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Abstract

The aim of this thesis is to formalise cost allocation in the Dutch electricity sector by
means of concepts from the theory of cost allocation and cooperative games. Consumers
of electricity are connected to one of the seven voltage levels in the electricity grid. Most
electricity is fed into the grid at the highest voltage level and is transported to lower
voltage levels. Research in collaboration with TNO has shown that a heavy burden of
the electricity network costs (in particular transmission-related costs) is born by small-
scale consumers connected to lowest voltage level. One of the reasons that small-scale
consumers are charged this large share of the costs is because they are also charged
for the upstream voltage levels by means of the cascade method. In this thesis we
provide a formal framework that models the electricity demand problem, where groups
of agents with individual electricity demands are connected to a specific voltage level
in the electricity grid and are allocated cost shares by the network operators. This
framework provides the opportunity to analyse the cascade rule and several other cost
allocation rules for our problem, inspired by and in comparison with rules proposed
in the literature on other problems. We provide axiomatic characterizations for three
rules differing in the properties they obey. Building on the electricity demand problem
we introduce a cooperative cost game and simplified versions of the union- and agent-
Shapley value, assigning cost shares to groups of agents. Also other union values are
discussed and evaluated. Hence, cost allocation from practice and theory are combined
and formalised by means of a cost allocation and cooperative game theoretic approach.
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Chapter 1

Introduction

By means of this thesis we consider a real-life situation from the perspective of cost allo-
cation and cooperative game theory. This research was motivated by findings obtained
in a research project on the cost allocation in the Dutch electricity sector, performed
on behalf of TNO. We therefore believe this thesis contributes to these theoretic fields
as well as the practical field. In this thesis we provide a framework that models the
situation where groups of agents with individual electricity demands are connected to a
specific voltage level in the electricity grid and are allocated cost shares by their network
operator.

1.1 Motivation

Electricity prices have been at the centre of debates lately. If you search on the internet
or check the newspapers for electricity prices, you find a lot of headlines about changes
in this sector or dissatisfied consumer or interest groups. This is partly the result of
a changing market. With the transition to more sustainable energy resources a lot is
happening in the electricity sector and in the energy sector in general. As a response
to these changes we performed a quantitative research, commissioned by TNO, on the
current cost allocation in the Dutch electricity sector. This research focused on the
network and tax costs. We found that a large part of the income of the regional and
national network operators comes from small-scale consumers with only low electricity
demands, instead of from large-scale consumers with high electricity demands. This is
the result of major differences between tariffs and between tariff heights for different
types of consumer groups. These differences in tariff heights are mainly caused by the
way the costs are allocated amongst the voltage levels.

The Dutch electricity grid consist of multiple voltage levels, transporting electricity
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CHAPTER 1. INTRODUCTION

from producers to consumers. This ranges from the Extra-High Voltage level (220 -
380 kV) to the Low Voltage level (less than 1 kV). The Authority for Consumer and
Market distinguishes seven voltage levels in the electricity grid (Autoriteit Consument
en Markt, 2013). Each voltage level serves end-users and possibly other voltage levels.
For example the Extra-High Voltage level serves large industrial companies as well as
the High Voltage level. Each consumer is connected to one of the seven voltage levels,
depending on the size of its connection, which in turn is dependent on the peak demand
of electricity any time in the year. Most small-scale consumers, like households,
are connected to the Low Voltage level. In this thesis we focus on the transmission-
related costs, which make up the largest share of the network cost. We elaborate on the
transmission-related costs in Chapter 2. The focus of this thesis is not on the tax costs,
as we found that the allocation of tax costs is partly established from a political point
of view instead of an economical point of view. In the allocation of transmission-related
costs to consumers we distinguish the following steps:

1. Each regional and national network operator determines its transmission-related
costs per voltage level. In Chapter 2 we specify what these costs include. So in
the first step the total costs per voltage level for every operator are determined.

2. The transmission-related costs that are attributed to a voltage level by the network
operators are for each operator separately cascaded towards the directly underly-
ing voltage level, referred to as the cascade method, which is depicted in figure 1.1.
This method is based on the idea that electricity is fed into the grid at the highest
voltage levels by means of large production facilities, resulting in a electricity flow
going from high to lower voltage levels.1 This entails that lower voltage levels make
use of higher voltage levels and not the other way round. This idea is somewhat
outdated, as decentralized production installation incur bilateral flow between volt-
age levels, but this is discussed later. Hence, this step entails reallocating the costs
obtained in step one to the different voltage levels.

3. The final costs per voltage level are apportioned amongst consumers connected
to the respective voltage level through a combination of tariff carriers. The tariff
carriers for the transmission-related tariff per level are set, but the size of the
allocated costs to a voltage level determines the height of these tariff carriers. Thus
in this final step the resultant costs from step two are allocated to the agents.

1We use transmission, transport and flow of electricity all to denote the transportation of electricity
over the grid from a source to a consumer.
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CHAPTER 1. INTRODUCTION

Figure 1.1: Schematic simplified representation of the electricity grid and the
cascade method Red arrows represent production of electricity, blue arrows consump-
tion and green arrows the net flow between the voltage levels (Hakvoort et al., 2013).
The following (Dutch) abbreviations are used: extra hoogspanning (EHS, 220-380 kV),
hoogspanning (HS, 110-150 kV), tussenspanning(TS, 25-50 kV), trafo hoogspanning naar
tussen-en middenspanning (HS-TS/MS), middenspanning (MS, 1-20 kV), trafo mid-
denspanning naar laagspanning (MS-LS) en laagspanning (LS, <1 kV). Note that some
voltage levels in this figure are merged such that only five voltage levels are given instead
of seven.

The second step is an important cause of the great difference in tariffs for different con-
sumer groups, which is highlighted in figure 1.2.2 In this figure the net electricity flow
is compared with the revenues generated by the tariffs of certain consumer groups. Our
focus is on this step in the cost allocation process. Much has been written and discussed
about appropriate pricing mechanisms for electricity, amongst others in Rodŕıguez Or-
tega et al. (2008), since there is still not one overall accepted pricing mechanism for
electricity and for electricity transmission in particular.3 In addition, also here national
and international politics play an important role in the price determination. Instead
of taking part in this discussion we decided not to focus on an appropriate pricing
mechanism, but highlight the crux in the current cost allocation leading to the varying
electricity prices, namely step two.

From a historical perspective, the Dutch tariff structure is developed with the idea

2The consumer groups are differentiated based on the voltage levels.
3The pricing mechanism determines which tariff carriers are employed for different consumer types

and/or groups.
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CHAPTER 1. INTRODUCTION

that central large production installations feed electricity into the grid at the highest
voltage levels. So costs of higher voltage levels are charged to lower levels proportional
to the net demand of the lower level network as described in step two above (Autoriteit
Consument en Markt, 2013). There is however growing criticism of this method, since by
the increasing decentralized production of electricity the production and consumption
of transmission are brought closer together (Hakvoort and Huygen, 2012). Also, when
the decentralized production exceeds the demand of the respective level, this electricity
is transported to a higher level. In Aalbers et al. (2003) is pleaded for other allocation
methods, since they claim that the cascade method allows for heavy cross-subsidizing of
lower voltage levels over higher voltage levels. Also NMA and SEO economic research
(NMA and SEO, 2011) advise to further investigate the cost allocation over the levels
with respect to ongoing changes. Around 60% of the revenue generated by the small-
scale consumers at the low voltage level is a contribution to costs of the higher level
networks (see figure 1.2). These observations and findings are a motivation to perform
further research on the uneven allocation of the electricity transmission costs and the
fairness and reasoning of the currently used allocation methods.

Figure 1.2: Percentage share total inflow and outflow of electricity over the
different voltage levels (blue) and percentage share total tariff revenue (red)
The electricity flow is based on values from 2008 and the tariff revenues are based on the
x-factor model of the regional network operators and Tennet of 2009, 2010 respectively
(ACM, 2014), (Hakvoort and Huygen, 2012).

We find that cooperative game theory provides appropriate tools to analyse cost alloca-
tion. It gives the possibility to approach cost allocation rules in an axiomatic way and
argue about their fairness based on these properties. Further does cooperative game
theory typically not take personal preferences into account and assumes demands of
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CHAPTER 1. INTRODUCTION

agents to be inelastic (Koster, 2009).4 Electricity demand can be considered inelastic, as
it is a necessary good for most companies and households, they always have demand for
electricity. Moreover, because network operators have a monopoly, consumers have few
alternatives to fully foresee themselves in their electricity demands.5 Further are most
consumers also dependent on energy suppliers. So the electricity demand is assumed
to be inelastic and preferences of consumer are not explicit, which makes the theory on
cooperative cost games well suited. Further there are also a number of nice well-known
rules within cooperative game theory with interesting properties, such as the Shapley
value, that can be and have been applied to real life cost or profit allocation problems,
for example in the Tennessee Valley Authority in Young (1994), the museum pass game
in Ginsburgh and Zang (2003), the airport game in Littlechild and Owen (1973) or the
river pollution sharing game in Ni and Wang (2007).

1.2 Contribution

Many articles in the literature can be found on setting electricity tariffs, also from a game
theoretic perspective, which is highlighted in the next section. However to our knowledge,
little research has been done from a perspective of cost allocation and cooperative game
theory on firstly, the axiomatic characteristics of the second step in the transmission-
related cost allocation mechanism and secondly, on alternative cost allocation methods
for this second step in the light of today, and possibly with a view to the future. We
define a model that represents a (simplified) version of the real-life situation, where
agents are grouped in unions with regard to the voltage levels they are connected to.
This model gives us the opportunity to analyse the cascade method and give an axiomatic
representation of the associated rule. Also other in the literature proposed rules are for
the first time in this context analysed with respect to their properties. Moreover, we
define an associated cooperative cost game. For this game we provide a simplified version
of the Shapley value and introduce several union values. Finally, we discuss extensions
of the model in anticipation of changes in the electricity sector. Hence, this model is the
first model, to our knowledge, that strives to analyse the cost allocation over different
voltage levels from a perspective of the formal theory of cost allocation and cooperative
games.

4Demands are inelastic if they are not sensitive to price changes.
5The monopolies are regulated by the ACM, however there are no alternative full-fledged electricity

operators.
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1.3 Background and related literature

In this thesis we explore the problem of cost allocation to unions of agents in an hierarchi-
cally ordered electricity network. This research finds its roots in the real-life application
and in the theory of cost allocation and cooperative game theory. In Sudhölter (1998)
and Moulin (2002) we find an axiomatic approach to cost allocation problems. Koster
(2009) and Young (1994) provide a more general overview of cost allocation problems
and the induced cooperative cost games. In Moulin and Shenker (1994), amongst others,
serial cost sharing and average cost sharing are compared with respect to the properties
they obey.

In our problem we have some form of a network structure. In the literature there is
a variety of cost allocation problems where a network structure is also present. We
briefly discuss the ones that are relevant for this thesis. Littlechild and Owen (1973)
discuss the airport game, in which the costs of an airport runway have to be shared
amongst different types of airplanes. This corresponds to sharing the fixed costs of
voltage levels in our model. In Ni and Wang (2007) the costs of cleaning a polluted river
amongst agents alongside a river have to be allocated, in the pollution cost sharing
problem. The electricity flow in our model resembles the water flow in this model and
as a result unions of agents can be located either upstream or downstream from one
another in both models. Another related class of games, is the class of infrastructure
cost games, described by Fragnelli et al. (2000). These games are a composition of
an airport game and a maintenance cost game and discuss how to share infrastructure
costs amongst unions of different types of trains using the infrastructure. The main
resemblance with our model is the infrastructure cost structure and the main differences
are that we deal with electricity flow and associated demand vectors. The last games
were developed on behalf of a company and applied in real-life. In Bergantiños and
Mart́ınez (2014) cost allocation to asymmetric agents connected by a tree is discussed,
where the asymmetry is due to the different demand and production capacities of the
agents. The main asymmetry between agents in our model is imposed by the location
of the agents in the grid (e.g. high, medium or low voltage), which is in turn also partly
due to the demand vector of the agents.

Also other forms of social asymmetry may arise, for example in cooperative games with
restricted cooperation, which represent situations where only specific coalitions can form.
In games with communication structures, introduced by Myerson (1977), only agents
that are directly connected in the graph may cooperate. Some important values in this
context are the Myerson (Myerson, 1977) or Owen value (Owen, 1977). For more on
communication structures see (Winter, 1989), (Alonso-Meijide et al., 2009). In Gilles
et al. (1992) hierarchical constraints on coalitions are imposed by means of permission
structures, such that some agents need permission from others to be able to cooperate.
Even though in our model we also have asymmetric agents that are hierarchically ordered,
we do not define a restriction on the cooperation between agents, as in theory all of

6



CHAPTER 1. INTRODUCTION

them could decide to cooperate. In Aumann and Drèze (1974) games with coalition
structures are defined and van den Brink and Dietz (2014) discuss union values for
games with coalition structure. Our coalition structure partitions the agents in unions
corresponding to the voltage levels they are connected to. We are interested in union
values allocating costs to these levels.

Some other interesting profit or cost games, without a network structure, that we en-
countered are the following. The museum pass game is discussed in Ginsburgh and
Zang (2003) and Wang (2011) and defines ways to share the joint income generated by
the sales of museum passes over the museums that jointly offer these passes. Visitors do
not go to all museums offered by the pass and also some museums are more crucial for
the sales than others. The Tennessee Valley Authority, amongst others in Young (1994),
discusses the cost allocation problem incurred by building dams and reservoirs along the
Tennessee river. This game as well as the museum pass game were applied in real-life.

Many articles exist on the allocation of transmission costs in the electricity network,
some methods are discussed in Rodŕıguez Ortega et al. (2008) and Olmos and Pérez-
Arriaga (2009). The allocation of these transmission costs are also analysed by means
of cooperative games, see for instance Junqueira et al. (2007), Divya et al. (2012) and
Zolezzi and Rudnick (2002). This literature mainly focuses on transmission tariff design
and individual cost allocation. These articles concentrate on the applications and not on
the axiomatizations of allocation rules. Also the allocation of network losses has gained
a lot of attention in the literature, as this does not have a one-to-one correspondence
with the amount of electricity transported. As these losses only incur a small part of
the total grid costs, we do not dedicate much attention to this subject in this thesis, for
more information we refer to Rodŕıguez Ortega et al. (2008) or NMA and SEO (2011).
Pérez-Arriaga et al. (2013) provide a nice and recent overview of transmission pricing
methods.

As for the more applied side of this thesis, much research in the electricity sector is
done with respect to sustainable energy. Vereniging van Nederlandse Gemeenten (2013)
investigated the costs and benefits of sustainable energy initiatives and in Hakvoort and
Huygen (2012) local energy productions are discussed. In Hakvoort and Huygen (2012),
as well as in Hakvoort et al. (2013) and NMA and SEO (2011) the cascade method is
discussed and debated. In Hakvoort et al. (2013) a broader view on the current tariff
system in the Netherlands is presented. At the end of this thesis we discuss other models
and frameworks that were considered for analysing our problem.

1.4 Outline

This thesis is structured in the following way:

7



CHAPTER 1. INTRODUCTION

Chapter 2: In this chapter we provide a brief introduction into the electricity
sector and the costs associated with the electricity grid. Thereafter we discuss
some basic notions of cooperative game theory and cost allocation.

Chapter 3: Subsequently we elaborate on solutions concepts for cost allocation
problems and cooperative games. We present various known cost allocation rules
and some accompanying properties, on the basis of which we compare the rules.
We further discuss solutions for TU games and TU games with coalition structure.
For the latter we solely consider union values, which are single-valued solutions
allocating cost shares to unions of agents. For the solutions as well as the union
values we discuss different properties and use these for a comparison of the solu-
tions.

Chapter 4: After the introductory chapters, we present a formal representation
of the electricity demand problem. This problem models the situation in which
electricity costs have to be allocated to unions of agents connected to the grid. We
study three cost allocation rules, either proposed in the literature or employed in
real-life. The rules are formalised by means of axiomatic characterizations.

Chapter 5: Building on the electricity demand problem, we present a cooperative
cost game: the electricity demand game. The game assumes that all coalitions are
possible and every coalition always needs to make use of the upstream voltage
levels. For this game we mainly focus on the agent- and union-Shapley value, but
also consider some other appropriate union values.

Chapter 6: As an addition to the electricity demand problem and game, in this
chapter we discuss possible extensions of the electricity demand problem. These
extensions incorporate production capacities of agents and bilateral flow between
voltage levels. We suggest some solution concepts for these extensions, but do not
consider them in much detail.

Chapter 7: We end this thesis with a conclusion and discussion, in which we
summarise the thesis, provide directions for future work and discuss some other
relevant models and frameworks.

8



Chapter 2

Preliminaries

In this chapter we provide some background knowledge. First we briefly discuss the
electricity sector and consider the transmission costs and tariffs. The important actors,
as well as the relationship between the costs and the tariffs and the determination of the
tariffs are discussed. Thereafter we provide an introduction to the theory of cooperative
games and cost allocation.

2.1 Transmission costs and tariffs

In this section we consider how tariffs related to the transmission of electricity are
established in the Netherlands. European and national legislation play an important
role in this establishment. Consumers that are connected to the electricity grid are
charged for supply services, network services and taxes. Our focus is on the network
services, which are provided by the network operators. Within the network services
another distinction can be made. Tariffs are based on the statutory duties of the network
operators, namely providing connection services, transmission services, system services
and metering services, together referred to as network services (see figure 2.1). In the
Netherlands there is one national network operator (TSO), namely TenneT and eight
regional network operators (DSOs), namely Cogas, DNWB, Endinet, Enexis, Liander,
RENDO, Stedin and Westland. The regional networks operators and TenneT are both
in control of different networks, consisting of different voltage levels. TenneT is in charge
of all the Extra-High Voltage (EHS) levels and most of the High Voltage (HS) levels.
The regional network operators control some of the HS voltage levels and the lower
voltage levels. Providing these services to consumers entail costs, the so-called network
costs. These costs of the network operators include capital expenses, with regard to
the technical infrastructure and operational expenses for maintenance, operational and
management tasks that are incurred by connection to and use of the grid (this includes

9



CHAPTER 2. PRELIMINARIES

expenses for congestion management, purchase of reactive power and grid losses). As
the technical infrastructure is especially expensive, fixed costs are high and variable
costs low. The revenue of a network operator, generated by tariffs, should recover the
network costs made by the network operator. This entails that the tariffs should be
cost-efficient, which is an important principle in the Dutch tariff system.

In this thesis we focus on the allocation of transmission-related costs incurred by
providing transmission-related services.1 The transmission tariff consists of a 1. non-
transmission-related tariff and 2. transmission-related tariff.

1. The non-transmission-related tariff is meant for costs of administration tasks,
consumer service, billing, etcetera, i.e. costs that are not directly incurred by the
transmission of electricity. This tariff is charged to producers as well as consumers.

2. The transmission-related tariff covers the costs that are incurred by the trans-
mission of electricity, such as the depreciation, investments and maintenance of the
infrastructure, but also the costs of grid losses and congestion management (Au-
toriteit Consument en Markt, 2013). These costs make up the largest part of the
network costs and are incurred for the benefit of the grid and therefore socialized
over all voltage levels by means of the cascade method. The transmission-related
producers tariff is set to zero and thus the producers do not help pay for these
costs. The rationale and the estimated effect of introducing a producers tariff is
discussed in (Koutstaal et al., 2012). For future research it could be interesting to
analyse the effect of this introduction from a game theoretical perspective. So our
focus is on this tariff.

The actual determination of the network tariffs is done under supervision of the authority
ACM (Autoriteit Consument en Markt) since all network operators have a monopoly in
their region. In the Netherlands this is done in the form of a benchmark regulation. A
network operator that operates more efficiently than the benchmark makes higher profits
than a network operator who is less efficient. In case of the national network operator
TenneT, this benchmark is based on foreign national network operators (Str, 2014).
The ACM makes use of the codes in the Tarievencode (Autoriteit Consument en Markt,
2013) to determine the tariffs that the network operators may charge their consumers.
Also the formulas for the cascade method are officially recorded in this document. The
tariff structure determines which tariff carriers (e.g. kW, kWh) are charged to which
consumer groups. The actual tariff structure differs between services (e.g. between
connection, transmission) and within services (e.g. between transmission-related and
non-transmission-related services within the transmission services) for different consumer
groups. In figure 2.1 below is presented which services are distinguished and which tariff
carriers apply. The focus of this thesis is highlighted in figure 2.1 by a square: the
transmission service (also referred to as the transport service).

1Thus we do not consider the connection service, system service and metering service costs.
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Clearly there are some desirable and EU mandatory conditions that the tariffs have to
satisfy to comply with EU and Dutch law:

1. tariffs should reflect the costs incurred (cost-reflectiveness principle)

2. cover the total costs (cost-efficiency principle)

3. be transparent, unambiguous and verifiable

4. stimulate efficient consumption

5. be non-discriminatory (not biased against a particular group)

6. be distance independent.

Already the first condition is a tricky one, as it is very hard to determine on a detailed
level which costs are incurred by whom (Hakvoort et al., 2013). Thus, different con-
sumer groups are charged varying amounts within and between different services and in
particular within the transmission-related services.

Figure 2.1: Structure of Dutch electricity tariff system Overview of the network
and production services, with corresponding tariff carriers (Wals et al., 2003, p.19).
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2.2 Cooperative game theory

Games in the context of game theory are mathematical models of interactions between
rational agents. A rational agent always aims to reach the best possible outcome in a
game, taking into account the possible actions of the opponents. In strategic game theory
(non-cooperative game theory) every agent wants to maximize its payoff function, which
value depends on the actions taken by all the agents simultaneously. In this section we
provide a brief introduction on cooperative game theory and give some important
definitions, properties and examples. In contrast to strategic games, in cooperative
games agents can cooperate and form coalitions to either reduce costs or increase profits.2

Sometimes it is given that all agents should cooperate and form the so-called grand
coalition. A coalition S is a non-empty subset of N . Each coalition of agents is assigned
a value or worth by means of a characteristic function v. Cooperative games were first
introduced in Von Neumann and Morgenstern (1947).

Definition 2.2.1. (Cooperative game) A cooperative game with transferable utility, re-
ferred to as a TU game, is a pair (N, v) where N represents a finite non-empty set of
agents and v : 2N → R is a characteristic function that assigns to every coalition S ⊆ N
the value v(S), under the condition that v(∅) = 0.

Games with transferable utility are games where side payments are allowed, such that
the worth of a coalition can be divided amongst the agents in any possible way. We
use the notions cooperative games and TU games interchangeably. As games with non-
transferable utilities are not relevant for this thesis, they are not discussed here. The
value v(S) may be interpreted as the incurred profit or cost in case the agents in coalition
S work together. In case of v(N) we say that the grand coalition forms, which implies
that all agents in N cooperate. We refer to v({i}) as the stand-alone worth or cost of
agent i.3 Let G denote the class of all TU games with (N, v) ∈ G representing the game
(N, v). We consider some well-known examples to clarify the notion of a cooperative
game.

Example 2.2.1. (Glove Game) Consider the set N = {1, ..., n}, which is the union of
two disjoint subsets L and R, i.e. N = L∪R and L∩R = ∅. The agents in L all possess
one left glove and the agents in R all posses one right glove. The gloves only have a
value when they are paired in a left and right glove. We can model this by a TU game
(N, v), such that the value of each coalitions is determined by the number of left-right
pairs of gloves. Hence, for each S ⊆ N the characteristic function v is defined by

v(S) = min{|L ∩ S|, |R ∩ S|}.

Example 2.2.2. (Unanimity game) Consider agent set N and T ⊆ N \ {∅}. The

2In game theory both the notions agent and player are used to designate a participant in the game.
3For convenient notation we from now on also use v(i) instead of v({i}).
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unanimity game (N, vT ) is defined for all S ⊆ N by the characteristic function

vT (S) =

{
1 if T ⊆ S
0 otherwise.

Hence a coalition S is winning if it contains all agents in T and losing otherwise.

Example 2.2.3. (Weighted majority voting game) Consider a proposal and a
number of people each having a weighted vote. The proposal is accepted if the sum
of the weights exceeds a certain threshold value. More formally, a weighted voting game
(N,wi, q) or [q;w1, ..., wn] is a simple game4 with agent set N and where wi denotes the
weight assigned to each player i ∈ N . The required weighted votes for a coalition to win
(or a proposal to pass) is given by the threshold value q. This situation is modelled by
means of the following characteristic function, for all S ⊆ N

v(S) =

1 if
∑
i∈S

wi ≥ q

0 otherwise.

A weighted voting game is proper if q > 1
2

∑
i∈N wi. Then for all S ⊆ N : v(S) + v(N \

S) ≤ 1. The weighted majority voting game is a generalization of the well-known regular
majority voting game. In this game the weights of all agents are equal to one such that
we obtain the game [q; 1, ..., 1] with q > |N |

2 and q ∈ N.

2.2.1 Properties of cooperative games

We now introduce some basic properties of cooperative games to classify the character-
istic function. A cooperative game (N, v) is super-additive if for all S, T ⊆ N with
S ∩ T = ∅ holds that

v(S ∪ T ) ≥ v(S) + v(T ). (2.1)

In words this property states that a pair of disjoint coalitions always obtain a higher
value in case of cooperation. The inverse of a super-additive game is a sub-additive
game, given by the equation

v(S ∪ T ) ≤ v(S) + v(T ), (2.2)

for all S, T ⊆ N with S ∩ T = ∅. A TU game (N, v) is monotonic if for all S, T with
S ⊆ T ⊆ N we have

v(S) ≤ v(T ). (2.3)

Monotonicity implies that growing coalitions obtain non-decreasing values. A convex
game satisfies the property

v(S ∪ T ) + v(S ∩ T ) ≥ v(T ) + v(S), (2.4)

4A TU game v is simple if the worth of a coalition is 1 or 0, i.e. coalitions can either win or lose.
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for all S, T ⊆ N . The inverse of a convex game is a concave game, satisfying for all
S, T ⊆ N

v(S ∪ T ) + v(S ∩ T ) ≤ v(T ) + v(S). (2.5)

Clearly convex (concave) games are super-additive (sub-additive). When a game is
convex the marginal contribution of each player is increasing with respect to larger
coalitions. The marginal contribution of an agent is the extra value an agent brings
a coalition by joining it. We denote the marginal contribution of agent i ∈ N joining
coalition S ⊂ N by mci(S) = v(S ∪ {i})− v(S).5 The convex property can be rewritten
in terms of marginal contributions as follows

v(S ∪ i)− v(S) ≤ v(T ∪ i)− v(T )

for all i ∈ N and S ⊆ T ⊆ N \ {i}. A game that is additive is referred to as an
inessential game.

Definition 2.2.2. (Inessential game) A game (N, v) is called inessential if for all S ⊆ N
holds that v(S) =

∑
i∈S v(i).

So in an inessential game cooperation is not beneficial. Every game that is not inessen-
tial, is essential. To put some properties into more concrete terms, we show that the
unanimity game is convex and monotonic and the weighted majority game is monotonic.

Example 2.2.4. (Unanimity game II) Consider the unanimity game (N, vT ) as
defined in example 2.2.2 with T the set of veto agents. Agent i is a veto agent iff for
all winning coalitions S we have that i ∈ S. So agent i has the power to veto any
coalition. It is easy to show that this unanimity game is convex, i.e. vT (S) + vT (P ) ≤
vT (S ∪ P ) + vT (S ∩ P ) for all S, P ⊆ N . Assume S ⊆ N and P ⊆ N , we consider three
possible cases:

• T ⊆ S ∩ P : it follows that T ⊆ S, T ⊆ P and so T ⊆ S ∪ P , such that vT (S) =
vT (P ) = vT (S ∪ P ) = vT (S ∩ P ) = 1. Hence, we obtain 1 + 1 ≤ 1 + 1.

• T * S ∩P and T ⊆ S ∪P : if T ⊆ P , then T * S, so that 0 + 1 ≤ 1 + 0. The same
holds for T ⊆ S. If T * S and T * P , then 0 + 0 ≤ 1 + 0.

• T * S ∪ P : it follows that T * S, T * P and clearly T * S ∩ P , such that
v(S) = v(P ) = v(S ∪ P ) = v(S ∩ P ) = 0. Hence, we obtain 0 + 0 ≤ 0 + 0.

Also monotonicity of (N, vT ) easily follows. Assume S ⊆ P ⊆ N . If vT (S) = 1, then
T ⊆ S and hence T ⊆ P , whereby vT (P ) = 1. Thus vT (S) = vT (P ). If vT (S) = 0,
then either T ⊆ P or T * P , such that vT (S) < vT (P ) or vT (S) = vT (P ) respectively.
Hence, for all S ⊆ P ⊆ N we have vT (S) ≤ vT (P ) and thus (N, vT ) is monotonic.

5For convenience, from now on we also use v(S ∪ i) instead of v(S ∪ {i}).
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Example 2.2.5. (Weighted majority voting game II) If we assume for all i ∈ N
that wi ≥ 0, then monotonicity for the weighted voting game (N, v) is guaranteed. We
show that for all S ⊆ P ⊆ N we have v(S) ≤ v(P ):

• If v(P ) = 1, then it is always true.

• If v(P ) = 0, then it follows that
∑

i∈P wi < q. Since S ⊆ P , also
∑

i∈S wi < q.
Hence v(S) = 0.

