
Applying Types as Abstract Interpretation to a
Language with Dynamic Dispatch

MSc Thesis (Afstudeerscriptie)

written by

Johannes Emerich
(born April 7th, 1985 in Augsburg, Germany)

under the supervision of Dr. Tijs van der Storm and Prof. Dr. Benno
van den Berg, and submitted to the Board of Examiners in partial

fulfillment of the requirements for the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:
January 30th, 2015 Prof. Dr. Ronald de Wolf (chair)

Dr. Tijs van der Storm (supervisor)
Prof. Dr. Benno van den Berg (supervisor)
Prof. Dr. Jan van Eijck
Prof. Dr. Paul Klint
Dr. Wouter Swierstra

Abstract

We are concerned with an application of the “types as Abstract Interpretation”
perspective of [Cou97] to the problem of typing overloaded operator symbols
in a simple applicative language with dynamic dispatch. We begin by a de-
velopment of abstract semantics, or type systems, for λC, a language without
overloading. The distinction between parametric and ad-hoc type polymorphism
is then introduced, where a particular challenge arising from the ad-hoc variant
is stressed. λK, an extension of λC with support for overloading definitions at
the user level serves to illustrate the problem of ad-hoc polymorphism, and is
presented together with a type system designed to support some of its forms. To
prove soundness of said type system, the abstract interpretation development
of type systems for λC is extended to λK and the new type system is shown to
be a sound abstraction in the sense of [Cou97].

To the wonderful people of the ILLC.

Acknowledgments

I thank first and foremost my supervisors: Tijs van der Storm for suggesting
the topic of type systems and permitting me to improvise quite freely on the
theme, and Benno van den Berg for his continued support and patience. I thank
the members of my thesis committee, Ronald de Wolf, who agreed to chair my
defense, and Jan van Eijck, Paul Klint and Wouter Swierstra, who agreed to
read my thesis.

I thank my family for their supply of love and firewood, and all of my friends
for extending their support and being understanding of my monkish existence,
but especially Ulrich Swoboda for being a true and hilarious mensch on Whats-
App. I am grateful that Ignas Vyšniauskas became both inspiring collaborator
and friend. My heart belongs to the beautiful people I was lucky to meet in the
Master of Logic.

Contents

1 Introduction 4
1.1 Outline of the Thesis . 5
1.2 Notational Debt . 6

2 An Untyped Lambda Calculus with Runtime Errors 7
2.1 Syntax for λC . 7
2.2 A Denotational Semantics . 8

3 Abstract Interpretation and Type Inference 10
3.1 A Cautious Reaction to Undecidable Program Properties 10
3.2 Fundamentals of Abstract Interpretation 11

3.2.1 Program Properties . 11
3.2.2 Capturing Abstraction Formally 12

3.3 Type Inference as Abstract Interpretation 13
3.3.1 Abstract Semantics and Sound Type Systems 13
3.3.2 An Idealized Type System: Type Collecting Semantics . . 14
3.3.3 Towards Implementable Systems: Church/Curry Polytypes 17

4 An Example: Bounded Polymorphism 20
4.1 The Problem . 20

4.1.1 Parametric Polymorphism 21
4.1.2 Ad-hoc Polymorphism . 22

4.2 A Language With Dynamic Dispatch 23
4.2.1 Type Language for Type System TT 23
4.2.2 The Language λK . 24
4.2.3 Translation Without Type Inference 25

4.3 A Type System for λK . 27
4.3.1 Unification with Constrained Variables 27
4.3.2 A Rule-based Definition of TT 30

5 Abstract Interpretation of Overloading 31
5.1 Type Collecting Semantics for Programs with Overloading 31
5.2 Church/Curry Polytype Semantics for Programs with Overloading 35

5.2.1 Abstraction from Type Collecting Semantics 36

2

5.3 The Type System TT as an Abstract Semantics 38
5.3.1 Abstraction from Church/Curry Polytype Semantics . . . 40

6 Related Work 43
6.1 Bounded Polymorphism . 43
6.2 Dynamic Dispatch . 45
6.3 Abstract Interpretation and Type Analysis 45

7 Conclusion 47

Appendix A Some Errors in [Cou97] 49
A.1 The Soundness of TCoJ·K . 49

Notation 55

Bibliography 57

3

Chapter 1

Introduction

The real power of type theory is that well-formedness of the
formalised expressions implies logical and mathematical
correctness of the original content.

—Nederpelt & Geuvers, Type Theory and Formal Proof

I wonder who it was defined man as a rational animal. It was
the most premature definition ever given.

—Lord Henry in Oscar Wilde’s The Picture of Dorian Gray

The two above citations may serve to introduce the background motivation
of this thesis: To work towards a reconciliation of the mathematical perspective
on programming languages and what we might—perhaps perilously—call human
nature. While the citation on the “power of type theory” is concerned mainly
with the role of type theory in mathematics, similar sentiments abound in the
field of programming language theory. Among the benefits commonly attributed
to static type checking are [Car96]:

• Improved runtime performance through elimination of safety checks,

• improved development time through bug prevention,

• improved maintainability of large codebases,

• facilitation of advanced language features, and

• improved compilation performance.

However, these empirical claims are in need of substantiation through evidence,
which especially in the case of the effect on development time, bug prevention
and maintainability is hard to gather—and indeed, this is seldom done [Han10].
What is easy to observe on the other hand is the popularity of programming
languages with no or very weak static type systems.

4

In this context, there are two readings of Lord Henry’s above proclamation.
For one, the opinion that human folly is to blame for the low rate of adoption
of obviously superior methods enjoys a certain popularity among programming
language theorists. This is not our intended reading. On the contrary, we
suggest to consider the option that there may be a certain wisdom in the popular
preference for languages which do not impose a strong static type discipline.

To make this suggestion seem less ludicrous we refer to the long-running
discussion of the role of formalism in mathematics, where repeated arguments
have been made to stress the importance of intuition and gradual discovery in
the development of new mathematical content1. In a similar fashion as mathe-
matics, the authoring of computer programs is a gradual process of exploration
in a problem space that is often not completely understood at the onset.

Recent years have seen increased interest in programming languages which
aim to find a good trade-off between static and dynamic type systems in gradual
typing [RCH12]. Languages such as ActionScript, TypeScript and Dart still inte-
grate type checking into the compilation process, but allow partial typings, that
is, they allow the translation of even maltyped expressions into executable pro-
grams. Racket, a dialect of Lisp, goes even further in externalizing its optional
type system into a library which is independent of the compiler [THSAC+11]
to create a “programmable programming language” [PLT14] in which language
users may assume control over type-based program analysis and optimization.

This motivates the idea of relating type analysis to the more general dis-
cipline of program analysis. Our point of departure is Patrick Cousot’s 1997
paper Types as Abstract Interpretation [Cou97], in which various type inference
systems for a simple dynamic language are compared from within the frame-
work of abstract interpretation. The result is a “hierarchy of type systems,
which is part of the lattice of abstract interpretations of the untyped lambda-
calculus” [Cou97, p. 316], that is, the study of type systems can potentially be
connected to the study of a wider range of program analyses.

1.1 Outline of the Thesis

Our goal is to extend Cousot’s treatment by considering a simple form of ad-hoc
polymorphism. For this purpose, we cautiously extend the language of [Cou97]
by constructs for defining operations that behave differently on different types
of inputs. We introduce a new type system for this language which is inspired
by earlier work by Stefan Kaes [Kae88, Kae05] and prove its soundness by
abstraction from earlier abstract interpretation developments.

Chapter 2 introduces syntax and denotational semantics of a simple ap-
plicative language λC which is subject to abstract interpretation in the rest of
the thesis.

Chapter 3 provides some background on and basic notions of abstract inter-
pretation before stating definitions of type systems as abstract semantics. The

1For direct claims see for example [Kli74] or [Tal13], for a historical account [Gra08].

5

rest of the chapter is dedicated to presenting two of the type systems introduced
in [Cou97] with slight adaptation to match the language from Chapter 2.

Chapter 4 introduces the notion of type polymorphism which appears as
parametric and ad-hoc polymorphism. To illustrate challenges of the latter form,
we define an extension to syntax and semantics of λC, introducing a simple form
of overloading. We define a new type system for this language, which possesses
a type inference algorithm as an extension of Damas-Milner type inference with
an enhanced notion of unification with sorted type variables. We prove that the
unification procedure produces most general unifiers.

Chapter 5 extends the type systems from Chapter 3 to accommodate the
extended language and uses these results to prove soundness of the new type
system by showing it to be an abstraction of the prior systems.

Chapter 6 discusses related work on bounded polymorphism, dynamic lan-
guages with dynamic dispatch, and type inference using abstract interpretation.

Chapter 7 concludes with a discussion of our contributions.

1.2 Notational Debt

As a warning to readers we list some of the abuses of notation we are aware of
being guilty of in this thesis. This section can be skimmed or skipped entirely.

• We will often partially apply functions which may or may not be curried.

• We will rely on a simple variant of lambda calculus notation in the meta
language to denote objects in the denotational semantics:

– Λu. · · · denotes a function

– Λu1 . . . un. · · · is short for Λu1. . . .Λun. · · ·
– if · · · then · · · else · · · is used to specify conditionals

6

Chapter 2

An Untyped Lambda
Calculus with Runtime
Errors

It may be that in all her phrases stirred
The grinding water and the gasping wind;
But it was she and not the sea we heard.

—Wallace Stevens, The Idea of Order At Key West

This brief chapter serves to present λC, a fairly standard variation on the un-
typed lambda calculus together with a denotational semantics. The language is
designed to resemble the one employed in [Cou97], with only superficial changes
intended to improve readability. Familiarity with basic domain theory is as-
sumed and the reader is invited to skim or skip the natural language paragraphs
with the exception of Definition 2.2.1 which is important for later comprehen-
sion.

2.1 Syntax for λC

Our language adds a separate syntactic form for fixpoint definitions in order
to increase applicability of a variety of type systems, which may be unable to
accommodate the Y -combinator directly. The language furthermore possesses
primitives for integers and integer addition, as well as a conditional expression
with a zero test. We present an abstract syntax with an unspecified represen-
tation of the integers but may use obvious literals such as 101 or -5 if needed.

x, f, . . . ∈ X : program variables

z ∈ Z : integers

e ∈ E : program expressions

7

e ::= x | λx.e | e1e2 | (e) |
µf.λx.e | let x = e1 in e2 |
z | e1+e2 |
ifz e1 then e2 else e3

2.2 A Denotational Semantics

Because we will later introduce an extended language which requires a more
intricate notion of program environments, we parametrize the definition of pro-
gram semantics by program environments.

Definition 2.2.1 (Program Semantics). An E -program semantics is a semantic
domain SE = E → U together with a semantic function SE : E→ SE .

In this and the following chapter, we will be concerned with an R-program
semantics, where R is a simple mapping from identifiers to values. In Section 4.2
we will introduce an extension which supports operator overloading via dynamic
dispatch and requires more intricate program environments for this purpose. We
will refer to SR as simply S and SR as simply S.

We present the semantic domain for program denotations, which is un-
changed from [Cou97, p. 316] and relies on domain theoretic definitions [GS90,
DP02]. The bottom element ⊥ represents non-terminating computations, D⊥
is the lift of D by ⊥, ↑(·) : D → D⊥ injects into the lift, and ↓(·) : D⊥ 7→ D ex-
tracts from the lift where possible. [D1 → D2] denotes the domain of functions
from D1 → D2 which are strict on ⊥ and 8.

Z = {. . . ,−2,−1, 0, 1, 2, . . .} integers

W := {wrong} wrong

8 := ↑(wrong) :: W⊥ injected wrong

U ∼= W⊥ ⊕ Z⊥ ⊕ [U→ U]⊥ values

R := X→ U program environments

S := R→ U program denotations

U is ordered by an information or computational ordering v such that ⊥ is
v-least. We write · :: D for tagged injections of values from D into U.

We now explain the meaning of λC by giving its denotational semantics. The
everywhere undefined function ε⊥ is defined as ↑(Λu.⊥) :: [U→ U]⊥. We will
make repeated use of the functions lfp≤x and gfp≤x which compute the ≤-least
fixpoint greater than or equal to x, and the ≤-greatest fixpoint less than or
equal to x, respectively.

SJxK := ΛR.R(x)

SJλx.eK := ΛR.↑(Λu.if u ∈ {⊥,8} then u
else SJeKR[x← u]) :: [U→ U]⊥

8

SJe1e2K := ΛR.if ⊥ ∈ {SJe1KR,SJe2KR} then ⊥
else if SJe1KR = f :: [U→ U]⊥ then

↓(f)(SJe2KR)

else 8

SJµx.λf.eK := ΛR.lfpvε⊥(Λu.SJλx.eKR[f← u])

SJlet x = e1 in e2K := ΛR.SJ(λx.e2)e1KR
SJzK := ΛR.↑(z) :: Z⊥
SJe1+e2K := ΛR.if ⊥ ∈ {SJe1KR,SJe2KR} then ⊥

else if SJeiKR = ↑(zi) :: Z⊥ then

↑(z1 + z2) :: Z⊥
else 8

SJifz e1 then e2 else e3K := ΛR.if SJe1KR = ⊥ then ⊥
else if SJe1KR = ↑(z) :: Z⊥ then

SJif z = 0 then e2 else e3KR
else 8

9

Chapter 3

Abstract Interpretation and
Type Inference

3.1 A Cautious Reaction to Undecidable Pro-
gram Properties

I says to myself, I reckon a body that ups and tells the truth
when he is in a tight place is taking considerable many resks,
though I ain’t had no experience, and can’t say for certain; but
it looks so to me, anyway; and yet here’s a case where I’m blest
if it don’t look to me like the truth is better and actuly SAFER
than a lie.

—Mark Twain, The Adventures of Huckleberry Finn

A basic result of computability theory is due to Henry G. Rice [Ric53] (state-
ment adapted from [Odi99, p. 150]):

Theorem 3.1.1 (Rice’s Theorem). A class of partial recursive functions A is
computable if and only if it is trivial, i.e. either empty or containing all partial
recursive functions.

As a consequence, any non-trivial program property is undecidable. In par-
ticular, there is no general procedure that is both sound and complete with
respect to a given property: Any total general procedure must by necessity err
on at least one side, and will falsely attribute the property to programs which
do not possess it, will falsely deny the property of programs that do possess it,
or both.

From this dreadful situation, a slight but important information advantage
can be gained by establishing of a certain procedure that it errs on only one
side. In the formal methods community it has long been a popular choice to
sacrifice completeness in exchange for soundness, so that procedures will never
falsely attribute a property, but instead will deny it in error at least some of the

10

time. In this way, incorrect programs can always be rejected. The objective,
then, is to devise procedures with a vanishing number of false alarms.

Abstract interpretation [CC77, AH87] (often stylized as Abstract Interpre-
tation) is a theoretical framework for the formal study and systematic devel-
opment of abstractions of program semantics, with the aim of facilitating safe
reasoning by means of sound abstraction, where the semantics of a sound ab-
straction “includes”—in a sense yet to be made precise—the real semantics. In
this manner it can be ensured that a sound abstract semantics safely approxi-
mates properties of the original semantics.

3.2 Fundamentals of Abstract Interpretation

In addition to the engineerial evolution of the practical methods derived from ab-
stract interpretation, several variations on the fundamental idea have been pro-
posed in scholarly works. A handbook article by Abramsky and Hankin [AH87],
a text book by Nielson et al. [NNH99], and surveys by the Cousots [Cou00,
CC14] may serve to provide a partial overview.

For focus and brevity, we will introduce abstract interpretation in the context
of our program semantics for λC and λK, where the theoretical background is
drawn from mostly [Cou97], and other resources are only referred to as needed.
We again (2.2.1) parametrize our definitions by program environments E to be
able to treat λC and λK uniformly.

3.2.1 Program Properties

The following definitions generalize those of [Cou97, p. 317] to variants para-
metrized by program environments.

Definition 3.2.1 (Semantic Properties). An E -semantic property P ∈ PE :=
P(E → U) is a set of program denotations which can be understood as the

collection of programs for which the property at hand holds.
The set PE := P(SE) forms a complete lattice 〈PE ,⊆, ∅,SE ,∪,∩, ·{〉, where

·{ is complementation in (E → U), and where the set operations may be inter-
preted as logical operations on properties.

We immediately introduce our first abstract semantics (3.3.1), which merely
converts program denotations to program properties.

Definition 3.2.2 (Standard Collecting Semantics). The E -standard collecting
semantics CJ·K : E→ PE is defined as

CJeK := {SE JeK}.

By lifting program denotations to properties through the collecting seman-
tics, we are able to make precise the notion of abstraction.

