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Abstract

Modern approaches to human learning suggest that the process of learning is most ef-
fective when the environment is active and social. Digital techniques of serious games
and online social networks are therefore becoming increasingly popular in today’s edu-
cational system. This thesis contributes to the proposition that combining elements of
social networks and games can positively influence the learning behaviour of players. To
underpin this statement, we propose a computational model that combines features of
social network learning and game-based learning. The focus is on cooperative games, in
which players are collaborating in a grand coalition and are trying to achieve a common
goal. Our learning paradigm combines insights from game theory, graph theory, and
social choice theory, resulting in an interdisciplinary framework for analysing learning
behaviour. We show that enriching cooperative games with social networks can improve
learning towards the common goal, under specific conditions on the network structure
and existing expertise in the coalition. Based on the findings from our formal model,
we provide a list of recommendations on how to include network structures in serious
games.
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Tell me and I will forget.

Show me and I may remember.

Involve me and I will understand.

— Confucius (551-478 BC) —
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Introduction

With the rise of the internet and digital games, communication and education have
changed rapidly. In today’s digital world, with high connectivity and demand-driven
learning, a merely passive attitude of students seems outdated. There is a need for
change. Two digital techniques that are aimed for constructing an active and social
learning environment are serious games and online social networks. Both techniques
seem to be auspicious methods that stimulate learning, but are thus far mainly treated
as two distinct approaches.

This thesis contributes to the proposition that combining elements of social networks
and games can positively influence the learning effect. We propose a computational
model to study cooperative games, in which players are collaborating in a grand coalition
and learning towards a common goal. Before performing an action in the game, players
have the possibility to communicate with each other in a social network. The paradigm
combines insights from game theory, graph theory and social choice theory, resulting in
an interdisciplinary approach to model learning behaviour in games with social networks.

Background

Modern approaches to learning and teaching suggest that the process of learning is most
effective when the learning environment is active, social, experiential, problem-based,
and provides the learner with immediate feedback (Connolly et al., 2012). A digital
technique that is becoming more and more popular as educational tool for creating an
active learning environment, is the use of serious games. These games can be distin-
guished from regular games by their purpose: whereas regular games are developed
primarily for entertainment, the main aims of serious games are learning and behaviour
change (van Staalduinen and de Freitas, 2011). Along with the growth of serious games,
another digital technique that is exploited more frequently in educational systems, is
the use of online social networks. This collective learning method allows students to
communicate in an online network about the course material, stimulating collaboration
and active participation (Li et al., 2011).

Several attempts have been made to computationally model the learning behaviour
of artificial agents, both in games, as well as in social networks. The theory of learning
in games has extensively been studied by Fudenberg and Levine (1998), who provide
a systematic overview of different normative paradigms for learning towards an equi-
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librium. They focus on repeated games, in which a strategic game is played repeatedly
during several rounds, thereby enabling the players to learn from the history of the play
and improve their strategic behaviour.

A well-known model that prescribes how players can learn in stochastic games, in
which strategic behaviour is probabilistic rather than deterministic, is the model of
reinforcement learning. Originating from the research area of Artificial Intelligence, this
model provides a computational approach to the process of learning, whereby an agent
interacts with a complex and uncertain environment (Russell and Norvig, 2003; Sutton
and Barto, 2004). By trying several moves, the agent can receive rewards and accordingly
adjust his behaviour. This line of research has proved useful not only for the study of
artificial agents, but also for the understanding of human learning behaviour. Empirical
studies show that the algorithms of reinforcement learning have strong correlations with
neural activity in the human and animal brain (Erev and Roth, 2014; Niv, 2009).

Early theory on information transmission and opinion formation in social networks,
includes work of Acemoglu and Ozdaglar (2010), Bala and Goyal (1998), DeGroot (1974),
Easly and Kleinberg (2010), Golub and Jackson (2010) and Jackson (2008). All those
computational approaches describe how agents can acquire new knowledge and adjust
their opinions by learning from the knowledge and beliefs of neighbours in a network.
It was DeGroot (1974) who first showed that agents in a network can learn towards a
consensus of beliefs, under specific conditions on the network structure. Independently
of DeGroot’s model for social networks, Lehrer and Wagner (1981) provided a framework
for stochastic opinion aggregation in large societies. The latter makes use of the same
linear algebra as the former, and could therefore also be interpreted as a model for
learning and opinion dynamics in social networks.

In addition to the attempts made to model learning in games and learning in social
networks independently, a few studies exist on a combination of the two. Mühlenbernd
and Franke (2012) use two basic models of learning in games, to investigate how the
formation of conventions depends on the social structure of a population. Skyrms and
Pemantle (2000) study a dynamic social network model, in which the network structure
emerges as a consequence of the agents’ learning behaviour in pairwise signaling games.
In both studies, it is assumed that agents in the network play a local game with their
neighbours and are rather competitive than cooperative. Yet as far as we know, compu-
tational approaches to the process of collective learning in a social network, where agents
act as one grand coalition in a cooperative game, are novel in this line of research.

Research Question and Motivation

Learning by interacting in a social network as well as learning by playing serious games,
seem to promise new techniques for our educational system. So far both techniques are
mainly applied separately, even though theoretical and empirical studies on motivation
and learning suggest that combining the two might significantly enhance the learning
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effect (De-Marcos et al., 2014; Donmus, 2010; Li et al., 2013).1

In this thesis, we merge the existing computational approaches to learning in games
and learning in social networks into one framework. The model that we propose allows
us to make conjectures about social phenomena in which the behaviour of the entire
group is more important than the behaviour of the individuals alone. We study the
question how interaction in a social network between players of a cooperative game can
possibly influence their learning behaviour. We thereby assume players to act as one
grand coalition, trying to maximize the group utility. Since coalitions might be very
big (for example, one could think of an entire country as one grand coalition) it is not
always possible, neither efficient, for individuals inside the coalition to communicate with
everyone else. We therefore adopt a social network structure, in which individuals only
communicate directly with their neighbours, but still want to cooperate with the entire
social network as a whole.

As an example, consider a serious game that is meant for employees of an airline
company to learn how to act upon unsafe situations (we will discuss this game in more
detail in Chapter 6). In unsafe situations it is very important that individuals cooperate
and do not oppose one another, in order to recover the safety. In such situations, it
can be highly beneficial when individuals communicate and agree on how to divide the
tasks, before they start acting. Eventually it only matters how the employees together
act as a team in order to solve the problem. Each individual will benefit most from a
well-coordinated plan, and is thus willing to cooperate.

All the results achieved in this thesis are of a theoretical kind, and are designed to
propose a framework of collective learning in games with social networks. The thesis aims
at starting a new interdisciplinary subject of research, that builds a bridge between the
existing computational approaches to learning in games and learning in social networks.
Additionally, with our theoretical framework we aim at making a step forward towards
a better understanding of the use of serious games and online social networks in societal
organizations.

Overview

The structure of this thesis is depicted in Figure 1. We start with providing an overview
of the basic notions and assumptions from game theory, graph theory, and social choice
theory in Chapter 1. Thereafter we introduce our learning paradigm bottom-upwards:
starting from individual learning in strategic games, we extend the procedure to collec-
tive decision-making in cooperative games, and eventually enrich the collective learning
process with social network communication in our Game-Network Learning Model. We
utilize our findings for providing recommendations on the development of serious games.

More specifically, in Chapter 2 we describe various computational approaches to
learning in repeated games. We will end this chapter with a mathematical model for

1See Appendix A for an overview of theoretical and empirical research on the learning effects of
serious games and social networks.
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learning in games with mixed strategies, in which players can learn to adjust their
probabilistic strategies by means of a reinforcement learning method.

In Chapter 3 we extend the reinforcement model for individual learning, to an itera-
tive voting model for collective learning. Instead of reinforcing for individual strategies,
a grand coalition of players can reinforce for joint strategies. In order to decide on the
societal probability distribution over the set of joint strategies, a probabilistic aggrega-
tion method is introduced, which satisfies several axiomatic properties for the study of
amalgamation procedures.

In Chapter 4 we describe a graph-theoretical model for learning in social networks.
Relying on results from DeGroot (1974), we show that for certain network structures,
agents will always reach a consensus of beliefs. In Chapter 5 we enrich the collective
reinforcement model of Chapter 3 with the social network model of Chapter 4. We
demonstrate how the resulting paradigm can be used to analyse the learning behaviour
of players in a cooperative game, who can communicate via a social network about
which joint strategy to adopt. We show how enriching the game with a social network
can positively influence the learning effect, under specific conditions on the network
structure and the presence of experts.

Finally, in Chapter 6 we discuss how our results can be utilized to make conjectures
about learning via the digital techniques of serious games and online social networks.
Based on the findings from our mathematical approach we provide a list of recommenda-
tions on how to include network structures in serious games. We end this thesis with a
conclusion and discussion of our results, and we suggest a variety of directions for future
research.

Figure 1: Structure of the Thesis via the Game-Network Learning Model
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Chapter 1

Preliminaries

The main topic of this thesis will be collective learning in cooperative games, in which
players have the possibility to communicate with neighbours (co-players) in a social
network. By way of communication, players can collect and adjust their opinions on how
to play the game together. We rely on game theory to describe the game setting; graph
theory to describe the social network communication; and social choice theory to describe
the aggregation process of players’ preferences. The basic notions and assumptions of
these three areas of research will be discussed in this chapter.

1.1 Game Theory

Game theory is the mathematical study of strategic decision-making and interaction
among (groups of) individuals. Launched by von Neumann and Morgenstern (1944)
and followed by contributions of Nash (1950), it now has been widely recognized as an
important study with applications in many fields: economics, political science, sociology,
and psychology, as well as logic, linguistics, computer science, and biology. The purpose
of the theory is to model the interactions between players, to define different types of
possible outcomes of such interactions, to predict the outcome of a game under certain
assumptions about information and behaviour, and to develop strategies of players which
lead to an optimal outcome of the game.

One of the key principles of game theory is that the actions of players in a game
depend not only on how they choose among several options, but also on the choices
of other players they are interacting with. That is, what others do has an impact on
each decision-maker and hence on the proceedings of the game. This game-theoretic
principle arises in several social situations. In board games, for example in a play of
chess, deciding which move to make while taking into account the previous moves of
the opponent, can be modelled using game theory. But applications outside games also
exist, examples include: determining the price of a new product when other competitive
companies have similar new products; deciding how to bid in an auction; choosing to
adopt an aggressive or a passive stance in international relations.

Game theory describes such situations of decision-making in the form of strategic
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games, in which each decision-maker (player i) has an individual strategy that determines
which action he will choose from the action set Ai that is available to him (Lasaulce and
Tembine, 2011).

Definition 1.1.1 (Strategy). Let N = {1, . . . , n} be the set of players and let Ai be the
set of actions available to player i. Then a strategy si of player i is an element of this
set, i.e., si := ai ∈ Ai. The set of all possible strategies available to player i is denoted
by Si.

The n-tuple representing all strategies of all players is called a joint strategy or strategy
profile and is given by s = (s1, . . . , sn) with si ∈ Si for all i ∈ N and s ∈ S. Here the set
of joint strategies S is given by the Cartesian product S = S1 × . . . × Sn. Note that a
strategy is not always deterministic but can also be a probability distribution over the
set of all strategies Si. This is called a mixed strategy.

Definition 1.1.2. (Mixed Strategy) A mixed strategy mi of player i ∈ N is a proba-
bility distribution over his set of strategies Si, i.e.,

mi : Si → [0, 1] such that
∑
si∈Si

mi(si) = 1.

The set of mixed strategies of player i is denoted by Mi := ∆Si. A mixed strategy profile
is a tuple m = (m1, ...,mn) with mi ∈ Mi for all i ∈ N and m ∈ M . Here the set of
joint mixed strategies M is given by the Cartesian product M = M1 × . . . ×Mn. The
probability that a certain strategy profile s ∈ S will be played in the game, can then
be calculated by m(s) := m1(s1) · . . . · mn(sn). The case in which si := ai ∈ Ai is a
special case of a mixed strategy where the probability that player i chooses action ai as
his strategy si equals 1. This special case is called a pure strategy.

The payoff or utility that a player receives when playing a certain strategy depends
on the strategies of other players as well, and is determined by the utility function.

Definition 1.1.3 (Utility Function). Let N = {1, . . . , n} be the set of players and
let Si be the set of possible strategies available to player i. Then a utility function
ui : S1× . . .×Sn → R is a real-valued function that maps a joint strategy s = (s1, . . . , sn)
to a real number for each player i ∈ N .

Given a finite set of players, strategies, and utility functions, we can now formally define
a strategic form game, sometimes also called a normal form game.

Definition 1.1.4 (Strategic Form Game). A finite strategic or normal form game
is a tuple G = (N,S, u) where:

• N = {1, . . . , n} is the finite set of players;

• S = S1 × . . . × Sn is the Cartesian product of finite sets Si of strategies available
to player i;

• u = (u1, . . . , un) is the payoff (utility) tuple of utility functions ui : S → R.

6
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Often a strategy profile can be written as (si, s−i), which is an abbreviated notation for
(s1, . . . , sn). In this abbreviated notation s−i denotes all strategies of players different
than i, i.e., (s1, . . . , si−1, si+1, . . . , sn). We can also abbreviate the Cartesian product of
sets of strategies different than Si, i.e., S1 × . . . × Si−1 × Si+1 × . . . × Sn, to S−i. For
games with more than one round, the strategy of a player at each round depends on
the history of the play, i.e., on the strategy profiles in the previous rounds. This will be
discussed in more detail in Chapter 2.

In case of mixed strategies, we speak of a mixed extension G∆ of the game G =
(N,S, u) by putting G∆ = (N,M,Eu) where each function Eui provides the expected
utility given the probability for a mixed strategy profile:

Eui(m) =
∑
s∈S

m(s) · ui(s).

In general, strategic form games are studied under the following assumptions (Osborne
and Rubinstein, 1994):

• Players perform the actions simultaneously, i.e., at the same time.1 Subsequently,
each player receives a payoff from the resulting strategy profile.

• Each player is rational, which means that he will choose the strategy that will yield
a maximal payoff for himself.

The type of rationality that is usually assumed in strategic form games is individual
rationality, meaning that the aim of each player is to maximize his individual payoff. In
this thesis however, we will focus on cooperative games, for which we assume players to
be group-rational. This means that players will try to maximize the total payoff of the
group, i.e., the social welfare, instead of their individual payoff.

In order to illustrate the notions of a strategic game, the example of the Prisoner’s
Dilemma is often provided.

Example 1.1.1 (Prisoner’s Dilemma). In the story of the Prisoner’s Dilemma two
criminals, 1 and 2, committed a crime together and are caught by the police. They are
interrogated simultaneously and each criminal has two possible choices: he can choose to
cooperate (C) with his criminal partner, which means ‘not betray on his partner’, or he
can choose to defect (D), which means ‘betray on his partner’. The punishment for the
crime is 3 years, but can be lowered when a criminal decides to tell the police about the
involvement of his partner in the crime. The punishments are determined as follows:

• If 1 and 2 both betray the other (defect), each of them serves 2 years in prison.

• If 1 betrays 2 (defect) but 2 remains silent (cooperate), 1 will be set free and 2 will
serve 3 years in prison, and vice versa.

1Games in which players perform their actions not simultaneously but subsequently, are called exten-
sive form games, see Leyton-Brown and Shoham (2008) for more information.
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• If 1 and 2 both remain silent (cooperate), both of them will only serve 1 year in
prison.

The possible strategies and negative payoffs (punishments) of both players can be reflected
in the following matrix form, where 1 is the row player, 2 is the column player and payoffs
are written as (u1(s), u2(s)).

C D

C -1,-1 -3,0

D 0,-3 -2,-2

Assuming both players in the example of the Prisoner’s Dilemma are individually ratio-
nal, player 1 will reason as follows: “suppose my opponent 2 plays strategy C it is best for
me to play D since this will yield the highest payoff, i.e., u1(D,C) = 0 > −1 = u1(C,C).
If player 2 plays strategy D it is still best for me to play strategy D since this will also
yield a higher payoff, i.e., u1(D,D) = −2 > −3 = u1(C,D). Hence, no matter what
strategy the opponent player will adopt, it is always best for me to defect (D).” Player
2 reasons exactly the same, therefore also playing D. This joint strategy profile (D,D)
is called the Nash equilibrium of the game.

Definition 1.1.5 (Nash Equilibrium). A strategy profile s∗ = (s∗i , s
∗
−i) is a Nash equi-

librium (NE) if for all i ∈ N, s′i ∈ Si we have: ui(s
∗
i , s
∗
−i) ≥ ui(s′i, s∗−i).

Intuitively, a strategy profile is a Nash equilibrium if no player can achieve a higher
payoff by unilaterally switching to another strategy, which means switching when no
other player is switching at the same time. When the inequality in the above definition
is strict, we speak of a strict Nash equilibrium. As one can see in the example of the
Prisoner’s Dilemma, a NE does not always yield the highest possible outcome of the
game. If both players would switch to strategy C they would both receive a strictly
higher payoff. Thus there exists a strategy profile in the game such that the players
would be better off playing according to it. The Nash equilibrium is in this example
therefore not Pareto optimal.

Definition 1.1.6 (Pareto optimum). A joint strategy s = (s1, . . . , sn) is called a Pareto
optimum if there exists no other strategy profile s′ 6= s for which ui(s

′) ≥ ui(s) for all
i ∈ N and there exists at least one i ∈ N for which it holds that ui(s

′) > ui(s).

In words, a strategy profile is Pareto optimal (also called Pareto efficient) if there exists
no other strategy profile that is at least as good for all players and strictly better for
some player. Further, given a strategy profile s we call the sum of all individual utilities∑

i∈N ui(s) the social welfare of s. A strategy profile with the highest social welfare is
called a social optimum.

Definition 1.1.7 (Social Optimum). A joint strategy s∗ is a social optimum if its
social welfare is maximal, i.e., s∗ = arg maxs∈S

∑
i∈N ui(s).

8
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Note that social optimality implies Pareto optimality, but not vice versa. For example,
in the Prisoner’s Dilemma both strategy profiles (C,D) and (D,C) are Pareto optimal
but the social welfare is not maximal. The social optimum is reached in strategy profile
(C,C), which is also Pareto optimal.

1.2 Graph Theory

Graphs are the mathematical representations of network structures, that specify rela-
tionships among a collection of items, locations, or persons. Graph theory finds many
applications in various fields outside mathematics. For example in biology, graph theory
is often used to reason about the spread of epidemic diseases. In informatics, graph
structures can be very useful to study the transfer of data. In social sciences, graphs can
be used to represent relations between (groups) of people and communication between
them. Formally, a graph can be defined as follows.

Definition 1.2.1 (Graph). A graph G = (N,E) consists of a set of nodes N and a set
of edges E where, for any two nodes i, j ∈ N , e = (i, j) ∈ E represents the relationship
between i and j.

The problem that is often said to have been the birth of graph theory, is the Königsberg
Bridge Problem (West, 2001).

Example 1.2.1 (Königsberg Bridge Problem). This problem tells the story of the city
of Königsberg which was located on the Pregel river in Prussia. The city was divided
over four regions that were separated by the river and that were linked by seven bridges,
as shown in the figure below.

Figure 1.1: Königsberg Bridge Problem

The citizens wondered if it would be possible to leave their houses, cross every bridge
exactly once, and by doing that return home. Reducing the problem to a simple graph
structure, makes it easier to argue that the desired journey does not exist. In the figure
below, the nodes represent the land mass of the city and the edges represent the bridges
over water.
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Figure 1.2: Königsberg Bridge Problem Graph

Each time a citizen enters and leaves a land mass, he needs two bridges ending in that
land mass. Hence the existence of the required journey demands that each land mass
is connected to an even number of bridges. The above graph shows that this necessary
condition is not satisfied in Königsberg.

In the above example nodes are landmasses and edges are bridges. In this thesis, it is
assumed that nodes are (human) agents and edges are social relationships or interactions
between them. Such a graph is interpreted as a social network (Easly and Kleinberg,
2010). We say that two nodes are neighbours if they are connected by an edge. The set
of neighbours of agent i is denoted by Ni and the degree di(G) = |Ni| of a node i refers
to the number of neighbours that the agent has in the graph G. Relationships in the
graph are often represented in a so called n×n adjacency matrix A that consists only of
0’s and 1’s, i.e., if agents i and j are neighbours than the entry aij = 1, and 0 otherwise.
For example, the following graph consisting of three agents,

1 2 3

can be represented by the following adjacency matrix:

A =

0 1 0
1 0 1
0 1 0


If the social interactions express asymmetric relationships, for example if agent i can
send a message to j but not vice versa, we refer to the network as a directed graph. In
such a graph the edges are represented as arrows. When relationships are symmetric,
we talk about an undirected graph. A weighted graph is a graph in which the edges are
given a number that represents the weight of the connection. If a graph is weighted and
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directed, the weights do not have to be symmetric. Weights can be represented in an
n × n-matrix W in which the entry wij represents the weight that agent i gives to the
relationship with agent j (Jackson, 2008).

Definition 1.2.2 (Weighted Directed Graph). Let W be an n× n-matrix in which the
entry wij represents the weight that agent i assigns to agent j. A weighted directed
graph is a graph G = (N,EW ) in which each edge (i, j) ∈ EW is directed (i.e., edges
are arrows so that (i, j) 6= (j, i)), and weighted according to W .

If there exists a directed edge from node i to node j it the graph G = (N,EW ), then
wij > 0, otherwise wij = 0. If all agents in the network are directly related to all other
agents in the network, i.e., if each node is connected with an edge to each other node in
the network, we say that the graph is complete.

Definition 1.2.3 (Complete). Let G = (N,E) be a graph, then we say G is complete
if for each pair of nodes i, j ∈ N there exists an edge e = (i, j) ∈ E.

Besides the relationship between two neighbours, we can also talk about the indirect
connection between any pair of nodes in terms of a path.

Definition 1.2.4 (Path). A path p in a graph between nodes i and j is a sequence of
nodes i1, i2, . . . , iK−1, iK such that (ik, ik+1) ∈ E for each k ∈ {1, . . . ,K−1}, with i1 = i
and iK = j, and such that each node in the sequence i1, i2, . . . , iK−1, iK is distinct.

In words, a path is a sequence of nodes with the property that each consecutive pair in
the sequence is connected by an edge and each node occurs only once in the sequence.
If some of the nodes in the sequence are crossed more than once, we talk about a walk
instead of a path (Jackson, 2008). We say that a graph is connected if for every pair of
nodes in the graph there exists a path between them.

Definition 1.2.5 (Connected). Let G = (N,E) be a graph, then we say G is connected
if for each pair of nodes i, j ∈ N there exists a path p from i to j.

If there is a directed path in G from any node in the graph to any other node in the
graph, the graph is strongly connected. If a graph is not connected, it breaks apart into
a set of components, i.e., groups of nodes that are connected when considered as a graph
in isolation and no two groups overlap (Easly and Kleinberg, 2010).

A path that contains at least three different edges and begins and ends in the same
node (but no other nodes are crossed more than once) is called a cycle. If the graph is
directed, cycles can already be created with only two nodes i and j and two directed
edges (i, j) and (j, i). We call cycles with directed edges directed cycles. The cycle length
is equal to the number of edges contained in the cycle.

1.3 Social Choice Theory

Social choice theory is the area of research that provides a formal analysis of methods for
collective decision-making. When a group of agents needs to make a decision together,
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they face the question of how to combine the individual opinions into a single collective
opinion, that correctly represents the aggregated opinions of the group. This elementary
question is of great importance in political and social sciences, since it studies whether
and how a society can be treated as a single rational decision-maker (Brandt et al., 2012).
For example, when choosing a new president during elections, citizens in a country need
to agree on the voting procedure and voting rule that describe a method of how all votes
for different candidates are gathered and translated into one winning candidate. Also,
when dividing a bundle of resources among a group of agents, all individuals need to
agree on a fair division procedure that takes into account the individuals’ preferences
on the bundle of goods they would like to receive.

Preference aggregation is one of the typical problems studied in social choice theory
that addresses the question of how individual preferences can be aggregated into one
collective preference.

Example 1.3.1 (Preference Aggregation). (Brandt et al., 2012) Suppose four Dutch-
men, three Germans and two Frenchmen need to decide together which drink will be
served for lunch. They can choose between milk, beer and wine; only one of these drinks
will be served to all. The Dutchmen prefer milk over wine over beer; the Germans pre-
fer beer over wine over milk; the Frenchmen prefer wine over beer over milk. These
preference relations can be represented as follows:

4 : M �W � B
3 : B �W �M
2 : W � B �M

Here M stands for milk, W stands for wine, and B stands for beer. The question now is
how these preferences can be aggregated appropriately such that one drink can be chosen
to be served for lunch. Their exist several possible voting rules for this procedure. For
example, the plurality rule counts how often each candidate is ranked at the top and
selects the candidate that is ranked at the top most often as the winning candidate.
Hence according to the plurality rule the winner is milk, which is ranked at the top four
times.

The majority rule on the other hand, suggests that an alternative x should be ranked
by society over y if and only if majority ranks x over y. Thus according this rule wine
and beer are both preferred over milk (5:4) and wine is preferred over beer (6:3). An
alternative that beats every other alternative in pairwise majority contests, is called a
Condorcet winner. In this example the Condorcet winner would thus be wine.

Yet another method of selecting a winning candidate is Single Transferable Vote
(STV). This method uses an elimination procedure, which in every round eliminates the
candidate that is ranked at the top by the lowest number of agents. According to this
rule, wine would be eliminated in the first round (since it is ranked at the top by only 2
individuals); milk would be eliminated in the second round (which is then ranked at the
top by only 4 individuals). Hence the remaining winning candidate according to STV is
beer.

12
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The above example shows that the aggregation of individual preferences is not so straight-
forward as one might think: different aggregation methods that all seem to be reasonable
procedures, result in different outcomes. Defining a method for preference aggregation
can be done by social welfare functions (SWF) and social choice functions (SCF). These
functions are mappings that aggregate all individual preferences and output one collec-
tive preference: a SWF function returns a preference order, a SCF returns a choice set of
one or several winning candidates. Formally, let N = {1, . . . , n} be a group of agents who
aggregate their individual preferences concerning a set of alternatives X = {1, . . . , k}.

Definition 1.3.1 (Preference Order). A preference order over a set of alternatives
X is a binary relation “�” that is:

(i) transitive (i.e., ∀x, y, z ∈ X : x � y ∧ y � z ⇒ x � z); and

(ii) complete (i.e., ∀x, y ∈ X : x � y ∨ y � x).

The asymmetric part of the relation is given by the strict preference relation “�” defined
by x � y ⇔ x � y ∧ ¬(y � x). The symmetric part of the relation is given by the
indifference relation “∼” defined by x ∼ y ⇔ x � y ∧ y � x.

We write R(X) to denote the set of all possible preference orders on X. An individual
preference order of some agent i is denoted by�i and is an element ofR(X). A preference
profile R is an n-tuple of individual preference orders and is an element of the set of
preference profiles R(X)n, i.e., R = (�1, . . . ,�n) ∈ R(X)n.

Definition 1.3.2 (Social Choice Function). A social choice function is a mapping
F : R(X)n → 2X\{∅}, that takes a profile of preferences and returns one or several
winning alternatives.

Most of the social choice functions can be considered as voting rules, although some of
them are not used for voting procedures because they are not discriminatory enough
(see Brandt et al., 2012).

Definition 1.3.3 (Social Welfare Function). A social welfare function is a mapping
F : R(X)n → R(X), that takes a profile of preferences and returns a single (societal)
preference order.

It was le Marquis de Condorcet (le Marquis de Condorcet, M., 1785, cited in Endriss,
2011) who first noted that the concept of aggregating social preferences in order to output
one singe preference order can sometimes be problematic. For example, suppose three
agents 1, 2, 3 ∈ N have the following individual preferences for alternatives x, y, z ∈ X:

Agent 1: x � y � z
Agent 2: y � z � x
Agent 3: z � x � y

If these agents would obey the majority rule, society would rank x � y (agents 1 and
3), y � z (agents 1 and 2), but also z � x (agents 2 and 3). This yields a cycle:
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x � y � z � x, which is not a well-formed preference order, and is known as an instance
of the Condorcet paradox. Hence for these inputs of individual preference orders, it is
not possible to yield one single social preference order. Therefore, the majority rule does
not constitute a well-defined social welfare function.