The characteristic function attaches a worth to a coalition, but does not specify how
this worth should be allocated amongst the agents. A payoff distribution of a TU
game (N, v) is a vector x = (xi)i∈N ∈ RN that allocates payoff xi to agent i in N . This
vector represents how the worth of a coalition is allocated amongst the agents in the
coalition. For every payoff distribution x and S ⊆ N , x(S) =

∑
i∈S xi and x(∅) = 0. A

payoff distribution is efficient if it equals the total worth of the grand coalition, thus
x(N) = v(N) for x ∈ RN . Two properties that provide incentives for individual and
groups of agents to voluntarily cooperate, are individual rationality and coalitional
rationality. A payoff distribution that is individual rational ensures that each agent
receives at least the worth he or she would realise alone. So for i ∈ N and x ∈ RN ,
xi ≥ v(i). A coalitional rational payoff distribution allocates each coalition with at least
the worth it would have realised on its own, i.e. for S ⊆ N and x ∈ RN , x(S) ≥ v(S).
When both properties are obeyed, the distribution can be considered stable. However,
for example Young (1994) pleads that a distribution is only stable if it satisfies efficiency
and group rationality. A payoff distribution that is efficient as well as individually
rational is referred to as an imputation for a game.

In many situations one can imagine that certain groups exist within one larger group,
e.g. different school classes within a school. In cooperative game theory this idea is
defined by a coalition structure. A coalition structure partitions the set of agents N
such that P = {P1, ..., Pm} is a partition with ∪mk=1Pk = N and Pk ∩ Pl = ∅ for k 6= l
(Aumann and Drèze, 1974). Given P = {P1, ..., Pm}, denote M = {1, ...,m}. We refer
to elements of a partition P as unions. A TU game with coalition structure is a triple
(N, v, P ). We denote the class of all games with coalition structure by GP. For more
background on cooperative game theory, we refer to e.g. Young (1994), Gilles (2010),
Feng (2013).

2.3 Cost allocation

A cost allocation problem defines the problem of allocating total cost C(q), that is
incurred by foreseeing in a vector of demands q ∈ RN+ , amongst agent set N (Koster,
2009). Each demand vector q = (qi)i∈N has an associated cost C(q), which has to be
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paid by the agents in N . Denote the class of all possible demand vectors by Q. A cost
allocation problem is defined by the triple (N, q, C), with a non-decreasing cost function
C : Q → R+ mapping a demand vector to a positive real number.6 The sum of the
demands of all agents is given by q(N) =

∑
i∈N qi. We denote the class of all cost

allocation problems by C. Similar as a payoff distribution, a cost allocation is a vector
x = (xi)i∈N ∈ RN+ allocating cost share xi to agent i ∈ N .

A cost allocation problem can be translated into a TU cost game by defining the charac-
teristic cost function v : 2N → R such that v(S) = C(qS , 0N\S) for S ⊆ N and v(∅) = 0.

Let z := (qS , 0N\S) denote the vector z ∈ RN such that zi = qi if i ∈ S and zi = 0 if
i ∈ N \ S. The obtained TU game is referred to as the induced cost game, with v(S)
corresponding to the cost incurred by foreseeing in the demands of the agents in S. We
denote a cost game, the same as any cooperative game, by the pair (N, v). With every
cost game (N, v) ∈ G we can associate a profit game p ∈ G for all S ⊆ N as follows

p(S) =
∑
i∈S

v(i)− v(S).

So p(S) represents the cost that coalition S saves by cooperation and therefore is also
known as the cost-saving game. Below we present some well-known cost allocation
problems and their induced cooperative games.

Example 2.3.1. (Airport problem and game I) A famous cost allocation problem
is the airport problem, introduced by Littlechild and Owen (1973).7 The problem is the
allocation of maintenance and building costs of one airport runway over different types
of airplanes. So each airplane type i ∈ N demands a runway of length li, which has a
corresponding cost ci. For simplicity assume that li = ci. The elements of the airport
problem (N, l, C) are presented by

• N = {1, ..., n} denotes the set of airplane types that want to share a runway

• l = (li)i∈N ∈ RN+ is the demand vector, such that each airplane type i ∈ N has a
demand for a runway of length li

• C is the cost function defined by C(l) = maxi∈N li = maxi∈N ci.

Without loss of generality we can order the costs of the runway for the corresponding
airplane types so that 0 < c1 ≤ c2 ≤ ... ≤ cn.8 In figure 2.2 a visual representation of
the problem is presented.

6For some problems only a cost vector c ∈ RN+ is given instead of C and q. In that case the problem
is denoted by the pair (N, c).

7In the original problem different types of airplanes using an airport runway are charged for every
airplane movement (take-off or landing). For the original game we refer to Littlechild and Owen (1973).

8Clearly the lengths li of the runway are ordered in the same way.
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Figure 2.2: Airport problem (N, l, C)

The induced airport game is defined by the following characteristic function (N, v) ∈ G
for S ⊆ N :

v(S) = C(lS , 0N\S) = max
i∈S

ci.

So v(S) represents the costs of building a runway suitable for all types of airplanes in S,
where the type of airplane with the largest runway requirements is determinative. The
characteristic function of the airport game is concave. Note that this game could also be
presented by the pair (N, c).

Example 2.3.2. (Tennesee Valley Authority I) The Tennessee Valley Authority
(TVA) problem concerns the problem of sharing the cost of building a dam in the Ten-
nessee River to realise a multi-purpose reservoir. This reservoir can be employed for
navigation, flood control and hydro-electric power. Let N denote the set of purposes,
such that N = {1, 2, 3}. This problem actually arose in 1930 for the Tennessee river.
Each of the purposes imposes requirements on the dam. The problem is how to allocate
the construction cost of the dam amongst the different services. In the original situa-
tion the following cost function was established for the three purposes of the reservoir,
obtained from Young (1994):

S ∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
v(S) 0 16,3520 140,826 250,096 301,607 378,821 367,370 412,584

Table 2.1: Cost function v for S ⊆ N

The Authority considered different game theoretic solution concepts to solve this problem.

In the next chapter solution concepts are discussed and applied to some of the examples
discussed in this chapter.

Example 2.3.3. (Polluted river sharing) (Ni and Wang, 2007) Consider a river
that is divided into n segments, ordered such that 1 < 2 < .. < n where 1 represents the
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most upstream segment and n the most downstream segment. Consider n agents, which
are established alongside the river, one in each segment according to the above order.
The river is polluted by agents in each segment and this pollution flows subsequently to
downstream segments. The cost of cleaning segment i to obtain a pollutant free river
equals ci. The pollution cost vector is given by c = (c1, .., cn) ∈ RN+ . The problem is how
to divide the total cleaning costs amongst the agents. Thus, the polluted river sharing
problem is given by the pair (N, c), with agent set N and cost vector c.

In summary, in this chapter we introduced the electricity sector and electricity transmis-
sion costs and provided some basic theory of cooperative games and cost allocation. This
background knowledge is important as we in Chapter 4 formally define a cost allocation
problem in the electricity sector and introduce in Chapter 5 a corresponding cooperative
cost game to this problem.
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Chapter 3

Solution concepts and
characterizations

Within cooperative game theory one can focus on the selection problem, that is caused
by finding a composition of the coalition, or on the allocation problem, that is caused by
constructing an allocation of the worth or cost of a coalition, or on both. In this thesis we
concentrate on the allocation problem of costs. Resulting allocation vectors for agents
are obtained by applying a solution concept to a problem or TU game. Within TU
games it is mostly assumed that the grand coalition forms, such that a solution concept
provides a rule for allocating the worth or cost of the grand coalition.

A cost allocation vector for a problem can be derived by either directly applying a rule
to the problem or by applying a rule to the induced game. So the problem describes the
actual situation, whereas the game is a mathematical model based on the problem. We
refer to the first type of rules as (cost) allocation rules and to the second type of rules
as solutions. In figure 3.1 these two ways to obtain a cost allocation vector for a problem
are displayed. By means of properties solution concepts can be characterized.1 Solution
concepts can either yield a set of allocation vectors (set of payoff distributions),
e.g. the core, or provide a unique allocation vector (unique payoff distribution),
e.g. Shapley value. Many different properties and a large variety of solution concepts
are discussed in the literature. In this chapter we first discuss cost allocation rules and
corresponding properties for cost allocation problems. Thereafter we define solutions and
corresponding properties for TU games and finally we consider solutions (union values)
and corresponding properties for TU games with coalition structure. Some properties
for cost allocation rules and solutions coincide, but many differ and therefore we define
for the cost allocation rules, the solutions and the union values separately a variety of

1So the notion of solution concepts refers to both allocation rules for problems and solutions for
games.
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(sometimes similar) properties.

(N, q, C)

Problem

(N, v)

Game

x ∈ RN+ , x ∈ RM+

Allocation vector

v(S) := C(qS , 0N\S)

Allocation rules
µ(N, q, C)

Solutions
α(N, v), φ(N, v), γ(N, v, P )

Figure 3.1: Solution concept scheme Overview how to obtain a cost allocation vector
from a cost allocation problem, directly or indirectly via a cooperative game.

3.1 Cost allocation rules

In the last chapter we defined the triple P = (N, q, C) ∈ C representing a cost allocation
problem. In this section we discuss several (cost allocation) rules to obtain an allocation
vector and provide some important properties. We solely focus on allocation rules that
provide a single cost allocation vector.

Definition 3.1.1. (Cost allocation rule) A cost allocation rule is a function µ that
associates with each problem P ∈ C a cost allocation vector µ(P ) which assigns cost
µi(P ) ∈ RN+ to agent i ∈ N .

There are many different rules for cost allocation problems. We introduce the egalitar-
ian rule and the average cost pricing rule, amongst others defined in Koster (2009).
We define the cost function as a mapping from a demand vector to a non-negative real.
A cost function can also be defined as a mapping on the non-negative real numbers such
that C(q(N)) has to be shared amongst the agents. This type of cost function maps the
sum of all demands of the agents to a non-negative real number. For these problems we
refer to Koster (2009) or Sudhölter (1998). The first rule we discuss is the egalitarian
rule. This rule does not distinguish between agents and allocates the cost shares equally
over the agents.

Definition 3.1.2. (Egalitarian rule) The egalitarian rule is given by

EGi(P ) =
C(q)

n
, (3.1)

for all P ∈ C, all i ∈ N and |N | = n.
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So this rule only takes into account the total cost and the number of agents. The next rule
is the average cost pricing rule. This is a rule that is suggested in the electricity pricing
literature to allocate costs based on consumption. By means of this rule consumers are
charged their number of units demanded times the average price per unit (Hakvoort and
Huygen, 2012).

Definition 3.1.3. (Average cost pricing rule) The average cost pricing rule is given by

ACPi(P ) =

{
qi · C(q)

q(N) if q(N) 6= 0

0 otherwise,
(3.2)

for all P ∈ C and all i ∈ N .

Note that the average cost per unit demand is computed by C(q)
q(N) . This rule solely

depends on the demand of the agents and the total cost of foreseeing in the demands.
Application of this rule for transmission costs is however not straightforward as there
still has to be distinguished between different types of consumers, based on voltage level,
time, location and so on. Another suggested rule for consumption based cost allocation
is marginal cost pricing (Hakvoort and Huygen, 2012). This rule charges consumers
conform the marginal cost of one extra unit of electricity. The disadvantage of this rule
however is that in case of a concave cost function, the cost allocation obtained by this
rule does not cover all costs. Let us consider an example.

Example 3.1.1. (Airport problem II) Consider again the airport problem, as defined
in example 2.3.1. We present a numerical example and compute the allocation vectors
according to the average cost pricing and egalitarian rule. In figure 3.2 a problem is
presented with three airplane types in set N , denoted by 1, 2, 3. Node 0 is known
as the source node, which does not represent an agent. The demand vector for the
runway lengths is given by l = (l1, l2, l3) = (10, 18, 30), with corresponding cost vector
c = (c1, c2, c3) = (10, 18, 30).

0 1 2 3
10 8 12

Figure 3.2: Airport game Numerical example.

The cost function gives C(l) = maxi∈N ci = max{c1, c2, c3} = c3 = 30. So the problem
is how to share a total cost of 30 amongst airplane types 1, 2 and 3. The egalitarian rule
gives the vector

EG(P ) = (
C(l)

n
,
C(l)

n
,
C(l)

n
)

= (
30

3
,
30

3
,
30

3
)

= (10, 10, 10).
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The average cost pricing rule gives the vector

ACP (P ) = (c1 ·
C(l)

l(N)
, c2 ·

C(l)

l(N)
c3 ·

C(l)

l(N)
)

= (10 · 30

58
, 18 · 30

58
, 30 · 30

58
)

= (5, 9, 16)

We see that both rules give very different cost allocation vectors. The egalitarian rule does
not take any individual information into account, whereas the the average cost pricing
rule allocates according to individual demands.

These rules give allocation vectors with cost shares for individual agents. However
as noted above, application of these rules in the electricity sector still requires extra
distinction between consumer types. One possibility is to distinguish between voltage
levels. Therefore in Chapter 4 we focus on cost allocation to voltage levels, which are
unions of agents. A following step could be the application of one of the rules discussed
here, applied separately for the cost allocated to every voltage level, to obtain individual
cost shares. We leave this step for future research.

3.1.1 Properties of cost allocation rules

We now discuss some properties associated to cost allocation problems (Sudhölter, 1998).
By means of these properties we can characterize the rules. For all properties below we
take P := (N, q, C) ∈ C a cost allocation problem and µ a cost allocation rule. The first
two properties ensure that all costs are recovered.

FE Feasibility: at least the total costs incurred by the demands should be allocated
amongst the agents.
For all i ∈ N have

∑
i∈N µi(P ) ≥ C(q), for all P ∈ C.

EF Efficiency: the total costs incurred by the demands are exactly allocated amongst
the agents.2

For all i ∈ N we have
∑

i∈N µi(P ) = C(q), for all P ∈ C.

If a cost allocation rule treats similar agents in a similar way, then either one of the two
or both of the following properties are desirable.

2This condition is also known as the budget-balancing condition (Koster, 2009).
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RAN Ranking: an agent with a demand that is at least as high as the demand of
another agent, obtains a cost share that is at least as high as the cost share of the
other agent.
For all i, j ∈ N , if qi ≤ qj then µi(P ) ≤ µj(P ), for all P ∈ C.

ET Equal Treatment of Equals: agents with equal demands are allocated equal
cost shares.
For all i, j ∈ N we have that qi = qj implies µi(P ) = µj(P ), for all P ∈ C.

More properties related to fair treatment of agents are the next two. The first property
states that if an agent has no demand he or she is charged no costs and the second
property states that a rule is independent of the order in which the agents are arranged.

NP Null property: an agent that has a zero demand, gets a zero cost share allocated.
For all i ∈ N if qi = 0 then µi(P ) = 0, for all P ∈ C.

AN Anonymity: an allocation rule does not discriminate based on the names of the
agents.
Let P, P π ∈ C be such that P = (N, q, C) and P π = (N, πq, C) for some permuta-
tion π of N and πq = (qπ(i))i∈N . Then for all i ∈ N it holds that µπ(i)(P

π) = µi(P ).

The following two properties state that the allocation rule is monotonic and additive
with respect to the cost function.

MON Monotonicity: the allocation rule gives increasing vectors for increasing cost
functions.
Let P 1, P 2 ∈ C be such that P 1 = (N, q, C1) and P 2 = (N, q, C2) with C1 ≤ C2.
Then we have µ(P 1) ≤ µ(P 2).

ADD Additivity: splitting the cost function in any two parts and sharing the cost
of each part separately according to the cost allocation rule results in the same
allocation as applying the cost allocation rule to the total cost function.
Let P 1, P 2, P 3 ∈ C be such that P 1 = (N, q, C1), P 2 = (N, q, C2) and P 3 =
(N, q, C1 + C2). Then it holds that µ(P 1) + µ(P 2) = µ(P 3).

3.1.2 Comparison of the rules

In table 3.1 below we compare the two rules discussed in this chapter with respect to
the above defined properties they obey.
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EG(P) ACP(P)

FE + +
EF + +
RAN + +
ET + +
NP - +
AN + +
MON + +
ADD + +

Table 3.1: Summary of properties for cost allocation rules

From this table we may conclude that the average cost pricing rule satisfies all the
properties discussed in this section. This observation does however not imply that the
average cost pricing rule is the best rule. There are many other properties to come up
with that are not satisfied by the average cost pricing rule or the egalitarian rule. For
each allocation problem separately it should be identified which properties are crucial
to be obeyed by the desired rule. So cost allocation rules and properties should always
be placed in the context of the problem.

3.2 Solutions for TU games

In this section we focus on solutions of TU games. We first discuss solutions that provide
one or more allocation vectors, allocating costs to individual agents. From now on we
assume the characteristic function is a cost function, unless mentioned otherwise. We
consider solutions for a game (N, v) ∈ G. We make a distinction between multi-valued
solutions and single-valued solutions, referred to as values. In the first category we
consider the core and in the last category we consider the Shapley value, the separable
cost remaining benefit solution, the proportional solution and the non-cooperative cost
solution, amongst others defined in Koster (2009) and Hoàng (2012). We assume the
grand coalition forms.

Definition 3.2.1. (Multi-valued solution) A multi-valued solution is a function α that
associates with each game (N, v) ∈ G a set of cost allocation vectors α(N, v) ⊆ RN .

The core is a well-known multi-valued solution, first introduced for profit games by
Gillies (1953). The core of a cost game (N, v) ∈ G is defined by

core(N, v) = {x ∈ RN | x(N) = v(N) and x(S) ≤ v(S), for all S ⊆ N}.3 (3.3)

3Note that allocation vector x ∈ RN is in the core iff x is an imputation and group rational.

24



CHAPTER 3. SOLUTION CONCEPTS AND CHARACTERIZATIONS

Note that in case of a profit game, x(S) ≤ v(S) becomes x(S) ≥ v(S). So an allocation
vector x for a cost game (N, v) is in the core if there is no coalition S or agent i that can
do better by forming an alternative coalition. As no group of agents wants to abandon
the grand coalition, this coalition can be considered stable.

Definition 3.2.2. (Value) A single-valued solution, referred to as a value, is a function
φ that associates with each game (N, v) ∈ G exactly one cost allocation vector φ(N, v) ∈
RN .

One of the most famous values is the Shapley value, introduced by Shapley (1953). The
Shapley value gives the average marginal contribution over all possible orders agents may
join a coalition. Let π : N → N denote a permutation from the set of all permutation
Π(N) of N such that π(i) indicates the position of agent i. The marginal vector
mc(π) ∈ RN is the cost vector such that mci(π) = v({j ∈ N |π(j) < π(i)}∪{i})−v({j ∈
N |π(j) < π(i)}).

Definition 3.2.3. (Shapley value) The Shapley value is given by

Shi(N, v) =
1

n!

∑
π∈Π(N)

mci(π) (3.4)

for all (N, v) ∈ G and all i ∈ N . Or equivalently,

Shi(N, v) =
∑

S⊆N\{i}

|S|!(n− |S| − 1)!

n!

(
v(S ∪ {i})− v(S)

)
. (3.5)

So the core is a solution that relies on the stability of the grand coalition, whereas
the Shapley value focusses on the fairness of a solution with respect to cost shares
reflecting agents’ marginal contributions. We now consider the Shapley value for two
examples: the airport game and the minimum cost spanning tree game.

Example 3.2.1. (Airport game III) Consider again the airport game, as defined
in example 2.3.1 and 3.1.1. We present the same numerical example and compute the
Shapley value of this game. In figure 3.3 the game is again presented with three airplane
types in set N , denoted by 1, 2, 3 and 0 the source node. Each type of airplane has a
demand for a runway length with associated costs c1, c2, c3, corresponding to 10, 18, 30
respectively. In table 3.2 the corresponding cost game is given.

0 1 2 3
10 8 12

Figure 3.3: Airport game Numerical example.
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S ∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
v(S) 0 10 18 30 18 30 30 30

Table 3.2: Cost function v for S ⊆ N

Let us now compute the Shapley value by means of the formulas presented in definition
3.2.3. The marginal vectors and the Shapley value are given in table 3.3 below.

π(N) mc1(π) mc2(π) mc3(π)

(1, 2, 3) 10 8 12
(1, 3, 2) 10 0 20
(2, 1, 3) 0 18 12
(2, 3, 1) 0 18 12
(3, 1, 2) 0 0 30
(3, 2, 1) 0 0 30∑

π∈π(N)mci(π) 20 44 116

Sh(N, v) 3.3 7.3 19.3

Table 3.3: Marginal vectors and Shapley value for the airport game

As this is quite an extensive calculation in case N is large, Littlechild and Owen (1973)
found a simple expression for the Shapley value of the airport game: for c1 ≤ c2 ≤ ... ≤
cn, the Shapley value is given by

Shi(N, v) =
i∑

j=1

cj − cj−1

n− j + 1
, (3.6)

for (N, v) ∈ G, for all i ∈ N , j = 1, ..., n and c0 = 0. Or equivalently,

Shi(N, v) = Shi−1(N, v) +
ci − ci−1

n− i+ 1
. (3.7)

Note that ci− ci−1 denotes the extra cost for a runway for airplane type i compared to a
runway for airplane type i− 1, corresponding to the cost of an edge in figure 3.3. Below
we show that these formulas give the same vector as calculated in table 3.3:

Sh1(N, v) = 10
3 = 3.3

Sh2(N, v) = 10
3 + 8

4 = 7.3
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Sh3(N, v) = 10
3 + 8

4 + 12
1 = 19.3

Thus, the Shapley value is given by Sh(N, v) = (3.3, 7.3, 19.3) ∈ RN+ . Note that this
vector is efficient, i.e.

∑
i∈N Shi(N, v) = 30.

Example 3.2.2. (Minimum Cost Spanning Tree Game) Consider the graph pre-
sented in figure 3.4. Let 0 be the source node and 1, 2, 3 agents that want to be connected
in the cheapest way to the source 0, by using the costly edges. For example, the minimum
cost to connect agent 1 to the source is 10 and the minimum cost to connect agents 1
and 3 to the source is 12. A spanning tree is a subgraph connecting all the nodes. So a
minimum cost spanning tree connects all agents in the least costly way directly or indi-
rectly to the source. Let (i, j) denote the edge from agent i to j for i, j ∈ N and c(i, j)
the corresponding cost. A minimum cost spanning tree in figure 3.4 is emphasized by the
bold lines and given by {(0, 1), (1, 2), (1, 3))} with corresponding cost vector (10, 5, 2).

3

1

0

2

2 8

10

5

10
20

Figure 3.4: A minimum cost spanning tree Numerical example.

Let GN = (VN , EN ) be a minimum cost spanning tree connecting the agents in N to the
source, presented by the set of nodes VN = N ∪{0}, by means of edges from the set EN .4

For S ⊆ N we have GS = (VS , ES) presenting the minimum cost spanning tree for nodes
in S ∪ {0}, connected by edges from the set ES. Note that GS does not have to coincide
with GN . The cost game (N, v) ∈ G is given by

v(S) =
∑

(i,j)∈ES

c(i, j),

for S ⊆ N and v(∅) = 0. In table 3.4 the characteristic function for the situation
presented in figure 3.4 is given.

The Shapley value of this game is Sh(N, v) = (2.5, 5.5, 9.0) ∈ RN+ . Also this vector is
efficient, i.e.

∑
i∈N Shi(N, v) = 17.

4Note that a minimum cost spanning tree does not have to be unique.
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S ∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
v(S) 0 10 10 20 15 12 18 17

Table 3.4: Cost function v for S ⊆ N

The next theorem states a nice relation between the Shapley value and the core, given
that a game is convex. For a proof of the theorem we refer to Shapley (1971, p.22).

Theorem 3.2.1. (Shapley, 1971) If (N, v) ∈ G is a convex profit game, then the Shapley
value Sh(N, v) is in the core.5

This property makes the Shapley value for convex games an appealing solution. A
solution that was employed in the Tennessee Valley Authority and is applicable to multi-
purpose projects, is the separable cost remaining benefit solution, amongst others
defined in Young (1994). The separable cost of agent i is defined by si = v(N)−v(N\{i})
and the remaining benefit by ri = v(i) − si. To obtain a positive ri for all agents the
function v should be at least sub-additive. So the separable cost of purpose i is the cost
incurred by adding purpose i to the project. This solution concept allocates each agent
with its separable cost and the remaining non-separable cost is subsequently shared
proportionally to the remaining benefit ri amongst the agents. More formally,

Definition 3.2.4. (Separable cost remaining benefit solution) The separable cost re-
maining benefit solution is defined by

SCRBi(N, v) = si +
ri∑

j∈N
rj
· rN , (3.8)

for all (N, v) ∈ G, all i ∈ N and with rN = v(N)−
∑
j∈N

sj.

This solution solely considers the coalitions of size 1, N−1 and N . Three other solutions
are defined below.

Definition 3.2.5. (Proportional solution) The proportional solution is defined by

Pri(N, v) =
v(i)∑
j∈N v(j)

· v(N), (3.9)

for all (N, v) ∈ G and all i ∈ N .

This solution allocates to each agent a cost share that is proportional to its individual
cost. The next solution we have seen in a slightly different form as a cost allocation
rule, namely the egalitarian rule. Similar to this rule, does the egalitarian solution
not distinguish between agents and allocates to all agents the same cost share.

5If (N, v) is a cost game, then Sh(N, v) is in the core if (N, v) is concave.
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Definition 3.2.6. (Egalitarian solution) The egalitarian solution is given by

Egi(N, v) =
v(N)

n
, (3.10)

for all (N, v) ∈ G and all i ∈ N .

The last solution is a non-cooperative solution, allocating each agents its individual
cost.

Definition 3.2.7. (Non-cooperative solution) The non-cooperative solution is defined by

NCi(N, v) = v(i), (3.11)

for all (N, v) ∈ G and all i ∈ N .

This solution allocates exactly each agent’s individual cost. Let us now consider the
values defined above for the TVA example.

Example 3.2.3. (Tennessee Valley Authority II) Consider again the Tennessee
Valley Authority game defined in example 2.3.2. We compute all the single-valued solu-
tions defined above. For the core solution we refer to Young (1994, p.1200). For the set
of purposes N = {1, 2, 3} we obtain the following cost allocations,

1 2 3

Sh(N,v) 117,829 100,757 193,999
SCRB(N,v) 117,476 99,157 195,951
Pr(N,v) 121,682 104,794 186,107
Eg(N,v) 137,528 137,528 137,528
NC(N,v) 163,520 140,826 250,096

Table 3.5: Different cost allocation vectors for TVA. Solutions are the Shapley value,
the separable cost remaining benefit solution, the proportional solution, the egalitarian
solution and the non-cooperative solution.

3.2.1 Properties of TU games

We consider some basic properties that are satisfied by some of the solutions. Comparing
solutions with respect to the properties they obey, provides a way to judge about their
fairness. Let (N, v) ∈ G be a TU game and φ a single-valued solution. Some of the
properties were in an adjusted form already presented for cost allocation rules. The first
two properties guarantee that at least the total costs are recovered.
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EF Efficiency: exactly the total cost incurred by the grand coalition is allocated.
For all i ∈ N we have

∑
i∈N φi(N, v) = v(N), for all (N, v) ∈ G.

FE Feasibility: at least the total cost is allocated amongst the agents in N .
For all i ∈ N we have

∑
i∈N φi(N, v) ≥ v(N), for all (N, v) ∈ G.

Note that if a solution is efficient, then it is also feasible. The next two properties are also
related and define the impact of a null agent and a dummy agent. Agent i ∈ N is a null
agent if v(S∪i) = v(S) for all S ⊆ N \{i} and a dummy agent if v(S∪i) = v(S)+v(i)
for all S ⊆ N \ {i}. Now consider the following properties.

NA Null Agent: if an agent does not inflict cost on any coalition S he or she joins,
the agent is charged no cost.
For all i ∈ N holds that if agent i is a null agent, then φi(N, v) = 0, for all
(N, v) ∈ G.

DA Dummy Agent: if an agent inflicts exactly its stand-alone cost to any coalition
S he or she joins, the agent is charged its stand-alone cost.
For all i ∈ N holds that if agent i is a dummy agent, then φi(N, v) = v(i), for
all (N, v) ∈ G.

Note that a dummy agent with zero cost (v(i) = 0) is a null agent. The next property is
a condition for solutions that are non-discriminatory with respect to symmetric agents.
Agents i, j ∈ N are symmetric if v(S ∪ i) = v(S ∪ j) for all S ⊆ N \ {i, j}. One can
argue that two agents inflicting the same cost on every coalition, should be allocated
equal cost shares. This idea is formalised by the symmetry property.

SYM Symmetry: equal cost shares are allocated to symmetric agents.
For all symmetric agents i, j ∈ N it holds that φi(N, v) = φj(N, v), for all (N, v) ∈
G.

The final property we discuss here is additivity. By means of additivity different cost
parts can be allocated separately, without changing the total cost allocation for each
agent. The sum of two games is defined as follows: v + w(S) = v(S) + w(S) for
(N, v), (N,w) ∈ G and S ⊆ N .

ADD Additivity: splitting the characteristic function in any two parts and allocating
the cost of each part separately according to the solution results in the same
allocation as applying the solution to the sum of the characteristic functions.
For all games (N, v), (N,w) ∈ G it holds that µ(N, v) + µ(N,w) = µ(N, v + w).
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3.2.2 Comparison of the solutions

In table 3.6 below we compare the solutions with respect to the above defined properties
they obey.

