
Modelling Syntactic and Semantic Tasks with
Linguistically Enriched Recursive Neural Networks

MSc Thesis (Afstudeerscriptie)

written by

Jonathan Mallinson
(born December 29, 1989 in Ipswich, United Kingdom)

under the supervision of Dr Willem Zuidema, and submitted to the Board
of Examiners in partial fulfillment of the requirements for the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:
May 13, 2015 Dr Jakub Szymanik

Dr Ivan Titov
Dr Henk Zeevat
Dr Willem Zuidema



Abstract

In this thesis a compositional distributional semantic approach, the Recursive Neural

Network, is used to syntactically-semantically compose non-symbolic representations of

words. Unlike previous Recursive Neural Network models which use either no linguistic

enrichment or significant symbolic syntactic enrichment, I propose minimal linguistic

enrichments which are both semantic and syntactic. I achieve this by enriching the

Recursive Neural Networks’ models with core syntactic/semantic linguistic types: head,

argument and adjunct. This approach brings together formal linguistics and compu-

tational linguistics, as such I give a broad account of these theories. The syntactic

understanding of the model is tested by a parsing task and the semantic understanding

is tested by a paraphrase detection task. The results of these tasks not only show the

benefits of linguistic enrichment but also raise further questions of study.



Acknowledgements

I would first like to thank my supervisor Jelle Zuidema for not only suggesting the

topic of my thesis but also providing support throughout my thesis period. I thank the

members of my thesis committee: Ivan Titvo, Henk Zeevat and Jakub Szymanik, who

took the time to read my thesis and provide feedback. Furthermore, I would also like

to thank Tanja Kassenaar and Fenneke Kortenbach for arranging my defense at short

notice.

Cuong Hoang, Jo Daiber, Ehsan Khoddammohammadi, Phong Le and Ivan Titov

provided invaluable technical help and advice, for which I would like to thank them.

I would also give special thanks to Nikolas Nisidis, Kuan Ko-Hung and Yuning Feng

who provided feedback on my thesis presentation thus subjecting themselves to my

presentation twice.

While writing my thesis, my time in Amsterdam was made all the more enjoyable by

my flatmates: Eefje Schut, Marijn Aerts, Yuning Feng, Ciyang Qing, Jingting Wu, and

my friends from the ILLC and CWI, creating a wonderful atmosphere in both my life

and studies.

A final thank you goes to my supportive family: Keren, Steve and Sarah.

iii



Contents

Abstract ii

Acknowledgements iii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Symbolic Natural Language 4

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Computational syntactic parsing . . . . . . . . . . . . . . . . . . . 5

2.3 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Montague Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.2 Statistical Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Language Without Symbols 10

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Distributional lexical semantics . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3.2 Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 Compositional distributional semantics . . . . . . . . . . . . . . . . . . . . 15

3.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4.2 Composition by vector mixtures . . . . . . . . . . . . . . . . . . . 16

3.4.3 Composition with distributional functions . . . . . . . . . . . . . . 16

3.4.3.1 Combined Distributional and Logical Semantics . . . . . 16

3.4.3.2 Tensor approach . . . . . . . . . . . . . . . . . . . . . . . 17

3.4.4 Summary of approaches . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Recursive Neural Network 19

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 Recursive Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

iv



v

4.3.2 Mapping words to syntactic/semantic space . . . . . . . . . . . . . 24

4.3.3 Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3.3.1 Parsing with RNN . . . . . . . . . . . . . . . . . . . . . . 26

4.3.4 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3.4.1 Max-Margin estimation . . . . . . . . . . . . . . . . . . . 28

4.3.4.2 Gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3.4.3 Backpropagation Through Structure . . . . . . . . . . . . 30

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Enriched Recursive Neural Networks 33

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1.1 Head . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.1.2 Arguments and Adjuncts . . . . . . . . . . . . . . . . . . . . . . . 35

5.1.3 Annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1.4 Algorithmic changes . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2.1 Reranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2.2 Binarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 Implementation and Evaluation 42

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.2 Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.3 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.3.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.3.2 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.3.3 Initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.3.3.1 Baby steps . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.3.4 Cross validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.4.1 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.5 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.5.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.6 Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7 Conclusion 56

7.1 Closing remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

A Cross validation 58

B Overview of alternative RNN models 60

B.1 Context-aware RNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

B.2 Category Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

B.3 Semantic Constitutionality through Recursive Matrix-Vector Spaces . . . 61

B.4 Inside Outside . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

C Collins rules 63



vi

D Treebank sample 66

Bibliography 70



Chapter 1

Introduction

1.1 Motivation

The study of natural language is a diverse but fruitful field of research which spans

multiple disciplines. However, within this thesis I will focus my interest on the works

of both formal linguistics and computational linguistics. Computational linguistics gen-

erally takes a task-based approach, building a model which best quantitatively fulfils a

particular task. Formal linguistics on the other hand is phenomenon-driven and, as such,

seeks to explain a particular phenomenon. Formal linguistics is interested in developing

a theory that captures all the details and edge cases of the phenomenon. Computational

linguistics is reliant on machine learning techniques to capture the phenomenon and

generally finds it difficult to capture edge cases; instead the focus is on capturing the

common cases (fat head) of the problem. My approach tries to find a middle ground

between these two groups, where the framework of the model fits within linguistic the-

ories (linguistically justified). However, the model learns on a dataset and is evaluated

on standard computational linguistic tasks - trying to solve the fat head of the problem.

Due to the complexity of natural language it is often decomposed into several distinct

modules: lexical, morphological, syntactic and semantic/pragmatic, as seen in figure 1.1

(Pinker, 1999). Within this thesis I intend to produce a computational model of syntax,

semantics and their interface. Not only are syntax and semantics core to language, but

computational models of syntax and semantics have been used in many different NLP

approaches, including: machine translation (Yamada and Knight, 2001), semantic role

labelling (Surdeanu and Turmo, 2005), question answering (Lin and Pantel, 2001) and

sentiment analysis (Socher et al., 2012).

Recently, approaches to modelling language have been split into two camps: symbolic

and non-symbolic. Within formal linguistics the majority of frameworks and models are

1



Chapter 1. Introduction 2

Figure 1.1: Models of language, as provided by Pinker (1999)

symbolic, partially due to the difficulty of working with non-symbolic models. Com-

putational linguistic approaches, however are more evenly split between symbolic and

non-symbolic approaches. I take a non-symbolic approach, due to the inherit flexibility

it offers. To do so I draw from the connectionist paradigm and use a deep learning

neural network as the basis of my model. Not only has deep learning seen an increase

in power and attention in recent years but also connectionism offers a step towards

neural-plausible models of language.

To encourage a linguistically-justified approach the model will fulfil a series of re-

quirements. First, the approach will be a joint model of syntax and semantics. A joint

model avoids the problem found within stochastic pipeline models (Zeevat, 2014), as

follows. If a pipeline has enough modules, then even if each individual module gives a

high likelihood, the likelihood of the entire interpretation is low. Consider a pipeline

of the five modules of language where each module gives a 0.8 likelihood to the highest

scoring interpretation of an utterance, we then obtain 0.85 = 0.33. This low confidence

of understanding the utterance does not match up well against personal experience of

language. Also, a joint model provides an explicit interface between syntax and seman-

tics allowing information from one to assist the other, enriching the model. Secondly,

the model will adhere to the principle of composition where the semantic meaning of

the utterance is taken from the meaning and interactions of the individual words as

determined by a lexicon and syntactic structure.

These requirements motivate a compositional distributional semantic approach, where



Chapter 1. Introduction 3

an approach called the Recursive Neural Network is used to syntactically-semantically

compose non-symbolic representations of words. Recursive Neural Networks are a gen-

eral case of the popular machine learning framework: the Recurrent Neural Network.

However, unlike Recurrent Neural Networks which model temporal aspects, Recursive

Neural Networks can model structure; in this case they will model the semantic-syntactic

structure of an utterance (Baldi and Pollastri, 2003). Although Recursive Neural Net-

work have previously been used to model syntax and semantics, I try to fill a hole left

in the literature. Previously, Recursive Neural Networks models have used either no

linguistic enrichment (Socher et al., 2010) or significant syntactic enrichment (Socher

et al., 2013) which brought the model back towards a symbolic approach. I instead pro-

pose linguistic enrichment which is both semantic and syntactic but also less complex

than previous approaches. I achieve this by enriching the Recursive Neural Networks

with core syntactic/semantic linguistic types.

1.2 Thesis outline

The thesis is split into six additional chapters. I start with an introduction to symbolic

approaches to syntax and semantics. I give formal linguistic approaches to syntax, then

computational linguistic realisations of these approaches. Next, I address semantics with

a focus on Montague grammar from formal linguistics, which is then contrasted against

semantic role labelling found within computational semantics. Chapter three focuses

on non-symbolic distributional semantic approaches to lexical semantics before moving

on to compositional distributional semantics. I start chapter three by developing the

motivation for distributional semantics before giving a simple example of a possible dis-

tributional semantic approach. I next give possible extensions to this model including

how distributional semantics can be incorporated into multi-word settings forming com-

positional distributional semantics. Within the fourth chapter I introduce the Recursive

Neural Network. To do so I first outline connectionism and multiple types of neural

networks. I then discuss the Recursive Neural Network and how it is used within my

approach. The fifth chapter discusses my extension of the Recursive Neural Network. I

provide both the motivation for my approach and the specifics of the extension. Chapter

six contains the implementational details of my approach and the results achieved by

it. I include information regarding both the syntactic parsing task and the semantic

paraphrase tasks taken, as well as a qualitative analysis of my models. Finally I con-

clude with the achievements of this thesis as well as providing an outlook into further

developments.



Chapter 2

Symbolic Natural Language

2.1 Introduction

Within this chapter I will outline previous work on syntax and semantics, partially

due to my reliance on these works and partially to later contrast my approach against

them. I will first outline linguistic syntactic theories, both within the generative and

Tesniére tradition. I then give an account of a computational implementation of the

generative approach, the probabilistic context-free grammar. I next discuss semantics,

first introducing the iconic Montagovian tradition which heavily influences my model.

This is then compared to the popular semantic role labelling approach found within

computational linguistics.

2.2 Syntax

Syntax is one of the most studied modules of language and as such has a wide range of

theoretical explanations. Within my thesis I will follow the generative tradition, where

syntax defines an internal treelike syntactic structure composed of phrases for an utter-

ance (see figure 2.1) (Chomsky, 1988). Phrases group together words and other phrases

which then behave as a single unit. These units or constituents can be moved to different

syntactic positions without being broken apart. The task of syntactic understanding is

to produce a formal grammar of the language, which defines the syntactic structure for

all and only the syntactically valid sentences of the language.

Although I follow a generative approach, I later take inspiration from Tesnière gram-

mar. Within Tesnière grammar the syntactic structure is determined by a series of

dependency relations (Nivre, 2005). The verb of the utterance is the structural centre

4



Chapter 2. Symbolic Language 5

S

NP

Linguistics

VP

V

is

NP

fun

Linguistics is fun

ROOT

cop

SBJ

Figure 2.1: Syntactic structure of the utterance ”Linguistics is fun”. On the left the
generative syntactic representation and on the right the Tesniére dependency represen-

tation.

and all other words are either directly or indirectly connected to it through dependen-

cies. Tesnière grammar offers a flatter representation than the generative approach, as

it lacks the intermediate phrasal nodes. A comparison between the generative approach

and the Tesnière dependency approach can be seen in figure 2.1. Within computational

linguistics a simplified, more generic dependency grammar is commonly used.

2.2.1 Computational syntactic parsing

The role of syntactic parsing is to compute the syntactic structure of a given utterance.

This is usually achieved by constructing a suitable grammar, which is then used to infer

the structure from the utterance. For English there are many grammar formalisms to

chose from including: Context-free grammars (CFGs) and Context-sensitive grammars

(CSGs). CSGs are more powerful but also more complex than CFGs. While English

does have limited context-sensitive phenomena such as WH-fronting, which would not

be supported within CFGs, these phenomena, do not explicitly appear within most

evaluation metrics. CFGs are popular choice, as they provide an acceptable trade-off

between expressiveness and computational complexity. A formal grammar is considered

context-free when its production rules can be applied regardless of the context of a

nonterminal. Context-free rules come in the following form:

V → w (2.1)

where V is a single nonterminal symbol and w is a string of terminals or nonterminals.

In natural language syntax the nonterminals refer to syntactic categories such as VP

(Verb phrase) and the terminals refer to words. An example grammar can be seen in

figure 2.2.

If we consider the sentence ”John loved Mary” and the example CFG (figure 2.2) then

there are two possible syntactic structures for the utterance, which can be seen in figure



Chapter 2. Symbolic Language 6

• N → ”Man”

• N → ”women”

• ADJ → ”old”

• CONJ → ”and”

• NP → N

• NP → ADJ N

• NP → NP CONJ NP

Figure 2.2: Example CFG

2.3. To disambiguate the correct structure, a probabilistic element must be introduced.

This motivates the use of a probabilistic context-free grammar (PCFG); each grammar

rule having a likelihood associated with it. Parsing becomes the task of efficiently finding

the syntactic structure from the utterance which the grammar dictates is most likely.

The probability of the derivation is the sum of all the grammar rules used, as defined

below:

P (Derivation) =
∏

ri∈derivatives
P (ri|LHS(ri)) (2.2)

where ri is the probability of rules and LHS(ri) is the left hand side of the rule ri.

There are two main approaches to computing the syntactic structure. A top-down parser

begins with the start symbol (normally S) then matches rules from the left-hand-side

until it reaches terminal symbols (words from the utterance). A bottom-up parser on

the other hand starts with the words of the sentences then matches rules from their

right-hand-side until it reaches the start symbol (S).

The construction of a PCFG can be done either with supervision or without. I will

focus on the supervised approach, where a treebank provides the syntactic structures

for a hopefully representative set of natural language sentences. One of the earliest

approaches to constructing a grammar from a treebank was to use the relative frequency

NP

ADJ

old

NP

N

men

CONJ

and

N

women

NP

NP

ADJ

old

N

men

CONJ

and

NP

N

women

Figure 2.3: Two possible syntactic structure of the utterance old men and women



Chapter 2. Symbolic Language 7

of the rules (FR(V → w)) found within the treebank as the likelihood for each context-

free rule, as seen in equation 2.3.

rf(V → w) =
FR(V → w)∑

β:V→B∈R FR(V → β)
(2.3)

This approach however only offered limited success, as the syntactic rules as read from

the treebank are seemingly too coarse to capture natural language syntax. Improvements

have been suggested from smoothing probabilities to refining the syntactic rules (Klein

and Manning, 2003). One possible refinement includes adding context for PCFG rule

in the form of parent annotation (Charniak and Carroll, 1994), where the parent of

the node is concatenated to the child label. For instance an NP with a parent S will

now be labelled NPˆS. This however breaks the Markovian assumption of the grammar,

that all constituents with the same syntactic category are equivalent. Parent annotation

has seen generalisation within vertical Markovization which extends the notion of parent

annotation by including n members from its vertical history (parents’ parent) (Klein and

Manning, 2003). However, vertical Markovization increase data sparsity, as each label

appears fewer times within the corpus, thus making generalisation difficult. Petrov and

Charniak (2011) argue that these refinements are ad-hoc and unsystematic; instead they

propose an unsupervised approach to refining the grammar by hierarchically splitting

PCFG rules into sub-rules.

2.3 Semantics

Semantics is tasked with providing the conventional meaning of an utterance (Speaks,

2014). Within formal semantics there are three core concepts: composition, truth and

entailment. Composition determines how linguistic items are combined to form a new

item. Truth determines under what conditions an utterance is true or false. Formal

semantics borrows ideas from philosophy and uses the concept of possible worlds, where

an utterance is true with respect to a possible world (Menzel, 2014). As such formal

semantics is model theoretic and truth is determined to a particular world. Entailment

is the relationship between two sentences, where the truth of one requires the truth of

the other.