To summarize, in this chapter we introduced the basic notions and assumptions of game
theory, graph theory and social choice theory. A solid base in the three respective areas
is needed for the reader to comprehend the computational models that will be discussed
in this thesis. In Chapter 2, we will mostly make use of the notions from game theory;
Chapter 3 strongly relies on the basic notions from social choice theory; Chapter 4 makes
use of some important definitions from graph theory. Finally, in Chapter 5 the notions
and assumptions from the three respective research areas are combined, resulting in a
novel interdisciplinary framework.
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Chapter 2

Learning in Repeated Games

In our preliminary chapter we only considered games in which the players choose a
strategy only once. After all players picked and played a strategy, they will receive
payoffs accordingly and the game ends. However, as daily life interactions often iterate,
for example between firms, friends or political alliances, it is important to study games
that consist of more than one round. In this chapter we will consider strategic games
that are played repeatedly, so called repeated games. In contrast to games that consist of
merely one round, repeated games allow players to learn from the past and accordingly
adjust their behaviour. We will focus on finitely repeated games. In Section 2.1 we
will discuss several learning models that players can adopt in case of pure strategies.
Thereafter, in Section 2.2 we will consider games with mixed strategies, in which players
can learn to change their probability values by means of reinforcement learning.

2.1 Repeated Games with Pure Strategies

In repeated games it is assumed that after each round of gameplay each player gets to
know his individual payoff. The strategic game that is repeatedly played is called the
stage game. It is also assumed that in each round each player i can choose from the same
set Si of possible strategies. When choosing a strategy, players rely on the the outcomes
of previous rounds, thus learning from the joint strategies that are played in the past.
That is, the strategy of a player at each round depends on the history of the play, i.e.,
on a sequence of joint strategies that are played in the previous rounds. Recall that we
denote the set of joint strategies in the stage game by S. The history set H of a finitely
repeated game with k rounds can then inductively be defined as follows (Apt, 2014):

H0 := {∅}
H1 := S

Ht+1 := Ht × S

H :=
k−1⋃
t=0

Ht

15



CHAPTER 2. LEARNING IN REPEATED GAMES

Here ∅ denotes the empty sequence. Formally, if G = (N,S, u) is the stage game that is
repeated k rounds, we write G(k) for the corresponding repeated game. The individual
strategy of a player in the repeated game can be given as a function σi : H → Si that takes
as input the history of the game (i.e., a sequence of joint strategies played in the past) and
outputs an individual strategy for the stage game that the player will then play in that
specific round. We define σti as a partial function of σi by σti : Ht−1 → Si to determine
the strategy that player i will play at round t under his strategy σi. We write sti to denote
the strategy that player i actually plays at round t, and we write st = (st1, . . . , s

t
n) for

the joint strategy played at round t. For example, σi(∅) = σ1
i (H0) = s1

i is the strategy
that player i will play in the stage game during the first round of the repeated game.
We write σ = (σ1, . . . , σn) for a joint strategy in the repeated game.

The final individual payoff at the end of the game can be calculated in several manners
(e.g., sum, average, or maximum of the individual utilities at each round) and depends
on the type of game. In what follows, we will assume the total payoff for each player is
given by the sum of all the payoffs received in each round, unless stated otherwise. To
illustrate a possible course of a repeated game, let us consider the Prisoner’s Dilemma
as the stage game of a repeated game.

Example 2.1.1 (Repeated Prisoner’s Dilemma). Recall that the payoff matrix for the
Prisoner’s Dilemma as introduced in Chapter 1 is given by:

C D

C -1,-1 -3,0

D 0,-3 -2,-2

In the first round each player i has two strategies that he can choose from, namely
σi(∅) = C or σi(∅) = D. In the second round, the strategy of player i is given by
σ2
i : S → Si, i.e., σ2

i : {C,D} × {C,D} → {C,D}. Since there are 4 possible joint
strategies that can be played in the stage game, and since the individual strategy in the
stage game in the second round depends on the joint strategy played in the first round,
in the second round each player has 24 = 16 possible strategies. Thus in total in the
repeated game for only two rounds, each player has 2 · 16 = 32 possible strategies. Now
suppose in the first round the players choose to play s1 = (C,D) and receive a payoff
of (u1(s1), u2(s1)) = (−3, 0). For the second round, suppose the strategy function σ2

1 of
player 1 is given by:

σ2
1(h) = σ2

1(s1) =


C if s1 = (C,C)

D if s1 = (C,D)

C if s1 = (D,C)

D if s1 = (D,D)
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and suppose the strategy function σ2
2 of player 2 is given by:

σ2
2(h) = σ2

2(s1) =


C if s1 = (C,C)

D if s1 = (C,D)

D if s1 = (D,C)

C if s1 = (D,D)

Since in the previous round the strategy (C,D) was played, according to the strategy
function σ2

1, player 1 will now choose to play D. According to the strategy function σ2
2,

player 2 will also choose to play D. Thus in the second round, the players will choose
to play s2 = (D,D) and receive a payoff of (u1(s2), u2(s2)) = (−2,−2), which yields a
total payoff after two rounds of (−5,−2).

Recall that the Nash equilibrium of the Prisoner’s Dilemma as a stage game is s∗ =
(D,D). We say a joint strategy σ∗ is a Nash equilibrium of the repeated game if no
player can achieve a higher total payoff by unilaterally switching to another strategy
σi 6= σ∗i . The following proposition states that the joint strategy σ under which the
players will play s∗ in each round, is then also a Nash equilibrium of the repeated game
(Osborne and Rubinstein, 1994).

Proposition 2.1.1. Let G = (N,S, u) be a stage game and G(k) the corresponding
repeated game. If s∗ is a Nash equilibrium of the stage game G, then the joint strategy
σ∗ = (σ∗1, . . . , σ

∗
n) for which it holds that for all i ∈ N , h ∈ H, we have σ∗i (h) = s∗, then

this σ∗ must be a Nash equilibrium of G(k).

For a proof we refer to Appendix B. The example of the repeated Prisoner’s Dilemma
shows that the strategy a player will choose to play in the stage game at a certain round,
depends on the history of joint strategies played in the previous rounds. We say that a
player thus learns to adjust his behaviour based on the history of the game. How the
player exactly learns, i.e., how he determines his strategy function σi that tells him how
to adjust his behaviour in each round, depends on the learning model that he adopts.

2.1.1 Cournot Adjustment

The Cournot process for behaviour adjustment is based on a simple best response dy-
namics (Fudenberg and Levine, 1998). The idea of this model is that each player i
learns to adjust his behaviour by observing what strategies his opponents played in the
previous round, and then plays a best response (BRi) to that opponent strategy profile
s−i = (s1, . . . , si−1, si+1, . . . , sn). Here the best response of player i to an opponent
strategy profile s−i is given by

BRi(s−i) = {s∗i ∈ Si | s∗i = arg max
si∈Si

ui(si, s−i)}.

In words, a best response to some opponent strategy profile s−i is the individual strategy
si that yields the highest payoff for player i when playing against s−i. Note that,
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depending on the utility function of player i there might exist more than one best
response, and hence BRi is defined as a finite set instead of a unique individual strategy.

For example, consider again the repeated Prisoner’s dilemma. For each player i the
individual strategy σi : H → Si is for each h ∈ H given by: σi(h) = D. Namely,
in each next round t + 1 the best response to st−i = C is D and the best response to
st−i = D is also D. Recall that (D,D) is the Nash equilibrium of the Prisoner’s Dilemma
stage game. Since the best response to s−i = D is si = D, once the Nash equilibrium
is played, it will be played in all next rounds of the repeated game according to this
Cournot adjustment process. The strategy profile ŝ = (ŝi, ŝ−i) for which at some round
t it holds that according the rule of Cournot adjustment st = st+1 = ŝ is called a steady
state. Intuitively, once st = ŝ, it will stay in that state forever. By definition of a steady
state it satisfies the equation BRi(ŝ−i) = ŝi, which means that every steady state must
be a Nash equilibrium.

A notable feature of the Cournot adjustment as a model for learning in games, is
that players have a very limited memory: they can only adjust their behaviour based
on the last round, without remembering the opponents’ strategies in earlier rounds. A
model that extends this simple best response dynamics to a setting in which all past
plays are taking into account, is called fictitious play.

2.1.2 Fictitious Play

A widely used and well-known model of learning in games is the process of fictitious
play. In this paradigm, agents make a probabilistic assessment of what they believe their
opponents will play in the next round. They then choose their own strategy for the next
round that is a best response to the most likely strategies of their opponents. Formally,
recall that we denote the joint strategy that is played in the stage game at round t by
st = (st1, . . . , s

t
n). Then each player i has an initial weight function κ0

i : S−i → R+ that
assigns a positive real value to all possible opponent strategy profiles. This weight is
updated by adding a value of 1 to the weight of each opponent strategy profile s−i each
time that it is played, so that in each next round t+ 1 it holds that:

κt+1
i (s−i) = κti(s−i) +

{
1 if s−i = st−i
0 if s−i 6= st−i

Then the probability that player i assigns to all his opponents to jointly play s−i at the
next round t+ 1 is given by:

γt+1
i (s−i) =

κt+1
i (s−i)∑

s−i∈S−i
κt+1
i (s−i)

.

In words, each player i thus makes an assessment of the future behaviour of his oppo-
nents, based on the (weighted) past behaviour of the latter. This probability assignment
can thus be thought of as a prediction of what player i believes will happen in the next
round. Fictitious play itself is then defined as a rule that tells each agent i to play his
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best response (BRi) against the opponent strategy profile that he considers most likely
to be played by his opponents in the next round. Here the best response of player i to
an opponent strategy profile s−i is defined the same as for Cournot adjustment. Using
this rule of fictitious play, we can now formally define the strategy σi : H → Si of player
i in the repeated game for any history h ∈ Ht by the rule σt+1

i (h) = st+1
i where

st+1
i ∈ BRi(arg max

s−i∈S−i

γt+1
i (s−i)).

Indeed, player i will in each round play his best response to the opponent strategy
profile that has a maximal probability of being played, where this assessed probability
is determined by the strategies played in the previous rounds. The following proposition
guarantees that a Nash equilibrium will always be played according to the process of
fictitious play, once it is found (Fudenberg and Levine, 1998).

Proposition 2.1.2. Let G = (N,S, u) be a stage game and G(k) the corresponding
repeated game. If s∗ is a strict Nash equilibrium of the stage game G, and s∗ is played at
round t in the process of fictitious play, then s∗ will be played in all subsequent rounds.

For a proof we refer to Appendix B.

2.2 Repeated Games with Mixed Strategies

Recall that the set of mixed strategies of player i is the set of all possible probability
distributions over his set of pure strategies, i.e., Mi = ∆Si. In case of repeated games
where strategies in the stage game are mixed instead of pure, the strategy of player i in
the repeated game is given by σi : H →Mi, i.e., σi : H → ∆Si. Here, the history H can
be defined in two different manners, depending on how one interprets the notion of a
mixed strategy. The most straightforward way to interpret a mixed strategy is to think
of it as a probability distribution that determines which pure strategy will be played in
the game, by randomly picking a strategy from this distribution. That is, players are
not totally sure what pure strategy is best to play, but after choosing randomly from
their probability distribution, they play the given pure strategy. In that case the history
is a sequence of pure joint strategies that are played in the previous rounds, hence H is
as defined in the previous section.

One can also think of a mixed strategy as a strategy according to which a player
does not necessarily have to decide between several pure strategies, but plays more than
one strategy at a time with probabilities less than 1. This interpretation is only possible
when modelling artificial agents. In that case the history is inductively defined by:

H0 := {∅}
H1 := M

Ht+1 := Ht ×M

H :=
k−1⋃
t=0

Ht
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How the probability distribution over the set of strategies Si of player i at round t is
determined, depends on the learning model that defines σi and all its corresponding par-
tial functions σti for each round t. We will consider a method of reinforcement learning,
that not only take into account the strategies that are played in the past, but also how
successful these strategies have been in terms of utilities. Learning models that take
into account the outcome of an action in order to adjust an agent’s future behaviour,
are said to obey the the Law of Effect, which states that actions that produce a positive
outcome are used more often in the same situation in the future (Skyrms, 2010). We
will describe two basic reinforcement models that can be used to explain the learning
behaviour of players in repeated games with mixed strategies. Both models are used
to predict and analyse empirical data derived from experiments performed with human
subjects playing repeated games.

2.2.1 Roth-Erev Reinforcement Learning

The Roth-Erev reinforcement model is based on Pólya urns (Erev and Roth, 1995).
Different types of coloured balls in the urn correspond to different strategies that a
player can play in a game. The number of a certain type of balls is proportional to
the probability that an agent will play the corresponding strategy and thus the urn
represents the agent’s mixed strategy. By adding or removing balls from an urn after
each gameplay, the behaviour of agents in the game is adjusted accordingly. That is, the
probability of choosing an action is proportional to the total accumulated rewards from
choosing it in the past.

For instance, suppose a player i can choose between two strategies si and s′i. Suppose
he starts with an initial urn containing one red ball corresponding to si and one black
ball corresponding to s′i. If on the first trial he draws a red ball, he plays si and receives
a payoff of 2. Then he puts two more red balls in the urn. Now the chance of drawing
a black ball in the next round (and thus playing s′i) becomes 1/4. Suppose in the next
round he draws a black ball and receives a payoff of 6. Then he reinforces the urn with
six black balls and thus increases the probability for playing strategy s′i again in the
future. In this way the urn keeps track of accumulated rewards. This basic model of
Roth and Erev can be summarized as follows (Skyrms, 2010):

(i) there are some initial propensity weights for choosing a strategy;

(ii) weights evolve by addition of received payoffs;

(iii) the probability of choosing a strategy is proportional to the propensity weights.

Note that the rewards that are used in this model for reinforcement are not the expected
utilities under mixed strategies but the actual payoffs received after playing a pure
strategy. That is, in each round the amount of reinforcement balls depends on the
received payoff ui(s) under the pure joint strategy s = (s1, . . . , sn) that was played in
the previous round. Hence in this model the history H is defined as a sequence of pure
strategy profiles played in the previous round.
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Formally, let N = {1, . . . , n} be the set of players and let mi : Si → [0, 1] be the
mixed strategy for player i. The total number of balls in the urn of agent i at round t
is denoted by Ωt

i. We write Ωt
i(si) = mi(si) · Ωt

i for the number of balls corresponding
to some pure strategy si of agent i at round t. Each player i draws a ball from his urn

and with probability mi(si) =
Ωt

i(si)

Ωt
i

he plays the strategy si in the stage game at round

t. Subsequently, each player i receives a payoff ui(s
t) and reinforces the urn with ui(s

t)
balls corresponding to that strategy.

We can write mt
i to denote the mixed strategy of player i at round t. The strategy

σi : H → Mi of player i in the repeated game for any history h ∈ Ht can thus formally
be defined by the rule σt+1

i (h) = mt+1
i where

mt+1
i (si) =


Ωt

i(si)+ui(s
t)

Ωt
i+ui(s

t)
if si = sti

Ωt
i(si)

Ωt
i+ui(s

t)
if si 6= sti

In words, if player i played si in the previous round, then the probability for playing
that strategy again in the next round is changed proportionally to the received payoff
in the previous round. The probabilities for all other strategies that player i did not
play in the previous round then also change proportionally, so that the total sum of new
probabilities for all pure strategies again equals 1. Intuitively, the higher the received
payoff, the greater the reinforced number of balls for the played strategy, and hence the
larger the probability for playing that strategy again in the next round. Eventually, the
goal for the players is to learn to play a strategy that yields the highest payoff. This is
in line with the general assumption of rationality.

Note that as reinforcements keep piling up every round, the total number of balls in
the urn keeps increasing, so that the number of balls that is added becomes proportion-
ally smaller and smaller at each round. In other words, individual trials will change the
probabilities less and less: learning slows down. The qualitative phenomenon of learning
slowing down in this way is called the Law of Practice (Skyrms, 2010).

2.2.2 Bush-Mosteller Reinforcement Learning

Bush and Mosteller (1955) suggested a different reinforcement model that also takes
into account the received reward from the previous round, but there is no memory
of accumulated reinforcement. The probability for a certain strategy is updated with a
weighted average of the old probability and some maximum attainable probability, which
we will assume is 1. More specifically, if player i chooses the strategy sti at round t and
he receives a payoff of ui(s

t), then the probability mi(si) is increased by adding some
fraction of the distance between the original probability and the maximum attainable
probability 1. This fraction is given by the product of the payoff and some learning
parameter λ. The payoffs are scaled to lie in the interval from 0 to 1 (i.e., ui(s) ∈ [0, 1]
for all i ∈ N , s ∈ S) and the learning parameter is some constant fraction that also lies
in the interval from 0 to 1 (i.e., λ ∈ [0, 1]). If the learning parameter is small, players
learn slowly; if the learning parameter is larger, players learn fast (Skyrms, 2010). The
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probabilities for all strategies that are not played in the previous rounds, are decreased
proportionally so that all new probabilities add up to 1 again.

For instance, suppose some player i can choose between two strategies si and s′i in
the stage game, and suppose the mixed strategy of player i in the first round is given
by mi(si) = 0.6, mi(s

′
i) = 0.4. Now suppose player i chooses to play si and receives

a utility of ui(s) = 0.8. Let the learning parameter be given by λ = 1. Then the
new probability for playing strategy si in the second round is given by: mi(si) + λ ·
ui(s)(1 −mi(si)) = 0.6 + 0.8(1 − 0.6) = 0, 92. The new probability for s′i is then given
by mi(s

′
i)− λ · ui(s)mi(s

′
i) = 0.4− 0.8 · 0.4 = 0, 08.

Formally, let N = {1, . . . , n} be the set of players and let mi : Si → [0, 1] be the mixed
strategy for player i. Since it is assumed that players play pure strategies by randomly
drawing a strategy from their probability distribution defined by mi, the history H is
again defined as a sequence of pure strategy profiles played in the previous round. The
strategy σi : H → Mi of player i in the repeated game for any history h ∈ Ht can thus
formally be defined by the rule σt+1

i (h) = mt+1
i where

mt+1
i (si) =

{
mt
i(si) + λ · ui(st)(1−mt

i(si)) if si = sti
mt
i(si)− λ · ui(st)(mt

i(si)) if si 6= sti

Similar to the Roth-Erev model, one could think of this reinforcement step as adding
balls to an urn. The number of balls that are added for some strategy that was played
in the previous round, is removed from all other strategies so that the total number of
balls does not change, i.e., Ωt

i = Ωi for all t ≥ 1 and i ∈ N . After playing strategy sti
at round t, player i adds λ · ui(st)(Ωi − Ωt

i(si)) balls for that strategy to the urn; for
every other strategies si 6= sti that was not played in the previous round, he removes
λ · ui(st)Ωt

i(si) balls.

2.2.3 Learning towards the Social Optimum

The reinforcement models discussed so far are meant to describe an individually rational
learning process. Namely, each player i uses a reinforcement factor that depends on his
private utility, so that players learn to maximize their individual payoff. However, the
type of games that we will be studying in the rest of this thesis are cooperative games
in which players are assumed to be group-rational, i.e., players have the objective to
maximize the social welfare. For these games it makes more sense to reinforce on the
basis of the social welfare.

In order to reinforce all individual mixed strategies with (an average fraction of)
the social welfare instead of the individual payoffs, it is necessary that each player
communicates to each other player the individual payoff that he received, such that
every player can compute the sum. However, as will be discussed in Chapters 4 and 5,
we will assume that players are situated in a social network and can only communicate
with their direct neighbours. To ensure that the social welfare can still be computed,
one could think of a black box in which all agents put a number of balls that corresponds
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to their private payoff. Afterwards, the total amount of balls in the black box can be
counted, and their number corresponds to the social welfare.

The black box can in fact be considered as some kind of trusted party to which
all agents communicate, like for example the tax services of a country: each citizen is
obliged to register his salary at the tax services, but he does not need to reveal his salary
to all other citizens in the country. The tax services then reallocate the total amount of
money, so that the total welfare is more equally divided amongst all citizens. It is worth
mentioning however, that in case of group-rational agents, the social welfare does not
need to be explicitly reallocated in order to stimulate players towards the social optimum.
Namely, when players have the aim to maximize the social welfare, it is sufficient for
them to know what the social welfare of a played strategy is. For this players do not
necessarily need to receive equal payoffs.

Note that communication via the black box is different from network communication,
as all individuals stay anonymous and every agent can keep his private payoff secret. In
network communication on the contrary, communication is not anonymous since agents
know who their neighbours are, as we will see in Chapter 4.

Formally, after playing the joint strategy st at round t, players will all receive a payoff
ui(s

t) which corresponds to a social welfare of SW (st) =
∑

i∈N ui(s
t). Now players can

use a reinforcement method that is either based on Roth-Erev reinforcement or Bush-
Mosteller reinforcement. Instead of reinforcing according to individual payoffs, players
will reinforce their urns according to a factor that is proportional to the received social
welfare. We will denote this factor by U(s) = 1

nSW (s). Note that this factor is the
average social welfare (instead of the total social welfare), which ensures that it is in
the same scale as individual payoffs. This requirement is in particular needed for the
Bush-Mosteller reinforcement, where the reinforcement factor based on payoffs is scaled
in the interval from 0 to 1. Recall that we can write mt

i to denote the mixed strategy
of player i at round t. In case of Roth-Erev reinforcement, for each strategy si ∈ Si the
new probability mt+1

i (si) can then be given by:

mt+1
i (si) =


Ωt

i(si)+U(st)

Ωt
i+U(st)

if si = sti
Ωt

i(si)

Ωt
i+U(st)

if si 6= sti

In case of Bush-Mosteller reinforcement, for each strategy si ∈ Si the new probability
mt+1
i (si) can be given by:

mt+1
i (si) =

{
mt
i(si) + λ · U(st)(1−mt

i(si)) if si = sti
mt
i(si)− λ · U(st)(mt

i(si)) if si 6= sti

For this social reinforcement method, we assume that players have a bounded memory
regarding the received payoffs, the corresponding social welfare and the mixed strategies.
At each round t players only remember the payoffs ui(s

t−1), the social welfare fraction
U(st−1) and the most recently adjusted mixed strategy mt−1

i from the previous round
t−1. We also assume that the number of players |N | = n is known to all agents, so that
the average social welfare can be computed.
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It is worth mentioning here that, in order to stimulate players to learn towards the
social optimum, players do not necessarily need to calculate the average social welfare.
Instead, players could reveal to each player some minimal fraction of the social welfare,
that is needed for the social optimum to be realized in the Nash equilibrium. This frac-
tion is called selfishness level (Apt and Schäfer, 2014). In other words, this minimal
fraction guarantees that when the social optimum is played in the game, every player
is satisfied and no player has a reason to deviate. In this thesis, we will keep the sim-
ple case in which players make use of the average social welfare fraction for reinforcement.

To summarize, different paradigms exists to formally model the learning behaviour of
players in a game. In all the paradigms discussed in this chapter, players adjust their
strategies for the future by learning from the gameplays of the past. The last presented
reinforcement method stimulates group-rational learning, because the reinforcement fac-
tor is based on the social welfare instead of the individual payoff. The higher the social
welfare of the played joint strategy, the stronger the reinforcement. Players thus learn
towards the social optimum. This kind of reinforcement can in particular be useful in
cooperative games, where players act in coalitions and try to maximize the utility of the
coalition. In the collective learning models that we propose in Chapters 3 and 5, we will
therefore make use of the social welfare as reinforcement factor.
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Chapter 3

Collective Learning in
Cooperative Games

In the previous chapter we described how players can individually learn to improve their
private strategy in repeated games. In this chapter we extend the learning behaviour
to a group level. We will study cooperative games, in which we assume the players are
group-rational and act together as one grand coalition. Instead of reinforcing individual
strategies that yield a positive individual payoff in the game, the grand coalition can
reinforce the joint strategies that yield a positive social welfare. In that way, players
are thus collectively learning towards the social optimum. The grand coalition holds an
aggregated probability distribution over the set of joint strategies. How this aggregated
probability distribution is determined, depends on the preference aggregation method
being used.

Recall from Chapter 1 that a social choice function is a method for preference aggre-
gation, that maps the individual preferences of the agents to a set of socially preferred
alternatives. In the current chapter we will construct a probabilistic social choice func-
tion (PSCF), that maps individual probability distributions over a set of alternatives to
a societal probability distribution. Players in a coalition can make use of such a proba-
bilistic social choice function to aggregate all individual preferences, in order to decide
which joint strategy to adopt in the game. Intuitively, this process can be thought of as
a football team having a briefing before the match starts and deciding collectively on a
team strategy.

In Section 3.1 we will introduce two types of such PSCFs and we show that both
of them satisfy several important properties from social choice theory (like unanimity,
neutrality, and irrelevance of alternatives). In Section 3.2 we describe how such a PSCF
can be utilized by players in a game to aggregate their preferences about different joint
strategies. We propose a framework for collective learning, that starts with a procedure
of preference aggregation and is followed by reinforcement learning. In fact, we will
introduce two algorithmic procedures for collective learning, that turn out to be equal
when making use of a social welfare fraction for reinforcement. Later on in this thesis
we will expand this procedure with network communication.
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3.1 Probabilistic Social Choice Functions

A first definition for probabilistic social choice functions was introduced by Gibbard
(1977), in which a preference profile, i.e., an n-tuple of individual preference orders, is
mapped to a lottery, i.e., a single probability distribution over the set of alternatives.
Gibbard referred to such functions as social decision schemes (SDSs). We will introduce
a variant of this notion, that takes as input a stochastic n× k-matrix B, of which each
i-th row, denoted by bi q, represents the probability distribution bi : X → [0, 1] of agent
i ∈ N over the set of alternatives X = {1, . . . , k}.1 The entry bij = bi(j) thus represents
the probability value that i assigns to alternative j. We write B(n, k) for the set of all
such stochastic n × k-matrices. The output of a probabilistic social choice function is
given by a k-ary row vector ~b that represents a single societal probability distribution
over the set of k alternatives. We write B(k) for the set of such stochastic k-ary row
vectors.

Definition 3.1.1 (Probabilistic Social Choice Function (PSCF)). Let B(n, k) and B(k)
be as defined above. Then a probabilistic social choice function is a function
F : B(n, k)→ B(k).

It is worth noting that the PSCF provides a way of dealing with the Condorcet paradox
(le Marquis de Condorcet, M., 1785, cited in Endriss, 2011), since it will always select
a winning candidate on the basis of probabilities. Even if society likes all alternatives
equally good (represented by equal probabilities for all candidates), a winning alternative
will be chosen at random.

Intuitively, a probabilistic social choice function can be thought of as a joint urn, in
which all individuals put their private proportions of balls that each represent a different
alternative. The total proportion of a certain type of balls in the joint urn then represents
the new aggregated probability for the corresponding alternative. How many balls each
individual can put in the urn in total, depends on the authority or weight that an agent
receives from society. The higher the weight, the more balls an agent can put in the urn
and thus the more influence he can exert on the composition of the joint urn. We will
discuss two probabilistic social choice functions that differ with respect to the weights
that individuals receive. In a weighted PSCF, different individuals can receive different
weights; in an averaged PSCF all individuals receive equal weights. The latter is actually
a special case of the former, so we start by introducing the most general case, in which
individuals can receive any weight.

3.1.1 Weighted Preference Aggregation

Lehrer and Wagner (1981) showed that a special kind of a social welfare function, which
they call “Allocation Amalgamation Method” (AAM), can be used as a weighted prefer-
ence aggregation method to provide a societal ordering over a set of k alternatives. The

1We write X for any set of alternatives to provide a general description of probabilistic social choice
functions. Later on we will assume that X = S, the set joint strategies, to use the notion of PSCF in
the context of games.
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main advantage of such a weighted method for preference aggregation is that it can take
into account the expertise of specific group members. We will use this method for con-
structing a weighted probabilistic social choice function (wPSCF), that outputs a societal
probability distribution rather than a societal ordering over the set of alternatives.

To determine the weights that each agent should receive, Lehrer and Wagner (1981)
make the comparison of asking agents how they would divide a unit vote among members
of the group as potential selectors of the probability distribution over the set of the
alternatives. The choice of 0 means a person is considered to be worthless as a guide to
selection. One reason for not allowing for negative weights (besides the problems arising
with negative values for probabilities) is that a person cannot be less than worthless as
a guide to truth. In the rest of this section we will assume that all agents agree on how
much weight each group member should receive. In Section 3.1.2 we suggest to treat all
individuals equally, as long as an agreement on weights is not reached yet.

Formally, let ~w = (w1, . . . , wn) be a stochastic row vector of weights, in which wi ∈
[0, 1] represents the weight that agent i receives from society and

∑
i∈N wi = 1. Let B

be the stochastic n×k-matrix in which each i-th row reflects the probability distribution
of agent i over the set of alternatives X. Then the weighted PSCF is a mapping from
the individual probability values to a weighted arithmetic mean of these values, for each
alternative j ∈ X.

Definition 3.1.2 (Weighted Probabilistic Social Choice Function (wPSCF)). Let ~w,
B(n, k), and B(k) be as defined above. A weighted probabilistic social choice func-
tion is a PSCF F : B(n, k)→ B(k) given by F (B) = ~wB = (b1, . . . , bk) = ~b so that each
bj =

∑
i∈N wibij.