Sh(N,v) SCRB(N,v) Pr(N,v) Eg(N,v) NC(N,v)

EF + + + + -
FE + + + + +
NA + + + - +
DA + + - - +
SYM + + + + +
ADD + - - + +

Table 3.6: Summary of properties satisfied by different solutions

From this table we may conclude that the Shapley value satisfies all the properties dis-
cussed in this section. However, as discussed before, this observation does not imply
that the Shapley value is the best solution, as the context is important. For example,
the non-cooperative solution can be argued from this table to be quite desirable, since it
satisfies most of the properties. Only, in many situations, efficiency is an essential con-
dition for a fair allocation. Further does this solution give no incentives for cooperation,
which can be argued to be the whole point of considering cooperative game theoretic
solutions. Consider the following axiomatic characterization of the Shapley value by
Shapley. For a complete proof we refer to Shapley (1953) or Gilles et al. (1992, p.97).

Theorem 3.2.2. (Shapley, 1953) The Shapley value Sh(N, v) is the unique solution
that satisfies the properties efficiency, dummy agent, symmetry and additivity.

In the literature many axiomatic characterizations are discussed for the Shapley value,
for example in Gilles (2010) characterizations of Shapley, Young and van den Brink are
presented. Above we solely considered the first. Also for the other solutions presented
in this section axiomatic characterization exist, but are not discussed in this thesis.

3.3 Union values for TU games with coalition structure

Let us now consider games with coalition structure Owen (1977). A single-valued
solution for a game with coalition structure is a function that assigns to every game
(N, v, P ) ∈ GP one allocation vector that defines the cost for every agent i ∈ N . A
game with coalition structure is also referred to as a game with a priori unions. The
idea behind a priori unions is that some groups of agents are more likely to cooperate
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within the grand coalition than others. For example in the electricity grid all agents
attached to the same voltage level can be seen as an a priori union. If we want to know
how to allocate the cost of the grand coalition amongst the unions instead of the agents,
we have to consider union values. A union value is a mapping assigning one cost share
to every union of agents. So we now assume that not the agents, but the unions of
agents are the decision makers. In van den Brink and Dietz (2014) two Shapley-related
union values and corresponding axiomatizations are introduced, which are highlighted in
this section. Note that the solutions discussed before can also be translated into union
values, by taking the union as the decision making agent. Consider the cost game v with
agent set N and partition in a priori unions P such that (N, v, P ) ∈ GP.

Definition 3.3.1. (Union value) A union value is a function γ that associates with
each game (N, v, P ) ∈ GP exactly one cost allocation vector γ(N, v, P ) ∈ RM , where
M = |P |, assigning a cost share to every union in a TU game with coalition structure.

The first value we define is the union-Shapley value. This value interprets a union as
one, such that a union enters a coalition with all its agents at once.

Definition 3.3.2. (The union-Shapley value) The union-Shapley value is given by

Shu(N, v, P ) = Sh(M,vp) (3.12)

where vp(U) = v(∪k∈UPk) for all (N, v, P ) ∈ GP, for P = {P1, ..., Pm}, M = {1, ...,m}, k ∈
M and U ⊆M .

The second value we define is the agent-Shapley value. This value first considers the
Shapley value of the individual agents in the game and then sums over the Shapley
values of the agents belonging to the same union.

Definition 3.3.3. (The agent-Shapley value) The agent-Shapley value is given by

ShaPk(N, v, P ) =
∑
i∈Pk

Shi(N, v) (3.13)

for all (N, v, P ) ∈ GP, all Pk ∈ P and P = {P1, ...Pm}.

We clarify these two notions by means of the airport game.

Example 3.3.1. (Airport game - IIII) Consider again the airport game as presented
in examples 2.3.1, 3.1.1 and 3.2.1. Union values for the airport game are also discussed
in van den Brink and Dietz (2014). We compute the union- and agent-Shapley value
for the game defined before, but now with coalition structure. Let N be the same set of
airplane types, but now partitioned into airlines. Airline 1 possesses airplane types 1
and 3 and airline 2 possesses airplane type 2. So the elements of the game are given by:
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• N = {1, 2, 3} is the set of airplane types

• P = {P1, P2} = {{1, 3}, {2}} is the partition into airlines, where Pk denotes airline
k ∈M

• v(S) = maxi∈S ci is the characteristic function for all S ⊆ N .

The union-Shapley value is computed by finding the Shapley value of the game

vp(U) = v(∪k∈UPk) = max{ci|i ∈ ∪k∈UPk},

for all U ⊆ M. In words, the largest airplane type i ∈ N in the coalition ∪k∈UPk
determines the cost of the coalition. The union game (M,vP ) ∈ GP is presented in
figure 3.5.

0 P2 P1
18 12

Figure 3.5: Airport game (vP ) Numerical example.

With regards to the numerical example we obtain for vP (U) for all U ⊆M , vP (1) = 30,
vP (2) = 18 and vP (1, 2) = 30. The resulting allocation vector for the union-Shapley
value is Shu(N, v, P ) = (21, 9) ∈ R2

+.

The agent-Shapley value as defined by formula (2.13) is given by

- Sha1(N, v, P ) =
∑

i∈P1
Shi(N, v) = Sh1(N, v) + Sh3(N, v) = 3.3 + 19.3 = 22.6

- Sha2(N, v, P ) =
∑

i∈P2
Shi(N, v) = Sh2(N, v) = 7.3

The resulting allocation vector for the agent-Shapley value is Sha(N, v, P ) = (23, 7) ∈
R2

+. We find that the two values give different allocation vectors. For the union-Shapley
value the marginal contribution of an airline is determined by the cost of the largest
airplane type. Thus if the size of an airplane is the main cost driver for a runway, this
seems a reasonable solution. If we on the other hand also want to take into account
the use of the runway, the agent-Shapley seems more reasonable. In this case first the
cost for each airplane type is determined by means of the Shapley value, where after an
airline pays the sum of these costs, depending on its types of airplanes.

The difference between the union- and agent-Shapley value can be formalised by means
of an axiomatic characterization. Therefore, we first consider some important properties.
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3.3.1 Properties of TU games with coalition structure

We provide several properties for union values, based on the properties defined in van den
Brink and Dietz (2014). Some properties correspond to properties discussed before, but
are adapted to fit union values. Let (N, v, P ) ∈ GP be a game with coalition structure
and γ a union value. The first property is discussed before and implies that all costs are
recovered.

EF Efficiency: the cost of the grand coalition is exactly allocated amongst the unions
in P .
For all k ∈M we have that

∑
k∈M γPk(N, v, P ) = v(N), for all (N, v, P ) ∈ GP.

In section 3.2 we presented the definition of a null agent. The following property
considers the effect of deleting a null agent from a union for the cost allocation. The
null agent out property was introduced by Derks and Haller (1999) for TU games.6

NAO Null Agent Out: deleting a null agent from any union has no effect on the cost
shares of the unions.
If agent i ∈ Pk is a null agent and |Pk| ≥ 2, then γ(N, v, P ) =
γ(N \ {i}, cN\{i}, (P \ {Pk}) ∪ {Pk \ {i}}), for all (N, v, P ) ∈ GP.

Note that the union Pk cannot be a singleton, since then the union would not exist once
agent i leaves, therefore the condition |Pk| ≥ 2 is required. Due to this condition, agents
can be excluded from the game, but not entire unions. Next we consider symmetric
unions. Unions k, l ∈ M are symmetric if |Pk| = |Pl| and there exist a permutation
πk = (π1, ..., π|Pk|) on Pk and a permutation πl = (π1, ..., π|Pl|) on Pl such that v(S ∪
{πki }) = v(S ∪ {πli}) for all i ∈ 1, ..., |Pk| and S ⊆ N \ {πki , πlj}. So two unions are
symmetric if the agents of the unions can be ordered such that there is a one to one
symmetry correspondence between the agents in one union and the other union in game
(N, v, P ) ∈ GP.

SYM Symmetry: symmetric unions are allocated the same cost share.
If unions k, l ∈M are symmetric, then γPk(N, v, P ) = γPl(N, v, P ), for all (N, v, P ) ∈
GP.

Strong monotonicity is adapted from the definition of Young (1985) and states that if
the marginal contributions of all agents of a union in a game v are at least as high as in
a game w, then this union gets a cost share in game v that is at least as high as in game
w. Marginality is a weaker version of strong monotonicity.

6In Derks and Haller (1999) the property is referred to as the null player out property.
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SM Strong Monotonicity: if the marginal contributions for all agents in union Pk
in game v are at least as high as the marginal contributions for all agents in union
Pk in game w, then the cost shares for the union in game v should be at least as
high as in game w .
For all i ∈ Pk, k ∈M and S ⊆ N \ {i} such that v(S ∪ i)− v(S) ≥ w(S ∪ i)−w(S)
it holds that γPk(N, v, P ) ≥ γPk(N,w, P ), for all (N, v, P ), (N,w, P ) ∈ GP.

MR Marginality: if the marginal costs for all agents in union Pk in game v are
equivalent to the marginal costs for all agents in union Pk in game w, then they
should obtain equal cost shares.
For all i ∈ Pk, k ∈M and S ⊆ N \ {i} such that v(S ∪ i)− v(S) = w(S ∪ i)−w(S)
it holds that γPk(N, v, P ) = γPk(N,w, P ), for all (N, v, P ), (N,w, P ) ∈ GP.

For games with a priori unions some extra properties with respect to collusion are impor-
tant. In van den Brink and Dietz (2014) two types of collusion properties with respect
to union values are considered, collusion between agents and collusion between
unions. The first concept is based on two agents colluding defined by the proxy agree-
ment described in Haller (1994). If agent i ∈ N acts as a proxy agent for agent j ∈ N \{i}
then we define the characteristic function (N, vij) ∈ G instead of v, as follows

vij =

{
v(S \ {j}) if i /∈ S
v(S ∪ {j}) if i ∈ S. (3.14)

So the meaning of agent i being a proxy agent for an agent j is that an agent j only
incurs its cost in a coalition when agent i is also in that coalition. As long as agent j is
in a coalition without agent i, agent j can be seen as a null agent. This brings us to the
agent collusion neutrality axiom.

ACN Agent Collusion Neutrality: collusion of two agents i, j belonging to the same
union, does not change the cost share of this union.
For all i, j ∈ Pk and k ∈ M it holds that γPk(N, v, P ) = γPk(N, vij , P ), for every
(N, v, P ) ∈ GP.

Now we consider collusion between unions instead of between agents. Collusion between
unions Pk and Pl is described by the union of the these two unions, such that we obtain
the partition P kl = (P \{Pk, Pl}∪{Pk∪Pl}). Without loss of generality we may assume
that k < l, such that we may reorder the partition P kl with P klk = Pk ∪Pl and P klh = Ph
for all h ∈M \ {k, l}. Note that unions Pk, Pl do not have to be consecutive.

UCN Union Collusion Neutrality: collusion of two unions Pk, Pl does not change the
total cost share of these unions.
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For all k ∈ M it holds that γPk(N, v, P ) + γPl(N, v, P ) = γPk(N, v, P kl), for all
(N, v, P ) ∈ GP.

Note that collusion of agents or unions changes the cardinality of the agent set or the
union set, respectively.

3.3.2 Comparison of the union values

In table 3.7 an overview is presented of the properties that are obeyed by the union- and
the agent-Shapley value.

Shu(N, v, P ) Sha(N, v, P )

FE + +
NAO + +
SYM + +
SM + +
MR + +
ACN + -
UCN - +

Table 3.7: Summary of properties satisfied by agent- or union-Shapley value

The two values only differ in the collusion neutrality property they obey. The vector
obtained by the union-Shapley value is not affected by collusion of two agents in the
same union, whereas for the vector obtained by the agent-Shapley value it holds that
after collusion of two unions, the sum of the cost shares of these unions is not affected.
We consider for each of the union values a unique characterization, as presented and
proved in van den Brink and Dietz (2014).

Theorem 3.3.1. The union-Shapley value is the unique union value that satisfies effi-
ciency, marginalism, symmetry, the null agent out and the agent collusion neutrality.

Theorem 3.3.2. The agent-Shapley value is the unique value that satisfies efficiency,
marginality, symmetry and union collusion neutrality.

In summary, in this chapter we distinguished between cost allocation rules for cost allo-
cation problems, solutions for TU games and union values for TU games with coalition
structure. We use the term ‘solution concepts’ as an umbrella term to refer to all of
them. All three types of solution concepts provide at least one allocation vector for
either agents or unions of agents. In the following chapters some solution concepts and
corresponding properties of this chapter are repeated, but also new solution concepts
and properties are introduced.
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Chapter 4

Electricity demand problem

The electricity demand problem concerns the problem of reallocation of the total
transmission-related electricity grid costs, which is the sum of the voltage level costs,
over unions of agents that are connected to a specific voltage level in the grid and where
the agents are endowed with an electricity demand. For convenience from now on we
also refer to the transmission-related costs (as defined in Chapter 2) simply as grid costs
or electricity costs.

The model we describe in this chapter represents a non-trivial extension of the airport
problem, that includes a fixed cost and variable cost depending on the demands of
the agents. The model gives a simplified representation of the current situation and
provides the opportunity to analyse the currently employed cascade rule and other cost
allocation rules for the electricity demand problem. This model only takes into account
the demands of the agents and not the production capacities. We silently assume that
the production equals the demand and that electricity is only fed into the highest voltage
levels in the grid, where after the excess electricity flows to adjacent lower voltage levels.
Before we define the framework of the problem, we give a short introduction on the
background of the cost allocation problem. Subsequently we define the level paying
rule, the equal downstream rule and the cascade rule. The first two rules are
familiar rules, analysed for other problems (e.g. in Ni and Wang (2007)). They are
adapted to fit our problem. The cascade rule is currently used in the electricity sector.
This rule is not formally defined in any cost allocation literature, but only explained in
electricity research reports, such as in Hakvoort et al. (2013). We point out the difference
and similarities between the rules and between the rules as proposed for this problem
and for other problems in the literature. Further, we define some relevant properties
and compare the rules with respect to the properties they obey. As the cascade rule
has the focus, for this rule we prove which properties are satisfied and which not. The
main contribution of this chapter is the analysis of several cost allocation rules for our
problem in comparison with rules proposed in the literature on other problems, in the
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theoretical cost allocation literature (e.g. in Ni and Wang (2007)) as well as in the more
practice oriented literature (e.g. in Hakvoort et al. (2013)). So suggestions on the cost
allocation from practice and theory are combined and formalised.

4.1 The framework

The electricity grid is characterized by high fixed costs and considerably low variable
costs. So once the infrastructure is there (i.e. the maintenance and expansion costs are
covered) the actual flow of electricity imposes little extra costs. As electricity takes
any path available (i.e. the magnitude of the electricity flow over a path depends on
the path’s voltage and resistance) it is hard to determine for consumers which path the
electricity flow followed and thus which source the electricity originated from. Due to
the above mentioned reasons a network flow model is, even though applicable, not our
primary choice. Also, we do not have a cost minimization or cost optimization problem:
the objective of this research is not to find a shortest path or construct the cheapest
flow. Assuming the electricity grid is present, we aim to find a fair way to divide the
associated costs over the different unions of agents.1

Consider the electricity grid consisting of multiple voltage levels, as depicted in the
introduction in figure 1.1. Based on the size of the electricity connection of a consumer,
which is on its turn based on the consumer’s peak demand during the year, he or she is
connected to a particular voltage level. Each consumer has a demand, which is considered
to be price inelastic, since we assume that electricity is a necessity good. We further
assume that electricity is fed into the grid on the highest voltage level and subsequently
flows downstream to foresee in the demand of the agents connected to lower levels.
We ignore reactive power and grid losses and assume that no electricity is lost during
transmission over the grid. So the electricity fed in to the grid equals the sum of the
demands of the agents. Every network operator assesses the costs of each of its voltage
levels, which we assume depend on a fixed and variable part. The problem is how to
allocate the cost of each voltage level amongst all the unions of agents connected to the
voltage levels, taking into account the flow of the electricity through the grid. Before we
provide a detailed framework for the problem, we present the elements of the electricity
demand problem.

The electricity demand problem concerns the problem of dividing the total cost of
the electricity grid in a fair way over the voltage levels and associated unions of agents.
The problem is defined by the quadruple P = (N,L, d, c), such that

• N = {1, ..., n} is a finite set of agents

• L = {L1, ..., Lm} is a partition of N

1Note that there is not one interpretation of fair, this depends on the properties one considers fair.
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• d = (di)i∈N is the demand vector of the agents in N

• c = (cLk)k∈M is the level cost vector where M = {1, ...,m}.

Let N = {1, ..., n} ⊂ N be a finite set of agents, representing the consumers of electricity
in the network. We suppose this set of agents is endowed with a partial order ≤,
i.e. a binary relation which is reflexive, antisymmetric and transitive. Without loss of
generality we assume the agents are ordered from 1 to n. The agents are partitioned
in a priori unions by the different voltage levels in the grid, given by the partition
L = {L1, ...Lm}. So the highest voltage level has the lowest ranking, i.e. L1 is the high-
est voltage level. Hence all agents connected to a particular voltage level belong to the
same union. Therefore the notions union and voltage level are used interchangeably and
both refer to an element of the partition. Element Lk of L is referred to as the k-th
level of the network. The set of levels is given by M = {1, ...,m} such that k ∈ M for
Lk.

2 The level to which agent i ∈ N belongs is presented by l(i). Thus, l(i) ∈M is such
that i ∈ Ll(i). In figure 4.1 we find a representation of this partition. Let LN denote the
collection of all partitions of N . Note that by the partial ordering on the agents we have:

• ∀i ∈ N : l(i) = k ⇐⇒ i ∈ Lk

• ∀i, j ∈ N : i, j ∈ Lk and i < h < j ⇒ h ∈ Lk

• ∀i, j ∈ N : i < j, i ∈ Lp and j ∈ Ls ⇒ p ≤ s.

In words:

• The level of agent i defines which a priori union agent i belongs to.

• For each two agents belonging to the same union it holds that any agent in between
these two agents in the order 1 < 2 < ... < n, also belongs to that same union.

• For each two agents i and j so that agent i is smaller than agent j it holds that
they either belong to the same union or agent i belongs to a lower labeled union
(higher voltage level), i.e. l(i) ≤ l(j).

2We use both k ∈M and Lk ∈ L to denote the k-th level of L.
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Figure 4.1: Visual representation of the ordering and partition of the agents

The cardinality of the sets are |N | = n and |L| = m. Each agent in the model has a
demand representing its electricity demand.3 The total demand passing a voltage level
Lk is the aggregated demand of the individual demands of all agents connected to that
voltage level or lower voltage levels, i.e. the sum of the demands of all agents in Lj with
j ≥ k.4 Let d = (di)i∈N ∈ RN+ be the demand vector where di denotes the demand of
agent i.5 The total demand of the agents in Lk is represented by

d̂Lk :=
∑
i∈Lk

di (4.1)

with d̂ = (d̂Lk)k∈M ∈ RM+ . The aggregated demand vector is denoted by d̄ =
(d̄Lk)k∈M ∈ RM+ , where d̄Lk is given by

d̄Lk :=
∑

i∈N,l(i)≥k

di (4.2)

:=
∑

j∈M,j≥k
d̂Lj ,

such that d̄Lk represents the demand passing level k. Note that by this definition it is
assumed that the net electricity flow streams from higher voltage levels to lower voltage
levels. Each level has an associated cost, consisting of a fixed and variable part. The
level cost vector c = (cLk)k∈M ∈ RM+ , with cLk representing the cost of voltage level k
is defined by

cLk := aLk · d̄Lk + bLk , (4.3)

with constants aLk , bLk ∈ R+, such that a = (aLk)k∈M , b = (bLk)k∈M ∈ RM+ . However,
in this chapter it is not yet relevant that the level cost vector consists of the sum of these

3In Chapter 3 the demand vector is denoted by the letter q, whereas for this problem it is denoted
by the letter d.

4Level 1 represents the highest voltage level and level m the lowest.
5We take R+ as the set of non-negative reals including zero, i.e. R+ = R≥0.
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two parts. This only becomes significant in the next chapter. For this reason we choose
to take c as the given element in the problem in this chapter, instead of the elements
aLk , bLk for all k ∈M .

Given a partially ordered set (N,≤), the element g ∈ N is a greatest element of N
if for all h ∈ N we have h ≤ g. We denote a greatest elements of N by maxN , i.e.
maxN = maxj∈N j. The level of the greatest element of N is given by l(maxN), such
that l(maxN) = maxj∈N l(j). The total cost of foreseeing in the demands of all agents
is given by the function

C(d) :=

l(maxN)∑
k=1

cLk (4.4)

:=

m∑
k=1

cLk ,

such that C is the total cost function C : RN+ → R+, mapping a demand vector to the
non-negative reals and cLk ∈ R+ as defined in equation (4.3).

To summarize, the electricity demand problem is in its entirety defined by
P = (N,≤, L, d, a, b), where N is a finite set of agents, ≤ is a partial ordering on agent
set N , L is a partition of N representing the voltage levels, d is the demand vector
of the agents in N and a, b are vectors of constants for the level cost vector. How-
ever, we assume that ≤ is implicitly incorporated in N and for simplicity we assume
(in this chapter) that c is given instead of the vectors of constants a, b and therefore we
denote the problem P from now on by P = (N,L, d, c). Other elements, such as the
aggregated demand vector of the voltage levels d̄, the level demand vector d̂ and the
total cost function C can be derived from the problem. Denote the class of electricity
demand problems by Ced. Below we clarify the problem by means of a numerical example.

Example 4.1.1. Consider a situation with eight agents and a partition in three a priori
unions. We define the elements of a problem P ∈ Ced as follows:

• N = {1, ..., 8}

• L = {L1, L2, L3} with L1 = {1, 2}, L2 = {3, 4}, L3 = {5, 6, 7, 8}

• d = (30, 20, 15, 15, 5, 5, 10, 10)

• c = (230, 125, 62)

Now we have defined the problem we can deduce the other elements. In figure 4.2 we
find a representation of the situation.
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Figure 4.2: Example with eight agents and three levels

By means of the demand vector we can obtain the level demand vector d̂:

d̂ =

 d̂L1

d̂L2

d̂L3

 =

 d1 + d2

d3 + d4

d5 + d6 + d7 + d8

 =

 50
30
30


Finally, the aggregated demand vector d̄ is given by,

d̄ =

 d̄L1

d̄L2

d̄L3

 =

 d1 + d2 + d3 + d4 + d5 + d6 + d7 + d8

d3 + d4 + d5 + d6 + d7 + d8

d5 + d6 + d7 + d8

 =

 110
60
30


The total cost of the grid is the sum of the cost of the levels, hence

C(d) =

3∑
k=1

cLk = 417.

The electricity demand problem concerns finding the best allocation of the 417 amongst
the different a priori unions L1, L2 and L3.

Electricity grid costs consist of long-term marginal costs, short-term marginal costs and
fixed costs. The long-term marginal costs concern the expansion of the transmission
capacity of the grid. The short-term marginal costs concern the transmission losses and
capacity shortages. And finally the fixed costs involve maintenance and capital costs of
the investments (Huygen, 1999). In this model we assume the grid is already there and
the fixed costs are sunk, i.e. these cost are already made. The short-term marginal costs
depend mainly on the quantity of the transported electricity, as large quantities at one
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time may incur for example congestions. Note that quantity electricity can be interpreted
in multiple ways, namely quantity in terms of consumption or capacity (electricity units).
At different voltage levels different electricity units are directive. For now however we
assume each agent has one type of demand and this will be leading for every voltage
level.

To be clear, in this thesis we take into account all agents connected to the grid, but
assume the unions of agents are the decision making agents. Consequently, instead
of considering rules as mappings assigning cost shares to individual agents, we consider
rules as mappings assigning cost shares to unions of agents. For future research it would
be highly interesting to consider solutions of the first type, assigning cost shares to
individual agents.

One of the difficulties with electricity is that net electricity flow between voltage levels
can be different from the actual flow. The flow goes mostly downstream, but sometimes
also upstream, meaning that electricity flows from level Lk+1 to Lk. As in total more
electricity streams from Lk to Lk+1 than the other way around, we in this model only
consider the net flow between the voltage levels. This is also what is considered in real-
life with the cascade method. It is expected that this might change in the future in view
of the increase in distributed generation.6

4.2 Rules

A vector of cost shares, dividing the costs amongst unions, can be obtained by applying a
cost allocation rule µ, which is a function mapping a problem to a cost vector. Formally,
define rule µ as a mapping that assigns to every problem P = (N,L, d, c) ∈ Ced a vector
of cost shares y ∈ RM+ . In this section we discuss three cost allocation rules, including
the before-mentioned cascade rule. Some rules are informally suggested in Hakvoort
and Huygen (2012) and NMA and SEO (2011) and others are formally, for a different
problem, described in Ni and Wang (2007). We use subscripts Lk, Ll to refer to union
cost shares and i, j to refer to agent cost shares, thus µLk versus µi respectively.

Level paying rule

In Hakvoort and Huygen (2012) it is suggested that each voltage level pays for the
associated cost of the voltage level. They acknowledge this could cause resistance from
the consumers attached to the highest voltage levels since as long as producers are not
charged for feeding electricity into the grid, the costs for the few consumers connected

6With distributed generation all production realised at the distribution networks is referred, i.e.
production plants at lower voltage levels.
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to that grid will become extremely high. The level paying rule describes this allocation
method, which simply allocates the cost of each voltage level to the union of consumers
connected to that voltage level. Formally, the level paying rule can be defined by the
function LP that associates with every P ∈ Ced a cost allocation vector LP (P ) ∈ RM+
such that

LPLk(P ) := cLk , (4.5)

for all k ∈ M . So this rule allocates to each union the cost share corresponding to its
level, despite the fact that downstream unions also take advantage of this level. In Ni
and Wang (2007) a similar rule is considered for the polluted river sharing problem,
which is presented in example 2.3.3, namely the Local Responsibility Sharing method.
This rule charges agents in every segment its own local pollution cleaning costs, based
on the idea that every segment is responsible for its own pollution and therefore also the
cleaning. An important difference is that the cost of a level in our model depends on
the demand of that voltage level and on the demand of the downstream voltage levels.
Thus, by charging each voltage level with its corresponding level cost, we do not take
these dependencies into consideration.

Example 4.2.1. Consider again the example as described in example 4.1.1. The level
paying rule gives the following cost allocation vector

LPL1(P ) = cL1 = 230

LPL2(P ) = cL2 = 125

LPL3(P ) = cL3 = 62

Thus the allocation vector is given by LP (P ) = (230, 125, 62) ∈ R3
+. Clearly this rule is

efficient, i.e.
∑

k∈M LPLk(P ) =
∑

k∈M cLk .

Equal downstream rule

It can be argued that the level paying rule is not fair for the upstream levels, for a brief
discussion see Hakvoort and Huygen (2012). In NMA and SEO (2011) it is proposed
to use a proportional downstream allocation method, partly because of computational
convenience. In this section we discuss the equal downstream rule. This rule is inspired
on the Upstream Equal Sharing rule, as discussed in Ni and Wang (2007). The equal
downstream rule charges all downstream unions for the upstream level costs proportional
to the number of unions using the corresponding level. Formally the equal downstream
rule can be defined by the function ED that associates with every P ∈ Ced a cost
allocation vector ED(P ) ∈ RM+ such that

EDLk(P ) :=

k∑
h=1

1

m− h+ 1
· cLh , (4.6)

for all k ∈M and m = l(maxN).
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Example 4.2.2. Consider again the example as described in example 4.1.1. The equal
downstream rule gives the following cost allocation vector

EDL1(P ) =
1

3− 1 + 1
· cL1

=
1

3
· cL1

= 77

EDL2(P ) =
1

3− 1 + 1
· cL1 +

1

3− 2 + 1
· cL2

=
1

3
· cL1 +

1

2
· cL2

= 139

EDL3(P ) =
1

3− 1 + 1
· cL1 +

1

3− 2 + 1
· cL2 +

1

3− 3 + 1
· cL3

=
1

3
· cL1 +

1

2
· cL2 +

1

1
· cL3

= 201.

So the allocation vector is given by ED(P ) = (77, 139, 201) ∈ R3
+. Note that also the

downstream allocation rule provides an efficient cost allocation vector:
∑

k∈M EDLk(P ) =∑
k∈M cLk .

The main difference between this rule and the LP rule is that the ED rule takes into
consideration that downstream unions are partly responsible for upstream level costs. It
charges unions for the use of their own voltage level and the upstream voltage levels. The
ED rule, likewise to the LP rule, does not take into account the demands of the unions.
A difference between the ED rule and the Upstream Equal Sharing rule, presented in Ni
and Wang (2007), is that in the latter rule upstream agents are charged for downstream
costs.

Demand-proportional downstream allocation: cascade rule

The cascade method makes use of the cascade rule to allocate the costs of the grid to the
unions of agents. Due to this rule small scale electricity consumers that are connected
to the Low Voltage grid pay around 60% of the total network cost (see figure 1.2, p.4).
By the cascade method the costs of higher voltage levels are cascaded to lower voltage
levels, on the basis of the assumption that the electricity flows from high to low voltage
levels. Currently the cascaded costs are proportional to the net demand of the lower
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level network, which is officially recorded in Autoriteit Consument en Markt (2013).
Formally the cascade rule can be defined by the function CA that associates with every
P ∈ Ced a cost allocation vector CA(P ) ∈ RM+ such that

CALk(P ) =
k∑

h=1

d̂Lk
d̄Lh
· cLh , (4.7)

for all k ∈M . The cascade rule can be viewed as an iterative allocation method in which
first the cost of the highest voltage level are partly allocated to the union corresponding
to that level and the rest of the cost of that level are cascaded to the voltage level below.
For this lower voltage level we now have its own level cost plus the cascaded cost of the
above level. The sum of these costs are then allocated partly to the union corresponding
to that level and the rest is again cascaded to the level below and so on. Based on this
observation, we prove the following proposition.