2.3.1 Montague Grammar

Montague grammar provides a treatment of the semantics of natural language using

intentional logic (Dowty, 1979). It builds upon Freges philosophy, where the meaning of



Chapter 2. Symbolic Language 8

S=∃z[mortal(z) ∧ loves(z)(Thetis)]

NP=λPP (Thetis)

Thetis

VP=λx∃[mortal(z) ∧ loves(z)(x)])

V=λxNP (λy(Loves(y)(x))

loves

NP=λQ(∃[Mortal(z) ∧Q(z)])

Det=λPλQ(∃[P (z) ∧Q(z)])

a

N=Mortal

Mortal

Figure 2.4: Semantic tree for Thetis loves a mortal as adapted from Schubert (2014)

the utterances is built up in a compositional manner from interim meanings, as given by

lambda expressions. Every lexical item has a lambda expression associated with it and

every grammar rule defines a composition function dictating how the lambda expressions

should be composed. An example semantically annotated tree can be seen in figure 2.4,

where the syntactic structure is used to guide which constituents compose with each

other.

The standard way of composing two constituents is functional applications (beta re-

duction). Consider the expression λx∃[mortal(z) ∧ loves(z)(x)]), λPP (Thetis) is then

applied to it, with the resulting composed meaning: ∃z[mortal(z) ∧ loves(z)(Thetis)].
However, more complex linguistic phenomenon such as quantifier scoping issues and WH-

fronting cannot always use just beta reduction, but instead more complex composition

procedures are used.

2.3.2 Statistical Semantics

The focus and success within NLP on semantics have been split between sentiment

analysis and semantic role labelling (SRL). Neither approach is model theoretical and

as such does not reference a particular world. Sentiment analysis which determines

whether an utterance is positive or negative has received little attention within formal

semantics. However, SRL can be seen as a computational implementation of Thematic

relations (Carlson, 1984).

SRL is composed of two tasks; (1) the identification of predicates and arguments, (2)

determination of the semantic roles of said arguments. The following utterances have

been annotated with their semantic roles:



Chapter 2. Symbolic Language 9

• [A0 Eve] pushed [A1 Mary]

• [A0 Eve] grabbed [A1 Mary]

• [A0 Eve] will push [A1 Mary]

• [A1 Mary] was pushed by [A0 Eve]

From the above we see each argument of the predicates push and grab have been

identified and labelled with their semantic role, A0 or A1. We also see that Mary,

regardless of syntactic position, always receives the A1 role. The A1 label is shorthand

used to indicate that the bearer of the role fulfils the patient role of the predicate. Dowty

(1991) seminally defines the patient role through the use of proto examples, such that

the bearer of the patient role must show a family resemblance to the proto-patient. Eve

on the other hand receives the A0 role, shorthand for the Agent role, as she bears a

resemblance to the proto-agent.

Although SRL has semantic properties it can also be considered as an intermediate

layer between syntax and semantics and as such not a full semantic model (Carlson,

1984). This motivates the search for a strong semantic model which will be discussed in

the next chapter.



Chapter 3

Language Without Symbols

3.1 Introduction

In the previous chapter I gave an account of symbolic approaches to syntax and seman-

tics, where words, phrases and meaning are represented by arbitrary symbols. However,

non-symbolic/feature-rich representations of language have become increasingly popu-

lar in recent years. Non-symbolic approaches represent linguistic items by non-arbitrary

multidimensional vectors; the value of these vectors positions the item in a linguistic

space.

Non-symbolic approaches allow for direct measurement of similarity between items by

measuring the distance between their vectorial representations. This distance explicitly

gives us the ability to generalise, where information learnt about one linguistic item can

be applied to other linguistic items. This has led to non-symbolic approaches being used

in several areas of NLP, including: machine translation (Chiang et al., 2009), semantic

role labelling (Ponzetto and Strube, 2006), parsing (Socher et al., 2011) and part of

speech tagging (Giménez and Marquez, 2004).

In this chapter I will detail how non-symbolic approaches to semantics can be applied

to lexical items. Next, moving onto non-symbolic syntactic semantic representations of

multi-word expressions and sentence; a tradition I build upon for my model.

3.2 Distributional lexical semantics

One of the more popular approaches to non-symbolic lexical semantics is distributional

semantics (DS). Distributional semantics can be seen as a realisation of the Distribu-

tional Hypothesis (DH); words gain their meaning from a distributional analysis over

10



Chapter 3. Non symbolic 11

language and its use. Therefore, words that occur in similar contexts have similar seman-

tic meaning (Harris, 1954). DS models use vectors to keep track of the contexts within

which words appear. This vector then represents the meaning of the word. Unlike

Montague grammar where there is no way to show similarity between items. For ex-

ample λ.xDead(x) and λ.xDeceased(x). However, Dead and deceased appear in similar

contexts and as such their vectorial representation will be similar.

Consider the following example utterances with the unknown word bardiwac, inspired

by Evert (2010):

• A bottle of bardiwac is on the table

• Bardiwac goes well with fish

• Too much bardiwac and I get drunk

• Bardiwac is lovely after a hard day of work

The DH states that we implicitly compare the distribution for the word bardiwac to other

lexical items and we find its distribution is most similar to those of alcoholic drinks.

DS is a very popular approach to lexical semantics and while there have been attempts

at making hand-crafted symbolic lexical semantic databases, most notably WordNet

(Fellbaum, 1998), these approaches are expensive to create, slow to update and generally

cover fewer words than DS approaches. WordNet provides semantic information for

∼ 160, 000 words. DS systems in contrast are unsupervised in nature and therefore

are cheaper to create and contain semantic information about significantly wider range

of words. Furthermore, DS has compared favourably to WordNet in a wide range of

semantic tasks (Lewis and Steedman, 2013) (Specia et al., 2012) (Budanitsky and Hirst,

2006) (Šarić et al., 2012). In lexical substitution tasks DS-based approaches were shown

to perform at the same level as native English speakers with a college education (Rapp,

2004). This success has lead to DS being used not only as a semantic analysis for words

but also being integrated into NLP systems including: machine translation (Alkhouli

et al., 2014), semantic role labelling (Choi and Palmer, 2011) and question answering

(Lewis and Steedman, 2013).

While DS achieves strong computational linguistic results, it also has strong linguistic

and psychological plausibility. DS can be seen as an implementation of the feature-based

theory of semantic representation of the Generative Lexicon (Pustejovsky, 1991), where

each lexical item in the generative lexicon has four structures: lexical typing structure,

argument structure, event structure and qualia structure. The qualia structure encodes

distinctive features of the lexical item, such as size, form and colour. A distributional rep-

resentation would hopefully capture these properties implicitly. However, unlike previous



Chapter 3. Non symbolic 12

man =



to : 2

a : 2

but : 1

because : 1

than : 1

are : 1


forgotten =



in : 1

the : 1

misfortunes : 1

are : 1

he : 1

had : 1

all : 1

his : 1


Figure 3.1: Distributional semantic representation of man and forgotten.

attempts at creating lexical entries, DS takes an unsupervised data-driven approach to

creating the lexical entries, better paralleling how children learn language.

3.3 Implementation

I will now give a brief introduction to how distributional semantic systems are im-

plemented. I will later show how these approaches are incorporated into multi-word

compositional distributional semantics approaches.

One of the simpler approaches to DS uses co-occurrences as a way to construct se-

mantics vectors for lexical items. For each word, frequency information regarding words

which appear closely to it is kept. (Closely refers to a certain number of words apart

as defined by the co-occurrence window size). From the following passage I will give

example semantic vector representations of words.

”Within two minutes, or even less, he had forgotten all his troubles. Not because his

troubles were one whit less heavy and bitter to him than a man’s are to a man, but

because a new and powerful interest bore them down and drove them out of his mind for

the time–just as men’s misfortunes are forgotten in the excitement of new enterprises.”

(Twain, 1988)

When the co-occurrence window is two words long we get the vectorial representations

seen in figure 3.1. Due to the small size of the passage it is difficult to see similarities

within the text. Therefore, a longer piece of text is used to create lexical vectors within

figure 3.2.



Chapter 3. Non symbolic 13

3.3.1 Parameters

In the previous section a simplistic DS system was explained. However, alternative

DS approaches have been proposed, with many different choices to be considered when

designing a system to extract distributional semantic from a corpus. First, context needs

to be defined. In the example implementation a co-occurrence window of two was chosen;

this window can be enlarged or shrunk. When enlarging the window weighting is often

applied, such that words appearing nearer the target word are given more importance. In

the example implementation, the context window spanned across sentence boundaries.

However, not all models take this approach, and in yet other models the window spans

across paragraph boundaries.

Secondly, the corpus must be decided; large corpora are generally considered better

as they offer a more complete view of language distributions. The type of corpus also

needs to be determined, in particular whether the corpus is in-domain or out-domain

with respect to the application one has in mind. The corpus can also be annotated with

part of speech tags, syntactic information or word senses. Each piece of information can

act as a new dimension or as a weighting.

Thirdly, frequency information must be considered. In the example above, frequency

information came in the form of raw frequencies. Alternatively, they could also be logged

frequency or smoothed frequencies. Information theoretic measures such as entropy or

pointwise mutual information have also been used within DS models. These approaches

try to better capture the true distribution of words from a limited corpus.

Dimension reduction is a common tactic which represents words in a lower dimensional

space. This not only decreases the amount of information stored about each word; the

compressed vector avoids ”the curse of dimensionality”, as well as hopefully capturing

more generalisable latent semantic information.

cat =



get : 54

see : 70

use : 2

hear : 9

eat : 9

kill : 32


dog =



get : 210

see : 64

use : 6

hear : 33

eat : 50

kill : 11


banana =



get : 12

see : 5

use : 9

hear : 0

eat : 23

kill : 0


Figure 3.2: Distributional semantic representation of cat, dog and banana.



Chapter 3. Non symbolic 14

Figure 3.3: Words mapped to their semantic position. Adapted from Evert (2010)

3.3.2 Similarity

One of the core advantage of distributional semantics is the ability to measure similarity

between words and their vectors by measuring relative positions in the semantic space

(figure 3.3). These similarity metrics have a wide range of uses including: finding syn-

onyms, as well as clustering semantically-related concepts (Baker and McCallum, 1998).

There are two approaches to measuring similarity within DS: distance-based and angle-

based approaches, as seen within figure 3.4. The most common distance-based approach

is Euclidean, however Minkowski distance and Manhattan distance have also been used.

When measuring similarity using angular approaches cosine is the most commonly used;

the Ochiai coefficient is a less well used alternative.

Figure 3.4: Comparison between distance and angle based approaches to similarity,
as adapted from Baroni et al. (2014a)



Chapter 3. Non symbolic 15

3.3.3 Limitations

Although distributional semantics is a popular approach within the NLP community, it

is not without critics, who disprove of it from engineering, philosophical and linguistic

positions.

Philosophically it encounters the same symbol grounding problem that symbolic ap-

proaches face (Massé et al., 2008). Meaning in DS is defined from other words (context)

with no connection to the sensory world. However, there has been recent work that inte-

grates information from images into DS models partially negating this criticism (Bruni

et al., 2012).

From an engineering perspective polysemy may be difficult to capture within DS, as

each word receives only one vector. The size of vector representing a word with one sense

is the same as for a word with multiple word senses. Experimentally this however does

not seem to be problematic, as many studies have shown that polysemy is capturable

within DS (Pantel and Lin, 2002) (Boleda et al., 2012).

From a linguistic perspective it has been argued within the weak DH that DS does not

capture meaning (qualia) but instead semantic paradigmatic properties (combinatorial

behaviour) of words (Sahlgren, 2008). This often seen with antonyms with DS, as

they often are given similar distributions. This is particularly problematic in synonym

generation tasks where antonyms will be suggested as a synonym.

3.4 Compositional distributional semantics

3.4.1 Introduction

For many years, the standard way to represent compositional semantics, was to use

lambda calculus (Montague, 1970), and the most successful way to model lexical se-

mantics, based on the vector representations from distributional semantics (e.g., Lund

et al., 1995), seemed incompatible (Le and Zuidema, 2014b). However, there has been

a recent trend in trying to combine distributional semantics and compositional seman-

tics, forming distributional compositional semantics. Within this section I will outline

several approaches to compositional distributional semantics and the reasons I did not

take these approaches.



Chapter 3. Non symbolic 16

3.4.2 Composition by vector mixtures

Early attempts at composing multiple vectors involved simple linear algebra operations,

starting with vector addition and later point wise vector multiplication, which better

captures interaction between the values of the input vectors. While both approaches

have been shown to be effective in capturing the semantics of multiple words, they fail

to capture structural relationships and word order. These problems can be seen in the

utterances ”the dog bit the man” and ”the man bit the dog” which would compute

identical vectors and therefore within vector mixture models, identical meaning. Struc-

turally, both approaches are symmetric; each vector contributes equally. However, this

does not match linguistic theory, where some linguistic types dominate the composi-

tional relationship. For instance, a verb phrase is normally composed of a verb and a

noun phrase. As the verb is the head word, linguistically it is more important, which

cannot be expressed in mixture models. One proposed solution to this weakness involved

scaling the input vectors to indicate importance (Mitchell and Lapata, 2008). However,

scaling still fails to capture the syntactic structure of the utterance. Therefore, it is

difficult to see this as a Montagovian approach as Montague uses syntax to guide the se-

mantic composition, where a different syntactic structure would give a different semantic

meaning.

3.4.3 Composition with distributional functions

3.4.3.1 Combined Distributional and Logical Semantics

The approach of Lewis and Steedman (2013) layers distributional semantics on top of a

formal semantic representation. The addition of distributional semantics improves the

flexibility of the semantic representation, giving significant improvements to question

answering tasks.

The process of Lewis and Steedman (2013) is a pipeline: First the input utterance is

semantically parsed, giving a lambda expression for the utterance using a semantic parser

(Curran et al. (2007)). To disambiguate polysemous predicates, entity-typing is applied

to predicate arguments; each predicate is typed with two argument types. Finally, the

typed predicates are replaced with a link to a typed semantic cluster. The clusters

represent semantically-similar concepts as determined by distributional semantics. The

utterance is now represented by a lambda expression with the predicates representing

concepts and not individual words. An example of the process can be seen in figure 3.5.



Chapter 3. Non symbolic 17

Figure 3.5: Pipeline of Combined Distributional and Logical Semantics approach
adapted from Lewis and Steedman (2013)

While the approach offers improvements over a standard symbolic parse, it lacks feed-

back between the distributional layer and the semantic parser; the distributional seman-

tic information cannot affect the structure computed for the utterance. Furthermore, the

approach is reliant on using an existing symbolic semantic parser. These are significant

weakness to this approach motivate an alternative approach.

3.4.3.2 Tensor approach

The tensor approach to compositional vector semantics is focused on functional appli-

cation from formal semantics. Nouns, determiner phrases and sentences are vectors but

adjectives, verbs, determiners, prepositions and conjunctions are modelled using distri-

butional functions, allowing for a separate treatment of functional words and content

words. Baroni et al. (2014b) propose that the distributional functions take the form

of linear transformations. First order (one argument) distributional functions (such as

adjectives or intransitive verbs) are encoded as matrices. The application of a first-order

function to an argument is carried out using a matrix-vector multiplication. Second or-

der (two arguments) such as transitive verbs or conjunctions are represent by a three

dimensional tensor. Learning the tensor representations is done using standard machine

learning techniques as applied to a treebank.

While the tensor approach seems reassuringly similar to formal semantics, it has sev-

eral drawbacks. First, the model encodes a lot of a priori information, in the form of

the dimensionality of the word. Secondly, the highly parameterised approach over-fits

the data. Thirdly, the learning of these representations is challenging from a machine

learning perspective and no convincing results have been reported.



Chapter 3. Non symbolic 18

Figure 3.6: mixture model on the left and tensor functional application on the right
(Baroni et al., 2014a)

3.4.4 Summary of approaches

Below I list several popular approaches to compositional distributional semantics. Where

(a,b) are vectors and (A,B) are matrices.

Composition function Name Source

p= a+b Vector addition

p = 0.5(a + b) Vector average

p = [a;b] vector concatenation

p= a ⊗ b Element-wise vector multiplication

P = Ab + Ba Linear MVR (Mitchell and Lapata, 2010)

p= Aa+Bb Scaled vector addition (Mitchell and Lapata, 2008)

p=tanh(W[a;b]) RNN (Socher et al., 2010)

p = tanh(W[Ba;Ab]) MV-rnn (Socher et al., 2012)



Chapter 4

Recursive Neural Network

4.1 Introduction

At the end of the last chapter I presented several approaches to modelling compositional

distributional semantics and gave the disadvantages of such approaches. In this chapter I

will explain the approach I have taken; the Recursive Neural Network (RNN). I however

first introduce the idea of connectionism and Artificial Neural Networks, traditions which

I build upon. I start by introducing connectionism and its applicability to language,

then give a general description of Neural Networks and in particular the feedforward

network. I then introduce the Recurrent Neural Network which is later contrasted with

the Recursive Neural Network. Finally, the Recursive Neural Network is explained in

detail; including how it is used to model syntax and semantics.