Given some matrix B of individual preferences, the societal probability that F will
compute for B depends on the weight vector ~w that it relies on. We say that some
wPSCF F is defined by ~w to clarify that F makes use of the specific weight vector ~w to
compute the societal probabilities. In what follows, we will introduce several properties
of social choice functions that wPSCFs do or do not satisfy. We say that wPSCFs
satisfy a certain property, if every wPSCF F defined by any arbitrary weight vector ~w
satisfies the property. We will show that wPSCFs satisfy, among others, the properties
anonimity, strong neutrality, irrelevance of alternatives, and unanimity. The latter two
are even sufficient to provide a full characterization of wPSCFs.

Definition 3.1.3 (Irrelevance of Alternatives (IA)). A PSCF F satisfies irrelevance
of alternatives if for all matrices B,B′ ∈ B(n, k) the following implication holds: if
Bj = B′j then bj = b′j.

Here Bj denotes the j-th column of B. In words, this condition specifies that the
probabilistic value that will be assigned to some alternative j ∈ X under F , only depends
on the individual probability values restricted to this alternative. The values assigned
to other alternatives are irrelevant.2

2It should be noted that this condition is not the same as the Independence of Irrelevant Alternatives
that is used in Arrow’s impossibility theorem (Arrow, 1951). The main difference is that IIA applies to
pairs of alternatives, whereas IA applies to a single alternative.
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Definition 3.1.4 (Unanimity (U)). A PSCF F satisfies unanimity if for all matrices
B ∈ B(n, k) the following implication is true: if there exists a constant c ∈ [0, 1], s.t.
bij = c for all i ∈ N , then bj = c.

Intuitively, this property guarantees that if all individuals unanimously agree on a prob-
ability value for some alternative, then this is exactly the value that will be provided in
the societal probability distribution under F . The two most extreme cases of unanimity
are winner certainty and zero unanimity. Winner certainty states that society chooses
an alternative with certainty as the winning candidate (i.e., with probability 1) if all
individuals choose it with certainty. Similarly, zero unanimity states that society rejects
an alternative with certainty (i.e., with probability 0) if all individuals reject it with
certainty. It is worth mentioning here that this specific zero unanimity property (Z),
together with irrelevance of alternatives (IA), will be used to state the characterization
of wPSCFs. Before we will state and prove this theorem, we will introduce two more
properties, that are needed to understand the proof of the characterization.

Definition 3.1.5 (Neutrality (N)). Let σ be a permutation on the set of alternatives
X. We say a PSCF F satisfies neutrality if for all all matrices B,B′ ∈ B(n, k) the
following implication holds: if B′j = Bσ(j) for all j ∈ X then b′j = bσ(j).

Neutrality is thus a symmetry condition that guarantees a social choice function to be
invariant under a relabelling of the alternatives.

Definition 3.1.6 (Strong Neutrality (SN)). Let j1, j2 ∈ X be some pair of alternatives.
A PSCF F satisfies strong neutrality if for all matrices B,B′ ∈ B(n, k) the following
implication holds: if Bj1 = B′j2 then bj1 = b′j2.

In fact, the property of strong neutrality guarantees that the societal probability value
assigned to some alternative under F , exclusively depends on the values assigned by
individuals to that alternative, independent of the name of the alternative. Clearly, if a
PSCF satisfies strong neutrality, it also satisfies neutrality.3

Proposition 3.1.1. Any wPSCF satisfies the properties (i) independence of alternatives;
(ii) unanimity; and (iii) strong neutrality.

A proof is given in Appendix B. Recall that the aim of this chapter is to provide a
probabilistic aggregation method for cooperative games, in which players act as one
coalition and collectively need to decide on a joint strategy that seems optimal in the
game. As the optimality of a strategy does not depend on its label, it is convenient to use
a method that treats all alternatives independently and symmetrically. Moreover, when
players in a game unanimously agree on which joint strategy should be played, there is
no reason for the coalition to act differently. Any probabilistic social choice function that
satisfies the above mentioned properties of IA, U, and SN, thus seems a natural choice
in the context of cooperative games. A characterization of weighted probabilistic social
choice functions (due to Wagner (1982)) can be given by only two of these properties.

3In fact, the property of SN is equivalent to the conjunction of N and IA, see Lehrer and Wagner
(1981) for a proof of this equivalence.
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Theorem 3.1.1 (Weighted PSCFs). Let k ≥ 3. A PSCF F : B(n, k) → B(k) satisfies
IA and Z if and only if F is a weighted probabilistic social choice function.

A proof is given in Appendix B. Note that when k = 2, the probability value for the first
alternative directly follows from the probability value for the second alternative, and
hence IA trivially holds. For k ≥ 3 alternatives, IA and Z together imply SN4, whereas
for k = 2, this implication is not necessarily true. It should be mentioned that the
original theorem is stated for judgement aggregation methods rather than social choice
functions.5 Here we adjusted the theorem so that it applies to the notion of probabilistic
social choice functions.

So far, we showed that a wPSCF satisfies the properties of IA, U, N, and SN. There
are a few more properties worth discussing here: anonymity, Pareto optimality, social
rationality, and strong monotonicity

Definition 3.1.7 (Anonymity (A)). Let σ be a permutation on the set of individuals
N . We say a PSCF F satisfies anonymity if for all all matrices B,B′ ∈ B(n, k) the
following implication holds: if b′i q = bσ(i) q for all i ∈ N , then F (B) = σF (B′).

Here b′i q denotes the i-th row of B′ and σF denotes the PSCF obtained by permuting
the weight vector defining F , if any, by using σ. Similar to neutrality, the property
of anonymity is a symmetry condition, but with respect to the individuals rather than
to the alternatives. It specifies that a relabelling of individuals does not change the
outcome of F . For a cooperative game in which players act as one coalition, it should
indeed not matter how the individuals are named, in order to make a decision on a joint
strategy.

Definition 3.1.8 (Pareto Optimality (P)). Let j1, j2 ∈ X be two given alternatives in
X. We say a PSCF F satisfies Pareto optimality if for all matrices B ∈ B(n, k) the
following implications hold:

(i) if for all i ∈ N it holds that bij1 ≥ bij2 then bj1 ≥ bj2;

(ii) if for all i ∈ N it holds that bij1 ≥ bij2 and there exists ı̂ ∈ N for which it holds
that bı̂j1 > bı̂j2 then bj1 > bj2.

In words, the property of Pareto optimality guarantees that strict unanimous agreement
among all individuals about the order of alternatives is reflected in the societal prob-
ability distributions under F . A great advantage of the property P in the context of
cooperative games, is that whenever all players in the game give the social optimum a
maximal probability according to their probability distribution, then society will assign
the social optimum a maximal probability too. Note that not all wPSCFs satisfy P, since
condition (ii) can only be satisfied if the agent ı receives a positive weight, i.e. wı > 0.

4See Lemma 3.1.1 in Appendix B.
5For a formal definition of probabilistic judgement aggregation methods, we refer to Grossi and Pigozzi

(2014).
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Definition 3.1.9 (Social Rationality (SR)). Let “�” be a binary relation on the set of
alternatives X induced from the probability distributions as follows: (i) bj1 ≥ bj2 ⇔ j1 �
j2 ; (ii) bj1 > bj2 ⇔ j1 � j2. We say a PSCF F satisfies social rationality if for any
matrix B ∈ B(n, k), the binary relation “�” induced from F (B) is a preference order,
i.e., it is transitive and complete.

Social or collective rationality indicates the capacity of an aggregation method to con-
struct a societal preference as an independent entity, possessing rationality of the soci-
etal preference only. According to Arrow (1951), collective rationality is “an important
attribute of a genuinely democratic system capable of full adaptation to varying environ-
ments”, because it avoids the “democratic paralysis”, by which he means the failure to
act due to the inability to agree. In the context of cooperative games with group-rational
players who are trying to achieve a common goal, social rationality is thus considered as
a highly desired property.

Definition 3.1.10 (Weak Monotonicity (WM)). Let B ∈ B(n, k) be any matrix. Let
ı̂ ∈ N be some individual. We say a PSCF F satisfies weak monotonicity if the
following implication holds: if B′ ∈ B(n, k) is the matrix deduced from matrix B by
setting:

(i) b′ı̂̂ > bı̂̂ for some ̂ ∈ X;

(ii) b′ı̂j1 > b′ı̂j2 ⇔ bij1 > bij2 and b′ı̂j1 = b′ı̂j2 ⇔ bij1 = bij2 for all alternatives j1, j2 6= ̂;

(iii) b′ij = bij for all i 6= ı̂ ∈ N , j ∈ X,

then b′̂ > b̂.

Intuitively, whenever some agent increases his probability for some arbitrary alternative
̂, without affecting the relative order of probability values for any other pairs of alter-
natives, then the societal probability for ̂ should also increase. In the context of games,
in which a coalition uses one joint urn to determine which strategy should be played in
the game, if one player increases the probability for a joint strategy in its private urn,
then he should indeed also increase the probability for drawing that strategy from the
joint urn. A slightly stronger version of this property, in which the relative order of the
probability values for other alternatives is not required to be maintained, is called strong
monotonicity.

Definition 3.1.11 (Strong Monotonicity (SM)). Let B ∈ B(n, k) be any matrix. Let
ı̂ ∈ N be some individual. We say a PSCF F satisfies strong monotonicity if the
following implication holds: if B′ ∈ B(n, k) is the matrix deduced from matrix B by
setting:

(i) b′ı̂̂ > bı̂̂ for some ̂ ∈ X;

(ii) b′ij = bij for all i 6= ı̂ ∈ N , j ∈ X,

then b′̂ > b̂.
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Any PSCF that satisfies strong monotonicity clearly also satisfies weak monotonicity.
Just as for Pareto Optimality, it holds that wPSCFs only satisfy the monotonicity prop-
erties if the agent ı receives a positive weight, i.e. wı > 0. We therefore say that wPSCFs
in general do not satisfy these properties.

Proposition 3.1.2. Any wPSCF satisfies the properties (i) anonymity and (ii) social
rationality.

A proof can be found in Appendix B. To summarize, a weighted probabilistic social choice
function provides an aggregation procedure that can be characterized by the properties
of zero unanimity and irrelevance of alternatives. It also satisfies the conditions of
neutrality, anonymity, and social rationality, which classifies the aggregation method as
a suitable procedure for collective decision-making in a cooperative game, in which the
players act as a grand coalition towards a common goal.

One downside of the weighted aggregation procedure is that is relies on the assump-
tion that all individuals agree on how the weights should be divided amongst all group
members. However, as long as a consensus about the division of weights is not reached,
we are forced to rely on a different method instead. In the next section we will therefore
introduce a similar procedure that puts no weights on the individuals and hence treats
all group members equally.

3.1.2 Averaged Preference Aggregation

Before Lehrer and Wagner (1981) introduced their weighted method for allocation amal-
gamation, Intriligator (1973) and Nitzan (1975) proposed a different probabilistic aggre-
gation procedure which they call “the average rule”. Just as the amalgamation method
of Lehrer and Wagner, the average rule is considered as a social welfare function that
outputs a societal ordering over the set of alternatives based on the individual proba-
bility distributions. We will use this method for constructing an averaged probabilistic
social choice function (aPSCF), that outputs a societal probability distribution rather
than a societal ordering.

Definition 3.1.12 (Averaged Probabilistic Social Choice Function (aPSCF)). Let B(n, k)
and B(k) as defined above. An averaged probabilistic social choice function is an
PCSF F : B(n, k)→ B(k) given by F (B) = (b1, . . . , bk) = ~b so that each bj = 1

n

∑
i∈N bij.

An attentive reader would notice that an aPSCF can be thought of as a special case of
a wPSCF where the weight vector is given by ~w = ( 1

n , . . . ,
1
n). Therefore, an aPSCF

satisfies all properties that the more general wPSCFs satisfy. Moreover, since in case
of aPSCFs the individual weight values are always positive, aPSCFs also satisfy the
properties of Pareto Optimality, Weak Monotonicity and Strong Monotonicity. We will
show that the averaged method satisfies two more important conditions, namely non-
dictatorship and consistency.

Definition 3.1.13 (Non-Dictatorship (ND)). A PSCF F satisfies non-dictatorship if
there exists no single individual i ∈ N such that under F we find bj = bij for all j ∈ X,
for all matrices B ∈ B(n, k).
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Thus a PSCF satisfies non-dictatorship if there exists no dictator, i.e., a single individual
who can determine the social probabilities independently of the other individuals. Sup-
pose a dictator would exist in case of cooperative games in which players decide together
what joint strategy to adopt. Since we assume all players, including the dictator, to be
group-rational, it is not so much of a risk that he would manipulate the game for his own
sake. A greater risk is that this dictator can be a ‘less-knowledgeable’ player, in terms of
his knowledge concerning the social optimum. Thus for cooperative games with a grand
coalition we should make use of a collective decision-making procedure that avoids such
risks.

To see why wPSCFs do not satisfy non-dictatorship, consider the counterexample
in which the weight vector that defines F is given by ~w = (1, 0, . . . , 0). Then for any
alternative j ∈ X, and any matrix B of individual preferences, we find under F that
the societal probability distribution equals the probability distribution of the first agent.
Thus, since there exists a wPSCF for which the condition is not satisfied, we say wPSCFs
in general do not satisfy non-dictatorship.

Definition 3.1.14 (Consistency (C)). Let N,M be two disjoint groups of individuals
with |N | = n and |M | = m. Let X be the set of alternatives that both groups communicate
about. We say a class PSCFs satisfies consistency if for any B ∈ B(n, k) and B′ ∈
B(m, k) the following implication holds: if Fn(B) = Fm(B′), then for the matrix C ∈
B(n+m, k) in which the first n rows equal matrix B and the next m rows equal matrix
B′, it holds that Fn+m(C) = Fn(B) = Fm(B′).

In words, when two disjoint groups of individuals agree on a societal probability distri-
bution, this distribution should also be chosen by the union of both groups. In terms
of games, suppose two coalitions are playing the same game separately, and can choose
from the same set of joint strategies. If both groups have exactly the same societal
preferences with respect to the strategies, then the groups should still have the same
societal preferences when merged into one grand coalition.

Note that a wPSCF can only satisfy the notion of consistency in the very particular
case that the weight vector for the union of both groups is the (n+m)-ary vector that
holds the normalized values of the two separate weight vectors. However, it might as
well be possible that agents in group N do not agree with the division of weights in
group M (or vice versa). In that case the proportions of weights need to be reallocated
when merging both groups, which will result in a different societal probability vector.

Proposition 3.1.3. An aPSCF satisfies the properties (i) non-dictatorship; and (ii)
consistency.

For a proof we refer to Appendix B. There also exist a few properties that aPSCFs do
not satisfy and are worth mentioning here.

Definition 3.1.15 (Resoluteness (R)). We say a PSCF satisfies resoluteness if for
any matrix B ∈ B(n, k), there exists a unique ̂ ∈ X such that b̂ = arg maxj∈X bj.
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Intuitively, a resolute PSCF always returns a probability distribution in which exactly
one alternative has the maximal probability value. This alternative is the unique can-
didate who is most likely to be selected as a winner. The property of resoluteness for
non-probabilistic social choice functions, that guarantees that a unique winner will al-
ways be selected, helps avoiding ties. In case of probabilistic social choice functions
however, a winning candidate will always be selected by randomly drawing from the so-
cietal probability distribution. So even if two alternatives would have the same maximal
probability value, ties do not arise (in terms of selecting one winning candidate). The
lack of resoluteness in this context is thus not a major shortcoming.

Proposition 3.1.4. An aPSCF does not satisfy resoluteness.

For a proof see Appendix B. A final property that is worth discussing here is strategy-
proofness, which indicates whether individuals can manipulate the outcome of the ag-
gregation procedure when submitting an untruthful individual preference. We therefore
define the notion of a representative utility function ui : X → R for which it holds that
ui(j1) > ui(j2) ⇔ bij1 > bij2 and ui(j1) = ui(j2) ⇔ bij1 = bij2 for all j1, j2 ∈ X, i ∈ N .
These utility values represent how much an agent i likes some alternative. In terms of
games the alternatives represent the joint strategies and hence the representative utility
functions can equal the utility functions of the game.6

The representative utility functions can be used to define an individual preference
order over the set of possible outcomes of the PSCF F . Namely, an agent’s preference
over the possible outcomes of F are based on the expected utility of an outcome. That is,
we define the individual preference relation over the possible outcomes of F as follows:
(i) F (B′) �i F (B) if and only if there exists a representative utility function ui s.t.∑

j∈X b
′
jui(j) ≥

∑
j∈X bjui(j); and (ii) F (B′) �i F (B) if and only if there exists a

representative utility function ui s.t.
∑

j∈X b
′
jui(j) >

∑
j∈X bjui(j). When an agent i

can manipulate the outcome of F such that he likes the outcome better than without
manipulation, we say the PSCF is manipulable and therefore not strategy-proof.

Definition 3.1.16 (Strategy-Proofness (SP)). We say a PSCF is strategy-proof if for
no individual i ∈ N there exists a matrix B ∈ B(n, k) and a matrix B′ ∈ B(n, k) deduced
from matrix B where b′i q 6= bi q (i.e., the i-th row has changed), such that F (B′) �i F (B).

Proposition 3.1.5. An aPSCF is not strategy-proof.

For a proof we again refer to Appendix B. Since aPSCFs are a special case of wPSCFs,
it follows from Propositions 3.1.4 and 3.1.5 that wPSCFs satisfy neither resoluteness,
nor strategy-proofness.

Corollary 3.1.1. wPSCFs satisfy neither (i) resoluteness; nor (ii) strategy-proofness.

6Although we will later on assume that players do not know their own utility functions, and hence
they could merely rely on an estimation of their real utility functions to determine the representative
utilities.
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Whereas the lack resoluteness is not a major shortcoming when using the aggregation
procedure in the context of cooperative games, the lack of strategy-proofness can give
rise to undesired situations. As we assume all players in the game to be group-rational,
no player will manipulate the game with the purpose of increasing his private payoff
only, so we do not worry about dishonest players trying to sabotage the cooperation.
However, since the utility functions of the players are unknown (players can only learn
their payoffs by trial and error with reinforcement learning), players are not certain about
the social optimum either. Hence if a very ‘stupid’ player, in terms of his knowledge
about the social optimum, manipulates the aggregation procedure, this can be harmful
for the entire coalition. In Chapter 5, we will therefore introduce some conditions on
the amount of influence of different individuals in the coalitions, ensuring that stupid
players will not have enough power to manipulate the game.

An overview of the axiomatic properties that wPSCFs and aPSCFs do or do not
satisfy, as discussed in this chapter, is given in the figure below.

IA U N SN A P SR WM SM ND C R SP

wPSCF X X X X X - X - - - - - -

aPSCF X X X X X X X X X X X - -

Figure 3.1: Overview of axiomatic properties for wPSCFs and aPSCFs

3.2 Collective Learning with Joint Reinforcement

Recall that we introduced the topic of collective decision-making with the aim of using
it for a grand coalition in a cooperative game. The coalition needs to decide which
joint strategy to adopt in the game. In this section we will propose two algorithmic
frameworks to formally model collective learning, which both start with a procedure of
preference aggregation and are followed by gameplay and reinforcement learning.

Formally, let G = (N,S, u) be the game that the players in N are playing, and let
S = {s(1), . . . , s(k)} be the set of k joint strategies. Before the game starts, each player
i ∈ N holds a probability distribution over the set of joint strategies. We will denote
this probability distribution of player i by bi : S → [0, 1]. One could think of these
probabilities as subjective degrees of belief 7 according to player i, with respect to the
optimality of some joint strategy. The higher the probability bi(s) for a certain strategy
profile s ∈ S, the more player i considers the joint strategy s to be an optimal strategy,
i.e., a strategy in which the social optimum is realized. In the rest of this thesis, we will
often abbreviate the notion of ‘subjective degree of belief’ to ‘degree of belief’ or simply
to ’belief’.

The probability distributions of all n players over the set of k joint strategies can
be represented in the n × k-matrix B, in which each row bi q represents the probability

7This notion should not be confused with the quantitative notion of belief used in quantitative ap-
proaches to Belief Revision Theory, taken by van Ditmarsch and Labuschagne (2007).
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distribution bi. Hence the entry bij is the probability value that player i assigns to the
joint strategy s(j), i.e., bij = bi(s(j)). Let B(n, k) be the set of such matrices, and let

B(k) denote the set of stochastic k-ary row vectors ~b, representing a single probability
distribution over S. Let F : B(n, k)→ B(k) be a probabilistic social choice function. F
can be either a wPSCF or an aPSCF, but assuming an agreement about the weights is
not reached yet, we will make use of the aPSCF that treats all players equally. Once
the individual beliefs are collected, the coalition can start playing and learning towards
the social optimum by means of reinforcement learning. For the reinforcement learning
method, we will use the model of Bush-Mosteller reinforcement of Section 2.2.2, in which
the average social welfare is used as reinforcement factor.

Figure 3.2: Input and Main Loop of the Joint Reinforcement Learning Model

The collective learning model, which we will call Joint Reinforcement Learning Model, is
depicted in Figure 3.2. The main loop is given by the process of reinforcement learning;
the initial input to the main loop is provided by aggregating the initial individual be-
liefs. The procedures of belief aggregation and reinforcement learning, can formally be
described by the following two algorithms, of which the latter is an iterative procedure.

Algorithm 1 Initial Belief Aggregation at round t = 1

Input: Probability matrix B
1: for all s(j) ∈ S: b1j := 1

n

∑
i∈N bij

2: ~b1 := (b11, . . . , b
1
k)

Output: Probability vector ~b1

The aggregated preference for the joint strategies can now be used as input for the iter-
ative procedure of gameplay and reinforcement. We write ~b1 in the output of Algorithm
1 to indicate that these are the initial collective beliefs (at t = 1) before the first round
of gameplay starts. This output can be used as input for Algorithm 2, which describes
the iterative process of reinforcement learning. At the end of round t, the updated be-
liefs after reinforcement learning are represented in the collective probability distribution
vector ~bt+1. The output value bt+1

j after round t will thus be the new probability value
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that the grand coalition will play strategy s(j) during the next round t + 1. At each
round t the procedure for gameplay and reinforcement can be described as follows.

Algorithm 2 Gameplay and Joint Reinforcement at round t

Input: Probability vector ~bt.
1: st := s(j), s.t. s(j) is drawn from S with probability btj . Gameplay

2: U(st) := 1
n

∑
i∈N ui(s

t) . Average s.w.
3: for all s(j) ∈ S: . Reinforcement

bt+1
j :=

{
btj + λ · U(st)(1− btj) if s(j) = st

btj − λ · U(st)btj if s(j) 6= st

4: ~bt+1 := (bt+1
1 , . . . , bt+1

k )

Output: Probability vector ~bt+1.

The iterative part of the Joint Reinforcement Learning Model is now only hidden in the
second algorithm. Namely, once the individual preferences are aggregated, reinforcement
is only performed with respect to the collective preferences. However, one could also
include the aggregation procedure in the iterative process, resulting in a procedure that
can be interpreted as a process of iterative voting.

3.2.1 Iterative Voting and Playing

In an iterative voting procedure, agents make a sequence of collective decisions: after
everyone has voted in a given round, participants may change their votes and vote again
in the next round. In that way the agents approach a societal solution step by step,
rather than computing the optimal outcome at once. An example from political science
that resembles an iterative voting procedure, is the step-wise refinement of a bill of law
by means of amendments to be voted on. In iterative voting models it is often assumed
that only one agent at a time can change his preference, before a next round of voting
starts (see Airiau and Endriss, 2009). In the model that we propose here, we will however
assume that all players can adjust their preferences simultaneously.

More specifically, the players in the game can aggregate their initial preferences,
play the game accordingly and subsequently adjust their individual beliefs by means
reinforcement learning. The iterative model, which we call Iterative Voting Model, is
depicted in Figure 3.3. When making use of Bush-Mosteller reinforcement with the
average social welfare U(s) as reinforcement factor, we will see that the Iterative Voting
Model yields the same probability for playing a joint strategy at some round t as the Joint
Reinforcement Learning Model. We choose to rely on this average social welfare factor
since our purpose is to model how a grand coalition learns towards the social optimum.
It should be noted however, that one could also choose for reinforcing with individual
payoffs. This would result in an iterative voting model in which players individually
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learn to improve their vote, and would be more suitable for games in which it is assumed
that players are individually rational.

Figure 3.3: Main Loop of the Iterative Voting Model

Formally, let Bt = (btij)n×k be the stochastic n × k-matrix in which each entry btij
denotes the probability value that agent i assigns to joint strategy s(j) at the beginning
of round t. We write B1 to denote the matrix with initial probability values. Again let
F : B(n, k)→ B(k) be the averaged probabilistic social choice function. The procedures
of iterative belief aggregation and individual reinforcement learning, consist of a run of
the following two algorithms.

Algorithm 3 Belief Aggregation at round t

Input: Probability matrix Bt

1: for all s(j) ∈ S: btj := 1
n

∑
i∈N b

t
ij

2: ~bt := (bt1, . . . , b
t
k)

Output: Probability vector ~bt
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Algorithm 4 Gameplay and Individual Reinforcement at round t

Input: Probability vector ~bt; probability matrix Bt

1: st := s(j), s.t. s(j) is drawn from S with probability btj . Gameplay

2: U(st) := 1
n

∑
i∈N ui(s

t) . Average s.w.
3: for all i ∈ N , s(j) ∈ S: . Reinforcement

bt+1
ij :=

{
btij + λ · U(st)(1− btij) if s(j) = st

btij − λ · U(st)btij if s(j) 6= st

4: Bt+1 := (bt+1
ij )n×k

Output: Probability matrix Bt+1

One can easily check that the Joint Reinforcement Learning Model and the Iterative
Voting Model both yield the same probability for playing a joint strategy s(j) at some
round t. Namely, if s(j) is played at some previous round t − 1, then according to the
Joint Reinforcement Learning Model the probability for playing s(j) at the next round
t (assuming λ = 1) is given by:

btj = bt−1
j + U(st−1)(1− bt−1

j )

= (1− U(st−1))bt−1
j + U(st−1)

and according to the Iterative Voting Model the probability is given by:

btj =
1

n

∑
i∈N

btij

=
1

n

∑
i∈N

(
bt−1
ij + U(st−1)(1− bt−1

ij )
)

=
1

n

∑
i∈N

(
(1− U(st−1))bt−1

ij + U(st−1)
)

= (1− U(st−1))
1

n

∑
i∈N

bt−1
ij +

1

n

∑
i∈N

U(st−1)

= (1− U(st−1))bt−1
j + U(st−1).

Thus both models yield the same probability for playing joint strategy s(j) at round t
if s(j) was played in round t − 1. A similar calculation can be performed in case s(j)
was not played in the previous round, resulting in the same probability value for both
models.

It is worth mentioning at this point that there are two main reasons for using the
Bush-Mosteller reinforcement method rather than some other reinforcement method,
when modelling a process of collective learning. First of all, Bush-Mosteller reinforcement
makes use of utility values that are scaled in the interval from 0 to 1. This guarantees
that the utilities are in the same scale for all players. It does not allow for the existence
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of one authorial individual that can strongly influence the gameplay by reinforcing with
a very great proportion of his individual payoff. Moreover, assuming the utilities are
scaled between 0 and 1 ensures that the same unit is used for payoffs as for individual
beliefs about the strategy profiles. Thus when reinforcing after gameplay, the utility
values are appropriately used as some kind of weight in order to update the beliefs.

Secondly, in contrast to the Roth-Erev reinforcement model, the Bush-Mosteller
model does not take into account the accumulated rewards of earlier plays. Hence the
proportion of reinforcement does not get any smaller over time. In other words, the
Bush-Mosteller model does not obey the Law of Practice. For modelling processes of
collective learning, rather than individual learning, it may make more sense to rely on
a learning method in which the proportion of reinforcement does not get smaller over
time. Namely, when we assume that agents in a group are communicating all the time,
the learning process is dynamic. It depends on the different inputs of individuals in ev-
ery round, that might change due to communication, so that learning does not slow down.

To summarize, in this chapter we extended the reinforcement model for individual learn-
ing, to an iterative voting model for collective learning. In order to determine a proba-
bility distribution for the grand coalition over the set of joint strategies, a probabilistic
social choice function can be used. In the next chapter we will show how individual
preferences can change due to network communication. Thereafter, in Chapter 5, we
will show how the Iterative Voting Model can be enriched with network communication,
so that the individual preferences are changed before aggregated. As a result of this
enrichment, the probability for playing a joint strategy at some round t is no longer the
same as in the Joint Reinforcement Model. Network communication thus influences the
learning behaviour of the players in a cooperative game, as we will see in the last section
of Chapter 5.
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Chapter 4

Learning in Social Networks

Social networks play a key role in sharing information. Agents in a network can share
their private beliefs and opinions with others by communicating in the network. Not
only can agents send information about their own private beliefs to their neighbours,
but they can receive information from others as well, and hence learn about the beliefs
of other agents in the network. By observing the beliefs of others, agents can choose to
revise their own beliefs, thereby adjusting their own opinions.

