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Abstract

Social choice theory studies mathematically the processes involved when groups
of people make choices. There are a number of beautiful and astonishing
qualitative results in this area, for example Arrow’s Theorem about the non-
existence of ideal voting schemes [1], and the Gibbard-Satterthwaite Theorem
[57, 116] about the manipulation of elections. These classical theorems have
had tremendous impact on the field of social choice.

Recently, there has been a sequence of stronger, quantitative versions of
such theorems, due to Gil Kalai, Ehud Friedgut, Elchanan Mossel, and others
[68, 88]. These results depend on the theory of Fourier analysis on the Boolean
cube.

In this thesis, we seek to connect the at first seemingly disparate realms of
social choice and Fourier analysis on the Boolean cube.

The first goal of this thesis is to study the aforementioned strengthened
theorems. The second goal is to make them more accessible to researchers
working in social choice. On our way to these results, we build up the theory
of Boolean analysis, introducing pivotal notions such as influence and noise.
Such concepts are of interest in their own right, as we will try to show by
proving classical results such as the KKL Theorem [66] and Friedgut’s Theorem
[49]. The third goal, then, is to convince the reader that Fourier analysis
on the Boolean cube is a worthwhile technique to consider for researchers
in social choice. A common theme throughout the thesis is the impartial
culture assumption: the contentious mathematical assumption that voters vote
independently and randomly of one another. In the last chapter, the final
goal is achieved: inspired by Daniel Kahneman’s work on cognitive biases [67],
a new, simple, model to simulate the various biases that show up in small
meetings involving sequential voting is introduced.

Keywords: Social Choice, Arrow’s Theorem, Gibbard-Satterthwaite Theorem,
Fourier Analysis, Voting, Elections
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Chapter 1

Introduction

The topics in this thesis are situated at the interchange of the fields of theoretical
computer science and social choice theory. Concretely, the thesis deals with
a mathematical technique that is commonly applied in theoretical computer
science, but that is now put to use in the field of social choice. This technique
is called Fourier analysis on the Boolean cube. “Boolean” here refers to the fact
that all the input variables involved can only take one of two values, usually
denoted as 0 or 1. It should not be surprising that in computer science Boolean
structures are numerous. For example, we can think of a computer which is
given some input bits (by someone pushing the buttons of the keyboard), and
after a computation some output appears on the computer’s screen. These are
the output bits.

However, over time it has become clear that Boolean structures also prove
useful in other, perhaps seemingly distant, areas. Initiated in the late 1980s
mainly by the works of Ben-Or and Linial [7], and Kahn, Kalai, and Linial
[66], discrete Fourier analysis has been successfully applied in social choice also.
The idea is that the bits 0 and 1 here represent the candidates that people may
choose from; for example, the two candidates in the United States presidential
election.

The use of Fourier analysis on the Boolean cube in the area of social
choice has led to many interesting results. One of the key achievements is
a strengthening of Arrow’s impossibility theorem about the non-existence of
ideal voting schemes, obtained by Kalai in 2002 [68]. In Chapter 6 we will give
a proof of this result. The main advantage of the analytical approach is that a
quantitative version of Arrow’s Theorem is obtained. Roughly stated, this result
says the following: the more we want to avoid Condorcet’s paradox, the more
the election scheme will look like a dictator.1 Further research [50, 51, 57, 65]
has also led to a quantitative version of the Gibbard-Satterthwaite Theorem,
which we will review in Chapter 5.

In the following section, we state the aims of the thesis. After that, we give
an informal, historical, overview in which we introduce the key players of this
thesis. Then, we examine some assumptions underlying the approach. The
most important such assumption used in this thesis is the impartial culture
assumption, which states that each voter votes at random and, moreover, all
voters vote independently of one another. While this assumption is convenient
from a mathematical perspective, it should be not surprising that it is somewhat
unrealistic. The most troublesome point seems to be that it does not capture
any correlations between people’s voting tendencies. Briefly stated, the problem

1At least, under the assumption of an impartial culture; see further on.
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CHAPTER 1. INTRODUCTION 2

is that most quantitative results in this thesis do rely on this assumption, and
therefore we should be careful not to over-interpret them. In that section
we also relate the impartial culture assumption to a discussion from political
science, started by William Riker’s Liberalism Against Populism [111]. The
last section contains an outline of the thesis.

Before we proceed, just one last note about prerequisites. From the second
chapter onwards, all chapters are rather formal. This thesis was, however,
written to be maximally self-contained. We will mostly be working with
discrete (even finite) structures, so a basic knowledge of mathematics should be
sufficient. This first chapter stands out compared with the rest of the thesis in
the sense that it is informal: the intention is to give the reader some perspective
and, most importantly, to make the reader interested in the chapters that
follow.

1.1 Aims of the Thesis

The primary aims of this thesis are as follows:

• First, to study some of the most interesting results from social choice
that were obtained by means of discrete Fourier analysis; in particular,
quantitative versions of Arrow’s Theorem and the Gibbard-Satterthwaite
Theorem.

• Second, we would like to make these results more accessible to researchers
working in social choice.

• Third, we want to convince the reader that Fourier analysis on the
Boolean cube is a worthwhile technique to consider for researchers in
social choice.

• Fourth and last, to investigate other parts of social choice for which
discrete Fourier analysis might be used to obtain results. In the last
chapter, we put forward a new notion of influence. This notion appears
in a natural way in the context of sequential binary voting.

1.2 Informal Overview

Below we will sketch some historical events. Doing so, we will certainly not
attempt to be complete. Rather, we will focus on the individuals and events
that are relevant for this thesis.

The main references for this section are [21, 39, 103, 118, 77, 97, 120, 82,
128, 17].

1.2.1 What is Social Choice about?

The aim of social choice theory is to study collective decision procedures [77].
Central is the following setup: given a number of persons’ preferences (which
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can be votes, judgements, opinions, etc.), how does one reach a collective
preference, the so-called social preference? Furthermore, how can this be done
in a “fair” way—and, what would “fairness” even mean in this context? One
might argue that the outcome should “do justice” to as many voters as possible
in order for a choice to be “right”. Concretely, given for example that each voter
has submitted a ranking of all candidates, how does one arrive at a collective
ranking? Such election schemes, returning a ranking when given rankings from
all voters, are mathematically represented by a function, called social welfare
function. In social choice, properties of such functions are studied.

The domain of application of social choice, as well as the different fields
it touches upon, are various. Indeed, first note that the “persons” whose
preferences are taken into account, need not be actual persons. They might,
for example, be computers: think about a search engine aggregating rankings
of webpages. Therefore, it is a good idea to speak of “agents” rather than
“persons”. In the context of economics, those agents might also be companies.
Second, social choice is related to numerous other disciplines: originally it was
mostly entangled with economics and political science, but over time several
other disciplines have joined in. As the link with decision-making and thus
“rationality” is quite obvious, also researchers from psychology and sociology
have taken interest in results from social choice.

During the past two decades, people from computer science have become
increasingly interested in social choice as well. This has led to the field of
computational social choice. The developments examined in the present thesis
should be seen in light of this, although somewhat in parallel: as we will
explain below, as the name suggest computational social choice focuses on the
computational aspects (by using ideas from complexity theory) of social choice,
whereas this work does not. In fact, this very thesis can be seen as yet another
bridge from social choice to computer science, although it is this time mostly
just the technique itself which is transposed from the one onto the other.

1.2.2 Early Beginnings

Genesis. It is conceivable that social choice, in some (primitive) form or
another, has been around for hundreds, perhaps even thousands, of years. The
earliest known sources date back to the Middle Ages, when Ramon Llull (ca.
1235-1315, Majorca) proposed the aggregation method of pairwise majority
voting [77]. This method, which will be particularly important to us, works as
follows. Given the rankings of all voters, any pair of candidates are compared
pairwise, thus obtaining a collective ranking. For example, suppose there are
three voters and three candidates (say, a, b, c), and the votes are as follows:

a > b > c, b > a > c, a > c > b.

Here the expression a > b > c, e.g., means that the voter in question prefers
a to b, b to c, and a to c. Notice that a wins each pairwise competition: for
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example versus b it wins 2 to 1, and it wins 3 to 0 versus c.2

An election scheme which is based upon pairwise comparisons (regardless
whether it uses the majority rule or another one), is said to satisfy the Condorcet
method.

18th Century: de Condorcet. It was only in the 18th century that social
choice really started establishing itself. The most famous name from that period
is undoubtedly Nicolas de Condorcet (1743-1794). Born a French nobleman,
de Condorcet was, unlike other persons working in social choice at the time, an
established mathematician [103]. Despite his heritage, he became a frontrunner
in the French revolution. Several years later, de Condorcet was put in jail,
due to a disagreement over a draft of the constitution; although he managed
to escape, he was later caught. Ultimately he died in jail under mysterious
circumstances.

He published his book Essay on the Application of Probability Analysis
to Majority Decisions [27] in 1785. In it, he strongly argued for the majority
rule. At the time, doing so was revolutionary. In particular, de Condorcet
said, when electing two candidates, one must use the majority rule; when
electing more than two candidates one should do a pairwise competition after
which one, again, applies the majority rule. In general, this reduction of the
election into pairwise competitions between any two candidates (whichever
rules are afterwards applied on these “subelections”), is called Condorcet’s
method. Among de Condorcet’s achievements in social choice, two results stand
out.

First, the result which has come to be known as Condorcet’s Jury Theorem
[39], says the following. Suppose a jury of n judges has to determine whether
an accused is guilty, and suppose each judge independently makes a correct
decision with fixed probability p > 1/2. Then, the probability that the plurality
rule returns the correct decision increases monotonically in n; furthermore,
this probability approaches 1 as n goes to infinity.3 This result can be seen as
an example of “the wisdom of the crowd” [129]: a large group of people that
are barely smart, can nonetheless take the good decision as a group. That is,
the whole is bigger than just the sum of its parts.4

2We should immediately observe that this procedure need not always work: the Condorcet
paradox, which we will see in a moment, is an example in which this procedure would not
give a valid societal ordering. The example given here just happens to be a lucky case in
which it does work.

3Using modern probability theory, the proof is rather trivial: just apply the law of large
numbers.

4Of course, this is a simplistic model. For one thing, it assumes that the members of
the jury are independent. Also, there seems no compelling reason to assume all members of
the jury would be able to take the “good” decision with probability bigger than 50%. This
assumption is rather optimistic. These issues are actually part of a more general, and serious,
problem: people taking decisions are usually assumed to be rational. However, research by
Kahneman and Tversky, started in the late 1960s, in particular has shown this assumption
to be unrealistic. People are, in general, not rational. See for example Thinking, Fast and
Slow by Kahneman [67].

Furthermore, suppose that all members of the jury would instead have a fixed probability
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Second, and of major importance to this thesis, is the following “paradox”
that is attributed to Condorcet. Suppose again that there are three voters and
three candidates a, b, c, and the votes are as follows:

a > b > c, b > c > a, c > a > b.

Following Condorcet’s suggestion, in order to obtain the societal preference,
we do a pairwise comparison using the majority rule: a wins 2 to 1 from b, b
wins from c, and finally c wins from a. Thus, the societal outcome is

a > b > c > a > b > c > a > . . . .

This means that we have obtained a cycle! There is no consistent linear order
on the candidates reflecting the voters’ preferences, a phenomenon now known
as Condorcet’s paradox. If in some case the paradox does not show up, the
then top-ranked candidate is called the Condorcet winner of the election.

Another notion that is still important today and that goes back to Con-
dorcet, is that of Condorcet consistency : any voting rule which selects a
candidate given the preferences of all voters, must select the Condorcet winner
if it exists.

Besides Condorcet, other well-known 18th century researchers include
Jean-Charles de Borda (1733-1799), who introduced the Borda count.5

Questions. Some questions regarding Condorcet’s paradox that arise are:

• Is there any way out? That is, is there perhaps some other “reasonable”
rule rather than the majority which, when doing a pairwise contest,
manages to avoid the paradox altogether?

• Furthermore, what is the probability6 of a cycle arising? Does it happen
often?

The present thesis will address all of these issues, and more. In fact, the answer
to the first question has been known already since Arrow’s work from the
1950s; one crucial advantage Boolean analysis will give is answering the second
question.

of q < 1/2 to make a correct decision. In that case, the probability of the jury as a whole to
make a correct decision would converge to 0 when n goes to infinity! That is, the group as a
whole would do strictly worse than the individuals separately: the “stupidity of the crowd”.

5This election system works as follows. Suppose, for example, again three voters and three
candidates:

a > b > c, b > a > c, a > c > b.

The method says that each candidate in a first spot gets two points; each in a middle spot
gets one point; each in a last spot gets zero points. E.g., a receives 2 + 1 + 2 = 5 points, while
b gets 1 + 2 + 0 = 3 points. Finally, c gets 0 + 0 + 1 = 1 point. So in this case a wins.

This system, like many others, clearly does not follow the Condorcet method.
6Note that this question does not make sense as stated: we first need a probabilistic model

capturing the way the voters are voting. This will lead us to the impartial culture assumption.
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19th Century. In the 19th century we encounter Charles Dodgson (1832-
1898), better known under his pseudonym Lewis Carroll, who wrote the famous
book Alice’s Adventures in Wonderland. He was a man of many talents.
Besides summarizing the works of his predecessors, Dodgson also came up with
a new principle. One should always elect the Condorcet winner if it exists, he
said; further, even if it does not exist, one should elect the candidate which is
closest7 to being a Condorcet winner. This rule is called Dodgson’s rule.

1.2.3 The 20th Century Breakthrough: Kenneth Arrow

Arguably the biggest step forward so far in social choice was taken around
1950, when Kenneth Arrow (1921) published his PhD dissertation called Social
Choice and Individual Values [1]. The following discussion is based on [120, 82].

What is so special about Arrow’s work, why was it so groundbreaking?
There are a number of reasons, all of which are related to each other. We give
three, each of which constitutes a major contribution. Historically speaking, due
to its elegance Arrow’s impossibility theorem has gotten the most recognition,
although in the long run all three are utterly significant accomplishments,
according to Sen [120].

Initiating Axiomatic Reasoning. This is likely the most important reason.
The basic idea behind Arrow’s revolutionary approach is as follows: first, let
us think about what it actually is we want out of a voting rule, i.e., what
attractive properties do we want a voting rule to satisfy? Those properties are
then translated into the language of mathematics, as axioms. At first, when no
property has been insisted on, we just have the class of all voting rules. After
that, we add an axiom (a desirable property we would like our voting rules to
have), and we end up with a smaller class of voting rules, namely those ones
satisfying the property. In each subsequent step, we do the same, each time
adding an axiom. This will eventually lead to a voting rule which satisfies a
number of these properties we had liked our “ideal” voting system to have. Of
course, we would like to add as many desirable properties as possible. However,
in each step the class of voting rules satisfying the properties shrinks. The
question is, therefore, how long this process can go on before we end up with
the empty set.

Whereas before, people such as Condorcet, Borda, etc., had mostly studied
properties of particular voting methods (i.e., in isolation, or just comparing a
few of them, focussing on a small number of specific properties), it was Arrow
who first realized the merit to abstract away from those specific instances, to
define the general concept of a social welfare function, and to formulate their
properties as axioms. Amartya Sen calls the emergence of the systematic use
of the axiomatic reasoning8 in social choice “...totally constructively a major

7“Closest” here means “the candidate that minimizes the number of swaps of adjacent
candidates in order it become a Condorcet winner”.

8The study of different axiomatizations in mathematics, as part of formalism, was in-
troduced in the 19th and 20th century by Frege, Hilbert, Russell, Whitehead, Tarski, etc.
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game turner...” [120].

Presenting the Framework. Arrow introduced the framework that has
since been used in social choice. In brief, it goes as follows. Each voter ranks
all candidates completely, in any way she likes9, from highest preference to
lowest, say. (We will see this mathematically in more detail in Chapter 6,
but for now we insist on keeping the discussion informal.) A voting rule is
then a mechanism which, given any possible way the voters voted, produces
one ranking of all candidates, the societal outcome. Arrow himself called it
“collective rationality” at the time [120]. This very simple but precise notion
lies at the origin of all subsequent research in social choice.

Arrow’s Impossibility Theorem. By its very name, Arrow’s impossibility
theorem insinuates some kind of pessimism: something’s existence is impossible,
hence it cannot exist [82].

Consider the following three desirable properties:

• Pareto condition. If all voters rank some candidate higher than another
one, then also the election scheme should do so.

• Independence of irrelevant alternatives. The societal ranking of two
alternatives depends only on the relative rankings of those alternatives,
and on no others.10

• Non-dictatoriality. There is no dictator, i.e., there is no candidate whose
ranking always coincides with the societal outcome.

Sometimes a fourth axiom is added. In this thesis we will usually not mention it,
simply because we already assume right off the bat that each possible ranking
is available to the candidates.

• Universal domain. Each voter can pick any ranking, in the sense that no
ranking is a priori excluded.

