we used a brute force search only on a subgraph,
the kernel, with at most 2k2 vertices, where the kernel was established in time
O(‖V ‖2). This yields a total running time in O(‖V ‖2 + 22k

2

). Note that this
bound on the running time is polynomial in |(V,E)| when we limit the input to
having values of k that are in O(

√
log |(V,E)|).

With the added detail that the parameter brings to expressions of running
time, there are search techniques other than brute force which become interest-
ing. Particularly relevant to VC is the bounded search tree technique [14, 18],
with which it is possible to decide elements of VC in time O(2k‖V ‖). Here,
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already for values of k in O(log |(V,E)|) the running time is polynomial in
|(V,E)|. We remark that under standard encodings of labeled graphs we have
that O(log |(V,E)|) equals O(log ‖V ‖) and a running time that is polynomial in
|(V,E)| is also polynomial in ‖V ‖.

Combining the kernelization of Algorithm 1 with the bounded search tree
technique, we acquire a decision procedure for VC that runs in time O(‖V ‖2 +
2k2k2). More generally, given a kernelization that, for some constant c, com-
putes a kernel ((V ′, E′), k′) of ((V,E), k) in time |(V,E)|c, combining the ker-
nelization with the bounded search tree technique provides a decision procedure
for VC that runs in time O(|(V,E)|c + 2k

′‖V ′‖). This sets a boundary for the
size of kernels for VC we might expect. If a logarithmically sized kernel is pos-
sible for VC, the above running time is polynomial in |(V,E)| and we would
get P = NP. The reason for this is that for members of VC℘ the value of the
parameter k is at most ‖V ‖, so O(log k) is included in O(log ‖V ‖). Of course,
as problems in NP are all solvable in exponential time a logarithmically sized
kernel for a parameterized version of any NP-complete problem, where the pa-
rameter value is bounded by a polynomial of the instance size, can be used to
prove P = NP. Conversely, logarithmically sized kernels are possible a fortiori
for such parameterized problems when we haveP = NP, as in that case constant
sized kernels would be possible by deciding the instances already in the kernel-
ization algorithm. Nevertheless, for VC the smallest kernels currently known
have a number of vertices that is linearly bounded by the parameter value [24].
A kernel with k′ ≤ k and ‖V ′‖ ≤ 2k′ is given by Flum and Grohe [18]. For
some constant c, the kernelization corresponding to that kernel provides a de-
cision procedure for VC that runs in time O(|(V,E)|c + 2kk). We note that a
kernel where the number of vertices is linearly bounded by the parameter value
should not be considered a kernel of linear size, as under standard encodings
the size of a graph is quadratic in the number of its vertices.

In Section 4 we introduced kernelizations as reductions of elements to their
intrinsically hard part. This suggests a critical change in hardness of instances
around the parameter value for which kernelizations becomes compressing. For
VC, a kernel with at most 2k vertices is smaller than the original instance

(V,E) whenever k < ‖V ‖
2 . If this kernel is optimal, graphs where a minimum

vertex covers over half of the vertices would somehow be significantly harder
than graphs with smaller minimum vertex covers. This prediction of a phase

transition around k = ‖V ‖
2 contrasts with the phase transition predicted, using

the same argument, but a different kernelization, by Downey and Fellows [14]
around k =

√
‖V ‖.

Both our observation that elements of VC having a parameter value in
O(|(V,E)|) can be decided in polynomial time and the search for critical pa-
rameter values representing hardness thresholds raise interest in the distribution
of parameter values among members of parameterized problems. Even if a pa-
rameter does not capture resource complexity very tightly or our understanding
of the distribution of parameter values is limited, we could still obtain useful
information on the resource usage in decision procedures.

We will investigate the distribution of parameter values among members of
VC. Using results from Section 6 we obtain a correlation between |(V,E)| and
parameter values.

Theorem 20. For every constant r, at least a fraction of 1−2−r of the members
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of VC is so that |(V,E)| is in O(|k|k2) with a hidden constant depending linearly
on r and on nothing else.

Proof. By a simple counting argument known as the incompressibility theorem,
we know that for any fixed length n and constant r at most 2n−r strings of
length n can be compressed by at least r bits. As a result, at least a fraction of
1− 2−r of all strings cannot be compressed by more than r bits. Together with
Lemma 13 and Theorem 14 this proves the theorem.