Proposition 4.2.1. The cascade rule can be written as a recursive function as follows,

CALk(P ) =
d̂Lk
d̄Lk
·
k∑

h=1

(cLh − CALh−1
(P )) (4.8)

for every P ∈ Ced, k ∈M and CAL0(P ) = 0.

Proof. We show that the equations provided for the cascade rule in (4.7) and (4.8) are
equivalent. We start with equation (4.8) and deduce from this equation (4.7):

CALk(P ) =
d̂Lk
d̄Lk
·
k∑

h=1

(cLh − CALh−1
(P )) (4.8)

=
d̂Lk
d̄Lk
·
k∑

h=1

(cLh −
h−1∑
l=1

d̂Lh−1

d̄Ll
· cLl)

=
d̂Lk
d̄Lk
· (

k∑
h=1

cLh − (
1∑
l=1

d̂L1

d̄Ll
· cLl +

2∑
l=1

d̂L2

d̄Ll
· cLl + ...+

k−1∑
l=1

d̂Lk−1

d̄Ll
· cLl))

=
d̂Lk
d̄Lk
· (

k∑
h=1

cLh − ((
d̂L1

d̄L1

· cL1) + (
d̂L2

d̄L1

· cL1 +
d̂L2

d̄L2

· cL2) + ...+

(
d̂Lk−1

d̄L1

· cL1 +
d̂Lk−1

d̄L2

· cL2 + ...+
d̂Lk−1

d̄Lk−1

· cLk−1
)))

=
d̂Lk
d̄Lk
· (

k∑
h=1

cLh − (
d̂L1 + ...+ d̂Lk−1

d̄L1

· cL1 +
d̂L2 + ...+ d̂Lk−1

d̄L2

· cL2 + ...+

d̂Lk−1

d̄Lk−1

· cLk−1
))
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=
d̂Lk
d̄Lk
· (cL1 −

d̂L1 + ...+ d̂Lk−1

d̄L1

· cL1 + cL2 −
d̂L2 + ...+ d̂Lk−1

d̄L2

· cL2 + ...+

cLk−1
−
d̂Lk−1

d̄Lk−1

· cLk−1
+ cLk)

=
d̂Lk
d̄Lk
· ( d̄L1

d̄L1

· cL1 −
d̂L1 + ...+ d̂Lk−1

d̄L1

· cL1 +
d̄L2

d̄L2

· cL2 −
d̂L2 + ...+ d̂Lk−1

d̄L2

· cL2 + ...+

d̄Lk−1

d̄Lk−1

· cLk−1
−
d̂Lk−1

d̄Lk−1

· cLk−1
+
d̄Lk
d̄Lk
· cLk)

=
d̂Lk
d̄Lk
· ( d̂Lk + ...+ d̂Lm

d̄L1

· cL1 +
d̂Lk + ...+ d̂Lm

d̄L2

· cL2 + ...+

d̂Lk + ...+ d̂Lm
d̄Lk−1

· cLk−1
+
d̄Lk
d̄Lk
· cLk)

=
d̂Lk
d̄Lk
· ( d̄Lk
d̄L1

· cL1 +
d̄Lk
d̄L2

· cL2 + ...+
d̄Lk
d̄Lk−1

· cLk−1
+
d̄Lk
d̄Lk
· cLk)

=d̂Lk · (
1

d̄L1

· cL1 +
1

d̄L2

· cL2 + ...+
1

d̄Lk−1

· cLk−1
+

1

d̄Lk
· cLk)

=d̂Lk ·
k∑

h=1

1

d̄Lh
· cLh

=

k∑
h=1

d̂Lk
d̄Lh
· cLh (4.7)

When the rule is defined in this way it is easy to see that costs of a union are dependent
on the costs shares of the upstream unions, namely CALk(P ) depends on all CALh(P )
for k ≥ h.

Example 4.2.3. Consider again the example as described in example 4.1.1. The cascade
rule gives the following cost allocation vector

CAL1(P ) =
d̂L1

d̄L1

· cL1

=
50

110
· 230

= 105

CAL2(P ) =
d̂L2

d̄L1

· cL1 +
d̂L2

d̄L2

· cL2
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=
30

110
· 230 +

30

60
· 125

= 125

CAL3(P ) =
d̂L3

d̄L1

· cL1 +
d̂L3

d̄L2

· cL2 +
d̂L3

d̄L3

· cL3

=
30

110
· 230 +

30

60
· 125 +

30

30
· 62

= 187

It follows again that
∑

k∈M CALk(P ) =
∑

k∈M cLk = 417 and hence the total costs of
the network are allocated, i.e. the CA rule satisfies efficiency.

For an application of the cascade rule to the Dutch electricity grid, we refer to an
illustrative example presented in Appendix I.

4.3 Properties

In this section we define several properties for the level paying rule, the equal downstream
rule and the cascade rule. Some properties are standard properties in cost allocation
and are, amongst others, described in Sudhölter (1998) and reviewed in Chapter 3.
Others are established for this problem and have resemblances with the polluted river
sharing problem from Ni and Wang (2007). Finally, some properties for union values
are considered and adapted from van den Brink and Dietz (2014). We classify the
properties to obtain a clearer overview, we acknowledge however that this classification
is not uniquely determined. The classification is based on the regulatory objectives
taken into account when setting transmission tariffs, as described in (Hakvoort et al.,
2013):

1. The total tariff revenue must cover the grid costs, so allocations should be cost-
efficient.

2. The tariffs should be non-discriminatory, which entails that comparable con-
sumers should pay comparable tariffs.

3. The tariffs should be transparent for all of its consumers, so that everyone un-
derstands the methodology behind it.

The first objective is a basic principle for most tariff systems and the last two are
obligatory directives of European regulations (Autoriteit Consument en Markt, 2013).
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Also cost-reflectiveness is a desired principle, stating that the tariffs reflect the costs
caused by the consumer. Accordingly we distinguish cost-reflective, comparison and
simplifying properties. For all properties in this section we assume P = (N,L, d, c) ∈ Ced
and µ is a union cost allocation rule.

Cost-reflective properties

We consider properties that convey the principles of cost-reflectiveness and cost-efficiency.

EF Efficiency: the total costs are exactly allocated.
It holds that

∑
k∈M µLk(P ) = C(d), for all P ∈ Ced.

FE Feasibility: at least the total costs should be allocated.
For all k ∈M we have

∑
k∈M µLk(P ) ≥ C(d), for all P ∈ Ced.

The above two properties are basic properties ensuring that at least all costs are covered.
The next two properties state that if either the demand of a level is zero or the cost of
that level is zero, the cost share for that level should also equal zero.

NDP Null Demand Property: if the total demand of a union is zero, then this union
gets a zero cost share.
For all k ∈M if d̂Lk = 0, then µLk(P ) = 0, for all P ∈ Ced.

NCP Null Cost Property: if the cost of a level equals zero, then the corresponding
union receives a zero cost share.
For all k ∈M if cLk = 0, then µLk(P ) = 0, for all P ∈ Ced.

Note that the null cost property (NCP) ignores the levels, i.e. it states that if a level
cost is zero, the corresponding union gets a zero cost share, even if that union makes use
of upstream levels. Therefore we consider similar properties that incorporate the fact
that unions might use multiple levels. The following properties define the responsibility
of lower voltage levels towards higher voltage levels with respect to the costs incurred
by their demands. It follows that the cost of a union is independent of the costs of lower
levels.

IDC Independence of Downstream Costs: the cost share of a union does not
depend on the costs of downstream levels.
Let P 1, P 2 ∈ Ced with P 1 = (N,L, d, c1) and P 2 = (N,L, d, c2) such that for any
l ∈ M and l < h holds that c1

Ll
= c2

Ll
. Then for all k < h we have µLk(P 1) =

µLk(P 2).
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NUC Null Upstream Costs: the cost share of a union is zero if the costs of its own
level and all upstream levels are zero.
If P = (N,L, d, c) ∈ Ced is such that cLh = 0 for all h ≤ k, then µLk(P ) = 0 for
h, k ∈M .

Remark that null cost property (NCP) implies null upstream cost (NUC) and null up-
stream cost (NUC) implies independence of downstream costs (IDC). The next property
states that if all upstream level costs are zero, the corresponding unions can be deleted
from the problem without consequences for the cost shares of the other unions.

NUCO Null Upstream Costs Out: deleting upstream unions with zero level costs, does
not change the cost share of the remaining unions.
If P = (N,L, d, c) ∈ Ced is such that cLh = 0 for all h < l. Then we have for all k ≥ l
that µLk(P ) = µLk(N \ ∪h<kLh, L \ {Lh}h<k, (di)i∈N\∪h<kLh , (cLf )Lf∈L\{Lh}h<k),
for all k ∈M .

The final property of the cost-reflective properties states that the rule is monotonic with
respect to the level cost vector.

C-MON Cost-Monotonicity: when costs of the levels increase, also the allocated cost
shares increase.
Let P 1, P 2 ∈ Ced with P 1 = (N,L, d, c1) and P 2 = (N,L, d, c2) such that for all
k ∈M holds that c1

Lk
≤ c2

Lk
. Then we have µ(P 1) ≤ µ(P 2).

So if we have two level cost vectors and one of them is lower with respect to every entry
of the vector, then the cost shares obtained by the allocation rule of the lower vector are
not higher in every entry (i.e. for every union) than for the higher vector.

Comparison properties

In this section we discuss some properties that allow for comparing of agents and unions
and ensure that no discrimination between agents or unions takes place. The first two
properties are non-discriminatory properties with respect to unions’ demands.

RAN Ranking: unions with a larger demand obtain a larger cost share.
For all h, k ∈M and P ∈ Ced such that d̂Lh ≤ d̂Lk , it holds that µLh(P ) ≤ µLk(P ).

ET Equal Treatment of Equal Demands: unions with equal demands obtain the
same cost share.
For all h, k ∈M and P ∈ Ced such that d̂Lh = d̂Lk , it holds that µLh(P ) = µLk(P ).
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Note that ranking (RAN) is a weaker version of equal treatment of equal demands
(ET). The above two properties state non-discriminatory properties solely based on
equal demands of unions, but do not consider the levels of the unions in the grid. In
our situation unions with equal demands should be compared taking into account the
voltage level they belong to. Therefore we propose the following property.

RED Ranking of Equal Demands: if two unions have equal demands, then the cost
share of the downstream union is at least as high as the cost share of the upstream
union.
For all h, k ∈ M and P ∈ Ced such that d̂Lh = d̂Lk and h < k, it holds that
µLh(P ) ≤ µLk(P ).

Note that the condition h < k is of importance here and the main difference with the
properties ranking and equal treatment of equal demands. The next three properties
imply that downstream unions have a responsibility for their upstream incurred costs.
The first two properties state that downstream unions with equal demands and all down-
stream unions bear an equal responsibility for their upstream incurred costs. The third
property states that the magnitude of the responsibility of the downstream unions for
their upstream incurred costs is dependent on their demands.

D-SYM Downstream Symmetry: in case of a special level cost vector where all level
costs are zero, except for the cost of level l, all unions with equal demands and
levels lower (downstream) than or equal to l, pay an equal share of the level cost
of level l.
Let P l ∈ Ced with P l = (N,L, d, cl) such that cl = (0, ..., 0, cLl , 0, ..., 0) for l ∈ M .
Then for all h, k ≥ l such that d̂Lh = d̂Lk for h, k ∈ M , it holds that µLh(P l) =
µLk(P l).

DR Downstream Responsibility: in case of a special level cost vector where all
level costs are zero, except for the cost of level l, all unions with levels lower
(downstream) than or equal to l, pay an equal share of the level cost of level l.
Let P l ∈ Ced with P l = (N,L, d, cl) such that cl = (0, ..., 0, cLl , 0, ..., 0) for l ∈ M .
Then for all l, h, k ∈M and for all h, k ≥ l we have µLh(P l) = µLk(P l).

DDPR Downstream Demand Proportional Responsibility: all downstream unions
pay a share of their upstream incurred costs that is proportional to their demands.
Let P l ∈ Ced with P l = (N,L, d, cl) such that cl = (0, ..., 0, cLl , 0, ..., 0) for l ∈ M .
Then for all l ∈M and for all k ≥ l we have

µLk(P l) =
d̂Lk
d̄Ll
· cLl .

Remark that downstream responsibility (DR) implies downstream symmetry (D-SYM).
For the coming properties we explore collusion, based on some properties discussed
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in Chapter 3 and described in van den Brink and Dietz (2014). Collusion entails the
merging of either agents or unions. The merging of agents is more straightforward and
is therefore considered first. Collusion of two agents within one union can be interpreted
as two agents becoming one by adopting the name of the agent lowest in the ordering
and adding up the demands. If two agents i, j ∈ Lk collude, without loss of generality
assume i < j, then we denote the new set of agents by N ij = N \ {j}. Hence we assume
the greatest agent of the two is eliminated from N , since it also adopts the name of
agent i. By this merger the demands of the agents collude such that diji = di + dj and

dijg = dg for all g ∈ N \ {i, j}. Further we have Lijk = Lk \ {j} if l(j) = k and Lijk = Lk
if k ∈ M \ {l(j)}. The level cost vector does not change. Let us now consider what
happens with the union value of union Lk if agents i, j ∈ Lk collude.

ACN Agent Collusion Neutrality: collusion of two or more agents in the same union
does not affect the cost share of that union.
Let P 1, P 2 ∈ Ced with P 1 = (N,L, d, c) and P 2 = (N ij , Lij , dij , c) such that agents
i, j ∈ Lk colluded. Then for k ∈M holds that µLk(P 1) = µLk(P 2).

Hereafter we consider two properties with regard to collusion between unions. Collusion
between unions is defined by merging two or more elements of the partition, which do
not have to be consecutive. Similar as for agent collusion, collusion of unions can be
interpreted as merging two unions into one union, where the new union adopts the name
of the originally most upstream union, i.e. the union with the lowest ranking. This new
union consists of all the agents of the two original unions, hence the collusion entails a
merger of the sets of agents of these unions. The new partition after collusion of unions
Lk, Ll is such that LLkLl = (L \ {Lk, Ll}) ∪ {Lk ∪ Ll} for k, l ∈ M . Without loss of
generality we assume k < l, such that the elements of LLkLl are LLkLlk = Lk ∪ Ll and

LLkLlh = Lh for all h ∈M \ {l, k}.7 The entries of the level cost vector after collusion of

unions Lk, Ll are such that cLkLlLk
= cLk + cLl and cLkLlLh

= cLh for h ∈M \ {l, k}. Hence,
the level costs of the unions that collude are added.

It is debatable what the effect of collusion of two voltage levels would be in real-life on
the level costs. On the one hand we can argue that costs would rise. If the collusion
entails that the agents of the downstream union have to be connected to the upstream
voltage level, then it can become very expensive. Especially if the fixed costs of the most
downstream level are still operative, for example the depreciation costs of the grid of all
voltage levels continue to exist. On the other hand we can argue that costs would fall,
since the amount of electricity that flows through the upstream level of the two unions
remains unchanged after collusion, i.e. d̄LkLlLk

= d̄Lk where d̄LkLlLk
represents the aggregated

demand through LLkLlk . So assuming that the grid can handle the agents from the other
union and given the fact that the same amount of electricity flows through the upstream

7Note that after collusion of agents or unions the sets N and M might not have cardinality n and m
respectively, anymore.
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level as before, the new cost will be less than the sum of the two level costs, since the
transportation distance is reduced. For simplicity in this problem we assume that the
level costs of two colluded unions are added. Hence, we denote (N,LLkLl , d, cLkLl) for a
problem where unions Lk, Ll colluded. We now consider two properties with respect to
collusion of two unions.

DUCN-I Downstream Union Collusion Neutrality I: collusion of two downstream
unions Lk, Ll does not change the cost share of their upstream unions.
Let P 1, P 2 ∈ Ced with P 1 = (N,L, d, c) and P 2 = (N,LLkLl , d, cLkLl) a problem
where unions Lk and Ll colluded. Then for all h ∈ M such that h < k, l it holds
that µLh(P 1) = µLh(P 2).

UCN-I Union Collusion Neutrality II: the cost share of two unions does not change
after collusion of these unions.
Let P 1, P 2 ∈ Ced with P 1 = (N,L, d, c) and P 2 = (N,LLkLl , d, cLkLl) a problem
where unions Lk and Ll colluded with k < l. Then it holds that µLk(P 1) +
µLl(P

1) = µLk(P 2).

Note that collusion of more than two unions is also possible and can be interpreted as
applying collusion of two unions multiple times, until all desired unions are colluded.
Let P = (N,LLl...Lm , d, cLl...Lm) be a problem where the consecutive unions Ll to Lm
colluded, such that LLl...Lml = ∪mk=lLk and LLl...Lmh = Lh for all h ∈ M \ {l, ...,m}.
Further we have cLl...LmLl

=
∑m

k=l cLk and cLl...LmLh
= cLh for h ∈ M \ {l, ...,m}. We now

consider two properties with respect to collusion of multiple downstream unions.

DUCN-II Downstream Union Collusion Neutrality II: collusion of all downstream
unions does not change the cost share of these unions.
Let P 1, P 2 ∈ Ced with P 1 = (N,L, d, c) and P 2 = (N,LLl...Lm , d, cLl...Lm) with
m = l(maxN) such that unions Ll to Lm colluded. Then it holds that µLl(P

2) =∑m
k=l µLk(P 1).

UCN-II Union Collusion Neutrality II: the cost share of unions does not change after
collusion of all downstream unions.
Let P 1, P 2 ∈ Ced with P 1 = (N,L, d, c) and P 2 = (N,LLl...Lm , d, cLl...Lm) with
m = l(maxN) such that unions Ll to Lm colluded. Then for all P 1, P 2 ∈ Ced and
all k ∈M we have

µLk(P 2) =

{
µLk(P 1) if k < l∑m
h=k µLh(P 1) otherwise.

Note that the first two union collusion properties include collusion of any two unions,
also if the corresponding levels of the unions are not adjacent. Whereas in the last two
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properties the collusion is between at least the two highest ranked (lowest in voltage)
consecutive unions. Downstream union collusion neutrality-I and -II (DUCN-I, -II) are
weaker versions of union collusion neutrality II (UCN-II). The last comparison property
is a standard property in cost allocation and ensures that unions are not discriminated
based on their names.

AN Anonymity: an allocation rule is independent of the names of the unions.
Let P 1, P 2 ∈ Ced with P 1 = (N,L, d, c) and P 2 = (N, πL, πd, c) for some permuta-
tion π of M with respect to the union demands. Then for all k ∈M it holds that
µπ(Lk)(P

2) = µLk(P 1).8

The permutation in anonymity does not permute the level costs, but only permutes the
levels and the corresponding level demands and thereby ignores the levels.

Simplifying properties

We aim at properties that simplify a problem. For example splitting a problem in
additive parts can simplify its study.

C-ADD Cost-Additivity: splitting a cost vector in additive parts does not affect the cost
shares.
Let P 1, P 2, P 3 ∈ Ced with P 1 = (N,L, d, c1), P 2 = (N,L, d, c2) and P 3 = (N,L, d, c1+
c2). For all k ∈M we have that µLk(P 1) + µLk(P 2) = µLk(P 3).

The next property states that the allocation rule is additive and homogeneous of degree
one with respect to the cost vector. A homogeneous mapping entails that if a cost vector
is multiplied by a factor, then the resulting allocation shares are also multiplied by this
factor.9

C-LIN Cost-Linearity: splitting a cost vector in additive parts and multiplying these
parts by a constant does not affect the cost shares
Let P 1, P 2, P 3 ∈ Ced with P 1 = (N,L, d, c1), P 2 = (N,L, d, c2) and P 3 = (N,L, d, α·
c1 + β · c2) for α, β ∈ R+. For all k ∈M we have that µLk(P 3) = α · µLk(P 1) + β ·
µLk(P 2).

Note that cost-linearity is stronger than cost-additivity. The final property states that
an allocation rule satisfies the standard property for a two-union problem. This property

8π(L) = {Lπ(k)}k∈M and πd = (d̂π(Lk))k∈M .
9When the mapping is homogeneous of degree t, shares are multiplied by a power t of the factor.
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defines how to allocate cost shares in the simple situation with only two unions. The
standardness property has been defined for TU games, amongst others by Hart and Mas-
Colell (1989). Union standardness states that in a two-union problem level costs have to
be shared proportional to the total demands of the unions. Ortmann (2000) argues that
the way to solve an arbitrary cooperative cost allocation problem is to generalize the
concept of solving the two agent (or union) problem. We solely focus on the situation
with two unions. So let us now consider two standard demand-proportional properties
for a two-union problem.

US-I Union Standardness I: if there are two unions, the cost of the first level is
allocated proportional to the demand of the unions and the second level also pays
its own level cost.
Let P ∈ Ced such that L = {L1, L2} and c = (cL1 , cL2) a two union problem.

Then for all k ∈ M we have µLk =
∑k

h=1

d̂Lk
d̄Lh
· cLh . Hence, µL1 =

d̂L1

d̄L1

· cL1 and

µL2 =
d̂L2

d̄L1

· cL1 + cL2 .

US-II Union Standardness II: if there are two unions and a level cost vector where
only the most upstream level (first level) cost is not zero, then the cost of the first
level is allocated to both unions proportional to their demands.
Let P ∈ Ced such that L = {L1, L2} and c = (cL1 , 0) a two union problem. Then

for k ∈M we have µLk =
d̂Lk
d̄L1

· cL1 . Hence, µL1 =
d̂L1

d̄L1

· cL1 and µL2 =
d̂L2

d̄L1

· cL1 .

Note that the union standardness II is stronger than union standardness I.

4.3.1 Properties of the rules

We now discuss for all the properties defined above which are satisfied and which not
by the level paying rule, the equal downstream rule and the cascade rule. For the CA
rule we also provide a proof, whereas the proofs for the LP and ED rule are presented
in Appendix I. Finally, we summarize these results by means of a convenient table.

Theorem 4.3.1. The level paying rule LP (P )

(i) satisfies the properties EF, FE, NCP, IDC, NUC, NUCO, C-MON, ACN, DUCN-
I, UCN-I, DUCN-II, UCN-II, C-ADD, C-LIN

(ii) does not satisfy the properties NDP, RAN, ET, RED, D-SYM, DR, DDPR, AN,
D-ADD, US-I and US-II.
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Proof. Proof can be found in Appendix I.

We find that the level paying rule does not satisfy any of the comparison properties
that take the levels into account (i.e. RED, D-SYM, DR and DDPR). This makes sense,
as the rule is defined to only consider its own level. Therefore it does satisfy all the
properties that imply that the cost of a union is in some way independent of upstream
or downstream voltage levels (i.e. IDC, NUC, NUCO). So if the levels are important,
this rule can be considered not so fair. On the other hand, does it satisfy the more
standard properties such as NCP, C-MON, C-ADD and C-LIN. Note that also all the
collusion properties are obeyed, implying that the rule is not sensitive to collusion of
agents or unions.

Theorem 4.3.2. The equal downstream rule ED(P )

(i) satisfies the properties EF, FE, IDC, NUC, NUCO, C-MON, RED, D-SYM, DR,
ACN, C-ADD, C-LIN

(ii) does not satisfy the properties NDP, NCP, RAN, ET, DDPR, DUCN-I, UCN-I,
DUCN-II, UCN-II, AN, D-ADD, US-I and US-II.

Proof. Proof can be found in Appendix I.

The equal downstream rule, in contrary to the level paying rule, does not satisfy any of
the union collusion properties. This is due to the fact that this rule uses the cardinality
of the union set to allocate the costs. Another contrast with the level paying rule is that
the equal downstream rule does satisfy some of the comparison properties that impose
a responsibility with respect to other levels, namely D-SYM and DR. However, none
of the properties involving demand proportionality are satisfied, i.e. DDPR, US-I and
US-II.

Theorem 4.3.3. The cascade rule CA(P )

(i) satisfies the properties EF, FE, NDP, IDC, NUC, NUCO, C-MON, RED, D-SYM,
DDPR, ACN, DUCN-I, DUCN-II, UCN-II, C-ADD, C-LIN, US-I and US-II

(ii) does not satisfy the properties NCP, RAN, ET, DR, UCN-II, AN and D-ADD.

Proof. (i) Let l(maxN) = m. We prove that the following properties are satisfied by
the cascade rule for all P = (N,L, d, c) ∈ Ced:
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EF We want to show that
∑m

k=1CALk(P ) = C(d). We have

m∑
k=1

CALk(P ) =

m∑
k=1

k∑
h=1

d̂Lk
d̄Lh
· cLh

=

m∑
h=1

m∑
k=h

d̂Lk
d̄Lh
· cLh

=

m∑
h=1

∑m
k=h d̂Lk
d̄Lh

· cLh

=
m∑
h=1

d̂Lh + d̂Lh+1
+ ...+ d̂Lm

d̄Lh
· cLh

=
m∑
h=1

d̄Lh
d̄Lh
· cLh

=
m∑
h=1

cLh

= C(d). (equation (4.4))

FE Follows from Efficiency (EF).

NDP Assume d̂Lk = 0. It easily follows that CALk(P ) = 0:

CALk(P ) =
k∑

h=1

d̂Lk
d̄Lh
· cLh

=
k∑

h=1

0

d̄Lh
· cLh (d̂Lk = 0)

= 0.

IDC Let P 1, P 2 ∈ Ced with P 1 = (N,L, d, c1) and P 2 = (N,L, d, c2) such that for any
k ∈ M and h < k holds that c1

Lh
= c2

Lh
. We want to show that for all l < k we

have CALl(P
1) = CALl(P

2). Let l < k, we have that

CALl(P
1) =

l∑
h=1

d̂Ll
d̄Lh
· c1
Lh
.

From h ≤ l and l < k follows that h < k and therefore c1
Lh

= c2
Lh

, hence we obtain,

l∑
h=1

d̂Ll
d̄Lh
· c1
Lh

=

l∑
h=1

d̂Ll
d̄Lh
· c2
Lh

= CALl(P
2).
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NUC Assume that cLh = 0 for all h ≤ k. We want to show that CALk(P ) = 0:

CALk(P ) =

k∑
h=1

d̂Lk
d̄Lh
· cLh

=

k∑
h=1

d̂Lk
d̄Lh
· 0 (h ≤ k)

= 0.

NUCO Assume that cLh = 0 for all h < l. We want to show that for all k ≥ l we have
CALk(P ) = CALk(N \ ∪h<kLh, L \ {Lh}h<k, (di)i∈N\∪h<kLh , (cLf )Lf∈L\{Lh}h<k):

CALk(P ) =
k∑

h=1

d̂Lk
d̄Lh
· cLh

=
d̂Lk
d̄L1

· cL1 + ...+
d̂Lk
d̄Lk
· cLk

=
d̂Lk
d̄Lk
· cLk (cLh = 0|h < k)

=

k∑
h=k

d̂Lk
d̄Lh
· cLh

= CALk(N \ ∪h<kLh, L \ {Lh}h<k, (di)i∈N\∪h<kLh , (cLf )Lf∈L\{Lh}h<k).

C-MON Let P 1, P 2 ∈ Ced with P 1 = (N,L, d, c1) and P 2 = (N,L, d, c2) such that for all
h ∈M holds that c1

Lh
≤ c2

Lh
. We want to show that CA(P 1) ≤ CA(P 2):

CALk(P 1) =
k∑

h=1

d̂Lk
d̄Lh
· c1
Lh

≤
k∑

h=1

d̂Lk
d̄Lh
· c2
Lh

(c1
Lh
≤ c2

Lh
)

= CALk(P 2).

RED Let P ∈ Ced such that d̂Lh = d̂Lk and h < k. We want to show that for h, k ∈ M
it holds that CALh(P ) ≤ CALk(P ):

CALh(P ) =
h∑
l=1

d̂Lh
d̄Ll
· cLl

≤
h∑
l=1

d̂Lh
d̄Ll
· cLl +

k∑
l=h+1

d̂Lh
d̄Ll
· cLl
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=
k∑
l=1

d̂Lh
d̄Ll
· cLl

=
k∑
l=1

d̂Lk
d̄Ll
· cLl (d̂Lh = d̂Lk)

= CALk(P ).

D-SYM Let P l ∈ Ced with P l = (N,L, d, cl) such that cl = (0, ..., 0, cLl , 0, ..., 0) for l ∈ M .
Assume that for k, k′ ≥ l unions Lk, Lk′ have equal demands such that d̂Lk = d̂Lk′
for k, k′ ∈M . To prove is that CALk(P l) = CALk′ (P

l):

CALk(P l) =

k∑
h=1

d̂Lk
d̄Lh
· cLh

=
d̂Lk
d̄Ll
· cLl (k ≥ l)

=
d̂Lk′

d̄Ll
· cLl (d̂Lk = d̂Lk′ )

=
k′∑
h=1

d̂Lk′

d̄Lh
· cLh

= CALk′ (P
l).

DDPR Let P l ∈ Ced with P l = (N,L, d, cl) such that cl = (0, ..., 0, cLl , 0, ..., 0) for l ∈ M .