Before we can enrich the Iterative Voting Model of Chapter 3 with social network
communication, we first need to introduce a framework for modelling learning in social
networks. Several attempts have been made to formally model this process. In this
chapter we will provide a classical model for social network learning that was first intro-
duced by DeGroot (1974). In this model, that we will formally describe in Section 4.1,
each agent holds an individual belief about a single statement or event. He can update
this belief after each round of network communication, taking into account the opinion
of his neighbours and a degree of trust towards this neighbours’ expertise. We will rely
on a result that was stated and proved by DeGroot (1974), to show how agents in a
network can reach a consensus after several rounds of communication.

Thereafter, in Section 4.2, we will explain how the model of Lehrer and Wagner (1981)
for preference aggregation (introduced in the previous chapter), can be interpreted as a
similar model for social network learning. In this variant of DeGroot’s model, agents can
communicate about a set of multiple alternatives, over which they hold a probabilistic
preference order. We show that the conditions for reaching a consensus about more than
one event are the same as for single events, when making use of probability distributions
over the set of possible alternatives.

In Section 4.3 we initiate a methodological discussion on network communication
and belief aggregation. We argue why the notions of belief, social relations, trust, and
rationality as used in the models of DeGroot, and Lehrer and Wagner can sometimes
have ambiguous interpretations from a logical point of view. By means of this discussion
we want to point out that the models are elegant from a computational perspective, but
might be considered as less straightforward from a logical perspective.
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4.1 Network Communication about Single Events

In situations where agents hold their own private belief or opinion about a certain event
or statement, they can learn from other agents in the network by observing the beliefs
of others and subsequently revise their own beliefs, as depicted in Figure 4.1.

Figure 4.1: Social Network Learning Model

The notion of belief here refers to a subjective likelihood, i.e., a degree of belief 1. Within a
graph-theoretical framework, the model of DeGroot (1974) describes an iterative process
of belief updating. Updates are performed by matrix calculations that take into account
the degrees of belief and some subjective degree of trust that agents have in each others’
expertise.

Formally, let N = {1, . . . , n} be a set of n individuals in a social network G =
(N,E). Each individual i ∈ N has his own prior belief bi ∈ [0, 1] about a certain
event or statement, which we will refer to as a parameter θ. These prior opinions
bi(θ) can be thought of as the probability that an agent assigns to the truth of a given
statement, or the quality of a given product, or the likelihood that the individual might
engage in a given activity (Jackson, 2008). The n-dimensional probability vector ~b1(θ) =
(b11(θ), . . . , b1n(θ))> reflects the prior beliefs of all n individuals. This vector, abbreviated

to ~b1, is called the initial belief vector.
Each individual i can revise his own belief after communicating with other agents in

the network. For each pair of agents i, j ∈ N let wij denote the weight that individual i
assigns to the opinion of individual j. This weight can be thought of as a degree of trust
that i has in agent j concerning the event θ. We emphasize that this notion of trust is
with respect to someone’s expertise, not with respect to someone’s honesty or reliability.
In the social network graph G this value wij represents the weight of the directed edge
(i, j) ∈ E. Note that trusts are not necessarily symmetric, hence G is a directed and
weighted graph G = (N,EW ), where W is the n × n-matrix representing the weights.
The matrix W is stochastic since it is assumed that all elements wij are non-negative
and that the sum of the elements in each row is 1. It also assumed that these weights
are chosen before communication in the network starts (DeGroot, 1974).

1Again not to be confused with the notion used in quantitative approaches to Belief Revision Theory.
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Belief updates can now be performed by multiplying the trust matrix W with the
initial belief vector ~b1 as follows: ~b2 = W ·~b1. Here ~b2 denotes the updated belief vector
after one round of communication, thus forming the new beliefs for the beginning of
round 2. In general, after t rounds of communication the belief vector for the next
round is given by ~bt+1 = W ·~bt = W t ·~b1. For each agent separately this calculation is
equal to bt+1

i =
∑

j∈N wijb
t
j =

∑
j∈N w

t
ijb

1
j , where wtij denotes the entry on the i-th row

and j-th column of the iterated matrix W t.

Example 4.1.1 (DeGroot Updating (Jackson, 2008)). Suppose the trust matrix W and
initial belief vector ~b1 are given by:

W =

1/3 1/3 1/3
1/2 1/2 0
0 1/4 3/4

 and ~b1 =

1
0
0


So agent 1 weights the beliefs of all agents, including himself, equally, and has an initial
belief in parameter θ of 1. Agent 2 weights the beliefs of agent 1 and 2 equally but
ignores agent 3, and has an initial belief of 0. Agent 3 assigns three times as much
weight to his own belief than to the belief of agent 2, he ignores agent 1, and he has an
initial belief of 0. This situation is also depicted in Figure 4.2. Then, after one round
of communication, the beliefs for the next round t = 2 are given by:

~b2 = W ·~b1 =

1/3 1/3 1/3
1/2 1/2 0
0 1/4 3/4

 ·
1

0
0

 =

1/3
1/2
0



1 : b11 = 1

2 : b12 = 03 : b13 = 0

1
3

1
2

3
4

1
2

1
3

1
4

1
3

Figure 4.2: The initial situation of Example 4.1.1

Iterating this process for t→∞ can in some cases lead to a convergence of beliefs.
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4.1.1 Convergence of Beliefs

Under specific conditions on the network structure, the initial beliefs of all agents in
the network can converge to a limiting value. If this limiting value is the same for
all individuals, a consensus of beliefs is reached. Formally, we define the notions of
convergence and consensus as follows.

Definition 4.1.1 (Convergent). Let G = (N,EW ) be a weighted directed graph and
W the corresponding stochastic n × n-matrix. Let ~b1 be any initial belief vector with
b1i ∈ [0, 1] for all i ∈ N . We say that W is convergent if limt→∞W

t ·~b1 exists for all

initial belief vectors ~b1.

Hence, no matter what beliefs the agents start with, when W is convergent, they all have
limiting beliefs, meaning that there exists an integer T s.t. for all t > T it holds that
~bt+1 = ~bt, i.e. the beliefs remain stable. Note that convergence of W does not guarantee
that a consensus will be reached, since reaching a consensus is only possible when all
limiting beliefs have exactly the same value for each individual.

Definition 4.1.2 (Consensus). Let G = (N,EW ) be a weighted directed graph and W the
corresponding stochastic n× n-matrix. Let ~b1 be any initial belief vector with b1i ∈ [0, 1]
for all i ∈ N . We say a consensus of beliefs is reached if for all i1, i2 ∈ N it holds that:

limt→∞b
t
i1 = limt→∞b

t
i2 .

Whether or not a matrix W converges, depends on specific properties of the graph that
it corresponds to. A necessary and sufficient condition for a stochastic n× n-matrix W
to converge is given by DeGroot (1974). Before we state and prove this theorem, we
introduce a few more definitions. In the next definitions, let G = (N,EW ) be a weighted
directed graph and W the corresponding stochastic n× n-matrix. A directed link in G
exists from agent i to j if and only if wij > 0 in W . There exists a directed path from
i to j if and only if wtij > 0 for some t ≥ 1. The smallest integer t for which wtij > 0
equals the length of the shortest path from i to j.

Definition 4.1.3 (Closed). A set of nodes C ⊆ N is closed relative to W if i ∈ C and
wij > 0 imply j ∈ C, i.e., if there exists no pair of agents i ∈ C and j /∈ C for which
wij > 0.

Intuitively, we say a group of agents C ⊆ N is closed if there is no directed link from an
agent inside C to an agent outside C. Note that the entire set of agents N of a graph
is (trivially) always closed. We say a set of nodes C ⊆ N is minimally closed relative
to W if C is closed and there exists no non-empty strict subset C ′ ⊂ C such that C ′ is
closed.

Recall from Chapter 1 that we call a weighted directed graph strongly connected2 if
there exists a directed path from any node i to every other node j. Similarly, a group

2Note that in Markov Chain Theory a strongly connected graph is called irreducible, see Jackson
(2008).
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of nodes C ⊆ N is strongly connected if there is a directed path from any node in C
to every other node in C. The notion of strongly connected graphs can be expressed in
terms of weights wij as follows: G = (N,EW ) is strongly connected if and only if for
every pair of nodes i, j ∈ N there exists a positive integer t such that wtij > 0. It follows
that if a group is minimally closed, it is strongly connected.

Proposition 4.1.1. Let G = (N,EW ) be a weighted directed graph and W the corre-
sponding stochastic n × n-matrix. Any set of nodes C ⊆ N that is minimally closed,
must be strongly connected.

For a proof see Appendix B. In order to state the condition that characterizes the
convergence of a matrix, we need to introduce the notions of periodicity and aperiodicity.
A matrix is periodic, if there exist several directed cycles in the network that have equal
lengths (or multiples of each others’ lengths). This causes the process to cycle without
converging. Thus for a matrix W to converge, it is needed that there are no cycles of
equal lengths (or multiples of each others’ lengths). Such a matrix is called aperiodic.

Definition 4.1.4 (Aperiodic). We say W is aperiodic if the greatest common divisor
of all directed cycle lengths is 1. We say a set of nodes C ⊆ N is aperiodic if W restricted
to C is aperiodic.

For example, the network and corresponding matrix of Example 4.1.1 have three cycles of
length 1, one cycle of length 2 and one cycle of length 3. So the greatest common divisor
of all directed cycles is 1, hence the matrix W is aperiodic. Indeed, one can easily check
that this aperiodic matrix converges as t approaches infinity. For a counterexample, we
will consider a matrix that is periodic and show why it does not converge.

Example 4.1.2 (Nonconvergence). (Jackson, 2008) Let a matrix of weighted trusts be
given by

W =

0 1/2 1/2
1 0 0
1 0 0


which corresponds to the social network depicted in Figure 4.3. The depicted network
contains two cycles of the same length 2. Iteration of the matrix, causes an oscillation
due to these cycles, independent of the initial beliefs:

W 2 =

1 0 0
0 1/2 1/2
0 1/2 1/2

 , W 3 =

0 1/2 1/2
1 0 0
1 0 0

 , W 4 =

1 0 0
0 1/2 1/2
0 1/2 1/2

 , ...

The key to failure of convergence in this example is that the matrix is periodic, which
causes the process to cycle forever.
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1
2
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Figure 4.3: The social network of Example 4.1.2

Theorem 4.1.1 (Convergence). (Jackson, 2008) W is convergent if and only if every
set of nodes that is strongly connected and closed is aperiodic.

The proof is provided in Appendix B. Intuitively, a necessary and sufficient condition for
the convergence of beliefs is thus that each group of individuals, in which everybody is
(indirectly) influenced by everybody else and nobody is influenced by anybody outside
the group, can only contain internal cycles of influence that are ‘out of phase’ so that
infinite oscillations of beliefs are omitted. Although Theorem 4.1.1 provides a necessary
and sufficient condition for any initial collection of beliefs to converge, this does not
imply that a consensus is reached.

4.1.2 Reaching a Consensus

Let us begin with the simple observation that it is straightforward to see that if beliefs
converge, a strongly connected and closed group of agents will reach a consensus. Namely,
as all agents in such group rely on each other (and on no other agents outside the group)
for belief updates, the beliefs will only stabilize once all agents agree. Moreover, since
each update involves a weighted average of beliefs of neighbours, no agent can reach
a higher limit than each of his neighbours. The following theorem, stated and proved
by Jackson (2008), provides a necessary and sufficient condition for a consensus to be
reached.

Theorem 4.1.2 (Consensus). (Jackson, 2008) Under matrix W any strongly connected
and closed group of agents C ⊆ N reaches a consensus if and only if C is aperiodic.

Note that there might exist several closed and strongly connected groups of agents in one
graph, that separately might reach a different consensus. To guarantee that a consensus
in the entire society is always reached, independent of the initial beliefs, there must
therefore be exactly one closed and strongly connected group of agents. The following
corollary, due to Jackson (2008), states when a consensus is reached for the entire group
of agents.

Corollary 4.1.1. Under matrix W a consensus for the entire group of agents N is
reached if and only if there is exactly one group C ⊆ N that is strongly connected and
closed and W restricted to that group is aperiodic.
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In fact, this corollary strengthens Theorem 4.1.1 by requiring the existence of exactly
one group satisfying the required properties that guarantee convergence. From Theorem
4.1.2 it follows that agents inside C thus reach a consensus. It is easy to see why the rest
of society must then also converge to the same beliefs. Namely, each of the remaining
agents outside C has at least one directed path to an agent inside C. Thus if the agents
in C reach a consensus, the consensual beliefs will eventually spread out through the
entire network.

4.2 Network Communication about Multiple Events

As was discussed in Chapter 3, Lehrer and Wagner (1981) provided a framework for
weighted preference aggregation. Although presented as a model for social choice theory,
it can be interpreted as a model for opinion forming in a weighted social network. In
this section we will explain how the model of Lehrer and Wagner (1981) can be seen
as an extension of DeGroot’s model, allowing for communication about more than one
decision variables at a time.

Formally, each member i ∈ N can start with an initial subjective probability bi(j),
i.e., degree of belief, regarding some event or statement j ∈ X. Here X = {1, . . . , k} is
the set of k alternatives about which the agents are communicating.3 Each individual
assigns a probability value to all k alternatives. Again like in Chapter 3, all private
opinions can be reflected in a stochastic n× k-matrix B, in which each entry bij = bi(j)
denotes the probability value assigned by agent i to event j. We write B1 to denote the
initial belief matrix.

It should be mentioned that the numerical values bij , . . . , bik assigned to decision
variables 1, . . . , k by some agent i ∈ N do not necessarily need to satisfy the requirement∑

j∈X bij = 1, in case the assignment of values is considered as a general allocation
problem. That is, in a more general case we can consider a group of agents seeking for
numerical values of a sequence of k decision variables so that

∑
j∈X bij = q, for some

q > 0 (Wagner, 1982). In case q = 1 we can think of the allocation problem as a
probability distribution over a set of k decision variables. But otherwise, we can think
of the allocation problem as allocating a fixed sum of money of other resources, equal
to q, among k objects. In what follows, we will assume q = 1, so that the assignment of
numerical values to a set of decision variables satisfies the requirements for a probability
distribution.

Additionally, just as in the DeGroot model, each agent i assigns a weight wij ∈ [0, 1]
to each other group member j ∈ N . In contrast to the model for weighted probabilistic
social choice functions as discussed in Section 3.1.1, we now assume that agents do not
agree on the weights. Instead of an n-ary row vector ~w of consensual weights, the weights
are reflected in a weight matrix W . After t rounds of updating, we obtain the result of

3Again we write X for any set of alternatives to provide a general description for probabilistic social
choice functions. In Chapter 5 we will assume that X = S, the set joint strategies, to use the model for
network communication in the context of games.
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applying the matrix W of weights t times to the matrix B1 of initial beliefs:

Bt+1 = W ·Bt = W t ·B1 =

w
t
11 . . . wt1n
...

...
wtn1 . . . wtnn

 ·
b

1
11 . . . b11k
...

...
b1n1 . . . b1nk


Note that since both W and B1 are stochastic matrices, the multiplication of W with
B1 again results in a stochastic matrix. In this way every update of beliefs yields new
probability distributions over the set of events, for each individual in the network. The
beliefs of person i after t rounds of updating are reflected on the i-th row of Bt+1. The
subjective belief of agent i concerning alternative j after t communication rounds is given
by the following summation:

bt+1
ij = wti1b

1
1j + . . .+ wtinb

1
nj =

∑
m∈N

wtimb
1
mj .

Indeed, this is exactly the same summation as used for belief updating about a single
event in the DeGroot model. It is straightforward to see why these calculations are the
same, since every column in B1 reflects an initial belief vector about one specific event.
Matrix calculation assures that applying the n× n-matrix W to k single n-ary vectors,
results in the same values as applying it to an n× k-matrix that holds all these vectors
in its columns. Thus updating the beliefs for a specific event j is equal to applying the
trust matrix W to the column of B1

j that corresponds to the beliefs about alternative j:

Bt+1
j = W t ·B1

j =

w
t
11 . . . wt1n
...

...
wtn1 . . . wtnn

 ·
b

1
1j
...
b1nj


Formally, each round of belief updating can be described by means of the following
algorithm.

Algorithm 5 Network Communication at round t

Input: Weight matrix W ; probability matrix Bt

1: for all i ∈ N , j ∈ X: bt+1
ij :=

∑
m∈N wimb

t
mj

2: Bt+1 :=
(
bt+1
ij

)
n×k

= W ·Bt

Output: Probability matrix Bt+1

We will use this algorithm in Chapter 5, in order to extend the Iterative Voting Model
for collective learning, to a model for collective learning in games with social networks.

4.2.1 Convergence and Consensus for Multiple Events

Similar as for a single event, agents in a network can also have limiting beliefs for multiple
events. In the latter case, it means that all entries in the matrix B converge to limiting
values, so that the matrix remains stable.
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Definition 4.2.1 (Convergent for k events). Let G = (N,EW ) be a weighted directed
graph and W the corresponding stochastic n× n-matrix. Let B1 be any n× k-matrix of
initial beliefs. We say that W is convergent for k events if limt→∞W

t ·B1 exists for
all initial belief matrices B1.

Note that, just as for converging beliefs about single events, the definition of convergence
for multiple events is independent of the values in the initial belief matrix. Therefore, the
same conditions apply as in Theorem 4.1.1 for convergence of beliefs about k alternatives.

Corollary 4.2.1. W is convergent for k events if and only if every set of nodes that is
strongly connected and closed is aperiodic.

Intuitively, if all initial belief vectors about k separate events will converge to limiting
beliefs under a convergent matrix W , the matrix B1 of subjective probabilities will also
converge to limiting values under that matrix, since this matrix holds all separate belief
vectors in its columns. The same argument holds for consensus about multiple events.
We say that a consensus is reached about k events if all agents end up with the same
probability distribution.

Definition 4.2.2 (Consensus about k events). Let G = (N,EW ) be a weighted directed
graph and W the corresponding stochastic n× n-matrix. Let B1 be any n× k-matrix of
initial beliefs. We say a consensus about k events is reached if for all pairs of agents
i1, i2 ∈ N it holds that:

limt→∞b
t
i1 q = limt→∞b

t
i2 q.

Here bti q denotes the i-th row of Bt, which represents the probability distribution of
player i at round t. Note that by definition, reaching a consensus about k events is
also independent of the initial beliefs. Therefore, if the weight matrix W satisfies the
required conditions of Theorem 4.1.2, a consensus will be reached for every event in X.

Corollary 4.2.2. Under matrix W any strongly connected and closed group of agents
C ⊆ N reaches a consensus about k events if and only if C is aperiodic.

Hence, from Corollary 4.1.1 it then also follows that a consensus about k events in the en-
tire network can be reached, if and only if there exists exactly one group that is strongly
connected and closed, and W restricted to that group is aperiodic. In Chapter 5 we will
make use of (some of) the above-mentioned conditions, to guarantee that a sufficient
amount of expertise in the network is maintained in every round of network communi-
cation and gameplay. As we will see, this guarantees that network communication can
enhance the learning effect.

4.3 Social Networks, Beliefs, and Rationality

Although the models of DeGroot and Lehrer and Wagner provide an elegant framework
for abstract reasoning about network interaction and belief change, its interpretations
can sometimes be ambiguous from a logical point of view. The aim of this section is to
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provide a brief discussion on network communication and how to interpret the notions
of belief, trust, and rationality. For simplicity, we will refer to the DeGroot and Lehrer
and Wagner model as the Social Network Learning Model. We will discuss the possible
interpretations of belief, trust, and rationality, when analysing the model from a logical
perspective.

• The notion of belief: First of all, in terms of logic, it is not straightforward what
the notion of degree of belief implies as introduced in the Social Network Learning
Model. Suppose an individual i has a degree of belief about a statement θ that is
equal to bi(θ) = 1/2; does this value imply that the agent believes the statement
is true or false, or maybe the agent is undecided4 about it? One could argue that
allowing for a threshold on the degrees of beliefs would remove this ambiguous
interpretation. Assuming agents believe some statement is true if and only if
bi(θ) ≥ p for some threshold p ∈ [0, 1], assures that agents believe that a statement
θ is either true or false. However, allowing for such a threshold on the degrees of
belief, gives rise to a new ambiguity when defining the notion of consensus. When
the degrees of belief exceed the threshold p for all agents in the network, it means
all agents agree on believing that θ is true. Since all agents agree, one could state
that a consensus is reached. But values of bi(θ) can still differ, thus according the
definition as introduced by the Social Network Learning Model, a consensus is not
reached yet.

• The notion of trust: One could question the correctness of the assumption that
degrees of trust are determined before communication starts and remain unchanged
after several rounds updates. The Social Network Learning Model relies on matrix-
vector multiplication for updating the private beliefs. From linear algebra we know
that matrix-vector multiplication is associative, i.e., for any n × n-matrix W and
any n-dimensional vector~b1, it holds that W ·(W ·~b1) = (W ·W )·~b1. In terms of the
Social Network Learning Model, it means that the private beliefs after two rounds
of communication can be found in two different ways: either ~b3 = W ·~b2, where
~b2 = W ·~b1 (i.e., agents update their beliefs after the first round of communication,
then communicate again according the same network structure and subsequently
update their new beliefs by applying the same trust matrix for a second time); or
~b3 = W 2 ·~b1 (i.e., the trust matrix is first adjusted from an external perspective and
subsequently applied to the initial belief vector ~b1). Both cases result in the same
updated beliefs, but the former calculation assumes unchanged degrees of trust,
whereas the latter allows for adjustments of the trust matrix W . In fact, this latter
case can actually be thought of as if agents first communicate about the weights
itself, before they communicate about the decision variable(s). Adjusting the trust
matrix not only results in varying the degrees of trust, but can also change the
network structure. That is, an entry wij in the matrix W might equal to 0 in
the first round of communication, meaning that there is no connection between

4Undecided means that an agent neither believes, nor disbelieves some proposition, see Liu et al.
(2014).
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agent i and j, but might increase in its value (i.e., wij > 0) after some rounds
of communication as a result of matrix multiplication. The increase of its value
results in a new edge between nodes i and j, hence changing the network structure.

Intuitively, the change of trusts and network structure after several rounds of
communication seems to be in line with the idea that agents change their beliefs.
If agents have the ability to change their beliefs about a certain statement or event
θ, why not also have the possibility to change their beliefs about the beliefs of
their friends (i.e., the degrees of trust)? If an agents’ belief in θ increases after
each round of communication, but one of his friends seems to have a very low
degree of belief in θ compared to all the other agents, it might be wise to lower
the degree of trust in this stubborn friend.

A second argument in favour of allowing for trust adjustments, is to avoid du-
plication of information. Consider the case in which agent i assigned a positive
trust weight to some agent j (i.e., wij > 0) for which it holds that wjk = 0 for all
k 6= j. This agent j can be thought of as a maximally stubborn agent regarding
the topic of communication: no matter how often all agents communicate, agent
j will never change his beliefs. Then, after the first round of communication and
updating, agent i has already taken all the relevant information from j. But ac-
cording to the update rule in the Social Network Learning Model, i will keep on
updating his own information according to the unchanging information of agent j
at each round over and over again, creating a duplication of information. Allowing
for trust weight adjustments could eliminate this problem: when an agent observes
after two rounds of communication that one of his neighbours does not changes his
beliefs, he can decide to lower (or even remove entirely) his trust in that specific
neighbour. Note that this requires some knowledge of the network structure. If
agents only know who their neighbours are, but have no knowledge about the rest
of the network structure, then an agent i does not know for sure if his neighbour j
who does not change his belief is either really stubborn, or might have many other
neighbours that share his belief (and thus updating would result in the same belief
again).

Additionally, not only the impossibility to change trusts during updates, but also
the initial assignment of trust weights before any update is performed, gives rise to
a number of theoretical and practical problems. First of all, according to Martini
(2012), it would be a very impractical task to ask each group member to assign a
weight to all of his fellows, especially when considering the network as a group of
human agents. Secondly, if members of the network have a tendency to manipulate
the results, they could choose trust weights that do not honestly reflect their true
agenda. The Social Network Learning Model cannot avoid such manipulation.

• The notion of rationality: Static unchangeable trust weights do not only give rise
to duplication of information, but also to non-rational belief updates. Recall from
the Social Network Learning Model that trusts are not transitive: if agent i assigns
a positive trust weight to agent j (i.e., wij > 0) and agent j assigns a positive trust
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weight to agent k (i.e., wjk > 0), then agent i does not necessarily also trust agent
k (i.e., wik might equal 0). However, after several rounds of communication, agent
j has taken into account the beliefs of agent k, and therefore agent i will indirectly
also rely on the beliefs of agent k, even though he does not trust him. Therefore,
from a logical and game theoretical perspective, the initial network structure with
static trusts gives rise to non-rational belief updating of agent i.

However, Lehrer and Wagner (1981) claim that the formation of consensus that
they propose is a rational amalgamation of the information that individuals hold.
They argue that if every agent rationally agrees with the method of belief aggrega-
tion, then they should also rationally agree with the outcome of this method. That
is, if an agent rationally believes in (or: is committed to) some proposition, then it
is rational to believe in the consequences of the proposition too. “The mathematics
serves to extract the consequences of rational evaluation in the initial state. Thus
the model is a synchronic rather than a dynamic model of rationality” (Lehrer and
Wagner, 1981).

To guarantee a rational method of aggregation, the initial assignment of weights
to other agents must be carried out without bias. Namely, if every person evaluate
every other person in terms of how closely they agree with their own opinion,
then there is little reason for agents to feel committed to the resulting consensus.
Lehrer and Wagner therefore require that the weights are assigned in a disinterested
manner, meaning that an agent will assign weights to others in terms of how expert
and reliable they are in the subject matter, rather than in terms of how closely
they agree with his own opinion. When that requirement is met, the consensual
outcome is a rational summary of the total information contained in the group.

To summarize, in this chapter we provided a classical model for social network learning
that was first introduced by DeGroot (1974) and we showed under what conditions a
consensus can be reached. We explained how the model of Lehrer and Wagner (1981)
can be interpreted as a similar model for social network learning, and we provided a
discussion to point out that both models can have ambiguous interpretations from a
logical perspective. Despite these critical notes, we still choose to rely on the Lehrer
and Wagner model for the learning paradigm that we will propose in Chapter 5. There
are two main reasons for this choice. First, the Lehrer and Wagner model allows for
communication about more than one alternative. Since the learning paradigm models
a situation in which players can communicate about the various different joint strate-
gies before they start playing the game, a computational approach is needed in which
communication about multiple alternatives is allowed. Second, the Lehrer and Wagner
model is stochastic, meaning that it preserves the probability distribution that players
have over the set of pure joint strategies. This is especially beneficial for modelling an
iterative learning process, in which the outcomes of one round can be used as input for
the next round.
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Chapter 5

Enriching Cooperative Games
with Social Networks

In this chapter we will provide an interdisciplinary model that combines the computa-
tional methods discussed in the previous three chapters. The model, which we will call
Game-Network Learning Model, describes the learning behaviour of multiple players in
a cooperative game, who are collaborating as a grand coalition and are trying to achieve
a common goal. A schematic drawing of the model is depicted in Figure 5.1.

Figure 5.1: The Main Loop of the Game-Network Learning Model

Each player has different preferences regarding the possible joint strategies that the coali-
tion can collectively play in the game. Before starting the game, players can communicate
with other players in a social network about the possible joint strategies, and update
their preferences according to the Lehrer and Wagner model (proposed in Chapter 4).
The updated preferences will subsequently be aggregated according to the aPSCF (pro-
posed in Chapter 3), to select a joint strategy that will be played in the game. The game

52



CHAPTER 5. ENRICHING COOPERATIVE GAMES WITH SOCIAL NETWORKS

provides the players with payoffs, which will be used to update the preferences again, by
making use of Bush-Mosteller reinforcement (proposed in Chapter 2). These updated
preferences are the input for a new round of network communication. Each round thus
consists of three sequential procedures: network communication, belief aggregation, and
reinforcement learning, of which the first and last procedures enable players to perform
a belief update about the game.

As an example, one could think of a football team trying to win a match. While being
on the field, players can communicate with each other and adjust their team strategy.
But as the field is big, they only communicate directly with the co-players who are closest
to them. During the match, all players need to perform actions individually, but they
will only win the match if they cooperate as one grand coalition.

The chapter consists of two main parts. The first part provides an explanation
of the model, both from a local perspective in Section 5.1 (adopting a single player’s
point of view), as well as from an external perspective in Section 5.2 (providing an
algorithmic description). In the second part of this chapter, starting in Section 5.3, we
show how network communication can actually influence the learning behaviour. We
prove that network communication can enhance the learning effect compared to regular
reinforcement learning without network communication, under specific conditions on the
network structure and the presence of experts.