Even these seemingly very mild conditions of reasonableness cannot be
simultaneously satisfied by any voting rule: that is what Arrow’s impossibility
theorem says. Amartya Sen calls the impossibility theorem a “staggeringly

[120, 125, 148]. Logicians at the time were taking a meta-perspective: they were starting
to study mathematics itself. Initially, their aim was to provide mathematics with a firm
foundation upon which all subsequent developments could be built. They had to develop
new mathematical techniques for doing so, however, simply because nobody had ever done it
before. The axiomatic method can be seen as an exponent of this process [136]. In light of
this it is perhaps not a coincidence that Arrow had taken a logic course taught by one of the
pioneers of modern logic, Alfred Tarski (1901-1983), while being an undergraduate at the
City College of New York [128].

9This assumption, that each voter can pick any ranking she likes, may not be as innocent
as it looks. Some people in social choice in fact take it as an extra axiom, called the universal
domain axiom. We will later see the reason for that, but in brief: omitting it can under some
circumstances help to avoid the impossibility theorem.

10In equivalent terms: the election scheme follows the Condorcet method.
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unbelievable, astonishing, theorem” [120]. Arrow was awarded the Nobel Prize
in 1972.

Interestingly, Arrow’s original proof contained a minor error [12]. A vast
number of proofs have appeared since. Until Gil Kalai’s proof from 2002 [68],
most, if not all, were in essence similar in nature: it is all about defining and
manipulating profiles11 in a “smart” way. Kalai’s proof is, to our knowledge,
the first proof to take a quantitative approach.

1.2.4 Following Arrow

Ever since Arrow’s innovation, a great deal of research in social choice theory
has sought ways to cope with the impossibility theorem.

A great deal of discussion takes place on the level of interpretation. Here a
crucial point seems to be that one should consider the domain of application
of Arrow’s social choice function. Several researchers have argued that ordinal
preferences as such do not satisfactorily capture at least some of society’s
choice procedures. For example, Amartya Sen (born 1933), winner of the Nobel
Prize in 1998, has done plenty of research in this area, emphasizing that when
applying the Arrovian framework in the case of welfare economics (rather than
voting theory per se), ordinal preferences alone are not adequate for making
fair social choices: further information besides ordinal preferences is necessary.
See for example Sen’s Nobel Prize lecture [119], that has the telling title The
Possibility of Social Choice. These discussion, spanning from economics to
political theory, are appealing in their own right. See, e.g., [120, 122, 117] for
more in-depth discussions.

1.2.5 Link with Computer Science

In the early 1990s the idea emerged to link social choice with computer
science—in particular, computational complexity—and moreover to exploit
this connection [4]. Hence the field of computational social choice arose.12

The basic idea is that, while Arrow’s Theorem is relevant, it is an entirely
mathematical, theoretical, construct; our increasingly technological society
advances the use of computers more and more, and therefore we should also
take practical considerations into account. For example, is it easy to compute
the winner using some particular election scheme? It turns out that deciding
whether a given candidate would be selected by Dodgson’s rule in a given
voting situation, is computationally hard.13 There are several other voting
rules for which the same is true. One tool, also from theoretical computer
science, that can be used to resolve this, is approximation [103, 19].

The idea of using complexity theory is particularly relevant in the context
of the manipulation of voting schemes. The Gibbard-Satterthwaite Theorem,
which one should think of as an analogon of Arrow’s Theorem, roughly speaking

11A profile is the collection of all voter’s preferences; we will be more precise further on.
12According to [17], the name “computational social choice” was explicitly used for the

first time only in 2006.
13In the language of computer science we call this NP-hard.
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says that voting manipulation is always possible.14 The suggestion is that
computational hardness can then be used to resist strategic manipulation, the
idea being that if the manipulator’s computer cannot handle the computations,
he is forced to abandon his manipulating attempts altogether [4, 103, 17, 39].
One of the problems with this approach, however, is that computational
hardness is a worst-case notion; it does not tell us anything about typical
instances of the problem. The real question is thus: is manipulation easy or
hard, on average? In Chapter 5 we review the recent developments. The
results are remarkable.

Computer scientists have proposed other methods as well to circumvent the
Gibbard-Satterthwaite Theorem. One of the ideas involves using randomized
voting rules. Pass and Birrell [9] show that some of the common voting rules
can be well-approximated by such randomized schemes, and in this way they
obtain an “approximately strategy-proof” rule.

1.2.6 Brief History of Fourier Analysis on the Boolean Cube

Fourier analysis on the Boolean cube studies Boolean functions via analytic
means, and in particular via the Fourier expansion [97]. Roughly speaking the
crucial idea is that some interesting properties can be very easily inferred from
the Fourier coefficients. Therefore, to know the Fourier coefficients is to know
those interesting properties. We will see plenty of evidence for this statement
throughout the thesis, starting from Chapter 2.

Fourier analysis of real-valued Boolean functions was first studied by Walsh,
around 1923 [147]. Boolean analysis as a mathematical discipline developed
steadily over the years. One of the major advancements is Bonami’s work in
the seventies. She proved an important hypercontractivity result [16].15

It is interesting to note that, for a relatively long time, the use of Boolean
analysis in computer science seems to have developed in a largely independent
way compared to the above evolution. A Boolean function was originally
called “switching function” by engineers; in the late 1930s they first realized
the usefulness of studying such functions (see, e.g., [91, 123]). It was only in
1959 when Golomb [59] recognized the connection with Walsh’s work. As a
result, the study of then-called “Fourier-Walsh analysis” flourished in the early
1970s, when several symposia took place.

After a relative silence, the use of Boolean analysis in theoretical computer
science was reinvigorated by Kahn, Kalai, and Linial in 1988 [66], when
they published The Influence of Variables on Boolean Functions. This highly
influential article includes what is now generally known as the Kahn-Kalai-
Linial Theorem. Roughly speaking, this theorem says that for any binary voting
scheme which gives each candidate equal probability of winning, there exists a
voter having disproportionally high influence. We will prove this theorem in
Subsection 3.3.3.

14In the sense that there will always be voters having an incentive to misrepresent their
votes. We deal with the Gibbard-Satterthwaite Theorem in much more detail in Chapter 5.

15We will review this result in Subsection 3.3.1.
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As already noted above, many concepts had been studied first in the
mathematics (or other) literature before they eventually found their way to the
field of theoretical computer science. For example, the notion of influence was
first introduced by the geneticist Penrose [101] (and independently by several
others, such as Banzhaf [2], and Coleman [23]) in 1946; only in 1985 Ben-Or
and Linial [7] introduced the concepts to the area of theoretical computer
science. As another example, the total influence of Boolean functions, which
we will see in Subsection 3.1.3, has long been studied in combinatorics.16

A very important concept is noise stability, which we will introduce in
Section 3.2. This concept is easily explained in the language of voting the-
ory: if all voters vote randomly, and if for each voter there is a fixed, small,
probability that the vote is misrecorded, then what is the probability that the
amalgamation of all these errors impacts the outcome of the voting process?
Interestingly, although Kahn-Kalai-Linial [66] studied noise sensitivity (without
giving it a name) already in 1988, the term “noise sensitivity” was coined
only ten years later, by Benjamini-Kalai-Schramm [8]. A centerpiece result
regarding noise stability and voting is the Majority is Stablest Theorem [86].
Although this theorem lies beyond the scope of this thesis, it certainly deserves
mentioning. Roughly, it says the following: among all unbiased functions with
small influences (which is a condition any “reasonable” voting rule should
satisfy), the majority function has the largest noise stability.

In 2002, Gil Kalai obtained a Fourier-theoretic proof of Arrow’s Theorem
[68]. This result was particularly important in that it not only shed a different
light on the impossibility theorem, but it also managed to strengthen it. We
will review Kalai’s proof in Subsection 4.2.3. Additionally, once again showing
its high impact, this paper eventually led to a strengthening of the Gibbard-
Satterthwaite Theorem as well. The most up to date result is due to Mossel
and Rácz [88], from 2012. Its rather technical proof is, unfortunately, way
beyond the scope of this thesis. Nevertheless, in Chapter 5 we will discuss the
theorem and its consequences.

1.3 The Impartial Culture Assumption

1.3.1 Motivation

When mathematically modeling voting processes, we need a model for the
way the voters are voting. How can we do this? In the absence of any other
information, that is to say “in the abstract”, perhaps the best we can do is the
following: the preferences of the voters are uniformly random and independent.
This assumption is called the impartial culture assumption and is abbreviated
by ICA.

More generally, a culture [140] is an assumption about how voters vote,
i.e., the distribution of their votes. Other cultures are considered in the
literature. We just mention a few without going into them. Besides ICA,

16The reason is that it happens to be equivalent to edge-boundary size for subsets of the
Hamming cube.



CHAPTER 1. INTRODUCTION 11

another basic model from the literature is the impartial anonymous culture
assumption [70, 56]. The latter is based on the presentation of voter preferences
by anonymous profiles, in which the names of the voters are neglected. It
assumes that each resulting anonymous profile class is equally probable. A
recent approach [36] introduces the impartial, anonymous, and neutral culture
assumption.

The impartial culture assumption is a well-known supposition in social
choice theory. Although first proposed by Guilbaud [61] in 1952, it was first
formalized only by Garman and Kamien [52] in 1968.

A possible way to think about the impartial culture assumption is as follows.
In an election one can imagine there is some subset of voters who have already
determined for whom to vote; this group’s votes we could just factor in as a
constant into the election function. Having dealt with the decided voters we
remain with the undecided voters, the so-called swing voters. Perhaps these
voters’ preferences can be thought of as being independent and uniformly at
random.

From a purely mathematical perspective the impartial culture assumption
is before all just an assumption which is convenient : it makes computations
and analysis a lot easier. In other words it makes the mathematics manageable.
In particular the assumption the voters’ votes be independent facilitates the
calculations involving probabilities tremendously. Of course, this motive is
merely pragmatic and opportunistic. It does not say a thing about why this
mathematical model would be correct; in fact it completely ignores this question
altogether.

Before going into a discussion from political science related to the impartial
culture assumption, one issue about ICA we should be very clear about right
from the start is the following. In Chapter 6 we prove Arrow’s Theorem using
Fourier analysis. As will then become apparent, in that proof we calculate
some probability under the assumption of ICA—in fact, this will be the main
idea of the proof. However, the end result (namely the classical version of
Arrow’s Theorem) is completely independent of the underlying model how the
voters vote. Having said that, several other results in this thesis do depend on
the impartial culture assumption. When we want to calculate some occurrence
probability of obtaining a cycle, for example, we necessarily need a probabilistic
voting model. In this thesis we will then take ICA as the model. Unavoidably,
this limits the scope of interpretation of those results. Indeed, perhaps par for
the course, the impartial culture assumption is a somewhat unrealistic model.
For the purposes of this thesis, it is in this context important to note that
both the quantitative version of Arrow’s Theorem (see Subsection 4.2.3), as
well as the quantitative version of the Gibbard-Satterthwaite Theorem (see
Subsection 5.3.1), do depend on ICA.

1.3.2 Liberalism Against Populism

It should not be surprising that the impartial culture assumption is rather
controversial. An interesting and influential (though contentious) account is
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Liberalism Against Populism [111], a book by the American political scientist
William H. Riker (1920-1993) published in 1982. In this book Riker develops an
“antidemocratic” interpretation of results from social choice, especially Arrow’s
Theorem. We used quotation marks here because in general it is not quite
clear what the term antidemocratic exactly means: it can mean several things.
Furthermore, in political contexts this word is used in a derogatory way to
belittle political opponents. We will explain further on what is meant by the
term.

Because of their relevance for this thesis as well as to illustrate that the often
abstract and theoretical considerations in this thesis also relate to discussions
about the real world, we briefly sketch Riker’s viewpoints and those of his
perhaps greatest opponent, Gerald L. Mackie. Our observations are based on
[111, 78, 79, 75, 149, 80, 26, 24].

Riker questions the role of voting in democracy. Which purpose does it
serve? There are two major views. According to the first one, the liberal view,
citizens vote only in order to control (meaning select, punish, replace) elected
officials. In this viewpoint voting can be seen as just a negative liberty : it
yields liberty from coercion, especially by the state. A second viewpoint is the
populist view. It was initiated by Jean-Jacques Rousseau (1712-1778), and
states that citizens vote to establish the will of the electorate. The elected
officials are in this respect a direct extension of the will of the people. As
the title of his book suggests, Riker claims that the liberal viewpoint is the
only valid one: “the people” cannot rule as a corporate body. Quoting Riker
[111], “The function of voting is to control officials, and no more” (emphasis
in original). To argue for his cause, Riker uses arguments from social choice
theory. Voting as a populist means of representation, he says in [111], is

• inaccurate, because different voting systems yield different outcomes from
exactly the same profile of individual voters’ preferences;

• meaningless, since the outcome of voting is always manipulable by the
Gibbard-Satterthwaite Theorem (see Chapter 5), and moreover it is
impossible to distinguish manipulated from unmanipulated outcomes
because of the unknowability of private intentions underlying public
actions.

In summary: according to Riker populist democracy is incoherent. Riker’s
position can be viewed as antidemocratic since, as believed by him, voting is
the central act of democracy (see page 5 in [111]):

(...) I want to point out that the coherence depends on the fact that
all democratic ideas are focused on the mechanism of voting. All
the elements of the democratic method are means to render voting
practically effective and politically significant, and all the elements
of the democratic ideal are moral extensions and elaborations of the
features of the method that make voting work. Voting, therefore,
is the central act of democracy, and this fact makes apparent the
immediate relevance of the theory of social choice.
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To support the first claim, Riker uses Arrow’s Theorem. The main idea is
that because of this theorem no method of aggregating individuals’ transitive
preference orderings can guarantee a collective preference ordering that is
transitive: we can always get a cycle in some instances (we will see this in
detail in Chapter 6). In that case it is unclear which outcome should be elected
as being the winner. Furthermore, Riker argues that cycles in reality are
almost universal. But even leaving the possibility of cycles aside, Riker finds
it problematic in itself that different voting rules can yield different election
outcomes. Interestingly, some of Riker’s arguments for the inaccuracy assume
the impartial culture assumption. For example, he provides a summary table
concerning the likelihood of a cycle, under assumption of ICA. According
to this table, cycles are ubiquitous. We will elaborate on this discussion in
Subsection 4.3.2.

In his book Democracy Defended [79] from 2003 as well as in [78], Mackie
vigorously responds to Riker’s criticisms. In his analysis Riker provided lots
of examples from American politics which he thought illustrated his points.
An example worth mentioning because of its historical importance is the 1860
election of president Lincoln. Back then the major controversy in the US
was the extent to which slavery would be allowed in the vast new territories,
the so-called “free soil” question. Riker used this specific example to show
that according to different voting rules a different president would have been
elected,17 and that under pairwise majority comparison (which we will call a
Condorcet election based on the majority rule in the next chapter) there was a
cycle.

Briefly stated, in response to Riker’s book Mackie argues that

• cycles are empirically improbable, as evidence shows;

• different reasonable election procedures “often” yield the same results;

• though manipulative voting can arise, the people’s genuine preferences
emerge over time;

• much of Riker’s empirical evidence is either speculative, mistaken, or
misinterpreted.

In conclusion, Mackie claims voting can be both accurate as well as meaningful,
and Riker’s arguments are no reason to reject the populist viewpoint.

Mackie argues that Riker’s viewpoints are antidemocratic. What does he
mean exactly by that? On page 3 in Democracy Defended [79], we read:

17We should be a bit more precise here. In the US, each voter elects his unique favorite
presidential candidate. However, what Riker did was, using political arguments, to speculate
about how the US voters would have voted had they instead all submitted a complete ranking
of the four candidates, rather than just one—in the terminology from Subsections 4.1.1 and
5.2.1, Riker thus imagined the US’ means of voting was modelled as a social welfare function
rather than just a social choice function. Then, using this (speculative) new information, he
argued that another president would have been elected: often, though not always, Stephen A.
Douglas.
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Riker calls populist any democratic theory which depends on a sys-
tematic connection between the opinion or will of the citizens and
public policy, and liberalist any democratic theory which requires
only that voting result in the random removal of elected officials.
Riker rejects populist democracy as infeasible, and offers his liberalist
democracy in its place. What almost everyone means by democracy
is what Riker calls populist democracy; and, I shall argue, Riker’s
liberalist alternative fails, descriptively and normatively. Thus, I
am tempted to label his doctrine antidemocratic. I believe that it is
antidemocratic in consequence, whether or not it is antidemocratic
in spirit. But to use such a label throughout this volume would
be tendentious. To call his doctrine antipopulist, though, is to beg
the question in his favor: the word populism has many negative
connotations, and I do not mean to defend such things as Peronism,
short-sighted policy, or mob rule. Since Riker’s claim is that in
the political sphere the rational individual opinions or desires of
citizens cannot be amalgamated accurately and fairly, it is apt to
describe his doctrine as one of democratic irrationalism. Riker’s
irrationalist doctrine emphasizes principled failings of democracy
and recommends a constitutionalist libertarianism and the substitu-
tion of economic markets for much of political democracy (Riker
and Weingast 1988).