11

3.2.2 Capturing Abstraction Formally

For a very simple example of abstraction, consider the complete lattice formed
by the P(Z) preordered by set inclusion, 〈P(Z),⊆, ∅,Z,∪,∩〉. This structure is
abstracted by the much simpler 〈Z,≤Z, Z⊥, Z>,∨Z,∧Z〉 given by

Z>

2Z 2Z + 1

Z⊥,

where we interpret the objects in the lattice as the empty set, the evens, the
odds, and the integers.

For each Z ⊆ Z we have an abstract—in this case finite, and possibly less
precise—representation in Z, ∅ as Z⊥, {1, 2} as Z>, {. . . ,−4,−2, 0, 2, 4, . . .} as
2Z, etc. For some Z we can move to an abstract representation in Z and back to
Z, in other cases such as the set {1, 2}, we incur a loss of precision by converting
the best abstract representation back into a set of numbers. However, it is always
true that any Z will be included in the concrete set representation of Z’s best
abstraction.

The situation is that one structure acts as a concrete representation of cer-
tain objects, which the other structure represents more concisely but with less
precision. To capture the conversions between abstract and concrete represen-
tations, we introduce a pair of maps 〈α, γ〉, of which α takes concrete objects
to their abstract representation, and γ goes the opposite way from abstract to
concrete. In our example, α : P(Z)→ Z,

α(Z) :=

Z⊥ if Z = ∅
2Z if Z ⊆ 2Z
2Z + 1 if Z ⊆ 2Z + 1

Z> o.w.

and γ : Z→ P(Z),

γ(z) :=

∅ if z = Z⊥

2Z if z = 2Z

2Z + 1 if z = 2Z + 1

Z if z = Z>.

Note that, for any Z ∈ Z, z ∈ Z,

α(Z) ≤Z z ⇔ Z ⊆ γ(z),

12

and hence, because α is monotone,

Z ⊆ γ(α(Z)),

which captures the idea of safe approximation.
This adjoint situation is an instance of an isotone Galois connection.

Definition 3.2.3 (Galois Connection). For posets X,Y , we call 〈α, γ〉 a Galois

connection between X and Y , written 〈X,≤〉 −−−→←−−−α
γ
〈Y,≤〉, if for all x ∈ X, y ∈ Y

α(x) ≤ y ⇔ x ≤ γ(y).

In the general case we call α the left adjoint of γ, and conversely γ α’s right
adjoint. In practice we will refer to α and γ as the abstraction and concretization
function, respectively. We call the Galois connection isotone if the maps are
order-preserving, and antitone if they are order-reversing.

Definition 3.2.4 (Galois Insertion). For posets X,Y , we call a Galois connec-
tion 〈α, γ〉 a Galois insertion if α is a surjection.

We will introduce further terminology and standard results as required. A
good general introduction can be found in [DP02].

3.3 Type Inference as Abstract Interpretation

3.3.1 Abstract Semantics and Sound Type Systems

Definition 3.3.1 (Abstract Semantics). An abstract semantics 〈P\,≤\,S \J·K〉
consists of a poset 〈P\,≤\〉 together with a function S \J·K : E→P\. We may
interpret the triple as a set of abstract properties with logical implication and an
abstract semantic function mapping program expressions to program properties.
Where there is no threat of ambiguity, we may refer to an abstract semantics
by its set of abstract properties.

We call an abstract semantics an abstract interpreter if its poset of abstract
properties is computer representable and its abstract semantic function is com-
putable.

Definition 3.3.2 (Sound Abstraction). For two abstract semantics, 〈P\,≤\
,S \J·K〉, 〈P],≤],S]J·K〉, we call P\ an abstraction of the concrete semantics
P] if there is a concretization function, that is, a monotone function γ : P\ →
P] such that for all e ∈ E we have S]JeK ≤] γ(S \JeK).

We call an abstract semantics E -sound if it is an abstraction of the E -
standard collecting semantics 〈PE ,⊆,CJ·K〉.

Proposition 3.3.3 ([Cou97]). An abstraction of a sound abstract semantics is
sound.

13

Definition 3.3.4 (Sound Type System). A E -sound type system 〈T,≤,TJ·K, γ, E〉
consists of a sound abstract semantics 〈T,≤,TJ·K〉 via concretization function
γ : T → PE , together with an admissible environments function E : T → P(E)
mapping types to program environments, such that

∀T ∈ T : ∀φ ∈ γ(T) : ∀R̂ ∈ E(T) : φ(R̂) 6= 8.

Definition 3.3.5 (Typability). We call a program e ∈ E typable in R̂ ∈ E if
there is a E -sound type system T = 〈T,≤,TJ·K, γ, E〉 for which R̂ ∈ E(TJeK).

From the preceding definitions we can immediately conclude the following

Proposition 3.3.6 (“Typable Programs Can’t Go Wrong”). For any e ∈ E, if
e is typable in R̂ ∈ E , then SJeKR̂ 6= 8.

3.3.2 An Idealized Type System: Type Collecting Seman-
tics

The type collecting semantics given in [Cou97, p. 323] is the initial abstraction
of program properties which approximates program properties by very precise
types. All later type systems inherit their soundness from this semantics by
abstraction. In introducing this semantics, Cousot suggests it to be a candi-
date for an answer to the question “What is a type system”, by virtue of the
fact that it “is more precise than the reduced product of all existing type sys-
tems” [Cou97, p. 323]—a claim of an empirical nature which we feel unable
to decide the veridity of. Because our development relies on an adaptation of
Cousot’s construction to prove soundness of a type system for our extension of
Cousot’s language, this section as well as the next largely restates results from
[Cou97].

We first define the semantic domain of collecting polytypes, PCo, then a pair
of maps 〈αCo, γCo〉 that clarifies their relation to program semantics.

Definition 3.3.7.

PCo
0

:= {⊥Co, int} basic types

PCo
δ+1

:= PCo
δ

∪ P(PCo × PCo) form function types

PCo
λ

:=
⋃
δ<λ

PCo
δ

flatten limit ordinal

t ∈ T ⊆ PCo :=
⋃

δ ordinal

PCo
δ

flatten hierarchy

We explain the meaning of collecting polytypes by giving a concretization
function to collections in the denotational semantics γCo1 : PCo → P(U).

γCo
0

1 (⊥Co) := {⊥}, γCo
0

1 (int) := Z⊥
γCo

δ

1 (t1 → t2) := {↑(φ) :: [U→ U]⊥ |

14

φ ∈ [U→ U] ∧ ∀u ∈ γCo
δ

1 (t1) : φ(u) ∈ γCo
δ

1 (t2)} ∪ {⊥}

γCo
δ+1

1 (t) := γCo
δ

1 (t)

γCo
δ+1

1 (T) :=
⋂

t1→t2∈T
γCo

δ

1 (t1 → t2)

γCo
1 (⊥Co) := U where ⊥Co := ∅

γCo
λ

1 (t) := γCo
δ

1 (t) for δ < λ

γCo
1 (t) := γCo

δ

1 (t) for t ∈ PCo
δ

An order and corresponding equivalence (≡Co) on collecting polytypes is defined
using the concretization to denotations,

t1 ≤Co t2 :⇔ γCo
1 (t1) ⊆ γCo

1 (t2),

such that 〈PCo/≡Co,≤Co〉 is a partial order. In the following, we write PCo
≡ for

PCo/≡Co.
A meet operation on collecting polytypes can be defined by

∧Co
T :=

⊥Co if ⊥Co ∈ T or T contains several type constructors

int if T = {int}
∅Co if T = ∅⋃
T if T ⊆ P(PCo

≡ × PCo
≡)

γCo
1 preserves meets [Cou97, p. 324], so a definition of meets of collecting poly-

types allows direct derivation of an abstraction function,

αCo
1 (U) :=

∧Co{t ∈ PCo
≡ |U ⊆ γCo

1 (t)}.

This allows us to define a join,∨Co
T := αCo

1 (
⋃
t∈T γ

Co
1 [t]),

so that 〈PCo
≡ ,≤Co,⊥Co, ∅Co,

∨Co
,
∧Co〉 is a complete lattice.

Next we extend this abstraction to collections of environments which are
approximated by type environments H ∈ HCo := X→ PCo

≡ , with

αCo
2 (R) := Λx.αCo

1 ({R(x) |R ∈ R})
γCo
2 (H) := {R ∈ R | ∀x ∈ X : R(x) ∈ γCo

1 (H(x))}

H1 ≤̇
Co
H2 :⇔ ∀x ∈ X : H1(x) ≤Co H2(x),

which gives us a Galois insertion

〈P(R),⊆, ∅,R,∩,∪〉 −−−−→−→←−−−−−
αCo

2

γCo
2 〈HCo, ≤̇Co

, ⊥̇Co, ∅̇Co,
∨̇Co

,
∧̇Co〉.

15

To complete the sequence of abstractions, we abstract program properties
P ∈ PR by typings θ ∈ TCo := HCo → PCo

≡ , where

αCo(P) := ΛH.αCo
1 ({φ(R) |R ∈ γCo

2 (H) ∧ φ ∈ P})
γCo(θ) := {φ | ∀H ∈ HCo : ∀R ∈ γCo

2 (H) : φ(R) ∈ γCo
1 (θ(H))}

θ1 ≤̈
Co
θ2 :⇔ ∀H ∈ HCo : θ1(H) ≤Co θ2(H),

such that

〈PR,⊆, ∅,S,∩,∪〉 −−−−→←−−−−
αCo

γCo

〈TCo, ≤̈Co
, ⊥̈Co, ∅̈Co,

∨̈Co
,
∧̈Co〉

is a Galois connection.
We are now ready to state the semantic function TCoJ·K : E → PCo

≡ and
prove that TCo is a sound abstraction. Our definition of TCoJ·K deviates from
[Cou97] in two cases which seem to contain errors in the original presentation,
such that the intended properties do not hold as stated. For a discussion of the
original and altered definitions, we refer to Appendix A.1.

TCoJxK := ΛH.H(x)

TCoJλx.eK :=

ΛH.
∧Co {{t→ TCoJeKH[x : t]}

∣∣ t ∈ PCo
≡ \ {∅Co}

}
TCoJe1e2K :=

ΛH.
∧Co {

t ∈ PCo
≡
∣∣TCoJe1KH ≤Co {TCoJe2KH → t}

}
TCoJµf.λx.eK :=

ΛH.lfp{∅Co→⊥Co}Λt.T
CoJλx.eKH[f : t]

TCoJlet x = e1 in e2K :=

ΛH.
∧Co {

TCoJe2KH[x : t]
∣∣ t = TCoJe1KH 6= ∅Co

}
TCoJzK := int

TCoJe1 + e2K := int ∨Co (TCoJe1KH ∨Co TCoJe2KH)

TCoJifz e1 then e2 else e3K :=

ΛH. if TCoJe1KH = ⊥Co then

⊥Co

else if TCoJe1KH = int then

TCoJe2KH ∨Co TCoJe3KH

else ∅Co

We state Cousot’s results without proof, as we will reconstruct parts of the
proofs for our language extension below. For additional details, the interested
reader is again referred to the appendix, A.1.

16

Proposition 3.3.8. Any ≤̈Co
-upper approximation of the best abstraction of the

standard collecting semantics is sound, that is, for any e ∈ E, H ∈ HCo, t ∈ PCo
≡ :

αCo(CJeK)H ≤Co t⇔ ∀R ∈ γCo
2 (H) : SJeKR ∈ γCo

1 (t).

Proposition 3.3.9. For all e ∈ E, TCoJeK is monotone in that for any H1, H2 ∈
HCo we have

H1 ≤̇
Co
H2 ⇒ TCoJeKH1 ≤Co TCoJeKH2.

Proposition 3.3.10. The type collecting semantics TCoJ·K is an ≤̈Co
-upper

approximation of αCo(·), as for any e ∈ E

αCo(CJeK) ≤̈Co
TCoJeK.

It remains to devise an admissible type environment function ECo, which
may be defined as

ECo(θ) :=
⋃
{γCo

2 (H) |H ∈ HCo ∧ θ(H) 6= ∅Co},

and we get

Corollary 3.3.11. 〈TCo, ≤̈Co
,TCoJ·K, γCo, ECo〉 is a sound type system.

3.3.3 Towards Implementable Systems: Church/Curry Poly-
types

With the next abstraction, we move closer towards realizable type systems by
virtue of less precise, and finite, types. However, polymorphic types, which ap-
pear in type environments, are still potentially infinite structures and may not
be implemented directly. Under some additional restrictions on polytypes, it
is possible to represent them finitely by means of a further Herbrand abstrac-
tion [Cou97, p. 321f], where infinite sets of types are represented as finite type
schemes. This leads to a family of variations around the type system first in-
troduced by Robin Milner [Mil78], which are discussed in the closing section
of [Cou97]. We will develop a similar abstraction in the context of our language
extension.

Cousot introduces the “À la Church/Curry Polytype Semantics” as a re-
finement of a type system [Cou97, p. 317] derived as an idealized development
of Church’s simply-typed lambda calculus [Chu40] and Curry’s type inference
for combinatory logic [CF58]. As in the systems of Church and Curry, types
assigned to program expressions are monomorphic, but in the refinement iden-
tifiers in type environments may be associated with polymorphic types, which
are sets of monomorphic type terms.

We again restate definitions and results from [Cou97], synthesizing the de-
velopments of [Cou97, Section 6 & 16]. The domain of types TPC is defined as

17

follows:

m ∈MPC,m ::= int | m1 → m2

p ∈ PPC := P(MPC)

H ∈ HPC := X→ PPC

θ ∈ IPC := HPC ×MPC

T ∈ TPC := P(IPC)

Cousot defines a direct Galois connection between TPC and PR, which we omit as
the actual proof of soundness is via PCo in both Cousot’s and our development.
We therefore proceed directly to defining a semantic function TPCJ·K : E→ TPC,
wherein MPC →MPC := {m1 → m2 |m1,m2 ∈MPC}.

TPCJxK :=
{
〈H,m〉

∣∣ m ∈ H(x) ∧H ∈ HPC
}

TPCJλx.eK :=
{
〈H,m1 → m2〉

∣∣ 〈H[x : {m1}],m2〉 ∈ TPCJeK
}

TPCJe1e2K :={
〈H,m2〉

∣∣ 〈H,m1 → m2〉 ∈ TPCJe1K ∧ 〈H,m1〉 ∈ TPCJe2K
}

TPCJlet x = e1 in e2K :={
〈H,m2〉

∣∣ ∃p1 6= ∅ :
(
∀m1 ∈ p1 : 〈H,m1〉 ∈ TPCJe1K

∧ 〈H[x : p1],m2〉 ∈ TPCJe2K
)}

TPCJµf.λx.eK :={
〈H,m〉

∣∣ m ∈ gfpMPC→MPCΛp.{m′|〈H[f : p],m′〉 ∈ TPCJλx.eK}
}

TPCJzK :=
{
〈H, int〉

∣∣ H ∈ HPC
}

TPCJe1+e2K :=
{
〈H, int〉

∣∣ 〈H, int〉 ∈ TPCJe1K ∩TPCJe2K
}

TPCJifz e1 then e2 else e3K :={
〈H,m〉

∣∣ 〈H, int〉 ∈ TPCJe1K ∧ 〈H,m〉 ∈ TPCJe2K ∩TPCJe3K
}

With this we are ready for the definition of a concretization function γPo :
TPC → TCo which will allow us to obtain a soundness result for Church/Curry
polytypes.

γPo1 : MPC → PCo
≡

γPo1 (int) := int

γPo1 (m1 → m2) := {γPo1 (m1)→ γPo1 (m2)}
γPo2 : PPC → PCo

≡

γPo2 (p) :=
∧Co{γPo1 (m) |m ∈ p}

γPo3 : HPC → HCo

γPo3 (H) := γPo2 ◦H

18

γPo4 : IPC → TCo

γPo4 (〈H,m〉) := ΛH ′.
∧Co{γPo1 (m) |H ′ ≤̇Co

γPo3 (H)}
γPo : TPC → TCo

γPo(T) :=
∧̈Co{γPo4 (〈H,m〉) | 〈H,m〉 ∈ T},

in which
∧̈Co

X := ΛH.
∧Co{θ(H) | θ ∈ X}.

Proposition 3.3.12 ([Cou97, p. 326]). Together with the abstraction αPo(θ) =
{〈H,m〉 | θ(γPo3 (H)) ≤Co γPo2 ({m})}, γPo forms a Galois connection

〈TCo, ≤̈Co
, ⊥̈Co, ∅̈Co,

∨̈Co
,
∧̈Co〉 −−−−→←−−−−

αPo

γPo

〈TPC,⊇,HPC ×MPC, ∅,∩,∪〉.

We will again record the soundness result for TPC without proof as we will
consider some details below, but for later reference, we first state the following

Proposition 3.3.13. For any m1,m2 ∈ MPC, γPo1 (m1) ≤Co γPo1 (m2) implies
m1 = m2.