5.1 Learning from a Local Perspective

To understand the model from a more local perspective, let us have a closer look at the
step-by-step reasoning of an individual player i, who is playing a game on his computer
and participating in an online social network. Before the game starts, player i communi-
cates in the network and gathers the opinions of his neighbours. In fact, the individual
opinion of player i can be interpreted as his beliefs about the game structure: the degree
of belief for a joint strategy represents to what extent player i thinks the strategy is
optimal. His beliefs thus actually code what he thinks the payoff structure in the game
could be.

The opinion of i can be represented in a ‘private urn’ that reflects his individual
probability distribution over the set of joint strategies. Communication in the network for
the player i is then similar to presenting the content of his private urn to his neighbours
and simultaneously observing the content of his neighbours’ urns. An individual belief
update of this player i after network communication can be thought of as changing the
proportions in his urn. The change is based on what he has observed in the urns of his
neighbours and the amount of trust towards these neighbours. One can intuitively say
that, the more an agent trusts one of his neighbours, the more he wants his urn to be
similar to the urn of that neighbour.

Subsequently, the player i submits the probability values of his updated urn to his
computer. The online game system aggregates all the probability values of all players.
The aggregated probabilities can be thought of as accumulated proportions of balls in
one grand urn, in which the urns of all individual players are put together. Thereafter,
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the online game system randomly draws a ball from the grand urn. This draw for some
joint strategy s is then revealed to the player i on his computer screen. Player i plays
his corresponding individual strategy si and receives a payoff of ui(s). Together with
his individual payoff, the social welfare fraction U(s) is revealed to the player on his
computer screen. This fraction is calculated by the online game system, which holds
information about all the individual payoffs.

Eventually, the agent i uses the factor U(s) to adjust the composition of balls in
his private urn again. Namely, for the strategy s he adds balls with an amount that
is proportional to the factor U(s) (according to the Bush-Mosteller reinforcement rule),
and he removes balls for all other strategies, so that the total amount of added and
removed balls is equal. The new composition in his urn then reflects his updated belief,
that he can now use for a new round of communication with his neighbours.

One could argue that a procedure in which a player needs to obey the instructions of
a computer, which tells him what action to perform in the game, seems to eliminate the
fun element of playing a game. Namely, if players cannot decide themselves about their
actions, how can they even influence the outcome of the game? However, the assumption
that players cannot at all decide what action to perform is false. That is, each player
can influence the outcome of the game during the communication round. By trying to
convince neighbours in the social network about what strategy to perform, each player
can try to influence what joint strategy will be played by the group. The leverage of
an individual player in the game is thus hidden in the collective instructions on the
computer screen after network communication.

Finally, note that each player is actually learning which individual role to adopt in
the team. Namely, learning collectively towards the social optimum in fact means that
each player is learning individually which action he should perform according to the joint
strategy in which the social optimum is realized.

5.2 The Game-Network Learning Model

The Game-Network Learning Model consists of three subsequent procedures for each
round, as depicted in Figure 5.1. These procedures can formally be described by means
of three algorithms. For a clear understanding of the algorithms, let us briefly recall
the notation. Let N be the set of players, who are playing a game G = (N,S, u).
The players are situated in a social network that is represented by a weighted directed
graph G = (N,EW ), with corresponding weight matrix W . Let bti : S → [0, 1] be
the probability distribution of agent i over the set of joint strategies at round t. The
stochastic n× k-matrix Bt holds all individual probability distributions in its rows, i.e.,
row bti q represents the probability distribution of player i. We use an upper notation t+

(e.g., Bt+) to denote the updated beliefs after network communication in round t. We
emphasize that these are not yet the final updated beliefs at the end of round t, but
merely the intermediate beliefs after communication. During each round t, the beliefs
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are thus updated twice, following the scheme:

Bt −→ Bt+ −→ Bt+1.

Recall that we write B(n, k) for the set of all stochastic matrices B and B(k) for the set
of all stochastic row vectors ~b = (b1, . . . , bk) that represent a single probability distri-
bution over k alternatives. Let F : B(n, k) → B(k) be an averaged probabilistic social
choice function (aPSCF). If F outputs a row vector ~bt

+
= (bt

+

1 , . . . , bt
+

k ) after network
communication in round t, it thus means that strategy s(j) ∈ S will be played in the
game at that round, with a probability of bt

+

j . We write st ∈ S for the joint strategy
that will be played in the game at round t.

5.2.1 Algorithmic Description

Each round t of the Game-Network Learning Model consists of a run of the following
three algorithms.

Algorithm 6 Network Communication at round t

Input: Weight matrix W ; probability matrix Bt

1: for all i ∈ N , s(j) ∈ S: bt
+

ij :=
∑

m∈N wimb
t
mj

2: Bt+ :=
(
bt

+

ij

)
n×k

= W ·Bt

Output: Probability matrix Bt+

Intuitively, during this first step players communicate about their beliefs regarding the
joint strategies and perform an update according the Lehrer and Wagner model of Section
4.2. This first procedure outputs the updated beliefs represented in the matrix Bt+ ,
which is then used for Algorithm 7.

Algorithm 7 Belief Aggregation at round t

Input: Probability matrix Bt+

1: for all s(j) ∈ S: bt
+

j := 1
n

∑
i∈N b

t+
ij

2: ~bt
+

:= (bt
+

1 , . . . , bt
+

k )

Output: Probability vector ~bt
+

Hence in the algorithm for belief aggregation the updated beliefs from Algorithm 6
are aggregated by relying on the averaged probabilistic social choice function (aPSCF).
This procedure outputs a joint probability distribution over the set of joint strategies,
represented in a row vector ~bt

+
. This stochastic vector, together with the updated beliefs

from Algorithm 6, are then used for the final algorithm of the Game-Network Learning
Model.
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Algorithm 8 Gameplay and Reinforcement at round t

Input: Probability vector ~bt
+

; probability matrix Bt+

1: st := s(j), s.t. s(j) is drawn from S with probability bt
+

j . Gameplay

2: U(st) := 1
n

∑
i∈N ui(s

t) . Average s.w.
3: for all i ∈ N , s(j) ∈ S: . Reinforcement

bt+1
ij :=

{
bt

+

ij + λ · U(st)(1− bt+ij ) if s(j) = st

bt
+

ij − λ · U(st)bt
+

ij if s(j) 6= st

4: Bt+1 :=
(
bt+1
ij

)
n×k

Output: Probability matrix Bt+1

Thus in the algorithm for gameplay and reinforcement, the societal probability vector
from Algorithm 7 is used to choose which joint strategy will be played in the game
at round t. Each player receives a payoff ui(s

t) accordingly and the average social
welfare fraction U(st) is computed. Subsequently, this factor is used for updating the
individual beliefs bt

+

ij regarding each joint strategy s(j) according to the Bush-Mosteller
reinforcement method. This final step of the loop results in a new stochastic matrix
Bt+1, that can then be used as new initial beliefs for the next round, i.e., as new input
for Algorithm 6.

5.2.2 Assumptions of the Learning Model

The Game-Network Learning Model relies on various hidden assumptions relevant for
epistemic game theory. In fact, for our model we make the following assumptions about
the game structure, the network structure, and the players’ knowledge regarding both.

1. Assumptions w.r.t. the game structure and players’ knowledge about the game:

(i) The game G = (N,S, u) is a strategic stage game that is repeatedly played by the
set of N = {1, . . . , n} players. In each round each player i can choose from the
same set Si of possible strategies to play in the stage game and this set is equal
for all players, i.e., Si1 = Si2 for all i1, i2 ∈ N . The utility functions ui are scaled
between 0 and 1 for each player i ∈ N .

(ii) Players do not know their own payoff functions, neither do they know the payoff
functions of others. The payoff after each round of gameplay, together with the
average social welfare, is revealed to all players separately, before the next round
starts.

(iii) Although players get to know their payoff for a specific round, they are not able to
remember the payoffs of all rounds played in the past. Namely, we assume players
have a bounded memory regarding the received payoffs (with corresponding social
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welfare) and the degrees of belief (i.e., probabilistic preferences). At each round
t players only know their probabilistic preferences and received payoffs from the
previous round t− 1.

(iv) Players are group-rational, i.e., they want to maximize the social welfare rather
than their individual payoffs. Thereby they act as a single grand coalition and
play honestly, that is, they do not play something different than agreed upon after
network communication.

2. Assumptions w.r.t. the network structure and players’ knowledge about the network:

(i) The network G = (N,EW ) is a weighted directed social network consisting of the
N players in the game. The weighted edges in EW represent how much an agent
trusts his neighbour in the network with regard to his expertise about the game
being played.

(ii) The network structure and corresponding weights of the directed edges are deter-
mined beforehand and do not change while the game is played.

(iii) Players in the network are only able to directly communicate about the game
with their neighbours, i.e., with the nodes they are directly connected with in the
network.

(iv) Players are not aware of the entire network structure, they only know who their
neighbours are. They do know however, how many players exist in the entire
network, i.e., |N | = n is known to all players.

5.2.3 Example of a Game-Network Learning Scenario

To illustrate how players in a cooperative game can learn according to the Game-Network
Learning Model, we will follow the model step by step with an example. Consider a
coordination game with three players, N = {1, 2, 3}, in the network structure given in
Figure 5.2.
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2

1
2

1
3

1
3

1
2

Figure 5.2: The social network and trusts of three players

This corresponds to the following weight matrix of trusts:

W =

1/2 1/2 0
1/3 1/3 1/3
0 1/2 1/2


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In this coordination game, the agents want to see a movie in the cinema and can choose
between two movies. The possible set of strategies Si for each player i ∈ N is given by
Si = {A,B}, where A means ‘Go to movie A’ and B means ‘Go to movie B’. For three
players, this yields k = 8 (= 23) possible joint strategies of the form s(j) = (s1, s2, s3),
namely:

s(1) = (A,A,A) s(5) = (A,B,B)

s(2) = (A,A,B) s(6) = (B,A,B)

s(3) = (A,B,A) s(7) = (B,B,A)

s(4) = (B,A,A) s(8) = (B,B,B)

The payoffs are given by:

u1(s) =


2
3 if s = s(1)
1
3 if s = s(8)

0 otherwise

u2(s) =

{
1 if s = s(1)

0 otherwise
u3(s) =


1
3 if s = s(1)
2
3 if s = s(8)

0 otherwise

Intuitively, the payoff functions suggest that the best joint strategy for this coordination
game is for all three players to go to the same movie, namely movie A. However, it is
assumed players do not know their payoff function beforehand, meaning that they are
not sure what the most pleasant evening will be. This can be explained by the intuition
that players in the network do not all know each other, and going to a movie with
strangers can potentially be awkward. The goal for the players is to learn what the
optimal joint strategy is, where ‘optimal joint strategy’ means the social optimum. The
social optimum here is given by s(1) = (A,A,A) with a corresponding social welfare
of 2. Suppose that the probability matrix B1, where b1ij indicates the probability that
agent i assigns to strategy s(j) at t = 1, is given by:

B1 =

 0 1/4 0 1/4 1/4 0 1/4 0
2/3 0 0 0 0 0 0 1/3
0 1/4 0 1/4 1/4 0 1/4 0


In words, this means that agent 2 believes it is best to go to the cinema together with
agents 1 and 3 (strategies s(1) and s(8)), and heard that movie A is slightly better than
movie B. Agent 1 and 3 on the other hand, do not know each other and believe it is best
not to go to the cinema with strangers (no matter what their common friend, agent 2,
will do), thus adopting a higher degree of belief for strategy profiles s(2), s(4), s(5) and
s(7), than for the other joint strategies. Now by communicating in the network before
going to the movie and by playing the game several times (i.e., visiting the cinema sev-
eral evenings in a row), agents can learn that going to the same movie all together will
actually be very pleasant and the best movie to go to is movie A. Now let us have a
closer look at this learning process following the three algorithms of the Game-Network
Learning Model.
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Algorithm 6: Network Communication
After the first round of network communication, agents will change their beliefs as fol-
lows:

B1+ = WB1 =

1/3 1/8 0 1/8 1/8 0 1/8 1/6
2/9 1/6 0 1/6 1/6 0 1/6 1/9
1/3 1/8 0 1/8 1/8 0 1/8 1/6


The new beliefs presented in the matrix B1+ reveal that agent 1 and 3 increased their
beliefs for the strategies s(1) and s(8) after communicating with agent 2. In other words,
agent 2 suggested to both his neighbours that going to the movie all together can result
in a pleasant evening, and agent 1 and 3 took this suggestion seriously (since they trust
agent 2 just as much as they trust themselves). Conversely, agent 2 decreases his belief
for the strategies s(1) and s(8) because he takes into account the opinions of agent 1
and 3 as well.

Algorithm 7: Belief Aggregation by aPSCF
Now by means of the averaged probabilistic social choice function F , agents can aggregate
their beliefs:

F
(
B1+

)
=

(
8

27
,

5

36
, 0,

5

36
,

5

36
, 0,

5

36
,

4

27

)
This results in probability distribution over the set of joint strategies, which can now be
used for the agents to play the game. Note that if players would not have communicated
in the network and immediately would have aggregated their beliefs, this would have
yielded the aggregated probability vector F (B1) =

(
2
9 ,

1
6 , 0,

1
6 ,

1
6 , 0,

1
6 ,

1
9

)
. The probability

for selecting the social optimum would then thus be smaller.

Algorithm 8: Gameplay and Reinforcement
Now suppose players select the strategy that has the highest probability value, namely
s(1) = (A,A,A), and receive a social welfare of 2. Then players update their beliefs
with a reinforcement factor U(s(1)) = 2/3, resulting in the following probability matrix
B2 (we assume the learning parameter has a value of λ = 1):

B2 =

 3/4 1/24 0 1/24 1/24 0 1/24 1/12
13/18 1/18 0 1/18 1/18 0 1/18 1/18
3/4 1/24 0 1/24 1/24 0 1/24 1/12


These updated beliefs can now again be used as input for the next round t = 2. After
this first round the probabilities for strategy profile s(1) have increased. By continuing
this process of communicating in the network, playing the game and reinforcing the urn,
players can eventually learn to play the optimal strategy.

In this example we deliberately chose the values in such a manner that network
communication would increase the probability for choosing the social optimum. In this
way, enriching games with a social network structure can enhance the learning effect.
However, as we will show in the next section, for network communication to be beneficial,
some specific constraints on the network structure are required.
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5.3 Network Structure and Learning Effect

In the second part of this chapter we want to study the question whether adding network
communication to a cooperative game can indeed be beneficial for the learning outcome.
And if so, under what circumstances. We will start in Section 5.3.1 with showing that
network communication only influences the learning behaviour of players as long as an
agreement of beliefs is not reached yet. Second, in Sections 5.3.2 and 5.3.3 we will show
that under specific assumptions on the network structure and the presence of so called
experts, network communication can increase the probability that the social optimum
will be chosen to be played in the game. Under these conditions, network communication
can thus enhance the effect for learning towards the social optimum.

5.3.1 Learning Behaviour after Agreement

Recall from Chapter 4 that under specific conditions on the network structure, agents
can reach a consensus of beliefs. Once such a consensus is reached, their probability
distributions over the set of alternatives are the same and will remain stable after each
new communication round. As in the Game-Network Learning Model beliefs are, in
addition to network communication, also influenced by reinforcement learning, it makes
sense to introduce a slightly different notion, which we will call agreement at round t.

Definition 5.3.1 (Agreement). Let Bt be the n × k-matrix of which each row bti q rep-
resents an individual probability distribution of agent i over the set of k joint strategies.
We say a group N ′ ⊆ N is in agreement at round t if for all i1, i2 ∈ N ′ it holds that
bti1 q = bti2 q.
We thus speak of an agreement instead of a consensus, when at the beginning of some
round t the individual beliefs have the same value for all agents inside a group, but these
values are not necessarily converged. Namely, even if all agents in N have the same
probability distribution over the set of joint strategies, the values in the probability
distribution can still change after each round of reinforcement learning.

Also recall from Chapter 4 that one of the requirements for a group to reach a con-
sensus, is that the group is closed. Remember that this means there are no outgoing
edges from agents inside the group to agents outside the group. Similarly as for consen-
sus, one could imagine that once a closed group of agents reaches an agreement, network
communication will not change their beliefs any further. Indeed, once everyone in the
closed group has the same beliefs about the social optimum then agents of that group
do no longer need to convince each other of their different opinions.

Proposition 5.3.1. Let N ′ ⊆ N be a closed group of agents in the network. Once N ′

is in agreement at the beginning of some round t in the Game-Network Learning Model,
network communication in that round leaves the beliefs of all agents in N ′ unchanged,
i.e., bt

+

i q = bti q for all i ∈ N ′.

Proof. Assume an agreement in the closed group N ′ is reached after some round t− 1,
so that agents in the group are in agreement at the beginning of round t, i.e. bti1 q = bti2 q
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for all i1, i2 ∈ N ′. In round t, network communication according to Algorithm 6 about
each strategy s(j) ∈ S is for each agent i ∈ N ′ given by:

bt
+

ij =
∑
m∈N

wimb
t
mj =

∑
m∈N ′

wimb
t
mj +

∑
m∈N\N ′

wimb
t
mj

=
∑
m∈N ′

wimb
t
mj + 0 (since N ′ is closed)

=
∑
m∈N

wimb
t
ij (by agreement)

= 1 · btij = btij

Thus network communication leaves the beliefs of all agents in N ′ unchanged.

It follows immediately that for all agents i1, i2 ∈ N ′ we find:

bt
+

i1 q = bti1 q = bti2 q = bt
+

i2 q (5.1)

so that they will still be in agreement after network communication. Consequently, once
all agents in the network agree, communication is no longer needed for an individual to
learn towards the social optimum.

Corollary 5.3.1. Once all agents in N are in agreement at some round t of the Game-
Network Learning Model, the model changes into the Iterative Voting Model (without
network communication), following Algorithms 3 and 4 only.

The proof follows directly from Proposition 5.3.1 and the fact that the entire group of
agents N is by definition always closed. Thus once all agents are in agreement at some
round t, it holds that bt

+

i q = bti q for all agents i ∈ N and hence Bt+ = Bt. Therefore,
network communication can be skipped so that the Game-Network Learning Model only
follows Algorithms 3 and 4 of the Iterative Voting Model.

A similar variant of Proposition 5.3.1 holds for the process of reinforcement learn-
ing. Intuitively, reinforcement learning by Bush-Mosteller reinforcement is just a linear
transformation of the input value. Thus if all agents in a closed group hold the same
agreed degrees of beliefs, they still hold the same (linearly transformed) degrees of beliefs
after reinforcement learning. The beliefs can in each round change, but they will change
equally for all agents in the closed group, so that the agreement is maintained.

Proposition 5.3.2. Let N ′ ⊆ N be a closed group of agents in the network. If N ′ is
in agreement at the beginning of some round t, then N ′ will still be in agreement at the
beginning of round t+ 1.

Proof. Assume the closed group N ′ is in agreement at the beginning of some round t in
the Game-Network Learning Model, i.e. bti1 q = bti2 q for all i1, i2 ∈ N ′. It follows from
Proposition 5.3.1 that agents in N ′ are still in agreement after network communication
in round t. We show that agents in N ′ are still in agreement after reinforcement learning
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in round t, i.e., bt+1
i1 q = bt+1

i2 q for all i1, i2 ∈ N ′. If some joint strategy s(j) was played at
round t, then by Bush Mosteller reinforcement we find for all i1, i2 ∈ N ′:

bt+1
i1j

= bt
+

i1j + λU(st)(1− bt+i1j)

= bt
+

i2j + λU(st)(1− bt+i2j) (by eqn.5.1)

= bt+1
i2j

.

Similarly, if some joint strategy s(j) was not played at round t, then by Bush Mosteller
reinforcement we find for all i1, i2 ∈ N ′:

bt+1
i1j

= bt
+

i1j − λU(st)bt
+

i1j

= bt
+

i2j − λU(st)bt
+

i2j (by eqn.5.1)

= bt+1
i2j

.

Thus bt+1
i1 q = bt+1

i2 q for all i1, i2 ∈ N ′, so that agents are still in agreement after Bush-
Mosteller reinforcement at round t. Hence they are still in agreement at the beginning
of round t+ 1.

It follows immediately that once all agents in the network are in agreement, they will
thus be in agreement in every future round. In the two final sections of this chapter,
we will assume an agreement of beliefs in the entire network is not reached yet, and we
study what kind of influence network communication can have in these situations.

5.3.2 The Existence of Central Experts

In order to show that adding network communication to a game can have a positive in-
fluence on the learning process as long as agents do not all agree, we measure the quality
of our Game-Network Learning Model by the probability for playing the social optimum
at a given round. That is, for an arbitrary round t, we compare our Game-Network
Learning Model including network communication to the Iterative Voting Model with-
out network communication. We compare the two learning paradigms with respect to
the probability that the social optimum will be played in the game at that round. More
specifically, if s(j∗) ∈ S is the social optimum, we say learning with network communi-
cation in round t is better than learning without network communication if bt

+

j∗ > btj∗ ,

where bt
+

j∗ denotes the probability that the social optimum will be played in round t after
network communication and btj∗ denotes the probability that the social optimum will be
played at round t without (or: before) network communication.

Intuitively, one could imagine that if there exist experts in the network, who are
very close to knowing what the social optimum is, and these experts receive a sufficient
amount of trust from all other players in the network, they can convince other players
to increase the probability values for the social optimum. Hence, it then becomes more
likely that the social optimum will be played in the game.

62



CHAPTER 5. ENRICHING COOPERATIVE GAMES WITH SOCIAL NETWORKS

Definition 5.3.2 (Expert for round t). Let s(j∗) ∈ S be the social optimum, and let btj =
1
n

∑
i∈N b

t
ij be the average probability that society assigns to some s(j) at the beginning of

round t. We say an agent ie ∈ N in the network is an expert for round t if btiej∗ > btj∗.

We write E t = {i ∈ N | i is an expert for round t} for the set of experts for round t. We
call the agents i ∈ N\E t non-experts. Note that it follows directly from this definition
that for all experts ie ∈ E t and all non-experts i ∈ N\E t it holds that btiej∗ > btij∗ .
Intuitively, the experts for a certain round are the agents that have in the beginning of
that round (and thus at the end of the previous round) a higher than average degree
of belief for the social optimum. Note that experts can only exist as long as a total
agreement is not reached. Namely, if an agreement of beliefs is reached between all
agents in the network, every agent has the same degree of belief that is then trivially
equal to the average degree of belief. The notion of expert is therefore a relative rather
than a objective notion: an agent is only an expert when he has sufficient expertise
relative to the expertise of others in the society.

Among the set of experts, there always exists a subset of experts who have the highest
degrees of belief for the social optimum, compared to all other agents in society. These
experts can be considered as best or maximal experts.

Definition 5.3.3 (Maximal Experts for round t). Let s(j∗) ∈ S be the social optimum.
We define the set of maximal experts for round t as those with maximal degrees of
belief for the social optimum at the beginning of round t, i.e., E tmax = {im ∈ E t | btimj∗ =
arg maxi∈N b

t
ij∗} ⊆ E t.

Note that it follows directly from this definition that for all best experts im ∈ E tmax and
all other agents i ∈ N\E tmax it holds that btimj∗ > btij∗ .

Whether or not experts can exert more influence on the outcome of network commu-
nication than others, depends on their position in the network and the weight that other
individuals assign to the opinions of the experts. To analyse how one agent is related
to all the other agents in a network, we look at one’s centrality. There exist several
notions of centrality, of which one frequently used definition is degree centrality.1 Recall
from Chapter 1 that the degree di(G) of an agent i in graph G equals the number of
neighbours of i. The measure of degree centrality thus represents how well connected a
node in a network is.

Definition 5.3.4 (Degree Centrality). Let G = (N,E) be a graph and let di(G) be the
degree of agent i in graph G. The degree centrality of some agent i ∈ N is then given
by the fraction:

Cdi =
di(G)

n− 1

The degree centrality of an agent Cdi is thus a fraction of the highest possible degree an
agent can have (n − 1), so that Cdi ∈ [0, 1]. In a weighted directed graph, however, the
social influence of an agent not only depends on the number of neighbours, but also on

1For more notions of centrality, we refer to the work of Jackson (2008).

63



CHAPTER 5. ENRICHING COOPERATIVE GAMES WITH SOCIAL NETWORKS

the amount of weight that his neighbours assign to him. We therefore introduce a new
notion of centrality that is expressed in terms of weights.

Definition 5.3.5 (Weight Centrality). Let G = (N,EW ) be a weighted directed graph
for which W is the stochastic n×n-matrix that represents the weights of the edges in the
graph. Let wi =

∑
m∈N wmi be the total weight that agent i receives from his neighbours.

The weight centrality of some agent i ∈ N is then given by the fraction:

Cwi =
wi
n

In words, weight centrality is a fraction of the highest possible weight that an agent i
can receive, which is n (namely in case all agents would assign i a weight of 1, including
agent i himself). Intuitively, the higher the weight centrality of an agent in the network,
the more influence that agent has on the outcome of network communication. Thus
the higher the weight centrality of experts, the more influence experts have on the
outcome, and hence the higher the probability will be for playing the social optimum
after network communication. The following theorem provides a sufficient condition for
network communication to be better than no communication.

Theorem 5.3.1. Let s(j∗) ∈ S be the social optimum. If Cwim > 1
n ≥ Cwi for all

im ∈ E tmax and i ∈ N\E tmax, then bt
+

j∗ > btj∗.

The theorem states that, if the weight centrality of best experts is strictly higher than
the average weight centrality, which is in turn at least as high the weight centrality of
all other agents, then the probability for playing the social optimum at round t after
network communication is higher than before network communication, i.e., bt

+

j∗ > btj∗ .

Proof of Theorem 5.3.1. Assume that s(j∗) ∈ S is the social optimum and |E tmax| = e.
Let us list the agents according to the probability value that they assign to s(j∗):

bt1j∗ ≥ . . . ≥ btej∗ > bte+1,j∗ ≥ . . . ≥ btnj∗ (5.2)

Here, the first e agents are the best experts. Since the experts in E tmax have by definition a
maximal belief, agent e+1 must have a strict smaller belief (since |Emax| = e). Note that
by definition of the set E tmax, all experts in E tmax have the same beliefs, i.e., bti1j∗ = bti2j∗ for
all i1, i2 ∈ E tmax. For the first e agents in the enumeration it thus holds bt1j∗ = . . . = btej∗ .
We write btmax j∗ to denote this agreed belief.

Now we will, step by step, show that bt
+

j∗ > btj∗ . First let us decompose bt
+

j∗ .

64



CHAPTER 5. ENRICHING COOPERATIVE GAMES WITH SOCIAL NETWORKS

bt
+

j∗ =
1

n

∑
i∈N

bt
+

ij∗ =
1

n
bt

+

1j∗ + . . .+
1

n
bt

+

nj∗

=
1

n

∑
m∈N

w1mb
t
mj∗ + . . .+

1

n

∑
m∈N

wnmb
t
mj∗ (by Alg.6)

=
1

n
w11b

t
1j∗ + . . .+

1

n
w1nb

t
nj∗+

...

+
1

n
wn1b

t
1j∗ + . . .+

1

n
wnnb

t
nj∗

=
1

n

∑
i∈N

wi1b
t
1j∗ + . . .+

1

n

∑
i∈N

winb
t
nj∗

=
1

n
w1b

t
1j∗ + . . .+

1

n
wnb

t
nj∗ (by wi =

∑
m∈N wmi)

=
1

n

(
w1b

t
1j∗ + . . .+ web

t
ej∗ + we+1b

t
e+1,j∗ + . . .+ wnb

t
nj∗
)

(by the ordering 5.2)

Before we proceed let us compute the total weights for E tmax and N\E tmax. Take any
im ∈ E tmax and i ∈ N\E tmax. Let Cwim > 1/n ≥ Cwi as in the theorem. By definition of
weight centrality this means that: (wim/n) > (1/n) ≥ (wi/n). It must then hold that:
(a) wim > 1, and that (b) wi ≤ 1.

By (a) we get:
wim = 1 + αim , where αim ∈ (0, n− 1].

Since |E tmax| = e, the total weight assigned to all e best experts together is:∑
im∈Etmax

wim = e+ α, where α =
∑

im∈Etmax

αim .

By (b) we get:

wi = 1− αβi, where βi ∈ [0, 1] and
∑

i∈N\Et
βi = 1.

The total weight assigned to all (n− e) non-experts together is then given by:∑
i∈N\Etmax

wi = (n− e)−
∑

i∈N\Etmax

αβi = n− e− α.