A relevant and related question is: how omnipresent are cycles actually, in
practice? Several researchers in the literature (see e.g. [54, 55, 36, 140, 106], and
Chapter 4 in [76]) have explored this question. The short answer is: perhaps
quite surprisingly, they are rare. We will come back to this issue in Subsection
4.3.2.

Summarizing this subsection: the impartial culture assumption is first and
foremost a mathematically convenient yet unrealistic model for the way voters
are voting. Given quantitative (probabilistic) results in social choice, one
should always keep in mind which theoretical model underlies it, and interpret
results appropriately in light of that. Riker’s account shows that, furthermore,
we should be careful to interpret results from formal sciences in an appropriate
way when applying it to the social sciences. Indeed, as mentioned, a good
part of his argument unduly relies on the rather unrealistic impartial culture
assumption.

1.4 Outline of the Thesis

Chapter 2. We introduce the two main characters of this thesis: the
Boolean function and its Fourier decomposition. Some basic theorems, such as
Plancherel’s Theorem and Parseval’s Theorem, are proved. We end the chapter
by making the connection with social choice theory.

Chapter 3. The notions of influence and noise, paramount for the theory of
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Boolean analysis, are presented. The Hypercontractive Inequality is stated.
This is a famous inequality from Boolean analysis. We prove only a special
case, called Bonami’s Lemma. This special case is, however, already sufficiently
strong to imply two interesting theorems: the Kahn-Kalai-Linial Theorem,
and Friedgut’s Theorem. The latter theorem, for example, says that in a
two-candidate election with low total influence there is always a small coalition
of voters which are able to determine the election with high probability.

Chapter 4. In this chapter we come to one of the main results from this
thesis: Arrow’s Theorem. Using the results we will already have established by
then, its proof will be remarkably easy. The main idea, due to Gil Kalai [68] is
to calculate the probability of having a Condorcet cycle under ICA. What is
more, this proof method leads to a strengthening of Arrow’s Theorem for three
candidates. Roughly stated, the more we want to avoid Condorcet’s paradox,
the more the election scheme will look like a dictator.

Chapter 5. We state the Gibbard-Satterthwaite Theorem. This theorem
concerns the manipulation of elections. Initiated by the quantitative version of
Arrow’s Theorem obtained by Kalai, follow-up research [65, 88] has led to a
quantitative version of the Gibbard-Satterthwaite Theorem as well. The proofs
are heavily inspired by Boolean analysis, but the strongest results obtained to
date involve also several other advanced mathematical techniques which are
beyond the scope of this thesis. For that reason we limit ourselves to giving an
overview of the current state of affairs, and its implications for social choice.

Chapter 6. Inspired by Kahneman’s Thinking, Fast and Slow [67], in this
last chapter we come up with a simple model to simulate the various biases
that show up in small meetings in which people have to vote, one after the
other, “yes” or “no” for a given proposal.



Chapter 2

Fourier Analysis on the
Boolean Cube

In this chapter, starting from the very basics we develop Fourier analysis for
real Boolean functions. This chapter will stand out in the sense that its focus
will be quite mathematical. Still, we try to provide for some intuitions too.

It should be noted first that more generally one could develop the theory
of Fourier analysis for any finite Abelian group. In that sense our treatment
is not the most general one in the mathematical sense. Nevertheless, for our
purposes only the case Zn2 is important so we will focus solely on the latter.

The set {−1, 1}n, where n ≥ 1 is a natural number, is called a Boolean cube.
Likewise, any set of the form {0, 1}n is called a Boolean cube. In fact these
are just two representations of the same thing. In computer science TRUE
is commonly represented by 1 while FALSE is represented by 0. However,
in this thesis we will usually let TRUE be represented by −1 while FALSE
be represented by 1. That is, 0 corresponds to 1, whereas 1 corresponds to
−1; the reasons for doing so will become apparent later. One should think of
−1 and 1 as real numbers, so that any element of {−1, 1}n can be thought
of as an element of Rn, a vector in the linear algebraic sense. We will freely
pass between these representations of the Boolean cube. Usually it is most
convenient for us to use the {−1, 1}n representation, so all definitions and
theorems in this chapter will feature this representation, although one should
keep in mind that everything can similarly be done for {0, 1}n as well.

Definition 2.1
A function on the Boolean cube is a function from {−1, 1}n to R where
n is some natural number.

We also say that a function is a Boolean function to say it is a function on the
Boolean cube. A function on {−1, 1}n which takes values in {−1, 1} is called
Boolean-valued.

All the definitions and results from this chapter are based on [97, 126, 63,
95, 96, 28]. Unless specifically mentioned, all our results come from these
resources.

2.1 Introduction

Given a Boolean function, we would like to find an elegant way to represent that
function. The Fourier expansion will establish exactly that. The underlying

16
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idea is very simple: we want to write a Boolean function as a multilinear
polynomial. (Multilinear means that no variable appears squared, cubed, or as
any higher power, i.e., each variable has local degree one everywhere.) The
following examples should clarify this idea.

Example. Consider the function Maj3 : {−1, 1}3 → {−1, 1} which takes the
majority of the three bits, so e.g. Maj3(1,−1, 1) = 1 while Maj3(−1,−1, 1) =
−1. It is easy to verify that for all x ∈ {−1, 1}3 we have

Maj3(x) =
1
2
x1 +

1
2
x2 +

1
2
x3 − 1

2
x1x2x3.

The latter polynomial is the Fourier expansion of Maj3.

Example. Consider the function min3 : {−1, 1}3 → {−1, 1} taking the
minimum of three bits. Since −1 corresponds to TRUE and 1 to FALSE,
this function represents the logical OR. Then it is easy to verify that for all
x ∈ {−1, 1}3 we have

min3(x) = −3
4

+
1
4
x1 +

1
4
x2 +

1
4
x3 +

1
4
x1x2 +

1
4
x2x3 +

1
4
x1x3 +

1
4
x1x2x3,

so this polynomial is the Fourier expansion of min3.

In fact we will see later that not only every Boolean function has such a
polynomial representation, but that representation is in fact unique.

2.2 Finding the Fourier Expansion

How did we find those polynomials from the examples? There is an easy way:
interpolation. For example take again the first example, the function Maj3.
First we want to “make it right” on the coordinate (−1,−1, 1), on which the
function should be −1. Well, the polynomial

(−1)
(

1− x1

2

)(
1− x2

2

)(
1 + x3

2

)
does just that: it is −1 on (−1,−1, 1) and 0 on any other coordinate. Now it
only remains to do this for the other coordinates, after which we just have to
add the polynomials we had obtained; after some calculations we then indeed
obtain a multilinear polynomial.

As an example, consider the function max2 : {−1, 1}2 → {−1, 1}, which
takes the maximum of the bits. Its Fourier expansion is obtained via

(+1)
(

1 + x1

2

)(
1 + x2

2

)
+ (+1)

(
1 + x1

2

)(
1− x2

2

)

+(+1)
(

1− x1

2

)(
1 + x2

2

)
+ (−1)

(
1− x1

2

)(
1− x2

2

)
,
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which after some calculations can be seen to be equal to 1
2 + 1

2x1 + 1
2x2− 1

2x1x2.
We thus have the following:

Theorem 2.2
Every f : {−1, 1}n → R can be expressed as a multilinear, real, polyno-
mial in the variables x = (x1, . . . , xn). That is, for each S ⊆ [n] there is
a λS ∈ R such that for all elements x ∈ {−1, 1}n we have

f(x) =
∑
S⊆[n]

λSx
S ,

where with xS we mean
∏
i∈S xi if S is nonempty, and where x∅ is 1.

Moreover, this representation is unique.

Proof. The existence we already explained. Uniqueness will follow by an easy
linear algebra argument that we will see later. �

We then define the Fourier expansion formally:

Definition 2.3
Let f : {−1, 1}n → R. For each S ⊆ [n], the coefficient λS from the
statement of Theorem 2.2 is denoted by f̂(S) and is called the Fourier
coefficient of f on S. The right-hand side of the expression

f(x) =
∑
S⊆[n]

f̂(S)xS

is called the Fourier expansion of f .

So for example we have

M̂aj3(∅) = 0, M̂aj3({1}) = M̂aj3({2}) = M̂aj3({3}) =
1
2
, M̂aj3({1, 2, 3}) = −1

2
.

2.3 The Importance of the Fourier Expansion in a
Slogan

One could ask what is the point of having the Fourier expansion of a Boolean
function. In computer science applications, the Boolean function often repre-
sents some combinatorial object, e.g. the operation of a circuit, the concept
class in machine learning, a set system in extremal combinatorics, or, which
will be particularly interesting for us, perhaps a voting rule. It turns out a
lot of interesting combinatorial properties of Boolean functions get encoded
by what the Fourier coefficients are. For example in the context of voting we
will see the important notion of influence of a particular voter on the voting
scheme; this highly interesting combinatorial quantity is nicely expressible in
terms of the Fourier coefficients, as we will see. Therefore, to know the Fourier
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coefficients is to know a lot, if not all, of interesting properties of the Boolean
function at hand.

The rest of this thesis should be read with the following slogan in mind,
the value and importance of which the reader hopefully will become convinced
in due course:

The Fourier coefficients of a function bear a lot of information
about interesting properties regarding that function.

This thesis as a whole—using Boolean analysis to investigate properties from
social choice theory—can be seen as one big chunk of evidence supporting this
slogan.

2.4 Connection with Linear Algebra

Each monomial xS =
∏
i∈S xi, where S ⊆ [n], is itself a Boolean function: it is

−1 if and only if the number of S-variables being −1 is odd.

Definition 2.4
For S ⊆ [n] we let χS : {−1, 1}n → {−1, 1} : x 7→ ∏

i∈S xi, called the
parity function on S. If S = {i} we write this also as χi and call it the
i-th dictator function.

The function x 7→ −χi, where i ∈ [n], is also called the i-th anti-dictator
function.

With the notation from Definition 2.4 we can write the result from Theorem
2.2 as

f =
∑
S⊆[n]

f̂(S)χS

for each Boolean function f ; i.e., f is a linear combination of the functions
χS , S ⊆ [n]. This makes us think about the situation in linear algebra terms.
Particularly, do the functions {χS |S ⊆ [n]} form a basis? We will see that
they do.

First, let V be the function space consisting of all Boolean functions, where
addition and scalar multiplication are pointwise, so V = {f | f : {−1, 1}n → R}.

Note that any Boolean function can be thought of as a vector in R2n :
indeed, just take its truth table (for some arbitrary but fixed order of the
coordinates) and stack them into a column vector. This shows that V and R2n

are isomorphic. Therefore the dimension of V is 2n. But there are exactly 2n

parity functions, and Theorem 2.2 shows that they span the space, so they
must be linearly independent as well. Thus they form a basis of V , called the
Fourier basis. This finishes the proof of Theorem 2.2.

In the natural way we have an inner product on V too:
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Definition 2.5

For f, g : {−1, 1}n → R we let 〈f, g〉 def= 2−n
∑

x∈{−1,1}n f(x)g(x).

The 2−n factor was put there only in order to get an “average” value, since
there are in total precisely 2n terms. It is just a rescaling. In this way V
becomes an inner product space.

Note that we can equivalently state the definition as follows:

〈f, g〉 = E
x∼{−1,1}n

[f(x) · g(x)]

where the notation x ∼ {−1, 1}n denotes that x is drawn uniformly at ran-
dom, i.e., x1, . . . , xn are independently ±1 with probability 1

2 each. In what
follows, unless stated otherwise, all expectations are with respect to such a
uniform distribution on {−1, 1}n. We often simply write Ex[f(x)g(x)] or even
E[f(x)g(x)] for brevity.

If f, g : {−1, 1}n → {−1, 1} are Boolean-valued, the inproduct 〈f, g〉 in
a way measures how similar the functions f and g are. It measures their
“correlation”: if e.g. f = g then 〈f, g〉 = 1, and if f = −g then 〈f, g〉 = −1.
More generally by a very easy calculation it follows that

〈f, g〉 = 1− 2 Pr
x

[f(x) 6= g(x)]

where again x ∼ {−1, 1}n. Consequently, the closer to 1 the quantity 〈f, g〉 is,
the more the two functions agree.

Definition 2.6

For f, g : {−1, 1}n → R we put dist(f, g) def= Prx[f(x) 6= g(x)], which
we call the fractional Hamming distance of f and g. If ε > 0 and
dist(f, g) ≤ ε, then we say f and g are ε-close.

We have

〈f, g〉 = 1− 2 dist(f, g). (2.1)

As usual in an inner product space, for any f : {−1, 1}n → R we have
the 2-norm of f which is defined as ||f ||2 def=

√〈f, f〉. Note that by the above
Boolean-valued functions have norm 1, i.e., they are unit vectors in this function
space.

Lemma 2.7
The set {χS |S ⊆ [n]} is an orthonormal basis of the inner product space
(V, 〈·, ·〉), that is, we have

〈χS , χT 〉 = δS,T =

{
1 if S = T

0 if S 6= T

for all S, T ⊆ [n].
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Proof. If S = T , then clearly 〈χS , χS〉 = E[χ∅] = E[1] = 1. For the other part,
suppose S 6= T . Note that χS · χT = χS∆T , where S∆T is the symmetric
difference of S and T . Therefore the lemma follows immediately by the following
claim: for any A ⊆ [n] with A 6= ∅ we have

∑
x∈{−1,1}n χA(x) = 0.

To show this, pick any a ∈ A. For any x ∈ {−1, 1}n, let x′ ∈ {−1, 1}n be
the same as x except at spot a it has the other bit, i.e. x′a = −xa and x′i = xi
for all i 6= a. Clearly χA(x) = 1 if and only if χA(x′) = −1, so taking the sum
over all x ∈ {−1, 1}n gives 0 as a result.

Another proof is as follows. If S 6= ∅, then by independence of all xi with
i ∈ S we get E

x
[
∏
i∈S xi] =

∏
i∈S E

x
[xi] = 0, as E

x
[xi] = (−1) 1

2 + (+1) 1
2 = 0 for

all i. �

Note that Lemma 2.7 implies the uniqueness from Theorem 2.2 that we
still had to show.

The following theorem is important since it gives a concrete formula to
calculate the Fourier coefficients.

Theorem 2.8

For f : {−1, 1}n → R and S ⊆ [n] we have f̂(S) = 〈f, χS〉.
Proof. Using Lemma 2.7 and writing f in terms of the Fourier basis we have

〈f, χS〉 = 〈
∑
T⊆[n]

f̂(T )χT , χS〉 =
∑
T⊆[n]

f̂(T ) 〈χT , χS〉 = f̂(S),

proving the theorem. �

2.5 Theorems of Plancherel and Parseval

The following two theorems are very important and will be regularly used.

Theorem 2.9
( Plancherel’s Theorem) We have

〈f, g〉 =
∑
S⊆[n]

f̂(S) ĝ(S)

for all f, g : {−1, 1}n → R.

Proof. We write f and g as linear combinations of the Fourier basis vectors.
Using linearity of the inner product we then get

〈f, g〉 = 〈
∑
S⊆[n]

f̂(S)χS ,
∑
T⊆[n]

ĝ(T )χT 〉 =
∑

S,T⊆[n]

f̂(S)ĝ(T )〈χS , χT 〉 =
∑
S⊆[n]

f̂(S)ĝ(S).

�
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Theorem 2.10
( Parseval’s Theorem) For f : {−1, 1}n → R we have

||f ||22 = 〈f, f〉 = Ex[f2] =
∑
S⊆[n]

f̂(S)2.

In particular, we have ∑
S⊆[n]

f̂(S)2 = 1

for any Boolean-valued function, i.e. a function f : {−1, 1}n → {−1, 1}.

Proof. This follows immediately from Plancherel’s Theorem by taking f =
g. �

Therefore, the squares of the Fourier coefficients of a Boolean-valued func-
tion always add up to 1: e.g. in the first example from above, where we
considered Maj3, we indeed have 4 · (1/2)2 = 1.

Note on notation. So far we have focused on the Boolean cube being
represented by {−1, 1}n. But what if we instead consider it to be of the form
{0, 1}n?

Let us consider a function f : {0, 1}n → R. By defining χS : {0, 1}n →
{−1, 1} by χS(x) def= (−1)

P
i∈S xi in this case, we instantly see that all results

in this chapter from Subsection 2.4 onwards remain true. Specifically we can
write the Fourier expansion of f : {0, 1}n → R again as

f =
∑
S⊆[n]

f̂(S)χS .

Note that χS(x) =
∏
i∈S χ(xi) where χ(b) = (−1)b for b ∈ {0, 1}. This explains

why mathematically it is natural to have −1 ∈ {−1, 1} correspond to 1 ∈ {0, 1}
(representing TRUE) and 1 ∈ {−1, 1} correspond to 0 ∈ {0, 1} (representing
FALSE).