Lemma 3.3.14. The Church/Curry polytype semantics is a sound abstraction,

as for all e ∈ E : TCoJeK ≤̈Co
γPo(TPCJeK).

As mentioned in introducing the Church/Curry polytype semantics, poly-
morphic types present the challenge of presenting infinite types finitely. We
will now step out of the abstract interpretation mindset to consider the partic-
ular problem of ad-hoc as opposed to parametric polymorphism, which poses
additional difficulties by generating a greater variety of type term shapes, com-
plicating representation.

19

Chapter 4

An Example: Bounded
Polymorphism

Nous devons obtenir le laissez-passer A38.

—Les Douze Travaux d’Astérix

4.1 The Problem

The ability of operators in programming languages to act on a variety of struc-
turally distinct operands is commonly referred to as polymorphism. A dictionary
definition of polymorphism is “the quality or state of existing in or assuming
different forms” [Mer15]. Within computer science, a popular reference defines
polymorphic languages by their characteristic feature that “some values and
variables may have more than one type” [CW85, p. 4] (emphasis added). That
is, the multiplicity of forms associated with individual values is revealed only
when looking through typed glasses1.

Polymorphism in programming languages is itself at least bimorphic, as it
appears in parametric and ad-hoc form. This distinction goes back to Christo-
pher Strachey’s 1967 lecture notes (republished as [Str00]), but is summarized
more succinctly in [CW85, p. 4]. Therein, an operator’s polymorphism is un-
derstood as parametric if it operates uniformly across operands of a family of
types, where the members of this family exhibit structural commonalities. It is
understood as ad-hoc if the operator operates on operands of a family of types
whose family resemblance can not be captured in the type structure (and may
be altogether unsystematic).

We see, then, that parametrically polymorphic operators are monomorphic
as values, but with polymorphic types, while ad-hoc polymorphic operators are

1We exclude from consideration the related but distinct notion of polymorphism in object-
oriented languages.

20

polymorphic in both their value and associated types. The structural common-
alities of types arising from parametric polymorphism facilitate their systematic
and automatic treatment in programming language technology, whereas the lack
of regularity in the types arising from ad-hoc polymorphism present a variety of
challenges. We will briefly the principle idea of an early and classic treatment
of parametric polymorphism ([Mil78]), before discussing particularities of the
challenges presented by ad-hoc polymorphism.

4.1.1 Parametric Polymorphism

In his classic paper A Theory of Type Polymorphism in Programming, Robin
Milner intended to present a solution to the problem of harmoniously com-
bining “[a] widely employed style of programming” with a language-inherent
type discipline that would allow language compilers “to find rather inscrutable
bugs” [Mil78, p. 348] automatically. By devising a type system and language
that allowed for the automatic inference of types from bare expressions, both
programming style and type safety could be preserved. Although our later de-
velopment builds on the work of Milner, especially by making use of the type
inference procedure described in [DM82], we will not go into details of this
method. Instead, we will discuss intent and effect of this approach to type
polymorphism.

According to Milner in 1978, “the polymorphism present in a program is a
natural outgrowth of the primitive polymorphic operators which appear to exist
in every programming language”, listing assignment, functional application and
list processing operations as examples of such primitives. This allows language
users to define “procedures which work well on objects of a wide variety (e.g. on
lists of atoms, integers, or lists)” [Mil78, p. 348f]. Note that this particular case
is a picture-book example of the structural commonality that was attributed
to parametric polymorphism in our discussion above. Consider the recursive
definition of a simple function designed to compute the length of a list:

len = µf.λl. if is-empty l then 0 else (f (tail l)) + 1

Here, is-empty and tail are assumed to be primitive operations on lists, which
are polymorphic in the sense that while they require operands to be structures
of a certain shape—namely lists—it is of no import to the purpose of these
operators what the list is a list of. We may say that for any type a, is-empty
is of type list(a)→ bool and tail is of type list(a)→ list(a). That is, the
family of types associated with is-empty consists of a set

list(int)→ bool, list(bool)→ bool, . . . ,

list(list(int))→ bool, list(list(bool))→ bool, . . . ,

...

 ,

the infinite family {list(a)→ bool}a∈T indexed by the set T of all types.

21

It is quite obvious from the family expression that the object-level use of vari-
ables in type expressions would allow for an accurate finite representation of the
types associated with is-empty. This is precisely the idea behind [Mil78], where
type variables in type schemes are treated as implicitly universally quantified,
such that we may read the type term list(a)→ bool as ∀a.list(a)→ bool.
Use of Robinson’s unification algorithm [Rob65] for first-order terms ensures
an effective mechanism for checking whether a particular type is an instance of
a particular type scheme, and thereby a member of the represented family of
types.

Milner’s type system is designed to preserve generality as much as possible
when combining the types of subexpressions to obtain the type of an expression,
such that len above may inherit the generality of its constituents is-empty and
tail, to possess polymorphic type list(a)→ int.

4.1.2 Ad-hoc Polymorphism

We come to the ad-hoc form of polymorphism, where we begin by considering
an example. Like Milner, we first assume polymorphism to be a consequence
of polymorphic primitives, but we will consider a variant of the addition oper-
ation which exhibits ad-hoc polymorphism, which we explain by a denotational
semantics2:

S′Je1+e2K := ΛR.if ⊥ ∈ {S′Je1KR,S′Je2KR} then ⊥
else if S′JeiKR = ↑(zi) :: Z⊥ then

↑(z1 + z2) :: Z⊥
else if S′JeiKR = ↑(bi) :: B⊥ then

↑(b1 ∨ b2) :: B⊥
else 8

The + operation now possesses two functions as alternative forms: One com-
puting the sum of integers, the other computing the join of boolean values3.
The actual function implementation to dispatch to is chosen dynamically based
on runtime analysis of the actual paramters. Correspondingly, it has two types:
int→ int→ int and bool→ bool→ bool. We note already that this set can
not be compressed in the same manner as above: a→ a→ a would allow too
many instances. However, as the collection of types associated with + is finite,
this does not present a problem for representation in itself.

This form of ad-hoc polymorphism is referred to as overloading, of which the
addition operation is maybe the canonical example (usually with integers and
floating point numbers). But there is no guarantee for addition to be overloaded
in such benign manner only. Consider a variation which is defined as before,

2We assume some additional value domains as required.
3In fact, the definition suggests four forms: a constant function returning bottom, the

aforementioned functions on integers and booleans, and a constant function returning the
runtime error.

22

but with an additional implementation for list concatenation:

S′Je1+e2K := ΛR.if ⊥ ∈ {S′Je1KR,S′Je2KR} then ⊥
else if S′JeiKR = ↑(zi) :: Z⊥ then

↑(z1 + z2) :: Z⊥
else if S′JeiKR = ↑(bi) :: B⊥ then

↑(b1 ∨ b2) :: B⊥
else if S′JeiKR = ↑(li) :: L⊥ then

↑(concat(l1, l2)) :: L⊥
else 8

The types of + can now be given as {int→ int→ int, bool→ bool→ bool}∪
{list(a)→ list(a)→ list(a)}a∈T , for which again a finite representation is
needed. Milner considered overloading to be “somewhat orthogonal” to para-
metric polymorphism [Mil78, p. 349], which as we will see later is not quite
accurate. For the moment however, we will look for some middle-ground to
allow partial reconciliation of overloading with Milner’s method for type infer-
ence.

4.2 A Language With Dynamic Dispatch

There is a variety of possible ways in which we could extend the language λC,
the simplest of which has been sketched in the preceding section. We base our
extension on the work of Stefan Kaes, whose work on parametric overloading
will be discussed later. Our two points of reference are [Kae88] and [Kae05],
the latter being a vast elaboration and systematization of the former, and both
of which present a partial solution to the problem of reconciling ad-hoc and
parametric polymorphism by finding a common representation scheme. The
benefit of this choice is an existing development of a denotational semantics for
overloaded operators, together with a systematic approach to extending Milner’s
type inference by adaptation of the unification algorithm. We improve upon the
dynamic semantics defined by Kaes through slight changes to the translation
process, which allow us to decouple compilation from type checking, thereby
showing that type inference is optional.

4.2.1 Type Language for Type System TT

Because we will rely on monomorphic type expressions in the definition of over-
loaded operators, we prepone presentation of the complete type language for the
system TT to be developed later, although we will make use of only MPC for
the time being. The reader may want to skip the other definitions and return
to them later.

m ∈MPC,m ::= int | m1 → m2

23

C ∈ C := {>} ∪ Pfin({cn(′an) | cn ∈ C ∧ ′ai ∈ V ∧ (i 6= j ⇒ ′ai 6= ′aj)}),
where we require each C to be of finite depth, i.e. there are no

infinite descending chains.
′aC ∈ V,we write just ′a if no constraint is to be indicated.

cst(′aC) := C
τ ∈MT, τ ::= int | ′a | τ1 → τ2

σ ∈ PT, σ ::= τ | ∀̇′b1 . . . ′bn.τ | ∀̈′b1 . . . ′bn.τ with {′b1, . . . , ′bn} ⊆ FV(τ)

Γ ∈ HT := X→ PT

T ∈ TT := P(HT ×MT)

We introduce explicit syntactic forms for type schemes which allow us to differ-
entiate between the two forms of polymorphism we want to accommodate.

4.2.2 The Language λK

We extend the language λC by additional syntactic forms and interpretation
rules which allow the language user to define overloadings on operators, by lifting
the domain-based dispatch functionality found in the examples in section 4.1.2
to the language level. In the below definitions, π is for “polymorphic”.

x, f, . . . ∈ X : program variables

z ∈ Z : integers

c ∈ C = {int, (→)} : type constructors, doubling as runtime tags

ω ∈MT
$:= {w1 → . . .→ wn → wr

∣∣n ≥ 1 ∧ wi ∈MPC ∪ {$}
∧ wr = $⇒ ∃i ∈ {1, . . . , n} : wi = $}

e ∈ E : program expressions

e ::= x | λx.e | e1e2 | (e) |
µf.λx.e | let x = e1 in e2 |
πf :: ω in e | πf c1 . . . cn = e1 in e2 |
z | e1+e2 |
ifz e1 then e2 else e3

Although λK, like λC, is an extremely limited language, we will take license to
make use of obvious extensions when illustrating functionality. For an example
of an overloading definition, consider a dispatching negation operator neg, which
negates both integers and booleans:

π neg :: $ → $ in

π neg int = (λx.x*(-1)) in

π neg bool = (λx.if x = true then false else true) in

if neg false then neg 5 else 5

24

4.2.3 Translation Without Type Inference

A Näıve Semantics

For an interpretation of this extended language, we first give a name to the
“almost everywhere wrong function” ε8 := Λu.if u = ⊥ then ⊥ else 8. The
predicate is-a establishes the expected correspondence between type construc-
tors from C understood as names for runtime tags and their respective domains.
For example, ↑(5) :: Z⊥ is-a int. We first give the idea for a näıve, though in
principle reasonable, extension of λC.

SJπf :: ω in eK := ΛR.SJeKR[f← ε8]

SJπf c1 . . . cn = e1 in e2K := ΛR.↑(Λu1 . . . un.
if ⊥ ∈ {u1, . . . , un} then ⊥
else if 8 ∈ {u1, . . . , un} then 8

else if ui is-a ci then

SJe1KR(u1) . . . (un)

else SJe2KR(u1) . . . (un)) :: [U→ U]⊥

However, this semantics forces language users to define overloadings in spe-
cific order that builds from primitive to composed values and generally reduces
extensibility4. In a fashion similar to [Kae88, Kae05], but with more explicit in-
formation handling due to our type-agnostic compilation strategy, we therefore
change the definition of a program environment to include unsatisfied identifiers
for overloaded functions which require an operator environment for evaluation.

A Semantics With Indirection

Definition 4.2.1 (Overloaded Program Environments).

O ∈ O ∼= X→ [C]→ O→ U
R ∈ R′ := X→ (U⊕ (O→ U))

(R,O) ∈ Q := R′ ×O

For convenience, we define a function that evaluates an identifier to its value
in a given overloaded environment (R,O).

eval : R′ ×O→ X→ U
evalR,O(x) := if R(x) ∈ O→ U then R(x)(O) else R(x)

We may now give the semantics Ṡ := SQ for λK. We use [] to denote an empty
finite map, [v1/x1, v2/x2, . . . , vn/zn] for a finite map, and write F [v̄/x̄] for the
composition F ◦[v̄/x̄], where F need not be a finite map. We say that overloading
assumption O admits arity n for identifier f (f

n

mO), if for all 〈c〉 ∈ dom(O(f)),
〈c〉 has length n. We write ṠJ·K for SQJ·K.

4A restriction that our type system will unfortunately force.

25

Other than the added cases for the two new syntactic forms, the only sub-
stantial changes occur in the definition of variable look-up. In the remaining
cases the added parameter is merely passed through.

ṠJxK := ΛR.ΛO.evalR,O(x)

ṠJλx.eK := ΛR.ΛO.↑(Λu.if u ∈ {⊥,8} then u
else ṠJeKR[x← u]O) :: [U→ U]⊥

ṠJe1e2K := ΛR.ΛO.if ⊥ ∈ {ṠJe1KRO, ṠJe2KRO} then ⊥
else if ṠJe1KRO = f :: [U→ U]⊥ then

↓(f)(ṠJe2KRO)

else 8

ṠJµx.λf.eK := ΛR.ΛO.lfpvε⊥(Λφ.ṠJλx.eKR[f← φ]O)

ṠJlet x = e1 in e2K := ΛR.ΛO.ṠJ(λx.e2)e1KRO
ṠJπf :: ω in eK := ΛR.ΛO.ṠJeKR[resolvearity(ω)(f)/f]O[[]/f]

ṠJπf c1 . . . cn = e1 in e2K := ΛR.ΛO.if f ∈ dom(O), R(f) ∈ O→ U, f nmO then

ṠJe2KRO[O(f)[ṠJe1KR/〈c1, . . . , cn〉]/f]

else 8

ṠJzK := ΛR.ΛO.↑(z) :: Z⊥
ṠJe1+e2K := ΛR.ΛO.if ⊥ ∈ {ṠJe1KRO, ṠJe2KRO} then ⊥

else if ṠJeiKRO = ↑(zi) :: Z⊥ then

↑(z1 + z2) :: Z⊥
else 8

ṠJifz e1 then e2 else e3K := ΛR.ΛO.if ṠJe1KR = ⊥ then ⊥
else if ṠJe1KRO = ↑(z) :: Z⊥ then

ṠJif z = 0 then e2 else e3KRO
else 8

The function resolven : X → O → U creates an n-ary dispatching function
which may be added to the runtime environment on defining an overloaded
operator, and which uses the operator environment at call site to determine
the implementation to delegate to. Note that we require eager checking of the
conditions imposed on the ui, that is checks are performed as far as possible for
partial applications of the dispatching function. We use a simplified notation,
however, instead of spelling out the details of eager checking.

resolven(f) = ΛO.Λu1 . . . un.if ui = ⊥ then ⊥
else if f ∈ dom(O),

〈c1, . . . , cn〉 ∈ dom(O(f)),

∀i = 1 . . . n : ui is-a ci

26

then O(f)(〈c1, . . . , cn〉)(O)(u1) . . . (un)

else 8

Note that the condition in the above definition varies slightly from that in
[Kae05] (which already improves upon that in [Kae88])—instead of dispatching
only on the overloaded parameters, we dispatch on all. This is to adjust for the
fact that we have no compile-time notion of type, and hence have to process
this information at runtime.

4.3 A Type System for λK

The type system TT is an extension of [Mil78, DM82] and vast simplification of
the approach of [Kae88]. As in the work of Kaes, type variables are annotated
with constraints, however the association with types is direct and local. This
simplifies the type system, but also reduces its power as will be discussed below.
The first and fundamental step is to adapt unification to work with constrained
variables.

4.3.1 Unification with Constrained Variables

Substitutions

In different contexts we will require substitutions with either ground or variable-
containing targets. We therefore define a general notion of substitution which
we will instantiate as needed, usually assuming the nature of the instantiation
to be obvious from the context.

Definition 4.3.1 (Substitution). A T -substitution is a total map S : V → T
assigning terms from T to type variables. Substitutions are lifted to type terms
and type schemes in the usual way, such that bound variables in schemes remain
untouched but are renamed as required to prevent capture.

We write [′a1/t1, . . . ,
′an/tn] for the substitution assigning ti to ′ai and acting

as the identity on all other type variables (we therefore write [] for the empty,
or identity, substitution). Application of substitutions is written either in prefix
or functional form. Composition of substitutions is defined in the usual way.

For example, we write S : V → MT, S′ : V → PT to identify S and S′ as
MT- and PT-substitutions, respectively.