Connectionism is an approach to modelling cognition, where knowledge underlying

cognitive activities is stored in the connections among neurons (McClelland et al., 2010).

Connectionism borrowed ideas from neuroscience, leading to the idealised artificial neu-

ron. Networks of artificial neurons (Neural Networks) have a long history of being used

for a wide range of machine learning problems. However, they are particularly appealing

to use in the modelling of syntax and semantics due to the close relationship between

language and cognition. Recent advances in deep learning have also made Neural Net-

works a particularly exciting technique to work with. Deep learning avoids the problem

of hand-crafting features which is not only a time-consuming task but often leads to

errors, where features are either overspecified or underspecified. Deep Neural Networks,

when applied to language problems receive all the benefits and flexibility non symbolic

approaches offer (as seen in section 3) and have inherit deep learning advantages.

19



Chapter 4. Recursive Neural Network 20

4.2 Neural Networks

A Neural Network consists of a series of connected artificial neurons; each neuron im-

plements a logistic regression function. Where, a neuron (figure 4.1), takes in a series of

inputs xi to which weights wij are applied. These weighted inputs are summed and an

activation function is applied giving the output value. For compactness I will define a

neuron in vector form:

a = f(wTx+ b) (4.1)

Figure 4.1: An artificial neuron1

where w ∈ Rn are the weights, x ∈ Rn the inputs and b is the bias, f is the activa-

tion function. Tanh (1−e
−2x

1+e−2x ) and the sigmoid function ( 1
1+e−t ) are popular activation

functions (figure 4.2). (Tanh is a rescaled and shifted sigmoid function.)

−6 −4 −2 0 2 4 6

−1

−0.5

0

0.5

1

x

f(
x
)

Sigmoid
Tanh

Figure 4.2: tanh and the sigmoid function

A neural network consists of many artificial neurons connected together in any topo-

logical arrangement. One of the earlier and most common topological arrangement is the

feedforward network. The feedforward network consists of a series of layers of neurons,

1By Perceptron. Mitchell, Machine Learning, p87. [CC BY-SA 3.0
(http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons



Chapter 4. Recursive Neural Network 21

where information flows in one direction through it, each neuron in a layer is connected

to every neuron in the next layer. An example can be seen in figure 4.3. The feedfor-

ward network conceptually consists of three types of layers. The input layer, hidden

layers and an output layer. The input to the network consists of the features chosen to

represent the symbolic item. The hidden layers sit between the input and the output

layers. The output layer then outputs the answer. Feedforward networks with a non zero

number of hidden layers has been shown to approximate the solution for any problem

(universal approximator) (Hornik et al., 1989) (Cybenko, 1989). The input layer within

the feedforward network is defined as:

z = Wx+ b (4.2)

a = f(z) (4.3)

where W ∈ Rm×n, b ∈ Rm, the activation function f is applied in an element-wise

manner. All other layers are defined in formulas 4.4 and 4.5. An n superscript is included

to distinguish between layers.

zn+1 = Wn+1an + bn+1 (4.4)

an+1 = f(zn+1) (4.5)

To produce meaningful answers the weights and the bias of each layer within the

neural network must be learnt. To do so a loss function, such as the squared error rate,

is defined and then minimized. A popular way to minimize the loss function is through

the use of backpropagation where weights within the network are adjusted depending

on how much they contributed to the error. The process, as the name suggests, works

backwards from the output layer to the input layer using the errors calculated in the

previous layer for the new layer. The layers closest to the output layer being the most

influential layers in regards to the error.

Although powerful, the feedforward approach has several problems. Firstly, the input

size has to be known ahead of time, as there must be a corresponding number of input

neurons. This is problematic when modelling sentences which contain a variable number

of words. Secondly, when backpropagation is used to train a network with a large

number of hidden layers, the error contributed will be small in the layers closest to the

input, making adjusting weights difficult. An alternative neural network architecture was

proposed; the Recurrent Neural Networks. I will focus on the Simple Recurrent Neural

Network (SRNN) implementation (Elman, 1990). Within the SRNN the connections



Chapter 4. Recursive Neural Network 22

Input #1

Input #2

Input #3

Input #4

Output

Hidden

layer

Input

layer

Output

layer

Figure 4.3: A three layer feedforward neural network

between units form a directed cycle; these cycles create an internal state which allows

the network to exhibit temporal behaviour. In essence the network uses previous inputs

to guide future outputs. In figure 4.4 we see that this temporal behaviour takes the form

of the previous input being used as a context for new inputs. At each step the hidden

units are copied to form new context units. SRNNs have been popular approaches

for modelling compositional distributional semantics, where the words are fed into the

SRNN one word at a time; The previous words forms the context vector for the next

word. This repeats till there are no words left, giving a single output representing all

the words.

Figure 4.4: Simple Recurrent Neural Network. Adapted from (Elman, 1990)



Chapter 4. Recursive Neural Network 23

4.3 Recursive Neural Networks

4.3.1 Introduction

The Recursive Neural Network (RNN) is a generalisation of the previously mentioned

SRNN and is the basis of my approach for modelling syntax and semantics (Irsoy and

Cardie, 2014). When the SRNN is used to model language, words are given as an input

in a temporal order where all the previous words combine with the next word. We can

therefore think of the SRNN as a left-branching binary tree. The RNN removes the

restriction of being left-branching and instead allows any continuous2 binary tree. This

internal structure allows us to model the syntactic structure of the utterance and not

just the temporal order with utterance. A comparison of the two approaches can be

seen within figure 4.5. As the RNN considers the syntactic structure when composing,

the approach is closer to Montague grammar where it is not just the semantic elements

being composed but how they are being composed. With the many possible structures

for which a RNN could construct, an additional scoring element is introduced at each

node, where the likelihood of the entire tree is the sum the likelihood of all nodes,

paralleling the change from CFG to PCFG.

Using the RNN as the basis of the model we are offered the flexibility of distributional

semantics applied to the entire sentence structure, where one root vector represents

captures the meaning of the entire sentence. As with individual words we can now

compare the distance between sentences, which will later be used in paraphrase detection

tasks. The RNN based approach differs significantly from the tensor approach discussed

2The tree has no crossing elements.

p3= ◦◦

p2= ◦ ◦

p1= ◦ ◦

a= ◦ ◦

The

b= ◦ ◦

cat

c= ◦ ◦

likes

d= ◦ ◦

Mary

P3= ◦◦

p1= ◦◦

a= ◦◦

The

b= ◦◦

cat

p2= ◦◦

c= ◦◦

likes

d= ◦◦

Mary

Figure 4.5: Two representations of the utterance ”The cat likes Mary”. On the
left a Recurrent Neural Network representation capturing the temporal word order of
the utterance. On the right a Recursive Neural Network capturing the syntax of the

utterance.



Chapter 4. Recursive Neural Network 24

in section 3.4.3.2. Unlike the tensor approach which requires a priori the dimensionality

of each word, the RNN fixes the dimension of the words uniformly. When compared to

symbolic approaches similarities can be seen with vertical Markovization in the PCFG-

based approach. The RNN is a non-Markovian process where the effects of words directly

influence the root. However, unlike PCFG vertical Markovization annotation, the RNN

can make use of infinite vertical history without the problems of data sparsity, due to

its ability to generalise.

Within this section I will provide in detail the RNN approach to language, as given

by Socher et al. (2010). I start by explaining the framework itself, before moving onto

its training including how backpropagation works and the learning algorithm chosen.

4.3.2 Mapping words to syntactic/semantic space

As with distributional semantics, words within a RNN framework have two repre-

sentations, the symbolic w representation and a corresponding N dimensional vecto-

rial syntactic/semantic representation aw. A sentence is defined as a list of tuples

x = [(w1, aw1)...(wm, awm)]. Within the RNN model vectorial representations of words

can either be learnt directly or an existing flat distributional semantics lexicon can be

used.

4.3.3 Composition

Composition is key to the RNN model and takes inspiration from the Montague ap-

proach, where the meaning of two constituents is combined into a new meaning. How-

ever, unlike Montague grammar which is symbolic and uses lambda expressions this

approach is non-symbolic, the intention is for the vectors to act as enriched lambda

expressions.

Within an RNN a composition function is defined where two N dimensional word

vectors can be combined into one N dimensional parent vector. The vectorial represen-

tations of both words are given as inputs to a neural network which then outputs one

vector, representing the composition of these two items. To do so, the two words vectors

are concatenated into one vector, to act as a single input. This concatenated vector is

then multiplied by a weight matrix before applying an element-wise activation function.

Formally we define this as:

P (i, j) = f(W [awi ; awj ] + b) = f

(
W

[
awi

awj

])
(4.6)



Chapter 4. Recursive Neural Network 25

Figure 4.6: RNN approach, as adapted from (Socher et al., 2012)

where f is the activation function (in this approach tanh is used), W ∈ Rn×2n and

P (i, j) is the vectorial representation for the parent of two children awi and awj . Note

that [awi ; awj ] represents the concatenation of two vectors.

The difference between the RNN and the feedforward network is the recursive nature

of the RNN, where vectors created from the composition of two words can then be

composed using a general formula, such that intermediate p node can be combined with

words or other intermediate nodes in a similar way. A general formula is shown in

formula 4.7.

P (i, j) = f(W [ci; cj ] + b) = f

(
W

[
ci

cj

])
(4.7)

The recursive nature allows for the tree to be built in a bottom up manner(figure

4.6), where the vectors of each node capture the interaction of all their children vectors.

As there are multiple possible syntactic structures for an utterance a statistical aspect

is introduced for the purpose of disambiguation. Therefore, a score is given at each

non terminal node indicating the RNN confidence of the correctness of the node. The

score is calculated by from the inner product of the parent vector with a row vector

W score ∈ R1×n, as shown below:

s(i, j) = W scoreP (i, j) (4.8)

Conceptually we can think of the Neural Network (W,W score), which I later refer to

as the composition function, receiving two input vectors, then outputting one composed

vector and a confidence score, as seen in figure 4.7. As the RNN is recursive, a tree can



Chapter 4. Recursive Neural Network 26

be defined be a series of these outputs, thus:

RNN(x, ŷ, θ) (4.9)

where, θ is the set of the parameters of the models containing W,W score and ŷ is the

structure of the tree, i.e. which nodes are composed together. With multiple possible

trees for each utterance x, a score is given to each tree ŷ, which is the sum of all local

scores:

s(RNN(θ, x, ŷ)) =
∑
d∈ŷ

s(d) (4.10)

where d is a subtree of the tree ŷ. Thus the most likely tree for the utterance x,

parametrised by θ is:

ŷ = arg max
ŷ′

(s(RNN(θ, x, ŷ′)) (4.11)

4.3.3.1 Parsing with RNN

The CYK algorithm is used to find the tree which satisfies formula 4.11 (highest scoring

tree). Due to the comparatively3 expensive nature of parsing within the RNN framework

the beam search heuristic is used to find the approximate highest scoring tree. Those

readers not interested in the technical details of the model can skip the remainder of

the section, with the takeaway message that parsing is done in a bottom up fashion, as

defined within section 2.2.1.

3When compared to symbolic PCFG parsing.

Figure 4.7: RNN inputs and outputs as inspired by (Socher et al., 2012)



Chapter 4. Recursive Neural Network 27

Finding the highest scoring tree from an utterance, with RNNs takes a different ap-

proach from symbolic PCFG approaches. PCFG approaches use discrete syntactic labels

whereas RNNs use continuous vectors, meaning pruning cannot be done on label equality.

For this reason and the cost of computing vectors, a beam search heuristic is employed,

to find the approximate highest scoring syntactic tree. The beam search is applied over

the standard bottom-up CYK algorithm at the cell level. The algorithm is defined as

follows:

Let S consist of n tokens: a1...an. for each i = 2 to n – Length of span do

for each j = 1 to n-i+1 – Start of span do

for each k = 1 to i-1 – Partition of span do

for treeLeft in P[j,k] do

for treeRight in P[j+k,i-k] do
P[j,i].append(RNN(x,[treeLeft; treeRight],θ))

end

end

end

Prune(P[j,i],beamWidth)

end

end

Where Prune(P[j,i],N) only keeps the N highest scoring trees4 and removes the rest.

From Socher et al. (2010) a greedy search was shown to be adequate, hence the beam

size is often set to one. In this thesis, experiments on pruning at the span level rather

than at the cell level did not offer better results and was found to be slower.

4.3.4 Learning

Unlike Montague grammar, the RNN parameters (θ) must be learnt from data using

machine learning techniques. Therefore, a loss function must be defined depending on

the goals of the model. For the RNN model I choose a loss function that maximizes the

score for the correct syntactic structure. While this may appear to be a purely syntactic

loss function and at odds with the goal of modelling both syntax and semantic. This is

not the case, firstly, the syntactic structure plays a large role in semantic understanding;

the syntactic structure guides the semantic composition. The work of Levin (1993),

shows that those verbs that are semantically related behave in a syntactically similar

manner. Secondly, the RNN is not Markovian but instead the root vector captures all

4The trees scores are determined by formula 4.10.



Chapter 4. Recursive Neural Network 28

Figure 4.8: Example of gradient descent 5

the information regarding all of its children, including the terminal words. This process

is not syntactic in nature, but instead better resembles semantic Montague grammar.

Within this section I will explain the loss function I have chosen, called the Max-

Margin, framework which tries to increase the score of the correct tree and decrees the

score of the incorrect tree. Those readers not interested in the mechanics of machine

learning can skip to section 4.4.

4.3.4.1 Max-Margin estimation

There are two main types of machine learning models generative models and discrimi-

native models. Generative approaches are based on the likelihood of the joint variables

P (X,Y ); whereas discriminative approaches are based on conditional likelihood P (X|Y ).

Discriminative approaches have generally been to give more favourable results, as such

I will use a Max-Margin framework as proposed for parsing by Taskar et al. (2004).

The Max-Margin framework defines a loss function which gradient descent will try to

minimize. The loss function gives a score of goodness to a particular set of a parameters.

These scores can be mapped within a space against parameters. Gradient descent starts

with an initial set of parameter values and iteratively moves toward a set of parame-

ter values that minimize the function, which can be seen in figure 4.8. This iterative

minimization is achieved calculating the gradient for the loss function and updating the

weights with it, as seen in online gradient descent, equation 4.12.

5By Gradientdescent.png:The original uploader was Olegalexandrov at English Wikipedia derivative
work: Zerodamage (This file was derived from:Gradient descent.png) Public domain, via Wikimedia
Commons



Chapter 4. Recursive Neural Network 29

xn+1 = xn − LR∇F (xn), n ≥ 0. (4.12)

where LR is the learning rate and ∇F (xn) is the gradient of the loss function. Be-

low I list the specifics of the Max-Margin framework. Intuitively, the objective of the

Max-Margin framework is that the highest scoring tree past a specified margin of error

produced from the model should be the correct tree.

This margin of error comes in the form of a structured loss δ(yi, ŷ) for predicting ŷ

for the gold tree yi. Where the further incorrect the tree is the bigger the loss. In-

correctness is calculated by by counting the number of nodes with an incorrect span,

formula 4.13.

δ(yi, ŷ) =
∑

d∈N(ŷ)

k{d 6∈ N(yi)} (4.13)

k is a real valued hyperparameter. The Max-Margin trains the RNN such that the

highest scoring tree will be the correct tree up to a margin, over all other possible tree

ŷ ∈ Y (xi):

s(RNN(θ, xi, yi)) ≥ arg max
ŷ

(s(RNN(θ, xi, ŷ)) + δ(yi, ŷ)) (4.14)

To prevent the learning algorithm from overfitting the training data regularization is

introduced, adding a penalty for complexity. This regularization can be seen as a form

of smoothing which has been shown to be advantageous within PCFG. The regularized

loss function used for learning is:

J(θ) =
1

m

m∑
i=1

ri(θ) +
λ

2
||θ||22 (4.15)

ri(θ) = max
ŷ∈Y (xi)

(s(RNN(xi, ŷ) + δ(yi, ŷ))− s(RNN(xi, yi)) (4.16)

Wherem refers to the batch size, ranging from the length of the corpus (batch training)

to one (on-line learning).