Indeed, we see the total amount of weight available in the network equals n, as is assumed.
Let us then continue the transformation of bt

+

j∗ .
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bt
+

j∗ =
1

n

(
(1 + α1)bt1j∗ + . . .+ (1 + αe)b

t
ej∗ + (1− αβe+1)bte+1,j∗ + . . .+ (1− αβn)btnj∗

)
=

1

n

(∑
i∈N

btij∗ +

e∑
i=1

αib
t
ij∗ −

n∑
i=e+1

αβib
t
ij∗

)

=
1

n

(∑
i∈N

btij∗ +
e∑
i=1

αib
t
max j∗ −

n∑
i=e+1

αβib
t
ij∗

)
(by agreement in E tmax)

=
1

n

(∑
i∈N

btij∗ + αbtmax j∗ −
n∑

i=e+1

αβib
t
ij∗

)

>
1

n

(∑
i∈N

btij∗ + αbtmax j∗ −
n∑

i=e+1

αβib
t
max j∗

)
(as btmax j∗ > btij∗ by 5.2)

=
1

n

(∑
i∈N

btij∗ + αbtmax j∗ − αbtmax j∗

n∑
i=e+1

βi

)

=
1

n

(∑
i∈N

btij∗ + αbtmax j∗ − αbtmax j∗

)
= btj∗

Thus the probability for playing the social optimum after network communication is
higher than before (without) network communication. Hence, network communication
is better than no communication at round t.

The above theorem shows that if maximal experts for round t are trusted more than
others, network communication can be beneficial for finding the social optimum. The
condition can be thought of as some sufficient amount of network expertise: if there are
sufficient experts in the network, and these experts have a higher than average weight
centrality, then in total, the network holds sufficient expertise that can increase the
probability for playing the social optimum in the game.

5.3.3 The Existence of Stable Experts

Our search for the effects of network communication is not yet completed. If commu-
nication can be beneficial for a single round, we are extremely interested if it can also
be favourable in every round. We are thus looking for a condition that guarantees net-
work expertise to exist in each round, so that communication always yields a higher
probability for playing the social optimum. For this we define the notion of a stable
expert.

Definition 5.3.6 (Stable Expert). Let E1 = {i ∈ N | i is an expert for round 1} be the
set of initial experts for round t = 1. We say an expert i ∈ E1 is a stable expert if for
all t ≥ 1 it holds that i ∈ E t.
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In words, we call an expert a stable expert if it is an expert in any round t. That is, if his
degree of belief for the social optimum is in each round higher than the average degree
of belief of the society in the network. Note that the notion of stability here refers to
an agent’s expertise in comparison with the expertise of the rest of society. It does not
mean that his beliefs are stable. The following theorem states a sufficient condition for
an initial expert to be a stable expert. In fact, the theorem states an even stronger result
that guarantees that initial experts will always be in the set of best experts. Intuitively,
if such initial experts exist, then stable experts exist, and hence network communication
can outperform learning without communication in every round, so that players learn
to play faster towards the social optimum.

Theorem 5.3.2. Let s(j∗) ∈ S be the social optimum and let E1 be the set of initial
experts for round t = 1. If

(i) E1 is closed; and

(ii) E1 is in agreement at round 1,

then E1 ⊆ E tmax for all t ≥ 1, as long as a total agreement in the network is not reached.

Recall from Chapter 4 that a closed group of agents has by definition no outgoing edges
to agents outside this group. In fact, the above theorem thus states that if initial
experts only assign positive weights to themselves or other initial experts with the same
degrees of belief, then they will always be in the set of best experts for each round
t ≥ 1. We prove the theorem by means of the following lemma. Intuitively, this lemma
guarantees that agents with maximal degrees of belief for the social optimum after
network communication, are the agents with maximal degrees of belief for the social
optimum after gameplay and reinforcement learning.

Lemma 5.3.1. Let s(j∗) ∈ S be the social optimum and let E t+max = {im ∈ N | bt
+

imj∗ =

arg maxi∈N b
t+
ij∗} be the set of best experts after network communication at round t. For

each im ∈ E t
+

max it holds that im ∈ E t+1
max.

Proof. Take an arbitrary expert im ∈ E t
+

max. We show that it must hold that bt+1
imj∗

> bt+1
ij∗

for all i ∈ N\E t+max, so that indeed im ∈ E t+1
max. We distinguish two cases: either the social

optimum s(j∗) is played in the game at round t or not.

(i) Case 1: The social optimum s(j∗) is chosen to be played in the game at round t,
i.e., st = s(j∗). Then according to the Bush-Mosteller reinforcement rule for our
arbitrary expert im ∈ E t

+

max and for all i ∈ N\E t+max, we find:

bt+1
imj∗

= bt
+

imj∗ + λU(st)(1− bt+imj∗)

= (1− λU(st))bt
+

imj∗ + λU(st)

> (1− λU(st))bt
+

ij∗ + λU(st) (since bt
+

imj∗ > bt
+

ij∗ ∀i ∈ N\E t
+

max)

= bt+1
ij∗
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Thus after reinforcement learning, our expert im ∈ E t
+

max still has a higher degree
of belief for the social optimum than any agent outside E t+max. Moreover, as all
maximal experts are by definition always in agreement, we find im ∈ E t+1

max.

(ii) Case 2: The social optimum s(j∗) is not chosen to be played in the game at round
t, i.e., st 6= s(j∗). Then according the Bush-Mosteller reinforcement rule, for expert
im ∈ E t

+

max and for all i ∈ N\E t+max, we find:

bt+1
imj∗

= bt
+

imj∗ − λU(st)bt
+

imj∗

= (1− λU(st))bt
+

imj∗

> (1− λU(st))bt
+

ij∗ (since bt
+

imj∗ > bt
+

ij∗ ∀i ∈ N\E t
+

max)

= bt+1
ij∗

Thus after reinforcement learning, our expert im ∈ E t
+

max still has a higher degree
of belief for the social optimum than any agent outside E t+max. Hence im ∈ E t+1

max.

So in both cases the best experts after network communication are the best experts after
reinforcement learning.

Proof of Theorem 5.3.2. The proof is by induction. Let s(j∗) ∈ S be the social optimum,
let E1 be the closed set of initial experts that is in agreement at round t = 1.

(i) Base case: By definition of agreement it holds that b1i1 q = b1i2 q for all i1, i2 ∈ E1.
By definition of an expert we know that for all ie ∈ E1 and i ∈ N\E1 it holds that
b1iej∗ > b1ij∗ . The beliefs of agents in E1 for the social optimum are thus the highest

beliefs in society, and hence it follows by definition of best experts that E1 = E1
max.

(ii) Inductive step: Assume for the induction hypothesis (IH) that if E1 is closed and
in agreement at round 1, then E1 ⊆ E tmax for some round t. Consider any arbitrary
expert ie ∈ E1. It suffices to show that after network communication and rein-
forcement learning at round t, we find bt+1

iej∗
> bt+1

ij∗ for all i ∈ N\E tmax, such that

ie ∈ E t+1
max and hence E1 ⊆ E t+1

max.

By definition of the group E tmax all agents in E tmax are in agreement. Note that ‘new’
best experts could only be added to E tmax if these agents merely assigned positive
weights to the agents in E1. Thus E tmax must be closed. Hence from Proposition
5.3.1 it then follows that network communication at round t leaves the beliefs of
agents in E tmax unchanged. By the IH we know ie ∈ E tmax and hence bt

+

iej∗ = bt
+

imj∗

for all im ∈ E tmax and btiej∗ > btij∗ for all i ∈ N\E tmax. Each agent i ∈ N\E tmax now
updates his beliefs about the social optimum s(j∗) after network communication
at round t as follows:

bt
+

ij∗ =
∑
m∈N

wimb
t
mj∗ ≤

∑
m∈N

wimb
t
iej∗ = bt

+

iej∗ (5.3)
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Thus the degrees of belief for the social optimum of agents outside E tmax are at most
as high as the degrees of belief of our arbitrary expert ie. Note that the equality
sign only holds in case agent i ∈ N\E tmax assigns all his weight to the experts in
E tmax.

Even more, assuming a total agreement is not reached, there must at least be one
agent in ∈ N\E tmax for which it holds that:

bt
+

inj∗ < bt
+

iej∗ (5.4)

Write E t+max for the set of best experts after network communication at round t, i.e.,
all agents with a maximal degree of belief for the social optimum after network
communication. From Equations 5.3 and 5.4 it thus follows ie ∈ E t

+

max.

From Lemma 5.3.1 it now follows that ie is also still a best expert after gameplay
and reinforcement learning at round t. Thus ie ∈ E t+1

max and hence E1 ⊆ E t+1
max as

required.

It follows from the theorem above that a closed group of initial experts that is in agree-
ment, are stable experts.

Corollary 5.3.2. Let s(j∗) ∈ S be the social optimum and let E1 be the set of initial
experts for round t = 1. If

(i) E1 is closed; and

(ii) E1 is in agreement at round t = 1,

then each i ∈ E1 is a stable expert as long as a total agreement in the network is not
reached.

Since by definition of maximal experts it holds that E tmax ⊆ E t the proof of this corollary
follows immediately from Theorem 5.3.2.

The most straightforward example of a stable expert would be an omniscient player,
who we assume to know with probability 1 what the social optimum is, and who only
assigns a positive weight of trust to himself or to other omniscient agents.

Proposition 5.3.3. Let s(j∗) ∈ S be the social optimum and let O1 = {i ∈ N | b1ij∗ = 1}
be the set of omniscient players at round 1. If O1 is closed, then each i ∈ O1 is a stable
expert, as long as a total agreement is not reached yet.

Intuitively, the above proposition states that if omniscient players only assign positive
weights to themselves or other omniscient players, then they will always be in the set
of experts. By definition, they are thus stable experts. The proof follows immediately
from Corollary 5.3.2, since omniscient players are by definition experts for round t = 1
(as a degree of 1 is always greater than the average degree of belief as long as a total
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agreement in the network is not reached), and since omniscient players all have the same
degrees of belief and thus are in local agreement.

Theorem 5.3.2 shows that if there exists a group of initial experts with the same degrees
of belief, who assign a positive weight only to themselves, then they will be the in the set
of best experts in every following round. Indeed, the group of maximal experts might
become bigger than the group of initial experts, but ‘new’ maximal experts can only
have a degree of belief for the social optimum that is at most as high as the respective
degree of belief of the initial experts. Under certain conditions of E1, it even holds that
the group of initial experts is exactly the group maximal experts for each round t ≥ 1,
i.e., E1 = E tmax. For this we introduce the notion of maximally closed.

Definition 5.3.7 (Maximally Closed). Let G = (N,EW ) be a weighted directed graph
for which W is the stochastic n × n-matrix that represents the weights of the edges in
the graph. A set of nodes M ⊆ N is maximally closed relative to W if M is closed
and there exists no i ∈ N\M such that M ′ := M ∪ {i} is also closed.

In words, if a group M is maximally closed, then all agents outside of M are connected
to at least one other agent outside of M . Thus when adding one of these agents outside
of M to group M , this new group M ′ would have outgoing edges to agents outside of
M ′, so that the new group is no longer closed.

Proposition 5.3.4. Let s(j∗) ∈ S be the social optimum and let E1 be the set of initial
experts for round t = 1. If

(i) E1 is maximally closed; and

(ii) E1 is in agreement at round t = 1,

then for all t ≥ 1 it holds that E1 = E tmax, as long as a total agreement in the network is
not reached.

The proof follows immediately from Definition 5.3.7 and Theorem 5.3.2. Intuitively,
if the group of initial experts is maximally closed, then it means that for all agents
i ∈ N\E1 there must exist another agent j ∈ N\E1 so that wij > 0. This guarantees
that agents outside of E1 will always have a smaller degree of belief than agents inside E1

at every round t ≥ 1. Namely, since the updated beliefs are weighted arithmetic means
of beliefs of neighbours, agents outside E1 can only achieve the same beliefs as agents
inside E1 if they put all their weights on agents in E1. Thus the group of experts might
become bigger than the group of initial experts, but new experts can never attain the
same degree of belief for the social optimum as the initial experts. This guarantees that
the initial experts will in each round be the only maximal experts.

Corollary 5.3.3. Let s(j∗) ∈ S be the social optimum and let E1 be the set of initial
experts. If

(i) E1 is maximally closed;
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(ii) E1 is in agreement at round t = 1; and

(iii) Cwie >
1
n ≥ C

w
i for each ie ∈ E1 and i ∈ N\E1,

then bt
+

j∗ > btj∗ at each round t ≥ 1, as long as at total agreement in the network is not
reached.

In words, under the stated conditions for initial experts, the probability for playing the
social optimum is in each round higher after network communication than before (or
without) network communication. This corollary thus provides a sufficient condition for
learning with network communication to be better in the long run than learning without
network communication. The proof follows immediately from Theorem 5.3.1 and Propo-
sition 5.3.4. Namely, from the assumptions (i) and (ii) it follows that the initial group
of experts is always the best group of experts, i.e., E1 = E tmax ⊆ E t for all rounds t ≥ 1.
Now if this best group of experts satisfies the stated condition for weight centrality (iii),
it follows from Theorem 5.3.1 that the probability for playing the social optimum after
network communication is higher than without communication in every round t ≥ 1.

To summarize, in this chapter we proposed an iterative model of learning that follows the
procedures of network communication, belief aggregation, and gameplay and reinforce-
ment learning. We showed that adding network communication to cooperative games,
in which players collectively learn by reinforcement, can have a positive influence on the
learning outcome under particular conditions of the initial network:

• If there exist maximal experts for a certain round, who have a higher than average
weight centrality, and all other agents have at most an average weight centrality,
network communication can be beneficial at the given round.

• If there exist a maximally closed group of initial experts that is in agreement, and
if these experts have a higher than average weight centrality (and all other agents
have at most an average weight centrality), then network communication can also
be better in the long run.

Note that these conditions require very specific network structures in order to make
network communication beneficial. For many other network structures, adding network
communication to cooperative games can actually be worse.2 In the next chapter, we will
provide recommendations on how to combine serious games with online social networks,
so that we expect the addition of the network structure to indeed enhance the collective
learning effect.

2We will elaborate on this issue in more detail in the Conclusions and Perspectives.
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Chapter 6

Recommendations on Developing
Serious Games

In the previous chapter we proposed a learning paradigm that combines different meth-
ods in order to describe how players can make use of network communication, when
learning towards a common goal. In this final chapter we will discuss how our results
can be translated to the digital techniques of serious games and online social networks.
Based on the findings from our mathematical approach, as well as on findings from pre-
vious empirical research on serious games and social networks1, we provide five main
recommendations on how to include network structures in serious games. We make the
recommendations more specific by means of an example of a real serious game that is
currently in development. We will describe its current game design and suggest how
this design can be extended to a social network setting. Moreover, we recognize that
any such recommendations should be empirically verified. Therefore, we will end this
chapter with the description of an experimental set-up to test if combining games with
networks can indeed enhance the learning effect in the way our model suggests.

6.1 Interpretation of the Game-Network Learning Model

In our model players can learn as a team how to cooperate by receiving two types of
feedback: (1) feedback from co-players in the network (by way of communication); and
(2) feedback from the game (by way of rewards). When utilizing the Game-Network
Learning Model we will focus on a specific kind of serious games: multiplayer serious
games of which (one of) the learning objective(s) is cooperation. Players do not act as
strategic opponents but as one team that collectively acts as grand coalition in the game.

• Step 1: network communication: The first procedure of the learning model de-
scribes communication among the agents, which relies on a specific social network

1See Appendix A for an overview of psychological research on the learning effects of both digital
techniques.
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structure in which the players are situated. The network is not an existing in-
dependent social network (like Facebook), but rather a network structure that is
purposely developed as part of the game. Players share with their friends in the
network their individual opinions about what team strategy is best to adopt in
the game. For example, consider a game situation in which a team of militarists
is standing in front of a house in which the enemy is living. They can together
decide to either go in as a team, wait outside, or split up. Before making the
decision, they can communicate with each other via an online network.2 The net-
work structure determines who can communicate with who. One can imagine that
for this example (as well as for many other game examples) it can be beneficial
if there are certain players, like team captains, who have a central position in the
network and thus can exert more influence on the team than others. Each team
player has his private opinion and can adjust this opinion after taking into account
the degree of trust towards his network friends. For example, if some players have
more experience with entering enemy buildings than others, then it makes sense to
put some more weight on the opinion of experienced players. In our model the de-
grees of trust and individual opinions are expressed in numerical values. Of course
human interaction and decision-making often cannot be easily expressed this way.
Human players find it much easier to make qualitative comparisons in terms of
‘better than’ or ‘worse than’. For serious games with human players, we therefore
suggest players to make qualitative instead of quantitative comparisons between
the possible team strategies and between the friends in the network. Players can
then communicate to other players what strategy they believe is best to adopt and
they can decide to only adjust their private opinion if a highly trustworthy friend
contradicts their beliefs.

• Step 2: preference aggregation: After communicating in the network, all individ-
ual opinions need to be combined so that the group can make a collective decision
about what to do in the game. The second procedure of our learning model, called
belief aggregation, describes a possible method for such a collective decision-making
process. In terms of numerical values, the mathematical procedure in the model
adds up all the individual probabilistic preferences and calculates an average. The
strategy with the highest average is then the strategy that the team will most
likely play in the game. For serious games with human players who do not use
any numerical values, one could think of this step as a voting procedure that is an
included tool in the game system. After every player in the game has communi-
cated his private opinion to his friends in the network, and possibly adjusted this
opinion based on what his friends believe, every player can subsequently vote for
the team strategy that he thinks is the best strategy to play in the game. The
team strategy that receives most votes will be the strategy that the team will play.

2This is example is inspired by the existing game World of Warcraft, in which human players can
participate via an online game and network system, see http://eu.battle.net/wow/en/.
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• Step 3: Gameplay and Reinforcement: The third and final procedure of our learn-
ing model is gameplay and reinforcement learning. The strategy that was voted
for in step 2 is the team strategy that will be played in the game. For example,
if players in the above-mentioned military game voted to enter the building, then
that is the action which they will perform in the game. Subsequently, each player
receives a reward in the game according to the played strategy. For serious games
in which players act together as a team, we suggest that all players receive an
individual reward as well as a group reward for the team (without exactly knowing
how many points all other players received individually). The goal for the players
is to maximize this total reward. The distinction between individual rewards and
group rewards is already often made in serious games for multiple players. It is
meant to stimulate players to perform a certain individual task, and at the same
time motivate him to cooperate with the team. After the game is played, players
can (again) adjust their individual opinions about what the best way of cooper-
ating is. They can therefore rely on the team rewards which they received in the
previous step in the game. Intuitively, if the team reward was high, the players will
probably want to act similarly in comparable future situations. If the reward was
low, it makes more sense to try out a different team strategy in the future. Just
as in the model, we assume that human players have a bounded memory: when
trying out several strategies in several game rounds, they will not always remem-
ber which strategy corresponds to which reward. In the Game-Network Learning
Model the numerical values are used to increase the likelihood for adopting a team
strategy again in the future if the rewards were high (and decrease the likelihood
if the rewards were low). For serious games with human players, who presumably
do not calculate the exact likelihood of adopting a certain strategy, we suggest
that the rewards can be used to change the qualitative ranking of the alternative
strategies. If a player considers a total reward to be high, he can decide to increase
the ranking of the corresponding strategy; if a player believes the total reward was
low, he can decide to decrease the ranking of the corresponding strategy.

6.2 Recommendations on Games in Development

As mentioned in the Introduction, theoretical and empirical studies from psychology of
motivation and learning, suggest that combining games and social networks can signif-
icantly enhance the learning effect (De-Marcos et al., 2014; Donmus, 2010; Frost and
Eden, 2014; Li et al., 2013). As we showed in Section 5.3, adding a social network
environment to a cooperative multiplayer game can indeed enhance the learning effect,
but requires specific properties of the network structure. In this section we will try
to translate these conditions for serious games that are currently in development. The
recommendations listed below are thus meant for game designers, who contemplate the
use of social network communication.
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1. Include independent experts with a central network position.
One of the most important findings of our mathematical learning model, is that
network communication can especially enhance the learning effect if there exist
independent experts in the game with a central network position. By ‘independent’,
we mean the experts who can communicate with regular players in the game, but
are not influenced by the opinion or knowledge of less non-expert players. It is
because the latter are less knowledgeable at the beginning of the game, and hence
it would be harmful for the experts if they adjust their own knowledge by listening
to the non-experts. By ‘central network position’, we mean that the experts should
be available for communication to plenty (if not all) other players.

One could imagine that an expert who is situated at the ‘outside’ of the network,
being only connected to a few regular players, cannot share his knowledge with
many players and hence cannot exert much influence on the learning outcome.
Depending on the type of game, we could think of experts as teachers, doctors,
managers, professors, or other types of team leaders. We emphasize that they
should participate in the game as regular players, and that their authority comes
from the trust of other players, rather than designation. It is also very important
that these experts are right in their beliefs, otherwise they may (unintentionally)
mislead other players.

To give such experts an independent role, one could for example think of the possi-
bility for experts to provide hints or instructions. In that way, the communication
between experts and non-experts is merely in one direction, guaranteeing that only
the beneficial part of the communication is exploited.

2. Include game elements that enhance the reliability of experts.
When making use of central experts, the learning effect can be enhanced even
further if the reliability of experts increases during the game. In our model it
is not allowed for players to change their trust towards other individuals in the
network during the game. However, it follows from the model that the higher the
amount of trust that players put on experts, the more experts are listened to during
network communication. We therefore suggest to make use of game elements that
enhance the trustworthiness of experts. For example, one could think of a regular
player in the game receiving points after performing some action, which he based
on a hint or instruction given by a certain expert. The more often a player receives
a high reward for actions that were based on the knowledge of a certain expert,
the more faith that player will have in that expert in the future. This also allows
players to distinguish between several experts, and adjust this distinction while
playing the game, based on experiences from the past.

3. Allow for non-human resources in the network, accessible to all players.
In addition to human experts, we suggest game developers to also consider includ-
ing non-human resources in the network, like scientific books, journals, papers,
and infographics. These non-human resources can be thought of as independent
experts, and might even be more trustworthy than human experts. We suggest
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that it can be beneficial if all players have access to these sources, which can be
compared to the resources having a very central position in the network. Like we
described in the previous two recommendations, the more central the position of
an expert and the higher its reliability, the greater the enhancement of the learning
effect can be. Thus a trustworthy non-human source that all players have access
to can further benefit the learning outcome. As regular education systems already
make use of books, journals, and papers, the games would possibly be taken more
seriously if these well-established and familiar education methods are included as
an element of the game.

4. Include rewards that stimulate cooperation.
Our players learn in a cooperative game and are acting as one big team. We
therefore rely on a reinforcement method that makes use of a group reward, rather
than an individual reward. Although we assume humans are not as rational as
artificial players, one could imagine that if the rewards for the several players differ
a lot, players are not motivated towards the same goal. For example, suppose one
of two team players in a football game gets a very high reward when individually
running towards goal and making a shot. If, on the contrary, his team mate would
receive a very high reward only when his co-player would pass the ball to him
so that he could make a shot, then the players are not motivated to cooperate,
even though they are playing in the same team. For serious games that have
the objective to stimulate cooperation among the players, we therefore suggest to
provide relatively high amount of points to all players.

5. Use private chat functions instead of blogs for non-expert players.
The main potential benefit of adding a social network environment to a multiplayer
game, is that it enables players to communicate. Moreover, when making use of
an online social network, it is even possible for players to communicate from a
distance. For a principal tool in the social network that enables players to com-
municate, we suggest to make use of private chat functions, rather than ‘blogs’ or
‘walls’. The latter allow observing an entire group of players, whereas private chats
do not. If the communication is observable for an entire group, then every player
in that group can influence the knowledge or opinion of every other player in the
group (this situation is known as strongly connected groups in graph theory.) We
showed that the learning effect can be enhanced if non-expert players do not have
too much influence (Theorem (5.3.1)). By making use of private chat functions,
via which players can only communicate with a selected group of other players,
the influence of non-expert players can be restricted.

6.3 Example: Airline Safety Heroes

The serious game Airline Safety Heroes is meant for employees of an airline company to
learn how to cooperate and behave in unsafe situations. The game is a digital card game,
consisting of three types of cards: (1) an unsafe situation; (2) a prevention tool; and (3)
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a solution. Together these three types of cards can form a set, for which a player can
receive points. By making a correct set of cards, players can learn how to prevent and
solve a particular unsafe situation. The goal for the players is to make as many correct
sets as possible. Players can search for a set of cards by exchanging the cards that they
hold with cards from a stock. Additionally, players are also allowed to exchange cards
with each other, for which communication about the specific types of sets is necessary.
According to our learning model players together learn to play the optimal strategy in
the game. So what would an optimal strategy in this game be? As each player receives
individual points when making a set of cards, the greater the number of players that
make a set (or several sets) during one round, the higher the social welfare of that round
will be. Intuitively, an optimal strategy thus would be a joint strategy in which all
players make as many sets as possible. In that way, all players together hold information
about preventing and solving unsafe situations; they are thus collectively learning about
how to behave in such case.

The Airline Safety Game does not make use of a social network yet. We therefore
study the question of how to include such a network in the game, such that is presumably
enhances the learning effect. As communication is already one of the main features of the
game, one could think of this communication to take place in a social network. Employees
can exchange cards with neighbours in their social network, via chat functions. Besides
the exchange of cards, we suggest to allow players for communication about the game as
well, such that players can consult their neighbours on the correctness of sets of cards.
Additionally, we suggest to include independent (human and non-human) experts in the
network, which can for example be the managers of different divisions or the employees of
the safety department. Moreover, when providing these experts with a central position
in the network, they can communicate with more employees and share their knowledge
about how to behave in unsafe situations, so that possibly more correct sets of cards can
be formed. Finally, we recommend players to not only receive points when they form a
set of cards themselves, but also a share of the points when they help other players to
form a correct set of cards, so that cooperation is stimulated.

6.3.1 Experimental Set-up

Whether or not it can be beneficial for human players’ learning behaviour to enrich
serious games with social networks in the way we suggest, experiments are needed to
empirically verify the added value of the new proposed educational tool. In this section
we write a possible set-up for an experiment that is aimed to compare the learning
effect of a serious game enriched with a social network structure, to the learning effect
of the same serious game without a social network structure. The set-up is inspired on
experiments that are recently conducted for testing the learning effect of serious games
(Cho et al., 2007; Connolly et al., 2012; Lagro et al., 2014; Oprins and Visschedijk,
2013). We write the set-up for the Airline Safety Heroes game, which we introduced in
the previous section. A similar set-up can be used for other multiplayer serious games
of which learning by means of cooperation is one of the main purposes.

77



CHAPTER 6. RECOMMENDATIONS ON DEVELOPING SERIOUS GAMES

• Objective: Compare the learning effect of the original multiplayer cooperative game
Airline Safety Heroes to the learning effect of an extended version, in which players
have the possibility to communicate via an imposed social network structure. We
define the learning effect in terms of knowledge acquisition about safety and social
skills improvement regarding cooperation.

• Hypotheses: Hypothesis (a): We expect that the original Airline Safety Heroes
game increases the learning effect compared to regular learning methods without
games. Hypothesis (b): we expect that the extended version of the game that is
enriched with a social network structure, will even further enhance the learning
effect, if specific conditions on the network structure are satisfied. We provide a
description of these specific conditions under Intervention.

• Participants: 100 employees of an airline company, male and female, age between
25 and 35. Both experts on safety issues as well as regular employees should be
included.

• Intervention: We distinguish between three different test groups:

1. Game and network intervention: this group will learn about safety by means
of the Airline Safety Heroes game that is extended to a social network struc-
ture. The social network structure is established beforehand and satisfies the
following constraints:

(i) Division managers, employees of the safety department and other mem-
bers of the organization that have more experience and knowledge re-
garding safety than a regular employee, should receive a central (highly
connected) position in the social network.

(ii) The communication between the central experts and regular players should
be mainly in one direction: experts provide hints and instructions to reg-
ular players, but are not influenced in the way they act by non-expert
players.

(iii) Communication between regular players happens via private chat chan-
nels, instead of publicly available blogs.

In addition to the game with social network, members of this group will have
access to regular (non-human) resources for safety instructions, distributed
to all employees by way of reports, videos, and presentation hand-outs.

2. Game intervention only : this group will learn about safety by means of the
original Airline Safety Heroes game (in which social network communication
is not possible). In addition to the game, members of this group will have
access to regular (non-human) resources for safety instructions, distributed
to all employees by way of reports, videos, and presentation hand-outs.

3. Control group: this group will learn about safety merely by making use of
the regular (non-human) resources for safety instructions, distributed to all
employees by way of reports, videos, and presentation hand-outs.
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• Study Design: The experiment follows a controlled pre-post measurement design.
This means that the study compares the knowledge and skills of participants in the
network-intervened group with participants in the regular game-intervened group,
and it compares the knowledge and skills of participants of both intervened groups
with participants of a control group. Comparisons are made both before as well
as after conducting the experiment. All three groups receive the same amount of
time, namely four weeks, to learn how to prevent and solve unsafe situations.

• Measurements: We define the learning effect in terms of knowledge acquisition
about safety and social skills improvement regarding cooperation. We compare the
learning effects in the three different groups by means of three possible measures
before and after the learning period of four weeks:

1. Participants make a written exam about safety. The questions will concern
prevention methods and possible solutions for unsafe situations at the work
environment. The written exam is to test the knowledge of participants about
safety. The exam is judged by a grade on a scale from 1 to 10.