2.6 Fourier Weights

Consider a Boolean-valued function. The squares of its Fourier coefficients then
sum up to 1. We can think about these nonnegative numbers as a probability
distribution, although we prefer to call them weights:

Definition 2.11

Given f : {−1, 1}n → R, the weight of f on S ⊆ [n] is f̂(S)2.
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These weights contain a great deal of combinatorial information of the Boolean-
valued function at hand, and will therefore play an extremely important role
in what follows.

Intuitively one can think of f ’s weight at S as a quantitative measure
indicating how important the set of coordinates S is to the function f ; for a
Boolean-valued function the weight is a number belonging to [0, 1].

Definition 2.12
Given f : {−1, 1}n → R, the mean of f on S ⊆ [n] is Ex[f(x)]. We say
f is unbiased if its mean is 0.

For Boolean-valued functions the mean measures how “biased” the function
is towards +1 or −1. By Theorem 2.8 it follows that the mean of a function
f : {−1, 1}n → R can be nicely read off from its Fourier coefficients: it
equals f̂(∅), and we have again an example the emergence of the slogan from
earlier. For the example where we considered min3, it is clear that its mean is
(+1) 1

8 + (−1) 7
8 = −3

4 , which is equal to m̂in3(∅).
Now we give another example illustrating the ample importance of the

Fourier coefficients, and more distinctly the weights. Given a function f :
{−1, 1}n → R, consider the random variable f(x) where x ∼ {−1, 1}n.
Furthermore let Var(f) be the variance of the random variable f(x), i.e.,
Var(f) = Ex[f(x)2]− Ex[f(x)]2. For a Boolean-valued function this number
is in [0, 1]. It measures how “spread out” a function is, that is, how much
it varies; for example if f is constant then its variance is 0, while f being
unbiased implies that its variance is maximally, namely 1. For Boolean-valued
functions variance measures unbiasedness, an important property a function
might have. Parseval’s Theorem together with Ex[f(x)]2 = f̂(∅)2 immediately
implies that Var(f) =

∑
S 6=∅ f̂(S)2. The variance of a function is hence nicely

expressible in terms of the Fourier weights: once again we have found that an
interesting quantity (the variance) becomes apparent just by looking at the
Fourier coefficients.

Definition 2.13
Let f : {−1, 1}n → R. For 0 ≤ k ≤ n, the weight of f at degree k is

Wk[f ] def=
∑
|S|=k

f̂(S)2.

We also put W≤k[f ] def=
∑k

i=0 Wi[f ].

Note that Parseval’s Theorem, that is Theorem 2.10, implies that for any
function f : {−1, 1}n → {−1, 1} we have

W0[f ] + W1[f ] + . . .+ Wn[f ] = 1. (2.2)

The weight of a function up to a degree is a good measure of the complexity
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of a Boolean-valued function. Its total weight is, as we know, equal to 1, but
the question is at what degrees those weights are mainly present. In some way,
the higher the degree the weight is at, the more complex the Boolean function
is. Functions with much of their weight at low degrees are in many ways
more simple; e.g., they can be efficiently learned by computational learning
algorithms. See for example Section 4.2 in [81].

An example illustrating this idea which will be essential for us is the
following:

Lemma 2.14
Let f : {−1, 1}n → {−1, 1}. If f has all its weight on degree 1, then f
is a dictator or an anti-dictator function. In symbols, if W1[f ] = 1 then
f = ±χi for some i ∈ [n].

Proof. We have
∑
|S|=1 f̂(S)2 = 1, so by Parseval’s Theorem we know that

f̂(S) = 0 for all S ⊆ [n] with |S| 6= 1. Therefore f is of the form f(x) =
a1x1 + . . .+ anxn for some reals a1, . . . , an satisfying a2

1 + . . .+ a2
n = 1. It is

clear that without loss of generality we may suppose each ai is different from 0
(otherwise we can just eliminate them).

Note that

f(sgn(a1), . . . , sgn(an)) = |a1|+ . . .+ |an| ≥ 0,

so, as f is Boolean-valued, we have |a1|+ . . .+ |an| = 1. Thus,

1 =
n∑
i=1

a2
i ≤ (max

i
|ai|)

n∑
i=1

|ai| = max
i
|ai|,

so there is an i ∈ [n] such that ai = ±1. Then, f = ±χi. �

2.7 Notions from Social Choice Theory

2.7.1 Boolean Functions as Voting Rules

Let f : {−1, 1}n → {−1, 1} be a Boolean-valued function. Then there is a
simple interpretation of f as a voting rule (also known as social choice function
in the social choice literature) for n voters who have to choose from two
candidates −1 and 1. Indeed, an x = (x1, . . . , xn) ∈ {−1, 1}n can interpreted
as meaning that voter i prefers alternative xi over alternative −xi. In that
case f(x) is the winner of the election specified by this voting rule, given that
the voters voted according to x = (x1, . . . , xn).

We now give a list of some voting rules:

• Majority Rule. This rule is defined by Majn(x) def= sgn(x1 + . . . + xn).
Here we have to assume n is odd, since we want to leave the sign of 0
undefined, reflecting the fact that in this thesis we do not want to go into
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tie-breaking. Furthermore, even when n is even, we call a Boolean-valued
function a majority function if, whenever x1 + . . . + xn 6= 0, we have
f(x) = sgn(x1 + . . .+ xn).

• Unanimity Rule. This rule is defined by

ANDn(x) def=

{
−1 if x = (−1, . . . ,−1)
1 else

.

Suppose a committee has to decide on passing a resolution. Being in
favor of the proposal is indicated by −1 while being against the proposal
is indicated by 1. In this selection scheme the selection committee passes
the resolution only if there is unanimity over accepting it.

• At-Least-One Rule. Dually from ANDn, it is defined by

ORn(x) def=

{
1 if x = (1, . . . , 1)
−1 else

.

In this selection scheme the committee passes the resolution whenever
there is at least one person in favor of the proposal.

• k-Junta Rule. A k-junta, where k ∈ [n], is a Boolean-valued function
that depends on at most k coordinates. In fact this is not one rule, but
a set of rules; in that sense it is as a matter of fact more a property of
an election rule rather than an election rule itself.

• Dictator Rule. It is defined by χi(x) def= xi where i ∈ [n]. I.e., using our
previous notation, χi is just χ{i}.

This rule plays an especially important rule in social choice, as we will see
in the next chapters. An anti-dictator rule is defined by x 7→ −xi for any
i ∈ [n]. Anti-dictators do not arise in practice, although for theoretical
purposes it is important to have this notion; in fact from the perspective
of Boolean analysis dictators and anti-dictators are very much alike.

• Weighted Majority Rule. A weighted majority function is a Boolean
function for which there are ai ∈ R such that

f(x) = sgn(a0 + a1x1 + . . .+ anxn)

for all x ∈ {−1, 1}n. The reals a0, a1, . . . , an have to be chosen in such
a way that a0 + a1x1 + . . .+ anxn = 0 for no x; this is necessary as we
want to leave the sign of 0 undefined.

Note that Majn,ANDn,ORn, as well as a dictator or anti-dictator rule
are all weighted majority rules; this is easy to see by appropriately picking
the ai’s.

The idea behind this election scheme is that certain voters are more
important and should thus count more. For example in the European
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Union votes of representatives of different countries are weighted according
to the number of people they represent. E.g., Italy has about six times as
many inhabitants as Belgium, so the coefficient ai corresponding to the
Italian representative would be about six times higher than the coefficient
corresponding to a Belgian representative.

Since weighted majority rules are commonly seen in practice, they are
very important. It is interesting to investigate their properties using
Boolean analysis. We will come back to this later.

• The US Electoral College Rule. Roughly speaking, the US president is
chosen as follows. We assume there are just two candidates. There are 50
states, and each state chooses their preferred candidate by a plurality vote.
Once this has been done, a weighted majority rule is applied to these 51
states’ votes to finally elect the president. The coefficient ai corresponding
to state i is proportionate to state i’s number of inhabitants.

• The Tribes Rule. This rule is quite artificial and is probably not used
in practice. However, from the perspective of Boolean analysis it has
proven to be an interesting function, e.g. to find counterexamples. Also
regarding influences it is interesting; we will come back to this point later.
For this rule n = s · w, and the n voters are divided into s subgroups,
each of which is called a tribe and is of size w. In any such tribe the
unanimity rule is applied. Then the at-least-one rule is applied on the s
votes. That is, a proposal under this rule is accepted if and only if at
least one tribe is unanimously in favor of the proposal. It is denoted by
Tribess,w. One can show that if s, w are such that s ∼ (ln 2)2w, then the
scheme is approximately unbiased.

In the social choice literature a voting rule which—as all the above examples—
always elects exactly one winner, is often called a resolute voting rule. Since
we do not allow for multiple winners of an election, we always assume voting
rules to be resolute and just call them “voting rules”.

2.7.2 Properties of Voting Rules

We want to have a way of comparing the voting rules from the previous
subsection. We compare them by checking whether they have the following
desirable properties.

• Monotonicity. If somebody changes their vote, it can only change the
outcome in their favor. That is, we have f(x) ≤ f(y) whenever x ≤ y
pointwise.

• Oddness. If everyone reverses their votes, the outcome is reversed;
or equivalently, the voting rule does not depend on the names of the
candidates. This means that we have f(−x) = −f(x) for all x. Usually
this notion is called neutrality in the social choice literature.
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• Symmetry. The voting rule does not depend on the identity of the voters,
i.e., f(xπ) = f(x) for all x and each permutation π of the voters. This is
usually called anonimity in the social choice literature.

• Unanimity. If there is unanimity on the proposal, then the outcome
reflects this: f(−1, . . . ,−1) = −1 and f(1, . . . , 1) = 1. This is usually
called the Pareto condition in the social choice literature.

• Unbiasedness. In the range of the voting rule are equally many −1’s as
1’s. That is, Ex[f(x)] = 0, the mean of f is zero.

The majority rule satisfies all of these properties, and it is the only rule of
the list that we have seen to do so. For example the unanimity rule does not
satisfy oddness and unbiasedness; the US electoral college rule does not satisfy
symmetry; the tribes rule does not satisfy oddness and symmetry, and, in
general, neither unbiasedness. The dictator rule satisfies all properties except
symmetry.

For 2-party elections the majority rule is the unique preferred rule:

Theorem 2.15
( May’s Theorem) A voting rule f : {−1, 1}n → {−1, 1} for two
alternatives is symmetric, monotone, and odd if and only if n is odd
and f = Majn.

Proof. The right-to-left implication is immediate. We assume f : {−1, 1}n →
{−1, 1} is symmetric, monotone, and odd. By Lemma 2.16 following this
theorem, we know f can be expressed as f(x) = sgn(a0 + x1 + . . .+ xn), where
a0 is an integer such that a0 +

∑
i xi 6= 0 for all x.

Let Dn be the set of all values that the function x 7→ ∑
i xi can take;

observe that Dn = {±n,±(n− 2),±(n− 4), . . . ,±(n− 2dn/2e)}. Then by the
above we have a0 6∈ Dn.

• Case 1: n is even. Let x = (1, . . . , 1,−1, . . . ,−1), where both 1 and −1
appear n/2 times. Then we have

∑
i xi = 0. Therefore, as f is odd, we

get
− sgn(a0) = −f(−x) = f(x) = sgn(a0).

If a0 > 0 or a0 < 0 we get a contradiction, so we must have a0 = 0.
However, for n even we have Dn = {n, n − 2, . . . , 2, 0,−2, . . . ,−(n −
2),−n}. But 0 = a0 6∈ Dn, so we get a contradiction. Consequently n is
odd.

• Case 2: n is odd. Let x = (1, . . . , 1, 1,−1, . . . ,−1), where 1 appears
(n+ 1)/2 times and −1 appears (n− 1)/2 times. Oddness of f gives us

− sgn(a0 − 1) = −f(−x) = f(x) = sgn(a0 + 1).

This implies a0 ∈] − 1, 1[. As a0 is an integer we obtain a0 = 0. Thus,
f = Majn.
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�

Lemma 2.16
Let f : {−1, 1}n → {−1, 1}. Then f is symmetric and monotone if
and only if f can be expressed as a weighted majority function with
a1 = a2 = . . . = an = 1 and a0 an integer.

Proof. For each n, let Dn be the set of values that the function x 7→ ∑
i xi

can take. It suffices to show the implication from left to right, since the other
one is obvious. If f ≡ −1 is constantly −1, we can simply pick a0 = −(n+ 1);
similarly if f ≡ 1 we can pick a0 = n+ 1. So from now on we may assume f is
nonconstant.

Claim: There are x, y ∈ {−1, 1}n such that x and y differ on only one
coordinate, and f(x) = −1 and f(y) = 1.

To show the claim, suppose by contradiction that it is not true. Then
for all x, y differing on only one coordinate we have f(x) = f(y). Putting
c = f(−1, . . . ,−1) it is easy to see that this implies f(x) = c for all x, a
contradiction.

Using the claim, let b, y ∈ {−1, 1}n such that they differ on one coordinate,
and also f(b) = −1 and f(y) = 1. By monotonicity we have b ≤ y. Put
a0

def= −(
∑

i bi + 1). We claim that f(x) = sgn(
∑

i xi − (
∑

i bi + 1)) for all
x ∈ {−1, 1}n. Pick t ∈ {−1, 1}n. There are two cases.

First, if the number of 1’s in t ≥ the number of 1’s in y, then let t′ be a
“rearrangement” (formally, permutation) of the coordinates of t in some way
such that t′ ≥ y. Then, by symmetry, f(t′) = f(t). Monotonicity implies
f(t′) ≥ f(y) = 1, so f(t) = 1. But

∑
i ti =

∑
i t
′
i ≥

∑
i yi =

∑
i bi + 2, so

sgn(
∑

i ti − (
∑

i bi + 1)) = 1.
Second, if the number of 1’s in t < the number of 1’s in y, a similar argument

leads to sgn(
∑

i ti − (
∑

i bi + 1)) = −1. �

2.7.3 Definition of the Impartial Culture Assumption

We need a model for the way the voters are voting. How can we do this? In
the absence of any other information, that is to say “in the abstract”, perhaps
the best we can do is the following:

Definition 2.17
(Impartial Culture Assumption) The preferences of the voters are
uniformly random and independent.

We abbreviate the impartial culture assumption by ICA.
More generally, a culture [140] is a assumption about how voters vote, i.e.,

the distribution of their votes. Below we will see that in the literature also
other cultures are considered.



Chapter 3

Influence and Noise

The goal of this chapter is to introduce the concepts of influence and noise.
After that we will be able to state the Hypercontractive Inequality. This is
a renowed result that has had some remarkable consequences in theoretical
computer science. We only prove a special case of it. Surprisingly, even this
special case is already sufficiently strong to imply two consequences that are
most relevant for us: the Kahn-Kalai-Linial Theorem and Friedgut’s Theorem.
Roughly stated, in the context of social choice the former of these theorems
says that there is always a small group of voters with high influence.

This definitions and results from this chapter are based mainly on [97, 126,
63, 95, 96, 28]. Unless specifically mentioned, all our results come from these
sources.

3.1 Influence of a Voter

3.1.1 Definition and Some History

We turn to a fundamental question: does one’s vote make a difference? The
following notion is appropriate to answer this question.

First we need some notation. Given a voter i ∈ [n] and x ∈ {−1, 1}n, we
denote with x⊕i the string (x1, . . . , xi−1,−xi, xi+1, . . . , xn).

Definition 3.1
The influence of a voter i ∈ [n] on f : {−1, 1}n → {−1, 1} is

Infi[f ] def= Pr
x

[f(x) 6= f(x⊕i)],

the probability under the impartial culture assumption that voter i
determines the election’s outcome.

Note that this quantity equals

Pr
x\xi

[f(x1, . . . , xi−1,−1, xi+1, . . . , xn) 6= f(x1, . . . , xi−1, 1, xi+1, . . . , xn)],

where the probability is taken over all the n− 1 other voters’ independent and
random votes, so it is indeed the probability (over everybody else’s votes) that
voter i makes the difference.

Given f : {−1, 1}n → {−1, 1}, a vector x ∈ {−1, 1}n and i ∈ [n], we say
that the coordinate i is pivotal (for f) on x if

f(x1, . . . , xi−1,−1, xi+1, . . . , xn) 6= f(x1, . . . , xi−1, 1, xi+1, . . . , xn).

29
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Consequently the influence of i on f is the probability that i is pivotal when
all other voters are voting independently and uniformly. The influence of i on
a function in some way quantifies how “pertinent” i is for the function.