Because |(V,E)| is in O(‖V ‖2) this theorem shows that for the vast majority
of elements of VC there is an almost linear correspondence between ‖V ‖ and k.
We will proceed by showing that for random graphs where the possible edges
have an independent, identical probability of occurring, so called Erdős–Rényi
random graphs, the expected size of a minimum vertex cover is indeed linear in
the number of vertices.

Because the size of a minimum vertex cover cannot be greater than the
number of vertices, it suffices to prove that the expected size of a minimum
vertex cover is at least linear in the number of vertices. To do so, we analyze
a function that produces a lower bound to the size of a minimum vertex cover.
This function is based on a relationship between the minimum vertex cover
problem and the maximum matching problem that is folklore. As an algorithm,
this function takes on the form of Algorithm 3. By removing both vertices, but

Algorithm 3 A randomized algorithm providing a lower bound to the size of
any vertex cover of a given graph.

Input: A graph (V,E)
Output: A lower bound on the size of a vertex cover of (V,E)
M ← 0
while ‖E‖ > 0 do
select an edge (v1, v2) ∈ E uniformly at random
remove v1 and v2 from (V,E)
M ←M + 1 // at least one of v1, v2 is present in any vertex cover

end while
return M

accounting for only one in each iteration, the algorithm settles a lower bound
that is within a factor 2 of the actual size of a minimum vertex cover. While
slightly more optimal results may be obtained by using a heuristic instead of
randomness in the selection of edges, the approach of Algorithm 3 turns out
to be easier to analyze. The algorithm has a recursive flavor which can be
expressed in the equality

M((V,E)) =

{
M((V,E)−) + 1 if ‖E‖ 6= 0

0 otherwise
, (3)

where (V,E)− is obtained from (V,E) by removing the endpoints of a randomly
selected edge. If (V,E) is a random graph following a certain distribution, we
are interested in the distribution of the associated random graph (V,E)−. Let
G(n, p) denote the probability distribution of random graphs with n vertices
where every potential edge has an independent probability p of occurring. This
is the Erdős–Rényi model.
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Lemma 21. If a random graph (V,E) has the distribution G(n, p), then, for
some p−, the associated random graph (V,E)− has the distribution G(n−2, p−).

Proof. First, observe that (V,E)− is obtained by removing two vertices from
(V,E), thus if (V,E) had n vertices, (V,E)− indeed has n − 2. Second, as the
edge is selected uniformly at random, all potential edges have the same a priori
probability p/

(
n
2

)
of getting selected. Consequently, the posterior probability

p− of any potential edge occurring in (V,E)− is independent of and equal to
that of all other potential edges in (V,E)−.

The probability p− equals the probability of an edge occurring anywhere
other than where we selected an edge, provided the selection of an edge was
possible. In other words, we can calculate p− as the fraction of

(
n
2

)
− 1 that is

expected to contain an edge:

p− =
E
(
‖E‖ − 1

∣∣ ‖E‖ 6= 0
)(

n
2

)
− 1

=
E
(
‖E‖

)
/P
(
‖E‖ 6= 0

)
− 1(

n
2

)
− 1

=
p
(
n
2

)
/P
(
‖E‖ 6= 0

)
− 1(

n
2

)
− 1

. (4)

Note that p− is defined whenever we have n > 2 and P
(
‖E‖ 6= 0

)
6= 0. In case

n equals 2, the random graph (V,E)− does not have any vertices, so the value
of p− is irrelevant to us. Additionally, note that p− is 0 only if p is 0.

Based on (3) we find an expression for the expected value of M for a random
graph (V,E),

E
(
M((V,E))

)
= P

(
‖E‖ 6= 0

) (
1 + E

(
M((V,E)−) | ‖E‖ 6= 0

))
.

In Lemma 21 we saw that if, for some number n and probability p, a random
graph (V,E) has the distribution G(n, p), the random graph (V,E)− has the
distribution G(n − 2, p−). This shows that the conditioning on ‖E‖ 6= 0 does
not affect the distribution of (V,E)−.

Definition 33. To aid readability we will use the following notation, where
(V,E) is a random graph having the distribution G(n, p).

En(p) = E
(
M((V,E))

)
Pn(p) = P

(
‖E‖ 6= 0

)
With these definitions we thus have

En(p) = Pn(p)
(
1 + En−2(p

−)
)
,

and moreover, by (4), we have

En(p) = Pn(p)

(
1 + En−2

(
p
(
n
2

)
/Pn(p)− 1(
n
2

)
− 1

))
.