Chapter 4. Recursive Neural Network 30

4.3.4.2 Gradient

For the gradient descent the gradient of loss function must defined, however the objective

J of equation 4.15 is not differentiable due to hinge loss (Socher et al., 2010). The

subgradient method is used instead, which computes a gradient-like direction called the

subgradient (Ratliff et al., 2007):

∑
i

∂s(xi, ymax)

∂θ
− ∂s(xi, yi)

∂θ
(4.17)

AdaGrad is a popular gradient descent algorithm, which has been show to achieve state

of the art performance when training RNNs. Unlike other approaches, AdaGrad alters

its update rate feature by feature based on historical learning information. Frequently

occurring features in the gradients get small learning rates and infrequent features get

higher ones (Duchi et al., 2011). The update to the weights of all individual features is

as follows:

xt+1 = xt −N ·G−(1/2)t � gt (4.18)

where x ∈ R1×n is the weight, with the subscript indicating what time step it is at,

gt ∈ R1×n is the current gradient, N is the learning rate, G ∈ R1×n is the historical

gradient and � is element-wise multiplication. We see this approach is very similar to

online gradient descent (section 4.3.4.1), with the addition of the historical gradient.

The historic gradient minimizes the sensitivity to the learning rate, making the model

less dependent on hyperparameters. We set the historical gradient at each iteration as:

Gt+1 = Gt + (gt)
2 (4.19)

4.3.4.3 Backpropagation Through Structure

To calculate the subgraident, Backpropagation Through Structure (BTS) is used. BTS

is a modification of backpropagation used for RNN and not feedforward networks 6.

As there are two parameters to learn I take derivatives with respect to W and Ws.

As adapted from Socher (2014), I will first show how to calculate with respect to W

(∂s(xi,yi)∂W ).

6BTS is a general case of Backpropagation Through Time, which is restricted to recurrent neural
networks.



Chapter 4. Recursive Neural Network 31

BTS works from the root down calculating how much each node contributed to the

error. The local error of the root P is the derivative of the scoring function of the vector:

δp = f ′(p)⊗W score (4.20)

where ⊗ is the hadamard product (entrywise product) and the derivative of f (tanh)

is:

1− tanh2p (4.21)

The error δ is then passed down to each of the child of P .

δp,down = (W T δp)⊗ [c1, c2] (4.22)

As the structure is a tree the error δp,down is split in half, each child takes their

corresponding error message. δ is :

δc1 = δp,down[1 : N ] (4.23)

If c1 is a vector representing a word then this is the error the word representation

contributed to the whole tree. However, if C1 is an internal node then the scoring of

the node also contributed to the error in the same way formula 4.19 the local score is

added:

δc1 = δp,down[1 : N ] + f ′(c1)⊗W score (4.24)

The error message δ is then summed for all nodes to give the total error. When taking

the gradient with respect to W score (∂s(xi,yi)∂W score ) the error at each node is the sum of the

derivative of the vector at each node.

4.4 Conclusion

In this section I outline the RNN approach to syntax and semantics as inspired by Socher

et al. (2010). The results from Socher et al. (2010) while encouraging fall short of the

state of the art. Socher et al. (2010) propose several enrichments7 which do achieve state

of the performance, these approaches however detract from the Montagovian aspect of

7See appendix B.



Chapter 4. Recursive Neural Network 32

Figure 4.9: CVG-RNN approach as adapted from Socher et al. (2013)

the model. Instead, I will focus on the approach of Socher et al. (2013) (CVG), which

combines a symbolic and a non symbolic approach. It uses the quick symbolic approach

to provide a KBest parse list, the non symbolic approach then reranks this list. Unlike

the approach within this section where there is only one composition function, Socher

et al. (2013) model uses a composition function for each pair of syntactic categories

(figure 4.9). This results in the model consisting of over 900 such composition functions.

The new combinatory function seen within formula 4.25 :

p = f

(
W (B,A)

[
a

b

])
(4.25)

where B and A refer to syntactic categories. The scoring formula incorporates both the

symbolic probability and the scoring layer from the RNN:

s(p) = (v(B,A))T p+ logP (P → BA) (4.26)

Socher et al. (2013) not only obtained state of the art results but also introduced a

hybrid symbolic non-symbolic model. This approach provides motivation for my model

which I explain in the next chapter.



Chapter 5

Enriched Recursive Neural

Networks

5.1 Introduction

In the previous section I outlined the one composition function RNN for syntax and

semantic modelling. I then discussed the state of the art performance achieved by Socher

et al. (2013). This approach however jumped from the use of one composition function

within the original model to over 900. Not only does this increase in the number of

composition functions drastically expand the search space for an already computational

expensive model, but it does not show that such a large increase in the number of

composition functions is needed. I will explore whether a small number of composition

functions can instead achieve similar improvements.

One previous solution to finding a small number of composition functions is for each N

most frequent syntactic rules to have a unique composition function. All other rules share

one composition function. However, this is ad hoc and not in line with linguistic theory.

Instead, I will find core linguistic composition functions which behave uniquely. To do so

I define core linguistic types which behave differently when they compose. While there

are many possible core linguistic types leading to core composition functions. I will take

advantage from work found within the previous symbolic NLP literature. The seminal

paper Collins (1997) proposes to use both head, argument and adjunct annotations to

enrich their symbolic parsing model. The syntactic rules of the model in addition to

including the constituents syntax category also included the head or argument or adjunct

category. While Collins (1997) successfully applied this information to a symbolic model,

I propose applying this approach to the non-symbolic RNN. However, a direct application

would lead to more composition functions than proposed in Socher et al. (2013), as the

33



Chapter 5. ERNN 34

syntactic rules are further refined. Instead, I will categorize constituents using just

head, argument and adjunct categories, discarding the syntactic categories. A PCFG

approach just using these distinction would be far too coarse1. Due to the semantic

aspect of the RNN model this does not seem to be as detrimental, an RNN based

approach with one type achieving results higher than standard PCFGs. Following this

approach but applying it to a neural architecture rather a probabilistic grammar, I will

categorize constituents within the syntactic tree with head, argument or adjunct types,

where different W and W score matrices are used to compose differently typed linguistic

items are composed.

The choice of head, argument adjunct is particularly appealing within the RNN model

as these categories have both a syntactic and semantic aspect, further cementing the joint

syntactic-semantic approach within the model. Within x-bar theory these categories

also form three of the four core linguistic types, the fourth category being the specifier

(Jackendorff, 1977). Partially due to the lack of annotation resources, and partially

due to the exclusion in later Chomskan approaches, I do not make use of the specifier

type. Due to the focus on the head constituent this approach also brings us closer to

dependency grammar.

In this chapter I will provide a specification of both head, argument and adjuncts. I

then explain how the model will be changed in order to account for multiple composi-

tion functions. Finally, I discuss the specifics of my proposed models, including both

reranking and binarization.

5.1.1 Head

Across the many differing linguistic traditions there are is a broad agreement that there

at least two types of constituent heads and dependents. Syntactically, the head is the

constituent which syntactically dominates the entire phrase; it determines the seman-

tic/syntactic type (Corbett et al., 1993). Below lists the eight candidate criteria for the

identification of a constituent as a syntactic head as written within Corbett et al. (1993):

• Is the constituent the semantic argument, that is, the constituent whose meaning

serves as argument to some functor?

• Is it the determinant of concord, that is, the constituent with which co-constituents

must agree?

• Is it the morphosyntactic locus, that is, the constituent which bears inflections

marking syntactic relations between the whole construct and other syntactic units?

1Results of this approach can be seen in section 6.4.2



Chapter 5. ERNN 35

• Is it the subcategorizand, that is, the constituent which is subcategorized with

respect to its sisters?

• Is it the governor, that is, the constituent which selects the morphological form of

its sisters?

• Is it the distributional equivalent, that is, the constituent whose distribution is

identical to that of the whole construct?

• Is it the obligatory constituent, that is, the constituent whose removal forces the

whole construct to be recategorized?

• Is it the ruler in dependency theory, that is, the constituent on which others depend

in a dependency analysis?

5.1.2 Arguments and Adjuncts

A further distinction can be made between dependents that are arguments and those

that are adjuncts (Kay, 2005). Syntactically, arguments are constituents that are syn-

tactically required by the verb, whereas adjuncts are optional. Semantically, argument

meaning is specified by the verb. Adjuncts meaning is static across all verbs. Consider

the utterance ”John pushed Mary yesterday”. Both ”John” and ”Mary” are arguments

hence gain their meaning from the verb as a pusher and a person being pushed respec-

tively. ”yesterday” is an adjunct hence its meaning is independents of the verb.

5.1.3 Annotation

An existing corpus is annotated with head, adjunct and argument information using an

extended version of the heuristic found within Collins (1997), seen in appendix C. The

heuristic considers the labels of: siblings, parents and children to determine head, argu-

ment or adjunct type. These labels include the syntax category of the constituent and

semantic information. Where, the semantic information comes in the form of labelling

the constituent from a limited number of theta roles.

5.1.4 Algorithmic changes

To incorporate multiple composition functions the RNN model is redefined such that

multiple W and W score matrices are used. To do so the model is now parameterized

by the collections CW and CW score. This requires a change in the CYK algorithm



Chapter 5. ERNN 36

to account for two children being composed with different composition functions. This

change can be seen below:

Let S consist of n tokens: a1...an. for each i = 2 to n – Length of span do

for each j = 1 to n-i+1 – Start of span do

for each k = 1 to i-1 – Partition of span do

for treeLeft in P[j,k] do

for treeRight in P[j+k,i-k] do

for W,W score in CW,CW score do
P [j, i].append(RNN(x, [treeLeft; treeRight],W,W score))

end

end

end

end

Prune(P[j,i],beamWidth)

end

end

Where prune now prunes not only on which constituents to combine but also which

composition function is used to do so. With multiple composition functions the changes

to the calculation of the subgradient are small, due to the chain rule where the error is

calculated assuming that each W matrix used is independents from one and other.

5.2 Models

To examine the impact that the head, argument and adjunct distinctions makes, I

propose six models with varying levels of linguistic enrichment. The first model, the

BRNN, is a near2 replication of the work of Socher et al. (2010), with no linguistic

enrichment. There is just one composition function (figure 5.1).

The second model (RNN-Head) enriches the model with head information. The model

makes a distinction between two types of constituents: the linguistic head and those that

are not (the dependents). As such two composition functions are defined, one which com-

poses heads and dependents, and one which composes dependents and dependents. An

example of the different composition functions can be seen in figure 5.2. The dependent-

dependent composition function is a result of binarization. If the tree had no ternary

or greater constituents there would be no need for the second composition function, as

each binary parent phrase has one child which is the head constituent.

2AdaGrad was chosen as the learning algorithm and not LBFGS.



Chapter 5. ERNN 37

W ([A;B])= ◦ ◦

A= ◦ ◦

a

B= ◦ ◦

b

Figure 5.1: Composition function for the BRNN

WHD([A;B])= ◦ ◦

A-h= ◦ ◦

a

B-d= ◦ ◦

b

WDD([A;B]) ◦ ◦

A-d= ◦ ◦

a

B-d= ◦ ◦

b

Figure 5.2: Composition function for the RNN-Head. The h flag indicates the con-
stituent is the linguistic head. the d flag indicates the constituent as a dependents.

The superscript on W indicates the composition function used.

WHA([A;B])= ◦ ◦

A-h= ◦ ◦

a

B-a= ◦ ◦

b

WHR([A;B]) ◦ ◦

A-h= ◦ ◦

a

B-r= ◦ ◦

b

WDD([A;B]) ◦ ◦

A= ◦ ◦

a

B= ◦ ◦

b

Figure 5.3: Composition function for the RNN-HeadArgumentAdjunct. The h flag
indicates the constituent is the linguistic head. The r flag indicates the constituent is
an argument. The a flag indicates the constituent is an adjunct. The superscript on

W indicates the composition function used.

The third model (RNN-HeadArgumentAdjunct) expands upon RNN-Head by making

a distinction between dependents that are arguments and those that are adjuncts. As

such there are three types of constituents: heads, arguments and adjuncts, leading to

three composition functions: Head-Argument, Head-Adjunct and dependent-dependent

(figure 5.3). The dependent-dependent composition function could be broken down

into three further composition functions: argument-adjunct, argument-argument and

adjunct-adjunct. However, I choose not to take this approach, as it is nonsensical to

compose two arguments within the Montagovian tradition. Instead, I predict that the

composition function tries to keep as much information about both dependents as possi-

ble. Furthermore, by minimizing the number of composition functions the model is less

computationally expensive.

While in English the head constituent is normally the leftmost child of the phrase,

this is not always the case. The previously-explained models cannot account for this

difference in position of the head constituents. This is problematic as the position of

the constituents partially determines the output of the composition function. Consider



Chapter 5. ERNN 38

an alternative way to express the composition function previously detailed:

P (i, j) = f(W [ci; cj ] + b) = f(w1[ci] + w2[cj ] + b) (5.1)

where w1, w2 ∈ RN,N and W = [W1;W2]. From this we see that the left and right

constituent have their own weight matrix. As such it is justified to give a consistent

matrix to each linguistic type. While one possible approach would be to simply associate

one half size matrix (wn) with each type, this does not fully capture the interaction of

the two constituents. Instead, I change the concatenation order used as an input to

the neural network. This makes the distinction between head concatenation order and

temporal concatenation order. This gives the appearance to the Neural Network that

the head constituent always appears as the left node (An example can be seen in figure

5.4). This allows for both items to be considered, as well as treating each linguistic type

consistently.

P (i, j) = f(W [ci; cj ] + b = f

(
W

[
cHeadi

cj

])
(5.2)

The fourth model DRNN-Head has the same linguistic enrichment as RNN-Head, how-

ever, concatenation order head concatenation order. An example can be seen in table

5.1.

The fifth model DRNN-HeadArgumentAdjunct also is similar to RNN-

HeadArgumentAdjunct such that is has three composition functions. Again I use

head concatenation order.

The sixth model TRNN-Head model (table 5.1) makes a distinction between head and

dependents. However, unlike the DRNN-Head it captures both head information and

node position. Instead of encoding the head position using the concatenation order, I in-

stead have two composition functions depending on whether the head is the left or right

constituent. As such there are three composition functions, dependents-dependents,

leftHead-dependent and rightHead-dependent. This approach could be seen as the clos-

est approach to Socher et al. (2013), where each right side of a PCFG rule is used to

determine the composition functions. In this case there are eight context-free grammar

rules with four unique right sides.

• Head → Head dependents

• Head → dependents Head

• Head → dependents dependents

• Head → Head Head

• dependents → Head dependents



Chapter 5. ERNN 39

S

C

A

a

B-h

b

D-h

d

S=W ([C;D]) = ◦ ◦

C=W ([A;B]) = ◦ ◦

A-h= ◦ ◦

a

B= ◦ ◦

b

D-h= ◦ ◦

d

Original tree Basic RNN

S=W ([D;C]) = ◦ ◦

C=W ([A;B]) = ◦ ◦

A-h= ◦ ◦

a

B-h= ◦ ◦

b

D-h= ◦ ◦

d

S=W right([C;D]) = ◦ ◦

C=W left([A;B]) = ◦ ◦

A-h= ◦ ◦

a

B-h= ◦ ◦

b

D-h= ◦ ◦

d

Model DRNN-Head Model TRNN-Head

Table 5.1: Comparison of head dependent models. The h flag indicates the con-
stituent is the linguistic head. the d flag indicates the constituent as a dependents.

The superscript on W indicates the composition function used.

• dependents → dependents Head

• dependents → dependents dependents

• dependents → Head Head

The model uses just three composition types, as I assume that there exists just one

head constituent per phrase.

Within table 5.2 I list an overview of all the models proposed, including information

regarding the linguistic enrichment and encoding.