It is interesting to mention that the notion of influence was independently
invented by several people. In 1967 John Banzhaf, a lawyer, invented the
notion of Infi[f ] while taking legal action on behalf of two towns [2]. Banzhaf
wanted to show in an objective manner that the Nassau County Board’s voting
system was unfair. The Nassau County (New York) Board used a weighted
majority voting system to make its decisions. The six towns got different
weights, based on their population. Particularly, the voting rule being used
was f : {0, 1}6 → {−1, 1} defined by

f(x) = sgn(−58 + 31x1 + 31x2 + 28x3 + 21x4 + 2x5 + 2x6),

where sgn(x) denotes the sign of the nonzero real number x. Here xi = 1 means
town i is in favor of the proposal, and f(x) = 1 means the society accepts the
proposal when the towns vote according to x. Banzhaf argues that weighted
voting does not allocate voting power among legislators in proportion to the
population each represents, because voting power is not proportional to the
number of votes a legislator may cast. He claims it would be more accurate to
think of voting power as the ability of a legislator, by his vote, to affect the
passage or defeat of a measure. Under ICA, that is precisely what we called
the influence of a voter on a voting scheme. It is therefore also known as the
Banzhaf power index. It is easy to compute that Inf5[f ] = Inf6[f ] = 0 in this
case, i.e., towns five and six have zero influence. Banzhaf argues (page 339 in
[2]):

It is hard to conceive of any theory of representative government
which could justify a system under which the representatives of
three of the six municipalities “represented” are allowed to attend
meetings and cast votes, but are unable to have any effect on leg-
islative decisions. Yet this is exactly what occurs now in Nassau
County. (...) No changes in the voting of any or all of the three
smallest representatives will have anything other than a persuasive
effect on the outcome of any proposal. They may as well stay home,
except for their ability to persuade the more powerful legislators.

Just to give an example, since x = 1n and x = 1n ⊕ ei (where ei is the
vector with all zeroes and a 1 at index i) are the only pivotal inputs, we have
Infi[ANDn] = 2−(n−1) for every i, which is very small. Also, Infj [χi] equal to
the maximal value of 1 if j = i, and the minimal value of 0 otherwise. Further,
it is clear that, given any odd n, for each i, Infi[Majn] =

(n−1
n−1

2

)
/2n−1, as a

voter is only decisive if exactly half of the other n− 1 voters are in favor while
the other half are opposed; using Stirling’s approximation this can easily seen
to be equal to √

2/π√
n

+O(n−
3
2 ). (3.1)
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Let us restrict to unbiased functions for now. Is it then possible to have
even less influence than O(1/

√
n)? It turns out it is: if s, w are such that

s ∼ (log 2)2w (implying that the scheme is approximately unbiased) with
n = sw, then for all i,

Infi[Tribess,w] ∼ log(n)
n

.

This quantity can be computed by keeping in mind that for a voter to be
influential in this scheme, everybody in the voter’s tribe has to be in favor
while all other tribes are not unanimous. The influence of any fixed voter in
the tribes rule is thus tremendously smaller than O(1/

√
n), since log(n) is

exponentially smaller than
√
n. In 1985, Ben-Or and Linial conjectured this

scheme is a worst-case scenario: there is no unbiased function such that all
voters have influence smaller than Ω(log(n)/n). In 1988 the conjecture was
settled, when Kahn, Kalai, and Linial proved the following theorem [66], now
known as the Kahn-Kalai-Linial (KKL) Theorem:

Theorem 3.2
( Kahn-Kalai-Linial Theorem) If f : {−1, 1}n → {−1, 1} is an
unbiased Boolean-valued function, then there exists an i ∈ [n] such that
Infi[f ] ≥ Ω(log(n)/n).

Besides an analytical proof, two proofs that only use combinatorial techniques
are known: one by Falik and Samorodnitsky [41], and another very similar one
by Rossignol [114]. In Subsection 3.3.3 we will prove the KKL Theorem.

3.1.2 General Definition of Influence

Given a function f : {−1, 1}n → {−1, 1}, how can one calculate Infi[f ] for
i ∈ [n]? We turn to this question now. First, we define the notion of influence
in general:

Definition 3.3
Let f : {−1, 1}n → R and i ∈ [n]. We define the influence of i on f to
be

Infi[f ] def= Ex

[(
f(x)− f(x⊕i)

2

)2
]
.

Note that for each function f : {−1, 1}n → {−1, 1} and vector x, it holds
that

f(x)− f(x⊕i)
2

is 0 if the coordinate i is not pivotal on x, and ±1 if i is pivotal on x. Therefore,(
f(x)− f(x⊕i)

2

)2
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is the 0/1-indicator that i is pivotal on x. Thus, for f a Boolean-valued function
this new definition is in correspondence with Definition 3.1.

A useful corollary is the following.

Theorem 3.4
If f : {−1, 1}n → R, then Infi[f ] is equal to the sum of the squares of
all Fourier coefficients which contain i. That is, Infi[f ] =

∑
S3i f̂(S)2.

Proof. Let fi be defined as fi(x) def= f(x⊕i) for all x. Then, Infi[f ] = 1
4 Ex[(f(x)−

fi(x))2]. Let us think a bit about the expression f(x) − fi(x). Since fi(x)
just means flipping the i-th input bit of x and then applying f , the Fourier
expansion of fi is the same as the one from f , except that in each term in
which the i-th variable occurs we have to add a minus sign. Thus in the Fourier
expansion of f − fi all terms not involving the i-th variable get cancelled, and
the other ones get doubled. Therefore we have

f − fi = 2
∑
S3i

f̂(S)χS .

Accordingly, Parseval’s Theorem (Theorem 2.10) allows us to conclude that
Infi[f ] =

∑
S3i f̂(S)2. �

To calculate the influence of a voter on a function, it thus suffices to compute
the Fourier expansion, after which we square and add all coefficients belonging
to terms that involve the i-th variable.

Going back to the second example given in Section 2.1 where we were
considering the function min3, the influence of i is (1/4)2 + (1/4)2 + (1/4)2 +
(1/4)2 = 1/4; this is indeed correct, as a voter can only make a difference in
this scheme when the other two voters vote 1, which happens in exactly 1 of
the 4 possible cases.

For monotone voting schemes the formula gets even nicer (this result and
proof are based on Lecture 12 of [95]):

Theorem 3.5

Let f : {−1, 1}n → {−1, 1} be monotone. Then we have Infi[f ] = f̂(i).

Proof. The most elementary proof is by double counting. Call two strings
n-bit strings a pair (in the literature also called edge of the hypercube) if and
only if they are identical except on exactly one coordinate. Note that there
are precisely 2n−1 pairs.

By Definition 3.1, Infi[f ] represents the fraction of pairs such that f(y) =
−f(y⊕i).

On the other hand, since f̂(i) = Ex[xi f(x)] we have that f̂(i) is equal to
the fraction of pairs such that f(xi=−1) = −1 and f(xi=1) = 1, minus the
number of pairs such that f(yi=−1) = 1 and f(yi=1) = −1. (Here yi=1 is the
string which is like y but which has a 1 in its i-th coordinate, and yi=−1 is
defined similarly.) But this last case cannot happen because f is monotone.
Therefore, both numbers count exactly the same thing, and are thus equal. �
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Opting for a voting rule that is monotone and symmetric inherently makes
all voters have equal, small, influence:

Theorem 3.6
Let f : {−1, 1}n → {−1, 1} be monotone and symmetric. Then it holds
that Infi[f ] ≤ 1√

n
, for all i ∈ [n].

Proof. For each j ∈ [n], we have 1 =
∑

S⊆[n] f̂(S)2 ≥ ∑n
i=1 f̂(i)2 = n f̂(j)2;

the last step is true because f̂(i) = f̂(i′) for all i, i′ ∈ [n], by symmetry. An
application of Theorem 3.5 then gives the desired result. �

3.1.3 Total Influence

The total influence of a function is simply the sum of all influences:

Definition 3.7

Let f : {−1, 1}n → R. The total influence of f is I[f ] def=
∑n

i=1 Infi[f ].

We give another useful interpretation of this quantity. To do this, let
f : {−1, 1}n → {−1, 1}. For each x ∈ {−1, 1}n, let s(f, x) be the number of
pivotal voters on x; we call this the sensitivity of f on x. Note that

s(f, x) =
n∑
i=1

1[f(x)6=f(x⊕i)],

where 1A denotes the indicator function of the event A. Taking the expected
value of s(f, x) over a uniform x, after exchanging sum and expectation, we get

Ex
[ n∑
i=1

1[f(x) 6=f(x⊕i)]

]
=

n∑
i=1

Ex
[
1[f(x)6=f(x⊕i)]

]
=

n∑
i=1

Pr
x

[
f(x) 6= f(x⊕i)

]
.

This is precisely the total influence of f . Therefore, I[f ] = Ex[s(f, x)], i.e., the
total influence equals the average sensitivity.

Consider the function χ[n], which is just the parity on all coordinates. The
total influence of this function is maximal; it equals n, as the number of pivotal
voters on x = s(f, x) = n, for all x. A trivial example attaining the minimal
possible value of 0 total influence is a constant function: every voter has
influence 0. We also have

I[Majn] =

√
2
π

√
n+O(n−

1
2 ).

This follows immediately from equation (3.1) in Subsection 3.1.1 for n odd;
for n even one can show that we still have that the influence of an n-variable
majority function is

√
2
π

√
n+O(n−

1
2 ).

In Du contrat social ou Principes du droit politique [115], a book written
in 1762, the French Enlightenment philosopher Rousseau argues that, when
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doing an election, one should always try to maximize the number of voters
that agree with the outcome. Given a fixed voting scheme f , let A(x) be the
number of voters that agree with the outcome x when the election scheme in
use is f . Note that

A(x) =
n∑
i=1

(1
2

+
1
2
xif(x)

)
.

Indeed, the quantity inside the sum is 0 if xi 6= f(x), and 1 if xi = f(x), i.e., if
voter i agrees with the outcome x. Therefore, we have

Ex[A(x)] =
n

2
+

1
2

n∑
i=1

Ex[xif(x)] =
n

2
+

1
2

n∑
i=1

f̂(i),

where we used that Ex[xif(x)] = 〈χi, f〉 = f̂(i).
Following Rousseau, we want to maximize this quantity. We can, of course,

do this by just maximizing the quantity
∑n

i=1 f̂(i). For monotone functions f
by Theorem 3.5 this just means maximizing I[f ].

Theorem 3.8

Among all functions f : {−1, 1}n → {−1, 1}, the sum
∑n

i=1 f̂(i) is
maximized by the majority functions. In particular, for each monotone

function f we have I[f ] ≤
√

2
π

√
n+O(n−

1
2 ).

Proof. By the calculation preceding this theorem, we have

n∑
i=1

f̂(i) =
n∑
i=1

Ex[xif(x)] = Ex[(x1 + . . .+ xn) f(x)].

Since f(x) is either −1 or 1, this quantity is upper bounded by Ex[|x1+. . .+xn|],
with equality if and only if f(x) = sgn(x1 + . . . + xn) for all x for which
x1 + . . .+xn 6= 0, i.e., if and only if f is a majority function. The second claim
is an immediate consequence of the discussion preceding this theorem. �

This theorem once again shows that for a 2-candidate voting scheme the
majority rule is best.

Lastly we have the following result.

Theorem 3.9

For each f : {−1, 1}n → R we have I[f ] =
∑

S⊆[n] |S|f̂(S)2.

Proof. By Theorem 3.4, I[f ] =
∑n

i=1

∑
S3i f̂(S)2. By inspection we see that

the latter is precisely
∑

S⊆[n] |S|f̂(S)2. �
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3.2 Noise Stability

3.2.1 Introduction

Let f : {−1, 1}n → {−1, 1} be a voting rule used in an election. We can
imagine there might be some misreading by the computer that registers the
voters’ preferences, or human error by the people who do the counting. Suppose
x1, . . . , xn are the “true” votes of the voters, i.e., their sincere preferences. Then
let y1, . . . , yn be the votes as they are recorded by the voting computer; it is
possible that something went wrong (for example miscounting) and some yi’s
may be different from the corresponding true vote xi. We want to investigate
the quantity Pr[f(x) = f(y)]. But to do this of course we need to give y a
probability distribution. For x we assume the impartial culture assumption, as
usual. We do this as follows.

Definition 3.10
Let x ∈ {−1, 1}n be fixed and ρ ∈ [0, 1]. If y is a random variable taking
values in {−1, 1}n such that

yi =

{
xi with probability ρ (independently for all i)
±1 uniformly with probability 1− ρ ,

then we say y is ρ-correlated to x and denote this by y ∼ Nρ(x).

We should think of ρ as being close to 1, symbolizing that, hopefully, the voting
computer’s propensity to make errors is small. It follows immediately that

Pr[yi = xi] = ρ+
1
2

(1− ρ) =
1
2

+
1
2
ρ, Pr[yi 6= xi] =

1− ρ
2

=
1
2
− 1

2
ρ.

Note that this even makes sense for ρ ∈ [−1, 0], so we might as well take these
equations as the general definition.

Definition 3.11
Let x ∼ {−1, 1}n be uniformly distributed, and ρ ∈ [−1, 1]. Then if for
a random variable y = (y1, . . . , yn) taking values in {−1, 1}n it holds
that all yi’s are independent, and

Pr[yi = xi] =
1
2

+
1
2
ρ,

then we say that (x, y) is a ρ-correlated pair, denoted by (x, y)ρ.

Note that Pr[yi = 1] = 1/2 for each i. Hence each yi, and because of that also y,
is uniformly distributed as well; therefore the above definition is symmetric, in
the sense that (x, y) is a ρ-correlated pair if and only if (y, x) is a ρ-correlated
pair. Fix an i. It is plain that xi and yi are in general not independent: as a
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matter of fact, we have

E[xiyi] = E[xiyi | yi = xi] Pr[yi = xi] + E[xiyi | yi 6= xi] Pr[yi 6= xi],

and this is equal to (+1)
(

1
2 + 1

2ρ
)

+ (−1)
(

1
2 − 1

2ρ
)

= ρ. For ρ 6= 0 it follows
that xi and yi are not independent; for ρ = 0 they are.

An equivalent way of stating Definition 3.11 would be to say that (x, y) is
a ρ-correlated pair if and only if

• xi and yi are uniformly distributed, for each i;

• xi and yi have correlation ρ, for each i;

• All pairs (xi, yi) are independent.

3.2.2 Definition of Noise Stability

Using the notion of ρ-correlated pair, we can define noise stability:

Definition 3.12
For f : {−1, 1}n → R and ρ ∈ [−1, 1], we let

Stabρ[f ] def= E(x,y)ρ [f(x)f(y)]

and call it the noise stability of f at ρ.

Note the presence of the impartial culture assumption in this definition.
For example, Stabρ[+1] = 1, which is maximal; this case is however not

interesting. We also have Stabρ[χi] = ρ for any i: dictators have noise stability
ρ. This is easy to see using the following.

If f : {−1, 1}n → {−1, 1} is Boolean-valued, we can view f as an election
rule and interpret this quantity further: we then have

Stabρ[f ] = Pr[f(x) = f(y)]− Pr[f(x) 6= f(y)] = 1− 2 Pr[f(x) 6= f(y)].

So, in that case, the noise stability is a number in [−1, 1]; moreover, it is
close to 1 if and only if Pr[f(x) 6= f(y)] is close to 0, i.e., if and only if the
election rule f is unlikely to have its outcome altered due to the flipped votes
(symbolized by the ρ-correlated pair (x, y)).

For an election scheme it is beneficial to have a high noise stability at ρ,
given that ρ is reasonably close to 1.

What about the noise stability of the majority rule? By using the multidi-
mensional Central Limit Theorem it is not so hard to show that, given a fixed
ρ, we have

Stabρ[Majn]→ 2
π

arcsin(ρ) (3.2)

for n → +∞, and n odd. Since the derivative of ρ 7→ arcsin(ρ) goes to plus
infinity when ρ approaches 1 from below, we can say the following: supposing



CHAPTER 3. INFLUENCE AND NOISE 37

the number of voters n is very large, given a ρ very close to 1 (meaning the
quality of the computer recording the votes is very good), if we were to further
increase ρ even by a tiny bit (meaning we would improve the computer’s
quality slightly), the probability under the impartial culture assumption that
we would get a “wrong” election outcome due to computer errors when using
the majority rule, shrinks tremendously.

An result worth mentioning in this context is the Majority is Stablest
Theorem. We will not give the precise formulation, but roughly speaking it
says the following: among all unbiased functions with small influences, the
majority function has the largest noise stability. The first proof was given by
Mossel-O’Donnell-Oleszkiewicz [86].

3.2.3 Computing Noise Stability: the Noise Operator

Very similar to the beginning of Subsection 3.1.2, we ask ourselves the following
question: given a function f : {−1, 1}n → {−1, 1} and ρ ∈ [−1, 1], how can
one compute Stabρ[f ]? We use the notion of noise operator to do so.

Definition 3.13
Let ρ ∈ [−1, 1]. We let the noise operator Tρ associated with ρ be the
functional mapping the function f : {−1, 1}n → R into the function
Tρ f : {−1, 1}n → R defined by

Tρ f(x) def= Ey∼Nρ(x)[f(y)].

Note that Tρf itself is a function, for each given f : {−1, 1}n → R.
Let us imagine ρ is not too far from 1. Then, at any fixed point x, the

average of f over all y close to x is taken, and this is Tρ f(x). In that way we
can think about Tρ f as a flattened version1 of f .