Definition 4.3.2 (Respectful Substitution). A substitution S is respectful if
for all ′a ∈ dom(S) we have

S(′a) <: cst(′a),

where

τ <: > for all τ ,
′aY <: X if ∀c(′an) ∈ Y : ∃′bn :

(
c(′bn) ∈ X ∧ ′ai <: cst(′bi)

)
,

c(τn) <: X if ∃′an :
(
c(′an) ∈ X ∧ τi <: cst(′ai)

)
.

27

We write S : V r→ T to indicate that S is a respectful T -substitution.

We use the notion of respectful substitutions to define an ordering on type
terms in the usual way, where we call τ1 a valid instance of τ2 (τ1 ≤T τ2) if there
is a respectful substitution S such that τ1 = S(τ2). This ordering is extended
to respectful substitutions pointwise: We say that S2 is more general than S1

(S1 ≤T S2), if dom(S1) ⊆ dom(S2) and, for all ′a ∈ dom(S1), S1(′a) ≤T S2(′a).

Proposition 4.3.3. For any variable constraint C, type term τ and respectful
substitution S,

τ <: C⇒ S(τ) <: C.

Proof. By induction on the structure of τ , using the fact that if ′b <: cst(′a)
and ′c <: cst(′b), then ′c <: cst(′a).

As an immediate consequence we get:

Corollary 4.3.4 (Respect Composes). If S and S′ are respectful substitutions,
then S ◦ S′ is respectful.

Constrained Terms and Unification

The unification method required for terms with constrained variables, as well as
its proof of adequacy, is modeled on that presented in [Kae05, p. 54], which in
turn is a variant of Robinson’s algorithm (see for example [BS01] for a survey).
The main difference is that in the variable case we can not simply unify the
variable with any type term, but need to respect the variable’s constraints.

To be able to do so, we define a function constrain : C ×MT → (V→MT)
which from a variable constraint and a type term produces a substitution that
can be used to adjust the type term to match the constraints. The process fails
if the type term is incompatible with the constraints. In the below definition,
′b is a fresh variable.

constrain(>, τ) := []

constrain(X, ′a>) := [′bX/
′a>]

constrain(X, ′aY) := [′bZ/
′aY] if Z =

{
c(S1(′c1), . . . , Sn(′cn))

∣∣
c(′cn) ∈ Y ∧ c(′dn) ∈ X
∧∀i = 1, . . . , n : Si = constrain(cst(′di),

′ci)}
6= ∅

constrain(X, c(′τn)):= Sn if c(′cn) ∈ X ∧ ∃S0 . . . Sn−1 :
(
S0 = []

∧∀i = 1, . . . , n :

Si = constrain(cst(′ci), Si−1(τi)) ◦ Si−1
)

Proposition 4.3.5. For a variable constraint C and a type term τ , if there is
a respectful substitution for which S(τ) <: C, then there is a most general one.
We may compute the most general substitution as constrain(C, τ).

28

Proof. We proceed in two phases, showing first that if S = constrain(C, τ),
then S is respectful and S(τ) <: C. The case of C = > is obvious.

For C = X, we perform an induction on the structure of type term τ . Be-
cause the base of our induction on τ contains a variable constraint as another
inductive structure, we must first consider the cases where the variable con-
straint is either > or a finite set of nullary type constructors. In both cases it is
easy to see that constrain produces the desired result. Let then τ = ′aY , we
have constrain(X, ′aY)(′aY) = ′bZ with ′b fresh. By the definition of Z and
our subinduction hypothesis, we may conclude ′bZ <: X.

Then if τ = c(τn), we know c(′cn) ∈ X. Each of the Si is respectful, as we
may conclude from the fact that the identity S0 is respectful, by repeated use
of our induction hypothesis and 4.3.4. As we may factor Sn as S′i ◦ Si for each
i, Sn(c(τ1, . . . , τn)) = c(S′1 ◦ S1(τ1), . . . , S′n ◦ Sn(τn)) <: X, as is established by
n applications of induction hypothesis and 4.3.3.

We now need to establish that S = constrain(C, τ) is indeed most general,
that is, that for each respectful R for which R(τ) <: C, there is respectful
S′ such that R = S′ ◦ S. We again proceed by induction on τ . If τ = ′a,
choose S′ = R[R(′a)/S(′a)], then S′(S(′a)) = R(a), while all other variables are
unaffected and hence S′ ◦ S = R.

For τ = c(τ1, . . . , τn) we perform a subinduction on i = 0, . . . , n to show
that in each case we can factor R as S′i ◦ Si. For i = 0, the fact that S0 = []
forces S′0 = R. We may now assume R = S′i−1 ◦ Si−1. By outer induction
hypothesis we may factor S′i−1 as R′ ◦ constrain(cst(′ci), Si−1(τi)), but then
R = S′i−1 ◦Si−1 = (R′ ◦ constrain(cst(′ci), Si−1(τi))) ◦Si−1 = R′ ◦Si, so R′ is
the required S′i.

This property of constrain makes it appropriate for use in the definition of
a unification procedure.

Definition 4.3.6 (Unification).

U(τ, τ) := []

U(τ, ′a) := U(′a, τ) unless τ ∈ V
U(′a, τ) := [S(τ)/′a] ◦ S if ′a 6∈ FV(τ), S = constrain(cst(′a), τ)

U(c(τn), c(τ ′n)) := Sn if ∃S0, . . . , Sn−1 :
(
S0 = [] ∧ ∀i = 1, . . . , n :

Si = U(Si−1(τi), Si−1(τ ′i)) ◦ Si−1
)

Theorem 4.3.7. For τ1, τ2 ∈ MT, if there is a respectful substitution S that
unifies both terms—that is S(τ1) = S(τ2)—, then there is a most general such
substitution. It can be computed as U(τ1, τ2).

Proof. The proof is similar in structure to the proof of Proposition 4.3.5, which
we rely on in the variable case U(′a, τ) to argue that we can find a respectful
substitution if and only if τ can be constrained to match cst(′a) and ′a does
not occur in τ .

29

4.3.2 A Rule-based Definition of TT

We now give a rule-based type system for this language, which is heavily inspired
by the systems presented in [Kae88, Kae05]. The reader may want to refer back
to the definitions of 4.2.1 at this point.

Definition 4.3.8.

τ ≤T Γ(x)

Γ ` x : τ
(Var)

Γ, x : τ ` e : τ ′

Γ ` λx.e : τ → τ ′
(Abs)

Γ ` e1 : τ → τ ′ Γ ` e2 : τ

Γ ` e1e2 : τ ′
(App)

Γ, f : τ → τ ′ ` λx.e : τ → τ ′

Γ ` µf.λx.e : τ → τ ′
(Fix)

Γ ` e1 : τ Γ, x : gen(Γ, τ) ` e2 : τ ′

Γ ` let x = e1 in e2 : τ ′
(Let)

where gen(Γ, τ) := ∀̇′an.τ for {′a1, . . . , ′an} = FV(τ) \ FV(Γ)

Γ ` e1 : int Γ ` e2 : τ Γ ` e3 : τ

Γ ` ifz e1 then e2 else e3 : τ
(Ifz)

Γ, f : ∀̈′a∅.[′a∅/$]ω ` e : τ

Π; Γ ` πf :: ω in e : τ
(Op-Intro)

Γ, f : ∀̈′aX .τ0 ` e1 : τ1 Γ, f : ∀̈′aX∪{c(′c)}.[
′aX∪{c(′c)}/

′aX]τ0 ` e2 : τ2

τ1 ≤T c1(′a1>)→ . . .→ cn(′an>)→ ′b> τ1 = [c(′c)/′aX]ω c 6∈ d
Γ, f : ∀̈′aX .τ0 ` πf c1 . . . cn = e1 in e2 : τ2

(Op-Def)

The remaining rules for the base types are less crucial to the principles of
the system, but given for completeness:

Γ ` z : int
(Int-Base)

Γ ` e1 : int Γ ` e2 : int

Γ ` e1 + e2 : int
(Int-Plus)

The type inference algorithm for this system is a slight modification of the
algorithm W [DM82], with constrained unification substituted for Robinson
unification.

30

Chapter 5

Abstract Interpretation of
Overloading

It’s turtles all the way up!

—Steve Awodey

We now want to obtain a soundness result for the type system presented
above in definition 4.3.8, so as to ensure that “well-typed expressions do not go
wrong”. Our strategy is to employ the abstract interpretation framework and
constructions introduced in Chapter 3, where we first need to establish that
equivalent results hold for our extended language λK. We then build on said
results to establish the soundness of the new type system by proving it to be a
sound abstraction.

5.1 Type Collecting Semantics for Programs with
Overloading

In order to update the type collecting semantics, we need not change the def-
inition of collecting polytypes given in 3.3.2, as it is expressive enough for our
purposes. What needs to be updated are the connections to expressions, where
new syntactic forms have been introduced, and to program properties, which
now are elements of PQ rather than PR.

In order to do so, we first consider the interpretation of type environ-
ments H ∈ HCo, which now need to relate to overloaded program environments
(R,O) ∈ Q. We therefore redefine the abstraction function for environments to
evaluate identifiers in overloaded instead of regular environments

αCo
2 (E) := Λx.αCo

1 ({evalR,O(x) | (R,O) ∈ E}),

and the concretization function accordingly

γCo
2 (H) := {(R,O) ∈ R′ ×O | ∀x ∈ X : evalR,O(x) ∈ γCo

1 (H(x))}.

31

The changes propagate in a straightforward way to the definitions of the corre-
sponding functions for typings, where θ ∈ TCo := HCo → PCo

≡ ,

αCo(P) := ΛH.αCo
1 ({φ(R)(O) | (R,O) ∈ γCo

2 (H) ∧ φ ∈ P})

γCo(θ) := {φ | ∀H ∈ HCo : ∀(R,O) ∈ γCo
2 (H) : φ(R)(O) ∈ γCo

1 (θ(H))}

We furthermore need to provide definitions of the semantic function for the
added syntactic forms, for which we first introduce a shorthand for constructing
a polymorphic function type, which we use to adjust for the membership checks
used in dynamic dispatch.

Definition 5.1.1 (Polymorphic Guarded Function Types). For a finite sequence
of constructor symbols s = c1, . . . , cn, define the polytype of s-guarded functions
as

PCo~n (c1, . . . , cn) := {c1(t̄1)→ . . .→ cn(t̄n)→ ⊥Co | t̄1, . . . , t̄n ∈ PCo
≡ },

such that the arity of each ci is respected.

For the introduction of new overloadings on identifiers, we merely associate
the identifier with the empty type of PCo

≡ , thereby ensuring that applications of
this operator can not be typed. The definition for overloading definitions is more
intricate. We need to combine the polytype of the pre-existing implementations
with that of the one being defined, but only in case the actual type of the
implementation has the right arity and conforms to the dynamic dispatch cues
provided by the c1, . . . , cn.

TCoJπf :: ω in eKH :=

TCoJeKH[f : ∅Co]

TCoJπf c1 . . . cn = e1 in e2KH :=∧Co {
TCoJe2KH[f : H(f) ∧Co T]

∣∣T = TCoJe1KH ∨Co PCo~n (c1, . . . , cn)∧
H(f), T ≤Co {⊥Co → . . .→ ⊥Co → ∅Co}

}
We need an adapted version of Proposition 3.3.8, which in re-stated form is:

Proposition 5.1.2.

∀e ∈ E : ∀H ∈ HCo : ∀t ∈ PCo :

αCo(CJeK)H ≤Co t⇔ ∀(R,O) ∈ γCo
2 (H) : ṠJeKRO ∈ γCo

1 (t)

Proof. This is easily checked.

Proposition 3.3.10 requires checking of all the old and both of the new cases.
We show the base case along with those for the new syntactic forms, as all
other cases translate naturally (note that those are the only cases in which the
overloading assumption is directly used in the semantic function for λK). The

32

interested reader is again referred to either or both of [Cou97, p. 325] and A.1.
We begin with the variable case.

αCo(CJxK)H
=

∧Co {
t ∈ PCo

≡
∣∣ ∀(R,O) ∈ γCo

2 (H) : ṠJxKRO ∈ γCo
1 (t)

}
=

∧Co {
t ∈ PCo

≡
∣∣ ∀(R,O) ∈ R′ ×O :(

∀y ∈ X : evalR,O(y) ∈ γCo
1 (H(y))⇒ evalR,O(x) ∈ γCo

1 (t)
)}

≤Co ∧Co {t ∈ PCo
≡
∣∣ ∀(R,O) ∈ R′ ×O :(

evalR,O(x) ∈ γCo
1 (H(x))⇒ evalR,O(x) ∈ γCo

1 (t)
)}

=
∧Co {

t ∈ PCo
≡
∣∣ ∀u ∈ U :

(
u ∈ γCo

1 (H(x))⇒ u ∈ γCo
1 (t)

)}
=

∧Co {
t ∈ PCo

≡
∣∣ γCo

1 (H(x)) ⊆ γCo
1 (t)

}
=

∧Co {
t ∈ PCo

≡
∣∣ H(x) ≤Co t

}
= H(x)

= TCoJxKH

We state an easily verified fact about infima that we used in the variable case
and which will be of repeated use in upcoming proofs.

Proposition 5.1.3. For any predicates φ, ψ, if for all t ∈ PCo
≡ we have φ(t)⇒

ψ(t), then
∧Co{t ∈ PCo

≡ | ψ(t)} ≤Co
∧Co{t ∈ PCo

≡ | φ(t)}.

For the introduction of overloaded operators, the important observation is
that the dispatch function added to the environment conforms to a function
type scheme, applications of which can not be typed.

αCo(CJπf :: ω in eK)H
=

∧Co {
t ∈ PCo

≡
∣∣ ∀(R,O) ∈ γCo

2 (H) : ṠJπf :: ω in eKRO ∈ γCo
1 (t)

}
=

∧Co {
t ∈ PCo

≡
∣∣ ∀(R,O) ∈ γCo

2 (H) :

ṠJeKR[resolvearity(ω)(f)/f]O[[]/f] ∈ γCo
1 (t)

}
=

∧Co {
t ∈ PCo

≡
∣∣ ∀(R,O) ∈ R′ ×O : def. γCo

2 (·)(
∀x ∈ X : evalR,O(x) ∈ γCo

1 (H(x))

⇒ ṠJeKR[resolvearity(ω)(f)/f]O[[]/f] ∈ γCo
1 (t)

)}
≤Co

∧Co {
t ∈ PCo

≡
∣∣ ∀(R,O) ∈ R′ ×O : (5.1.3)(

∀x ∈ X \ {f} : evalR,O(x) ∈ γCo
1 (H(x))

⇒ ṠJeKR[resolvearity(ω)(f)/f]O[[]/f] ∈ γCo
1 (t)

)}
Here we use the fact that for all (R,O)

evalR[resolvearity(ω)(f)/f],O[[]/f](f) = (λu1 . . . uarity(ω). · · ·) ∈ γCo
1 (∅Co),

33

and that, if x 6= f,

evalR[resolvearity(ω)(f)/f],O[[]/f](x) = evalR,O(x).

≤Co
∧Co {

t ∈ PCo
≡
∣∣ ∀(R,O) ∈ R′ ×O :(

∀x ∈ X \ {f} : evalR,O(x) ∈ γCo
1 (H(x))

⇒ evalR,O(f) ∈ γCo
1 (∅Co)⇒ ṠJeKRO ∈ γCo

1 (t)
)}

(5.1.3)

=
∧Co {

t ∈ PCo
≡
∣∣ ∀(R,O) ∈ R′ ×O : ∀x ∈ X :(

evalR,O(x) ∈ γCo
1 (H[f : ∅Co])⇒ ṠJeKRO ∈ γCo

1 (t)
)}

=
∧Co {

t ∈ PCo
≡
∣∣ ∀(R,O) ∈ γCo

2 (H[f : ∅Co]) : ṠJeKRO ∈ γCo
1 (t)

}
def. γCo

2 (·)
=

∧Co {
t ∈ PCo

≡
∣∣ αCo(CJeK)H[f : ∅Co] ≤Co t

}
(5.1.2)

= αCo(CJeK)H[f : ∅Co] lattice laws

≤Co TCoJeKH[f : ∅Co] by I.H.

= TCoJπf :: ω in eKH by def.

Finally, the case for overloading implementations.