Dropping the dependency on p for a moment, we read off the equation En = Pn+
PnPn−2+PnPn−2Pn−4+ . . ., where we have P0 = P1 = 0. This already suggests
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an efficient way to compute the expected value by an iterative computation, at
iteration i computing the value of Pn−2i. For this we use the equation

Pn(p) = 1− (1− p)
(n
2

)
.

An algorithm computing En(p) in this way is Algorithm 4.

Algorithm 4 An algorithm computing the expected value of the output of
Algorithm 3 when the input to that algorithm is distributed according to the
Erdős–Rényi model.

Input: Erdős–Rényi random graph parameters (n, p)
Output: En(p)
if n < 2 or p = 0 then
return 0

end if
P ← 1
E ← 0
loop

P ← P
(
1− (1− p)

(n
2

))
E ← E + P
if n < 4 then
return E

end if
p← p

(n
2

)
/Pn(p)−1(n
2

)
−1

n← n− 2
end loop

Throughout the iterations of the algorithm, the value of p changes mono-
tonically non-increasing. We will construct a lower bound to En(p) by letting
p decrease a bit faster. To this end, consider q = 1− p and q− = 1− p−. From
(4) we find

q− = 1−
(1− q)

(
n
2

)
/Pn(1− q)− 1(
n
2

)
− 1

=

(
n
2

)(
n
2

)
− 1

(
1− 1− q

Pn(1− q)

)
=

(
n
2

)(
n
2

)
− 1

q − q
(n
2

)
1− q

(n
2

)
= q

(
n
2

)(
n
2

)
− 1

1− q
(n
2

)
−1

1− q
(n
2

) , (5)

which means that q− can be obtained by multiplying q with some factor. Ob-
serve that the

(
1 − q

(n
2

)
−1
)
/
(
1 − q

(n
2

))
factor in (5) is always less than 1 and

serves as a means to make sure q− is less than 1, thus a proper probability.
By dropping the factor and terminating Algorithm 4 whenever q becomes 1 or
higher, we get an approximation, Ên(p), from below of En(p). The advantage
of dropping the factor is that we can now readily calculate the value of q, and
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thus of p too, at iteration i. It is

q

i−1∏
j=0

(
n−2j

2

)(
n−2j

2

)
− 1

= q

i−1∏
j=0

(n− 2j − 1)(n− 2j)

(n− 2j − 2)(n− 2j + 1)

= q
(n− 2i+ 1) n

(n− 2i)(n+ 1)
.

A convenient formula, from which we can get the iteration i at which the value
of q equals 1. That is, at iteration

n+ 1

2

(1− q)n

(1− q)n+ 1
=

n+ 1

2

pn

pn+ 1
(6)

the value of q will become 1 and we should stop our approximation. This
motivates the formula

Ên(p) =

dn+1
2

pn
pn+1 e−1∑
i=1

i∏
j=0

Pn−2j

(
1− (1− p)

(n− 2j + 1) n

(n− 2j)(n+ 1)

)

=

dn+1
2

pn
pn+1 e−1∑
i=1

i∏
j=0

1−
(
(1− p)

(n− 2j + 1) n

(n− 2j)(n+ 1)

)(n−2j
2

)
. (7)

With this formula, we can prove a desirable property of En(p).

Lemma 22. Given a probability p, for all sufficiently large n we have

En(p) ≥
n

4
.

Proof. Consider choosing n large enough so that we have p ≥ 1
n+2 . For such n

we have En(p) ≥ Ên

(
1

n+2

)
. From (7) we get

Ên

(
1

n+ 2

)
=

dn
4 e−1∑
i=1

i∏
j=0

1−
(

(n− 2j + 1)n

(n− 2j)(n+ 2)

)(n−2j
2

)
.

The quadratic growth of the exponent makes the last term converge to 0 as
n−2j gets larger, which means the factors of the product all converge to 1 in n.
Therefore, the entire expression converges to n

4 in n. As Figure 2 illustrates, this
convergence is in fact fast. Additionally the figure shows that with a slightly
larger value of n, namely so that we have p ≥ 1

n , for p ≤
1
12 the value of En(p)

is in fact over n
4 . Of course, for a fixed n, increasing p will only increase the

value of En(p). Thus with n ≥ max{12, 1
p} we have En(p) ≥ n

4 , which proves
the lemma.