2. Participants review their own social skills and team behaviour by means of
a case-based questionnaire, that treats examples of social situations in which
communication and cooperation is needed. Participants answer questions
about how they would act in each of the different scenarios. This review is to
measure the social skills and cooperativeness of participants. The participants
can answer the questions in terms of ‘bad/not sufficient/sufficient/good.’

3. Participants fill out a questionnaire about personal characteristics, like age,
gender, and social traits. For each of the mentioned social traits, participants
respond up to what extend they recognize themselves in these characteristics:
‘not at all/a little/fairly/a lot’. This measurement is meant to take into
account the natural differences between the participants.

After the experiment is conducted, the pre-measurements are compared to the
post-measurements. The greater the differences between the pre- and post-
measurements of measurements 1 and 2, the greater the learning effect is with
regard to, respectively, knowledge acquisition and social skill improvement.

To summarize, in this chapter we discussed how our results can be utilized to make
conjectures about learning via the digital techniques of serious games and online social
networks. For game designers who contemplate the use of social network communica-
tion in games, we recommend to include central and reliable experts in the network,
to allow for non-human resources, to stimulate cooperation by way of rewards and to
include private chat functions. To empirically test the effects of such implementations,
we provided an experimental set-up for the serious game Airline Safety Heroes.
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Conclusions and Perspectives

Synthesis

In this thesis we have studied the possibility of formal modelling the process of learning
in game scenarios, among agents arranged in a social network. We merged existing
computational approaches to learning in games and learning in social networks, into a
novel learning model that focusses on cooperative games. The main purpose of this
paradigm is to describe social phenomena in which the behaviour of the entire group is
more important than the behaviour of the individuals alone. We hereby assume players
to act as one grand coalition, trying to achieve a common. Players in the coalition have
the possibility to communicate in a social network and share their opinion with their
neighbours. Each player thus learns to adjust his behaviour by receiving two types of
feedback: (1) feedback from the network, by way of communication; and (2) feedback
from the game, by way of rewards.

In Chapter 1 we introduced the basic notions from game theory, graph theory, and
social choice theory. Subsequently, in Chapter 2 we discussed several existing models for
learning in games, among which Cournot adjustment, fictitious play, and reinforcement
learning. The latter concerns a stochastic learning procedure, in which players learn to
maximize their individual payoffs in games with mixed strategies.

In Chapter 3 we extended this model of individual reinforcement to a collective
model of joint reinforcement, in which a grand coalition can learn to maximize the social
welfare. In order to determine a societal probability distribution that the coalition
holds over the set of joint strategies, we introduced the notion of a probabilistic social
choice function. We showed that this aggregation method satisfies a variety of axiomatic
properties, among which anonymity, unanimity, irrelevance of alternatives and social
rationality. We motivated why these properties are desirable qualities for the purpose
of modelling collective decision-making in cooperative games.

Thereafter, in Chapter 4 we provided a classical model for social network learning
that was first introduced by DeGroot (1974). In this model, each agent holds an indi-
vidual belief regarding some statement or event. He can update this belief after each
round of network communication, taking into account the opinion of his neighbours and
a degree of trust towards his neighbours’ expertise. We stated and proved the main
results due to DeGroot, concerning the relation between network structure and conver-
gence of beliefs. In addition, we explained how the model of Lehrer and Wagner (1981),
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originally aimed to model preference aggregation, can be interpreted as a similar model
for social network learning. In this variant of DeGroot’s model, agents can communicate
about a set of alternatives, over which they hold a probabilistic preference order.

In Chapter 5 we showed how the collective learning model from Chapter 3 can be
enriched with Lehrer’s and Wagner’s social network model from Chapter 4. That is,
we introduced the Game-Network Learning Model, that describes an iterative process
of network communication, belief aggregation, and gameplay with reinforcement learn-
ing. We provided an algorithmic description of the model, and studied the question of
how interaction in a social network can influence the learning behaviour of players in a
cooperative game. We proved that adding a social network structure to a cooperative
game can increase the probability for playing the social optimum, under specific condi-
tions on the network structure. Indeed, when players communicate in a social network
about which joint strategy to adopt, the presence of highly trusted experts guarantees
that communication enhances the learning effect. Moreover, when such experts form a
closed group of agents in the network who are all in agreement, the experts are stable.
This ensures that network communication increases the probability for playing the social
optimum in each round, so that communication is also beneficial in the long run.

To test if combining games with networks can indeed enhance the learning effect
in the way our model suggests, we provided an experimental set-up in Chapter 6. We
discussed how our results can make conjectures about learning via the digital techniques
of serious games and online social networks, and we provided a list of recommendations
on how to include network structures in serious games.

From our results we conclude that interaction in specific social networks can posi-
tively influence the learning behaviour of players in a cooperative game. Learning with
network communication can be better than learning without communication, when there
exist players in the game who know better than average which joint strategy corresponds
to the social optimum. If these players are sufficiently trusted by society, and players
with little knowledge about the social optimum are considered less authorial, then the
knowledgeable players can convince the less knowledgeable players towards the social op-
timum. This outcome seems to align with the natural intuition that a class of students
presumably learns to solve quadratic equations better when listening to their mathemat-
ics teacher than when listening to their English teacher. The results therefore contribute
to the presumption that our proposed learning paradigm might be a proper first step to
formally model the process of learning in serious games with social networks.

Discussion and Future Research

Since the learning model that we propose is novel with respect to the different theories
it combines, there are numerous topics for discussion and directions for future research.

• High level of cooperation: The model that we propose in this chapter requires a
high level of cooperation between the agents: they communicate about the joint
strategy rather than their individual strategy, they together choose what joint
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strategy to play in the game rather than privately choosing an individual strategy,
and they update their beliefs according to the group utility (i.e., social welfare)
rather than their individual utility. Such high level of unanimity only make sense
for specific social phenomena in which the behaviour of the society as a unit is
considered more important than the behaviour of individuals alone.

We envision possible adjustments or extensions of the model in the domain of
competitive games. For example, one could make use of cooperative game theory
to describe transferable utility (TU) games, in which several coalitions can play
against each other. Our model could be extended to a setting in which different
social networks, representing different coalitions, play a competitive game. Players
inside one network are still learning towards a common goal, but the outcome of
the game also depends on the behaviour of other coalitions.

Continuing on a possible extension for competitive settings, we suggest that our
model could also be transformed into a paradigm that assumes players to be indi-
vidually rational instead of group-rational. Then, instead of reinforcing with the
average social welfare, players could reinforce with their individual payoffs. Also,
instead of honestly communicating in the network about their private preferences,
players could manipulate the communication by lying about their beliefs.

• Notions of stability: This thesis actually treats three different notions of stability.
Firstly, if all agents agree on the weight they assign to some other agent, we talk
of consensual weights, which can be thought of as stable weights. Secondly if all
agents have the same probability distribution over the set of alternatives, we talk
of consensual beliefs, which can be seen as stable beliefs. Thirdly, if all initial
experts have a higher than average belief for the social optimum in every round
t ≥ 1, we talk of stable experts.

It is interesting to shed some light on the logical relations between these different
notions of stability. From a computational point of view, we could state that the
stability of weights implies the stability of beliefs. Namely, once the matrix of
weights W converges to a stable matrix in which all rows are equal, every initial
belief vector will result in a vector with the same belief for every agent. Hence a
consensus is reached so that beliefs indeed remain stable. Moreover, the stability
of beliefs implies the stability of experts. Since being an expert for some round
depends on the beliefs of all agents for that round, once beliefs are stable, the
experts of a given round will be experts in any following round.

However, we emphasize that these implications can be stated only when adopting
a computational point of view. In fact, when interpreting the weights as individual
trusts towards neighbours in the initial network structure, it is not possible to talk
of consensual or stable weights. This is because the social network is assumed
to be static and imposed on the agents before communication starts. In this
interpretation of the model, the weights do not change and therefore cannot attain
consensual values. As already discussed in Section 4.3, we see it as a drawback of
the model that networks and corresponding weights are assumed to be static. For
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a possible direction of future research, we would be very interested in a dynamic
extension of our model, that allows for network changes over time. For example,
one could think of players arriving at a certain round of the game, thereby adding
new links in the social network. Additionally, one could think of players adjusting
their weights of trust towards neighbours, after observing the outcome of the game.
Finally, one could think of players choosing the weights of trust based on the
network structure: if one neighbour has a very central position in the network,
it can be beneficial to assign him a higher amount of trust. However, this last
suggestion requires some knowledge of the agents regarding the network structure.

• Epistemic knowledge and beliefs of players: In our model we assume players not
to know their payoff functions, and not to be aware of the entire network struc-
ture. The thesis therefore constitutes a first step in what could be a larger body of
work in the domain of Dynamic Epistemic Logic. Namely, by utilizing epistemic
models, one could elaborate on these different notions of (restricted) knowledge.
For example, the possible worlds in an epistemic model could represent different
network structures, allowing a player to reason about which structure seems most
plausible. In addition, propositions about the possible payoff functions can also be
represented in an epistemic model. Moreover, by making use of private announce-
ments, one could endeavour to model network communication with corresponding
belief updates.

Another possible direction for further work in the domain of epistemic logic, could
be the use of Probabilistic Dynamic Epistemic Logic to study uncertainty about
uncertainty. In our model we assume that players know their own probability dis-
tribution over the set of possible joint strategies. However, in some cases it might
be reasonable to assume that players are indifferent between several probability
distributions. Moreover, when studying beliefs about uncertainty, one could visu-
alize the beliefs of a player about the probability distribution of another player.
A reasonable amount of work on logics for social networks already has been car-
ried out by (among others) Christoff and Hansen (2014); Hansen (2014); Liu et al.
(2014); Seligman et al. (2013); and Zollman (2012), although not in the context of
cooperative games.

• Predictive capacity and conditions on the network structure: The model that we
propose is a normative model that predicts how players in a cooperative game could
possibly learn towards the social optimum, when making use of network commu-
nication and reinforcement learning. We were inspired by the digital techniques
of serious games and online social networks. One could question to what extent
our proposed learning paradigm correctly models real human learning in serious
games with social networks. Therefore, testing our model empirically by means
of psychological experiments with human participants playing a game in a social
network, would help shed some light on the accurateness of our model.

Continuing on the topic of serious games, it is worth mentioning here that a game
developer could attack our paradigm with respect to what type of learning it
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actually models. That is, in our paradigm players gain knowledge about the game
itself: they learn to play the optimal strategy in the game. Serious games however,
are meant for humans to learn something about the real world, e.g., to learn
about how to behave in unsafe situations or how to treat medical patients. Game
developers could thus question whether a paradigm that models learning towards
a social optimum is actually an accurate approach to model learning in serious
games. We argue that, since many serious games concern simulation games in
which real-life situations are simulated, the strategies in a serious game represent
different scenarios of real-world phenomena. Therefore, learning to play the best
strategy in a simulation game, contributes to learning how to behave in comparable
real-life situations.

Additionally, besides empirical tests by means of psychological experiments, to
test the predictive capacity of our model an interesting line of research would
be to run computer simulations. One could compare different network structures
and different types of games. Not only would computer simulations contribute to
analysing the long-term behaviour of the players in the game, it could also help
providing additional insights with respect to the conditions on networks needed
for a positive learning effect. For example, one could compare the different notions
of centrality of experts, thereby investigating which notion of centrality seems to
be most important for enhancing the learning effect. Moreover, maybe even a
characterization can be provided of the networks that enhance the learning effect.

Finally, one could also try to find conditions for the opposite result, in which case
network communication is always worse. Thus far, we were only able to provide
sufficient conditions for network communication to be beneficial. However, one
could imagine that without the presence of central experts, network communica-
tion can actually be worse. Namely, if only a few ‘stupid’ players in the game
receive a relatively high weight, they can badly influence their neighbours with
their incorrect beliefs, such that the probability for playing the social optimum de-
creases. Future research, possibly supported by simulations, could provide insights
on the existence of necessary and sufficient conditions for network communication
to be worse.

• Choices made for the three procedures: The Game-Network Learning model con-
sists of three sequential procedures: network communication, belief aggregation,
and gameplay with reinforcement learning. Each of the procedures is inspired by
an existing computational model. The joint specification of these variables entails
a particular learning model. Varying in the choices made for modelling each of the
procedures, would result in new learning paradigms that might be worth consid-
ering. For example, instead of relying on DeGroot’s and Lehrer’s and Wagner’s
model for social network learning, one could choose to make use of Bayesian learn-
ing. A first attempt of utilizing Bayesian updating in social networks has been
done by Acemoglu and Ozdaglar (2010) and Bala and Goyal (1998).

As for the preference aggregation procedure, we chose to rely on the averaged
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probabilistic social choice function, since it allows for belief aggregation as long
as a consensus about the weights is not reached yet. Nonetheless, as we already
mention in Chapter 3, one could interpret the averaged method as a special case
of the weighted method, in which the weights are equally divided. It is then
questionable whether or not this method is the best intermediate solution as long
as a consensus is not reached yet. Namely, consider a situation in which almost all
agents agree to assign all of their weight to one and the same central neighbour.
But suppose there exists one agent in the network who does not agree with that.
Then a consensus of weights is not reached yet, but it seems counterintuitive to
adopt the averaged method since majority disagrees with that. On the other hand,
the iterative process of network communication (which precedes belief aggregation)
guarantees that individual preferences for weights are already taken into account.
Since each individual updates his beliefs based on the weights that he assigns to
his neighbours, the Game-Network Learning Model thus does not ignore these
preferences for weights.

Yet, as their exist more probabilistic social choice functions than the two that we
introduced in this thesis, it would be interesting to investigate the possible benefits
of adopting a different method. For example, one could consider to adopt one of
the probabilistic social choice functions proposed by Barberà et al. (1998), that
are strategy-proof. It would be worth investigating which of the other axiomatic
properties, besides strategy-proofness, these alternative methods for preference
aggregation satisfy.

Finally, as for the procedure of reinforcement learning, a different model could
be chosen than the Bush-Mosteller reinforcement model, e.g. one could choose
to adopt Roth-Erev reinforcement learning. Also, instead of reinforcing with the
average social welfare factor, one could rely on the selfishness level, as was already
discussed in Chapter 2.

If we have succeeded in our purpose, then the reader will agree that the learning paradigm
proposed in this thesis constitutes a first step to a larger body of work. The model
is novel with respect to its interdisciplinary character, combining insights from game
theory, graph theory, and social choice theory. It can therefore be extended in numerous
theoretical directions. Moreover, as our model is aimed to shed a light on combining
serious games with online social networks, a variety of empirical directions could be
explored as well. We strongly encourage researchers to take these directions, and we are
very inquisitive about further developments on the subject matter.
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K.R. Apt and G. Schäfer. Selfishness Level of Strategic Games. Journal of AI Research,
49:207–240, 2014.

K. Arrow. Social Choice and Individual Values. John Wiley and Sons, New York, 1951.

V. Bala and S. Goyal. Learning from neighbors. Review of Economic Studies, 5:205–228,
1998.
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Appendix A

Games and Networks in Society

The aim of this chapter is to further explain the motivation of the thesis topic and the
real-life applications of learning in games and social networks. We clarify how both
serious games and online social networks can stimulate learning. Moreover, we analyse
the proposition of psychological researchers that a combination of the two can be a
valuable asset for education in society.

Learning by Playing Serious Games

Serious games (sometimes also called applied games) can be distinguished from regular
games by their purpose: whereas regular games are developed primarily for fun, en-
tertainment and recreation, the main aims of serious games are learning and behaviour
change. Implementations of serious games can be found in various industries, like health-
care, business and education. Several empirical studies treat the impact of serious games
with respect to learning. Connolly et al. (2012) provide a systematic review of 129 em-
pirical studies reporting on the effectiveness of serious games. Based on these studies,
a classification can be made into five different learning and behavioural impacts that
digital games can have. The following positive effects can be identified for serious games
in particular.

1. Knowledge Acquisition
Serious games can support the acquisition of knowledge or the understanding of
the content across a wide range of areas. Most games that were investigated on
this particular effect are games meant for education (both tertiary and high school
education).

2. Social Skills Improvement
Serious games meant for multiple players can enhance the social skills of players.
These social skills include communication, trust and teamwork performances.

3. Behaviour Change
The notion of behaviour change covers all possible effects in which players become
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aware of their environment and change their thoughts and behaviour accordingly.
For example, role-playing games in which players need to play the role of a homeless
can enhance sympathy towards homeless people; games that incorporate advertis-
ing for healthy food can change players’ diets.

4. Perceptual and Cognitive Skills Improvement
Perceptual skills in the context of video games mostly concern visual and auditory
abilities; cognitive skills include a broader range of abilities like memory, attention
and problem solving. Both perceptual and cognitive skills can be improved by
playing serious games.

5. Motor Skills Improvement
Most games aimed at improving motor skills are simulation games. In these games
a real-life situation is simulated and players of the game have to respond to situa-
tions in the game. This type of games is for example used in flight instructions or
military services.

Game Elements that Stimulate Learning

Modern theories of effective learning suggest that the process of learning is most effective
when the learning environment is active, experiential, problem-based and provides the
learner with immediate feedback (Connolly et al., 2012). Game elements in serious games
contribute to such an environment. Different studies suggest different game elements that
enhance the learning effects described in the previous section. Based on suggestions made
by Connolly et al. (2012), De-Marcos et al. (2014), Oprins and Visschedijk (2013) and
van Staalduinen and de Freitas (2011), we summarized the key elements of games that
stimulate learning in five categories.

1. Feedback
Feedback in a game is often provided by means of rewards (scoring). The game
gives the player feedback on the outcome of his actions. This provides players
to learn from their previous actions. In multiplayer games, rewards can also be
used as a measure to compare actions of competing players. Competition then also
becomes an additional game element that contributes to learning.

2. Interaction
Whereas Oprins and Visschedijk (2013) claim that collaboration in particular stim-
ulate the process of learning, Van Staalduinen and De Freitas suggest that interac-
tion with other players in general can have a positive impact on the learning pro-
cess. Interaction between players, either face-to-face or mediated by technology,
provides opportunities for achieving a sense of belonging and acknowledgements by
others. But also interaction with non-players, for example receiving hints during
the game from an extarnal source, contributes to learning.

3. Active Participation
This concerns the active and experiential elements in a game environment that
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trigger players to become aware of their own learning process and gives the player
a sense of unrestricted options. For example, game elements in which the player
has an active role in manipulating certain outcomes of the game, provide the player
with a greater sense of self-efficacy and control.

4. Challenge
Challenge concerns the amount of difficulties that a player has to overcome while
playing the game. A challenging game possesses specified goals, progressive diffi-
culty and information ambiguity. Besides the entertaining aspect, challenge also
adds competition by creating barriers between the current state and goal state. It
provides the learner with a problem-based learning environment. These barriers
can be caused by the game environment itself or by opponent players that try to
compete.

5. Flow and Engagement
Flow and engagement elements concern features that keep the player motivated
and engaged in the game. These elements can have an overlap with the previous
mentioned elements. According to Connolly et al. (2012) research shows that mo-
tivational features for playing digital games include competition, challenge, social
interaction, diversion, fantasy and arousal.

An example of a serious game that contains the above mentioned game elements is
Ease-it: Supply Chain Optimization1. This is a multiplayer simulation game developed
for economy students to learn how management of an entire business process can be
improved. The most important learning effects are knowledge acquisition, social skills
improvement and behaviour change. An empirical study on this game showed that the
learning effects were significantly higher for students who played the game compared to
students who did not play the game (Oprins and Visschedijk, 2013).

Another example of a serious game that contains the above elements that stimulate
learning, is Jeffys Math2. This is a two-player mathematics game developed for primary
school children to learn to calculate and to improve their mathematical skills. The
most important learning effects are cognitive skills improvement, knowledge acquisition
and social skills improvement. Just as for Ease-it, an empirical study showed that the
learning effects were significantly higher for children who played the game compared to
children who did not play the game (Oprins and Visschedijk, 2013).

Learning by Communicating in Networks

While serious games are becoming increasingly popular as a tool for (amongst others)
education, the use of another digital technique called social network learning has also
increased simultaneously for similar purposes. This type of internet-based communica-
tion is used to stimulate collaborative learning, for which interaction is needed between

1See http://www.simagine.nl/.
2See http://math.jeffys.com/.
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one learner and other learners; between learners and teachers; or between learners and
resources. Learners are situated in a social network, in order to communicate and learn
from other agents (humans or resources) in the network.

According to De-Marcos et al. (2014) social network learning has a “well-established
body of theoretical and empirical knowledge regarding its effectiveness in e-learning
settings”. Tian et al. (cited in De-Marcos et al., 2014) showed that networked learning
has a positive effect on social learning and academic learning for students that are
engaged in the network. Also, Thoms (2011) found a positive correlation between the
participation level in the network and the perceived level of learning. Based on these
findings, together with the findings from two other empirical studies (Li et al. (2013),
Frost and Eden (2014)) that we will later discuss more extensively, we listed the following
positive learning effects due to social network communication.

1. Knowledge Acquisition
Just as serious games, social networks stimulate an active form of learning, thereby
enhancing the positive effect of knowledge acquisition. Due to interaction in the
social network, learners have the possibility to share information and experiences,
thereby gaining new knowledge from fellow learners. Levin and Cross (2004, cited
in Haythornthwaite and de Laat, 2010) found that weak ties (relations with people
you do not personally know that well) with competent people that have more
authority (like a professor or president) are important for acquiring new knowledge.
Strong ties (relations with close friends or family) are needed to verify the new
acquired knowledge and embed it day-to-day activities.

2. Social Skills Improvement
Social networks stimulate learners to communicate and collaborate with each other
(Cho et al., 2007; Haythornthwaite and de Laat, 2010). Not only by debating, but
also by sharing knowledge and experiences and by working collaboratively on online
group assignments, learners improve their social skills. Since it is necessary to rely
on other learners in the network, participants also learn to trust each other (van
Staalduinen and de Freitas, 2011).

3. Debating Skills Improvement
In the research of De-Marcos et al. (2014) it is investigated how participants of
networked learning communities learn collaboratively. Based on both empirical
research and case studies, he concludes that networked learning enables students
among others to debate ideas and problems and contribute new information to
discussions. By means of forums, chat systems and blogs, students can comment
on each other’s ideas and learn to improve their debating skills.

4. Entrepreneurial and Leader Skills Improvement
Studies by Burt (1992, cited in Haythornthwaite and de Laat, 2010) show how
positioning yourself appropriately in a network enhances your opportunity to be
an entrepreneur. Users of social networks can often influence the network structure
by making new connections. They can thereby try to influence their own position
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in the network, such that they can learn to enlarge their personal network of
neighbours and can learn to act as a central group leader whenever they obtain a
central position in the network.

An example of an online social network that contains the above mentioned elements is
PeerSpace (Li et al., 2011). This is an online learning environment for computer science
students used to enable the students to support each other socially and academically
and to stimulate students to learn collaboratively. The most important learning effects
of this social network are knowledge acquisition, social skills improvement and debating
skills improvement. An empirical study on the effects of this social network shows that
there is a direct, positive relationship between the amount of usage of PeerSpace and
the enhancement of the learning effects (Li et al., 2013).

Network Elements that Stimulate Learning

Social network tools contain several elements that enhance the learning effect for stu-
dents. Some of these elements are comparable to specific game elements that stimulate
learning. Based on different suggestions from the literature (Cho et al., 2007; Donmus,
2010; Frost and Eden, 2014; de Jorge Moreno, 2012; Li et al., 2013; Toikkanen and Lip-
ponen, 2011), we distinguish the following elements of social networks that stimulate
learning.

1. Feedback
Connolly et al. (2012) already suggested that learning is most effective when the
environment provides the learner with immediate feedback. Online social networks
often allow the users to interchange comments on each other’s work, so that learners
receive feedback from other learners in the network. For example, many social net-
works include features like peer review, in which students can review each other’s
work; or blogs, on which students can post their own ideas and receive feedback
by means of commenting posts from fellow students (Li et al., 2013).

2. Interaction
One of the most important elements of social networks that stimulates learning
is the possibility for interaction with other learners. As already suggested by
van Staalduinen and de Freitas (2011) communication between learners provides
opportunities for achieving a sense of belonging and acknowledgements by others.
This allows for social and active learning: by means of chat systems, forums and
blogs in a social network, learners can share knowledge and experiences. Ajjan and
Harshorne (2008, cited in Donmus, 2010) state that since social networks are driven
by interaction, they support the collaboration and sharing information necessary
for social and active learning.

3. Active Participation
Donmus (2010) claims that today’s educational system needs to be expanded so
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that learners are active participants and co-producers rather than “passive con-
sumers of content”. In social networks students are often able to make new con-
nections with other learners in the network, thereby actively changing the network
structure by adding new links. Additionally, several existing social networks al-
low for online group assignments in which students can collaboratively edit and
create documents (Li et al., 2013). Both elements stimulate the participation of
the learners. Hence just like serious games, social networks hold some important
self-efficacy elements that provide the learner with a greater sense of self-control
and stimulate the active learning process.

4. Social Comparison
Another feature of social networks is that participants are able to share the feed-
back on their own performances with other participants in the network. This
feature of social sharing triggers social comparisons, which in turn leads to compe-
tition and heightened motivation (Frost and Eden, 2014). Social comparisons, and
competition in particular, enhance the intrinsic motivation to change behaviour
and learn how to improve the individual performances.

5. Network Position
Finally, the location of a player in the network can be of great importance for his
learning behaviour. Cho et al. (2007) conducted an experiment which showed that
learners with a central position in the network tended to get higher final grades than
other students. Also de Jorge Moreno (2012) and Toikkanen and Lipponen (2011)
have shown that network structure properties like centrality positively influence
the learner’s performance. A central position in the network, provides the learner
with a lot of interaction, social comparison and possibilities for receiving feedback.

Combining Games with Networks

In the previous two sections we listed the positive effects of serious games and social net-
works on the learning behaviour of students, followed by two separate lists of parameters
that presumably cause these effects. As one could already notice, there seems to be a
great overlap between the two: both serious games and social networks contain elements
of interaction, feedback and active participation, that improve the learning effect. An
overlap can also be found between the learning outcomes of the two respective methods:
both serious games and social networks contribute to knowledge acquisition and social
skills improvement. Moreover, combining the two methods might even further enhance
these learning effects, since learning via social networks improves skills that enhance
effects of learning via games, and vice versa.

For example, interaction in social networks can improve the learner’s social skills,
which might stimulate the interaction in games and subsequently enhances the social skill
improvement even further. But also, feedback in games might enhance social comparison
(competition) in the network, which subsequently increases the flow and engagement of
the game and thereby strengthens the learning effects of the game. How games and
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networks can positively influence each other, thereby enhancing the learning effect, is
depicted in figure A.1.

Figure A.1: Combining Games with Networks

Even though this suggests that combining games with networks might further enhance
the learning effect, so far both techniques are mainly applied separately. In the next
two sections we argue why combining the two respective methods seems to be a highly
valuable asset for eduction. We therefore rely on theoretical studies on motivation and
learning and empirical studies on combining games with networks.

Theory of Motivation and Learning

Deci and Ryan’s Self-Determination Theory (Deci and Ryan, 1985) focusses on the extent
to which an individual’s behaviour is self-motivated and self-determined. The theory
distinguishes two types of motivation: intrinsic motivation, which refers to initiating an
activity for its own sake because it is interesting and satisfying in itself; and extrinsic
motivation, which refers to initiating an activity to attain an external outcome, like
rewards (Ryan and Deci, 2000). Both types of motivation can be raised when the
following three psychological needs are satisfied:

1. Competence: the seek for optimal challenges and relevant feedback.

2. Relatedness: the want to interact, be connected, experience caring for others and
belong to a group.
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3. Autonomy: the urge to have a feeling of self-control and -endorsement.

Intrinsic motivation has emerged as an important phenomena in education, because
it results in high-quality learning and creativity (Ryan and Deci, 2000). Teachers are
therefore often searching for tools and methodologies that trigger intrinsic motivation.
However, according to Deci and Ryan, different types of motivation that fall into the
category of extrinsic motivation are equally important. Since many of the tasks that
educators want their students to perform are not inherently interesting or enjoyable, they
need to promote more active forms of extrinsic motivation in which the external goal is
self-endorsed by the learner. For example, a student who does his homework only because
he fears sanctions from his parents for not doing it, is extrinsically motivated because
he is doing the work in order to attain the external outcome of avoiding sanctions.
Similarly, a student who does the work because he personally believes it is valuable
for his later career is also extrinsically motivated because he too is doing it for a long
term reward rather than because he finds it interesting. Both examples involve external
instrumentalities, yet the latter case entails personal endorsement and a feeling of choice,
whereas the former involves mere compliance with an external control. Both represent
intentional behaviour, but the two types of extrinsic motivation vary in their relative
autonomy (Ryan and Deci, 2000). In situations where the extrinsic motivation is raised
by a feeling of autonomy, the external goal can be internalized, which enhances the
self-motivation of the learner.