αCo(CJπf c1 . . . cn = e1 in e2K)H
=
∧Co {

t ∈ PCo
≡ | ∀(R,O) ∈ γCo

2 (H) : def. CJ·K
ṠJπf c1 . . . cn = e1 in e2KRO ∈ γCo

1 (t)
}

=
∧Co {

t ∈ PCo
≡ | ∀(R,O) ∈ γCo

2 (H) :
(

def. ṠJ·K
f ∈ dom(O) ∧R(f) ∈ O→ U ∧ f nmO
⇒ ṠJe2KRO[O(f)[ṠJe1KR/〈c1, . . . , cn〉]/f] ∈ γCo

1 (t)

f 6∈ dom(O) ∨R(f) 6∈ O→ U ∨ f
n

6mO
⇒ 8 ∈ γCo

1 (t)
)}

=
∧Co {

t ∈ PCo
≡ | ∀(R,O) ∈ γCo

2 (H) :
(

∅Co absorption

f ∈ dom(O) ∧R(f) ∈ O→ U ∧ f nmO
⇒ ṠJe2KRO[O(f)[ṠJe1KR/〈c1, . . . , cn〉]/f] ∈ γCo

1 (t)
)}

For this next step, we use the fact that for any (R,O) ∈ γCo
2 (H), if f

n

mO,R(f) ∈
O→ U and f ∈ dom(O), we have

evalR,O[O(f)[ṠJe1KR/〈c1,...,cn〉/f](f) ∈ γCo
1 (TCoJe1KH ∨Co PCo~n (c1, . . . , cn))

as can be verified by partial evaluation and inspection of the resulting function,
using the induction hypothesis for e1. Hence, by instantiating (R,O) to the
more specific form, we may strengthen to

≤Co
∧Co {

t ∈ PCo
≡ | ∀(R,O) ∈ γCo

2 (H) :(
evalR,O(f) ∈ γCo

1 (TCoJe1KH ∨Co PCo~n (c1, . . . , cn))

34

⇒ ṠJe2KRO ∈ γCo
1 (t)

)}
=

∧Co {
t ∈ PCo

≡ | ∀(R,O) ∈ R′ ×O : def. ∀, γCo
2 (·)(

∀x ∈ X \ {f} : evalR,O(x) ∈ γCo
1 (H(x))

∧ evalR,O(f) ∈ γCo
1 (H(f))

∧ evalR,O(f) ∈ γCo
1 (TCoJe1KH ∨Co PCo~n (cn))

⇒ ṠJe2KRO ∈ γCo
1 (t)

)}
=

∧Co {
t ∈ PCo

≡ | ∀(R,O) ∈ R′ ×O : def. γCo
1 (·)(

∀x ∈ X \ {f} : evalR,O(x) ∈ γCo
1 (H(x))

∧ evalR,O(f) ∈ γCo
1 (H(f) ∧Co

(
TCoJe1KH ∨Co PCo~n (cn)

)
)

⇒ ṠJe2KRO ∈ γCo
1 (t)

)}
=

∧Co {
t ∈ PCo

≡ | def. γCo
2 (·)

∀(R,O) ∈ γCo
2 (H[f : H(f) ∧Co

(
TCoJe1KH ∨Co PCo~n (cn)

)
]) :

ṠJe2KRO ∈ γCo
1 (t)

}
=

∧Co {
t ∈ PCo

≡ | (5.1.2)

αCo(CJe2K)H[f : H(f) ∧Co
(
TCoJe1KH ∨Co PCo~n (cn)

)
] ≤Co t

}
≤Co

∧Co {
t ∈ PCo

≡ | I.H., trans

t = TCoJe2KH[f : H(f) ∧Co
(
TCoJe1KH ∨Co PCo~n (cn)

)
]
}

≤Co
∧Co {

TCoJe2KH[f : H(f) ∧Co T]
∣∣ (5.1.3)

T =
(
TCoJe1KH ∨Co PCo~n (cn)

)
∧

H(f), T ≤Co {⊥Co → . . .→ ⊥Co → ∅Co}
}

= TCoJπf c1 . . . cn = e1 in e2KH by def.

The remaining duty of re-establishing monotonicity (3.3.9) is immediate from
the definitions of the two new cases. We may conclude:

Theorem 5.1.4. 〈TCo, ≤̈Co
,TCoJ·K, γCo, ECo〉 is a Q-sound type system, where

ECo := Λθ.
⋃
{γCo

2 (H) |H ∈ HCo ∧ θ(H) 6= ∅Co}.

5.2 Church/Curry Polytype Semantics for Pro-
grams with Overloading

We extend the semantic function TPCJ·K defined in 3.3.3 by definitions for the
new syntactic forms:

TPCJπf :: ω in eK :=
{
〈H,m〉

∣∣ 〈H[f : ∅],m〉 ∈ TPCJeK
}

TPCJπf c1 . . . cn = e1 in e2K :=
{
〈H,m〉

∣∣ ∃M ⊆MPC
~n (c1, . . . , cn) :

(
M 6= ∅ ∧ ∀m′ ∈M : 〈H,m′〉 ∈ TPCJe1K
∧ 〈H[f : H(f) ∪M],m〉 ∈ TPCJe2K

)}

35

5.2.1 Abstraction from Type Collecting Semantics

As our goal is to use the Church/Curry semantics as a step towards the new type
system, we immediately consider the two cases we need to check to establish
Q-soundness by showing that Lemma 3.3.14 holds for the extended language.

αPo(TCoJπf :: ω in eK)
= αPo(ΛH.TCoJeKH[f : ∅Co]) def. TCoJ·K
=
{
〈H,m〉

∣∣ TCoJeKγPo3 (H)[f : ∅Co] ≤Co γPo1 (m)
}

def. αPo(·)
=
{
〈H,m〉

∣∣ TCoJeK(Λx.γPo2 (H(x)))[f : ∅Co] ≤Co γPo1 (m)
}

def. γPo3 (·)
=
{
〈H,m〉

∣∣ TCoJeK(Λx.γPo2 (H[f : ∅](x))) ≤Co γPo1 (m)
}

def. γPo2 (·)
=
{
〈H,m〉

∣∣ TCoJeKγPo3 (H[f : ∅]) ≤Co γPo1 (m)
}

def. γPo3 (·)
⊇
{
〈H,m〉

∣∣ γPo(TPCJeK)γPo3 (H[f : ∅]) ≤Co γPo1 (m)
}

I.H.

=
{
〈H,m〉

∣∣ def. γPo(·)(∧̈Co{γPo4 (〈H ′,m′〉) | 〈H ′,m′〉 ∈ TPCJeK}
)
γPo3 (H[f : ∅]) ≤Co γPo1 (m)

}
=
{
〈H,m〉

∣∣ def.
∧̈Co

, γPo4 (·)(
ΛH ′.

∧Co{γCo
1 (m′) | 〈H ′,m′〉 ∈ TPCJeK ∧H ′ ≤̇Co γPo3 (H ′)}

)
γPo3 (H[f : ∅])

≤Co γPo1 (m)
}

=
{
〈H,m〉

∣∣ β-red.∧Co{γCo
1 (m′) | 〈H ′,m′〉 ∈ TPCJeK ∧ γPo3 (H[f : ∅]) ≤̇Co γPo3 (H ′)}

≤Co γPo1 (m)
}

⊇
{
〈H,m〉

∣∣ ∧Co{γCo
1 (m′) | 〈H ′,m′〉 ∈ TPCJeK ∧H[f : ∅] ⊆̇ H ′} ≤Co γPo1 (m)

}
monotonicity

⊇
{
〈H,m〉

∣∣ ∧Co{γCo
1 (m′) | 〈H ′,m′〉 ∈ TPCJeK ∧H[f : ∅] = H ′} ≤Co γPo1 (m)

}
⊇
{
〈H,m〉

∣∣ 〈H[f : ∅],m〉 ∈ TPCJeK
}

Definition 5.2.1 (Monomorphic Guarded Function Types). For a finite se-
quence of constructor symbols s = c1, . . . , cn, define the set of s-guarded function
types as

MPC
~n (c1, . . . , cn) := {c1(t̄1)→ . . .→ cn(t̄n)→ tr | t̄1, . . . , t̄n, tr ∈MPC}.

The following result can be easily verified in the current context, where the
only type constructors across all type systems are those for integer and function
types. For other sets of type constructors, an adequate correspondence would
have to be established in each case.

Proposition 5.2.2. For any finite sequence of constructor symbols c1, . . . , cn
and any m ∈MPC, if m ∈MPC

~n (c1, . . . , cn), then PCo~n (c1, . . . , cn) ≤Co γPo1 (m).

We present the proof with a slightly simplified definition of TCoJ·K to ease
presentation. The omitted constraint is the one responsible for ensuring that

36

overloading implementations can be typed as functions of the expected arity,
and we use this background assumption as (∗) when computing ∧Co as set
union below.

αPo(TCoJπf c1 . . . cn = e1 in e2K)
= αPo(ΛH.TCoJe2KH[f : H(f) ∧Co (TCoJe1KH ∨Co PCo~n (c1, . . . , cn))]) def. TCoJ·K
=
{
〈H,m〉

∣∣ def. αPo(·)

TCoJe2KγPo3 (H)[f : γPo3 (H)(f) ∧Co (TCoJe1KγPo3 (H) ∨Co PCo~n (cn))]

≤Co γPo1 (m)
}

⊇
{
〈H,m〉

∣∣ I.H.

γPo(TPCJe2K)γPo3 (H)[f : γPo3 (H)(f) ∧Co (TCoJe1KγPo3 (H) ∨Co PCo~n (cn))]

≤Co γPo1 (m)
}

=
{
〈H,m〉

∣∣ def. γPo(·)

H ′′ =
(
γPo3 (H)[f : γPo3 (H)(f) ∧Co (TCoJe1KγPo3 (H) ∨Co PCo~n (cn))]

)
∧(

ΛH ′.
∧Co{γPo1 (m′) | 〈H ′,m′〉 ∈ TPCJe2K ∧H ′ ≤̇

Co
γPo3 (H ′)}

)(
H ′′)

≤Co γPo1 (m)
}

=
{
〈H,m〉

∣∣ ∧Co{γPo1 (m′) | 〈H ′,m′〉 ∈ TPCJe2K β-red.

∧ γPo3 (H)[f : γPo3 (H)(f) ∧Co (TCoJe1KγPo3 (H) ∨Co PCo~n (cn))] ≤̇Co γPo3 (H ′)}
≤Co γPo1 (m)

}
⊇
{
〈H,m〉

∣∣ ∃H ′,m′ : γPo1 (m′) ≤Co γPo1 (m) ∧ 〈H ′,m′〉 ∈ TPCJe2K def. glb

∧ γPo3 (H)[f : γPo3 (H)(f) ∧Co (TCoJe1KγPo3 (H) ∨Co PCo~n (cn))] ≤̇Co γPo3 (H ′)
}

=
{
〈H,m〉

∣∣ ∃H ′ : 〈H ′,m〉 ∈ TPCJe2K

∧ γPo3 (H)[f : γPo3 (H)(f) ∧Co (TCoJe1KγPo3 (H) ∨Co PCo~n (cn))] ≤̇Co γPo3 (H ′)
}

(3.3.13)

By 5.2.2 and I.H. we have

TCoJe1KγPo3 (H) ∨Co PCo~n (cn)

≤Co
∧Co{γPo1 (m) | 〈H,m〉 ∈ TPCJe1K ∧m ∈MPC

~n (cn)},

thus

⊇
{
〈H,m〉

∣∣ ∃H ′ : 〈H ′,m〉 ∈ TPCJe2K

∧ p = γPo3 (H)(f) ∧Co
∧Co{γPo1 (m) | 〈H,m〉 ∈ TPCJe1K ∧m ∈MPC

~n (cn)}

∧ γPo3 (H)[f : p] ≤̇Co γPo3 (H ′)
}

37

=
{
〈H,m〉

∣∣ ∃H ′ : 〈H ′,m〉 ∈ TPCJe2K def. γPo2 (·)

∧ p = γPo3 (H)(f) ∧Co γPo2 ({m | 〈H,m〉 ∈ TPCJe1K ∧m ∈MPC
~n (cn)})

∧ γPo3 (H)[f : p] ≤̇Co γPo3 (H ′)
}

=
{
〈H,m〉

∣∣ ∃H ′ : 〈H ′,m〉 ∈ TPCJe2K (∗), def. γPo3 (·)

∧ γPo3 (H[f : H(f) ∪ {m | 〈H,m〉 ∈ TPCJe1K ∧m ∈MPC
~n (cn)}]) ≤̇Co γPo3 (H ′)

}
⊇
{
〈H,m〉

∣∣ ∃H ′ : ∃M ⊆MPC
~n (cn) :

(
M 6= ∅ ∧ ∀m′ ∈M : 〈H,m′〉 ∈ TPCJe1K ∃-intr.

∧ 〈H ′,m〉 ∈ TPCJe2K ∧ γPo3 (H[f : H(f) ∪M]) ≤̇Co γPo3 (H ′)
)}

⊇
{
〈H,m〉

∣∣ ∃H ′ : ∃M ⊆MPC
~n (cn) :

(
M 6= ∅ ∧ ∀m′ ∈M : 〈H,m′〉 ∈ TPCJe1K monotonocity

∧ 〈H ′,m〉 ∈ TPCJe2K ∧H[f : H(f) ∪M] ⊆̇ H ′
)}

⊇
{
〈H,m〉

∣∣ ∃H ′ : ∃M ⊆MPC
~n (cn) :

(
M 6= ∅ ∧ ∀m′ ∈M : 〈H,m′〉 ∈ TPCJe1K

∧ 〈H ′,m〉 ∈ TPCJe2K ∧H[f : H(f) ∪M] = H ′
)}

=
{
〈H,m〉

∣∣ ∃M ⊆MPC
~n (c1, . . . , cn) :

(
M 6= ∅ ∧ ∀m′ ∈M : 〈H,m′〉 ∈ TPCJe1K

∧ 〈H[f : H(f) ∪M],m〉 ∈ TPCJe2K
)}

= TPCJπf c1 . . . cn = e1 in e2K

Then we may conclude that TPC is a Q-sound abstraction.

5.3 The Type System TT as an Abstract Seman-
tics

We come back to the question of soundness of the type system TT for the dy-
namic semantic with overloading. We first give an alternative abstract semantics
formulation of the rule-based type system from 4.3.8. Then, by 3.3.6 and 3.3.3,
it suffices to show that this abstract semantics abstracts Church/Curry polytype
semantics, and we get:

Theorem 5.3.1. The type system TT is a sound type system.

The re-presentation of the type system as an abstract semantics carries no
surprises. Our goal is to give types as sets of typings,

TT := P((HT ×MT))

and an abstract semantic function TTJ·K : E→ TT, which merely expresses the
rule based system in functional form:

TTJxK :=
{
〈Γ, τ〉

∣∣ τ ≤T elim(Γ(x)) ∧ Γ ∈ HT
}

38

TTJλx.eK :=
{
〈Γ, τ1 → τ2〉

∣∣ 〈Γ[x : τ1], τ2〉 ∈ TTJeK
}

TTJe1e2K :={
〈Γ, τ2〉

∣∣ 〈Γ, τ1 → τ2〉 ∈ TTJe1K ∧ 〈Γ, τ1〉 ∈ TTJe2K
}

TTJlet x = e1 in e2K :={
〈Γ, τ2〉

∣∣ 〈Γ, τ1〉 ∈ TTJe1K ∧ 〈Γ[x : gen(Γ, τ1)], τ2〉 ∈ TTJe2K
}

TTJµf.λx.eK :={
〈Γ, τ1 → τ2〉

∣∣ 〈Γ[f : τ1 → τ2], τ1 → τ2〉 ∈ TTJλx.eK
}

TTJπf :: ω in eK :=
{
〈Γ, τ〉

∣∣ 〈Γ[f : ∀̈′a∅.[′a∅/$]ω], τ〉 ∈ TTJeK
}

TTJπf c1 . . . cn = e1 in e2K :={
〈Γ[f : ∀̈′aX .τ0], τ2〉

∣∣∃τ1 : ∃c ∈ C :
(

〈Γ[f : ∀̈′aX .τ0], τ1〉 ∈ TTJe1K

∧ τ1 ≤T c1(′a1>)→ . . .→ cn(′an>)→ ′b>

∧ τ1 = [c(′c)/′aX]τ0

∧ c 6∈ d
∧ 〈Γ[f : ∀̈′aX∪{c(′c)}.[

′aX∪{c(′c)}/
′aX]τ0], τ2〉 ∈ TTJe2K

)}
TTJzK :=

{
〈Γ, int〉

∣∣Γ ∈ HT
}

TTJe1+e2K :=
{
〈Γ, int〉

∣∣ 〈Γ, int〉 ∈ TTJe1K ∩TTJe2K
}

TTJifz e1 then e2 else e3K :={
〈Γ, τ〉

∣∣ 〈Γ, int〉 ∈ TTJe1K ∧ 〈Γ, τ〉 ∈ TTJe2K ∩TTJe3K
}

Definition 5.3.2. For converting from type schemes to types we define

elim : PT →MT

elim(τ) := τ

elim(∀̇′b1 . . . ′bn.τ) := τ

elim(∀̈′b1 . . . ′bn.τ) := τ.

We need operations on type terms similar to those discussed in [Cou97,
p. 321], but adjusted to the notion of respectful substitution, such that the set
of groundings of a given term contains only those obtained by applying respectful
substitutions.