The following theorem is crucial.

1In fact, this flattening of functions is also called smoothing, and this concept is of great
importance in the field of computer vision [130, 25, 141]. The basic idea is that, when one for
example takes a picture, inevitably a lot of things go wrong: light fluctuations, quantization
effects, etc. Indeed, images are not perfect. All of those effects are called “noise”: it is
anything in the image that we are not interested in, but which is present nevertheless. A
naive way to enhance a picture by reducing noise is to just take lots of them and then
take their average. While very effective, it is highly inefficient. The next best thing is to
simply modify the pixels of the image based on some fixed function of a local neighborhood
of any given pixel. In computer vision so-called filters are used for smoothing. An intuitive
explanation why this actually works is that the variance of noise in the average is smaller
than the variance of the pixel noise (when assuming Gaussian noise with mean zero). Thus,
averaging diminishes noise. Peaks get flattened. In the application to computer vision, for
example the Gaussian filter (a so-called low-pass filter) makes high-frequency components
from the image, called artifacts, smaller.
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Theorem 3.14
Let f : {−1, 1}n → R. Then the Fourier expansion of Tρ f is

Tρ f(x) =
∑
S⊆[n]

ρ|S|f̂(S)xS .

Proof. First, note that the function Tρ is linear : Tρ(f+g) = Tρ(f)+Tρ(g) and
Tρ(λf) = λTρ(f), for all f, g : {−1, 1}n → R and λ ∈ R. Since each function
is expressible as a linear combination of the basis functions χS , S ⊆ [n], it
suffices to prove the theorem for any such χS . That is, it suffices to check that
Tρ x

S = ρ|S|xS .
Take S ⊆ [n]. By definition of the noise operator and by independence of

the yi’s, we have

Tρ x
S = Ey∼Nρ(x)

[∏
i∈S

yi
]

=
∏
i∈S

E[yi] =
∏
i∈S

(xiρ+ 0(1− ρ)) = ρ|S|xS .

�

Finally we get a formula for the noise stability.

Theorem 3.15
For f : {−1, 1}n → R, we have

Stabρ[f ] =
∑
S⊆[n]

ρ|S|f̂(S)2 =
n∑
k=0

ρk Wk[f ].

Proof. First, note that Stabρ[f ] equals

E(x,y)ρ [f(x)f(y)] = Ex[f(x) Ey∼Nρ(x)[f(y)]] = Ex[f(x) Tρ f(x)] = 〈f,Tρ f〉.

An application of Plancherel’s formula, Theorem 2.9, together with Theorem
3.14, results in Stabρ[f ] =

∑
S⊆[n] f̂(s)T̂ρ f(S) =

∑
S⊆[n] ρ

|S|f̂(S)2.
The other equality follows directly from the first one and Definition 2.13. �

This theorem shows that the high-degree coefficients are reduced in force when
calculating noise stability. Indeed, for an S ⊆ [n] with |S| big, the number
ρ|S| is very small. So, individually they are small indeed. However, note that
there is a great deal of such terms:

(
n
t

) ∼ (n/t)t of them, so we cannot simply
conclude that it is the low-degree Fourier coefficients which are most important
for the noise stability.

3.3 The Hypercontractive Inequality

As mentioned in the introduction of this chapter, the Hypercontractive Inequal-
ity [16, 60, 6] is a deep mathematical result. It has some remarkable applications
in the field of theoretical computer science. We give the formulation now.
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First we needs some notation. Let X be a random variable. For each real
p ≥ 1, we define the p-norm of X by

||X||p def= p
√

E[|X|p].

To start, note that this definition is in correspondence with the norm as we
defined it for Boolean functions right after Definition 2.6. Recall that Hölder’s
inequality (see, e.g., [100]), adapted to our setting, states that

||fg||1 ≤ ||f ||p ||g||q (3.3)

for all Boolean functions f, g and reals p, q > 1 satisfying 1
p + 1

q = 1. Using
Hölder’s inequality it is not hard to see that || · ||p is monotone nondecreasing
in p, i.e., || · ||q ≥ || · ||p if q ≥ p ≥ 1.

3.3.1 Statement and Proof

In general, the theorem reads as follows:

Theorem 3.16
( Hypercontractive Inequality) Let P be a multilinear polynomial
over the real numbers of degree d in n variables. Let x1, . . . , xn ∼ {−1, 1}
be uniformly distributed and independent, and consider the random
variable F defined by P (x1, . . . , xn). Then for all q ≥ p ≥ 1 we have

||F ||q ≤
(√

q − 1
p− 1

)d
||F ||p.

Because of the comment preceding the statement, the quintessence of this
inequality is that it gives a bound on ||F ||q from above, and in terms of ||F ||p.
Thus, for a low-degree polynomial P , ||F ||q is not much bigger than ||F ||p.

For our purposes the special case in which q = 4 and p = 2 suffices. This
special case of the general theorem is also called the Bonami Lemma [97].
What is remarkable about this special case, is that it is by itself already strong
enough to prove a lot of theorems from the theory of analysis of Boolean
functions. For example, we will show the Kahn-Kalai-Linial (KKL) Theorem
and Friedgut’s Theorem below. Both are corollaries of the Bonami Lemma. In
the next chapter, about Arrow’s Theorem, the Bonami Lemma will be used to
prove the Friedgut-Kalai-Naor (FKN) Theorem.
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Theorem 3.17
( Hypercontractive Inequality in case (q, p) = (4, 2), Bonami’s
Lemma) Let P be a multilinear polynomial over the real numbers of
degree d in n variables. Let x1, . . . , xn ∼ {−1, 1} be uniformly distributed
bits. Consider the random variable F defined by P (x1, . . . , xn). Then
we have

E[F 4] ≤ 9d E[F 2]2.

In other words, for any f : {−1, 1}n → R of degree at most d, it holds
that

||f ||4 ≤
√

3
d||f ||2.

The proof of this limited version is not particularly hard. The idea is to just
proceed by induction on n and use some easy bounds, e.g., the Cauchy-Schwarz
inequality. The details are as follows.

Proof of Theorem 3.19. The proof goes by induction on n.
The base case n = 0 is trivial, as then the random variable F is just a fixed

constant.
Finally we show the induction step. Let n ≥ 1 and let P be the given

polynomial of degree d in n variables x1, . . . , xn. Since P is multilinear we can
write

P (x) = xnQ(x1, . . . , xn−1) +R(x1, . . . , xn−1)

where Q and R are real polynomials in only n− 1 variables x1, . . . , xn−1. Since
the degree of P is d, the degree of Q is must be at most d− 1. The degree of
R is at most d.

Let G be the random variable Q(x1, . . . , xn−1), and H be R(x1, . . . , xn−1),
where all xi are uniformly distributed and independent.

By simple algebra we calculate that

E[F 4] = E[(xnG+H)4] = E[x4
nG

4 + 4x3
nG

3H + 6x2
nG

2H2 + 4xnGH3 +H4].

From linearity of expectation we obtain

E[F 4] = E[x4
nG

4] + 4 E[x3
nG

3H] + 6 E[x2
nG

2H2] + 4 E[xnGH3] + E[H4].

Two terms immediately vanish: E[x3
nG

3H] = 0 and E[xnGH3] = 0 because
xn is independent of x1, . . . , xn−1 (and thus also of G3H and GH3) and E[xn] =
E[x3

n] = 0. Before we proceed, note that E[x2
n] = E[x4

n] = 1. We will use this
below.

We are left with three terms:

• First, E[x4
nG

4] = E[x4
n] E[G4] = E[G4] again because of independence.

Noting that G is a random variable of polynomial form of degree at
most d− 1 and in only n− 1 variables, the induction hypothesis implies
E[x4

nG
4] = E[G4] ≤ 9d−1(E[G2]2).
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• Second, E[x2
nG

2H2] = E[x2
n] E[G2H2] = E[G2H2] by independence. By

the Cauchy-Schwarz inequality we get

E[x2
nG

2H2] = E[G2H2] ≤
√

E[G4]
√

E[H4].

Note that we can apply the induction hypothesis to G (which comes from
a polynomial of degree of at most d− 1) as well as H (which comes from
a polynomial of degree of at most d), and we obtain that

E[x2
nG

2H2] ≤ 3d−1 E[G2]3d E[H2].

• Third, E[H4] ≤ 9d E[H2]2 by the induction hypothesis.

Now all that remains is to put everything together. We have

E[F 4] = E[x4
nG

4] + 4 E[x3
nG

3H] + 6 E[x2
nG

2H2] + 4 E[xnGH3] + E[H4]
≤ 9d−1(E[G2]2) + 6 3d−1 E[G2]3d E[H2] + 9d E[H2]2

= 9d−1(E[G2]2) + 2 9d E[G2] E[H2] + 9d E[H2]2

≤ 9d(E[G2]2) + 2 E[G2] E[H2] + E[H2]2)
= 9d(E[G2] + E[H2])2

= 9d(E[G2] + 2 E[xnGH] E[x2
nH

2])2

= 9d E[(G+ xnH)2]2

= 9d E[F 2]2

Notice that the third last step is true because xn is independent of both GH
(implying that E[xnGH] = E[xn] E[GH] = 0) as well as H2 (so E[x2

nH
2] =

E[x2
n] E[H2] = E[H2]). �

For any f : {−1, 1}n → R and natural number m, with f=m we mean the
Boolean function

∑
S:|S|=m f̂(S)χS , i.e., f=m is obtained by taking only the

degree-m terms of the Fourier expansion of f . Since it is of degree precisely m,
Bonami’s Lemma together with Theorem 3.15 implies∣∣∣∣∣∣T√

1/3
(f=m)

∣∣∣∣∣∣
4

=
∣∣∣∣∣∣(√1/3

)m
f=m

∣∣∣∣∣∣
4

=
(√

1/3
)m ||f=m||4 ≤ ||f=m||2 .

(3.4)
This expression hints at the following theorem, which involves the noise operator
and can be shown to be equivalent with Theorem 3.16:

Theorem 3.18
( Hypercontractivity Theorem) Let p and q be reals satisfying
1 ≤ p ≤ q, and let ρ be a real such that

ρ ≤
√
p− 1
q − 1

.

Then for all f : {−1, 1}n → R we have

||Tρ f ||q ≤ ||f ||p.
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One of the nice things about this formulation of hypercontractivity is that it
involves the noise operator. Recall from the discussion in Subsection 3.2.3 that
adding noise makes functions more flat. More precisely, Tρ f will be a function
that looks somewhat like f but which is more “spread out”, i.e., its peaks are
reduced.

More precisely the question is: how exactly does noise affect the p-norm
of a given Boolean function? The Hypercontractivity Theorem provides an
answer (see [29] for a more in-depth discussion). Indeed, the interpretation
goes as follows. First, it is not hard to see that ||Tρ(f)||p ≤ ||f ||p for any p
and f . Second, even if q is bigger than p, provided a sufficient amount of noise
is applied to the function (i.e., ρ ≤√(p− 1)/(q − 1)), then even in that case
we still get ||Tρ f ||q ≤ ||f ||p.

3.3.2 Special Case of the Hypercontractivity Theorem

Previously we claimed that the statements from Theorem 3.16 and Theorem
3.18 are in fact equivalent, in the sense that if one of them holds for all p and
q, then also the other one holds for all p, q, and vice versa. We will not show
this in general, but we will just prove the following special cases which we will
explicitly need further on in order to prove the KKL Theorem and Friedgut’s
Theorem:

Theorem 3.19
The Hypercontractivity Theorem (that is, Theorem 3.18) holds for

(q, p, ρ) =
(

2, 4
3 ,
√

1
3

)
. In other words, for each Boolean function

f : {−1, 1}n → R, we have

||Tq
1
3

f ||2 ≤ ||f || 4
3
.

In essence, the proof of Theorem 3.19 comes down to an application of Bonami’s
Lemma (Theorem 3.19). Roughly speaking, the idea is as follows:

• Summing Equation (3.4) over all m suggests that∣∣∣∣∣∣T√
1/3

f
∣∣∣∣∣∣

4
≤ ||f ||2 (3.5)

is true of all f : {−1, 1}n → R.

Even though this plan of action fundamentally works, it does not work
directly, in the sense that we would need to use some extra ploys. As it
turns out, it is easier just to “repeat” the induction proof from Bonami’s
Lemma. We do this in Lemma 3.20.

• Then we turn (3.5) into ||T√
1/3

f ||2 ≤ ||f || 4
3

for any f : {−1, 1}n → R,
using some “tricks” from analysis. This will result in the proof of Theorem
3.19.
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We now elaborate on these “tricks” from analysis. In short, they are
self-adjointness and Hölder’s inequality.

Given an operator T on the space of Boolean functions (meaning that it
maps Boolean functions to Boolean functions), we call T self-adjoint if

〈Tf, g〉 = 〈f, Tg〉
holds for all functions f, g. For example, the associated noise operator Tρ is
self-adjoint, for any ρ ∈ [−1, 1]. This can be seen as follows. From Theorem
3.14, we have

Tρ f =
∑
S⊆[n]

ρ|S|f̂(S)χS , Tρ g =
∑
S⊆[n]

ρ|S|ĝ(S)χS .

Then, expanding 〈Tρf, g〉 and 〈f, Tρg〉 by using bilinearity of the inner product,
and then invoking the identity from Lemma 2.7, we see that 〈Tf, g〉 = 〈f, Tg〉.

The other ingredient is, again, Hölder’s inequality; see Equation (3.3).

Proof of Theorem 3.19. For brevity we write T for T√
1/3

. First, we have

||T f ||22 = 〈T f,T f〉 = 〈f,T T f〉 = Ex[f(x) T T f(x)] ≤ Ex[|f(x) T T f(x)|],
where the second equality followed by self-adjointness. The right-hand side is
equal to ||f · T T f ||1. Second, by Holder’s inequality, this quantity is at most
||f ||4/3 ||T T f ||4. Third, by Lemma 3.20 (which will be independently proved
below), ||T T f ||4 ≤ ||T f ||2.

Putting everything together, we have ||T f ||22 ≤ ||f ||4/3 ||T f ||2. Of course,
we may assume ||T f ||2 to be non-zero. Dividing by ||T f ||2 ends the proof. �

The proof of Theorem 3.19 is based on the proof of the (4/3, 2)-Hypercontractivity
Theorem in [97].

The following lemma, which should be thought of as an alternative form of
Bonami’s Lemma, is the only thing we still need to show. The proof is given
only for completeness and self-containment of the exposition; the proof is really
the same as the proof of Bonami’s Lemma, so it may very well be skipped. Its
proof can also be found in [97].

Lemma 3.20
Let f : {−1, 1}n → R. Then,∣∣∣∣∣∣T√

1/3
f
∣∣∣∣∣∣

4
≤ ||f ||2 .

Proof. Equivalently, we prove E[(T√
1/3

f)4] ≤ E[f2]2, essentially using the

same induction on n as in the proof of Bonami’s Lemma (Theorem 3.19).
We write T for T√

1/3
. The base case is trivial. Let n ≥ 1 and let f be the

given Boolean function in n variables x1, . . . , xn. We can write

f(x) = xnQ(x1, . . . , xn−1) +R(x1, . . . , xn−1)
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where Q and R are polynomials in only n − 1 variables x1, . . . , xn−1. We
abbreviate A def= Q(x1, . . . , xn−1) and B

def= R(x1, . . . , xn−1), so f = xnA + B.
Using Theorem 3.15 it is easy to see that

T f(x) = xn
1√
3

TA+ TB.

Taking the fourth power of this equation gives five terms. Two of them
immediately vanish under expectation, for they contain the variable xn to an
odd power (which in expectation is 0, as xn is independent from A and B since
the latter two only involve x1, . . . , xn−1). Because E[x2

n] = E[x4
n] = 1, we have

E[(T f)4] =
(

1√
3

)4

E[(TA)4] + 6
(

1√
3

)2

E[(TA)2(TB)2] + E[(TB)4].

By Cauchy-Schwarz, E[(TA)2(TB)2] ≤√E[(TA)4]
√

E[(TB)4], so we get

E[(T f)4] ≤ E[(TA)4] + 2 E[(TA)2(TB)2] + E[(TB)4]
≤ E[(TA)4] + 2

√
E[(TA)4]

√
E[(TB)4] + E[(TB)4]

≤ E[A2]2 + 2E[A2]E[B2] + E[B2],

where the last inequality follows by the induction hypothesis. The right-hand
side is just (E[A2] + E[B2])2. It is clear that

E[f2] = E[x2
nA

2 + 2xnAB +B2] = E[A2] + E[B2],

so we obtain E[(T f)4] ≤ E[f2]2. �

3.3.3 Proof of the Kahn-Kalai-Linial Theorem

The following theorem is a corollary of the Hypercontractive Inequality. We
will just need a special case of this result, so we omit the proof of the general
result.