With different techniques and methodologies educators can try to trigger both intrin-
sic motivation and active forms of external motivation, so that students are stimulated
to learn. Both serious games and social networks can influence the psychological needs
for competence, relatedness and autonomy and thus heighten the motivation of the stu-
dents to learn (Frost and Eden, 2014). Rewards and game enjoyment in serious games
can enhance the feeling of competence; cooperation and interaction in social networks
can enhance the feeling of relatedness; and self-efficacy and active participation in both
games and networks can enhance the feeling of autonomy. Since the two tools tackle
different aspects of the psychological needs, combining them can have a beneficial effect
on the motivation of the learner, which in turn can enhance the learning effect.

Empirical Studies

Li et al. (2013) investigated how the effectiveness of a networked learning environment
called PeerSpace could be improved by making use of game elements in order to mo-
tivate the students to participate more actively. Results show that students indeed
become more active when game elements are added. They conclude that adding game
elements to a social network learning environment enhances the learning effect. Accord-
ing to Donmus (2010), the other way around, adding social network elements to a game
environment, can also be beneficial for the learning outcome.

Frost and Eden (2014) conducted an experiment with a brain game that is used to
train players’ cognitive abilities. They compared performance-based feedback (a score)
with completion feedback (a badge) in two different social contexts for that feedback:
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private (viewed independently) versus shared (posted on a social network). The results
show that shared and performance-based feedback most is motivating and triggers the
players to improve their cognitive abilities. They conclude that integrating social network
functionality into training games may engage users to play for longer periods of time,
thereby increasing the benefits.

De-Marcos et al. (2014) tested both techniques of serious games and social networks
in a year-long experiment in which three groups of students participated in the same
undergraduate course. One group was able to make use of game tools, another group
was able to use a social network site and the third group was used as control group. The
learning effect was measured by means of a pre-test and post-test in which students’
performance on academic knowledge, academic skills and participation was assessed.
Results showed that both techniques presented better performance than a traditional
e-learning approach in terms of academic achievement for practical assignments.

Regarding future work De-Marcos et al. suggest that it is not necessary to decide be-
tween one of the two learning techniques, but rather important that researchers combine
the tools of social network learning and serious gaming in order to further enhance the
learning effect. They claim that long-term motivational benefits of serious games can be
hybridized with the collaborative and participative capabilities that are stimulated by
social networks.
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Formal Proofs

Proofs of Chapter 2

Proof of Proposition 2.1.1. Assume that s∗ is a Nash equilibrium of the stage game G.
Take a joint strategy σ∗ for which it holds that for all i ∈ N and h ∈ H we have that
σ∗i (h) = s∗i . Now for a contradiction, suppose σ∗ is not a NE of the repeated game. Then
some player i could receive a strictly higher total payoff when unilaterally switching to
some other strategy τi. As it is assumed that the total payoff is constructed by the
sum of all payoffs received in each round, it means that in some round of G(k) player i
receives a strictly higher payoff than ui(s

∗) when playing a strategy si 6= s∗i . That is, in
some round of G(k) there exists a strategy si 6= s∗i s.t. ui(si, s

∗
−i) > ui(s

∗
i , s
∗
−i), but this

contradicts the assumption of s∗ being a Nash equilibrium of the stage game. Thus we
reach a contradiction.

Proof of Proposition 2.1.2. Let s∗ ∈ S be a strict NE of the stage game G = (N,S, u) and
let G(k) be the corresponding repeated game. Suppose at round t all players’ assessments
γti are such that their best responses correspond to s∗, so that this is the joint strategy
that will be played at round t. Then according to the rules of fictitious play, at round
t+ 1 we have for all i ∈ N :

κt+1
i (s−i) =

{
κti(s−i) + 1 if s−i = s∗−i
κti(s−i) if s−i 6= s∗−i

and corresponding assessments:

γt+1
i (s−i) =


κti(s−i)+1∑

s−i∈S−i
κti(s−i)+1

if s−i = s∗−i
κti(s−i)∑

s−i∈S−i
κti(s−i)+1

if s−i 6= s∗−i

Hence if s∗−i ∈ arg maxs−i∈S−i γ
t
i (s−i) then certainly s∗−i ∈ arg maxs−i∈S−i γ

t+1
i (s−i) and

since s∗ is a strict NE, it follows that s∗i ∈ BRi(arg maxs−i∈S−i γ
t+1
i (s−i)). Thus accord-

ing to all players’ assessments γt+1
i for round t + 1, the optimal choice to play is again

s∗i .
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Proofs of Chapter 3

Proof of Proposition 3.1.1. Let ~w = (w1, . . . , wn) be any stochastic n-ary weight vector
and let F be the wPSCF that is defined by ~w.

(i) Let B,B′ ∈ B(n, k) be two matrices for which the j-th column is the same, i.e.,
Bj = B′j , for some j ∈ X. Let ~w be any weight vector. By definition of F and by
the conventions for matrix calculation, it holds that under F we find for all j ∈ X
that bj = ~wBj = (w1b1j + . . .+wnbnj) and b′j = ~wB′j = (w1b

′
1j + . . .+wnb

′
nj). Now

since Bj = B′j it holds that bij = b′ij for all i ∈ N and hence we find bj = b′j which
shows that IA holds.

(ii) Let B ∈ B(n, k) be any matrix for which there exists a column Bj s.t. bij = c for
all i ∈ N for some constant c ∈ [0, 1]. By definition of F and by the conventions
for matrix calculation it holds that under F for all j ∈ X we find bj = ~wBj =∑

i∈N wibij =
∑

i∈N wic = 1 · c = c. Thus bj = c which shows that F satisfies U.

(iii) Let j1, j2 ∈ X be two alternatives and let B,B′ ∈ B(n, k) be two matrices s.t.
Bj1 = B′j2 . By definition of F and by the conventions for matrix calculation it
holds that under F we find bj1 = ~wBj1 = ~wB′j2 = b′j2 , which proves that SN is
satisfied.

Proof of Theorem 3.1.1. “⇐” A wPSCF satisfies both IA and Z by Proposition 3.1.1.
“⇒” The proof for the opposite direction relies on the following two lemmas, of which
the proofs are provided after the proof of this main theorem.

Lemma (3.1.1). Let k ≥ 3 and let F : B(n, k)→ B(k) be a PSCF that satisfies IA and
Z. Then F satisfies SN.

Lemma (3.1.2). Let F : B(n, k)→ B(k) be a PSCF that satisfies SN. Then there exists
a function H : [0, 1]n → [0, 1] such that for all matrices B ∈ B(n, k) our PSCF F is
given by F (B) = (b1, . . . , bk) where bj = H(b1j , . . . , bnj) for each j ∈ X.

Now suppose F is a PSCF that satisfies IA and Z. We need to show that F must be a
weighted PSCF. By Lemma 3.1.1 F satisfies SN. Then by Lemma 3.1.2 there exists a
function H : [0, 1]n → [0, 1] such that for all matrices B ∈ B(n, k) our PSCF F is defined
by F (B) = (b1, . . . , bk) where bj = H(b1j , . . . , bnj) for each j ∈ X. We need to show that
H is a weighted arithmetic mean, i.e., that there exists a row vector ~w = (w1, . . . , wn)
of non-negative weights with

∑
i∈N wi = 1 so that for all j = 1, . . . , k it holds that:

H(b1j , . . . , bnj) = w1b1j + . . .+ wnbnj =
∑
i∈N

wibij (B.1)
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Let (α1, . . . , αn) ∈ [0, 1]n and (β1, . . . , βn) ∈ [0, 1]n such that (α1 + β1, . . . , αn + βn) ∈
[0, 1]n. Now define two matrices B,B′ ∈ B(n, k) as follows:

B =

α1 β1 1− α1 − β1 0 . . . 0
...

...
...

...
...

αn βn 1− αn − βn 0 . . . 0



B′ =

α1 + β1 0 1− α1 − β1 0 . . . 0
...

...
...

...
...

αn + βn 0 1− αn − βn 0 . . . 0


By property Z we find H(0, . . . , 0) = 0. Now since F (B) and F (B′) both must result in
a row vector of which the elements sum up to 1, it must hold:

H(α1, . . . , αn) +H(β1, . . . , βn) +H(1− α1 − β1, . . . , 1− αn − βn) = 1, and

H(α1 + β1, . . . , αn + βn) +H(1− α1 − β1, . . . , 1− αn − βn) = 1

Thus H satisfies the Cauchy equation for multiple variables (Wagner, 1982):

H(α1 + β1, . . . , αn + βn) = H(α1, . . . , αn) +H(β1, . . . , βn) (B.2)

where αi, βi, αi + βi ∈ [0, 1] for all i ∈ N . Thus, in general, for all γ = (γ1, . . . , γn) and
γi ∈ [0, 1] it holds that:

H(γ1, . . . , γn) = H(γ1, 0, . . . , 0) +H(0, γ2, . . . , γn)

= H(γ1, 0, . . . , 0)

+H(0, γ2, 0, . . . , 0) + . . .

+H(0, . . . , 0, γi, 0, . . . , 0) + . . .

+H(0, . . . , 0, γn)

So let Hi(γi) = H(0, . . . , 0, γi, 0, . . . , 0) then H(γ) = H(γ1, . . . , γn) =
∑

i∈N Hi(γi). Also,
equation B.2 implies that for all x, y, x+y ∈ [0, 1] it holds that Hi(x+y) = Hi(x)+Hi(y)
so that each Hi also satisfies the Cauchy equation. From a well-known theorem on
Cauchy equations proved by Aczél (1966) it follows that for any continuous function
f(x) that satisfies the Cauchy equation f(x+y) = f(x)+f(y) for positive variables x, y,
it must hold that there exists a real constant c such that f(x) = cx. Therefore, for each
function Hi there must exist a real constant wi so that Hi(γi) = wiγi. Hence we find

H(γ1, . . . , γn) =
∑
i∈N

Hi(γi) =
∑
i∈N

wiγi

which proves that H indeed satisfies equation B.1. It is now left to show that these
constants wi are non-negative and sum up to 1. Since H outputs probability values it
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holds that H(γ) ≥ 0 and hence Hi(γi) ≥ 0. Since Hi(γi) = wiγi ≥ 0 and γi ∈ [0, 1] it
must hold that wi ≥ 0 for all i ∈ N . To show

∑
i∈N wi = 1, put γi = 1 for all i ∈ N ,

so that H(γ) = H(1, . . . , 1) = 1 (as H provides a consensual probability). But then
it must hold that H(γ) =

∑
i∈N wiγi =

∑
i∈N wi1 = 1, which shows

∑
i∈N wi = 1 as

required.

Proof of Lemma 3.1.1. Let F : B(n, k) → B(k) be a PSCF that satisfies IA and Z. Let
A,B ∈ B(n, k) be two matrices such that Aj1 = Bj2 = (α1, . . . , αn)> for some j1, j2 ∈ X.
For F to satisfy SN we need to show that it follows aj1 = bj2 . Now define two matrices
A′, B′ ∈ B(n, k) as follows:

A′ =

α1 0 1− α1 0 . . . 0
...

...
...

...
...

αn 0 1− αn 0 . . . 0



B′ =

0 α1 1− α1 0 . . . 0
...

...
...

...
...

0 αn 1− αn 0 . . . 0


By Z, F assigns a value of 0 in the societal probability distribution to alternatives that
correspond to a column with only 0’s on its entries. Since the values in the societal
probability distribution of F need to sum up to 1, it must hold that a′j1 = 1 − a′j3 and
b′j2 = 1 − b′j3 . By construction of A′ and B′ it holds that A′j3 = B′j3 , Aj1 = A′j1 and
Bj2 = B′j2 so by IA it must hold (respectively) that a′j3 = b′j3 , aj1 = a′j1 and bj2 = b′j2 .
Hence aj1 = a′j1 = 1 − a′j3 = 1 − b′j3 = b′j2 = bj2 . Thus we find aj1 = bj2 as required, so
F satisfies SN.

Proof of Lemma 3.1.2. Let F : B(n, k) → B(k) be a PSCF that satisfies SN. Let B ∈
B(n, k) be an arbitrary matrix and consider any column Bj of B. We need to show
that there exists a function H : [0, 1]n → [0, 1] such that if F (B) is given by F (B) =
(b1, . . . , bk) then bj = H(b1j , . . . , bnj). For the column Bj in B, define a corresponding
matrix J as follows:

J =

b1j 1− b1j 0 . . . 0
...

...
...

...
bnj 1− bnj 0 . . . 0


and set H(b1j , . . . , bnj) = b1, where b1 is the value assigned by F to alternative 1 ∈ X
when the input of F is matrix J . Then by SN, since Bj = J1 it must hold bj =
b1 = H(b1j , . . . , bnj). Thus for any column j of the arbitrarily chosen matrix B we
can define a corresponding matrix so that bj = H(b1j , . . . , bnj). Thus there exists a
function H : [0, 1]n → [0, 1] such that if F (B) is given by F (B) = (b1, . . . , bk) then
bj = H(b1j , . . . , bnj) for each j ∈ X.
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Proof of Proposition 3.1.2. Let ~w = (w1, . . . , wn) be any stochastic n-ary weight vector
and let F be the wPSCF that is defined by ~w.

(i) Let σ be a permutation on the set of individuals N . A relabelling of individuals
does automatically also permute the entries of the weight vector ~w, so that we
find a permuted vector ~w′ = (wσ(1), . . . , wσ(n)). Now let B,B′ ∈ B(n, k) be two
matrices s.t. b′i q = bσ(i) q for all i ∈ N . Under σF , defined by ~w′, we then find for
all j ∈ X that b′j =

∑
i∈N w

′
ib
′
ij =

∑
i∈N wσ(i)bσ(i)j = bj , which proves that A is

satisfied.

(ii) Let B ∈ B(n, k) be any matrix and “�” a preference order induced from the societal
probability values in F (B). For all j1, j2, j3 ∈ X if j1 � j2 and j2 � j3 then by
definition of the preference order bj1 ≥ bj2 ≥ bj3 . Hence bj1 ≥ bj3 s.t. j1 � j3,
which proves transitivity. Additionally, under F it holds that for all j1, j2 ∈ X
we have bj1 ≥ bj2 or bj2 ≥ bj1 , hence from the definition of the preference order it
follows that j1 � j2 or j2 � j1, which shows completeness.

Proof of Proposition 3.1.3. Let F be an aPSCF.

(i) For a contradiction, assume there exists an individual ı̂ ∈ N such that bj = bı̂j for
all j ∈ X and for all matrices B ∈ B(n, k). Now consider the matrix B with a
column j such that bı̂j > 0 and bij = 0 for all i 6= ı̂. Then by definition of F we find
bj = 1

n

∑
i∈N bij = 1

nbı̂j 6= bı̂j . Hence individual ı̂ is not decisive for all matrices
under F , which contradicts our assumption. Thus F must be non-dictatorial.

(ii) Let N,M be two disjoint groups of individuals with |N | = n, |M | = m; let
B ∈ B(n, k) and B′ ∈ B(m, k) be any two matrices that reflect the probability
distributions of individuals in respectively N and M over the same set of k alter-
natives. We may assume F (B) = (b1, . . . , bk) = (b′1, . . . , b

′
k) = F (B′) (i.e., bj = b′j

for all j ∈ X). Now let C ∈ B(n + m, k) s.t. the first n rows equal matrix B and
the next m rows equal matrix B′. Then F (C) = (c1, . . . , ck) s.t. for all j ∈ X we
find:

cj =
1

n+m

∑
i∈N∪M

cij =
1

n+m

(∑
i∈N

bij +
∑
i∈M

b′ij

)

=
1

n+m
(n · bj +m · b′j) =

1

n+m
(n · bj +m · bj)

=
1

n+m
(n+m)bj = bj = b′j

Hence cj = bj = b′j as required for consistency to be satisfied.
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Proof of Proposition 3.1.4. Let F be an aPSCF. For a counterexample, let B be the
matrix in which all entries equal 1

k , that is, all agents assign the same equal probability
to all possible alternatives. Then under F the societal probability vector will be F (B) =
( 1
k , . . . ,

1
k ). But then no alternative has a probability value of 1. Thus F is not resolute.

Proof of Proposition 3.1.5. Let F be an aPSCF. For a counterexample, consider the
matrix B ∈ B(n, k) with n = 2 and k = 3 given by:

B =

(
4/9 3/9 2/9
1/3 1/3 1/3

)
Suppose the representative utility function of agent 1 is given by u1(1) = 2;u1(2) =
1;u1(3) = 0. Then F (B) = ( 7

18 ,
6
18 ,

5
18) and the expected utility of the first agent is∑

j∈X bju1(j) = 10
9 . Now if agent 1 changes his own probability distribution so that the

adjust matrix B′ becomes:

B′ =

(
6/9 3/9 0
1/3 1/3 1/3

)
Then F (B′) = (1

2 ,
1
3 ,

1
6) and the expected utility of the first agent is

∑
j∈X bju1(j) = 12

9 .
Hence agent 1 was able to manipulate the the outcome of F so that F (B′) �i F (B).
Thus F is not strategy-proof.

Proofs of Chapter 4

Proof of Proposition 4.1.1. The proof is by contraposition. Let C ⊆ N be a closed group
of nodes that is not strongly connected under W (i.e., W restricted to C is not strongly
connected). Then by definition, there exists a pair of nodes i, j ∈ C for which there
exists no path from i to j, i.e., wtij = 0 for all t ≥ 1.
Now define C ′ := C\{j ∈ C | wtij = 0 for some i ∈ C, for all t ≥ 1}. In words, we
define C ′ as the group of nodes that are already in C except for those nodes j ∈ C for
which there does not exist a path from every other node in C to that node j. Since C
is not strongly connected, such a node j exists. Hence C ′ is a strict subset of C. It is
left to show that C ′ is closed (so that C is not minimally closed).
Take any node i ∈ C ′ for which it holds that wij > 0 for some j ∈ N . If C ′ would
be closed, by definition it must hold that the assumptions i ∈ C ′ and wij > 0 together
imply j ∈ C ′. Thus it suffices to show that j ∈ C ′. Since C is closed and i ∈ C ′ ⊂ C, by
definition it holds that j ∈ C. Now since it is assumed wij > 0, it holds for the chosen
node j ∈ C that for some i ∈ C and some t ≥ 1 : wtij > 0. Hence by construction of
C ′ it must hold j ∈ C ′. Thus C ′ is closed and therefore C is not minimally closed, as
required.

Proof of Theorem 4.1.1. The proof for convergence relies on the following three lemmas.
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Lemma (4.1.1). Assume W is strongly connected. W is aperiodic if and only if it is
primitive, meaning that there exists a positive integer t such that W t has only positive
entries wtij > 0 for all i, j ∈ N .

For a proof of this lemma we refer to Theorems 1 and 2 of Perkins (1961).

Lemma (4.1.2). If W is primitive, then there exists a row vector ~wC = (wC1 , ..., w
C
n )

with
∑

i∈N w
C
i = 1 such that for any initial belief vector ~b it holds that

limt→∞W
t~b = ~en ~w

C~b

where ~en is an n-ary vector of ones, so that ~en ~w
C is an n × n-matrix in which every

row equals the row vector ~wC . This vector ~wC is the unique left eigenvector of W with
corresponding eigenvalue 1 (i.e., ~wCW = ~wC).

A proof of this lemma is provided below, directly after the proof of the main theorem.
Note that the above lemma actually states that if W is primitive, it is convergent. The
following lemma, of which a proof is also given after the proof of the main theorem,
provides a converse of Lemma 4.1.2.

Lemma (4.1.3). Assume W is strongly connected. If W is convergent, then it is prim-
itive.

The characterization for convergence can now be proved as follows.
“⇒” By contraposition. We show that if there exists a strongly connected and closed
group of nodes that is not aperiodic, then W is not convergent. LetMC = {M1, . . . ,Ml}
be the collection of minimally closed groups of agents and set MC =

⋃
Mk∈MC

Mk. The
set of agents N is partitioned into minimally closed groups of agents M1, ...,Ml which
compose MC and a remaining set of agents R. Given the matrix W , by permuting the
agents it can be transformed into

W =

(
W11 W12

0 W22

)
(B.3)

where W22 corresponds to all all agents in MC , i.e., all agents that belong to any min-
imally closed group. The rows above W22 correspond to the agents in the remaining
group R. We can further decompose W22 as follows:

W22 =

WM1 0
. . .

0 WMl

 (B.4)

where each Mk is minimally closed, so there are no outgoing links to any other agent
outside of Mk, meaning that all other entries in the above matrix equal 0. Now suppose
there exists a minimally closed group Mk (which is a closed group that is strongly
connected by Proposition 4.1.1) for which WMk

is not aperiodic. Then by Lemma 4.1.1
WMk

is not primitive. Hence by Lemma 4.1.3 W t
Mk

does not converge as t→∞. Since
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WMk
is part of W , the entire matrix W t also does not converge. This proves the first

direction of the theorem.
“⇐” Conversely, if every strongly connected and closed set of nodes is aperiodic, then
each WMk

is aperiodic. Hence by Lemma 4.1.1, each WMk
is primitive. Then Lemma

4.1.2 shows that for each k there exists a row vector ~wCMk
of |Mk| entries such that for

any initial belief vector ~b it holds that

limt→∞W
t
Mk
~b = ~eMk

~wCMk
~b

where ~eMk
is a |Mk|-ary vector of ones. The vector ~wCMk

is the unique left eigenvector of
WMk

corresponding to eigenvalue 1 and scaled so that its entries sum up to 1. Now let
us have a closer look at the decomposition of W as proposed in equation B.3. Since the
rows above W22 correspond to the agents in the remaining group R, we can think of W11

as the |R| × |R|-matrix that represents the weighted links between agents inside of R;
and we can think of W12 as the |R|× |MC |-matrix that represents the outgoing weighted
links from agents inside R to agents in MC . Agents in R must be paying attention
collectively to agents in MC (i.e., there must be outgoing edges from agents in R to
agents in MC) or else some subset of R would be a minimally closed group, contrary to
the construction of R. Agents in R do not necessarily all need to have outgoing edges
to all other agents in R. Agents in R therefore can be permuted such that W11 can be
further decomposed as follows:

W11 =

P11 . . . P1r

. . .
...

0 Prr


and W12 can be given by the following decomposition:

W12 =

P1,r+1 . . . P1m
...

...
Pr,r+1 . . . Prm


Agents in MC each belong to one of the minimally closed groups M1, . . . ,Ml. By def-
inition of minimally closed groups, there are no outgoing edges from agents inside of
some Mk to agents outside Mk, such that W22 is given as in equation B.4 or in terms of
matrices Pr+1,r+1, . . . , Pmm with m = r + l as follows:

W22 =

Pr+1,r+1 0
. . .

0 Pmm


Hence the total decomposition of W is given by:
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W =

(
W11 W12

0 W22

)
=



P11 . . . P1r P1,r+1 . . . P1m

. . .
...

...
...

0 Prr Pr,r+1 . . . Prm
0 . . . 0 Pr+1,r+1 0
...

...
. . .

0 . . . 0 0 Pmm


To show that this matrix W converges, we first check if W11, W12 and W22 each
converge separately. From matrix analysis, as provided by Meyer (2000), it follows
that limt→∞W

t
11 = 0; limt→∞W

t
12 = Z, where Z is some converged matrix; and

limt→∞W
t
22 = E where

E =

~eM1 ~w
C
M1

0
. . .

0 ~eMl
~wCMl


Here ~eMk

is a |Mk|-ary vector of ones, such that

~eMk
~wCMk

=

1
...
1

 · (wCMk1 . . . wCMk|Mk|

)
=

w
C
Mk1 . . . wCMk|Mk|
...

...
wCMk1 . . . wCMk|Mk|


resulting in the converged |Mk| × |Mk|-matrix where each row equals the row vector
~wCMk

. Therefore, the decomposition of W in B.3 entails

lim
t→∞

W t =

(
0 Z
0 E

)
where Z and E are the converged matrices of W12 and W22 respectively as defined above.
Thus the limit limt→∞W

t exists and hence W is convergent, as required.

Proof of Lemma 4.1.2. The proof of this lemma relies on the Perron-Frobenius theorem
(for a proof of this theorem see Meyer (2000)), from which it follows that if W is a non-
negative n×n-matrix (i.e., a matrix with only non-negative entries) and W is irreducible
(i.e., strongly connected) then the following is true.

(i) Let λ1, . . . , λn be real or complex eigenvalues of W , then there exists an eigenvalue
r = maxi(|λi|) such that r is real and r > 0. This eigenvalue is called the Perron-
Frobenius eigenvalue of W .
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(ii) There exists a unique eigenvector ~p of W with eigenvalue r (W~p = r~p), such that∑
i pi = 1 and ~p is positive (i.e., ~p only has positive entries pi > 0). This vector

is called the Perron vector of W . There are no non-negative eigenvectors for W
except for positive multiples of ~p.

For stochastic n × n-matrices W it holds that the Perron-Frobenius eigenvalue r = 1,
since having row sums equal to 1 means W~e = ~e, where ~e is the column of only 1’s. The
corresponding Perron vector is ~p = 1

n~e (the uniform distribution vector), since then it
holds that

∑
i pi = 1, all entries of ~p are positive and W~p = r~p = ~p.

Using the Perron-Frobenius theorem, Meyer (2000) show that any non-negative and
strongly connected matrix W with a Perron-Frobenius eigenvalue r as defined in the
theorem, is primitive if and only if limt→∞(Wr )t exists in which case

lim
t→∞

(
W

r

)t
=
~p~q>

~q>~p
> 0 (B.5)

where ~p and ~q> are the Perron vectors of respectively W and W> (and the transposed
matrix W> is obtained by reflecting the elements along the diagonal of W so that the
i-th row, j-th column element of W> is the j-th row, i-th column element of W ).

Since W is stochastic, it holds that the Perron-Frobenius eigenvalue is given by r = 1
and the corresponding Perron vector of W is ~p = ~e/n. Now let ~q> be the Perron vector
of W>. If W is primitive, it follows from equation B.5 that

lim
t→∞

W t lim
t→∞

(
W

r

)t
=

(~e/n)~q>

~q>(~e/n)
=

1
n~e~q
>

1
n~q
>~e

=
~e~q>

~q>~e
=

~e~q>∑
i q
>
i

= ~e~q>

where

~e~q> =

q
>
1 . . . q>n
...

...
q>1 . . . q>n


Thus as t approaches infinity, the primitive matrix W converges to a matrix in which
all rows equal the Perron vector ~q> of W>. Hence, if W is primitive, then there exists a
row vector ~wC = (wC1 , ..., w

C
n ) with

∑
i∈N w

C
i = 1 such that for any initial belief vector

~b it holds that
limt→∞W

t~b = ~en ~w
C~b

where ~en ~w
C is an n×n-matrix in which every row equals the row vector ~wC . More specif-

ically, this vector ~wC is the unique left eigenvector of W with corresponding eigenvalue
1.

Proof of Lemma 4.1.3. Assume W is convergent. Then the limit WC := limt→∞W
t

exists, thus we have

WC ·W =
(
limt→∞W

t
)
W = limt→∞W

t = WC .
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Hence each row of WC can be considered as a left eigenvector of W corresponding to
eigenvalue 1. By the Perron-Frobenius theorem, such eigenvectors have only positive
entries. Hence WC only has positive entries and thus for high enough t it holds that
wtij > 0 for all i, j ∈ N . So by definition, W is primitive.
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Appendix C

Notation List

B = (bij)n×k = stochastic matrix with degrees of belief bij
bij = degree of belief that agent i has for alternative j
Bt = stochastic matrix B at round t
Bj = j-th column of matrix B
bi q = i-th row of matrix B
~b = (b1, . . . , bk) = k-ary row vector for probability distribution over k alternatives
B(n, k) = the set of stochastic n× k-matrices B

B(k) = the set of k-ary row vectors ~b
Cdi = degree centrality of agent i
Cwi = weight centrality of agent i
E t = set of experts for round t
E tmax = set of best experts for round t

E t+max = set of best experts after network communication at round t
G = (N,S, u) = finite strategic game with players N , joint strategies S, utilities u
G = (N,E) = graph with nodes N and edges E
G = (N,EW ) = weighted directed graph with weights reflected in matrix W
N = {1, . . . , n} = finite set of agents
mi = mixed strategy of agent i
mt
i(si) = probability that agent i will play si at round t

Mi = finite set of mixed strategies of agent i
si = pure strategy of agent i
Si = finite set of pure strategies of agent i
S = {s(1), . . . , s(k)} = finite set of joint strategies
st = joint strategy that is played at round t
ui = utility function of agent i
U(s) = average social welfare under joint strategy s
W = (bij)n×n = stochastic matrix with weights of trusts wij
wij = weight that agent i assigns to agent j
wi =

∑
m∈N wmi = weight that agent i receives from society

~w = (w1, . . . , wn) = stochastic row vector of weights
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