Definition 5.3.3. ground : MT → PPC takes type terms with variables to sets
of ground types.

ground(τ) :=

{
∅ if ∃′a∅ ∈ FV(τ)

{S(τ) |S : MT r→MPC} o.w.

The test for a ′a∅ appearing freely in τ is necessary to make ground be total,
as any such variable is uninstantiable.

39

For the purpose of proving this semantics Q-sound, we first define a con-
cretization function for type environments γ̇T : HT → P(HPC), which unfolds
all polytypes in HT type environments to their (potentially) infinite set repre-
sentations after grounding variables bound globally in the environment first:

γ̇T(Γ) :=
{

Λx.ground(elim(S(Γ)(x)))
∣∣S : V r→MPC

}
Observe that γ̇T produces singleton sets for type environments without paramet-
ric variables. We therefore permit ourselves to use γ̇T as if it simply produced a
type environment in this case. We can extend the order on type terms to type
environments in pointwise fashion:

Γ ≤̇T Γ′ :⇔ ∀x ∈ X : ∀S : V r→MPC : Γ(x) ≤T Γ′(x)

Definition 5.3.4. We define a function γ̈T : TT → TPC unfolding finitely
represented types to their infinite expansion,

γ̈T(T) :=
{
〈γ̇T(S(Γ)), S(τ)〉

∣∣ 〈S(Γ), S(τ)〉 ∈ T ∧ S : V r→MPC
}
.

Note that in terms of τ this generates all ground instances, but we simultane-
ously ground free variables in the type environment so that the coherence of
global type variables is ensured.

5.3.1 Abstraction from Church/Curry Polytype Seman-
tics

Proposition 5.3.5. 〈TT,⊆〉 is an abstraction of 〈TPC,⊆〉 via γ̈T.

Proof. The monotonicity of γ̈T is straightforward. By (3.3.2) it remains to check
that for all e ∈ E

TPCJeK ⊇ γ̈T(TTJeK).

The proof is by induction on the structure of e. We first consider the variable
case.

γ̈T(TTJxK)
= γ̈T

({
〈Γ, τ〉

∣∣ τ ≤T elim(Γ(x)) ∧ Γ ∈ HT
})

def. TTJ·K
=
{
〈γ̇T(S(Γ)), S(τ)〉

∣∣S(τ) ≤T elim(S(Γ(x))) ∧ S(Γ) ∈ HT def. γ̈T

∧S ∈ V r→MPC
}

=
{
〈γ̇T(S(Γ)), S(τ)〉

∣∣S(τ) ∈ γ̇T(S(Γ))(x) ∧ S(Γ) ∈ HT def. γ̇T

∧S ∈ V r→MPC
}

⊆
{
〈H,m〉

∣∣m ∈ H(x) ∧H ∈ HPC
}

= TPCJxK def. TPCJ·K

The other interesting cases are those for overloading introduction and implemen-
tation. The introduction of overloaded identifiers is relatively straightforward

40

and relies on the fact that groundings of type terms containing a type variable
′a∅ produce the empty set.

γ̈T(TTJπf :: ω in eK)
= γ̈T

({
〈Γ, τ〉

∣∣ 〈Γ[f : ∀̈′a∅.[′a∅/$]ω], τ〉 ∈ TTJeK
})

=
{
〈γ̇T(S(Γ)), S(τ)〉

∣∣
〈S(Γ[f : ∀̈′a∅.[′a∅/$]ω]), S(τ)〉 ∈ TTJeK ∧ S : V r→MPC

}
⊆
{
〈γ̇T(S(Γ)), S(τ)〉

∣∣
〈γ̇T(S(Γ[f : ∀̈′a∅.[′a∅/$]ω])), S(τ)〉 ∈ TPCJeK ∧ S : V r→MPC

}
=
{
〈γ̇T(S(Γ)), S(τ)〉

∣∣
〈γ̇T(S(Γ))[f : ground(elim(S(∀̈′a∅.[′a∅/$]ω)))], S(τ)〉 ∈ TPCJeK
∧S : V r→MPC

}
=
{
〈γ̇T(S(Γ)), S(τ)〉

∣∣ 〈γ̇T(S(Γ))[f : ∅], S(τ)〉 ∈ TPCJeK ∧ S : V r→MPC
}

⊆
{
〈H,m〉

∣∣ 〈H[f : ∅],m〉 ∈ TPCJeK
}

= TPCJπf :: ω in eK

For the case of overloading definitions, we need the following proposition which
follows by induction on the structure of program expressions.

Proposition 5.3.6. For any e,Γ, τ, S : V r→MPC,

〈S(Γ), τ〉 ∈ TTJeK⇒ ∀S′ : V r→MPC : 〈S(Γ), S′(τ)〉 ∈ TTJeK.

γ̈T
(
TTJπf c1 . . . cn = e1 in e2K

)
= γ̈T

({
〈Γ[f : ∀̈′aX .τ0], τ2〉

∣∣∃τ1 : ∃c ∈ C :
(

〈Γ[f : ∀̈′aX .τ0], τ1〉 ∈ TTJe1K
∧ τ1 ≤T c1(′a1>)→ . . .→ cn(′an>)→ ′b>

∧ τ1 = [c(′c)/′aX]τ0

∧ c 6∈ d
∧ 〈Γ[f : ∀̈′aX∪{c(′c)}.[

′aX∪{c(′c)}/
′aX]τ0], τ2〉 ∈ TTJe2K

)})
=
{
〈γ̇T(S(Γ[f : ∀̈′aX .τ0])), S(τ2)〉

∣∣ ∃τ1 : ∃c ∈ C :
(

〈S(Γ[f : ∀̈′aX .τ0]), τ1〉 ∈ TTJe1K
∧ τ1 ≤T c1(′a1>)→ . . .→ cn(′an>)→ ′b>

∧ τ1 = [c(′c)/′aX]τ0

∧ c 6∈ d
∧ 〈S(Γ[f : ∀̈′aX∪{c(′c)}.[

′aX∪{c(′c)}/
′aX]τ0]), S(τ2)〉 ∈ TTJe2K

)
∧S : V r→MPC

}
⊆
{
〈γ̇T(S(Γ[f : ∀̈′aX .τ0])), S(τ2)〉

∣∣ ∃τ1 : ∃c ∈ C :
(

41

∀m ∈ ground(τ1) : 〈γ̇TS(Γ[f : ∀̈′aX .τ0]),m〉 ∈ TPCJe1K
∧ground(τ1) ⊆MPC

~n (c1, . . . , cn)

∧ τ1 = [c(′c)/′aX]τ0

∧ c 6∈ d
∧ 〈S(Γ[f : ∀̈′aX∪{c(′c)}.[

′aX∪{c(′c)}/
′aX]τ0]), S(τ2)〉 ∈ TTJe2K

)
∧S : V r→MPC

}
⊆
{
〈γ̇T(S(Γ[f : ∀̈′aX .τ0])), S(τ2)〉

∣∣ ∃τ1 : ∃c ∈ C :
(

∀m ∈ ground(τ1) : 〈γ̇TS(Γ[f : ∀̈′aX .τ0]),m〉 ∈ TPCJe1K
∧ground(τ1) ⊆MPC

~n (c1, . . . , cn)

∧ τ1 = [c(′c)/′aX]τ0

∧ c 6∈ d
∧ 〈γ̇T(S(Γ[f : ∀̈′aX∪{c(′c)}.[

′aX∪{c(′c)}/
′aX]τ0])), S(τ2)〉 ∈ TPCJe2K

)
∧S : V r→MPC

}
But now we have that

γ̇T(S(Γ[f : ∀̈′aX∪{c(′c)}.[
′aX∪{c(′c)}/

′aX]τ0]))

= γ̇T(S(Γ))[f : ground(elim(S(∀̈′aX∪{c(′c)}.[
′aX∪{c(′c)}/

′aX]τ0)))]

= γ̇T(S(Γ))[f : ground(elim(S(∀̈′aX .τ0))) ∪ ground([c(′c)/′aX]τ0)]

= γ̇T(S(Γ))[f : ground(elim(S(∀̈′aX .τ0))) ∪ ground(τ1)]

= γ̇T(S(Γ[f : ∀̈′aX .τ0]))[f : γ̇T(S(Γ[f : ∀̈′aX .τ0]))(f) ∪ ground(τ1)],

and so we get an inclusion

⊆
{
〈γ̇T(S(Γ[f : ∀̈′aX .τ0])), S(τ2)〉

∣∣∃M :
(

∀m ∈M : 〈γ̇TS(Γ[f : ∀̈′aX .τ0]),m〉 ∈ TPCJe1K
∧M ⊆MPC

~n (c1, . . . , cn) ∧M 6= ∅
∧ 〈γ̇T(S(Γ[f : ∀̈′aX .τ0]))[f : γ̇T(S(Γ[f : ∀̈′aX .τ0]))(f) ∪M], S(τ2)〉 ∈ TPCJe2K

)
∧S : V r→MPC

}
⊆TPCJπf c1 . . . cn = e1 in e2K.

42

Chapter 6

Related Work

Ernest was an elephant and very well intentioned,
Leonard was a lion with a brave new tail,
George was a goat, as I think I have mentioned,
but James was only a snail.

—A.A. Milne, The Four Friends

Our work is an attempt at establishing a connection between a variety of
topics in programming languages, where the main strands are dynamic dispatch
(or, definition by cases), static analysis via abstract interpretation, and bounded
polymorphism. In our experience, connections between these areas are manifold
and enlightening, yet the differences in outlook and weak connections between
their respective research communities present a challenge to their combined
study. We will go into each topic individually.

6.1 Bounded Polymorphism

The most obvious and direct connection is with the work of Stefan Kaes, whose
work on parametric overloading [Kae88] was one of the earliest systematic ap-
proaches to bounded polymorphism. As had been clear in the 1980s, Milner’s
judgment of overloading being “somewhat orthogonal” to parametric polymor-
phism was too optimistic1. The standard examples of the problems arising from
the interaction between overloading and parametricity are the arithmetic and
equality operations in StandardML [MTH90]. As an example, we may consider
the equality case, which is a binary predicate, or binary function == mapping two
values to a boolean value. Because equality of function values is undecidable, ==
may not be applied to any functions. At the same time, == possesses infinitely
many instances of the scheme list(a)→ list(a)→ bool, but not for arbitrary
instantiations of a, as the implementation of == for lists must again rely on == to
check equality of list members. That is, the list(a)→ list(a)→ bool family

1Maybe depending on what one understands “somewhat” to mean.

43

of types is parametric, but with a bound on a that requires instantiations to
again support equality. The ad-hoc solution to this problem in StandardML is
the introduction of a second sort of variables which may only be unified with
an inductively defined set of types guaranteed to admit equality.

The work of Kaes consists in a systematization and generalization of the
sorted variable approach. While our system TT relies on variables sorted by
type annotations, variables in [Kae88, Kae05] are sorted by operator symbol
annotations. The benefit of this approach is enhanced extensibility of type def-
initions which allows type assignment to be independent of the order in which
overloading implementations are declared. This is achieved by using the opera-
tor symbol annotations as an indirection to type annotations via a global look-up
table. Kaes’s 2005 dissertation [Kae05] elaborates on the results of [Kae88] and
generalizes the approach to a theory of constrained types, a development that is
reminiscent of the work of Sulzmann et al. which we will discuss below. Kaes’s
work seems to have had little direct impact, as an independent and parallel de-
velopment of a similar approach rose to popularity. We believe that especially
his 2005 dissertation still offers a worthwhile perspective that has been unduly
neglected.

Wadler and Blott’s How to make ad-hoc polymorphism less ad hoc [WB89],
which first popularized bounded parametric polymorphism, is another excellent
systematization of the ad hoc type system extensions found in StandardML.
Because their development grew out of and was incorporated into the Haskell
programming language, it was arguably more accessible and found swift adop-
tion and recognition. The type class approach fundamentally follows the same
strategy of bounding type variables by sets of constraints, but places less con-
straints on the shape of overloaded signatures and furthermore allows to bundle
operator constraints into named predicates (e.g. Eq, Num), which much improves
intelligibility.

Type classes became a popular research topic throughout the 1990s and
found extensive elaboration in the work of Mark Jones [Jon92, Jon93, Jon95],
whose work was of both theoretical and practical nature through his Haskell
dialect Gofer, and forms the basis for much of what is today commonly under-
stood to fall under the type class approach, most prominently the extension to
type constructors and multi-parameter type classes. Partial summaries of the
history of type classes in Haskell can be found in [JJM97] and [HHJW07].

As the type class approach proved to be a success in both theory and prac-
tice, multiple further generalizations of the combination of Hindley-Milner type
inference with type constraint have been proposed. The longest standing devel-
opment begins with Type Inference with Constrained Types [OSW97] and has
found its way back into the Haskell compiler GHC as described in [VJSS11].
The basic idea is to parametrize Hindley-Milner type inference by a constraint
system X to obtain a general procedure HM(X) which under specific conditions
on the constraint system may rely on a uniform type inference algorithm and
guarantee principle types. The current iteration OutsideIn(X) is both very
powerful and complicated, as is attested to by the 78-page spanning [VJSS11].
An introduction to the HM(X) approach can be found in [PR05].

44

6.2 Dynamic Dispatch

While our dynamic language λK and its semantics are inspired by one of the com-
pilation strategies suggest by Kaes, it is arguably more interesting to attempt
an adaptation of the type class approach to dynamic languages. This is done
in Type Classes Without Types [GL05], which defines the notion of predicate
classes and presents an implementation for the Scheme programming language.
For lack of a static type system, the type class model is adapted to make use
of the latent types associated with values at run time by means of predicate
functions, which is a form of dynamic dispatch, but generalized to dispatch on
arbitrary predicates instead of just tags on values. Essentially the mechanism
allows to define overloadings by cases, but as in our semantics, a global look-up
table is employed in order to maintain openness and extensibility of overloading
implementations. An added benefit inherited from type classes is the ability
to group operators semantically. It would be interesting to consider the prob-
lem of type inference for this or a similar dynamic adaptation of the type class
approach.

Although the type system TT forces dispatch on only one type, our dynamic
semantics affords multiple dispatch. As the name suggest, multiple dispatch
makes use of an analysis of several arguments in order to determine the imple-
mentation to dispatch to. Besides efficiency challenges in implementing multi-
ple dispatch, additional challenges are posed for static type inference. We have
not considered the problem of reconciling multiple dispatch and static analysis.
[MPTN08] is an empirical study of practical use of multiple dispatch across sev-
eral languages and describes some interactions between multiple dispatch and
static type systems.

6.3 Abstract Interpretation and Type Analysis

We briefly discuss two examples of extensions of [Cou97]. Roberta Gori and
Giorgio Levi use the abstract interpretation framework for a purpose suggested
by Cousot: “A sound type inference algorithm which would be more precise
than required by the typing rules would be harmless for the programmer and
certainly useful to an optimizing compiler” [Cou97, p. 330]. By analyzing the
Damas-Milner [DM82] approach to typing recursive definitions using the lattice
theoretic viewpoint of abstract interpretation, Gori and Levi identify it as an
application of a widening operation used to efficiently approximate an upper
approximation of the least fixed point. Using this insight, a generalization of
this approach is derived which may be used to increase the precision of the
approximation and generates a type system which in precision lies between
systems for monomorphic and polymorphic recursion [GL02, GL03].

More recently, Simon uses the abstract interpretation framework to combine
type inference with inference for the size of vectors [Sim14]. Simon’s devel-
opment is motivated by the desire to derive type systems for domain-specific
languages without starting from scratch. The use of static analysis methods

45

from abstract interpretation promises to allow for reuse of existing abstract do-
mains, as well as alternative representations of types instead of just Herbrand-
style type terms. Simon discusses difficulties with Cousot’s presentation of the
Milner-Mycroft type system for polymorphic recursion, which however was not
the focus of our research.

46

Chapter 7

Conclusion

We must face the fact that we are on the brink of times when
man may be able to magnify his intellectual and inventive
capability, just as in the nineteenth century he used machines
to magnify his physical capacity. Again, as then, our innocence
is lost. And again, of course, the innocence, once lost, cannot
be regained. The loss demands attention, not denial.

—Christopher Alexander, Notes on the Synthesis of Form

To conclude, we want to summarize our contributions, discuss benefits of
an abstract interpretation approach as well as possibilities for future work, and
finally connect back to the motivating goal of reconciliating type theory and
engineering practice.