We want to show that for all l ∈ M and for all k ≥ l that CALk(P l) =
d̂Lk
d̄Ll
· cLl .

Assume k ≥ l, we have

CALk(P l) =

k∑
h=1

d̂Lk
d̄Lh
· cLh

=
d̂Lk
d̄Ll
· cLl . (k ≥ l)

ACN Let P 1, P 2 ∈ Ced with P 1 = (N,L, d, c) and P 2 = (N ij , Lij , dij , c) such that agents
i, j ∈ Lk colluded. Then for k ∈M we want to show that: CALk(P 1) = CALk(P 2).
For k ∈M we have

CALk(P 1) =
k∑

h=1

d̂Lk
d̄Lh
· cLh

= CALk(P 2).
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Note that collusion of two agents in one union does not change the demand or
level cost of that union or any other union. As the cascade rule is only dependent
on the demands, aggregated demands and level costs of the unions, the rule is not
affected by collusion of two agents in one union.

DUCN-I Let P 1, P 2 ∈ Ced with P 1 = (N,L, d, c) and P 2 = (N,LLkLl , d, cLkLl) a problem
where unions Lk and Ll colluded. Then for all h ∈M such that h < k, l , we want
to show that CALh(P 1) = CALh(P 2):

CALh(P 1) =
h∑
g=1

d̂Lh
d̄Lg
· cLg

= CALh(P 2). (h < k, l)

DUCN-II Follows from UCN-II.

UCN-II Let P 1, P 2 ∈ Ced with P 1 = (N,L, d, c) and P 2 = (N,LLl...Lm , d, cLl...Lm) with
m = l(maxN) such that unions Ll to Lm colluded. We want to show that for all
k ∈M we have

CALk(P 2) =

{
CALk(P 1) if k < l∑m
h=k CALh(P 1) otherwise.

If k < l, then

CALk(P 1) =
k∑

h=1

d̂Lk
d̄Lh
· cLh

= CALk(P 2). (k < l)

If k ≥ l, then

m∑
h=k

CALh(P 1) =CALk(P ) + CALk+1
(P ) + ...+ CALm(P )

=
k∑

h=1

d̂Lk
d̄Lh
· cLh +

k+1∑
h=1

d̂Lk+1

d̄Lh
· cLh + ...+

m∑
h=1

d̂Lm
d̄Lh
· cLh

=(
d̂Lk
d̄L1

· cL1 + ...+
d̂Lk
d̄Lk
· cLk) + (

d̂Lk+1

d̄L1

· cL1 + ...+
d̂Lk+1

d̄Lk
· cLk+1

) + ...+

(
d̂Lm
d̄L1

· cL1 + ...+
d̂Lm
d̄Lk
· cLm)

=(
d̂Lk + ...+ d̂Lm

d̄L1

· cL1) + (
d̂Lk + ...+ d̂Lm

d̄L2

· cL2) + ...+

(
d̂Lk + ...+ d̂Lm

d̄Lk
· cLk) + ...+ (

d̂Lm
d̄Lm

· cLm)
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=(
d̂Lk + ...+ d̂Lm

d̄L1

· cL1) + (
d̂Lk + ...+ d̂Lm

d̄L2

· cL2) + ...+

(
d̂Lk−1

+ ...+ d̂Lm
d̄Lk−1

· cLk−1
) +

d̄Lk
d̄Lk
· cLk + ...+

d̄Lm
d̄Lm

· cLm

=
k−1∑
h=1

d̂Lk + ...+ d̂Lm
d̄Lh

· cLh + cLk + ..+ cLm

=
k−1∑
h=1

d̂Lk + ...+ d̂Lm
d̄Lh

· cLh + cLk...LmLk

=

k−1∑
h=1

d̂Lk + ...+ d̂Lm
d̄Lh

· cLh +
d̄Lk
d̄Lk
· cLk...LmLk

=

k∑
h=1

d̂Lk + ...+ d̂Lm
d̄Lh

· cLk...LmLh

=

k∑
h=1

∑
i∈LLk...Lmk

di

d̄Lh
· cLk...LmLh

=CALk(P 2).

C-ADD Let P 1, P 2, P 3 ∈ Ced with P 1 = (N,L, d, c1), P 2 = (N,L, d, c2) and P 3 = (N,L, d, c1+
c2). For all k ∈M we want to show that CALk(P 1) + CALk(P 2) = CALk(P 3):

CALk(P 1) + CALk(P 2) =
k∑

h=1

d̂Lk
d̄Lh
· c1
Lh

+
k∑

h=1

d̂Lk
d̄Lh
· c2
Lh

=
k∑

h=1

d̂Lk
d̄Lh
· (c1

Lh
+ c2

Lh
)

= CALk(P 3).

C-LIN Let P 1, P 2, P 3 ∈ Ced with P 1 = (N,L, d, c1), P 2 = (N,L, d, c2) and P 3 = (N,L, d, α·
c1 + β · c2) for α, β ∈ R+. We want to show that for all k ∈ M we have that
CALk(P 3) = α · CALk(P 1) + β · CALk(P 2):

CALk(P 3) =
k∑

h=1

d̂Lk
d̄Lh
· (α · c1

Lh
+ β · c2

Lh
)

= α ·
k∑

h=1

d̂Lk
d̄Lh
· c1
Lh

+ β ·
k∑

h=1

d̂Lk
d̄Lh
· c2
Lh

= α · CALk(P 1) + β · CALk(P 2).
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US-I This property is the definition of the cascade rule restricted to two unions and
therefore trivially holds.

US-II Follows from US-I.

(ii) Let l(maxN) = m. We show that the following properties are not satisfied by the
cascade rule for some P ∈ Ced by means of simple counterexamples:

NCP Let P ∈ Ced with P = (N,L, d, c) , where N = {1, 2}, L = {{1}, {2}}, d = (20, 10)
and c = (64, 0). For level 2 ∈M we have that cL2 = 0, but

CAL2(P ) =
2∑

h=1

d̂L2

d̄Lh
· cLh

=
10

30
· 64 + 0

> 0.

RAN Consider P ∈ Ced as defined in example 4.1.1 and the applied cascade rule to P in
example 4.2.3. We have that d̂L1 = 50 > 30 = d̂L2 . However, CAL1(P ) = 105 <
125 = CAL2(P ). So because of the different levels, this property is not satisfied.

ET Consider again P ∈ Ced as defined in example 4.1.1 and the applied cascade rule
to P in example 4.2.3. We have that d̂L2 = 30 = d̂L3 , whereas CAL2(P ) = 125 <
187 = CAL3(P ). Also here because of the different levels, this property is not
satisfied.

DR Take again the example defined for NCP: let P ∈ Ced with P = (N,L, d, c) , where
N = {1, 2}, L = {{1}, {2}}, d = (20, 10) and c = (64, 0). For levels 1, 2 ≥ 1 we
have

CAL1(P ) =
d̂L2

d̄L1

· cL1

=
20

30
· 64

>
10

30
· 64 + 0

= CAL2(P ).

UCN-I Consider P ∈ Ced as defined in example 4.1.1 and the applied cascade rule to P
in example 4.2.3. Let P 1 ∈ Ced be also as defined in example 4.1.1, but such
that P 1 = (N,LL1L2 , d, cL1L2) with LL1L2 the partition where unions L1 and L2

colluded such that LL1L2
L1

= L1 ∪ L2 and cL1L2
L1

= cL1 + cL2 = 355. We have

CAL1(P ) + CAL2(P ) = 105 + 125
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= 230

6= 258

=
80

110
· 355

=

∑
i∈LL1L2

L1

di

d̄L1

· cL1L2
L1

= CAL1(P 1).

The cascade rule applied to the problem with colluded unions ignores the levels,
whereas the sum of the cascade rule does not, resulting in different shares of the
second level cost and similar shares of the first level cost.

AN Consider P ∈ Ced as defined in example 4.1.1 and the applied cascade rule to P in
example 4.2.3. Let π be a permutation on M such that P π = (N, πL, πd, c) with
πL = {L2, L1, L3} and πd = (d3, d4, d1, d2, d5, d6, d7, d8), so πd̂ = (d̂L2 , d̂L1 , d̂L2).
It follows that

CAπL2(P π) =
30

110
· 230

= 63

6= 125

=
30

110
· 230 +

30

60
· 125

= CAL2(P ).

Note that anonymity is not satisfied because the level costs are not permuted.

So the cascade rule satisfies most of the collusion properties, but not all. In particular,
the rule is not sensitive to agent collusion or union collusion of the most downstream
unions. The rule does not obey many of the standard properties, such as NCP, RAN
and ET. However, the modified versions of these properties where the ordering of the
levels are incorporated, are all satisfied by the cascade rule, namely NUC, NUCO and
RED. Further does it not satisfy DR, but is does satisfy the version of this property that
considers demands instead of cardinality, i.e. DDPR. For most of the properties that are
not satisfied by the cascade rule the reason is that these properties do not consider the
ordering of the levels.

4.3.2 Comparison of the rules

In table 4.1 we present an overview of all the properties discussed in Section 4.3 that
are satisfied or not by the level paying rule, the equal downstream rule and the cascade
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rule. This table provides a summary of the theorems 4.3.1, 4.3.2 and 4.3.3.

LP(P) ED(P) CA(P)

EF + + +
FE + + +
NDP - - +
NCP + - -
IDC + + +
NUC + + +
NUCO + + +
C-MON + + +
RAN - - -
ET - - -
RED - + +
D-SYM - + +
DR - + -
DDPR - - +
ACN + + +
DUCN-I + - +
UCN-I + - -
DUCN-II + - +
UCN-II + - +
AN - - -
C-ADD + + +
C-LIN + + +
US-I - - +
US-II - - +

Table 4.1: Summary of properties satisfied by the level paying rule (LP(P)), the equal
downstream rule (ED(P)) and the cascade rule (CA(P)): a plus denotes that the rule
satisfies the property and a minus denotes that the rule does not satisfy the property.
The red pluses represent the properties that define the axiomatic characterization of the
rules (see Section 4.4).

From the results presented in the table we observe that the cascade rule satisfies most of
the properties. Moreover, this rule satisfies most of the properties that take the ordering
of the different levels of the unions and the demands into account. For the electricity
demand problem the ordering of the levels and the demands are of great importance.
Therefore, given the cost allocation rules discussed in this chapter and given the context
of the electricity demand problem, the cascade rule may be considered as the most fair
rule. The properties that are not satisfied by this rule are mostly properties that ignore
the levels of the unions. If however, in a different context, the different levels and the
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cardinality of the union set would be most important, then given the rules discussed in
this chapter, the equal downstream rule may be considered most fair. Finally, if the levels
of the unions, the cardinality of the union set and the demands would all not matter,
then given the rules discussed in this chapter, the level paying rule may be considered
the most fair rule.

4.4 Axiomatic characterizations of the rules

In this section we provide axiomatic characterizations for the level paying, the equal
downstream and the cascade rule. The characterizations of the first two rules are inspired
by the characterizations of the LRS and UES rules in Ni and Wang (2007). It should
be noted that Ni and Wang (2007) use Cost-Additivity as a property, whereas in the
axiomatic characterization they actually employ Cost-Linearity. Thus, the axiomatic
characterizations of the first two rules are adapted to fit our problem and Cost-Additivity
is replaced by Cost-Linearity. The properties that axiomatically characterize the rules
are in table 4.1 highlighted by the red pluses.

Theorem 4.4.1 (Level paying rule axiomatic characterization). The level paying rule
LP is the unique rule satisfying Efficiency, Null Cost Property and Cost-Linearity.

Proof. We first prove necessity,

EF We want to show that
∑m

k=1 LPLk(P ) = C(d) for P ∈ Ced. We have

m∑
k=1

LPLk(P ) =
m∑
k=1

cLk

= C(d). (equation (4.4))

NCP Assume for some k ∈ M that cLk = 0. We want to show that follows that
LPLk(P ) = 0, for all P ∈ Ced:

LPLk(P ) = cLk
= 0.

C-LIN Let P 1, P 2, P 3 ∈ Ced with P 1 = (N,L, d, c1), P 2 = (N,L, d, c2) and P 3 = (N,L, d, α·
c1 + β · c2) for α, β ∈ R+. We want to show that for all k ∈ M we have that
LPLk(P 3) = α · LPLk(P 1) + β · LPLk(P 2):

LPLk(P 3) = α · c1
Lk

+ β · c2
Lk

= α · LPLk(P 1) + β · LPLk(P 2)
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Let us prove uniqueness of LP. Suppose that rule f satisfies these three properties. For
any l ∈ M , define cl = (0, ..., 0, 1, 0, ..., 0) ∈ RM+ a vector with a 1 on the l-th entry and
0 on the other entries. Let P l ∈ Ced such that P l = (N,L, d, cl). By the Null Cost
Property (NCP) it follows that LPLh(P l) = 0 for all h 6= l. Then from Efficiency
we obtain,

m∑
h=1

fLh(P l) = fLl(P
l) = 1 =

m∑
l=1

cLl .

Thus we have

fLh(P l) =

{
0 if h 6= l
1 if h = l.

Any vector in RM+ can be presented as a linear combination of the standard basis vectors,
here given by cl for all l ∈ M , and some α ∈ R+. Thus, c can be presented as c =∑m

l=1 cLl · cl = (cL1 , ..., cLm), with α = cLl . Due to Cost-Linearity (C-LIN) we
obtain for all h ∈M

fLh(P ) = fLh(N,L, d, c)

= fLh(N,L, d,

m∑
l=1

cLl · c
l)

=

m∑
l=1

cLl · fLh(N,L, d, cl)

=

m∑
l=1

cLl · fLh(P l)

= 0 + ...+ cLh + 0..+ 0

= cLh
= LPLh(P )

Thus rule f must be equal to rule LP and hence uniqueness is proven.

The level paying rule does not consider the demands of the unions for the allocation and
also not the number of unions. It also does not take into consideration that downstream
unions make use of upstream unions. It is however the only rule of the three rules
discussed in this chapter that satisfies the null cost property (NCP).

Theorem 4.4.2 (Equal downstream rule axiomatic characterization). The equal down-
stream rule ED is the unique rule satisfying Efficiency, Null Upstream Cost, Downstream
Responsibility and Cost-Linearity.
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Proof. We first prove necessity,

EF We want to show that
∑m

k=1EDLk(P ) = C(d) for P ∈ Ced. We have

m∑
k=1

EDLk(P ) =EDL1(P ) + EDL2(P ) + ...+ EDLm(P )

=

1∑
h=1

1

m− h+ 1
· cLh +

2∑
h=1

1

m− h+ 1
· cLh + ...+

m∑
h=1

1

m− h+ 1
· cLm

=(
1

m
· cL1) + (

1

m
· cL1 +

1

m− 1
· cL2) + ...+

(
1

m
· cL1 +

1

m− 1
· cL2 + ...+

1

1
· cLm)

=m · 1

m
· cL1 + (m− 1) · 1

m− 1
· cL2 + ...+ cLm

=cL1 + cL2 + ...+ cLm

=

m∑
h=1

cLh

=C(d) (equation (4.4))

NUC Assume that cLh = 0 for all h ≤ k. We want to show that EDLk(P ) = 0:

EDLk(P ) =
k∑

h=1

1

m− h+ 1
· cLh

=

k∑
h=1

1

m− h+ 1
· 0 (h ≤ k)

= 0

DR Let P l ∈ Ced with P l = (N,L, d, cl) such that cl = (0, ..., 0, cLl , 0, ..., 0) for l ∈ M .
We want to show that for all h, k ≥ l we have EDLh(P l) = EDLk(P l):

EDLh(P l) =
h∑
g=1

1

m− g + 1
· cLg

=
1

m− l + 1
· cLl (h ≥ l)
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=
k∑
g=1

1

m− g + 1
· cLg (k ≥ l)

= EDLk(P l)

C-LIN Let P 1, P 2, P 3 ∈ Ced with P 1 = (N,L, d, c1), P 2 = (N,L, d, c2) and P 3 = (N,L, d, α·
c1 + β · c2) for α, β ∈ R+. We want to show that for all k ∈ M we have that
EDLk(P 3) = α · EDLk(P 1) + β · EDLk(P 2):

EDLk(P 3) =
k∑

h=1

1

m− h+ 1
· (α · c1

Lk
+ β · c2

Lk
)

=
k∑

h=1

1

m− h+ 1
· α · c1

Lk
+

k∑
h=1

1

m− h+ 1
· β · c2

Lk

= α ·
k∑

h=1

1

m− h+ 1
· c1
Lk

+ β ·
k∑

h=1

1

m− h+ 1
· c2
Lk

= α · EDLk(P 1) + β · EDLk(P 2)

Let us prove uniqueness of ED. Suppose that rule f satisfies these four properties. For
any l ∈ M , define cl = (0, ..., 0, 1, 0, ..., 0) ∈ RM+ a vector with a 1 on the l-th entry
and 0 on the other entries. Let P l ∈ Ced such that P l = (N,L, d, cl). From the Null
Upstream Cost (NUC) it follows that fLk(P l)=0 for all k < l. Then by Downstream
Responsibility (DR) we know that there is a x ∈ R+ such that fLk(P l) = fLk′ (P

l) = x
for all k, k′ ≥ l. As f satisfies Efficiency (EF) we get

m∑
k=1

f(P l) = (m− l + 1) · x = 1 =

m∑
l=1

cLl .

Thus,

fLk(P l) =

{
0 if k < l
1

m−l+1 if k ≥ l.

Any vector in RM+ can be presented as a linear combination of the standard basis vectors,
here given by cl for all l ∈ M , and some α ∈ R+. Thus, c can be presented as c =∑m

l=1 cLl · cl = (cL1 , ..., cLm), with α = cLl . Due to Cost-Linearity (C-LIN) we
obtain for all k ∈M

fLk(P ) = fLk(N,L, d, c)

= fLk(N,L, d,

m∑
l=1

cLl · c
l)
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=
m∑
l=1

cLl · fLk(N,L, d, cl)

=

m∑
l=1

cLl · fLk(P l)

= cL1 · fLk(P 1) + cL2 · fLk(P 2) + ...+ cLk · fLk(P k) + 0 + ...+ 0

=
k∑
l=1

1

m− k + 1
cLl

= EDLk(P )

The equal downstream rule is the only rule discussed in this chapter that satisfies down-
stream responsibility (DR). This rule does take into account the ordering of the different
levels and the responsibility of downstream levels for upstream costs, but costs are al-
located according to the number of unions using a certain level. So if all unions are
considered to be the same or if demands do not matter, this rule is an appropriate rule.
This rule does not satisfy any of the union collusion properties. This is because this rule
depends on the cardinality of M , in contrast to the level paying rule and the cascade
rule, which do obey some of the union collusion properties.

Theorem 4.4.3 (Cascade rule axiomatic characterization). The cascade rule CA is the
unique rule satisfying Null Upstream Cost, Downstream Demand Proportional Respon-
sibility and Cost-Linearity.

Proof. Necessity follows from theorem 4.3.3.

Let us prove uniqueness of CA. Suppose that rule f satisfies these three properties. For
any l ∈ M , define cl = (0, ..., 0, 1, 0, ..., 0) ∈ RM+ a vector with a 1 on the l-th entry and
0 on the other entries. Let P l ∈ Ced such that P l = (N,L, d, cl). From Null Upstream
Cost (NUC) it follows that fLk(P l) = 0 for all k < l. By Downstream Demand

Proportional Responsibility (DDPR) we have that fLk(P l) =
d̂Lk
d̄Ll

for all k ≥ l.

Any vector in RM+ can be presented as a linear combination of the standard basis vectors,
here given by cl for all l ∈ M , and some α ∈ R+. Thus, c can be presented as c =∑m

l=1 cLl · cl = (cL1 , ..., cLm), with α = cLl . Due to Cost-Linearity (C-LIN) we
obtain for all k ∈M

fLk(P ) = fLk(N,L, d, c)

= fLk(N,L, d,

m∑
l=1

cLl · c
l)
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=
m∑
l=1

cLl · fLk(N,L, d, cl)

=

m∑
l=1

cLl · fLk(P l)

=
d̂Lk
d̄L1

· cL1 +
d̂Lk
d̄L2

· cL2 + ...+
d̂Lk
d̄Lk
· cLk + 0 + ...+ 0

=

k∑
l=1

d̂Lk
d̄Ll
· cLl

= CALk(P )

The cascade rule considers the levels and the demands of the agents. It does however
not take the cardinality of N or M into account. If the latter is important, the equal
downstream rule might be a better choice. The property downstream demand propor-
tional responsibility (DDPR) can be argued to be quite strong, it is however comparable
with the downstream responsibility (DR) property and this property is in adapted form
proposed for the axiomatization of the Upstream Equal Sharing rule in the polluted
river game in Ni and Wang (2007). Also, this property does comprise the essence of
the cascade rule, namely that downstream unions have a responsibility for the upstream
costs proportional to their demands. Further can it be argued that is also a strong state-
ment to ignore the demands, as the other two rules do. The cascade rule can also be
employed for other problems, where possibly the demands can be changed to volumes.
So for example in the polluted river game, the cascade can be applied with volumes of
pollution instead of demands. Before we state the logical independence of the properties
used in the theorems, we give an alternative axiomatic characterization of the cascade
rule.

By means of the properties defined in this chapter also other axiomatic characterizations
of the rules are possible. We informally describe one other possible axiomatic character-
ization of the cascade rule. Namely, the cascade rule is also the unique rule satisfying
Null Upstream Costs Out, Union Standardness-II, Union Collusion Neutrality-II and
Cost-Linearity. We provide a sketch of the proof: define again the vector cl ∈ RM+ with 1
on the l-th entry and 0 on the other entries. Then by NUCO all the levels lower ranked
than l can be eliminated from the problem, such that the levels l to m remain. Subse-
quently we can collude the unions from level l + 1 to m, such that two levels remain,
namely levels l and l + 1. By UCN-II we know that the cost shares of all the unions
after the collusion do not change. By US-II we know how to allocate the costs amongst
the remaining unions Ll and Ll+1, since this is now a two union problem. Finally, by
UCN-II and C-LIN we can obtain the cost shares for all k ∈M .
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Logical Independence

The logical independence of the properties used in theorem 4.4.1 is given by

1. Consider the equal downstream allocation rule. This rules satisfies Efficiency and
Cost-Linearity, but not the Null Cost Property.

2. For P ∈ Ced let f(P ) be the rule such that fLk(P ) = 0 for all k ∈ M . This rule
satisfies Null Cost Property and Cost-Linearity, but not Efficiency.

3. Define x := {k ∈M |cLk 6= 0} the set of unions which level costs are not zero. For
P ∈ Ced define f(P ) for all k ∈M as follows:

fLk(P ) =

{
0 if cLk = 0∑

h∈M cLh
|x| if cLk 6= 0.

This rule satisfies Efficiency and the Null Cost Property, but not Cost-Linearity.

The logical independence of the properties used in theorem 4.4.2 is given by

1. Consider the level paying rule. This rules satisfies Efficiency, Null Upstream Cost
and Cost-Linearity, but not Downstream Responsibility.

2. For P ∈ Ced let f(P ) be the rule such that fLk(P ) = 0 for all k ∈ M . This rule
satisfies Null Cost Property, Cost-Linearity and Downstream Responsibility, but
not Efficiency.

3. Define x := {k ∈M |∃l ≤ k s.t. cLl 6= 0} the set of unions for which there exists an
upstream level with cost non-zero or for which its own level cost is non-zero. For
P ∈ Ced define f(P ) for all j ∈M as follows:

fLk(P ) =

{
0 if ∀h ≤ k : cLh = 0∑

h∈M cLh
|x| otherwise.

This rule satisfies Efficiency, Downstream Responsibility, Null Upstream Cost, but
not Cost-Linearity.

4. For P ∈ Ced let f(P ) be the rule such that fLk(P ) =
∑
h∈M cLh
m for all k ∈ M and

|M | = m. This rule satisfies Efficiency, Downstream Responsibility, Cost-Linearity,
but not Null Upstream Cost.

The logical independence of the properties used in theorem 4.4.3 is given by
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1. Consider the level paying rule. This rules satisfies Null Upstream Cost and Cost-
Linearity, but not Downstream Demand Proportional Responsibility.

2. For P ∈ Ced let f(P ) be the rule such that fLk(P ) =
∑m

h=1

d̂Lk
d̄Lh
· cLh for all

k ∈ M . This rule satisfies Cost-Linearity and Downstream Demand Proportional
Responsibility, but not Null Upstream Cost.

3. For P ∈ Ced define f(P ) for all k ∈M as follows:

fLk(P ) =


0 if ∀h ≤ k : cLh = 0∑m

h=1

d̂Lk
d̄Lh
· cLh otherwise.

This rule satisfies Null Upstream Cost, Downstream Demand Proportional Re-
sponsibility, but not Cost-Linearity.

In summary, from this chapter we may conclude that all three rules satisfy different
properties and can all uniquely be characterized by means of some of these properties.
Therefore the suitability of the rules depends on the context of the problem. The elec-
tricity demand problem concerns the problem of reallocation the total electricity grid
costs over unions of agents that are connected to a specific voltage level in the grid.
Since for this problem the demands of the agents and the ordering of the levels of the
unions are important features, the cascade rule may for this problem, given the rules
discussed in this chapter, be considered most suitable and thereby the most fair rule.
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Chapter 5

Electricity demand game

In the preliminaries we showed how to obtain a game from a cost allocation problem. In
the last chapter we focused on the electricity demand problem and cost allocation rules
directly applicable to the problem. In this chapter we define the cooperative cost game
associated with the electricity demand problem. By means of this game we can apply
concepts from cooperative game theory. In the preliminaries we have seen that also
cooperative game theory offers many different solutions. Similar as for the problem we
define properties for the game and characterize solutions by means of these properties.
As there is not a one-to-one correspondence between the rules defined for the problem
and the rules defined for the game, we cannot compare them based on properties. In
this chapter we start by introducing a game on agent set N . For this game we analyse
the characteristic function. Subsequently we construct a simplified version of the
Shapley value that associates with each game a unique allocation vector for the agents
in N . By means of this value we can construct two solutions on the set of unions M ,
namely the agent- and union-Shapley value. So we define a game on agent set N ,
consider the Shapley value for agent set N , with the purpose to consider two forms of the
Shapley value that give a solution for the unions in L. Reasons to define the problem as
well as the game on N are first that it gives a more realistic representation of the situation
and second because it is more convenient in case one would like to consider solutions
for the set of agents in future research. Finally, we adapt several values discussed in
Chapter 3 into union values and apply them to a numerical example.

5.1 The framework

Let us now define the game for problem P = (N,L, d, c) ∈ Ced disclosed in Chapter 4. As
for this chapter the vectors of constants a, b ∈ RM+ are of importance, we in this chapter
define P by P = (N,L, d, a, b) ∈ Ced. Given any S ⊆ N let PS denote the restriction of
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P to S. Namely PS = (S,LS , (di)i∈S , (aLk)Lk∈LS , (bLk)Lk∈LS ) such that

• S ⊆ N is a finite set of agents

• LS = {Lk ∩ S}k∈M is the partition L of S

• d = (di)i∈S ∈ R|S|+ is the demand vector of the agents in S

• a = (aLk)Lk∈Ls ∈ R|LS |+ and b = (bLk)Lk∈LS ∈ R|LS |+ are the constants of the level
cost vector.

Equivalently as before, we denote a greatest element of S by maxS and the level of a
greatest element of S by l(maxS), i.e. maxS = maxj∈S j and l(maxS) = maxj∈S l(j).
In this section we first consider the restriction of P to S, where S is any subset of N
and thereafter the restriction where S is a subset of the unions in L. So for the first
restriction we consider values and for the latter restriction union values.

Let us now define the induced cooperative cost game amongst agents in N . Our charac-
teristic cost function v assumes that any coalition always needs to make use of the higher
voltage levels, but not of the lower levels. Each coalition pays, according to the voltage
levels it uses, the associated fixed costs and the variable costs related to its demand.
Given the restricted electricity demand problem PS ∈ Ced we define the induced cost
game on PS by the characteristic cost function

v(S) = C(dS , 0N\S) :=

l(maxS)∑
k=1

cLk (5.1)

:=

l(maxS)∑
k=1

aLk · d̄Lk + bLk (5.2)

with v(∅) = 0, for all S ⊆ N .1 Remark that d̄Lk :=
∑

i∈S,l(i)≥k di. As mentioned above,
in Chapter 4 we considered the vector c = (cLk)k∈M as a given, whereas in this chapter
we consider the constants aLk , bLk for all k ∈M as given and deduce by means of these
constants the vector c, such that cLk = aLk · d̄Lk + bLk . We denote the stand-alone cost
of each agent i ∈ N by v(i) and the stand-alone cost of each union k ∈ M by v(Lk).
We have a TU game with coalition structure L. Consequently, the electricity demand
game is defined by the triple (N, v, L) and the class of all electricity demand games by
GPed.2

Example 5.1.1. Consider a situation with three agents and a partition in three a priori
unions. We define the elements of a problem P ∈ Ced as follows:

1Recall that z := (dS , 0N\S) denotes a vector z ∈ RN s.t. zi = di if i ∈ S and zi = 0 if i ∈ N \ S,
defined in Section 2.3.

2Note that the partition L is already implicitly taken into account by the definition of v.
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• N = {1, 2, 3}

• L = {L1, L2, L3} with L1 = {1}, L2 = {2}, L3 = {3}

• d = (20, 60, 100)

• aL1 = 5, bL1 = 200, aL2 = 4, bL2 = 250, aL3 = 2 and bL3 = 150.