Given the reasonably fast convergence of factors in (7) to 1 for a fixed p, we
find that a convenient estimate of En(p) is already given by (6).

In relation to the vertex cover problem, Lemma 22 leads to the following
theorem.
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Figure 2: The behavior of En(p) and Ên(p) as a function of n when p is the
reciprocal of n.

Theorem 23. The expected size of a minimum vertex cover of an Erdős–Rényi
(n, p) random graph is at least n

4 , provided np ≥ 1 and n ≥ 12.

Proof. We constructed Algorithm 3 as a lower bound to the size of a minimum
vertex cover. Accordingly, En(p) is a lower bound to the expected size of a
minimum vertex cover of a random graph that has the distribution G(n, p). By
Lemma 22, under the provisions of this theorem the value of En(p) is in turn
lower bounded by n

4 .

Relating this theorem to Theorem 20, we might rephrase this one as saying
that for VC we expect ‖V ‖ to be in O(k). Both theorems state that typical
sets [11] of graphs are hard in the sense that there is a function upper bounding
the number of vertices of a graph in a typical set from the size of its minimal
vertex cover. The difference between the theorems is that the typical sets in
Theorem 20 refer to the universal distribution [26], whereas the typical sets in
Theorem 23 refer to the Erdős–Rényi distribution.

Closing this section, we present two corollaries of Theorem 23 that demon-
strate why we consider graphs (V,E) where the size k of a minimum vertex
cover is so that ‖V ‖ is in O(k) hard.

Corollary 24. Under the Erdős–Rényi distribution of graphs, the expected run-
ning time of Algorithm 1 is exponential in the length of the graph on its input.

Corollary 25. Under the Erdős–Rényi distribution of graphs, the expected size
of a kernel produced by Algorithm 2 is polynomial in the length of the graph on
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its input. The corresponding FPST-algorithm thus has an expected space usage
that is polynomial in the length of the graph on its input.

9 Autoreducibility and XP

Information about complexity can often be found as properties of reductions.
We will survey some approaches to classical autoreducibility questions in the
context of fpt-reductions.

The study of autoreducibility in complexity theory was motivated by an in-
terest in the internal manifestation of complexity in complete problems [8]. We
have seen that parameters can be used to represent some of the complexity
of instances. Therefore, we expect connections between the study of autore-
ducibility and that of parameterized complexity. Our focus will be on a flavor
of autoreducibility suited to the setting of fpt-reductions.

Definition 34. A parameterized problem A is autoreducible if there is an fpt-
reduction f from A to itself such that, for all (x, k), we have f(x, k) 6= (x, k).

Historically, autoreducibility found its way to complexity theory via recur-
sion theory. Complexity theory can, at least in part, be thought of as a resource
bounded counterpart of recursion theory. With our focus set on reductions, the
most natural approach to recursion theory for us to turn to is one via category
theory [10, 12]. In the category theory formalization of recursion theory, com-
putable functions take center stage. This is possible because computable func-
tions satisfy the necessary constraints to maps in the setting of category theory,
namely:

• the identity map is a computable function;

• computable functions are composable;

• the composition of computable functions is associative.

Note that the same constraints are satisfied by fpt-reductions: the first two
because we demanded them of reductions to begin with, the last one because
composition of fpt-reductions is identical to that of computable functions in
general. Thus parameterized problems and fpt-reductions together have the
structure of a category.

Central to recursion theory is the existence of a universal computable func-
tion. In the context of this section, the most convenient definition representing
universality of the appropriate kind is by means of a Turing problem, which is
a slight variation on what is known as a Turing object in the category theory
formalization of recursion theory.

Definition 35. A problem A is a Turing problem for a problem B with respect
to a class of maps C if there is a map u in C(A×A,B) such that for every map
f in C(A,B) there exists an af ∈ A so that, for all x, we have f(x) = u(af , x).

We call u universal and af the index of f for u.

Apart from universality, this definition embodies the main ingredient of
proofs by diagonalization in their most abstract form as shown by Lawvere [25].
In our setting, his fixed point theorem takes on the following form.

41



A A×A B B
p

d = u ◦ p

g ◦ d

u g

Figure 3: A commutative diagram depicting the relations between the maps
involved in the proof of Theorem 26.