We defined an applicative language with dynamic dispatch and its denota-
tional semantics, which though based on prior work by Kaes ([Kae88, Kae05])
is novel in that it demonstrates the optional nature of type inference for the
purpose of compilation. While we have not discussed this in detail, this lan-
guage has been designed to be compatible with Kaes’s original type inference
procedure and we believe that indeed Kaes’s type system could be applied to
this language without major modifications. We furthermore designed a novel
type system for said language which introduces a system of local constraints on
type variables to support a simple form of bounded type polymorphism. We
have devised a unification procedure for this system which may be substituted
for Robinson unification to obtain a type inference procedure along the lines of
Damas-Milner type inference. Finally, we have proved soundness of two type
systems adapted from [Cou97] and used this development to prove soundness of
the novel type system by abstraction.

We claim that the abstract interpretation perspective has the following ben-
efits:

• It may help to broaden the understanding of what it means to create a
type system using term-based representations of infinite sets of types by
providing a framework in which both practical type systems and their

47

intended idealizations may be formalized and brought into well-defined
relations.

• It provides a set of tools for deriving sound, implementable abstractions
from idealized systems.

• It provides a common framework for both type-based analysis and other
static analysis methods, such that there is potential for combining methods
from both.

Many possibilities for future work come to mind. In direct extension of our
work, the use of external type systems for the purpose of optimizing compilation
could be discussed—for example, knowledge of the precise type of a function at
call-site could be used to bypass dynamic dispatch by directly rewriting the
overloaded application to the corresponding implementation.

We were unfortunately unable to finish a full abstract interpretation treat-
ment of Kaes’s original type system in time for the thesis deadline, and would
see this, or other systems for bounded polymorphism, as an interesting object of
study that has not been considered from an abstract interpretation viewpoint.
Similarly, the connection between gradual typing and abstract-interpretation-
based analysis methods has to our knowledge not been made.

Lastly, the connection between bounded polymorphism and order-sorted uni-
fication [MGS89] has been noticed by Kaes [Kae05] and others, but the abstract
interpretation perspective suggests to consider the opposite transformation from
concrete to abstract semantics via order-sorted anti-unification [AEMO09].

In closing, since becoming aware of the mismatch between programming
language theory rhetoric and industry practice during the early stages of this
thesis, we have noticed many encouraging signals coming from both academia
and industry that give cause for an optimistic outlook on a future convergence
of programming language theory and practice.

48

Appendix A

Some Errors in [Cou97]

A.1 The Soundness of TCoJ·K
TCoJ·K as defined in [Cou97, p. 324] is unsound and Proposition 15 (p. 325) can
not be shown to hold. We give counterexamples to Proposition 15 and suggest
a corrected definition of TCoJ·K for which the proposition holds.

Proposition A.1.1. For all t ∈ PCo
≡ , ⊥ ∈ γCo

1 (t).

Proposition A.1.2. For all t ∈ PCo
≡ , 8 ∈ γCo

1 (t) if and only if t = ∅Co.

Proposition A.1.3. For all T, S ⊆ PCo
≡ , T ⊆ S implies

∧Co
S ≤Co

∧Co
T .

Proposition A.1.4. For all t ∈ PCo
≡ , u ∈ U, z ∈ Z⊥, if u 6∈ Z⊥ and u, z ∈

γCo
1 (t), then t = ∅Co.

Inconsistency 1: TCoJλx.eK The rule for typing lambda abstractions intro-
duces an inconsistency as it allows for expressions with runtime errors to be
typed. We hypothesize that this is merely an unfortunate typographical error.
As an example, consider the term φ = (λx.1)(if (λx.x) then 1 else 1).

SJλx.1K= ΛR.↑(Λu.if u ∈ {⊥,8} then u else SJ1KR[x→ u]) :: [U→ U]⊥

= ΛR.↑(Λu.if u ∈ {⊥,8} then u else ↑(1) :: Z⊥) :: [U→ U]⊥

SJif (λx.x) then 1 else 1K= ΛR.8 (A.1)

SJφK= ΛR.(Λu.if u ∈ {⊥,8} then u else ↑(1) :: Z⊥)(8) (A.2)

= ΛR.8 (A.3)

αCo(CJφK)= ΛH.
∧Co {

t ∈ PCo
≡
∣∣∀R ∈ γCo

2 (H) : SJφKR ∈ γCo
1 (t)

}
= ΛH.

∧Co {
t ∈ PCo

≡
∣∣∀R ∈ γCo

2 (H) : 8 ∈ γCo
1 (t)

}
= ΛH.

∧Co {∅Co
}

by Prop. A.1.2

= ΛH.∅Co def.
∧Co

49

TCoJλx.1K= ΛH.
∧Co {{t→ TCoJ1KH[x← t]}

∣∣t ∈ PCo
≡ \ {⊥Co}

}
(A.4)

= ΛH.
∧Co {{t→ int}

∣∣t ∈ PCo
≡ \ {⊥Co}

}
(A.5)

= ΛH.
{
t→ int

∣∣t ∈ PCo
≡ \ {⊥Co}

}
(A.6)

TCoJif (λx.x) then 1 else 1K= ΛH.∅Co (A.7)

TCoJφK= ΛH.
∧Co {

t ∈ PCo
≡
∣∣TCoJλx.1KH ≤Co {TCoJif (λx.x) then 1 else 1KH → t}

}
= ΛH.

∧Co {
s ∈ PCo

≡
∣∣{t→ int

∣∣t ∈ PCo
≡ \ {⊥Co}

}
≤Co {∅Co → s}

}
Looking at the definition of

∧Co
, we can now easily see that, for each H,

TCoJφKH ≤Co int <Co ∅Co = αCo(CJφK)H, contradicting Proposition 15.
This follows from int being one of the s ∈ PCo

≡ above, since γCo
1 (
{
t → int

∣∣t ∈
PCo
≡ \ {⊥Co}

}
) ⊆ γCo

1 ({∅Co → int}):

γCo
1 (
{
t→ int

∣∣t ∈ PCo
≡ \ {⊥Co}

}
)

=
⋂

t∈PCo
≡ ,t6=⊥Co

{
ψ ∈ [U→ U]⊥

∣∣∀u ∈ γCo
1 (t) : ψ(u) ∈ γCo

1 (int)} ∪ {⊥}

⊆
{
ψ ∈ [U→ U]⊥

∣∣∀u ∈ γCo
1 (∅Co) : ψ(u) ∈ γCo

1 (int)} ∪ {⊥}
= γCo

1 ({∅Co → int})

We now “derive” the proper rule. Let H ∈ HCo arbitrary.

αCo(CJλx.eK)H
=

∧Co{t ∈ PCo
≡ |∀R ∈ γCo

2 (H) : SJλx.eKR ∈ γCo
1 (t)} prep., (∗)

=
∧Co{t ∈ PCo

≡ |∀R ∈ γCo
2 (H) :

(↑(Λu.if u ∈ {⊥,8} then u else SJeKR[x← u]) :: [U→ U]⊥) ∈ γCo
1 (t)} def. SJ·K

=
∧Co ({∅Co} ∪ {T ⊆ PCo

≡ × PCo
≡ |∀R ∈ γCo

2 (H) : ∀t1 → t2 ∈ T :(
↑(Λu.if u ∈ {⊥,8} then u else SJeKR[x← u]) :: [U→ U]⊥

)
∈ ~γCo(t1 → t2)}

)
def. γCo

1

But the ∅Co case is subsumed by the polytypes through the empty polytype, hence

=
∧Co{T ⊆ PCo

≡ × PCo
≡ |∀R ∈ γCo

2 (H) : ∀t1 → t2 ∈ T :(
↑(Λu.if u ∈ {⊥,8} then u else SJeKR[x← u]) :: [U→ U]⊥

)
∈ ~γCo(t1 → t2)} set identity

=
∧Co{T ⊆ PCo

≡ × PCo
≡ |∀R ∈ γCo

2 (H) : ∀t1 → t2 ∈ T : ∀u ∈ γCo
1 (t1) : def. ~γCo,

u 6= 8 ∧ SJeKR[x← u] ∈ γCo
1 (t2)

∨u = 8 ∧ u ∈ γCo
1 (t2)} Prop. A.1.1

=
∧Co{{t1 → t2}|t1 → t2 ∈ PCo

≡ × PCo
≡ ∧ ∀R ∈ γCo

2 (H) : ∀u ∈ γCo
1 (t1) :

u 6= 8 ∧ SJeKR[x← u] ∈ γCo
1 (t2)

∨u = 8 ∧ u ∈ γCo
1 (t2)} def.

∧Co
≤Co

∧Co{{t→ TCoJeKH[x→ t]}|t ∈ PCo
≡ ∧ ∀R ∈ γCo

2 (H) : ∀u ∈ γCo
1 (t) :

50

u 6= 8 ∧ SJeKR[x← u] ∈ γCo
1 (TCoJeKH[x→ t])

∨u = 8 ∧ u ∈ γCo
1 (TCoJeKH[x→ t])} def. ≤Co

≤Co
∧Co{{t→ TCoJeKH[x→ t]}|t ∈ PCo

≡ \ {∅Co} ∧ ∀R ∈ γCo
2 (H) : ∀u ∈ γCo

1 (t) :

u 6= 8 ∧ SJeKR[x← u] ∈ γCo
1 (TCoJeKH[x→ t])

∨u = 8 ∧ u ∈ γCo
1 (TCoJeKH[x→ t])} def. ≤Co

=
∧Co{{t→ TCoJeKH[x→ t]}|t ∈ PCo

≡ \ {∅Co} ∧ ∀R ∈ γCo
2 (H) : ∀u ∈ γCo

1 (t) :

SJeKR[x← u] ∈ γCo
1 (TCoJeKH[x→ t])} Prop. 2

But the latter is guaranteed by the induction hypothesis and Lemma 14.

=
∧Co{{t→ TCoJeKH[x→ t]}|t ∈ PCo

≡ \ {∅Co}}
= (ΛH.

∧Co{{t→ TCoJeKH[x← t]}|t ∈ PCo
≡ \ {∅Co}})H η-conv.

6= (ΛH.
∧Co{{t→ TCoJeKH[x← t]}|t ∈ PCo

≡ \ {⊥Co}})H
= TCoJλx.eKH def. TCoJ·K

Inconsistency 2: TCoJe1 − e2K We might have used the minus operation to
obtain a runtime error in the preceding example, but its typing rule is itself
inconsistent. Consider φ = 1− λx.x, with arbitrary H ∈ HCo:

αCo(CJ1− λx.xK)H
=

∧Co {
t ∈ PCo

≡
∣∣∀R ∈ γCo

2 (H) : SJ1− λx.xKR ∈ γCo
1 (t)

}
=

∧Co {
t ∈ PCo

≡
∣∣∀R ∈ γCo

2 (H) : 8 ∈ γCo
1 (t)

}
=

∧Co {∅Co
}

Prop. A.1.2

=
⋃{
∅Co
}

def.
∧Co

=
⋃{
∅
}

def. ∅Co

= ∅ def.
⋃

= ∅Co def. ∅Co

>Co⊥Co

= int ∧Co int ∧Co
{
t→ t

∣∣t ∈ PCo
≡ \ {⊥Co}

}
= int ∧Co TCoJ1KH ∧Co TCoJλx.xKH
= TCoJ1− λx.xK

We conjecture that there has been some general downward/upward confusion
and that the intended definition is in terms of lubs, not glbs, that is TCoJe1−e2K :=
ΛH.int∨CoTCoJe1KH∨CoTCoJe2KH. We prove the adequacy of this definition.

αCo(CJe1−e2K)H
=

∧Co{t ∈ PCo
≡ |∀R ∈ γCo

2 (H) : SJe1−e2KR ∈ γCo
1 (t)} prep., (∗)

=
∧Co {

t ∈ PCo
≡ |∀R ∈ γCo

2 (H) :

(⊥ ∈ {SJe1KR,SJe2KR} ⇒ ⊥ ∈ γCo
1 (t))

∧(SJe1KR = z1 :: Z⊥ ∧ SJe2KR = z2 :: Z⊥ ⇒ ↑(↓(z1)− ↓(z2)) :: Z⊥ ∈ γCo
1 (t))

51

∧(∃i ∈ {1, 2} : SJeiK 6∈ Z⊥ ⇒ 8 ∈ γCo
1 (t))

}
def. SJ·K

≤Co
∧Co {

t ∈ PCo
≡
∣∣∀R ∈ γCo

2 (H) : ∀z ∈ Z⊥ : z,SJe1KR,SJe2KR ∈ γCo
1 (t)

}
def.

∧Co
, Prop. A.1.5

=
∧Co {

t ∈ PCo
≡
∣∣int, αCo(CJe1K)H,αCo(CJe2K)H ≤Co t

}
Lemma 14

≤Co
∧Co {

t ∈ PCo
≡
∣∣int,TCoJe1KH,TCoJe2KH ≤Co t

}
def. ≤Co, I.H.

=
∧Co {

t ∈ PCo
≡
∣∣γCo

1 (int), γCo
1 (TCoJe1KH), γCo

1 (TCoJe2KH) ⊆ γCo
1 (t)

}
def. ≤Co

=
∧Co {

t ∈ PCo
≡
∣∣⋃{γCo

1 (int), γCo
1 (TCoJe1KH), γCo

1 (TCoJe2KH)} ⊆ γCo
1 (t)

}
def.

⋃
= αCo1 (

⋃
{γCo

1 (int), γCo
1 (TCoJe1KH), γCo

1 (TCoJe2KH)}) def. αCo
1

=
∨Co{int,TCoJe1KH,TCoJe2KH} def.

∨Co
= int ∨Co TCoJe1KH ∨Co TCoJe2KH
= TCoJe1−e2KH def. TCoJ·K

Proposition A.1.5. ∀e1, e2 ∈ E : ∀t ∈ PCo
≡ : ∀H ∈ HCo : ∀R ∈ γCo

2 (H) : ∀z ∈
Z⊥ : z,SJe1KR,SJe2KR ∈ γCo

1 (t) implies

• ⊥ ∈ {SJe1KR,SJe2KR} ⇒ ⊥ ∈ γCo
1 (t),

• SJe1KR = z1 :: Z⊥ ∧ SJe2KR = z2 :: Z⊥ ⇒ ↑(↓(z1)− ↓(z2)) :: Z⊥ ∈ γCo
1 (t),

• ∃i ∈ {1, 2} : SJeiK 6∈ Z⊥ ⇒ 8 ∈ γCo
1 (t).

We include the case of the zero test as an additional example.

αCo(CJif e1 then e2 else e3K)H
=

∧Co {
t ∈ PCo

≡
∣∣∀R ∈ γCo

2 (H) : SJif e1 then e2 else e3KR ∈ γCo
1 (t)

}
prep., (∗)

=
∧Co {

t ∈ PCo
≡
∣∣∀R ∈ γCo

2 (H) : def. SJ·K
(SJe1KR = ⊥ ⇒ ⊥ ∈ γCo

1 (t))

∧(SJe1KR = ↑(0) :: Z⊥ ⇒ SJe2KR ∈ γCo
1 (t))

∧(SJe1KR = ↑(z) :: Z⊥ ∧ z 6= 0⇒ SJe3KR ∈ γCo
1 (t))

∧(SJe1KR 6∈ Z⊥ ⇒ 8 ∈ γCo
1 (t))

}
=

∧Co {
t ∈ PCo

≡
∣∣∀R ∈ γCo

2 (H) : def. γCo
1

(SJe1KR = ⊥ ⇒ ⊥ ∈ γCo
1 (t))

∧(SJe1KR = ↑(0) :: Z⊥ ⇒ SJe2KR ∈ γCo
1 (t))

∧(SJe1KR = ↑(z) :: Z⊥ ∧ z 6= 0⇒ SJe3KR ∈ γCo
1 (t))

∧(SJe1KR 6∈ γCo
1 (int)⇒ 8 ∈ γCo

1 (t))
}

=
∧Co {

t ∈ PCo
≡
∣∣∀R ∈ γCo

2 (H) : Lem. 14

(SJe1KR = ⊥ ⇒ ⊥ ∈ γCo
1 (t))

∧(SJe1KR = ↑(0) :: Z⊥ ⇒ SJe2KR ∈ γCo
1 (t))

∧(SJe1KR = ↑(z) :: Z⊥ ∧ z 6= 0⇒ SJe3KR ∈ γCo
1 (t))

∧(αCo(CJe1K)H 6≤Co int⇒ 8 ∈ γCo
1 (t))

}
=

∧Co {
t ∈ PCo

≡
∣∣∀R ∈ γCo

2 (H) : by I.H.