Linguistic types

None Head/Dependent Head/Argument/Adjunct

E
n

co
d

in
g Position BRNN RNN-Head RNN-HeadArgumentAdjunct

Head N/A DRNN-Head DRNN-HeadArgumentAdjunct

Position + Head N/A TRNN-Head

Table 5.2: Overview of all RNN based models



Chapter 5. ERNN 40

5.2.1 Reranking

The use of multiple composition functions increases the search space, making finding

the highest scoring tree more time consuming and training more difficult. I optionally

employ reranking to reduce the search space; the RNN model select the most likely

tree according to equation 4.10 from a list of labelled syntactic trees as provided by

an external symbolic parser. As such the semantic strengths of the RNN are combined

with the speed of symbolic parsers. Reranking is particularly advantageous in the cases

of binarization. When a phrase is binarized, there will be at least two newly-created

subtrees. For these subtrees there will be a maximum of one head constituent. The RNN

approaches which don’t use reranking have no labelled information meaning they have

no information regarding binarization and the limit to the number of head constituents,

as such the search space is artificially high.

For all tests the generative Charniak (2000) parser was used and provided the top

KBest parses. Due to the removal of syntactic tags many duplicates trees are provided

which are then discarded; the effective KBest is thus variable. The Charniak parser was

chosen as not only does it provide near state of the art performance in a resource-friendly

manner, but it has been shown to benefit from discriminative re-ranking (Charniak and

Johnson, 2005). I therefore combine the generative symbolic strengths of the Charniak

parser with the discriminative semantic approach of the RNN. Beam search was op-

tionally used in the same manner as section 5.1.4, to further restrict the search space

explored. As beam search prunes on the cell level of the CYK algorithm, it is possible

that no valid trees could be created. In this case a back-off mechanism is employed

such that the search begins again with a wider beam. Socher et al. (2013) uses the

log-likelihood of the corresponding PCFG rule. However, for connectionist reasons I do

not include this information, as I wish minimize the influence a symbolic process has on

the non symbolic model. Furthermore, the log-likelihood is likely to be of limited use

due to the coarseness of the rules (see table 6.1).

5.2.2 Binarization

Due to the the limitations of the composition functions all trees need to be provided

in binarized form. Binarization is of particular importance within this model, as the

composition of f([f([a; b]); c]) is different to that of f([a; f([b; c])]). When two children

are composed both representations become squashed within one final node. The original

approaches to RNN based language models used right binarization. However, right

binirzation often leads to the linguistically unjustified composition of dependents and

dependents. I again draw from success within symbolic parsing approaches and propose



Chapter 5. ERNN 41

S

A

a

B-h

b

C

c

D

d

S

A

a

B(CD)

B-h

b

CD

C

c

D

d

S

A

a

(BC)D

BC

B-h

b

C

c

D

d

Figure 5.4: The leftmost tree is the original tree, which has been right binarized
forming the middle tree and head outward binarized on the rightmost tree.

to use head outwards binarization. Head outwards binarization is used such that the

head composes with the argument first (figure 5.4). Head-outwards binarization not only

simplifies the model but also removes linguistic unjustified composition of dependents

and dependents.



Chapter 6

Implementation and Evaluation

6.1 Introduction

In this chapter I will evaluate the syntactic and semantic performance of the RNN based

models outlined in the previous chapter. As the RNN acts as a joint syntactic-semantic

model the semantic-syntactic interface is implicitly accounted for and does not need to

be explicitly tested. The evaluations will be both quantitative and qualitative in nature.

A quantitative evaluation metric allows my models to be directly compared to each other

and to previous semantic/syntactic approaches. Due to the possibility of over-fitting the

quantitative task, a qualitative evaluation is also provided in the hopes of offering a

further insight.

I use a parsing task to evaluate the syntactic understanding of my models. Within

parsing tasks an utterance is given and the model computes its syntactic structure,

which is then compared against the correct syntactic structure. Earlier I discussed that

when learning the syntactic structure the RNN implicitly learns semantic information,

but it is difficult to evaluate how much semantic information has been learnt. This

motivates an evaluation on an explicit semantic task. In the past semantic role labelling,

sentiment analysis and question answering have been popular approaches for semantic

evaluation. However, it is hard to see them as true Montagovian semantic tasks rather

than pragmatic or information retrieval tasks. I instead take inspiration from model

theoretic formal semantics and go back to the issue of truth. Paraphrase detection tasks

present a pair of utterances to be classified as paraphrases of each other or not. An

utterance is a paraphrase of another utterance if both are semantically equivalent; they

are true in the same possible worlds.

Within this chapter I first outline the parsing task and the details of my approach in

addressing it. I next show and discuss the results my models achieved. I follow this by

42



Chapter 6. Implementation & Evaluation 43

outlining the semantic task as well as providing the results achieved. Finally, I provide

a qualitative discussion of both the semantic and syntactic tasks.

6.2 Parsing

Parsing is the task of computing the syntactic structure of an utterance. To evaluate the

parsing ability of a model, a corpus of sentences is defined. A corpus is normally divided

into three sets, with each set performing a different function. The training set is used to

learn the parameters (θ values) of the model. The development set is used to fine-tune

the models’ and set the models hyperparameters. The test set is then used to evaluate

the model. At test time the utterances are given to the model but not their syntactic

structures, which are computed and compared against the gold(correct) structures.

To evaluate how good the model computed trees are, an evaluation metric must be

chosen. One tempting metric would be to use the percentage of computed trees that

exactly match the gold trees. However, this would be too coarse, as trees which are

almost correct would be marked just as incorrect as those which were completely incor-

rect. While there are several approaches to measuring degrees of correctness, I follow

standard parsing convention and take the span approach. Within the span approach,

a subtree is correct if its leftmost word and rightmost word match the gold trees left-

most and rightmost words. Precision, recall and their harmonic mean (F1) are used to

measure the degree of correctness over all subtrees within the entire corpus. Precision

is calculated using:

(number of correct constituents)

(number of constituents in the computed trees)
(6.1)

Recall:

(number of correct constituents)

(number of constituents in the gold trees)
(6.2)

And F1 is their harmonic mean:

2 · precision · recall

precision + recall
(6.3)

As the approach taken within this model requires binarization, recall and precision

will be equivalent. However, in non-binarized approaches this would not be the case;

the number of spans would be determined by the number of children for each subtree.



Chapter 6. Implementation & Evaluation 44

While the above metrics give an unlabelled score, they can be expanded by considering

the labels on the tree. Within the labelled span approach a subtree is correct if the root

label of the computed tree matches the root label of the gold tree and leftmost word and

rightmost word match the gold tree’s leftmost and rightmost words. Within symbolic

approaches to parsing the label refers to the node’s syntactic category. However, in the

case of RNN the label at each node refers to which composition function was used.

While the span approach is popular and the one used in this thesis, it has a downside.

The span approach artificially focuses on just one aspect of incorrectness. In contrast,

an edit-distance-based approach counts the number of different operations required to

transform the incorrect tree to the correct tree. Emms (2008) takes this approach

developing the syntactic-edit-distance metrics: DICE and JACARD. Where the minimal

sets D, I, S, and M containing the nodes that are deleted, inserted, swapped, or matched

with the nodes from the gold tree G to the nodes of the computed parsed tree P. These

sets are then used for the metrics, as follows:

DICE = 1− |D|+ |I|+ |S|
|G|+ |P |

(6.4)

JACARD = 1− |D|+ |I|+ |S|
|D|+ |I|+ |S|+ |M |

(6.5)

To evaluate my model using these metrics would have require changing the loss func-

tion; the margin of error is no longer based upon span error but on edit-distance error.

This would require retraining the RNN model, an expensive prospect, hence not taken.

6.3 Setup

The corpus used for the parsing task is the Wall Street Journal Penn treebank II (WSJ)

(Marcus et al., 1994), a dataset of syntactic annotation of English language journal

articles. The WSJ was chosen because English is considered a morphologically poor

language, thus allowing the focus to rest on the syntax and the semantics. While the

WSJ is not considered representative of the English language as a whole; it is the

most widely used corpus and therefore allows for comparisons to other approaches.

For computational cost reasons I restrict the maximum sentence length to 15. Any

sentences after preprocessing with greater than 15 words are discarded from both the

test, development and training set.

Within the following subsections I will list specific details of the model for this task,

including: initialisation approaches, pre-processing of the WSJ and hyperparameter

selection.



Chapter 6. Implementation & Evaluation 45

6.3.1 Implementation

The code for this thesis is split into two main code bases, the model itself and preprocess-

ing1. The code for the models is written in Python, based on the tree class found within

Natural Language Toolkit (NLTK) (Bird et al., 2009). Pre-processing of the corpus was

partially done with code supplied by Van Cranenburgh et al. (2011). Within the model

code base the multiprocessing library was extensively used allowing the simultaneous

use of multiple CPUs. Matrix multiplication is a large part of the algorithm, therefore

a dedicated library (Ascher et al., 1999) was chosen.

External resources used include the Treep2 annotator and the Charniak3 parser. Treep

(Chiang and Bikel (2002)) was used to annotate the trees with head argument adjunct

information. The rules used for Treep are based, with slight modification, on Chiang

and Bikel (2002) which is based on the work of Collins (1997). A list of these rules can

be found in the appendix C. The Charniak parser is used to provide a KBest list of

syntactic trees for an utterance within both the training and testing phase.

6.3.2 Pre-processing

As it is important to be able to compare my work to the work of others, I follow standard

preprocessing techniques on the corpus. First, I remove all punctuation from the corpus,

thus making the text corpus more similar to spoken language. Secondly, I remove traces

and null elements from the WSJ. Traces indicate a non-local dependency, such as WH-

movement. Null elements typically appear in places where an optional element are

missing, for instance when that or who is missing: ”the king said null he could go” or

”the man null I saw”. In the future it would be interesting to include these elements,

as this would allow the composition to be more in line with linguistic theory (Gabbard

et al., 2006).

A particularly problematic issue for the RNN based approach is unknown words; words

that don’t appear within the training set, thus have no vector representation. One

possible solution would be to generate a random vector for each unknown word found

within the test set. This however is problematic; unlike most approaches symbolic

approaches to parsing RNN are not Markovian: the root vector is dependent on all

vectors of the word, making the RNN approach particularly sensitive to all incorrect

word representations. Furthermore, by generating the vector randomly, the parsing

evaluation is no longer deterministic but instead the score will fluctuate dependent on

1Code can be found at https://github.com/agent1/RNN-Head
2Download link: http://www.isi.edu/ chiang/software/treep/treep.html
3Download link: https://github.com/BLLIP/bllip-parser



Chapter 6. Implementation & Evaluation 46

the random vector’s values. I instead add an unknown vector to the lexicon: this vector

is used and learnt in place of words that appear less than three times within the training

set.

6.3.3 Initialisation

Initialisation can have a huge effect on the performance of many NLP models, due to

the possibility of getting stuck in local optima. Therefore, care must be taken when

initialising the three sets of parameters for the RNN, the W , W score and the lexicon.

For both W and W score I use random initialisation; the values are drawn from a uniform

distribution between −1.0√
(vectorSize)

≤ x ≤ 1.0√
(vectorSize)

. While the lexicon could also be

initialised in such a manner, it has been shown to be beneficial to use data gathered using

flat distributional semantics (Socher, 2014). I therefore use the lexicon from Collobert

et al. (2011), who created word vectors using a Neural Network based language model.

Since this lexicon was created without explicitly modelling composition I allow the RNN

to change the vector value of words during training.

6.3.3.1 Baby steps

An alternative initialisation approach comes from unsupervised parsing, where it has

been shown to be beneficial to learn the syntactic structure for simple utterances before

training on complex cases (Spitkovsky et al., 2009). Due to the complexity of training

a RNN I will transfer this approach to a supervised setting. Within Spitkovsky et al.

(2009) simple sentences are short sentences, as there are fewer possible syntactic trees.

Within a supervised setting, the number of possible tree is less problematic because the

correct syntactic structure is known. Instead, I define simplicity with respect to the

composition function, where the composition of certain linguistic types are simpler than

others. I consider the head-argument composition a core semantic process, as every

predicate and utterance must specify an argument but adjuncts are optional and do not

appear within every utterance.

I will first pre-train on a simplified corpus which contains only those trees which do

not contain adjuncts constituents. I will then use these weights to initialise a new model

which trains over the entire unrestricted corpus. Due to the sensitivity of the weights

the learning rate is lowered to ensure that the efforts of the pre-training is not undone.



Chapter 6. Implementation & Evaluation 47

6.3.4 Cross validation

To adjust the hyperparameters I use cross validation over the development set(WSJ

section 22). In table 6.1 I show the hyperparameters I use; within appendix A the

results of cross validation can be seen.

Name Value Description

K 0.1 Penalty applied to a wrong span

λ 0.0001 Regularization value

Beam size 8, 1 Either unlimited (global search) or size one (greedy search)

N 50 The dimension of the word vectors

LR 0.5, 0.05 AdaGrad learning rate

M 500 batch size (formula 4.15)

KBest 200 The number of trees Charniak provides to be reranked

Table 6.1: RNN hyper-parameters

6.4 Results

6.4.1 Preliminary results

Although a reranking RNN setup achieves better results than the non reranked setup, I

still give the results for the non reranking setup. By providing the non reranked results

Figure 6.1: Loss function over number of training rounds for non-reranked RNN based
models



Chapter 6. Implementation & Evaluation 48

I show a replication of the work of Socher et al. (2010) and provide a motivation for the

switch to the reranking setup. Within the results table 6.2 I include in addition to the

RNN models, two baselines: PCFG and HAA-PCFG. PCFG is a standard PCFG with

no smoothing or vertical/horizontal markovization. HAA-PCFG uses a PCFG, however

all syntactic categories are replaced with the linguistic types: head, argument or adjunct.

The RNN models used for preliminary testing are trained and tested using a greedy

search (a beam size of 1). The training rounds were limited due to the computational

cost associated with training.

The results in table 6.2 surprisingly show us that the BRNN achieves the highest F1

score, followed by RNN-Head and RNN-HeadArgumentAdjunct. One possible reason

that the linguistically-enriched models performed worse than the BRNN is their larger

search space. A large search space makes finding the optimal parameters more diffi-

cult when training with a limited number of training rounds. Furthermore, a greedy

approach may not be appropriate for the linguistically-enriched RNN models, as the

head argument relationships are inherently not markovian. All trees must have at least

one head element. A solution to both problems is to increase the number of training

rounds and increase the beam size (possibly to include a global search). However, this

is problematic as the computational cost of training the RNN is already high, leading

to the premature termination of training in these cases. While all RNN based models

achieved lower scores than the vanilla PCFG this is in part due to the low number of

training rounds; the BRNN, with a significant increase in training rounds achieves an

F1 score of 77.64, significantly better result than the PCFG.

The results show us that the approaches which use head dependent concatenation

order (DRNN-Head and DRNN-HeadArgumentAdjunct) achieve significantly worse F1

scores than the corresponding temporal concatenation order models (RNN-Head and

RNN-HeadArgumentAdjunct). While earlier I partially attribute poor performance to

Model UF1

PCFG 69.79379

HAA-PCFG 22.20

BRNN 67.697266

DRNN-Head 35.03414

DRNN-HeadArgumentAdjunct 27.352049

RNN-Head 66.95751

RNN-HeadArgumentAdjunct 67.58346

TRNN-Head 63.03111

Table 6.2: Preliminary non-reranked results on the WSJ15



Chapter 6. Implementation & Evaluation 49

a low number of training rounds, figure 6.1 shows us that this is not likely in these cases.

We see for both DRNN-Head and DRNN-HeadArgumentAdjunct the loss function did

not significantly decrease over time, suggesting that more training rounds would not help

the performance. Interestingly the TRNN-Head model which encodes both temporal and

head information achieves worse results than the RNN-Head model which just encodes

temporal information. In this case the loss function did significantly decrease over time;

suggesting that more training rounds would be beneficial.