Theorem 3.21
If f : {−1, 1}n → {−1, 0, 1}, and p = 1 + δ ∈ [1, 2], then

Stabρ[f ] =
∑
S

δ|S|f̂(S)2 ≤ Pr
x

[f(x) 6= 0]2/p. (3.6)

The proof of this theorem is an immediate application of Theorem 3.18 with
ρ =
√
δ and q = 2, together with Parseval’s Theorem (Theorem 2.10). However,

since we did not prove Theorem 3.18 in its full generality, and since we want
this thesis to be as self-contained as possible, we will again be content just to
prove a special case.

The intuition behind Theorem 3.21 is as follows: Boolean functions with
small support have much Fourier mass on higher degrees. (Recall that the
support of a function is the set of all elements in its domain which are mapped to
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a nonzero value.) The reason why this is true is as follows. The right-hand side
of (3.6) is, by Parseval’s Theorem, the sum of squares of all Fourier-coefficients,
raised to some power greater than one; the left-hand side,

∑
S δ
|S|f̂(S)2, can

be thought of as roughly equal to the sum of squares of all low-degree Fourier-
coefficients (the higher-degree ones being attenuated very fast, and therefore
extremely small). Hence, as the exponent at the right-hand side is greater than
one, the sum of low-degree Fourier-coefficients must be significantly smaller
than the sum of all Fourier-coefficients; therefore, the function must have much
Fourier mass on higher degrees. Once more, we refer to [29] for a more detailed
explanation and further intuitions.

The special case which will be sufficient for our purpose is when δ = 1/3:

Theorem 3.22
If f : {−1, 1}n → {−1, 0, 1}, then

Stab 1
3
[f ] =

∑
S⊆[n]

(
1
3

)|S|
f̂(S)2 ≤ Pr

x
[f(x) 6= 0]

3
2 .

Proof. From Theorem 3.14 and Parseval’s Theorem we know that

∑
S⊆[n]

(
1
3

)|S|
f̂(S)2 = ||Tq

1
3

f ||22.

The latter is, by Theorem 3.19, at most ||f ||24
3

. However, since |f(x)| = |f(x)|t
for any t (because f can only attain the values −1, 0, and 1), we have

||f ||
4
3
4
3

= Ex[|f(x)| 43 ] = Ex[|f(x)|] = Pr
x

[f(x) 6= 0],

and therefore

∑
S⊆[n]

(
1
3

)|S|
f̂(S)2 ≤ ||f ||24

3

=
(
||f ||

4
3
4
3

) 3
2

= Pr
x

[f(x) 6= 0]
3
2 .

The first equality is just Theorem 3.15. �

We use this theorem to prove the KKL Theorem. It is convenient to use
the following notation. If f : {−1, 1}n → R, then

MaxInf[f ] def= max{Infi[f ] | i ∈ [n]}.

That is, MaxInf[f ] is just the maximum of the influences of all voters.

Theorem 3.23
( Kahn-Kalai-Linial Theorem) Let f : {−1, 1}n → {−1, 1} be an
unbiased Boolean-valued function. Then, MaxInf[f ] ≥ Ω(log(n)/n).
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Proof. Theorem 3.4 implies Infi[f ] =
∑

S3i f̂(S)2. Let d = (log n)/4. There
are two cases:

Case 1:
∑

S : |S|>d f̂(S)2 ≥ 1/2. In that case

n∑
i=1

Infi[f ] =
n∑
i=1

∑
S3i

f̂(S)2 =
∑
S

|S| f̂(S)2.

Clearly this is at least∑
S : |S|>d

|S| f̂(S)2 > d
∑

S : |S|>d

f̂(S)2 ≥ d/2.

The average of the numbers {Infi[f ] | i ∈ [n]} is hence at least d/(2n), so there
is an i ∈ [n] for which Infi[f ] ≥ d/(2n) = log(n)/(8n).

Case 2:
∑

S : |S|>d f̂(S)2 < 1/2. By Parseval’s Theorem the sum of all
Fourier weights is 1, so ∑

S : |S|≤d

f̂(S)2 ≥ 1/2.

For each i ∈ [n], we define a function fi : {−1, 1}n → {−1, 0, 1} by

fi(x) def= (f(x)− f(x⊕i))/2.

Note that Infi[f ] = Prx[fi 6= 0]. Then, applying Theorem 3.22 on the function
fi, we get

Infi[f ]3/2 = Pr
x

[fi 6= 0]3/2 ≥
∑
S

(
1
3

)|S|
f̂i(S)2 =

∑
S3i

(
1
3

)|S|
f̂(S)2,

where the last step follows because from the proof of Theorem 3.4 we know
that

fi(x) =
f(x)− f(x⊕i)

2
=
∑
S3i

f̂(S)χS(x).

By summing the above inequality over all i, we obtain

n∑
i=1

Infi[f ]3/2 ≥
n∑
i=1

∑
S3i

(
1
3

)|S|
f̂(S)2

=
∑
S

|S|3−|S|f̂(S)2

≥
∑

S : |S|≤d

|S|3−|S|f̂(S)2.

In the last inequality we used that the quantity (k3−k)k is decreasing in k.
From the above inequality we deduce that

n∑
i=1

Infi[f ]3/2 ≥
∑

S : |S|≤d

d3−df̂(S)2 = d3−d
∑

S : |S|≤d

f̂(S)2 ≥ 1
2
d3−d.
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A simple calculation shows that 1
2d3−d is equal to 1

8 log(n)3(− logn
4 ). Therefore,

the average of the numbers {Infi[f ]3/2 | i ∈ [n]} must be at least 1
8

log(n)
n 3(− logn

4 ),
so there is an i ∈ [n] for which

Infi[f ]3/2 ≥ 1
8

log(n)
n

3(− logn
4 ).

Then we have

Infi[f ] ≥
(

1
8

) 2
3
(

log(n)
n

) 2
3 (

3logn
)− 1

6
.

We want to show that the right-hand side is Ω(log(n)/n). Clearly, log(n)
2
3 ≥ 1,

so it suffices to show that(
3logn

)− 1
6
>

log n
n

n
2
3 = n−

1
3 log n

for n big enough, or equivalently,

n >
√

3logn(log n)3.

But clearly this is true for n big enough. (This can be seen as follows: let
n = 2t, then it suffices to see that 2t >

√
3
t
t3, i.e., (2/

√
3)t > t3. But 2 >

√
3,

and, of course, any exponential function in t with base > 1 will be bigger than
any polynomial in t, for t big enough.)

In both case we have reached the same conclusion. Therefore, there is an
i ∈ [n] such that Infi[f ] ≥ Ω(log(n)/n). �

Our proof is based on [29].
In fact a slightly more general result can be proved: using similar techniques

one can show that for each Boolean-valued function f : {−1, 1}n → {−1, 1}
there exists an i ∈ [n] such that Infi[f ] ≥ Var[f ] Ω(log(n)/n). Note that if f is
unbiased, then Var[f ] = 1. We will use this somewhat more general version of
the KKL Theorem below.

3.3.4 Corollary of the KKL Theorem: Bribing Works

To state the next corollary of the KKL Theorem, we need to define a new
notion. Let f : {−1, 1}n → R. Let J ⊆ [n], also called a coalition. Let
j ∈ {−1, 1}|J | be a tuple of length |J |. Then we define the restriction of f in
which the voters in J vote according to j as the function fJ 7→j(x) def= f(x, j),
for each x ∈ {−1, 1}n−|J |. Here with (x, j) we mean the n-tuple in which all
voters in J vote according to j, while all voters in [n] \ J vote according to x.
Note that fJ 7→j only depends on the voters in [n] \ J . This definition might
seem a bit abstract, but it is actually something very uncomplicated. A simple
example should make clear what is meant. Recall the example from Section
2.1 in which we deduced that the Fourier expansion of f = Maj3 is given by

f(x) =
1
2
x1 +

1
2
x2 +

1
2
x3 − 1

2
x1x2x3.
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Let J be the coalition {1, 3}. The voters in the coalition, namely voters 1 and
3, already decided for whom to vote: say, j = (1,−1), i.e., voter 1 will vote 1
while voter 3 will vote −1. Then fJ 7→j is simply the above function in which
x1 is consistently replaced by 1 while x3 is replaced by −1, so that

fJ 7→j(x) =
1
2

(+1) +
1
2
x2 +

1
2

(−1)− 1
2

(+1)x2 (−1) = x2.

This makes sense: if, given three voters that are using the majority election
scheme, two voters disagree on their preferred candidate, in that case the third
candidate’s choice will be the outcome.

The following theorem, based on [97], shows that in an unbiased, monotone,
election scheme for two candidates, each of the two candidates can “bribe”
a coalition of reasonably small size, thus manipulating the outcome of the
election in their favor, almost surely:

Theorem 3.24
Let f : {−1, 1}n → {−1, 1} be monotone. If E[f ] ≥ −0.9999999, then
there exists a subset J ⊆ [n] with |J | ≤ O(n/ log n) such that

E[fJ 7→(1,...,1)] ≥ 0.9999999. (3.7)

Similarly, if E[f ] ≤ 0.9999999, then there exists a subset J ′ ⊆ [n] with
|J ′| ≤ O(n/ log n) such that

E[fJ ′ 7→(−1,...,−1)] ≥ 0.9999999.

Proof. We write δ for 0.9999999. Because of symmetry it suffices to show the
first claim, in which candidate 1 wants to find a coalition he can bribe in order
to win the election almost surely.

The idea of the proof is straightforward. It comes down to the following
“bribing algorithm”:

• First, bribe voter i1 with the largest influence on f0
def= f .

• Second, bribe voter i2 with the largest influence on f1
def= f{i1}7→1.

• Third, bribe voter i3 with the largest influence on f2
def= f{i1,i2}7→(1,1).

• Fourth, bribe voter i4 with the largest influence on f3
def= f{i1,i2,i3}7→(1,1,1),

etc.

We have to show that at some point in this process (3.7) will be satisfied.
We claim that for all k ≥ 0 it holds that

E[fk+1] = E[fk] + MaxInf[fk]. (3.8)

We just show this for k = 0, as the other cases follows in exactly the same way.
For k = 0 we have to show that

E[f{i1}7→1] = E[f ] + Infi1 [f ].
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Let us think about this in terms of the Fourier expansion

f(x) = a0 + a1x1 + . . .+ ai1xi1 + . . .+ anxn + (higher-order terms).

The Fourier expansion of f{i1}7→1 is consequently obtained by plugging in
xi1 = 1 into the above expression, so it is equal to

f{i1}7→1(x) = a0 + ai1 +
∑

j∈[n]\{i1}

ajxj + (higher-order terms).

Recall from Theorem 2.8 that the constant coefficient in the Fourier expansion is
just the expectation of the function. Thus, E[f ] = a0 and E[f{i1}7→1] = a0 +ai1 .
However, we have Infi1 [f ] = f̂(i1) = ai1 , using monotonicity of f and Theorem
3.5. This proves the claim.

Therefore,
E[fk+1] = E[f0] +

∑
i≤k

MaxInf[fi]. (3.9)

Let k be any natural number. If after k bribes the candidate still has not
yet achieved (3.7), then E[fk] < δ must be the case. Then, as by hypothesis
E[fk] ≥ E[f ] ≥ −δ,

Var[fk] = E[f2
k ]− E[fk]2 > 1− δ2,

so the extended KKL Theorem (which was mentioned after the proof of
Theorem 3.23) implies that

MaxInf[fk] ≥ (1− δ2) Ω
(

log n
n

)
.

Hence from (3.9) we obtain

E[fk+1] = E[f0] +
∑
i≤k

MaxInf[fi] ≥ −δ + k (1− δ2) Ω
(

log n
n

)
. (3.10)

However, for any k satisfying

k ≥ 2δ

(1− δ2) Ω
(

logn
n

)
the quantity on the right-hand side of (3.10) is at least δ, so then E[fk+1] ≥ δ.
Note that

2δ

(1− δ2) Ω
(

logn
n

) = O

(
n

log n

)
.

This shows that the bribing algorithm will always work. Furthermore, from the
above expression it follows that at most O

(
n

logn

)
voters need to be bribed. �

In fact, for the above statement (both claims) to be true, any δ will do, as long
as δ is not −1 or 1: then, Var[f ] = 0, and in that case the KKL Theorem does
not help, so the above proof strategy falls apart. In those cases, f is constant
1 or constant −1; obviously then any bribing attempt will be of no avail for
one of the candidates.
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3.3.5 Friedgut’s Theorem

Given a Boolean-valued function having very small total influence, Friedgut’s
Theorem, first proved by Friedgut in 1998 [49], entails that there must be
a small coalition, a junta, of voters which determine the function with high
probability. More specifically, suppose the election function has an influence
which is significantly lower than log(n), where n is the number of voters. In
that case, Friedgut’s Theorem implies that f depends on a sublinear amount
of variables.

Before stating the theorem, we need the following notions, based on [97].

Definition 3.25
Let D be a collection of subsets of [n] and let ε > 0. Then we say that the
Fourier spectrum of f : {−1, 1}n → R (or just f itself) is ε-concentrated
on D if ∑

S⊆[n], S 6∈D

f̂(S)2 ≤ ε,

i.e., if the sum of all Fourier weights of subsets not in D is at most ε.

A function f : {−1, 1}n → R being ε-concentrated on some collection D
intuitively means that D are the “most important” Fourier coefficients of f
present: the remaining ones are less important, as their total Fourier weight is
at most ε. This will become apparent further on.

The following lemma relates ε-concentration with ε-closeness:

Lemma 3.26
Let D be a collection of subsets of [n] and ε > 0.

(1) If f : {−1, 1}n → R is ε-concentrated on D, then

||f − g||22 ≤ ε

where g def=
∑

S∈D f̂(S)χS.

(2) Let f : {−1, 1}n → {−1, 1} and g : {−1, 1}n → R be such that
||f − g||22 ≤ ε. We define a function h : {−1, 1}n → {−1, 1} by
h(x) def= sgn(g(x)) (here sgn(0) is left unspecified: it is either −1
or 1, irrelevantly). In that case, f and h are ε-close.

(3) If f : {−1, 1}n → {−1, 1} is ε-concentrated on D, then f and
sgn(

∑
S∈D f̂(S)χS) are ε-close.

Proof. (1) Writing f in its Fourier expansion, we have

f − g =
∑
S⊆[n]

f̂(S)χX −
∑

S⊆[n], S∈D

f̂(S)χS =
∑

S⊆[n], S 6∈D

f̂(S)χS .
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Parseval’s Theorem implies

||f − g||22 =
∑

S⊆[n], S 6∈D

f̂(S)2 ≤ ε.

(2) The essential observation is that for each x ∈ {−1, 1}n, when f(x) 6=
sgn(g(x)) then, as f is Boolean-valued, |f(x)−g(x)| ≥ 1, so also |f(x)−g(x)|2 ≥
1. Therefore,

dist(f, h) = Pr
x

[f(x) 6= h(x)] = Ex[1[f(x)6=sgn(g(x))]] ≤ Ex[|f(x)−g(x)|2] = ||f−g||22,

so dist(f, h) ≤ ||f − g||22 ≤ ε.
(3) This item follows immediately from (1) and (2). �

The following theorem, based on [96], is sufficiently strong to imply
Friedgut’s Theorem:

Theorem 3.27
Let f : {−1, 1}n → {−1, 1} and 0 < ε ≤ 1. Then there is a set
J ⊆ [n] of size at most exp(O(I[f ]/ε)) such that f ’s Fourier spectrum is
ε-concentrated on

{S ⊆ J | |S| ≤ 2 I[f ]/ε}.
Proof. We write α for 2 I[f ]/ε. We define

J
def= {i ∈ [n] | Infi[f ] ≥ exp(−3α)},

where exp is the exponential function with base e. Then J is a set of “sufficiently
influential” voters. Clearly we have

I[f ] ≥
∑
i∈J

Infi[f ] ≥ |J | exp(−3α),

so |J | is at most

exp(3α) I[f ] = exp
(

6
I[f ]
ε

)
I[f ]
ε
ε ≤ exp

(
7

I[f ]
ε

)
= exp

(
O

(
I[f ]
ε

))
.

Therefore, it suffices to show that f ’s Fourier spectrum is ε-concentrated
on

G def= {S ⊆ J | |S| ≤ α},
i.e., that ∑

S⊆[n], S 6∈G

f̂(S)2 ≤ ε.

Note that for any S ⊆ [n],

S 6∈ G ⇔ (|S| > α or (|S| ≤ α and S 6⊆ J)),

so we have to inspect two terms:
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1. We show that ∑
S⊆[n], |S|>α

f̂(S)2 ≤ ε

2
.

This is easy, for by Theorem 3.9 we have

I[f ] =
∑
S⊆[n]

|S| f̂(S)2 ≥
∑

S⊆[n], |S|>α

|S| f̂(S)2 ≥ α
∑

S⊆[n], |S|>α

f̂(S)2,

and I[f ]/α = ε/2.

2. We show that ∑
S 6⊆J, |S|≤α

f̂(S)2 ≤ ε

2
.