Theorem 26. If A is a Turing problem for a problem B with respect to a class
of maps C, then for every g in C(B,B) there exists an x for which we have
x = g(x).

Proof. Let p be the map x 7→ (x, x) and d, for diagonal, the composition of p
and u as depicted in Figure 3. Because A is a Turing problem, the map g ◦ d
has an index ag◦d for u. Using that index we have

d(ag◦d) = u(p(ag◦d)) = u(ag◦d, ag◦d) = g(d(ag◦d)),

showing that setting x = d(ag◦d) gives us x = g(x) as desired.

As a result of the existence of a Turing problem with respect to the class
of computable functions, every computable function has a fixed point. Unfor-
tunately, this fixed point is often the outcome of a divergent computation. In
other words this fixed point is potentially the point ‘undefined’. However, in
recursion theory computable functions have infinitely many different indices for
any universal map and an index always can be chosen different from ‘unde-
fined’. This fact can be used to prove that for a Turing problem A, every
map f from A to itself has a fixed point in the sense that, for all x, y, we have
u(f(x), y) = u(x, y), which is known as Kleene’s second recursion theorem [12].

Moving from recursion theory to parameterized complexity theory, from
computable functions to fpt-reductions, we get the following corollary of Theo-
rem 26.

Corollary 27. If there is a Turing problem for a parameterized problem B with
respect to fpt-reductions, then B is not autoreducible.

In fact, the proof of Theorem 26 provides us a construction of a fixed point of
an arbitrary fpt-reduction from B to itself. The price paid for the constructible
nature of the corollary is that its converse is not necessarily true. Thus, we set
out to find a Turing problem with respect to fpt-reductions.

In the proof of Theorem 3 we used a diagonalization technique to separate
XP from FPT. AsXP itself thus withstands a certain degree of diagonalization,
we consider XP a good candidate for harbouring a Turing problem. Looking
at PPAcc, which is complete for XP under fpt-reductions, we find that P and
FPT are, in a way, embedded. By definition of XP, the slices of PPAcc are
all in P. Remarkably, though, the converse is also true: every problem in P is a
slice in PPAcc. Indeed, if φ is a decision procedure for some problem in P and it
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decides any x in time |x|e, then that problem forms the slice PPAcc(φ,e). Being
closed under ordinary set-theoretic operations, the slices of PPAcc thus form
the field of sets known as P. Moreover, the decidable families of slices of PPAcc
with an upper bound to the value of the second component of the parameter
are precisely the parameterized problems in FPT. This nicely reiterates the
separation of XP from FPT by a diagonalization argument.

Despite these ways in which PPAcc represents P and FPT, it is not a
Turing problem. This can be shown similarly to the proof of Lemma 8, which
stated that PPAcc is complete for XP under fpt-reductions.

Lemma 28. PPAcc is autoreducible.

Proof. Let PPAcc be in XP by some g, e,Φ, which exist by Lemma 2. As seen
in the proof of Lemma 8, the mapping (x, k) 7→ (x, (Φ(k), e(k) + log g(k))) is
an fpt-reduction from PPAcc to itself. By stretching the second component of
the parameter, our mapping remains an fpt-reduction and we can force it to not
have a fixed point:

(x, k) 7→ (x, (Φ(k), k + e(k) + log g(k))).

This mapping is an fpt-reduction from PPAcc to itself such that no (x, k) is
mapped to itself, thus PPAcc is autoreducible.

Combined with Corollary 27 we get that PPAcc admits no Turing problem,
and in particular we get the following.

Corollary 29. PPAcc is not a Turing problem for itself with respect to fpt-
reductions.

Still, there are noteworthy structural properties of PPAcc that might en-
able some form of diagonalization. For instance, PPAcc exhibits smooth-like
behavior, as for all φ, e1, e2 we have

e1 ≤ e2 =⇒ PPAcc(φ,e1) ⊆ PPAcc(φ,e2).

This is reflected in the observation that some form of index, in the sense of the
definition of Turing problem, exists for functions f that run in polynomial time.
To wit, for all φ and sufficiently large e we have

(x, (φ ◦ f, e)) ∈ PPAcc ⇐⇒ (f(x), (φ, e)) ∈ PPAcc.