6.4.2 Results

Model UF1

PCFG 69.79379

Stanford-PCFG 72.28791

Charniak 90.89176

Charniak-random 71.449

Socher et al. (2013) 91.14

BRNN 81.27

RNN-Head 82.89

RNN-HeadArgumentAdjunct 86.04

DRNN-Head 79.86

DRNN-HeadArgumentAdjunct 82.89

TRNN-Head 78.23

BRNN-baby 86.22

Table 6.3: Results for RNN models using right binarization and baseline results

The preliminary non reranked results motivate a switch to a reranking setup, where

the top 200 trees from Charniak are used. By reducing the search space a reranking

setup allows for a global search (an unlimited beam size) and more training rounds,

which improve upon the results of the non-reranked setup. As results of the rerank-

ing setup are reliant on a parser, two sets of baselines are given, using either a PCFG

parser or the Charniak parser. The PCFG approach includes the the baseline listed

Model UF1

BRNN 80.93

RNN-HeadArgumentAdjunct 81.93329

DRNN-Head 79.00

DRNN-HeadArgumentAdjunct 78.44792

Table 6.4: RNN models results when using head-outwards binarization



Chapter 6. Implementation & Evaluation 50

within the preliminary results; PCFG. Additionally, I add the baseline Stanford-PCFG,

a PCFG parser which includes probability smoothing, vertical and horizontal markoviza-

tion (v=3, h=1). The second set of baselines are added due to using the Charniak parser

within the reranking setup. Charniak is a state of the art parser as proposed by Charniak

et al. (1998). Charniak-random, randomly chooses one parse tree from the KBest can-

didate parse trees5. When just examining the baselines we see straight away from table

6.3 that Charniak-random gives a higher F1 score than both PCFG and HAA-PCFG,

showing the strength of the Charniak parser.

The results seen within table 6.3 offer several insights into the RNN models. Firstly,

we see that all the RNN models beat all the PCFG based baselines and the Charniak-

random baseline. Scoring higher than the Charniak-random baseline shows that the

RNN models are learning syntactic structures and not just scoring highly due to the

reliance on the KBest list from Charniak. While the models beat the random baseline,

no model reports a higher F1 score than Charniak ; this is partially due to the strength

of Charniak. The results are given for WSJ15; the Charniak F1 score for WSJ of

unrestricted length is comparable, suggesting that the RNN based results should carry

over to the entire non-length restricted WSJ.

A question this thesis tried to answer was whether a small number of composition

functions can achieve comparable state of the art results of an RNN model using sig-

nificantly more composition functions. From the results we see that none of the models

achieved state of the art results of Socher et al. (2013). While both Socher et al. (2013)

and Charniak show the importance of syntactic categories, we do see an increase in

F1 score as linguistic enrichment is added. The results show that an RNN-Head, with

two composition functions achieves a higher score than BRNN, with just one composi-

tion function. RNN-HeadArgumentAdjunct with three composition functions achieves

significantly better results than the BRNN model.

One surprising result was that impact baby steps initialisation had on the BRNN

model. The baby steps model BRNN-baby achieved significantly higher results

than the random initialised BRNN model and the more linguistically enriched RNN-

HeadArgumentAdjunct. This highlight not only how head, argument, adjuncts dis-

tinctions play an important role within the RNN framework and the importance of

initialisation over model enrichments.

While several approaches taken within this thesis increased the performance of the

model, there were less successful approaches. Head dependent concatenation gives

worse results than standard concatenation order. We can see that DRNN-Head scores

5To select a random parse tree the weights within the network are randomly initialised then used to
parse the test corpus, this is repeated and the mean F1 score is reported.



Chapter 6. Implementation & Evaluation 51

lower than RNN-Head and DRNN-HeadArgumentAdjunct scores lower than RNN-

HeadArgumentAdjunct. Head dependent concatenation removes temporal encoding in

order to encode head linguistic type information. The results suggest that this trade-off

was not beneficial and that temporal encoding is more important than the location of

the head constituent. The results from TRNN-Head surprisingly are worse than DRNN-

Head and RNN-Head results, even though it encodes both word order and head order.

This is surprising as RNN-Head can be seen as a special case of TRNN-Head. If the

composition functions from TRNN-Head LeftHead-Depedent and RightHead-Depedent

were forced to be equal this model would be equivalent to RNN-Head. Suggesting, that

it is not the power of the TRNN-Head but the learning which gives the lower score.

Where, the low score of TRNN-Head is possibly a result of the composition function

Headright-Depedent having fewer training examples.

Other disappointing results were those of head-outward binarization, which gave sig-

nificantly worse results across the board, as seen in table 6.4. This highlights how

dramatic an effect pre-processing can have on the results as well as making binarization

a key issue. While right binarization generally fits with the linguistic intuition that En-

glish is right branching, this however is not always the case6 and care must be taken as

to how binarization is performed. I partially attribute the poor performance to the RNN

behaving as a compression algorithm rather than a composition function. Vectors which

must go through multiple compositions becomes diluted by the time it reaches the root

node. With head-outward binarization the head constituent now goes through multiple

composition functions, which dilutes the constituent which is syntactically/semantically

more important. This is not the case in Montagovian grammars, where the influence of

the head constituent would not be diluted. While it could be argued that the loss is

due to the small size of the vectors, which can not contain the semantics of an entire

sentence, Socher (2014) experimented with vectors up to 100 in size and saw negligible

difference with those of 50 dimensions. Within the qualitative discussion of the models

I further explore the notion that the RNN behaves as a compression algorithm.

6.5 Semantics

To evaluate the semantic information learnt by the RNN models I use a paraphrase

detection task. The Microsoft Research Paraphrase Corpus (MSRP), as introduced by

Dolan et al. (2004), consists of pairs of sentences, which must be either classified as a

paraphrase or not. The task is semantic in nature as the words and the structure of the

6Slavic languages are one such instance



Chapter 6. Implementation & Evaluation 52

two utterances can be different yet semantically equivalent. However, the task still in-

corporates a syntactic element; the syntactic structure for the utterances are not given.

Instead, the model must compute the syntactic structure, so that the semantic vectors

can be constructed. To focus on the semantic aspect of the task an external state of

the art parser is used to calculate the most likely syntactic structure for the utterance.

Charniak was chosen to compute the syntactic structures and from the parsing results

within table 6.2 we see that Charniak scores higher than the RNN approaches. Further-

more, the RNN approaches have been only trained on utterances of length 15 and under

whereas the MSRP contains utterances with many more words that this. The RNN

models will then use this syntactic structure to generate the vectorial representation of

the utterance.

The paraphrase detection task is supervised in nature; the training corpus consists

1,076 sentence pairs that are marked as either a paraphrase or not and a test set of

1,725 sentences which the model must label as a paraphrase or not. The task is made

particularly difficult due to the care taken in constructing the corpus, where word choices

were similar in each pair of utterances, such that paraphrases could not be detected us-

ing word unigrams alone. While it would be possible to learn the RNN θ parameters

directly on the training set, I avoid this option for two reasons: (1) the limited number

of sentences, making training difficult; (2) rather than determining how much semantic

information the RNN model can capture I am interested in how much semantic infor-

mation the RNN model has learnt from the parsing task. Instead, I use an off-the-shelf

supervised linear support vector classifier (LSVC). I use two set of features as inspired

by Blacoe and Lapata (2012). The first set of features is the concatenation of the root

vector for both sentences. The second set of features consists of the cosine distance

between the root vectors of the sentences, the length of both sentences and the uni-

gram overlap between the two sentences, where, the unigram overlap is the the number

of words which occur in the union of both sentences. By using a minimal number of

features the focus of the evaluation can be on the root vectors.

In addition to the results of the LSVC models I will give the results of a baseline

(AlwaysYes) which always predicts that the pair of sentences is a paraphrase. I also

include the results from three approaches found within Blacoe and Lapata (2012) which

use the same two sets of features7. The difference between my models and the Blacoe

and Lapata (2012) is the choice of composition function. The first model +, uses vector

addition to compose new items. The second model �, uses component-wise multiplica-

tive vector composition. The third model, RAE uses a recursive auto encoder (RAE) as

7Note for the addition model instead of using the concatenation of the vectors as the input to the
SVC, the vectors were substituted from one and other.



Chapter 6. Implementation & Evaluation 53

based on Socher et al. (2011). For completeness I give the results of several state of the

art approaches.

6.5.1 Results

Model F1 Accuracy Parsing F1

AlwaysYes 79.9 66.5

DRNN-HeadArgumentAdjunct 81.06 68.80 82.89

BRNN-baby 81.19 69.30 86.22

RNN-Head 81.01 69.94 82.89

DRNN-Head 81.20 70.30 79.86

TRNN-Head 81.37 70.87 78.23

RNN-HeadArgumentAdjunct 81.42 71.53 86.04

BRNN 81.91 72.36 81.27

RAE 81.28 70.26

� 82.33 73.04

+ 82.16 73.51

Mihalcea et al. (2006) 81.3 70.3

Rus et al. (2008) 80.5 70.6

Qiu et al. (2006) 81.6 72.0

Islam et al. (2007) 81.3 72.6

Blacoe and Lapata (2012) 82.3 73.0

Socher et al. (2011) 83.6 76.8

Madnani et al. (2012) 84.1 77.4

Table 6.5: Paraphrase detection results.

The results from table 6.5 show that all the RNN models achieve a higher F1 and

accuracy score than the baseline AlwaysYes. Due to the high F1 score of AlwaysYes, I

pay particular attention to the accuracy of the model. The BRNN achieves the highest

F1 and accuracy score beating several previous state of the art results. However, it

still falls short of achieving current state of the art results. We see that the additive

and multiplicative composition functions achieve higher F1 scores than the RNN based

approaches, further reinforcing the notion that simpler composition functions are better

for semantics. As RAE is considered to capture more semantic information than RNN

approaches, it is surprising that the RNN based approaches achieved comparable results.

Although, this could be due to the slight differences in setup between my approach and

Blacoe and Lapata (2012).



Chapter 6. Implementation & Evaluation 54

In addition to evaluating the RNN based models against state of the art results, I

wished to see if the Max-Margin parsing loss function was suitable for capturing semantic

information. The results show that this is not the case; the RNN models show no strong

correlation between syntactic performance and semantic performance. Furthermore the

BRNN achieves better semantic results than BRNN-baby, even though they are equally

expressive models, with BRNN-baby achieving better syntactic results.

6.6 Exploration

In addition to the results given within the semantic and syntactic tasks I will analyse

the trees within the corpus and give an analysis of the composition functions used.

I first focus on the composition functions found within RNN-HeadArgumentAdjunct,

as this is the most linguistically rich model. An assumption of this thesis was that

differently typed linguistic items compose differently. To test this assumption I compare

the composition functions by measuring the Frobenius norm of the subtraction of the

composition W matrices. Table 6.6 shows us that the two most similar composition

functions are Dependent-Dependent and Head-Argument. This indicates that linguistic

constituents which are dependents and heads are closer to each other than dependents

and adjuncts; and adjuncts and heads. Therefore, a better split in composition functions

may be Head-Adjunct and Other-Other, where other would be either head or argument

types.

Previously I stated that the composition function of dependent-dependent would act

more as a compression algorithm than composition function. To test this I measure the

distance of the matrices to the identity matrix as well as comparing how similar the

vectors composed to the matrix are to the mean of the addition of the two vectors. Both

these metrics measure if one argument is more influential; if this is not the case I would

consider the composition to be compression-like in nature. From the Frobenius norm

within table 6.7 we see that dependent-dependent is in fact the closest to the identity

matrix and those constituents composed by it are closest to the mean addition.

Composition function Distance

Head-Adjunct 28.1150852527

Head-Argument 26.7589556579

Dependent-Dependent 23.9236758953

Table 6.6: Distance to identity matrix

Within appendix D I list the trees about which the RNN models have not captured

correctly; tree which the RNN assigns a high score yet these trees receive a low F1



Chapter 6. Implementation & Evaluation 55

Composition function Head-Argument Head-Adjunct Dependent-Dependent

Head-Argument 0 35.0250278764 32.1754451601

Head-Adjunct 35.0250278764 0 32.5776586789

Dependent-Dependent 32.1754451601 32.5776586789 0

Table 6.7: Distance between composition functions

score. These trees show several cases of topicalization not receiving the correct structure.

Topicalization is an example of discontinuity, a linguistic phenomenon which is not

capturable within a CFG. While the RNN is considered to be context sensitive, these

results raise questions over this consideration. Alternatively it show that more care in

training is needed to better capture context sensitive phenomena.



Chapter 7

Conclusion

7.1 Closing remarks

I have used a Recursive Neural Network to capture syntax and semantics of natural

language. I started by replicating the work of Socher et al. (2010). I then expanded upon

this approach enriching the model with core semantic syntactic types. This enrichment

came in two forms: multiple composition functions and initialisation. Like Socher et al.

(2013) I believe that different linguistic items compose differently and therefore merit

their own composition functions. However, unlike Socher et al. (2013) I chose to explore

a small number of both semantic and syntactic core types (head, argument and adjunct)

resulting in a small number of composition functions. The second enrichment came

in the form of initialisation. Where, these linguistic types are used to define a core

composition function used within baby steps initialisation procedure. The results from

evaluating both types of approaches shows the success of enrichment as well as raising

several interesting questions, which I will now give.

The results from chapter six show that the core types chosen offer a suitable way to

split linguistic constituents, where models with further refined constituents gave better

results. Although the models failed to achieve state of the art results, it begs the question

of whether it was due to the small number of composition functions or the choice of

composition functions. To find the ideal choice of composition functions there are several

approaches, one possible future approach would be to test several different linguistic

theories as the inspiration for core compositional types. This however is time consuming

and there is no guarantee that any linguistic theory would offer the optimal splitting of

the composition functions. Instead, future work could be done using the data to come

up with the splitting composition functions. Previously Petrov and Charniak (2011) has

used hierarchical spiting to refine symbolic grammars, for instance NP categories are

56



Chapter 7. Conclusion 57

split into NP1 and NP2 based on their occurrences within the treebank. It would be

interesting in using this approach to select different composition functions.

The RNN based approach to the paraphrase tasks shows the weakness of both the

loss function and the training itself, as there seems to be limited correlation between

parsing results and semantic results. In the future it would be interesting to explore

how different loss functions capture both syntax and semantics. Further difficulties for

the paraphrase task surface from manually inspecting the MSRP corpus; we see that the

sentences are not truly semantically equivalent. Instead, there are cases of ambiguous

pronouns, inference and pragmatic world knowledge being required. As such I suggest

extending the model with contextual knowledge, which would be better suited to deal

with these phenomena. Contextual knowledge can be gained through the understanding

of documents as a whole not via individual isolated utterances. The RNN model should

be given document representation; this could be seen as an extension of the work done on

distributional semantics within a compositional setup (Le and Mikolov, 2014). Within

the Le and Zuidema (2014a) framework the root outside vector could be used to represent

the context of previous utterances within the document.

While formal semantics heavily influenced the model and the evaluation, this influence

can still be strengthened. Within Montague grammar we see the extensive uses of

types, however no such type information is explicitly found within RNN. While it is

possible that type information is implicitly encoded within the vectors it is difficult to

determine whether this is actually the case. Instead, this implicit information could be

strengthened at training time by adding type information to the gold tree. The RNN

would then be trained to predict the correct logical type. Logical type information could

also be explicitly encoded into the model in a similar way as the tensor approach, where

the type information represents the dimensionality of the vector.

In conclusion I have shown how the RNN can be used to model both syntax and

semantics. I show that further linguistic enrichment is justified and improves the results

on syntactic tasks. Although, the approach fails to achieve state of the art results, it

gives improvements over the original RNN model and raised several questions for further

study.



Appendix A

Cross validation

Below I list some key cross validation results. I start with Figure A.1, which shows

the affect of regularization values on loss function on the development set. The results

show that a high regularization value leads an increase in the loss function. Next I

examine two different sources of vectors Turian et al. (2010) and Collobert et al. (2011).

The results show that Collobert et al. (2011) gives better performance. Furthermore,

using vectors of size 50 was not significantly slower than vectors of size 25. Table A.1

shows the results of a reranking setup using 100 trees to rerank. The results again show

that head concatenation offers worse results than temporal concatenation. However, the

results between levels of linguistic enrichment is less clear. This could be due to the

small number of training examples the models are given.

Model F1 score

BRNN 84.049774

DRNN-Head 81.16

RNN-Head 83.85

RNN-HeadAdjunct 83.58

DRNN-HeadAdjunct 81.01

TRNN 79.49

Table A.1: F1 scores for reranking setup using top 100 parse trees

58



Appendix A. Cross validation 59

Figure A.1: Cross validation for Regularization values

Figure A.2: Cross validation for vector size



Appendix B

Overview of alternative RNN

models

In this section I briefly outline alternative approaches to capture syntax and semantics

based on the RNN model. I start first by discussing the modifications suggested within

the original RNN Socher et al. (2010). I then introduce Recursive Matrix-Vector Spaces

and finally provide details of the inside outside approach to RNNs.