Before we give the cost values for all possible subsets S ⊆ N , we show by means of some
sample calculations how to compute the cost values.

v(1) =

l(max {1})∑
k=1

aLk · d̄Lk + bLk

=
1∑

k=1

aLk · d̄Lk + bLk

= aL1 · d1 + bL1

= 5 · 20 + 200

= 300

v(13) =

l(max {1,3})∑
k=1

aLk · d̄Lk + bLk

=

l(3)∑
k=1

aLk · d̄Lk + bLk

=

3∑
k=1

aLk · d̄Lk + bLk

= aL1 · (d1 + d3) + bL1 + aL2 · d3 + bL2 + aL3 · d3 + bL3

= 5 · 120 + 200 + 4 · 100 + 250 + 2 · 100 + 150

= 1800

v(123) =

l(max {1,2,3})∑
k=1

aLk · d̄Lk + bLk

=

l(3)∑
k=1

aLk · d̄Lk + bLk

=

3∑
k=1

aLk · d̄Lk + bLk
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= aL1 · (d1 + d2 + d3) + bL1 + aL2 · (d2 + d3) + bL2 + aL3 · d3 + bL3

= 2340

In a similar fashion we compute the other cost values, resulting in cost shares presented
in the table below.

Subsets S Cost v(S)

∅ 0
{1} 300
{2} 990
{3} 1700
{1, 2} 1090
{1, 3} 1800
{2, 3} 2240
{1, 2, 3} 2340

Table 5.1: The characteristic cost function v for S ⊆ N

The electricity demand game can be interpreted as the sum of a fixed electricity demand
game (N, vfix, L) and a variable electricity demand game (N, vvar, L) so that for all
S ⊆ N we have

v(S) := vfix(S) + vvar(S) (5.3)

with

vfix(S) :=

l(maxS)∑
k=1

bLk , (5.4)

vvar(S) :=

l(maxS)∑
k=1

aLk · d̄Lk . (5.5)

The game (N, vfix, L) corresponds to the airport game as described in example 2.3.1,
only the characteristic cost function is defined slightly different. We now show that v is
concave by proving that vfix, as well as vvar is concave.

Proposition 5.1.1. The game (N, vfix, L) is concave: for all S, T ⊆ N it holds that

vfix(S) + vfix(T ) ≥ vfix(S ∪ T ) + vfix(S ∩ T ).
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Proof. We consider the following three cases for S ⊆ N :

1. l(maxS) = l(maxT )

2. l(maxS) < l(maxT )

3. l(maxS) > l(maxT )

In case S or T is empty, the inequality trivially holds. For S, T 6= ∅ we show that for all
three cases the inequality holds:

1. Assume l(maxS) = l(maxT ) = t. It follows that l(maxS ∪ T ) = l(maxT ) = t
and l(maxS ∩ T ) ≤ t. Define l(maxS ∩ T ) = t′. Then t′ ≤ t. We have

vfix(S) + vfix(T ) =
t∑

k=1

bLk +
t∑

k=1

bLk

≥
t∑

k=1

bLk +
t′∑
k=1

bLk (t′ ≤ t)

= vfix(S ∪ T ) + vfix(S ∩ T ).

2. Assume l(maxS) = s, l(maxT ) = t such that s < t. It follows that l(maxS ∪ T ) =
t and l(maxS ∩ T ) ≤ s. Define l(maxS ∩ T ) = s′. Then s′ ≤ s. We have

vfix(S) + vfix(T ) =
s∑

k=1

bLk +
t∑

k=1

bLk

≥
t∑

k=1

bLk +
s′∑
k=1

bLk (s′ ≤ s)

= vfix(S ∪ T ) + vfix(S ∩ T ).

3. Due to symmetry with case 2 the proof is omitted.

Note that if S ∩ T 6= ∅, then
∑

i∈S di +
∑

i∈T di =
∑

i∈S∪T di +
∑

i∈S∩T di. Let us now
consider the game (N, vvar, L).

Proposition 5.1.2. The game (N, vvar, L) is concave and convex: for all S, T ⊆ N it
holds that

vvar(S) + vvar(T ) = vvar(S ∪ T ) + vvar(S ∩ T ).
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Proof. We consider the following three cases:

1. l(maxS) = l(maxT )

2. l(maxS) < l(maxT )

3. l(maxS) > l(maxT )

In case S or T is empty, the equality trivially holds. For S, T 6= ∅ we show that for all
cases equality holds:

1. Assume l(maxS) = t and l(maxS ∩ T ) = r. Then r ≤ t . It follows that
l(maxS ∪ T ) = l(maxT ) = t. We have

vvar(S) + vvar(T ) =

t∑
k=1

(aLk ·
∑

i∈S,l(i)≥k

di) +

t∑
k=1

(aLk ·
∑

i∈T,l(i)≥k

di)

=

t∑
k=1

(aLk ·
∑

i∈S∪T,l(i)≥k

di) +

t∑
k=1

(aLk ·
∑

i∈S∩T,l(i)≥k

di)

=
t∑

k=1

(aLk ·
∑

i∈S∪T,l(i)≥k

di) +
r∑

k=1

(aLk ·
∑

i∈S∩T,l(i)≥k

di)+

t∑
k=r+1

(aLk ·
∑

i∈S∩T,l(i)≥k

di)

=
t∑

k=1

(aLk ·
∑

i∈S∪T,l(i)≥k

di) +
r∑

k=1

(aLk ·
∑

i∈S∩T,l(i)≥k

di)+

0 (*)

=vvar(S ∪ T ) + vvar(S ∩ T )

(*) {i ∈ (S ∩ T )|l(i) ≥ r + 1} = ∅

2. Assume l(maxS) = s, l(maxT ) = t and l(maxS ∩ T ) = r. Then r ≤ s < t. It
follows that l(maxS ∪ T ) = t. We have

vvar(S) + vvar(T ) =

s∑
k=1

(aLk ·
∑

i∈S,l(i)≥k

di) +
t∑

k=1

(aLk ·
∑

i∈T,l(i)≥k

di)

=
s∑

k=1

(aLk ·
∑

i∈S,l(i)≥k

di) +
s∑

k=1

(aLk ·
∑

i∈T,l(i)≥k

di)+
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t∑
k=s+1

(aLk ·
∑

i∈T,l(i)≥k

di)

=

s∑
k=1

(aLk ·
∑

i∈S∪T,l(i)≥k

di) +

s∑
k=1

(aLk ·
∑

i∈S∩T,l(i)≥k

di)+

t∑
k=s+1

(aLk ·
∑

i∈T,l(i)≥k

di)

=

t∑
k=1

(aLk ·
∑

i∈S∪T,l(i)≥k

di) +

s∑
k=1

(aLk ·
∑

i∈S∩T,l(i)≥k

di) (*)

=

t∑
k=1

(aLk ·
∑

i∈S∪T,l(i)≥k

di) +

r∑
k=1

(aLk ·
∑

i∈S∩T,l(i)≥k

di)+

s∑
k=r+1

(aLk ·
∑

i∈S∩T,l(i)≥k

di)

=

t∑
k=1

(aLk ·
∑

i∈S∪T,l(i)≥k

di) +

r∑
k=1

(aLk ·
∑

i∈S∩T,l(i)≥k

di)+

0 (**)

=vvar(S ∪ T ) + vvar(S ∩ T )

(*) {i ∈ T |l(i) ≥ s+ 1} = {i ∈ (S ∪ T )|l(i) ≥ s+ 1}
(**) {i ∈ (S ∩ T )|l(i) ≥ r + 1} = ∅

3. Due to symmetry with case 2. the proof is omitted.

Proposition 5.1.3. Every game (N, v, L) ∈ GP that is concave and convex is inessen-
tial.

Proof. For any two disjoint sets S, T ⊆ N such that S ∩ T = ∅ it follows from concavity
and convexity of game (N, v, L) that v(S) +v(T ) = v(S ∪T ). Now let S, T be singletons
such that S = {i} and T = {j}. We have that for all i 6= j ∈ N , v(i) + v(j) = v(i ∪ j)
and hence v(S) =

∑
i∈S v(i) for all S ⊆ N .

Thus it follows that the game (N, vvar, L) is inessential. Moreover, from propositions
5.1.1 and 5.1.2 we may conclude that the characteristic cost function v is concave and
hence sub-additive. As a result, the Shapley value of the game (N, v, L) ∈ GPed is in the
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core. This is an important result, as this makes the Shapley value a good solution for
the game, since now the Shapley value gives a stable cost allocation.3 In the next section
we define the Shapley value, the agent-Shapley value and the union-Shapley value and
other union values for the electricity demand game. First we consider below a numerical
example for three agents for which the variable and fixed characteristic function are
constructed for all possible subsets S in N .

Example 5.1.2. Consider a situation with three agents and a partition in two a priori
unions. We define the elements of a problem P ∈ Ced as follows:

• N = {1, 2, 3}

• L = {L1, L2} with L1 = {1, 2}, L2 = {3}

• d = (10, 5, 20)

• aL1 = 5, bL1 = 150, aL2 = 4, bL2 = 100

By means of the demand vector we can obtain the aggregated demand vector d̄ = (d̄L1 , d̄L2) =
(35, 20) and the level demand vector d̂ = (d̂L1 , d̂L2) = (15, 20). Further we have c =
(cL1 , cL2) = (5 · d̄L1 + 150, 4 · d̄L2 + 100) = (325, 180). Let us now consider the variable
and fixed cost values obtained by applying the characteristic function on N and subsets
S ⊆ N , without restrictions on S. In Appendix II we show by means of some examples
how to compute the characteristic functions.

Subsets S vfix(S) vvar(S) v(S)

∅ 0 0 0
{1} 150 50 200
{2} 150 25 175
{3} 250 180 430
{1, 2} 150 75 225
{1, 3} 250 230 480
{2, 3} 250 205 455
{1, 2, 3} 250 255 505

Table 5.2: The characteristic cost function v for S ⊆ N

5.2 Solutions

In Chapter 3 we defined the Shapley value, the union-Shapley value and the agent-
Shapley value. In this section we take a closer look at these values for the electricity

3Assuming that we define a stable coalition by the core of the game.
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demand game. Thereafter we define multiple union values, which were presented in
Chapter 3 as values for N . As noted before, we first consider the Shapley value that is
solution of the corresponding game on N and thereafter union values, which are union
values of the corresponding game on M .

5.2.1 Values

Littlechild and Owen (1973) provide in their article a simple expression of the Shapley
value for the class of airport games, as presented in example 3.2.1. We consider a
comparable simple version of the Shapley value for the variable as well as the fixed
characteristic function for the class of electricity demand games. Due to additivity of
the Shapley value we may thereafter add these two values to obtain the Shapley value
for game (N, v, L) ∈ Ged.

Proposition 5.2.1. The Shapley value for (N, vfix, L) ∈ GPed is given by

Shi(N, v
fix, L) :=

l(i)∑
k=1

bLk
| ∪mh=k Lh|

, (5.6)

for all i ∈ N with | ∪mh=k Lh| representing the number of agents in ∪mh=kLh, bLk ∈ R+

the fixed cost associated to level Lk and L = {L1, ..., Lm}.

Proof. For every k ∈M define game vfixk such that

vfixk (S) =

{
0 if l(maxS) < k
bLk if l(maxS) ≥ k. (5.7)

Note that
l(maxS) < k ⇔ S ∩ ∪mh=kLh = ∅

and
l(maxS) ≥ k ⇔ S ∩ ∪mh=kLh 6= ∅.

Now from equation (5.7) it follows that

m∑
k=1

vfixk (S) =

l(maxS)∑
k=1

vfixk (S) +
m∑

k=l(maxS)+1

vfixk (S)

=

l(maxS)∑
k=1

bLk + 0

=

l(maxS)∑
k=1

bLk
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= vfix(S)

Hence, for all S ⊆ N we have vfix(S) =
∑m

k=1 v
fix
k (S). By additivity of the Shapley

value we know that

Shi(N, v
fix, L) =

m∑
k=1

Shi(N, v
fix
k , L).

Consider game (N, vfixk , L). All i ∈ N with l(i) < k (i.e. i /∈ ∪mh=kLh) are dummy

agents: if l(maxS) ≤ l(i) < k, then vfixk (S ∪ i) = 0 = 0 + 0 = vfixk (S) + vfixk (i) and

if l(maxS) > l(i) and l(maxS) > k, then vfixk (S ∪ i) = vfixk (S) = bLk . All i, j with
l(i), l(j) ≥ k (i.e. i, j ∈ ∪mh=kLh) are symmetric agents: for all S ⊆ N it holds that

vfixk (S ∪ i) = bLk = vfixk (S ∪ j).

Since the Shapley value satisfies efficiency, dummy and symmetry we obtain:

Shi(N, v
fix
k , L) =

{
0 if l(i) < k
bLk

|∪mh=kLh|
if l(i) ≥ k.

Note that also here holds that l(i) < k iff i /∈ ∪mh=kLh and l(i) ≥ k iff i ∈ ∪mh=kLh.
Consequently,

Shi(N, v
fix, L) =

m∑
k=1

Shi(N, v
fix
k , L)

=

l(i)∑
k=1

Shi(N, v
fix
k , L) +

m∑
k=l(i)+1

Shi(N, v
fix
k , L)

=

l(i)∑
k=1

Shi(N, v
fix
k , L) + 0

=

l(i)∑
k=1

bLk
| ∪mh=k Lh|

So the Shapley value of the fixed characteristic cost function allocates the fixed cost of
the first level over all agents, subsequently it allocates the fixed cost of the second level
over all agents of the second level and of the lower (downstream) levels and so on. Before
we consider the simple expression of the Shapley value for the variable characteristic cost
function, consider the following lemma.
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Lemma 5.2.1. The Shapley value of an inessential game (N, v, L) is given by

Shi(N, v, L) := v(i). (5.8)

for all i ∈ N .

The Shapley value gives the average marginal contribution over all possible joining orders
of an agent and in an inessential game the marginal contribution of an agent is always
its stand-alone cost.

Proposition 5.2.2. The Shapley value for (N, vvar, L) ∈ GPed is given by

Shi(N, v
var, L) := vvar(i) (5.9)

:= di ·
l(i)∑
k=1

aLk , (5.10)

for all i ∈ N .

Proof. By proposition 5.1.2 and 5.1.3 it follows that (N, vvar, L) is inessential. By lemma
5.2.1 it follows that the Shapley value of an inessential game is given by Shi(N, v, L) =
v(i). Hence, Shi(N, v

var, L) := vvar(i).

Proposition 5.2.3. Due to additivity of the Shapley value, the Shapley value for (N, v, L) ∈
GPed is given by

Shi(N, v, L) := Shi(N, v
fix, L) + Shi(N, v

var, L)

:=

l(i)∑
k=1

(
di · aLk +

bLk
|∪mh=kLh|

)
, (5.11)

for all i ∈ N .

Example 5.2.1. Consider again example 5.1.2. We construct the Shapley value Shi(N, v, L)
for all agents i ∈ N for this game by means of the expression presented in proposition
5.2.3.

Sh1(N, v, L) =
1∑

k=1

(
d1 · aLk +

bLk
|∪2j=kLj |

)
= d1 · aL1 +

bL1

|L1 ∪ L2|

= 10 · 5 +
150

3
= 50 + 50 = 100
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Sh2(N, v, L) =

1∑
k=1

(
d2 · aLk +

bLk
|∪2j=kLj |

)
= d2 · aL1 +

bL1

|L1 ∪ L2|

= 5 · 5 +
150

3
= 25 + 50 = 75

Sh3(N, v, L) =
2∑

k=1

(
d3 · aLk +

bLk
|∪2j=kLj |

)
= d3 · aL1 +

bL1

|L1 ∪ L2|
+ d3 · aL2 +

bL2

|L2|

= 20 · 5 +
150

3
+ 20 · 4 +

100

1
= 100 + 50 + 80 + 100 = 330

Hence, the Shapley value gives the cost allocation vector (100, 75, 330) ∈ R3
+, which is

efficient, i.e.
∑

i∈N Shi(N, v, L) = 505.

This example, based on proposition 5.2.3, gives the Shapley value for the agents in N .
We are interested in cost allocation vectors for the unions/levels in M . However, in
order to define cost allocations for the unions (union value), it can be useful to first
define cost allocations for the agents. Moreover, it can be useful for future research
on cost allocations for the agents. Before we define the union values, we provide three
lemmas regarding symmetric agents, dummy agents and null agents.

Lemma 5.2.2. Let (N, v, L) ∈ GPed a game where aLk , bLk > 0 for all k ∈ M , then
agents f, g are symmetric in game (N, v, L) if and only if l(f) = l(g) and df = dg.

Proof. (⇒) We prove this side by contraposition. Thus, first assume l(f) = l(g) = t and
df 6= dg. There is a S \ {f, g} ⊂ N , namely S = ∅, such that we have

v(S ∪ f) = v(f)

=

t∑
k=1

(aLk · df + bLk)

6=
t∑

k=1

(aLk · dg + bLk) (df 6= dg)

= v(g)

= v(S ∪ g)
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Now assume s = l(f) 6= l(g) = t and df = dg. There is a S \ {f, g} ⊂ N , namely S = ∅,
such that we have

v(S ∪ f) = v(f)

=

s∑
k=1

(aLk · df + bLk)

=

s∑
k=1

(aLk · dg + bLk) (df = dg)

6=
t∑

k=1

(aLk · dg + bLk) (s 6= t)

= v(g)

= v(S ∪ g)

So by contraposition we have that if agents f, g are symmetric in a game where aLk , bLk >
0 for all k ∈M , then l(f) = l(g) and df = dg.

(⇐) Assume l(f) = l(g) and df = dg for f, g ∈ N in a game (N, v, L) ∈ GPed where
aLk , bLk > 0 for all k ∈ M . If l(f) = l(g) we know that l(maxS ∪ f) = l(maxS ∪ g)
for all S ⊂ N \ {f, g}. Namely l(maxS ∪ f) = l(maxS ∪ g) = l(maxS) if l(f) = l(g) ≤
l(maxS) or l(maxS ∪ f) = l(f) = l(g) if l(f) = l(g) > l(maxS). Therefore assume
that l(maxS ∪ f) = l(maxS ∪ g) = t. Left to show is that v(S ∪ f) = v(S ∪ g) for all
S ⊂ N \ {f, g}:

v(S ∪ f) =

l(maxS∪f)∑
k=1

(aLk ·
∑

i∈S∪f,l(i)≥k

di + bLk)

=
t∑

k=1

(aLk ·
∑

i∈S∪f,l(i)≥k

di + bLk)

=
t∑

k=1

(aLk ·
∑

i∈S,l(i)≥k

di + bLk) +

l(f)∑
k=1

aLk · df

=
t∑

k=1

(aLk ·
∑

i∈S,l(i)≥k

di + bLk) +

l(g)∑
k=1

aLk · dg (df = dg, l(f) = l(g))

=

t∑
k=1

(aLk ·
∑

i∈S∪g,l(i)≥k

di + bLk)

= v(S ∪ g).

Hence, if l(f) = l(g) and df = dg then agents f, g must be symmetric in game (N, v, L) ∈
GPed where aLk , bLk > 0.
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Lemma 5.2.3. All agents in game (N, v, L) ∈ GPed are dummy agents if bLk = 0 for
all k ∈M .

Proof. Assume bLk = 0 for all k ∈M . It follows that vfix(S) = 0 for all S ⊆ N and thus
v(S) = vvar(S). From propositions 5.1.2 and 5.1.3 it followed that the game (N, vvar, L)
is inessential. Clearly every agent in an inessential game is a dummy agent. So it follows
that all agents i in game (N, v, L) ∈ GPed are dummy agents.

Lemma 5.2.4. Agent i is a null agent in game (N, v, L) ∈ GPed if

(i) bLk = 0 and aLk = 0 for all k ∈M , or

(ii) bLk = 0, aLk > 0 and di = 0 for all k ∈M .

Proof. We know that every null agent is a dummy agent with v(i) = 0.

(i) Assume bLk = 0 and aLk = 0 for all k ∈ M , then for all S ⊆ N we have that
v(S) = 0 and therefore clearly all agents are null agents, in particular agent i.

(ii) By lemma 5.2.3 it follows that if bLk = 0 for all k ∈ M , then all agents in game
(N, v, L) are dummy agents. Left to show is that from aLk > 0 and di = 0 for

all k ∈ M , follows that v(i) = 0 for i ∈ N . We have that v(i) =
∑l(i)

k=1 aLk · di =∑l(i)
k=1 aLk · 0 = 0. And thus from di = 0 and aLk > 0 follows that v(i) = 0.

Hence agent i is a null agent in game (N, v, L) if (i) or (ii) holds.

5.2.2 Union values

As we are interested in cost allocations for the unions of agents, we first consider two
important union values, namely the union-Shapley value, presented in definition 3.3.2
and the agent-Shapley value, presented in definition 3.3.3 (van den Brink and Dietz,
2014). The agent-Shapley value for union Lk is the sum of the Shapley values of the
agents in union Lk. Moreover we consider values discussed in Chapter 3 and adapt
them to union values, namely the separable cost remaining benefit union value, the
proportional union value, the egalitarian union value and the non-cooperative union
value.

Definition 5.2.1. (Agent-Shapley value) The agent-Shapley value of the electricity de-
mand game is given by

ShaLk(N, v, L) =
∑
i∈Lk

Shi(N, v, L)
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=
∑
i∈Lk

l(i)∑
h=1

(
di · aLh +

bLh
|∪ml=hLl|

)
.

for all k ∈M and i ∈ N .

This solution takes the agents as the decision makers. When an agent enters a coalition,
its marginal contribution is determined by its level and its demand. The marginal
contributions with respect to the fixed cost are fully determined by the level of the
agent: if there is an agent in the coalition with at least the same level, its marginal
contribution is zero and otherwise its marginal contributions is the sum of all fixed level
costs that are not covered yet. The marginal contribution with respect to the variable
costs are determined by the demand and the level of the agent. If there is already an
agent in the coalition with at least the same level, the marginal contribution is only the
demand of the agent times all the variable level costs depending on the levels it uses. If
the agent has a higher demand, she incurs on top of the latter costs, also the variable
cost part for the extra required voltage levels. If the cost of a level is determined by
the marginal contributions of all agents attached to that level, the agent-Shapley value
is an appropriate solution. The agent-Shapley value first allocates each agent with a
share such that the variable part is dependent on the demand of the agent and all
levels used by the agent and the fixed part is solely dependent on all levels used by the
agent. Thereafter the agent-Shapley value sums over all the agents individual cost shares
obtained by the Shapley value.

Definition 5.2.2. (Union-Shapley value) The union-Shapley value of the electricity de-
mand game is given by

ShuLk(N, v, L) = ShLk(M, vL)

=
k∑

h=1

(
d̂Lk · aLh +

bLh
|m−h+1|

)
with vL(U) = v(∪h∈ULh) for all U ⊆M , L = {L1, ..., Lm} and M = {1, ...,m}.

If unions are taken as the decision making agent, the cost of a coalition is mainly de-
termined by the union with the highest level. Each time a union enters a coalition,
its marginal contribution is determined by its level and its demand. More precisely, the
marginal contribution with respect to the fixed characteristic function is fully determined
by its level and the marginal contribution with respect to the variable characteristic func-
tion is determined by the demand and the level of the union. The union-Shapley value
seems a reasonable solution if the cost allocation is indeed determined by the level and
the demand of a union. The union-Shapley value allocates each union with a share such
that the variable part is dependent on the demand of the level and the level and the
fixed part is dependent on the level. It charges a union for all the levels it uses. Consider
the following example to see the difference between the two union Shapley notions for
the electricity demand game.
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Example 5.2.2. Consider again examples 5.1.2 and 5.2.1. Let us now construct the
agent- as well as the union-Shapley, in corresponding order. The agent-Shapley value is
derived as follows:

ShaL1
(N, v, L) =

∑
i∈L1

l(i)∑
h=1

(
di · aLh +

bLh
|∪ml=hLl|

)
.

=
1∑

h=1

(
d1 · aLh +

bLh
|∪2l=hLl|

)
+

1∑
h=1

(
d2 · aLh +

bLh
|∪2l=hLl|

)
= d1 · aL1 +

bL1

|L1 ∪ L2|
+ d2 · aL1 +

bL1

|L1 ∪ L2|

= 10 · 5 +
150

3
+ 5 · 5 +

150

3
= 175

ShaL2
(N, v, L) =

∑
i∈L2

l(i)∑
h=1

(
di · aLh +

bLh
|∪ml=hLl|

)
.

=

2∑
h=1

(
d3 · aLh +

bLh
|∪2l=hLl|

)
= d3 · aL1 +

bL1

|L1 ∪ L2|
+ d3 · aL2 +

bL2

|L2|

= 20 · 5 +
150

3
+ 20 · 4 +

100

1
= 330

So the agent-Shapley value is given by the allocation vector Sha(N, v, L) = (175, 330) ∈
RM+ . The union-Shapley value is computed as follows,

ShuL1
(N, v, L) =

1∑
h=1

(
d̂Lk · aLh +

bLh
|m−h+1|

)
= d̂L1 · aL1 +

bL1

|2− 1 + 1|

= 15 · 5 +
150

2
= 150

ShuL2
(N, v, L) =

2∑
h=1

(
d̂Lk · aLh +

bLh
|m−h+1|

)
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=
(
d̂L2 · aL1 +

bL1
|2−1+1|

)
+
(
d̂L2 · aL2 +

bL2
|2−2+1|

)
= 20 · 5 +

150

2
+ 20 · 4 +

100

1
= 355

Thus, the union-Shapley value gives the allocation vector Shu(N, v, L) = (150, 355) ∈
RM+ . Note that both the union values give an efficient allocation vector:

∑
k∈M ShaLk =∑

k∈M ShuLk505 = v(N).

The agent-Shapley value in this example allocates a higher cost share to the first union
(L1) than the union-Shapley value. This is due to the fact the agent-Shapley value
allocates 100 of the fixed cost of level 1 (bL1 = 150) to union L1, whereas the union-
Shapley value allocates 75 of the fixed cost of level 1 (bL1 = 150) to union L1: the
union-Shapley value allocates this fixed level cost proportional to the number of unions
and the agent-Shapley value proportional to the number of agents, i.e. 1

2 · 150 versus
2
3 · 150 respectively.

In Chapter 3 we discussed some properties for the agent- and union-Shapley value. These
two values differ with respect to the collusion neutrality property they obey: the agent-
Shapley value satisfies union collusion neutrality and the union-Shapley value satisfies
agent collusion neutrality. The agent collusion neutrality axiom implies that merging
agents within one union does not change the level or the total demand of this union and
therefore has no effect on the cost share of this union. The union collusion neutrality
axiom implies that if two unions of agents collude such that the new union consists of
all agents of the original unions, the total cost share of the new union is the same as the
sum of the cost shares of the original unions.

Let us consider some other union values, that were presented as values in Chapter 3. Let
the separable cost of union Lk be defined by sLk = v(N)− v(N \Lk) and the remaining
benefit by rLk = v(Lk)− sLk .

Definition 5.2.3. (Separable cost remaining benefit union value) The separable cost
remaining benefit union value is given by

SCRBu
Lk

(N, v, L) = SCRBLk(M, vL)

= sLk +
rLk∑

h∈M
rLh
· rN , (5.12)

with vL(U) = v(∪h∈ULh) and (N, v, L) ∈ GPed for all k ∈ M , U ⊆ M and with

rN = v(N)−
∑
h∈M

sLh.
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We can further define sLk , rLk , rN by replacing the equations with the actual characteris-

tic functions. Then we get that for all k < m: sLk =
∑k

h=1 aLh ·d̂Lk and rLk =
∑k

h=1 bLh .

For k = m we have that sLm =
∑m

h=1 aLh · d̂Lm + bLm and rLm =
∑m−1

h=1 bLh . Lastly,
we have that rN =

∑m−1
h=1 bLh . By means of these parts we can derive the following

equations for the separable cost remaining benefit union value:

SCRBu
Lk

(N, v, L) =
k∑

h=1

aLh · d̂Lk +

∑k
h=1 bLh∑m−1

k=1

∑k
h=1 bLh +

∑m−1
h=1 bLh

·
m−1∑
h=1

bLh ,

for k < m and

SCRBu
Lk

(N, v, L) =
m∑
h=1

aLh · d̂Lm + bLm +

∑m−1
h=1 bLh∑m−1

k=1

∑k
h=1 bLh +

∑m−1
h=1 bLh

·
m−1∑
h=1

bLh ,

for k = m. Note that even though this union value is not additive, that the SCRB union
value gives for the game (N, v, L) ∈ GPed the same cost share as the agent-Shapley value
with respect to the variable part. Both union values allocate every union the sum of the
variable costs (aLk) of the used levels times the union’s demand. With regard to the
fixed costs, this union value charges every union proportional to its remaining benefit.
Only level m is charged extra costs, namely the fixed cost of its own level (bLm). This
union value solely considers the coalitions of size 1, M − 1 and M .

Definition 5.2.4. (Proportional union value) The proportional union value is given by

PruLk(N, v, L) = PrLk(M,vL)

=
v(Lk)∑m
l=1 v(Ll)

· v(N)

=

∑k
h=1(aLh · d̂Lk + bLh)∑m

l=1(
∑l

h=1(aLh · d̂Ll + bLh))
·
m∑
h=1

(aLh · d̄Lh + bLh). (5.13)

with vL(U) = v(∪h∈ULh) and (N, v, L) ∈ GPed for all k ∈M , U ⊆M .