Inspired by these observations we consider different notions of autoreducibil-
ity. The fpt-reduction of Lemma 28 only acts on the parameter, so we consider
fixed instances, that is, if an fpt-reduction maps (x, k) to (x′, k′), then (x, k) is
a fixed instance if x = x′. Not all fpt-reductions from PPAcc to itself have fixed
instances. To see that this is the case, let m map 1 to 1 and all other inputs x to
x−1, and consider the mapping (x, (φ, e)) 7→ (x+1, (φ◦m, e+1)). This mapping
is an fpt-reduction without fixed instances. To be precise, we might need to
add a time counter to φ to make sure the mapping does not allow it more com-
putation time. All fpt-reductions in the subclass of fpt-reductions consisting of
those reductions that do not alter the parameter value do have fixed instances.
One just needs to consider a slice with only one member, which necessarily has
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to be mapped to itself. Reductions in this subclass are in a way uniform autore-
ductions on all problems in P at once, and we feel that this is so restrictive that
our result is of little value. The proper balance might be struck by the following
weakening of the notion of autoreducibility.

Definition 36. A parameterized problem A is weakly autoreducible if there is an
fpt-reduction f from A to itself such that, for all (x, k), we have f(x, k) = (x′, k′)
with x′ 6= x and k′ ≤ k.

In this definition, the order on the parameter might be specific for a param-
eterized problem. For PPAcc, natural candidates are the componentwise or-
der and, considering the smooth-like property of PPAcc, the order determined
solely by the first component, φ. We do not know whether PPAcc is weakly
autoreducible.

To conclude this section, we remark that the results of this section spawn
interest in the isomorphism problem for XP-complete problems. If all parame-
terized problems that are complete for XP under fpt-reductions are isomorphic
by some fpt-reduction, all are autoreducible and none would be a Turing prob-
lem for any other.

10 Open Problems

We point out some possible lines of future research in structural parameterized
complexity and state some conjectures. We make no statement about the diffi-
culty of proving any of our conjectures.

Continuing where we finished the previous section, we state a conjecture in
the same fashion as the Berman–Hartmanis conjecture. The observations on
the relation of PPAcc to FPT in Section 9 and the structure of the proof of
its completeness for XP with respect to fpt-reductions, Lemma 8, lead us to
consider the following.

Conjecture 1. Between every two problems that are complete for XP under
fpt-reductions there exists a bijective fpt-reduction of which the inverse is an
fpt-reduction too. In other words, all XP-complete problems are fpt-isomorphic.

If true, this conjecture pulls any potential treatment of complexity in terms
of category theory via Turing problems into complexity classes more intractable
than XP. We remark that if we would allow so much intractability that we no
longer require any resource bounds for computations, we end up in a setting
that is more akin to recursion theory than to complexity theory. Indeed, the
Curry–Howard–Lambek correspondence already suggests a study of recursion
theory and proof theory by means of Turing problems. In this regard, we propose
a parameterized treatment of recursion theory and proof theory. For some
consequence relation, `, such as provability according to some proof system,
the set of derivable formulae and their derivations, say {(α, k) | k ` α}, is
in fact a parameterized problem. Moreover, PPAcc is precisely a problem of
this kind and we see that different consequence relations may lead to problems
that are complete for different complexity classes. Although PPAcc is not a
Turing problem, there might very well be another problem of this kind that
is a Turing problem. This parameterized road to recursion theory is hardly
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possible under the alternative definition of parameterized problems by Flum
and Grohe [18], as for almost every interesting consequence relation, derivations
are not computable from consequents. Such is the case also in PPAcc, where
the parameter cannot be considered a property of the instance.

In light of the computability of parameter values from instances, we note a
track of parameterized complexity that appears to have not been explored yet,
and which is related to one proposed by Flum and Grohe. Flum and Grohe [18]
mention that fixed-parameter tractability might be too liberal as a definition of
tractability and that there might be a need for what they call bounded fixed-
parameter tractability. This variant of fixed-parameter tractability places limits
on the growth rate of the parameter dependent g in the definition of FPT.
Orthogonal to adding constraints to FPT this way is the possibility of limiting
the resources available for the computation of parameter values from instance
values. In this thesis we have not placed any such limits and in fact allowed pa-
rameter values that were not at all computable from instance values. Especially
when it comes to strengthening Theorem 14, additional constraints of this sort
might prove useful.