B.1 Context-aware RNN

Socher et al. (2010) proposed a contextual element be added to the RNN. in addition

to the two constituents being composed, contextual words are added to the composition

function. The new composition is now defined using:

p = f(W [ci−1; ci; cj ; cj+1] + b) (B.1)

Where a context of word to the left and the right are appended to the vector. An

example can be seen in figure B.1.

Figure B.1: Context-aware RNN

60



Appendix B. RNN model overviews 61

Figure B.2: MV-RNN

B.2 Category Classifier

Further modifications to Socher et al. (2010) including changing the loss function from

the Max-Margin framework to predicting the syntactic category from the gold tree. The

approach becomes generative; a softmax layer is added to each node on the gold tree;

the objective functions minimizing the cross-entropy error of this softmax layer. The

error will backpropagates and influence the θ values.

B.3 Semantic Constitutionality through Recursive

Matrix-Vector Spaces

In contrast to the standard approach with RNN where words are represent by a vector

within MV-RNN, words are represented by both a vector and a matrix. The vector

represents the semantic of the word and the matrix the combinatorial procedure. An

example can be seen in figure b.2. The composition models for two words is defined

using the following:

p = FA,B(a, b) = f(Ba,Ab) = f

(
W

[
Ba

Ab

])
(B.2)

where B and A are matrices. For all internal nodes a single Wm matrix is learnt.

B.4 Inside Outside

An alternative approach to context was developed by Le and Zuidema (2014a); every

node in the tree is represented by two vectors an inside vector like the standard RNN

and an outside vector representing the context of the node, which is caculated in a top

down manner. An example can be seen in figure B.3



Appendix B. RNN model overviews 62

Figure B.3: Inside outside, diagram as adapted by Le and Zuidema (2014a)

This results in two composition functions: the inside representation is encoded within

formula B.3

f(W1C1 +W2 + C2 + b) (B.3)

and the outside representation is encoded within formula B.4

f(W1O1 +W2 +O2 + b) (B.4)



Appendix C

Collins rules

Below I include the Treep rule based Chiang and Bikel (2002) which was used to add

head annotation to a syntactic tree:

punc := "." ," ," ,":";

pos := CC,CD ,DT,EX,FW ,IN,JJ,JJR ,JJS ,LS,MD,

NN,NNS ,NNP ,NNPS ,PDT ,POS ,PRP ,"PRP$",RB ,RBR ,

RBS ,RP ,SYM ,TO,UH ,VB,VBD ,VBG ,VBN ,VBP ,

VBZ ,WDT ,WP ,"WP$",WRB ,AUX ,AUXG ,

punc ,"$","#","-LRB -","-RRB -";

head := "-HD";

ADJP -> .* < ((NNS|QP|NN|"$"|ADVP|JJ|VBN|VBG|ADJP|JJR|

NP|JJS|DT|FW|RBR|RBS|SBAR|RB|.)+head

> .*);

ADVP -> (.* < (RB|RBR|RBS|FW|ADVP|TO|CD|JJR|JJ|IN|NP|JJS|NN|.)+head) > .*;

CONJP -> (.* < (CC|RB|IN|.)+head) > .*;

FRAG -> .* .+head;

INTJ -> .+head .*;

LST -> (.* < (LS |":"|.)+head) > .*;

NAC -> .* < ((NN|NNS|NNP|NNPS|NP|NAC|EX|"$"|CD|QP|

PRP|VBG|JJ|JJS|JJR|ADJP|FW|.)+head

> .*);

# Special rule for NP

NP -> .* POS+head

| .* > (NN|NNP|NNPS|NNS|NX|POS|JJR)+head > .*

| .* < NP+head < .*

| .* > ("$"|ADJP|PRN)+head > .*

| .* > CD+head > .*

| .* > (JJ|JJS|RB|QP)+head > .*

| .* .+head;

63



Appendix C. Collins rules 64

PP -> (.* < (IN|TO|VBG|VBN|RP|FW|.)+head) > .*;

PRN -> .+head .*;

PRT -> (.* < (RP|.)+head) > .*;

QP -> .* < (("$"|IN|NNS|NN|JJ|RB|DT|CD|NCD|QP|JJR|JJS|.)+head > .*);

RRC -> (.* < (VP|NP|ADVP|ADJP|PP|.)+head) > .*;

S -> .* < ((TO|IN|VP|S|SBAR|ADJP|UCP|NP|.)+head > .*);

SBAR -> .* < ((WHNP|WHPP|WHADVP|WHADJP|IN|DT|S|SQ|SINV|SBAR|FRAG |.)+head > .*);

# This rule is found in the thesis only

SBARQ -> .* < ((SQ|S|SINV|SBARQ|FRAG |.)+head > .*);

SINV -> .* < ((VBZ|VBD|VBP|VB|MD|VP|S|SINV|ADJP|NP|.)+head > .*);

SQ -> .* < ((AUX|AUXG|VBZ|VBD|VBP|VB|MD|VP|SQ|.)+head > .*);

UCP -> .* .+head;

VP -> .* < ((TO|AUX|AUXG|VBD|VBN|MD|VBZ|VB|VBG|VBP|VP|ADJP|NN|NNS|NP|.)+head >

↪→ .*);

WHADJP -> .* < ((CC|WRB|JJ|ADJP |.)+head > .*);

WHADVP -> (.* < (CC|WRB |.)+head) > .*;

WHNP -> .* < ((WDT|WP|"WP$"| WHADJP|WHPP|WHNP |.)+head > .*);

WHPP -> (.* < (IN|TO|FW|.)+head) > .*;

# These two are not specified in Collins ’ head table; Collins ’ parser

# defaults to choosing the leftmost child

NX,X -> .+head .*;

# Top node

TOP ,"" -> .+head;

# Parts of speech

pos -> .;

# Deleted nodes

"‘‘","’’" -> .;

# Empty nodes

"-NONE -" -> .;

Once the head information is applied, argument adjunct distinctions can be made with

the following treep rules:



Appendix C. Collins rules 65

punc := "." ," ," ,":";

pos := CC,CD ,DT,EX,FW ,IN,JJ,JJR ,JJS ,LS,MD,

NN,NNS ,NNP ,NNPS ,PDT ,POS ,PRP ,"PRP$",RB ,RBR ,

RBS ,RP ,SYM ,TO,UH ,VB,VBD ,VBG ,VBN ,VBP ,

VBZ ,WDT ,WP ,"WP$",WRB ,AUX ,AUXG ,

punc ,"$","#","-LRB -","-RRB -";

adj := "-ADV","-VOC","-BNF","-DIR","-EXT","-LOC","-MNR","-TMP","-CLR","-PRP";

head := "-HD";

arg := "-A";

# Coordination rules

# These rules take priority over the argument rules , because sisters

# of coordination constructions can never be arguments.

# Even a conjunction not immediately following the head is treated specially

# (what if there is more than one?)

. -> .* head < .* < CC . .*

| .* .+head < punc* < CC head -head .*;

# Argument rules

# If the parent and head have the same category , no arguments are

# marked.

# First child after head which is neither PRN nor a preterminal is the argument

PP -> .* < PP&head .*

| .* < head .* < !pos&!PRN+arg .*;

# Look for arguments anywhere to the left or right

S -> .* < S&head .*

| ((NP ,SBAR ,S)&!adj+arg |.)*;

SBAR -> .* < SBAR&head .*

| (S&!adj+arg |.) >*;

VP -> .* < VP&head .*

| ((NP ,SBAR ,S,VP)&!adj+arg|.)*;

# Catch -all rule

. -> .*;



Appendix D

Treebank sample

I list the trees about which the RNN models are confident about and yet these trees

receive a low F1 score. I first list the gold tree then the RNN models computed tree.

Where, the labels refer to the composition function used at each node.

SINV

S

NP

DT

The

NN

question

VP

VBZ

is

SBARQ

WHNP

WRB

how

JJ

much

SQ

VBP

are

SQ

NP

we

VP

VBG

getting

PP

IN

from

NP

DT

each

NN

reader

SINV

VP

said

NP

NNP

Mr

NNP

Heinemann

headargTrue

headOtherTrue

X

The

X

question

headargTrue

X

is

headargTrue

headOtherTrue

X

how

X

much

headargTrue

X

are

headargTrue

X

we

headargTrue

X

getting

headargTrue

X

from

headargTrue

headOtherTrue

X

each

X

reader

headargTrue

X

said

headOtherTrue

X

Mr

X

Heinemann

Table D.1: The question is how much are we getting from each reader said Mr
Heinemann

66



Appendix D. Treebank sample 67

S

S

NP

NP

DT

The

NNS

studies

PRN

IN

on

S

VBG

closing

NP

DT

the

NN

unit

VP

MD

could

VP

RB

n’t

VP

VB

be

VP

VBN

completed

PP

IN

until

NP

now

S

NP

he

VP

said

OthersTrue

headOtherTrue

X

The

X

studies

OthersTrue

headargTrue

X

on

X

closing

headargTrue

headOtherTrue

X

the

X

unit

headOtherTrue

X

could

OthersTrue

X

n’t

headargTrue

X

be

headOtherTrue

X

completed

OthersTrue

headargTrue

X

until

X

now

headargTrue

X

he

X

said

Table D.2: The studies on closing the unit couldnt be completed until now he said

S

NP

He

VP

VBD

termed

VP

NP

NP

NNP

ASKO

POS

’s

NP

JJ

legal

NNS

actions

PP

IN

as

ADJP

JJ

unproductive

PP

TO

to

NP

NP

JJ

international

NN

cooperation

PP

IN

among

NP

JJ

European

NNS

retailers

headargTrue

X

He

headargTrue

X

termed

headOtherTrue

OthersTrue

headOtherTrue

X

ASKO

X

’s

headOtherTrue

X

legal

X

actions

headargTrue

X

as

headOtherTrue

headOtherTrue

headOtherTrue

X

unproductive

OthersTrue

X

to

X

international

X

cooperation

headargTrue

X

among

headOtherTrue

X

European

X

retailers

Table D.3: He termed legal actions unproductive to international cooperation among
European retailers



Appendix D. Treebank sample 68

S

NP

NP

NNP

Ideal

POS

’s

NNS

directors

VP

VBD

rejected

VP

NP-A

DT

that

NN

offer

SBAR

IN

although

S-A

NP

they

VP-HD

VBD

said

SBAR

NP

they

VP

VBD

endorsed

NP-A

DT

the

NP

NN

merger

NN

proposal

headargTrue

headOtherTrue

headOtherTrue

X

Ideal

X

’s

X

directors

headOtherTrue

X

rejected

OthersTrue

headOtherTrue

X

that

X

offer

headargTrue

X

although

headargTrue

X

they

headargTrue

X

endorsed

headargTrue

X

the

headargTrue

X

10

OthersTrue

X

11

headOtherTrue

X

12

X

13

Table D.4: Ideals directors rejected that offer although they said they endorsed the
merger proposal

S

FRAG

NP

Trouble

PP

IN

with

NP

DT

a

NP

JJ

capital

NN

T

S

CC

and

S

S-HD

NP

that

VP-HD

VBZ

rhymes

PP-CLR

IN

with

NP

P

S

CC

and

S

NP

that

VP

VBZ

stands

PP

IN

for

NP

pool

headOtherTrue

headargTrue

headOtherTrue

X

Trouble

headargTrue

X

with

headOtherTrue

X

a

X

capital

X

T

OthersTrue

X

and

headargTrue

X

that

headOtherTrue

X

rhymes

headargTrue

X

with

headOtherTrue

X

P

OthersTrue

X

and

headargTrue

X

that

headOtherTrue

X

stands

headargTrue

X

for

X

pool

Table D.5: Trouble with a capital and that rhymes with p and that stands for pool



Appendix D. Treebank sample 69

S

S

CC

And

S

NP

they

VP

VBP

’re

ADJP

JJ

likely

S

TO

to

VP-A

VB

stay

VP

NP-PRD-A

DT

that

NN

way

PP

IN

for

NP-A

NP

months

SBAR

TO

to

VP

come

S

NP

analysts

VP

say

OthersTrue

X

And

headargTrue

X

they

headOtherTrue

X

’re

headOtherTrue

X

likely

headargTrue

X

to

headargTrue

X

stay

headargTrue

headOtherTrue

headOtherTrue

X

that

X

way

headargTrue

X

for

X

months

headargTrue

X

to

headargTrue

X

come

headargTrue

X

analysts

X

say

Table D.6: And theyre likely to stay that way for months to come analysts say

S

S

NP

DT

The

NN

administration

VP-HD

VBZD

has

VP-A

VBN

been

VP-A

VBG

trying

SA

TOD

to

VP

VB

push

VP

NP-A

DT

the

NN

dollar

ADVP

lower

S

NP

DT

the

NNP

Fed

VP

VBZ

has

VP

VBN

been

VP

resisting

headargTrue

headOtherTrue

X

The

X

administration

headargTrue

X

has

headargTrue

X

been

headargTrue

X

trying

headargTrue

X

to

headOtherTrue

X

push

OthersTrue

headOtherTrue

headOtherTrue

X

the

X

dollar

X

lower

headargTrue

headOtherTrue

X

the

X

Fed

headargTrue

X

has

headOtherTrue

X

been

X

resisting

Table D.7: The administration has been try to push the dollar lower fed has been
resisting



Bibliography

Alkhouli, T., A. Guta, and H. Ney (2014). Vector space models for phrase-based machine

translation. Syntax, Semantics and Structure in Statistical Translation, 1.

Ascher, D., P. F. Dubois, K. Hinsen, J. Hugunin, and T. Oliphant (1999). Numeri-

cal Python (UCRL-MA-128569 ed.). Livermore, CA: Lawrence Livermore National

Laboratory.

Baker, L. D. and A. K. McCallum (1998). Distributional clustering of words for text

classification. In Proceedings of the 21st annual international ACM SIGIR conference

on Research and development in information retrieval, pp. 96–103. ACM.

Baldi, P. and G. Pollastri (2003). The principled design of large-scale recursive neural

network architectures–dag-rnns and the protein structure prediction problem. The

Journal of Machine Learning Research 4, 575–602.

Baroni, M., R. Bernardi, and R. Zamparelli (2014a). Frege in space: A program of

compositional distributional semantics. Linguistic Issues in Language Technology 9.

Baroni, M., R. Bernardi, and R. Zamparelli (2014b). Frege in space: A program of

compositional distributional semantics. Linguistic Issues in Language Technology 9.

Bird, S., E. Klein, and E. Loper (2009). Natural language processing with Python. ”

O’Reilly Media, Inc.”.

Blacoe, W. and M. Lapata (2012). A comparison of vector-based representations for se-

mantic composition. In Proceedings of the 2012 Joint Conference on Empirical Meth-

ods in Natural Language Processing and Computational Natural Language Learning,

pp. 546–556. Association for Computational Linguistics.

Boleda, G., S. Padó, and J. Utt (2012). Regular polysemy: A distributional model. In

Proceedings of the First Joint Conference on Lexical and Computational Semantics-

Volume 1: Proceedings of the main conference and the shared task, and Volume 2:

Proceedings of the Sixth International Workshop on Semantic Evaluation, pp. 151–

160. Association for Computational Linguistics.

70



Bibliography 71

Bruni, E., G. Boleda, M. Baroni, and N.-K. Tran (2012). Distributional semantics in

technicolor. In Proceedings of the 50th Annual Meeting of the Association for Com-

putational Linguistics: Long Papers-Volume 1, pp. 136–145. Association for Compu-

tational Linguistics.

Budanitsky, A. and G. Hirst (2006). Evaluating wordnet-based measures of lexical

semantic relatedness. Computational Linguistics 32 (1), 13–47.

Carlson, G. N. (1984). Thematic roles and their role in semantic interpretation. Lin-

guistics 22 (3), 259–280.

Charniak, E. (2000). A maximum-entropy-inspired parser. In Proceedings of the 1st

North American chapter of the Association for Computational Linguistics conference,

pp. 132–139. Association for Computational Linguistics.