The proportional union value only considers the coalitions of size 1 and M . It allocates
the cost of the grand coalition proportional to the union’s stand-alone cost. Since the
proportional union value as well as the proportional union value are not additive, we
can not apply the rules separately to the two cost games (N, vvar, L) and (N, vfix, L).
Therefore we can not further simplify these union values. This is an important difference
with the agent- and union-Shapley value, which both satisfy additivity. The next union
value does not distinguish between unions and allocates to each union the same cost
share.

Definition 5.2.5. (Egalitarian union value) The egalitarian union value is given by

EguLk(N, v, L) = EgLk(M,vL)
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=
v(N)

m

=
1

m
· (

m∑
h=1

aLh · d̄Lh + bLh). (5.14)

with vL(U) = v(∪h∈ULh) and (N, v, L) ∈ GPed for all k ∈M , U ⊆M .

So this union only considers coalitions of size M , namely the grand coalition. Further
it uses information on the number of unions in the game. This union value is additive,
as well as efficient. However, in contrast to the agent- and union-Shapley value and
the separable cost remaining benefit union value and the proportional union value, the
egalitarian union value does not take any marginal contributions or proportionality into
account. The last union value is the non-cooperative union value, allocating each union
its stand-alone cost.

Definition 5.2.6. (Non-cooperative union value) The non-cooperative union value is
given by

NCuLk(N, v, L) = NCLk(M,vL)

= v(Lk)

=
k∑

h=1

aLh · d̂Lk + bLh (5.15)

for all (N, v, L) ∈ GPed, all k ∈ M , with vL(U) = v(∪h∈ULh) and (N, v, L) ∈ GPed for
all k ∈M , U ⊆M

Clearly, this union value only takes into account coalitions of size 1. This non-cooperative
union value is the only union value, discussed in this chapter, that is not efficient.

Example 5.2.3. Consider again examples 5.1.2 and 5.2.1. Let us now compute the
SCRBu(N, v, L), Pru(N, v, L), Egu(N, v, L) and NCu(N, v, L).

SCRBu
L1

(N, v, L) = 5 · 15 +
150

150 + 150
· 150

= 75 +
150

300
· 150

= 150

SCRBu
L2

(N, v, L) = (5 · 20 + 4 · 20) + 100 +
150

150 + 150
· 150

= 180 + 100 +
150

300
· 150

= 180 + 100 + 75
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= 355

Thus, the SCRB-union value gives the allocation vector SCRBu(N, v, L) = (150, 355) ∈
RM+ . This union value is efficient, i.e. 150 + 355 = 505 = v(N).

PruL1
(N, v, L) =

225

655
· 505

= 173

PruL2
(N, v, L) =

430

655
· 505

= 332

Thus, the Pr-union value gives the allocation vector Pru(N, v, L) = (173, 332) ∈ RM+ .
This union value is efficient, i.e. 173 + 332 = 505 = v(N).

EguL1
(N, v, L) = EguL2

(N, v, L)

=
505

2
= 252.5

Thus, the Eg-union value gives the allocation vector Egu(N, v, L) = (252.5, 252.5) ∈ RM+ .
This union value is efficient, i.e. 252.5 + 252.5 = 505 = v(N).

NCuL1
(N, v, L) = 5 · 15 + 150

= 225

NCuL2
(N, v, L) = 5 · 20 + 150 + 4 · 20 + 100

= 430

Thus, the Eg-union value gives the allocation vector Egu(N, v, L) = (225, 430) ∈ RM+ .
This union value is not efficient, i.e.

∑
k∈M EguLk(N, v, L) > v(N).

Note that the ordering of the partition does not matter for the union values, i.e. the
union values do not take the ordering of the partition into account. However, the or-
dering is reflected in the way the game is defined. This is reflected by the summation
charging a coalition up to the level of the greatest agent in the coalition. As we do
not consider ordered union values, the properties defined for the union values defined in
Chapter 3 are applicable for all the union values discussed in this chapter. If we want
to consider ordered union values in the future we have to adapt these properties and the
axiomatizations to take into account the ordering of the partition and thus the levels. As
the values do not take the ordering into account, the agent-Shapley value seems a better
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choice for the electricity demand game than the union-Shapley value, because this value
has no problem with merging any two voltage levels. In contrary to the union-Shapley
value, for this value it is not defined what happens with the costs of the unions when
two levels collude.

5.3 Simplified version of the game

In this section we briefly discuss a simplified version of the problem and corresponding
game and show that the level paying rule for the problem equals the Shapley value for
the game. This is comparable with the polluted river game under the LR principle
and the corresponding Local Responsibility Sharing method, as defined in Ni and Wang
(2007). The aim of this section is to show that other (easier) versions of the problem
and game are also possible and might be useful in some situations. Also it highlights a
resemblance with the polluted river game from Ni and Wang (2007). Let all elements
of the electricity demand problem be as defined in Section 4.1, except for cost vector c.
We redefine c in the following way and denote it by ĉ ∈ RM+ such that we obtain

ĉLk := aLk · d̂Lk + bLk ,

with constants aLk , bLk ∈ R+ for k ≥ 1 and 0 otherwise and d̂Lk =
∑

i∈Lk di. In this
problem it is assumed that level costs are only incurred by the demands of the agents
attached to that particular level. Thus there is no down- or up-streaming flow causing
extra costs on higher or lower voltage levels. The corresponding game for S ⊆ M4 for
M = {1, ...,m} and L = {L1, ..., Lm} is given by

v∗(S) :=
∑
k∈S

ĉLk , (5.16)

with v∗(∅) = 0 and v∗(S) = v(∪h∈SLh). To avoid confusion we write v(Lk) instead of
v(k) for k ∈ S ⊆M . Consider the following proposition.

Proposition 5.3.1. The level paying rule (LP (P )) for problem P = (N,L, d, ĉ) gives
exactly the same allocation vector as the union-Shapley value of game v∗. Formally,
ShuLk(N, v∗, L) = LPLk(N,L, d, ĉ) = ĉLk , for all (N,L, d, ĉ) ∈ Ced, (N, v∗, L) ∈ GPed
and k ∈M .

Proof. For P = (N,L, d, ĉ) the level paying rule is presented by

LPLk(P ) = ĉLk .

The game (N, v∗, L) is by definition (equation (5.16)) inessential. i.e. v∗(S) =
∑

k∈S v
∗(Lk)

and v∗(Lk) + v∗(Lh) = v∗(Lk ∪Lh). Thus the marginal contribution of each union join-
ing a coalition S is exactly its union stand-alone cost in the game, so exactly v∗(Lk) for

4Note that we take S to be a subset of M instead of N .
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union Lk. As the union-Shapley value gives the average marginal contribution over all
possible joining orders of a union, this value equals the stand-alone cost of the union in
case of an inessential game (recall proposition 5.2.1). Also the level paying rule states
that each union pays its own level cost, i.e. its union stand-alone cost.

In summary, in this chapter we defined a cooperative cost game for the electricity demand
problem: the electricity demand game. For this game we assumed that the cost of a
coalition equalled the sum of the variable and fixed level costs up to the lowest (highest
ranked) voltage level of the agents in the coalition. We may conclude that there are at
least three important reasons why the Shapley value is an appealing solution for this
game, namely

1. The Shapley value is an additive solution. Since the characteristic cost function
consists of two cost parts, the Shapley value can be applied separately to both
parts, which makes it an easier application. Also, if we want to extend the cost
function in the future, the Shapley value only has to be found on the added part.

2. The simplified formula for the Shapley value makes the calculations considerably
less demanding, and executable.

3. Since the electricity demand game is concave, the Shapley value of this game
provides an allocation in the core, which ensures a form of stability.

So from all the union values discussed in this chapter, the agent- and union-Shapley
value appeared the most useful solutions. However, we found that the agent-Shapley
value might be the better solution of the two for this game, since it satisfies union
collusion neutrality, in contrary to the union-Shapley value.
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Extensions of the electricity
demand problem

In this chapter we present two extensions of the model of the electricity demand problem
and game. The reason for these extensions is that we besides the current situation, also
want to consider the possible future. We observe an important trend in the electricity
market, namely the growth of decentralized sustainable production installations at every
voltage level in the electricity grid. As a result of this growth, voltage levels and its
consumers become less dependent on the higher voltage levels in the grid. With respect
to this observation we extend the model of the electricity demand problem such that
it also takes into consideration the production capacity of each voltage level. This is
discussed in the first extension, namely the electricity demand-production problem.

Even though the net electricity flow is downstream, there exists bilateral flow between
the different voltage levels, i.e. electricity flows from downstream to upstream levels as
well. In the electricity demand problem and game we considered, as is done in real-life,
only the net-downstream electricity flow. The second extension in this chapter provides
the opportunity to also incorporate the upstream electricity flow in a cost allocation rule
and is therefore referred to as the bilateral flow problem. For both of the extensions
we only define the problem and its elements and consider the cascade rule. For the
electricity demand-production problem we also define a corresponding game. We do not
consider any properties or axiomatizations. These models are meant for future research
and analyses. Further we propose for the second extension a new rule, based on the
cascade rule, that compensates for upstream flow. We propose this rule as the first rule
in this direction, as we found that there is need for such a rule in the future as pointed
out in the literature, see for example NMA and SEO (2011, p.47), in which it is suggested
to look for an alternative model to analyse the effect of the bilateral flow on the cost
allocation over the levels. So although we consider production and bilateral flow in the
extensions, for now we still assume that the net electricity flow is downstream. It would
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however be interesting to elaborate on the second extension to consider how to allocate
the costs if this would not be the case.

6.1 Electricity demand-production problem

In this problem we also take into consideration that each voltage level has its own pro-
duction capacity. Disregarding the electricity losses, we still assume that the production
and demand capacities of the entire grid are equal. In the model of the electricity demand
problem we described the downstream demand flow as the net demand of a downstream
level. We assumed however that only electricity was fed into the grid at the highest level,
such that the net demand of a lower level equalled the total demand of a lower level.
In this section we assume each voltage level has its own production capacity, such that
the net demand of a union/level is the total demand of the union minus its production
capacity. So we assume that the production capacity of each level is completely used by
that particular level and the rest of the required electricity is acquired from the highest
voltage level.

We now formally define the electricity demand-production problem, which is an ex-
tension of the electricity demand problem defined in Chapter 4. The electricity demand-
production problem is defined by P = (N,L, d, c, p), where N is a finite set of agents,
L a partition of N , d the demand vector of the agents, c is the level cost vector and p
is the production vector of the agents. Note that this entails that now the electricity
producers also become agents in the problem. So the agent set now consists of agents
that mainly produce, agents that mainly consume and agents that do both (e.g. house-
holds with solar panels). We denote the total production of union Lk by p̂Lk =

∑
i∈Lk pi.

We assume that p̂Lk ≤ d̂Lk , for all k > 1. This assumption implies that most of the
electricity is fed into the network at level one and the electricity flow goes downstream.
By

∑
h∈M,h>k p̂Lh we mean the sum of all the production capacities of the levels lower

than level h. The level cost vector c = (cLk)k∈M is presented by

cLk := aLk · (
∑

i∈N,l(i)≥k

di −
∑

i∈N,l(i)>k

pi) + bLk

:= aLk · (
∑

h∈M,h≥k
d̂Lh −

∑
h∈M,h>k

p̂Lh) + bLk ,

with constants aLk , bLk ∈ R+ for k ≥ 1 and 0 otherwise. 1 Denote the class of electricity
demand-production problems by Cedp. So the level costs are dependent on the amount
of electricity that flows through the network, which is equal to the aggregated demand
of that level and lower levels minus the production of lower levels.

1Also for this problem we take c as given, but in order to define the game we explicitely define c.
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Given the electricity demand-production problem amongst agent set N and partition L
of N , we define the associated game by

v(S) :=

l(maxS)∑
k=1

cLk

:=

l(maxS)∑
k=1

aLk · (
∑

i∈S,l(i)≥k

di −
∑

i∈S,l(i)>k

pi) + bLk ,

for all S ⊆ N and v(∅) = 0.

Let us now define the cascade rule for the problem. We present the cascade rule in its
recursive form as follows:

CALk(P ) =
d̂Lk

(
∑

l∈M,l≥k
d̂Ll −

∑
l∈M,l>k

p̂Ll)
·
k∑

h=1

(cLh − CALh−1
(P ))

=
d̂Lk

(d̄Lk −
∑

l∈M,l>k

p̂Ll)
·
k∑

h=1

(cLh − CALh−1
(P )),

for all P ∈ Cedp, all k ∈ M and CAL0(P ) = 0. Note that in essence the cascade rule
is still the same as defined in Chapter 4 with the demand of the level in the numerator
and the total demand flowing through that level in the denominator. Let us now clarify
by means of an example.

Example 6.1.1. We define the elements of a problem P ∈ Cedp as follows:

• N = {1, ..., 8}

• L = {L1, L2, L3} with L1 = {1, 2}, L2 = {3, 4}, L3 = {5, 6, 7, 8}

• d = (1, 1, 2, 3, 2, 4, 6, 10)

• c = (cL1 , cL2 , cL3) = (100, 80, 60)

• p = (10, 5, 2, 2, 2, 1, 3, 4)

From these elements follows that for p̂ = (15, 4, 10) and d̂ = (2, 5, 22). The situation is
depicted in figure 6.1.
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L1

L2

L3

15

4

10

2

5

22

13

12

Figure 6.1: Electricity network with production and demand capacities Numer-
ical example.

Let us now apply the cascade rule to problem P ∈ Cedp.

CAL1(P ) =
d̂L1

(
∑

l∈M,l≥k
d̂Ll −

∑
l∈M,l>k

p̂Ll)
·
k∑

h=1

(cLh − CALh−1
(P ))

=
2

2 + 5 + 22− 4− 10
· cL1

=
2

15
· 100

= 13

CAL2(P ) =
d̂L2

(
∑

l∈M,l≥k
d̂Ll −

∑
l∈M,l>k

p̂Ll)
·
k∑

h=1

(cLh − CALh−1
(P ))

=
5

5 + 22− 10
· (cL1 + cL2 − CAL1(P ))

=
5

17
· (100 + 80− 13)

=
5

17
· (167)

= 49

CAL3(P ) =
d̂L3

(
∑

l∈M,l≥k
d̂Ll −

∑
l∈M,l>k

p̂Ll)
·
k∑

h=1

(cLh − CALh−1
(P ))

=
22

22
· (cL1 + cL2 + cL3 − CAL1(P )− CAL2(P ))
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= 1 · (100 + 80 + 60− 13− 49)

= 178

Hence, CA(P ) = (13, 49, 178) ∈ RM+ . We have that
∑

k∈M CALk(P ) = 240 and thus is
an efficient allocation.

6.2 Bilateral flow problem

Let us now define the problem where we also model bilateral flow of electricity be-
tween the voltage levels. We refer to the problem as the bilateral flow problem.
For this problem we present one new rule, referred to as the downstream-cascading-
upstream-discounting rule. For this rule we first consider the standard cascade rule,
followed by the downstream-cascading-upstream-discounting rule. The reason for this
extension is that the currently employed cascade rule only considers the net electric-
ity downstream flow and ignores the upstream electricity flow. Let the elements N , L
be as defined for the electricity demand problem in Chapter 4. We now assume that
for each voltage level there are incoming and outgoing electricity flows. The incoming
flows are caused by the production of that level and by incoming flows from lower and
higher voltage levels. The outgoing flows are caused by the demand of that level and
by outgoing flows to lower and higher voltage levels. So also in this extension we as-
sume that each voltage level has its own production capacity. However, due to irregular
demand patterns of the different voltage levels, it could be that even though a voltage
level has enough demand capacity to foresee its own level, it still receives electricity from
lower and higher voltage levels. Because maybe at peak time the production capacity is
abundant, whereas in low time it is not, causing flow in both directions.

The bilateral flow problem is defined by

P = (N,L, f
in(p)
Lk

, f
in(Lk−1)
Lk

, f
in(Lk+1)
Li

, f
out(d)
Lk

, f
out(Lk−1)
Lk

, f
out(Lk+1)
Lk

, c),

where N is a finite set of agents and L is a partition of N , similar as for the electricity
demand problem. Let us now consider the other elements of the problem. For each
voltage level the total incoming electricity flow is given by

F inLk := f
in(p)
Lk

+ f
in(Lk−1)
Lk

+ f
in(Lk+1)
Lk

,

where

f
in(p)
Lk

denotes the electricity inflow coming from production of level Lk

f
in(Lk−1)
Lk

denotes the electricity inflow coming from level Lk−1

f
in(Lk+1)
Lk

denotes the electricity inflow coming from level Lk+1.

99



CHAPTER 6. EXTENSIONS OF THE ELECTRICITY DEMAND PROBLEM

For each voltage level the total outgoing electricity flow is given by

F outLk
:= f

out(d)
Lk

+ f
out(Lk−1)
Lk

+ f
out(Lk+1)
Lk

,

where

f
out(d)
Lk

denotes the electricity outflow going to the demand of level Lk

f
out(Lk−1)
Lk

denotes the electricity outflow going to level Lk−1

f
out(Lk+1)
Lk

denotes the electricity outflow going to Lk+1.

Note that f
in(Lk)
Lk+1 = f

out(Lk+1)
Lk

. So every incoming flow from another level is an outgoing
flow for that other level and the other way around. If a flow does not exist it equals
zero. We assume that no electricity losses take place and therefore for every voltage level
holds that

F inLk = F outLk
.

The level cost vector c = (cLk)k∈M , with cLk representing the cost of voltage level k is
defined by

cLk := aLk · F
in
Lk

+ bLk ,

with constants aLk , bLk ∈ R+ for k ≥ 1 and 0 otherwise and c ∈ RM+ .2 Note that F inLk can
be replaced by F outLk

. Let Cbf denote the class of bilateral flow problems. Let us further
assume that the downstream flow between two levels is greater than the upstream flow,

i.e. for all k > 1 it holds that f
in(p)
Lk

≤ fout(d)
Lk

We first consider the cascade rule for this problem. Also for this problem we employ
a recursive version of the cascade rule. As in the real-life employed cascade rule, the
demand of the level is considered and the net demand of the levels below. Thus, level
one has to pay

f
out(d)
L1

f
out(d)
L1

+ (f
out(L2)
L1

− f in(L2)
L1

)
· cL1

and
(f
out(L2)
L1

− f in(L2)
L1

)

f
out(d)
L1

+ (f
out(L2)
L1

− f in(L2)
L1

)
· cL1

is cascaded to level two and so on, where (f
out(L2)
L1

− f in(L2)
L1

) represents the net down-
stream electricity flow from level L1 to L2. More generally, the cascade rule is given by
the following formula:

CALk(P ) =
f
out(d)
Lk

f
out(d)
Lk

+ (f
out(Lk+1)
Lk

− f in(Lk+1)
Lk

)
·
k∑

h=1

(cLh − CALh−1
(P )),

2Also for this problem we take c as given, but in order to define the game we explicitely define c.
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for all P ∈ Cbf , all k ∈ M and CAL0(P ) = 0. Also for a bilateral flow problem the
cascade rule uses demand proportionality where the numerator defines the demand of
the level (outgoing flow to demand) and the denominator the net downstream electricity
flow.3 So the cascade rule here does not take the upstream flow into account yet, solely to
compute the net electricity downstream flow. Consider the following numerical example
for a computation of the cascade rule.

Example 6.2.1. Consider the situation depicted in figure 6.2. Let c = (cL1 , cL2 , cL3) =
(100, 80, 60).

L1

L2

L3

15

4

10

2

5

22

141

164

Figure 6.2: Electricity network with bilateral flow Numerical example.

We obtain the following allocation by application of the cascade rule,

CAL1(P ) =
f
out(d)
L1

f
out(d)
L1

+ (f
out(L2)
L1

− f in(L2)
L1

)
· cL1

=
2

2 + 14− 1
· 100

=
2

15
· 100

= 13

CAL2(P ) =
f
out(d)
L2

f
out(d)
L2

+ (f
out(L3)
L2

− f in(L3)
L2

)
· (cL1 − CAL1(P ) + cL2)

=
5

5 + 16− 4
· (100− 13 + 80)

=
5

17
· 167

3So the net downstream electricity flow of a level is defined by the outgoing flow to the demand of
that level plus the outgoing flow to the adjacent lower level minus the incoming flow from the adjacent
lower level.

101



CHAPTER 6. EXTENSIONS OF THE ELECTRICITY DEMAND PROBLEM

= 49

CAL3(P ) =
f
out(d)
L3

f
out(d)
L3

· (cL1 − CAL1(P ) + cL2 − CAL2(P ) + cL3)

=
22

22
· (100− 13 + 80− 49 + 60)

= 178

Hence, CA(P ) = (13, 49, 178) ∈ RM+ . Note that this is the same allocation vector as
obtained in example 6.1.1.

This example gives solely the cascade allocation vector. We introduce a new rule, namely
the downstream-cascading-upstream-discounting rule. This rule has to be exe-
cuted in two steps. In the first steps an allocation is computed by the cascade rule
as defined above, so first for union L1, then for union L2 until union Lm. Once the
complete allocation vector CA(P ) is known, the second step follows, namely upstream
discounting. In this step the levels are discounted for the electricity that flows up-
stream. Opposite of the downward cascading, for the discounting of the cost we start
with the most downstream level and proceed upstream. There are several options for the
discounting part. Let m be the maximum level of M , then xLm = CALm(P )−αLm with
xLm the cost share for union Lm and αLm ∈ R+ the discount factor for level Lm. This
αLm is then charged extra to level Lm−1. So in the end level Lk obtaines cost allocation
xLk = CALk(P ) + αLk+1

− αLk . We consider two options for the discount factor. Let
the discount factor αLk be

1. a discount factor with the upflow proportional to the production capacity:

α1
Lk

=
f
out(Lk−1)
Lk

f
in(p)
Lk

· cLk

2. a discount factor with the upflow proportional to the total flow through that level:

α2
Lk

=
f
out(Lk−1)
Lk

F inLk
· cLk .

Let αL0 = 0. The rule can be defined more formally as follows.

Definition 6.2.1. (Downward-cascading-upstream-discounting rule (CA-UD(P))) The
downward-cascading-upstream-discounting rule is given by

CA− UD(P )Lk = CALk(P ) + αLk+1
− αLk , (6.1)

for all P ∈ Cbf , all k ∈M and for αLk and CALk(P ) as defined above.
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Note that we propose only two options for the discount factor, but of course these two
are not exhaustive. In the example below it is shown that also this rule is efficient.

Example 6.2.2. Consider one more time the situation depicted in figure 6.2. Let c =
(cL1 , cL2 , cL3) = (100, 80, 60). We obtain the following allocations applying rule CA −
UD(P ) with α1:

CA− UD1
L3

(P ) = CAL3 −
f
out(L2)
L3

f
in(p)
L3

· cL3

= 178− 4

10
· 60

= 154

CA− UD1
L2

(P ) = CAL2 +
f
out(L2)
L3

f
in(p)
L3

· cL3 −
f
out(L1)
L2

f
in(p)
L2

· cL2

= 49 +
4

10
· 60− 1

4
· 80

= 53

CA− UD1
L1

(P ) = CAL1 +
f
out(L1)
L2

f
in(p)
L2

· cL2

= 13 +
1

4
· 80

= 33

The resulting allocation vector is (33, 53, 154) ∈ R3
+ and

∑
k∈M CA − UD1

Lk
(P ) = 240,

which is efficient. We obtain the following allocation applying rule CA − UD(P ) with
α2:

CA− UD2
L3

(P ) = CAL3 −
f
out(L2)
L3

F inL3

· cL3

= 178− 4

26
· 60

= 169

CA− UD2
L2

(P ) = CAL2 +
f
out(L2)
L3

F inL3

· cL3 −
f
out(L1)
L2

FL2

· cL2

= 49 +
4

26
· 60− 1

22
· 80

= 55
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CA− UD2
L1

(P ) = CAL1 +
f
out(L1)
L2

F inL2

· cL2

= 13 +
1

22
· 80

= 16

Application of this rule gives the vector (16, 55, 169) ∈ R3
+, which is also efficient.

In summary, in this chapter two possible extensions of the model of the electricity de-
mand problem and game are proposed. The first extension takes production capacities
of the voltage levels into account and the second extension takes production capacities
as well as bilateral flow between voltage levels into account. These extensions make
the models more complete than the electricity demand model and make it possible to
research new solution concepts, which might be useful for the future. Moreover, the
cascade rule could still be defined for both models. On the other hand, do these extra
features complicate the models.
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Chapter 7

Conclusion & discussion

In this chapter we start with a synopsis of the thesis, summarizing the key findings and
major points of every chapter. Thereafter we discuss some possible directions for future
research. During the writing of this thesis, many other models and frameworks were
considered. Some appeared more suitable than others for our problem for a variety of
reasons and objectives. Therefore, lastly we provide some frameworks and models that
were considered and might be useful for future research.

7.1 Synopsis

In Chapter 1 we introduced the motivation and the contribution of this thesis and pro-
vided some background information on the subject. In a research project in collaboration
with TNO we found that small-scale consumers are charged significantly more for their
electricity consumption than large-scale consumers. One important reason for this is
that grid costs are cascaded downwards to downstream voltage levels, as most of the
electricity flows from up- to downstream levels.

In the preliminaries in Chapter 2 we presented an introduction into the electricity sector,
in particular into the realization of the transmission tariffs and the allocation of the
transmission costs. We further provided some basic notions from cooperative game
theory and cost allocation. Subsequently in Chapter 3 we considered solutions concepts
and related properties for cost allocation problems, TU games and TU games with
coalition structure.

The main problem is defined in Chapter 4, namely the electricity demand problem. It
defines the problem of allocating the total cost of the electricity grid in a fair way over
the voltage levels and the associated unions of agents. For this problem we defined the
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level paying rule, the equal downstream rule and the cascade rule. All rules allocate a
cost share to unions of agents and not to individual agents. The latter rule is currently
employed and charges every union (or voltage level) proportional to its demand for the
cost of its own level and all upstream levels. This rule takes into account the demands
of the unions, the levels of the unions and costs of the levels. The equal downstream
rule does also take the responsibility of downstream unions for their upstream incurred
costs into account, but does not consider the demands of the unions, only the number of
unions. Finally, the level paying rule solely takes the level of a union into consideration
and charges each union its level cost. All three rules were formalised by means of
axiomatic characterizations. In the context of the electricity demand problem and the
rules discussed in this chapter, the cascade rule can be considered as the most fair rule.

In Chapter 5 we presented a cooperative cost game associated with the electricity demand
game. The characteristic function was analysed and split in additive parts. As the
Shapley value is an additive solution with nice properties it appeared a good fit for
this game, also due to the simplified expression. Moreover, due to concavity of the
characteristic function, the Shapley value was in the core and thereby provided a stable
allocation. As we were interested in cost shares for unions, we discussed a number of
union values. Most importantly the agent- and union-Shapley value and furthermore
the separable cost remaining benefit, the proportional, the egalitarian and the non-
cooperative union value. From these rules, the agent-Shapley value and the union-
Shapley value can be considered the best solutions for this game, in particular the
agent-Shapley value.

The electricity demand problem and game are a starting point in this research and
therefore in Chapter 6 some possible extensions of the model were proposed and briefly
discussed. These extensions incorporated production capacities of the voltage levels and
also bilateral flow of electricity between the voltage levels.

7.2 Future research

For future research we propose various directions.

• Extensions of the model: The model defined in this thesis is a starting point
for research on this topic. The model incorporates the standard, most important,
features of the transmission cost allocation in the electricity grid and allows for
applying appropriate cost allocation rules. By means of our model we are able to
analyse the currently used cascade rule, but we are not yet able to analyse new
rules that incorporate the bilateral flow between voltage levels. Due to the changes
on the production side of electricity, it would be interesting to have a more inclusive
model, that can also be used in view of the changes in the future. In Chapter 6 we
already provided some possible extensions of the model, there are however many
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more extensions possible. We could for example add producers as agents. We can
also endow the agents with more information, besides the demand and the voltage
level, such as the peak and low demand, the demand curve, the location and so on.
This extra information can provide more individual-oriented solution concepts.

• Cost allocation at the level of individual agents: In our model we consider
solution concepts that allocate cost shares to unions of agents. The reason for this
is that we focussed solely on one step in the currently employed cost allocation
method (see Chapter 1). For future research it would be very interesting to consider
solution concepts that allocate cost shares to individual agents. In this direction
two approaches can be considered. First, a game or problem can be defined for
each voltage level, such that the cost shares that are allocated to these levels can be
allocated amongst the agents attached to a voltage level by means of other solution
concepts. A second approach would be to redefine the entire model and analyse
solution concepts for individual agents directly on the problem or game, without
first allocating costs to unions of agents, e.g. Ramsey pricing. As there has to be
a distinction between agents based on some features, these solution concepts could
become quite complex as it would be desirable that this single rule satisfies many
different properties. In the first approach (the currently employed approach) there
is already a distinction between agents, namely the voltage level they are attached
to, such that the next step would be to determine what properties solution concepts
for each voltage level should obey. These solution concepts can differ per level and
be based on the main cost drivers of that voltage level. Another possibility is to
use the first approach, but redefine the partition of the agents, for example based
on location instead of voltage level. Now the total grid costs can first be allocated
to these new unions and thereafter be allocated amongst the agents within the
unions.