52

(SJe1KR = ⊥ ⇒ ⊥ ∈ γCo
1 (t))

∧(SJe1KR = ↑(0) :: Z⊥ ⇒ SJe2KR ∈ γCo
1 (t))

∧(SJe1KR = ↑(z) :: Z⊥ ∧ z 6= 0⇒ SJe3KR ∈ γCo
1 (t))

∧(TCoJe1KH 6= int⇒ 8 ∈ γCo
1 (t))

}
=

∧Co {
t ∈ PCo

≡
∣∣∀R ∈ γCo

2 (H) : strengthening, Prop. A.1.2

(SJe1KR = ⊥ ⇒ ⊥ ∈ γCo
1 (t))

∧(SJe1KR = ↑(0) :: Z⊥ ⇒ SJe2KR ∈ γCo
1 (t))

∧(SJe1KR = ↑(z) :: Z⊥ ∧ z 6= 0⇒ SJe3KR ∈ γCo
1 (t))

∧(TCoJe1KH 6∈ {⊥Co, int} ⇒ t = ∅Co)
}

≤Co
∧Co {

t ∈ PCo
≡
∣∣∀R ∈ γCo

2 (H) : contract

(SJe1KR = ⊥ ⇒ ⊥ ∈ γCo
1 (t))

∧(SJe1KR ∈ Z⊥ ⇒ SJe2KR,SJe3KR ∈ γCo
1 (t))

∧(TCoJe1KH 6∈ {⊥Co, int} ⇒ t = ∅Co)
}

=
∧Co {

t ∈ PCo
≡
∣∣∀R ∈ γCo

2 (H) : Lem. 14, I.H.

(SJe1KR = ⊥ ⇒ ⊥ ∈ γCo
1 (t))

∧(SJe1KR ∈ Z⊥ ⇒ TCoJe2KH,TCoJe3KH ≤Co t)
∧(TCoJe1KH 6∈ {⊥Co, int} ⇒ t = ∅Co)

}
=

∧Co {
t ∈ PCo

≡
∣∣∀R ∈ γCo

2 (H) : we’re taking glb

(SJe1KR = ⊥ ⇒ ⊥ ∈ γCo
1 (t))

∧(SJe1KR ∈ Z⊥ ⇒ t = TCoJe2KH ∨Co TCoJe3KH)

∧(TCoJe1KH 6∈ {⊥Co, int} ⇒ t = ∅Co)
}

=
∧Co {

t ∈ PCo
≡
∣∣∀R ∈ γCo

2 (H) : def. γCo
1

(SJe1KR ∈ γCo
1 (⊥Co)⇒ γCo

1 (t) = γCo
1 (⊥Co))

∧(SJe1KR ∈ γCo
1 (int)⇒ t = TCoJe2KH ∨Co TCoJe3KH)

∧(TCoJe1KH 6∈ {⊥Co, int} ⇒ t = ∅Co)
}

=
∧Co {

t ∈ PCo
≡
∣∣ Lem. 14, def. ≤Co

(αCo(CJe1K)H ≤Co ⊥Co ⇒ t = ⊥Co)

∧(αCo(CJe1K)H ≤Co int⇒ t = TCoJe2KH ∨Co TCoJe3KH)

∧(TCoJe1KH 6∈ {⊥Co, int} ⇒ t = ∅Co)
}

≤Co
∧Co {

t ∈ PCo
≡
∣∣ I.H.

(TCoJe1KH = ⊥Co ⇒ t = ⊥Co)

∧(TCoJe1KH = int⇒ t = TCoJe2KH ∨Co TCoJe3KH)

∧(TCoJe1KH 6∈ {⊥Co, int} ⇒ t = ∅Co)
}

= if TCoJe1KH = ⊥Co then ⊥Co

else if TCoJe1KH = int then TCoJe2KH ∨Co TCoJe3KH
else ∅Co singleton t

53

= TCoJif e1 then e2 else e3KH def. TCoJ·K

54

Notation

arity Number of parameters in an overloading scheme. 26, 33, 34

C The set of type constructors with arities. 24, 25, 39, 41, 42

m A compatibility relation between identifiers and overloading assumptions. 25,
26, 34

constrain Computes substitution to alter a type term to match a variable
constraint. 28, 29

cst Gets the constraints on type variables. 24, 27–29

dom Domain of a function. 25–28, 34

eval Evaluation of an identifier in an overloaded environment. 25, 26, 31, 33–35

[u/x, v/y, . . .] Finite map mapping x to u, y to v, etc..

FV Free type variables in type term. 24, 29, 30, 39

gfp Greatest fixed point. 8, 18

is-a Membership check for tagged values. 25, 26

lfp Least fixed point. 8, 16

MPC
~n Set of all n-ary function types with constructors ci. 35–38, 42

MT
$ Set of overloading schemes. 24

P The powerset, set of subsets. 11, 12, 14, 15, 18, 24, 38, 40

Pfin Set of finite subsets. 24

PCo~n Set of all n-ary function types with constructors ci. 32, 34–37

55

resolve Creates unsaturated dispatcher for operator symbol. 26, 33, 34

r→ Used to denote respectful T -substitutions S : V r→ T . 28, 39–42

Rs Section of relation R by tuple s.

<: Relates types to matching variable constraints. 27–29

U Computes respectful unifier for type terms. 29

V Type variables. 24, 27–29, 40–42, 56

ω Overloading scheme. 24–26, 30, 32–36, 39, 41

X Program variables. 7–9, 14, 15, 18, 22–27, 31, 33–35, 40, 49–53

56

Bibliography

[AEMO09] Maŕıa Alpuente, Santiago Escobar, José Meseguer, and Pedro
Ojeda, Order-sorted generalization, Electron. Notes Theor. Com-
put. Sci. 246 (2009), 27–38.

[AH87] S. Abramsky and C. Hankin, Introduction to Abstract Inter-
pretation, Abstract Interpretation for Declarative Languages
(S.Abramsky and C. Hankin, eds.), Ellis Horwood, 1987, pp. 9–
31.

[BS01] F. Baader and W. Snyder, Unification Theory, Handbook of Au-
tomated Reasoning (J.A. Robinson and A. Voronkov, eds.), vol. I,
Elsevier Science Publishers, 2001, pp. 447–533.

[Car96] Luca Cardelli, Type Systems, ACM Comput. Surv. 28 (1996),
no. 1, 263–264.

[CC77] Patrick Cousot and Radhia Cousot, Abstract Interpretation: a
unified lattice model for static analysis of programs by construc-
tion or approximation of fixpoints, Conference Record of the
Fourth Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages (Los Angeles, California), ACM
Press, New York, NY, 1977, pp. 238–252.

[CC14] Patrick Cousot and Radhia Cousot, Abstract interpretation: Past,
Present, and Future, Joint Meeting of the Twenty-Third EACSL
Annual Conference on Computer Science Logic (CSL) and the
Twenty-Ninth Annual ACM/IEEE Symposium on Logic In Com-
puter Science (LICS) (Dale Miller and Thomas Henzinger, eds.),
ACM, 2014, p. 12 p.

[CF58] Haskell B. Curry and Robert Feys, Combinatory Logic, Volume
I, North-Holland, 1958.

[Chu40] Alonzo Church, A Formulation of the Simple Theory of Types,
Journal of Symbolic Logic 5 (1940), no. 2, 56–68.

[Cou97] Patrick Cousot, Types as Abstract Interpretations, Conference
Record of the Twentyfourth Annual ACM SIGPLAN-SIGACT

57

Symposium on Principles of Programming Languages (Paris,
France), ACM Press, New York, NY, January 1997, pp. 316–331.

[Cou00] P. Cousot, Abstract Interpretation: Achievements and Perspec-
tives, Proceedings of the SSGRR 2000 Computer & eBusi-
ness International Conference (Compact disk paper 224 and
electronic proceedings http://www.ssgrr.it/en/ssgrr2000/

proceedings.htm, L’Aquila, Italy), Scuola Superiore G. Reiss
Romoli, July 31 – August 6 2000.

[CW85] Luca Cardelli and Peter Wegner, On Understanding Types, Data
Abstraction, and Polymorphism, ACM Comput. Surv. 17 (1985),
no. 4, 471–523.

[DM82] Luis Damas and Robin Milner, Principal Type-schemes for
Functional Programs, Proceedings of the 9th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages
(New York, NY, USA), POPL ’82, ACM, 1982, pp. 207–212.

[DP02] Brian A. Davey and Hilary A. Priestley, Introduction to Lattices
and Order, Cambridge University Press, 2002.

[GL02] Roberta Gori and Giorgio Levi, An Experiment in Type Infer-
ence and Verification by Abstract Interpretation, Verification,
Model Checking, and Abstract Interpretation, Third Interna-
tional Workshop, VMCAI 2002, Venice, Italy, January 21-22,
2002, Revised Papers, 2002, pp. 225–239.

[GL03] , Properties of a Type Abstract Interpreter, Verification,
Model Checking, and Abstract Interpretation, 4th International
Conference, VMCAI 2003, New York, NY, USA, January 9-11,
2002, Proceedings, 2003, pp. 132–145.

[GL05] Ronald Garcia and Andrew Lumsdaine, Type Classes Without
Types, Sixth Workshop on Scheme and Functional Programming
(J. Michael Ashley and Michael Sperber, eds.), September 2005.

[Gra08] Jeremy Gray, Plato’s Ghost: The Modernist Transformation of
Mathematics, Princeton University Press, Princeton, NJ, 2008.

[GS90] C. A. Gunter and D. S. Scott, Semantic Domains, Handbook of
Theoretical Computer Science (Vol. B) (Jan van Leeuwen, ed.),
MIT Press, Cambridge, MA, USA, 1990, pp. 633–674.

[Han10] Stefan Hanenberg, An Experiment About Static and Dynamic
Type Systems: Doubts About the Positive Impact of Static Type
Systems on Development Time, Proceedings of the ACM Inter-
national Conference on Object Oriented Programming Systems
Languages and Applications (New York, NY, USA), OOPSLA
’10, ACM, 2010, pp. 22–35.

58

http://www.ssgrr.it/en/ssgrr2000/proceedings.htm
http://www.ssgrr.it/en/ssgrr2000/proceedings.htm

[HHJW07] Paul Hudak, John Hughes, Simon Peyton Jones, and Philip
Wadler, A History of Haskell: Being Lazy With class, In Pro-
ceedings of the 3rd ACM SIGPLAN Conference on History of
Programming Languages (HOPL-III), ACM Press, 2007, pp. 1–
55.

[JJM97] Simon Peyton Jones, Mark Jones, and Erik Meijer, Type Classes:
An Exploration of the Design Space, In Haskell Workshop, 1997.

[Jon92] Mark P. Jones, A Theory of Qualified Types, Proc. 4th European
Symposium on Programming (ESOP), Rennes, France (Bernd
Krieg-Brückner, ed.), Lecture Notes in Computer Science, vol.
582, Springer-Verlag, February 1992, pp. 287–306.

[Jon93] , A System of Constructor Classes: Overloading and Im-
plicit Higher-order Polymorphism, Proceedings of the Conference
on Functional Programming Languages and Computer Architec-
ture (New York, NY, USA), FPCA ’93, ACM, 1993, pp. 52–61.

[Jon95] , Simplifying and Improving Qualified Types, Proceedings
of the Seventh International Conference on Functional Program-
ming Languages and Computer Architecture (New York, NY,
USA), FPCA ’95, ACM, 1995, pp. 160–169.

[Kae88] Stefan Kaes, Parametric Overloading in Polymorphic Program-
ming Languages, ESOP ’88, 2nd European Symposium on Pro-
gramming, Nancy, France, March 21-24, 1988, Proceedings (Har-
ald Ganzinger, ed.), Lecture Notes in Computer Science, vol. 300,
Springer, 1988, pp. 131–144.

[Kae05] , Parametrischer Polymorphismus, Überladungen und
Konversionen, Ph.D. thesis, Technische Universität Darmstadt,
2005.

[Kli74] Morris Kline, Why Johnny Can’t Add: The Failure of the New
Math, Vintage Books, 1974.

[Mer15] Polymorphism, Merriam-Webster.com, 2015, http:

//www.merriam-webster.com/dictionary/polymorphism.

[MGS89] Jose Meseguer, Joseph A. Goguen, and Gert Smolka, Order-sorted
unification, Journal of Symbolic Computation 8 (1989), no. 4, 383
– 413.

[Mil78] Robin Milner, A Theory of Type Polymorphism in Programming,
Journal of Computer and System Sciences 17 (1978), 348–375.

59

http://www.merriam-webster.com/dictionary/polymorphism
http://www.merriam-webster.com/dictionary/polymorphism

[MPTN08] Radu Muschevici, Alex Potanin, Ewan Tempero, and James
Noble, Multiple Dispatch in Practice, In: OOPSLA 08: Pro-
ceedings of the 23rd ACM International Conference on Object-
Oriented Programming, Systems, Languages, and Applications,
2008, pp. 563–582.

[MTH90] Robin Milner, Mads Tofte, and Robert Harper, Definition of
Standard ML, MIT Press, 1990.

[NNH99] Flemming Nielson, Hanne R. Nielson, and Chris Hankin, Princi-
ples of Program Analysis, Springer-Verlag New York, Inc., Secau-
cus, NJ, USA, 1999.

[Odi99] Piergiorgio Odifreddi, Classical Recursion Theory. Volume II,
Studies in Logic and the Foundations of Mathematics, North-
Holland, Amsterdam, 1999.

[OSW97] Martin Odersky, Martin Sulzmann, and Martin Wehr, Type In-
ference with Constrained Types, Fourth International Workshop
on Foundations of Object-Oriented Programming (FOOL), 1997.

[PLT14] PLT, The Racket Language, 2014, [Online; accessed 08/03/2014].

[PR05] Franois Pottier and Didier Rmy, The Essence of ML Type In-
ference, Advanced Topics in Types and Programming Languages
(Benjamin C. Pierce, ed.), MIT Press, 2005, A draft extended
version is also available, pp. 389–489.

[RCH12] Aseem Rastogi, Avik Chaudhuri, and Basil Hosmer, The Ins and
Outs of Gradual Type Inference, Proceedings of the 39th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2012, Philadelphia, Pennsylvania, USA, Jan-
uary 22-28, 2012 (John Field and Michael Hicks, eds.), ACM,
2012, pp. 481–494.

[Ric53] H. G. Rice, Classes of Recursively Enumerable Sets and Their
Decision Problems, Trans. Amer. Math. Soc. 74 (1953), 358–366.

[Rob65] J. A. Robinson, A Machine-Oriented Logic Based on the Resolu-
tion Principle, J. ACM 12 (1965), no. 1, 23–41.

[Sim14] Axel Simon, Deriving a Complete Type Inference for Hindley-
Milner and Vector Sizes using Expansion, Science of Computer
Programming (2014), preprint.

[Str00] Christopher Strachey, Fundamental Concepts in Programming
Languages, Higher Order Symbol. Comput. 13 (2000), no. 1-2,
11–49.

60

http://cristal.inria.fr/attapl/
http://cristal.inria.fr/attapl/

[Tal13] David Tall, How Humans Learn to Think Mathematically, Cam-
bridge University Press, 2013.

[THSAC+11] Sam Tobin-Hochstadt, Vincent St-Amour, Ryan Culpepper,
Matthew Flatt, and Matthias Felleisen, Languages As Libraries,
SIGPLAN Not. 46 (2011), no. 6, 132–141.

[VJSS11] Dimitrios Vytiniotis, Simon Peyton Jones, Tom Schrijvers, and
Martin Sulzmann, OutsideIn(X): Modular type inference with lo-
cal assumptions, Journal of Functional Programming (2011).

[WB89] P. Wadler and S. Blott, How to Make Ad-hoc Polymorphism Less
Ad Hoc, Proceedings of the 16th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (New York, NY,
USA), POPL ’89, ACM, 1989, pp. 60–76.

61

	Introduction
	Outline of the Thesis
	Notational Debt

	An Untyped Lambda Calculus with Runtime Errors
	Syntax for C
	A Denotational Semantics

	Abstract Interpretation and Type Inference
	A Cautious Reaction to Undecidable Program Properties
	Fundamentals of Abstract Interpretation
	Program Properties
	Capturing Abstraction Formally

	Type Inference as Abstract Interpretation
	Abstract Semantics and Sound Type Systems
	An Idealized Type System: Type Collecting Semantics
	Towards Implementable Systems: Church/Curry Polytypes

	An Example: Bounded Polymorphism
	The Problem
	Parametric Polymorphism
	Ad-hoc Polymorphism

	A Language With Dynamic Dispatch
	Type Language for Type System TT
	The Language K
	Translation Without Type Inference

	A Type System for K
	Unification with Constrained Variables
	A Rule-based Definition of TT

	Abstract Interpretation of Overloading
	Type Collecting Semantics for Programs with Overloading
	Church/Curry Polytype Semantics for Programs with Overloading
	Abstraction from Type Collecting Semantics

	The Type System TT as an Abstract Semantics
	Abstraction from Church/Curry Polytype Semantics

	Related Work
	Bounded Polymorphism
	Dynamic Dispatch
	Abstract Interpretation and Type Analysis

	Conclusion
	Appendix Some Errors in Cousot1997
	The Soundness of TCo"464A671 "564B679

	Notation
	Bibliography