Charniak, E. and G. Carroll (1994). Context-sensitive statistics for improved grammat-

ical language models. In AAAI, pp. 728–733.

Charniak, E., S. Goldwater, and M. Johnson (1998). Edge-based best-first chart parsing.

In Proceedings of the sixth workshop on very large corpora, pp. 127–133. Citeseer.

Charniak, E. and M. Johnson (2005). Coarse-to-fine n-best parsing and maxent dis-

criminative reranking. In Proceedings of the 43rd Annual Meeting on Association for

Computational Linguistics, pp. 173–180. Association for Computational Linguistics.

Chiang, D. and D. M. Bikel (2002). Recovering latent information in treebanks. In

Proceedings of the 19th international conference on Computational linguistics-Volume

1, pp. 1–7. Association for Computational Linguistics.

Chiang, D., K. Knight, and W. Wang (2009). 11,001 new features for statistical ma-

chine translation. In Proceedings of Human Language Technologies: The 2009 Annual

Conference of the North American Chapter of the Association for Computational Lin-

guistics, pp. 218–226. Association for Computational Linguistics.

Choi, J. D. and M. Palmer (2011). Transition-based semantic role labeling using pred-

icate argument clustering. In Proceedings of the ACL 2011 Workshop on Relational

Models of Semantics, pp. 37–45. Association for Computational Linguistics.

Chomsky, N. (1988). Aspects of the Theory of Syntax, Volume 11. MIT press.

Collins, M. (1997). Three generative, lexicalised models for statistical parsing. In Pro-

ceedings of the 35th Annual Meeting of the Association for Computational Linguistics

and Eighth Conference of the European Chapter of the Association for Computational

Linguistics, pp. 16–23. Association for Computational Linguistics.



Bibliography 72

Collobert, R., J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa (2011).

Natural language processing (almost) from scratch. The Journal of Machine Learning

Research 12, 2493–2537.

Corbett, G. G., N. M. Fraser, and S. McGlashan (1993). Heads in grammatical theory.

Cambridge University Press.

Curran, J. R., S. Clark, and J. Bos (2007). Linguistically motivated large-scale nlp with

c&c and boxer. In Proceedings of the 45th Annual Meeting of the ACL on Interac-

tive Poster and Demonstration Sessions, pp. 33–36. Association for Computational

Linguistics.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathe-

matics of control, signals and systems 2 (4), 303–314.

Dolan, B., C. Quirk, and C. Brockett (2004). Unsupervised construction of large para-

phrase corpora: Exploiting massively parallel news sources. In Proceedings of the

20th international conference on Computational Linguistics, pp. 350. Association for

Computational Linguistics.

Dowty, D. (1991). Thematic proto-roles and argument selection. language, 547–619.

Dowty, D. R. (1979). Word meaning and Montague grammar: The semantics of verbs

and times in generative semantics and in Montague’s PTQ, Volume 7. Springer.

Duchi, J., E. Hazan, and Y. Singer (2011). Adaptive subgradient methods for online

learning and stochastic optimization. The Journal of Machine Learning Research 12,

2121–2159.

Elman, J. L. (1990). Finding structure in time. Cognitive science 14 (2), 179–211.

Emms, M. (2008). Tree distance and some other variants of evalb. In LREC.

Evert, S. (2010). Distributional semantic models. In Proceedings of Human Language

Technologies: The 11th Annual Conference of the North American Chapter of the As-

sociation for Computational Linguistics, Association for Computational Linguistics,

Los Angeles.

Fellbaum, C. (1998). WordNet. Wiley Online Library.

Gabbard, R., M. Marcus, and S. Kulick (2006). Fully parsing the penn treebank. In

Proceedings of the main conference on human language technology conference of the

North American chapter of the association of computational linguistics, pp. 184–191.

Association for Computational Linguistics.



Bibliography 73

Giménez, J. and L. Marquez (2004). Svmtool: A general pos tagger generator based on

support vector machines. In In Proceedings of the 4th International Conference on

Language Resources and Evaluation. Citeseer.

Harris, Z. S. (1954). Distributional structure. Word , 146–162.

Hornik, K., M. Stinchcombe, and H. White (1989). Multilayer feedforward networks are

universal approximators. Neural networks 2 (5), 359–366.

Irsoy, O. and C. Cardie (2014). Deep recursive neural networks for compositionality in

language. In Advances in Neural Information Processing Systems, pp. 2096–2104.

Islam, M. A., D. Inkpen, and I. Kiringa (2007). A generalized approach to word seg-

mentation using maximum length descending frequency and entropy rate. In Compu-

tational Linguistics and Intelligent Text Processing, pp. 175–185. Springer.

Jackendorff, R. (1977). X-bar-syntax: A study of phrase structure. Linguistic Inquiry

Monograph 2.

Kay, P. (2005). Argument structure constructions and the argument-adjunct distinction.

Grammatical constructions: Back to the roots (4), 71–98.

Klein, D. and C. D. Manning (2003). Accurate unlexicalized parsing. In Proceedings of

the 41st Annual Meeting on Association for Computational Linguistics-Volume 1, pp.

423–430. Association for Computational Linguistics.

Le, P. and W. Zuidema (2014a). The inside-outside recursive neural network model for

dependency parsing. In Proceedings of the 2014 Conference on Empirical Methods in

Natural Language Processing (EMNLP), pp. 729–739.

Le, P. and W. Zuidema (2014b). Inside-outside semantics: A framework for neural

models of semantic composition.

Le, Q. V. and T. Mikolov (2014). Distributed representations of sentences and docu-

ments. arXiv preprint arXiv:1405.4053 .

Levin, B. (1993). English verb classes and alternations: A preliminary investigation.

University of Chicago press.

Lewis, M. and M. Steedman (2013). Combined distributional and logical semantics.

TACL 1, 179–192.

Lin, D. and P. Pantel (2001). Discovery of inference rules for question-answering. Natural

Language Engineering 7 (04), 343–360.



Bibliography 74

Lund, K., C. Burgess, and R. A. Atchley (1995). Semantic and associative priming in

high-dimensional semantic space. In Proceedings of the 17th annual conference of the

Cognitive Science Society, Volume 17, pp. 660–665.

Madnani, N., J. Tetreault, and M. Chodorow (2012). Re-examining machine translation

metrics for paraphrase identification. In Proceedings of the 2012 Conference of the

North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, pp. 182–190. Association for Computational Linguistics.

Marcus, M., G. Kim, M. A. Marcinkiewicz, R. MacIntyre, A. Bies, M. Ferguson, K. Katz,

and B. Schasberger (1994). The penn treebank: annotating predicate argument struc-

ture. In Proceedings of the workshop on Human Language Technology, pp. 114–119.

Association for Computational Linguistics.

Massé, A. B., G. Chicoisne, Y. Gargouri, S. Harnad, O. Picard, and O. Marcotte

(2008). How is meaning grounded in dictionary definitions? In Proceedings of the

3rd Textgraphs Workshop on Graph-Based Algorithms for Natural Language Process-

ing, pp. 17–24. Association for Computational Linguistics.

McClelland, J. L., M. M. Botvinick, D. C. Noelle, D. C. Plaut, T. T. Rogers, M. S.

Seidenberg, and L. B. Smith (2010). Letting structure emerge: connectionist and

dynamical systems approaches to cognition. Trends in cognitive sciences 14 (8), 348–

356.

Menzel, C. (2014). Possible worlds. In E. N. Zalta (Ed.), The Stanford Encyclopedia of

Philosophy (Winter 2014 ed.).

Mihalcea, R., C. Corley, and C. Strapparava (2006). Corpus-based and knowledge-based

measures of text semantic similarity. In AAAI, Volume 6, pp. 775–780.

Mitchell, J. and M. Lapata (2008). Vector-based models of semantic composition. In

ACL, pp. 236–244. Citeseer.

Mitchell, J. and M. Lapata (2010). Composition in distributional models of semantics.

Cognitive science 34 (8), 1388–1429.

Montague, R. (1970). Universal grammar. Theoria 36 (3), 373–398.

Nivre, J. (2005). Dependency grammar and dependency parsing. MSI report 5133 (1959),

1–32.

Pantel, P. and D. Lin (2002). Discovering word senses from text. In Proceedings of

the eighth ACM SIGKDD international conference on Knowledge discovery and data

mining, pp. 613–619. ACM.



Bibliography 75

Petrov, S. and E. Charniak (2011). Coarse-to-fine natural language processing. Springer.

Pinker, S. (1999). Words and rules: The ingredients of language. Basic Books.

Ponzetto, S. P. and M. Strube (2006). Exploiting semantic role labeling, wordnet and

wikipedia for coreference resolution. In Proceedings of the main conference on Human

Language Technology Conference of the North American Chapter of the Association of

Computational Linguistics, pp. 192–199. Association for Computational Linguistics.

Pustejovsky, J. (1991). The generative lexicon. Computational linguistics 17 (4), 409–

441.

Qiu, L., M.-Y. Kan, and T.-S. Chua (2006). Paraphrase recognition via dissimilarity

significance classification. In Proceedings of the 2006 Conference on Empirical Methods

in Natural Language Processing, pp. 18–26. Association for Computational Linguistics.

Rapp, R. (2004). A freely available automatically generated thesaurus of related words.

In LREC.

Ratliff, N. D., J. A. Bagnell, and M. A. Zinkevich (2007). (online) subgradient methods

for structured prediction.

Rus, V., P. M. McCarthy, M. C. Lintean, D. S. McNamara, and A. C. Graesser (2008).

Paraphrase identification with lexico-syntactic graph subsumption. In FLAIRS con-

ference, pp. 201–206.

Sahlgren, M. (2008). The distributional hypothesis. Italian Journal of Linguistics 20 (1),

33–54.

Šarić, F., G. Glavaš, M. Karan, J. Šnajder, and B. D. Bašić (2012). Takelab: Systems

for measuring semantic text similarity. In Proceedings of the First Joint Conference on

Lexical and Computational Semantics-Volume 1: Proceedings of the main conference

and the shared task, and Volume 2: Proceedings of the Sixth International Workshop

on Semantic Evaluation, pp. 441–448. Association for Computational Linguistics.

Schubert, L. (2014). Computational linguistics. In E. N. Zalta (Ed.), The Stanford

Encyclopedia of Philosophy (Spring 2014 ed.).

Socher, R. (2014). RECURSIVE DEEP LEARNING FOR NATURAL LANGUAGE

PROCESSING AND COMPUTER VISION. Ph. D. thesis, STANFORD UNIVER-

SITY.

Socher, R., J. Bauer, C. D. Manning, and A. Y. Ng (2013). Parsing with compositional

vector grammars. In In Proceedings of the ACL conference. Citeseer.



Bibliography 76

Socher, R., Y. Bengio, and C. D. Manning (2012). Deep learning for nlp (without

magic). In Tutorial Abstracts of ACL 2012, pp. 5–5. Association for Computational

Linguistics.

Socher, R., E. H. Huang, J. Pennin, C. D. Manning, and A. Y. Ng (2011). Dynamic

pooling and unfolding recursive autoencoders for paraphrase detection. In Advances

in Neural Information Processing Systems, pp. 801–809.

Socher, R., B. Huval, C. D. Manning, and A. Y. Ng (2012). Semantic compositionality

through recursive matrix-vector spaces. In Proceedings of the 2012 Joint Conference

on Empirical Methods in Natural Language Processing and Computational Natural

Language Learning, pp. 1201–1211. Association for Computational Linguistics.

Socher, R., C. C. Lin, C. Manning, and A. Y. Ng (2011). Parsing natural scenes and nat-

ural language with recursive neural networks. In Proceedings of the 28th International

Conference on Machine Learning (ICML-11), pp. 129–136.

Socher, R., C. D. Manning, and A. Y. Ng (2010). Learning continuous phrase represen-

tations and syntactic parsing with recursive neural networks. In Proceedings of the

NIPS-2010 Deep Learning and Unsupervised Feature Learning Workshop, pp. 1–9.

Speaks, J. (2014). Theories of meaning. In E. N. Zalta (Ed.), The Stanford Encyclopedia

of Philosophy (Fall 2014 ed.).

Specia, L., S. K. Jauhar, and R. Mihalcea (2012). Semeval-2012 task 1: English lexical

simplification. In Proceedings of the First Joint Conference on Lexical and Com-

putational Semantics-Volume 1: Proceedings of the main conference and the shared

task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic

Evaluation, pp. 347–355. Association for Computational Linguistics.

Spitkovsky, V. I., H. Alshawi, and D. Jurafsky (2009). Baby steps: How less is more

in unsupervised dependency parsing. NIPS: Grammar Induction, Representation of

Language and Language Learning , 1–10.

Surdeanu, M. and J. Turmo (2005). Semantic role labeling using complete syntactic

analysis. In Proceedings of the Ninth Conference on Computational Natural Language

Learning, pp. 221–224. Association for Computational Linguistics.

Taskar, B., D. Klein, M. Collins, D. Koller, and C. D. Manning (2004). Max-margin

parsing. In EMNLP, Volume 1, pp. 3. Citeseer.

Turian, J., L. Ratinov, and Y. Bengio (2010). Word representations: a simple and general

method for semi-supervised learning. In Proceedings of the 48th annual meeting of the



Bibliography 77

association for computational linguistics, pp. 384–394. Association for Computational

Linguistics.

Twain, M. (1988). Adventures of Huckleberry Finn, Volume 8. Univ of California Press.

Van Cranenburgh, A., R. Scha, and F. Sangati (2011). Discontinuous data-oriented

parsing: A mildly context-sensitive all-fragments grammar. In Proceedings of the

Second Workshop on Statistical Parsing of Morphologically Rich Languages, pp. 34–

44. Association for Computational Linguistics.

Yamada, K. and K. Knight (2001). A syntax-based statistical translation model. In

Proceedings of the 39th Annual Meeting on Association for Computational Linguistics,

pp. 523–530. Association for Computational Linguistics.

Zeevat, H. (2014). Language Production and Interpretation: Linguistics meets Cognition.

Brill.


	Abstract
	Acknowledgements
	1 Introduction
	1.1 Motivation
	1.2 Thesis outline

	2 Symbolic Natural Language
	2.1 Introduction
	2.2 Syntax
	2.2.1 Computational syntactic parsing

	2.3 Semantics
	2.3.1 Montague Grammar
	2.3.2 Statistical Semantics


	3 Language Without Symbols
	3.1 Introduction
	3.2 Distributional lexical semantics
	3.3 Implementation
	3.3.1 Parameters
	3.3.2 Similarity
	3.3.3 Limitations

	3.4 Compositional distributional semantics
	3.4.1 Introduction
	3.4.2 Composition by vector mixtures
	3.4.3 Composition with distributional functions
	3.4.3.1 Combined Distributional and Logical Semantics
	3.4.3.2 Tensor approach

	3.4.4 Summary of approaches


	4 Recursive Neural Network
	4.1 Introduction
	4.2 Neural Networks
	4.3 Recursive Neural Networks
	4.3.1 Introduction
	4.3.2 Mapping words to syntactic/semantic space
	4.3.3 Composition
	4.3.3.1 Parsing with RNN

	4.3.4 Learning
	4.3.4.1 Max-Margin estimation
	4.3.4.2 Gradient
	4.3.4.3 Backpropagation Through Structure


	4.4 Conclusion

	5 Enriched Recursive Neural Networks
	5.1 Introduction
	5.1.1 Head
	5.1.2 Arguments and Adjuncts
	5.1.3 Annotation
	5.1.4 Algorithmic changes

	5.2 Models
	5.2.1 Reranking
	5.2.2 Binarization


	6 Implementation and Evaluation
	6.1 Introduction
	6.2 Parsing
	6.3 Setup
	6.3.1 Implementation
	6.3.2 Pre-processing
	6.3.3 Initialisation
	6.3.3.1 Baby steps

	6.3.4 Cross validation

	6.4 Results
	6.4.1 Preliminary results
	6.4.2 Results

	6.5 Semantics
	6.5.1 Results

	6.6 Exploration

	7 Conclusion
	7.1 Closing remarks

	A Cross validation
	B Overview of alternative RNN models
	B.1 Context-aware RNN
	B.2 Category Classifier
	B.3 Semantic Constitutionality through Recursive Matrix-Vector Spaces
	B.4 Inside Outside

	C Collins rules
	D Treebank sample
	Bibliography