In Section 5 the question L
?
= P was related to inclusions of classes of pa-

rameterized complexity. We found that every inclusion relation possible between
FPT and XL except FPT ⊂ XL is strong enough to prove L 6= P and from the

inclusion FPT ⊂ XL it is not possible to answer the question L
?
= P. Thus, the

following is weaker than to conjecture L = P, which is not commonly believed
to hold.

Conjecture 2. FPT ⊆ XL.

Apart from the admission of equality, this is the strongest proposition pos-
sible about the inclusion relation between FPT and XP that does not settle
L

?
= P. The conjecture would simplify Figure 1 to FPST ⊆ FPT ⊆ XL ⊆ XP,

with the remark that the inclusion of FPT in XP is known to be strict.

Looking more on the level of problems than on that of complexity classes,
parameterized complexity theory might be used to distinguish sources of com-
plexity. We wonder if it is possible for a problem to have multiple sources of
complexity, each not strong enough to make the problem intractable by itself.
Parameterized complexity offers a way to formalize this. We propose to say that
an NP-complete problem has two sources of complexity if there are smooth pa-
rameterized problems A and B in FPT, both converging to the NP-complete
problem, such that, for all x, neither is pc(x : A) in O(pc(x : B)), nor is
pc(x : B) in O(pc(x : A)). We do not know whether an NP-complete problem
exists that has two sources of complexity according to this definition.

The behavior of the parameter complexity might serve as an even more gen-
eral indicator of complexity. Although Lemma 4 and Lemma 11 show that being
kernelizable and being fixed-parameter tractable is the same, we know of no the-
orems relating fixed-parameter tractability to the size of kernels. Presumably,
the notion of complexity that arises by considering the sizes of kernels is a differ-
ent notion of complexity than plain fixed-parameter complexity. Unfortunately,
a size-bound on kernels need not indicate anything interesting. If a parameter-
ized problem A has kernels of exponential size, then A′ = {(x, 2k) | (x, k) ∈ A}
has kernels of polynomial size. Intuitively though, the parameterized problems
are very similar and the two parameterizations do not capture different sources
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of complexity. Nevertheless, the difference between A and A′ is reflected in the
parameter complexity with respect to each of the problems, motivating the fol-
lowing.

Conjecture 3. Let A and B be parameterized problems. If, as a function of
instances x, we have that pc(x : A) is in O(pc(x : B)) and B has kernels of
polynomial size, then A has kernels of polynomial size.

We note that by Lemma 12, considerations such as the above conjecture in-
dicate the applicability of methods from descriptive complexity theory to compu-
tational complexity theory. As somewhat of a converse, parameterized complex-
ity theory may be of use in areas related to descriptive complexity theory. This
form of reciprocity can be found when comparing the probabilistic method [26],
the incompressibility method [26] and Theorem 14. All three are incarnations
of the same argument.

The probabilistic method and the incompressibility method have been used
in proving Lovász local lemma for the satisfiability problem [21,27]. We expect
Lovász local lemma to have a manifestation in parameterized complexity as well.
For the satisfiability problem, Lovász local lemma holds that there is a critical
value of the ratio between the number of clauses and the number of variables
in a formula in conjunctive normal form separating hard instances from easy
instances. For the study of such phase transitions, parameterized complexity
might be well suited [14]. This suggests a parameterization of the satisfiability
problem where the parameter is related to the aforementioned ratio. However
Lovász local lemma will then be recovered for this parameterized problem, the
result will likely be applicable to a more general class of parameterized problems.
As mentioned at the end of Section 5, a statement on the importance of the
outdegree for the complexity of problems defined on directed acyclic graphs is
a result we should look out for.

11 Conclusion

We have interpreted parameters in parameterized problems as a representation
of the complexity of instances of those problems. This allowed us to look at the
distribution of complexity inside problems. In particular, we found that ran-
domness of specification and computational hardness are related for instances
of parameterized problems that are, as we called it, informative. The effective-
ness of our method was demonstrated by comparing our result applied to the
vertex cover problem with a similar result obtained in a more traditional fashion.

At various points, structural properties of problems in NP were shown to
be related to structural properties of associated problems in FPT. Also, by ex-
tending fixed-parameter tractability from the time domain to the space domain,

we could relate the question L
?
= P to the relation between the parameterized

complexity classes FPT and XL. This indicates that structural parameterized
complexity may be a viable framework for proving separation results, not only
for parameterized complexity classes.
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