• Cooperation between producers and consumer: In Chapter 4 and 5 we
defined the problem and the cooperative game on the set of agents, representing the
consumers. In the future also a problem and especially a game could be defined on
the set of electricity producers, or on both. As an increasing number of consumers
also become producers, referred to as prosumers, more electricity flow on a local
scale occurs. In view of this it would be interesting to incorporate producers and
consumers to see if a more efficient cooperation can evolve, where consumers and
producers on a more local scale work together. When only considering producers,
it can be analysed how to obtain an efficient collaboration between producers, that
minimizes the costs.

• Introduction of producers tariff: By means of an extension of this model
we could analyse the introduction of a producers tariff. Currently the producers
tariff is set to zero and hence producers do not pay for the grid costs (Autoriteit
Consument en Markt, 2013). We could analyse the effect on the costs for the unions
and if we would use the model proposed in the previous item, including producers
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and consumers, we could also consider the effect on the cooperation between these
two groups.

• Ordered union values: In Chapter 5 we considered union values for the electric-
ity demand game. These union values however do not incorporate the order of the
partition. The ordering of the partition is implicitly modelled in the game, but not
in the unions value structure or corresponding properties. For future research it
would be interesting to elaborate on this chapter and define ordered union values.

• Other characteristic functions: Linking up to the above mentioned item, in
Chapter 5 the game could be defined differently. A characteristic function is not
uniquely defined for a problem and is dependent on the interpretation of the costs
for coalitions. In our game we assumed that the electricity grid is there and each
agent or union is charged for all the upstream levels it uses, even if it is the only
agent or union using the grid (stand-alone costs). Most likely however, the stand-
alone costs for unions or agents are in real-life lower than defined by our game. For
example in the situation where the electricity does not have to come from the most
upstream level, but is produced by production facilities on the same level. Hence,
one possibility is to redefine the game such that for example the stand-alone costs
for a union are the cost of its own level plus some extra amount to foresee in the
demand of that level, but without making use of other levels. An example of a
simplified version of the game is presented in Chapter 5, for which the problem as
well as the game were redefined.

• Cascade rule applications: A final suggestion for future work is to consider
other applications of the cascade rule. The rule has potential to be adapted for
and applied to other problems. It could for example be used in the polluted
river game of Ni and Wang (2007), when the demands are replaced by volumes of
pollution.

7.3 Relevant models and frameworks

In this chapter we dicuss some frameworks and models that were considered during the
writing of this thesis.

• Games with restrictions on possible coalitions: These types of games de-
fine restrictions on the set of feasible coalitions. The idea to restrict coalitions by
imposing a partial order on the agent set was first proposed by Faigle and Kern
(1992). Games with permission structure, introduced by Gilles et al. (1992), im-
pose some hierarchical order on the agents, such that there are agents who need
permission from certain other agents to enter a coalition. So the position of the
agent in the hierarchy determines its opportunities of joining a coalition. Related
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to these games are games on a graph with a communication structure. Agents in
this context can only form a coalition when they are connected in the subgraph, i.e.
connected subgraphs define the feasible coalitions. Thus the position of an agent
in the graph determines its possibilities of joining a coalition. Communication
structures were introduced by Myerson (1977) and are, amongst others, formally
described in Gilles (2010). As there exists a natural hierarchy in our model, we
considered these structures. For now we imposed no constraints on the feasible
coalitions, as in theory all voltage levels could decide to cooperate. It would how-
ever be possible to assume that every voltage level needs at least enough production
capacity and therefore is restricted in whom it may form a coalition with, since
most levels need to cooperate with the highest voltage level.

• Hub and spoke networks: Hub and spoke networks are commonly used to
describe transportation, mail delivery and telecommunication networks. A hub
and spoke network consists of hub nodes that are fully interconnected and spoke
nodes, that are solely connected to hub nodes. Flows from one spoke node to
another solely proceed via hub nodes. By means of these hub nodes, less links are
required and flows are concentrated resulting in the exploitation of economies of
scale. Cooperation between the agents is required to gain the advantages of the
network. The problem associated with these sort of networks concern assigning
hub nodes and allocating spoke nodes to hub nodes such that an optimal flow
between source and sink nodes is obtained. In the context of our problem we could
interpret the voltage levels as hub nodes and the agents connected to it as spoke
nodes. We could use the rules for cost allocation with respect to the use of the
number of hub nodes for a flow as an inspiration for the allocation of the cost
over the voltage levels, with respect to the use of the number of voltage levels.
However, literature on these networks mainly focusses on optimization of the flow
between the hubs and spokes to minimize costs, whereas our problem is not an
optimization, but solely an allocation problem. It would however be interesting
to describe the electricity network making use of the hub and spoke framework to
consider flow optimization and cost allocation. One of the difficulties is however
that electricity flow can not be directed. In Skorin-Kapov (1998), amongst others,
hub and spoke networks are considered.

• Network flow problems: Network flow problems concern the flow of a product
from a source to a sink, with possible restrictions along the way, such as capacitated
links. Many production allocation problems are defined by means of such networks.
Also in the electricity grid electricity is transmissioned over capacitated links from
sources to sinks. The main objective however in these problems is to optimize the
route of the flow, such that costs are minimized. In the electricity network it is
hard to trace electricity flows as they do not take a fixed route, which makes this
type of problems different.

• Games with externalities (partition function form games): In original co-
operative game theory it is assumed that the worth of a coalition only depends on
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the members of the coalition. However, in games with externalities it is assumed
that externalities (positive or negative) can affect the worth of a coalition by creat-
ing a dependency between agents in and outside the coalition. For example if there
is a limited resource, which is consumed by one coalition, then it is not available
to another coalition. Games with externalities can be modelled by means of games
in partition function form. A partition function is a characteristic function that
assigns a worth to a pair, consisting of a coalition and the corresponding coalition
structure containing that coalition. In our situation, all agents are in need of elec-
tricity, regardless of whether they are in the coalition or not and hence, the cost for
a coalition may be defined such that it depends on coalition formation of the agents
outside the coalition. For example, if upstream levels cooperate, it might decrease
the total costs such that downstream levels experience positive externalities.

• Bankruptcy problem: A bankruptcy problem can be used to allocate the costs
of the electricity grid from another perspective. Namely, what should agents pay
if we know their maximum willingness to pay to stay connected to the grid. In
order to quantify agents’ willingness to pay we instead state that each agent has
an alternative option for electricity, which has a certain cost attached to it. For
example, if an agent could be completely self-sufficient by means of solar panels
for e 100 per month, this could be considered as the agent’s maximum willingness
to pay. This problem can be modelled by means of a bankruptcy problem. In a
bankruptcy problem agents have a claim for a divisible resource, often referred to
as the estate, that has to be allocated amongst the agents. There is however not
enough of the resource to provide for all claims. The problem is how to allocate
the resource amongst the agents. More formally, a bankruptcy problem is a triple
(N, c,E), where N = {1, ..., n} is the set of agents, c = (ci)i∈N ∈ RN+ is the vector
of claims and E ∈ R+ is the estate such that 0 ≤ E ≤ c1 + ...+ cn (Aumann and
Maschler, 1985). The bankruptcy problem can be adapted as follows: each agent
has a demand and a claim, namely the cost of its alternative electricity source. The
estate in this situation is total grid cost. In this way, the bankruptcy problem can
be defined by the quadruple (N, d,A,C), where N is the set of agents, d = (di)i∈N
is the vector of demands of the agents in N and A = (Ai)i∈N ∈ RN+ is the vector
of costs of the alternatives for each agent i ∈ N and C ∈ R+ is the total cost
of the grid that has to be allocated, such that 0 ≤ C ≤ A1 + ... + An. For each
voltage level there exist different alternatives. At the higher voltage levels, agents
can construct a direct line1, or agents could become involved in wind energy or
engage in a closed distribution system.2 To approach the problem in this way the
alternatives for all agents should be quantified. Based on the cost of its alternative
option and the demand of an agent, the aim is to find an allocation of the total cost
of the electricity grid, such that no agent pays more than its alternative option.
Solutions for the bankruptcy problem can be adapted and applied to this problem.

1A direct line is a direct connection with a producers without the need of intermediaries.
2A closed distribution system is a closed grid which should be within a geographically defined area,

with a maximum of 500 non-households consumers.
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Illustrative example

This example represents an illustration of the Dutch electricity grid. The numbers for
the costs and the number of consumers are estimates based on the total revenues of the
regional network operator per voltage level and the number of connections, respectively.
For more information we refer to ACM (2014). The demands are estimates based on
the total electricity consumption in the Netherlands and the findings in figure 1.2, p.
4. Note that the Extra-High Voltage is not taken into account, since we only focus on
the revenues of the regional network operators and not the national network operator
(TenneT).3 The cascade method is in real-life applied separately for each of the network
operators. However, we consider all regional network operators together. Thus, this
illustration is not an accurate representation, but does give an indication of the range
of the numbers. Moreover, the cost allocation vector obtained by the cascade rule is
the original total starting revenue in 2013 for all regional network providers per voltage
level. It should also be noted that in real-life not for all voltage levels the same electricity
units are used to cascade the costs, but for now we use consumption (kWh) as the single
electricity unit for all the levels.4 For the original employed electricity units per level
we refer to Autoriteit Consument en Markt (2013). Lastly, as we do not know the
consumption (demand in kWh) per consumer, i.e. vector d, we give instead solely the
level demand vector d̂. Consider the following elements of the problem P ∈ Ced:

• N = {1, 2, ...; 10, 565, 183}

• L = {L1, L2, L3, L4, L5, L6} with |L1| = 18, |L2| = 114, |L3| = 72, |L4| = 299, |L5| =
23, 727, |L6| = 10.5mn

• d̂ =(29bn, 4bn, 7bn, 18bn, 4bn, 20bn)5

• c̄ =(44mn, 503mn, 395mn, 469mn, 648mn, 359mn)

3Recall that Tennet possesses the EHS and some of the HS networks.
4For some levels the capacity (kW) is used instead of the consumption.
5The abbreviation mn denotes million (106) and the abbreviation bn billlion (109).
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The figure below gives a representation of the Dutch electricity grid and the correspond-
ing level demand vector.

L1 : HS

L2 : TS

L3 : HS − TS/MS

L4 : MS

L5 : MS − LS

L6 : LS

29bn kWh

4bn kWh

7bn kWh

18bn kWh

4bn kWh

20bn kWh

Figure 1: The Dutch electricity grid An illustrative example of the current cost
allocation over the voltage levels in the Dutch electricity grid.

Applying the cascade rule for problem P ∈ Ced gives the following allocation vector:

- CAL1(P ) = e 15mn

- CAL2(P ) = e 39mn

- CAL3(P ) = e 125mn

- CAL4(P ) = e 523mn

- CAL5(P ) = e 224mn

- CAL6(P ) = e 1,474mn

From this example follows that the consumers attached to the lowest voltage level LS,
consume 20bn kWh, which equals 24% of the total consumption and the cost share they
are charged is e 1.5bn, which amounts to 61% of the total grid costs.
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Proof theorem 4.3.1

Proof. (i) Let l(maxN) = m. We prove that the following properties are satisfied by
the level paying rule for P ∈ Ced:

EF Proved in theorem 4.4.1.

FE Follows from Efficiency (EF).

NCP Proved in theorem 4.4.1.

IDC Let P 1, P 2 ∈ Ced with P 1 = (N,L, d, c1) and P 2 = (N,L, d, c2) such that for any
k ∈ M and h < k holds that c1

Lh
= c2

Lh
. We want to show that for all l < k we

have LPLl(P
1) = LPLl(P

2). For all l < k we have

LPLl(P
1) = c1

Ll

= c2
Ll

(l < k)

= LPLl(P
2).

NUC Assume that cLh = 0 for all h ≤ k. We want to show that LPLk(P ) = 0:

LPLk(P ) = cLk
= 0 (h ≤ k)

NUCO Assume that cLh = 0 for all h < l. Now for all k ≥ l ∈M we have:

LPLk(P ) = cLk
= LPLk(N \ ∪h<kLh, L \ {Lh}h<k, (di)i∈N\∪h<kLh , (cLf )Lf∈L\{Lh}h<k).

As LP does not depend on any other level, this property is also satisfied.

C-MON Let P 1, P 2 ∈ Ced with P 1 = (N,L, d, c1) and P 2 = (N,L, d, c2) such that for all
h ∈M holds that c1

Lh
≤ c2

Lh
. We want to show that LP (P 1) ≤ LP (P 2):

LPLk(P 1) = c1
Lk

≤ c2
Lk

= LPLk(P 2),

for all k ∈M .

ACN Let P 1, P 2 ∈ Ced with P 1 = (N,L, d, c) and P 2 = (N ij , Lij , dij , c) such that agents
i, j ∈ Lk colluded. As LPLk(P ) = cLk , this collusion clearly has no effect on the
cost share of union Lk.
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DUCN-I Let P 1, P 2 ∈ Ced with P 1 = (N,L, d, c) and P 2 = (N,LLkLl , d, cLkLl) a problem
where unions Lk and Ll colluded. Then for all h ∈M such that h < k, l , we want
to show that LPLh(P 1) = LPLh(P 2):

LPLh(P 1) = cLh

= cLkLlLh
(h ∈M \ {k, l})

= LPLh(P 2).

Note that this collusion has no effect on upstream level costs and therefore the
cost shares of voltage levels higher than the colluded unions are not affected.

UCN-I Let P 1, P 2 ∈ Ced with P 1 = (N,L, d, c) and P 2 = (N,LLkLl , d, cLkLl) a prob-
lem where unions Lk and Ll colluded. Then we want to show that LPLk(P 1) +
LPLl(P

1) = LPLk(P 2).

LPLk(P 2) = cLkLlLk

= cLk + cLl

= LPLk(P 1) + LPLl(P
1)

DUCN-II Follows from union collusion neutrality-II (UCN-II)

UCN-II Let P 1, P 2 ∈ Ced with P 1 = (N,L, d, c) and P 2 = (N,LLl...Lm , d, cLl...Lm) with
m = l(maxN) such that unions Ll to Lm colluded. We want to show that for all
k ∈M we have

LPLk(P 2) =

{
LPLk(P 1) if k < l∑m
h=k LPLh(P 1) otherwise.

If k < l, then

LPLk(P 2) = cLl...LmLk

= cLk (k ∈M \ {l, ..,m})
= LPLk(P 1)

If k ≥ l, then

LPLk(P 2) = cLl...LmLk

= cLk + ...+ cLm

=

m∑
h=k

LPLh(P 1).

C-ADD Let P 1, P 2, P 3 ∈ Ced with P 1 = (N,L, d, c1), P 2 = (N,L, d, c2) and P 3 = (N,L, d, c1+
c2). For all k ∈M we want to show that LPLk(P 1) + LPLk(P 2) = LPLk(P 3):

LPLk(P 1) + LPLk(P 2) = c1
Lk

+ c2
Lk

= LPLk(P 3)
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C-LIN Proved in theorem 4.4.1.

(ii) Let l(maxN) = m. We show that the following properties are not satisfied by the
level paying rule for some P ∈ Ced by means of simple counterexamples:

NDP Consider the following example: let P ∈ Ced with P = (N,L, d, c) , where N =
{1, 2}, L = {{1}, {2}}, d = (0, 20) and c = (20, 30). We have that d̂L1 = 0.
However, LPL1(P ) = cL1 = 20 6= 0.

RAN Consider the following example: let P ∈ Ced with P = (N,L, d, c) , where N =
{1, 2}, L = {{1}, {2}}, d = (10, 20) and c = (64, 0). We have that d̂L1 = 10 <
20 = d̂L2 . However, LPL1(P ) = 64 > 0 = LPL2(P ).

ET Consider again P ∈ Ced as defined in example 4.1.1 and the applied level paying
rule to P in example 4.2.1. We have that d̂L2 = 30 = d̂L3 . However, LPL2(P ) =
125 > 62 = LPL3(P ).

RED Similar proof as for equal treatment (ET).

Since the demands do not matter for the equal downstream rule, all rules above
are not satisfied.

D-SYM Consider the following : let P 1 ∈ Ced with P 1 = (N,L, d, c1) , where N = {1, 2},
L = {{1}, {2}}, d = (10, 10) and c1 = (64, 0). For levels 1, 2 ≥ 1 with d1 = d2 = 10
we have

LPL1(P 1) = 64

6= 0

= LPL2(P 1).

DR Consider the following example: let P 1 ∈ Ced with P 1 = (N,L, d, c1) , where
N = {1, 2}, L = {{1}, {2}}, d = (20, 10) and c1 = (64, 0). For levels 1, 2 ≥ 1 we
have

LPL1(P 1) = 64

6= 0

= LPL2(P 1)

DDPR Consider again the following example: let P ∈ Ced with P = (N,L, d, c) , where
N = {1, 2}, L = {{1}, {2}}, d = (20, 10) and c = (64, 0). For levels 1, 2 ≥ 1 we
have

LPL1(P ) = 64

6= 20

30
· 64
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AN Consider P ∈ Ced as defined in example 4.1.1 and the applied level paying rule to P
in example 4.2.1. Let π be a permutation on M such that P π = (N, πL, πd, c) with
πL = {L2, L1, L3} and πd = (d3, d4, d1, d2, d5, d6, d7, d8), so πd̂ = (d̂L2 , d̂L1 , d̂L2).
It follows,

LPπ(L2
)(P π) = 230

6= 125

= LPL2(P )

Note that anonymity is not satisfied because the level costs are not permuted.

US-I Consider again the following example: let P ∈ Ced with P = (N,L, d, c) , where
N = {1, 2}, L = {{1}, {2}}, d = (20, 10) and c = (64, 0). For levels 1, 2 ≥ 1 we
have

LPL1(P ) = 64

6= 20

30
· 64

US-II Follows from union standardness-I (US-I).

Proof theorem 4.3.2

Proof. (i) Let l(maxN) = m. We prove that the following properties are satisfied by
the equal downstream rule for all P ∈ Ced:

EF Proved in theorem 4.4.2.

FE Follows from Efficiency (EF).

IDC Let P 1, P 2 ∈ Ced with P 1 = (N,L, d, c1) and P 2 = (N,L, d, c2) such that for any
k ∈ M and h < k holds that c1

Lh
= c2

Lh
. We want to show that for all l < k we

have EDLl(P
1) = EDLl(P

2). Let l < k, we have that

EDLl(P
1) =

l∑
h=1

1

m− h+ 1
· c1
Lh
.
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From h ≤ l and l < k follows that h < k and therefore c1
Lh

= c2
Lh

, hence we obtain,

l∑
h=1

1

m− h+ 1
· c1
Lh

=

l∑
h=1

1

m− h+ 1
· c2
Lh

EDLl(P
1) = EDLl(P

2)

NUC Proved in theorem 4.4.2.

NUCO Assume that cLh = 0 for all h < l. For all k ≥ l ∈M we have:

EDLk(P ) =

k∑
h=1

1

m− h+ 1
· cLh

=
1

m− k + 1
· cLk (cLh = 0|h < k)

=
k∑

h=k

1

m− h+ 1
· cLh

= EDLk(N \ ∪h<kLh, L \ {Lh}h<k, (di)i∈N\∪h<kLh , (cLf )Lf∈L\{Lh}h<k).

C-MON Let P 1, P 2 ∈ Ced with P 1 = (N,L, d, c1) and P 2 = (N,L, d, c2) such that for all
h ∈M holds that c1

Lh
≤ c2

Lh
. We want to show that ED(P 1) ≤ ED(P 2):

EDLk(P 1) =
k∑

h=1

1

m− h+ 1
· c1
Lh

≤
k∑

h=1

1

m− h+ 1
· c2
Lh

(c1
Lh
≤ c2

Lh
)

= EDLk(P 2)

RED Let P ∈ Ced such that d̂Lh = d̂Lk and h < k. We want to show that for h, k ∈ M
it holds that EDLh(P ) ≤ EDLk(P ):

EDLh(P ) =
h∑
l=1

1

m− l + 1
· cLl

≤
h∑
l=1

1

m− l + 1
· cLl +

k∑
l=h+1

1

m− l + 1
· cLl

=
k∑
l=1

1

m− l + 1
· cLl

= EDLk(P )
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Note that RED is not dependent on the demands, but a downstream level can
never be charged more than an upstream level according to this rule and therefore
RED is satisfied. So the demand condition is not necessary for the ED rule to
satisfy this property. The same applies to the next property.

D-SYM Let P l ∈ Ced with P l = (N,L, d, cl) such that cl = (0, ..., 0, cLl , 0, ..., 0) for l ∈ M .
We want to show that for all h, k ≥ l such that d̄Lk = d̄Lh we have EDLh(P l) =
EDLk(P l):

EDLh(P l) =
h∑
g=1

1

m− g + 1
· cLg

=
1

m− l + 1
· cLl (h ≥ l)

=
k∑
g=1

1

m− g + 1
· cLg (k ≥ l)

= EDLk(P l)

DR Proved in theorem 4.4.2.

ACN Let P 1, P 2 ∈ Ced with P 1 = (N,L, d, c) and P 2 = (N ij , Lij , dij , c) such that agents
i, j ∈ Lk colluded. Then for k ∈M we want to show that: EDLk(P 1) = EDLk(P 2).
For k ∈M we have

EDLk(P 1) =

k∑
h=1

1

m− h+ 1
· cLh

= EDLk(P 2).

The equal downstream rule is dependent on the number of downstream unions,
not on the number of downstream agents and therefore this property is satisfied.

C-ADD Let P 1, P 2, P 3 ∈ Ced with P 1 = (N,L, d, c1), P 2 = (N,L, d, c2) and P 3 = (N,L, d, c1+
c2). For all k ∈M we want to show that EDLk(P 1) + EDLk(P 2) = EDLk(P 3):

EDLk(P 1) + EDLk(P 2) =

k∑
h=1

1

m− h+ 1
· c1
Lh

+
k∑

h=1

1

m− h+ 1
· c2
Lh

=
k∑

h=1

1

m− h+ 1
· (c1

Lh
+ c2

Lh
)

= EDLk(P 3)

C-LIN Proved in theorem 4.4.2.
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(ii) Let l(maxN) = m. We show that the following properties are not satisfied by the
equal downstream rule for some P ∈ Ced by means of simple counterexamples:

NDP Consider the following example: let P ∈ Ced with P = (N,L, d, c) , where N =
{1, 2}, L = {{1}, {2}}, d = (0, 10) and c = (20, 30). We have that d̂L1 = 0.
However, EDL1(P ) = 1

m · cL1 = 1
2 · 20 6= 0.

NCP Let P ∈ Ced with P = (N,L, d, c) , where N = {1, 2}, L = {{1}, {2}}, d = (20, 10)
and c = (64, 0). For level 2 ∈M we have that cL2 = 0, but

EDL2(P ) =
2∑

h=1

1

m− h+ 1
· cLh

=
1

2
· 64 + 0

= 32 > 0.

RAN Consider P ∈ Ced as defined in example 4.1.1 and the applied equal downstream
rule to P in example 4.2.2. We have that d̂L1 = 50 > 30 = d̂L2 . However,
EDL1(P ) = 77 < 139 = EDL2(P ).

ET Consider again P ∈ Ced as defined in example 4.1.1 and the applied equal down-
stream rule to P in example 4.2.2. We have that d̂L2 = 30 = d̂L3 , whereas
EDL2(P ) = 139 < 201 = EDL3(P ).

DDPR Consider the following example: let P ∈ Ced with P = (N,L, d, c) , where N =
{1, 2}, L = {{1}, {2}}, d = (20, 10) and c = (64, 0). For levels 1, 2 ≥ 1 we have

EDL1(P ) =
1

2
· 64

6= 20

30
· 64.

DUCN-I Consider the following example: Let P 1, P 2 ∈ Ced with P 1 = (N,L, d, c) , where
N = {1, 2, 3}, L = {{1}, {2}, {3}}, d = (20, 10, 10) and c = (10, 20, 15). Let
P 2 = (N,LL2L3 , d, cL2L3), where N = {1, 2, 3}, L = {{1}, {2, 3}} and c = (10, 35).

EDL1(P 1) =
1

3
· 10

6= 1

2
· 10

= EDL1(P 2).
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UCN-I Consider P ∈ Ced as defined in example 4.1.1 and the applied equal downstream
rule to P in example 4.2.2. Let P 1 ∈ Ced be also as defined in example 4.1.1, but
such that P 1 = (N,LL1L2 , d, cL1L2) with LL1L2 the partition where unions L1 and
L2 colluded such that LL1L2

L1
= L1 ∪ L2 and cL1L2

L1
= cL1 + cL2 = 355. We have

EDL1(P ) + EDL2(P ) = 77 + 139

= 216

6= 177.5

=
1

2
· 355

=
1

m
· cL1L2
L1

= EDL1(P 1).

DUCN-II Consider the example as defined for DUCN-I. We have that,

EDL2(P 2) =
1

2
· 10 + 35

= 40

6= 42

= (
1

3
· 10 +

1

2
· 20) + (

1

3
· 10 +

1

2
· 20 + 15)

= EDL2(P 1) + EDL3(P 1)

UCN-II Follows from downstream union collusion neutrality-II (DUCN-II).

AN Consider P ∈ Ced as defined in example 4.1.1 and the applied equal downstream
rule to P in example 4.2.2. Let π be a permutation on M such that P π =
(N, πL, πd, c) with πL = {L2, L1, L3} and πd = (d3, d4, d1, d2, d5, d6, d7, d8), so
πd̂ = (d̂L2 , d̂L1 , d̂L2). It follows,

EDπL2(P π) =
1

3
· 230

= 77

6= 139

=
1

3
· 230 +

1

2
· 125

= EDL2(P )

Note that anonymity is not satisfied because the levels are not permuted.

US-I Consider the following example: let P ∈ Ced with P = (N,L, d, c) , where N =
{1, 2}, L = {{1}, {2}}, d = (20, 10) and c = (64, 0). For levels 1, 2 ≥ 1 we have

EDL1(P ) =
1

2
· 64
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= 32

6= 20

30
· 64.

US-II Follows from union standardness-I (US-I).
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Elaboration example 5.1.2

vfix(2) =

l(max {2})∑
k=1

bLk

=
1∑

k=1

bLk

= bL1

= 150

vvar(2) =

l(max {2})∑
k=1

aLk · d̄Lk

=
1∑

k=1

aLk · d̄Lk

= aL1 · d2

= 5 · 5
= 25

vfix(2, 3) =

l(max {2,3})∑
k=1

bLk

=

l(3)∑
k=1

bLk

=
2∑

k=1

bLk

= bL1 + bL2

= 150 + 100

= 250

vvar(2, 3) =

l(max {2,3})∑
k=1

aLk · d̄Lk

=

l(3)∑
k=1

aLk · d̄Lk

=

2∑
k=1

aLk · d̄Lk

= aL1 · (d2 + d3) + aL2 · d3

= 5 · 25 + 4 · 20

= 205
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vfix(1, 2, 3) =

l(max {1,2,3})∑
k=1

bLk

=

l(max {3})∑
k=1

bLk

=
2∑

k=1

bLk

= bL1 + bL2

= 250

vvar(123) =

l(max {1,2,3})∑
k=1

aLk · d̄Lk

=

l(3)∑
k=1

aLk · d̄Lk

=
2∑

k=1

aLk · d̄Lk

= aL1 · (d1 + d2 + d3) + aL2 · (d3)

= 5 · 35 + 4 · 20

= 255
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Notation

α1, α2 = discounting factors
a = (aLk)k∈M = vector of constants for the variable part of the level cost vector
b = (bLk)k∈M = vector of constants for the fixed part of the level cost vector
CA(P ) = the cascade rule
CA− UD(P ) = the downstream-cascading-upstream-discounting rule
c = (cLk)k∈M = the level cost vector
C(d) = total cost of the grid
Cbf = class of bilateral flow problems
Ced = class of electricity demand problems
Cedp = class of electricity demand-production problems
d = (di)i∈N = demand vector of the agents in N

d̂ = (d̂Lk)k∈M = demand vector of the unions in M
d̄ = aggregated demand vector with d̄ ∈ RM+
ED(P ) = equal downstream rule
F inLk , F

out
Lk

= total infow to or outflow from level Lk
GPed = class of electricity demand games
L = partition of N
l(i) = level of agent i such that l(i) ∈M
l(maxS) = the level of a greatest element of S
Lk = the k -th level/union in the network
LP (P ) = level paying rule
M = set of unions/levels
N = set of agents
p = (pi)i∈N = production vector of the agents in N
p̂ = (p̂Lk)k∈M = production vector of the unions in M
Sha(N, v, L) = agent Shapley value
Shu(N, v, L) = union Shapley value
v(Lk) = stand-alone cost of level Lk
vfix(S) = fixed characteristic function for subset S ⊆ N
vvar(S) = variable characteristic function for subset S ⊆ N
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L. Olmos and I. J. Pérez-Arriaga. A comprehensive approach for computation and
implementation of efficient electricity transmission network charges. Energy Policy,
37(12):5285–5295, Dec. 2009.

K. M. Ortmann. The proportional value for positive cooperative games. Mathematical
Methods of Operations Research (ZOR), 51(2):235–248, Apr. 2000.

G. Owen. Values of Games with a Priori Unions. In R. Henn and O. Moeschlin, editors,
Mathematical Economics and Game Theory SE - 7, volume 141 of Lecture Notes in
Economics and Mathematical Systems, pages 76–88. Springer Berlin Heidelberg, 1977.
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