Similarly as we did in the proof of case 2 of the KKL Theorem (Theorem
3.23), applying Theorem 3.22 on the function fi : {−1, 1}n → {−1, 0, 1}
defined by fi(x) def= (f(x)−f(x⊕i))/2, by noting that Infi[f ] = Prx[fi 6= 0],
we get

Infi[f ]3/2 = Pr
x

[fi 6= 0]3/2 ≥
∑
S

(
1
3

)|S|
f̂i(S)2 =

∑
S3i

(
1
3

)|S|
f̂(S)2

for each i ∈ [n]. Summing this inequality over all i 6∈ J , we obtain∑
i 6∈J

Infi[f ]3/2 ≥
∑
i 6∈J

∑
S3i

(
1
3

)|S|
f̂(S)2.

This inequality is the essential ingredient of the proof. We investigate
the left-hand side and the right-hand side separately.

• First, since for each i 6∈ J it holds that Infi[f ] < exp(−3α) (i.e., its
influence is small), we have∑

i 6∈J
Infi[f ]3/2 =

∑
i 6∈J

Infi[f ]1/2 Infi[f ] ≤ exp(−3α)
1
2

∑
i 6∈J

Infi[f ],

and this is upperbounded by exp(−3α)
1
2 I[f ] = exp

(
−3 I[f ]

ε

)
I[f ].

• Second, writing Jc for [n] \ J , we have∑
i 6∈J

∑
S3i

(
1
3

)|S|
f̂(S)2 =

∑
S :S∩ Jc 6=∅

(
1
3

)|S|
f̂(S)2 |S ∩ Jc|

≥
∑

S 6⊆J, |S|≤α

(
1
3

)|S|
f̂(S)2

≥
∑

S 6⊆J, |S|≤α

(
1
3

)α
f̂(S)2

= 3−α
∑

S 6⊆I, |S|≤α

f̂(S)2.
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Putting the two together, we have

exp
(
−3

I[f ]
ε

)
I[f ] ≥ 3−α

∑
S 6⊆I, |S|≤α

f̂(S)2,

so
∑

S 6⊆I, |S|≤α f̂(S)2 is at most

3α exp
(
−3

I[f ]
ε

)
I[f ] = 3α exp

(
−3

2
α

)
α
ε

2
= ((3e−

3
2 )α α)

ε

2
.

Hence it suffices to show that (3e−
3
2 )α α ≤ 1. We can calculate that

3e−
3
2 ≈ 0.67. A plot of the graph of the real function x 7→ 0.67x x shows

that for all x ≥ 0 it is strictly smaller than 1 (in fact, its maximal value
is about 0.9). Therefore, (3e−

3
2 )α α ≤ 1.

�

Friedgut’s Theorem is an immediate corollary:

Theorem 3.28
( Friedgut’s Theorem) Let f : {−1, 1}n → {−1, 1} and 0 < ε ≤ 1.
Then f is ε-close to an exp(O(I[f ]/ε))-junta.

Proof. From Theorem 3.27 we get a set J ⊆ [n] of size at most exp(O(I[f ]/ε))
with the property that the Fourier spectrum of f is ε-concentrated on the set
D def= {S ⊆ J | |S| ≤ 2 I[f ]/ε}.

Then item (3) of Lemma 3.26 implies that f and sgn(
∑

S∈D f̂(S)χS) are
ε-close. All of the latter function’s variables are in J , and the size of J is at
most exp(O(I[f ]/ε)). Therefore, f is ε-close to an exp(O(I[f ]/ε))-junta. �

Note the similarity between the proofs of the KKL Theorem and Friedgut’s
Theorem; indeed, the proof techniques are very much the same. In essence, they
come down to the same thing: Bonami’s Lemma (Theorem 3.19), or the form
that we used, Theorem 3.19. By now we hope to have convinced the reader of
the power of Bonami’s Lemma. This particular case of the Hypercontractive
Inequality is strong enough to entail lots of interesting results.



Chapter 4

Arrow’s Theorem

The goal of this chapter is to prove Arrow’s Theorem using Fourier analysis
on the Boolean cube. One advantage of this approach is that we can prove
a stronger, robust, version of the theorem, a quantitative variant of Arrow’s
Theorem. This result says that the more we want to avoid Condorcet’s paradox,
the more the election scheme will look like a dictator, under ICA.

This definitions and results from this chapter are based mainly on [97, 126,
63, 95, 96, 28]. Unless specifically mentioned, all our results come from these
sources.

4.1 Arrow’s Theorem

4.1.1 Introduction and Formalization

We have so far seen that for a 2-candidate election the majority rule is the
unique best choice, as e.g. May’s Theorem (Theorem 2.15) and Theorem 3.8
show. But what if there are more than two candidates? This is the question
we turn to now.

For now, let us focus on the case when there are three candidates, say
a, b, c. In social choice theory one then assumes each voter has a preference
of the candidates. E.g., a voter might like c most, and b least. We can write
this as c > a > b. A preference, also called ballot, is formally an irreflexive
linear order on the set of candidates. A profile is a vector R = (R1, . . . , Rn) of
ballots, where Ri is voter i’s preference. Let L be the set of all linear orders
on {a, b, c}. A social welfare function (SWF) is a function Ln → L: for any
preference the voters might have, it returns a preference order which we call
the societal outcome.

Given all those individual’s preferences R1, . . . , Rn of the voters, how are we
going to aggregate them into a societal outcome? Condorcet, an 18th century
French philosopher, suggested to do the following [27]. First, we should break
up the election into three sub-elections:

a versus b, b versus c, c versus a.

This is a good idea, Condorcet argues, since we know how to deal with 2-
candidate elections. Particularly we might just use the majority rule for each of
these sub-elections, and afterwards aggregate the winners of these sub-elections
into a societal outcome; the candidate topping this list is then called the
Condorcet winner.

54
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However, in general a problem may arise. For example, consider the case
in which there are three voters, and they vote as follows:

a > b > c, c > a > b, b > c > a.

For each of the three sub-elections we use the majority rule, say. For the a
versus b election we get two votes in favor of a > b while we have one vote
in favor of b > a, so the majority rule implies a > b should be the societal
outcome. Similarly we get b > c and c > a as for the society; thus, the societal
outcome is a > b > c > a, which is not even a linear order! This is the
Condorcet paradox : it might happen that on the societal level we do not get
a linear order—equivalently stated, there might be no Condorcet winner. In
that case we also say that the election is undecided, or irrational. Another way
of saying this is to say that there is a cycle.

We first need to be able to translate a linear order on {a, b, c} into our
language of Boolean analysis, i.e., in terms of 1 and −1. This is easy: for each
voter, let us call a now +1 while we call b instead −1, and similarly for b versus
c and c versus a. If e.g. voter i prefers b to a, then we write this as xi = −1. In
this way we get the Boolean vector x = (x1, . . . , xn) of length n. We similarly
get the vectors y, z ∈ {−1, 1}n, which correspond to the b versus c and the c
versus a election, respectively. So we might have the following scheme:

voters
1 2 3 . . .

a (+1) vs. b (−1) +1 +1 −1 . . .
def= x  f(x)

b (+1) vs. c (−1) +1 −1 +1 . . .
def= y  g(y)

c (+1) vs. a (−1) −1 −1 +1 . . .
def= x  h(z)

which corresponds to the following preferences of the first three voters:

a > b > c, a > c > b, b > c > a.

Let us say each of the three sub-elections uses the majority rule, i.e., f = g =
h = Majn. In this case there is a Condorcet winner, and the societal outcome
is the linear order a > b > c.

Definition 4.1
Let f, g, h : {−1, 1}n → {−1, 1}. A 3-candidate Condorcet election based
on the election rules (f, g, h) is the election scheme as described above.
In case the obtained result from this procedure is a linear order we say
the outcome is rational, or that there exists a Condorcet winner, or also
that there is no cycle; otherwise we say the outcome is irrational, there
is no Condorcet winner, or there is a cycle.

Let Vi be the vector corresponding to voter i’s preference. For example, for
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the example given in the above table we have

V1 =

+1
+1
−1

 , V2 =

+1
−1
−1

 , V3 =

−1
+1
+1

 .

Now when is a preference irrational? Note that the vectors which correspond
to irrational preferences are precisely+1

+1
+1

 and

−1
−1
−1

 .

So the valid preferences are those vectors satisfying the “not-all-equal” predicate.
This will be one of the crucial parts of the Fourier proof of Arrow’s Theorem.

4.1.2 Proof of Arrow’s Theorem Using Boolean Analysis

In the above we have seen that when using the majority rule for each of the
three sub-elections, we might get an irrational outcome in some cases. We
now ask ourselves the question: are there choices for f, g and h such that we
never get an irrational outcome? If so, this would seem like a very appealing
situation. Unfortunately, under the very benign assumption that f, g and h
have the property of unanimity, Arrow’s Theorem says we will always get an
irrational outcome in some cases, unless there is a dictator (which using the
below terminology means f = g = h = χi for some i). Of course, having a
dictator is rather objectionable. Thus, Condorcet’s idea fundamentally does
not work—at least if we want to avoid irrational outcomes at all costs. We
come back to this point later.

Kenneth Arrow (1921) won the Nobel Memorial Prize in Economics in 1972
together with John Hicks, for “pioneering contributions to general equilibrium
theory and welfare theory”. To date, he is the youngest person to have received
this award, at age 51. Arrow’s most famous result is probably the impossibility
result that is named after him, and that is studied in this chapter. He showed
this result in his 1951 Ph.D. dissertation called Social Choice and Individual
Values [1].

The idea of the proof of Arrow’s Theorem using Boolean analysis simply
consists of computing the probability of having an irrational outcome, say
under the impartial culture assumption.

Theorem 4.2
( Arrow’s Theorem for three candidates) Let f, g, h : {−1, 1}n →
{−1, 1} be unanimous and such that, when doing a 3-candidate Condorcet
election based on (f, g, h), the outcome is always rational. Then f =
g = h, and they are equal to a dictatorship.

Proof. We just show that f = g = h; the result then instantly follows from The-
orem 4.3 below. Take any x = (x1, . . . , xn) ∈ {−1, 1}n. We subsequently make
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the voters vote as follows: Vi = (xi,−xi, 1) for each i. As a result, the societal
outcome is the linear order corresponding to the tuple (f(x), g(−x), h(

−→
1 )). By

unanimity of h, this is (f(x), g(−x), 1). But the outcome of the Condorcet
election is always rational, so not all coordinates of (f(x), g(−x), 1) are equal.
Thus, f(x) = g(−x) = −1, or f(x) 6= g(−x).

By a similar reasoning (taking Vi = (xi,−xi,−1) for each i) we get
(f(x), g(−x),−1) as the outcome of the Condorcet election; by rationality
we again have f(x) = g(−x) = 1, or f(x) 6= g(−x).

Using these results and some elementary logic, we conclude f(x) 6= g(−x).
Hence we obtain that f(x) = −g(−x) for all x.

By symmetry of the situation we likewise have f(x) = −h(−x) for all x,
therefore −g(−x) = f(x) = −h(−x) for all x. This implies g = h. Again by
symmetry we obtain also f = g. Therefore, f = g = h. �

Theorem 4.3
Let f : {−1, 1}n → {−1, 1} be unanimous. Suppose that f is such that,
when doing a 3-candidate Condorcet election based on f , the outcome is
always rational. Then f is a dictatorship.

Proof. The whole idea of the proof is to consider the quantity

Pr
ICA

[rational outcome].

Here ICA refers to the fact that we are computing the probability of a rational
outcome under the impartial culture assumption. By assumption this prob-
ability equals 1. However we want to compute it alternatively using Fourier
analysis on the Boolean cube.

By ICA the voters are voting independently and uniformly, so in the scheme

1 2 3 4 5 . . .

x = ( x1 , x2 , x3 , x4 , x5 , . . . )  f(x)
y = ( y1 , y2 , y3 , y4 , y5 , . . . )  f(y)
z = ( z1 , z2 , z3 , z4 , z5 , . . . )  f(z)

the columns Vi (i ∈ [n]) are independent and uniformly distributed over the
set of six possible preference rankings, i.e., NAE-vectors—namely, they are

+1
+1
−1

 ,

+1
−1
−1

 ,

+1
−1
+1

 ,

−1
+1
−1

 ,

−1
+1
+1

 ,

−1
−1
+1

 .

Now Fourier analysis comes in. Let NAE : {−1, 1}n → {0, 1} be the
indicator of the property “not all equal”. It is not hard to verify that its
Fourier expansion is

NAE(t1, t2, t3) =
3
4
− 1

4
t1t2 − 1

4
t2t3 − 1

4
t1t3.
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Therefore, letting x, y, z be distributed according to the above distribution, we
have

Pr
ICA

[rational outcome] = Pr
x,y,z

[NAE(f(x), f(y), f(z)) = 1]

= Ex,y,z[NAE(f(x), f(y), f(z))]

= Ex,y,z
[3

4
− 1

4
f(x)f(y)− 1

4
f(y)f(z)− 1

4
f(x)f(z)

]
=

3
4
− 1

4
Ex,y[f(x)f(y)]− 1

4
Ey,z[f(y)f(z)]

−1
4

Ex,z[f(x)f(z)].

Now we claim that (x, y) is a
(−1

3

)
-correlated pair. Notice that because of

the comment following Definition 3.11, it suffices to check that all pairs (xi, yi)
are independent, each of them is

(−1
3

)
-correlated, and each xi and each yi is

uniformly distributed. This is indeed the case:

(1) The pairs (xi, yi) are independent because under ICA it is assumed all
the voters vote independently.

(2) We have Pr[xi = 1] = 1/2, as the voters are assumed to be voting
randomly by ICA, so xi ∼ {−1, 1}; for the same reason we have yi ∼
{−1, 1}.

(4) Finally, E[xiyi] = (+1)1
4 +(−1)2

3 = −1
3 , since xiyi can be either +1 (which

happens when Vi is (+1,+1,−1)T or (−1,−1,+1)T , so with probability
equal to 2/6 = 1/3), or −1, which happens with probability 2/3.

By symmetry, the same is true for the other two pairs: (y, z) and (x, z)
are

(−1
3

)
-correlated pairs as well. Following Definition 3.12 we can ultimately

conclude that

Pr
ICA

[rational outcome] =
3
4
− 3

4
Stab− 1

3
[f ]. (4.1)

Therefore we have

Pr
ICA

[rational outcome] =
3
4
− 3

4
Stab− 1

3
[f ]

=
3
4
− 3

4

(
W0[f ] +

(
−1

3

)
W1[f ] +

(
1
9

)
W2[f ] +(

− 1
27

)
W3[f ] + . . .

)
≤ 3

4
− 3

4

(
−1

3

)
(W0[f ] + W1[f ] + . . .+ Wn[f ])

= 1.

The inequality holds since by inspection −1/3 is the smallest coefficient present.
In the second equality we used Theorem 3.15 and in the last step Equation
(2.2).
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Equality holds if and only if the inequality is an equality, that is, Wi[f ] = 0
for all i 6= 1. But this means that all Fourier weight is on degree 1, i.e.,
W1[f ] = 1. By Lemma 2.14 this means that f is ±χi for some i. Since f is
unanimuous, f cannot be an anti-dictator. Thus f is a dictator, finishing the
proof of the theorem. �

The above proof strategy is based on Kalai’s influential paper A Fourier-
theoretic Perspective on the Condorcet Paradox and Arrow’s Theorem from
2002 [68]. It was this paper that initiated the use of Fourier analysis for social
choice. Our proof is an adapted version of Kalai’s proof by O’Donnell [97].

4.1.3 Equivalence with Arrow’s Original Statement

It might at first not be clear that Theorem 4.2 really is the same as the statement
which has come to be known as Arrow’s Theorem and which Kenneth Arrow
proved while being a Ph.D. student at Columbia University. We briefly explain
why they are in fact the same.

In what follows we go further using the notations introduced at the beginning
of Subsection 4.1.1. Let N def= [n] be the set of voters and X be the set of
alternatives. For given alternatives x, y ∈ X , we denote with NR

x>y the set of
all voters which rank alternative x above alternative y, under profile R. Let F
be social welfare function. Recall that F returns a societal linear order for all
given preferences of the n voters, i.e., the function F is total. In social choice
the following are some of the properties being considered. We say F satisfies

• the Pareto condition if, whenever all voters rank x above y, then so does
society, i.e., for all x, y ∈ X and each profile R, we have that NR

x>y = N
implies (x, y) ∈ F (R).

• independence of irrelevant alternatives (IIA) if the relative social ranking
of two alternatives only depends on their relative individual rankings,
i.e., for all x, y ∈ X and all profiles R,R′, if NR

x>y = NR′
x>y then

(x, y) ∈ F (R) if and only if (x, y) ∈ F (R′).

• dictatoriality, if there is an i ∈ N such that F (R) = Ri for all profiles R.

Arrow’s Theorem for three alternatives formulated in the classical way then
reads as follows [38, 39, 132]):

Theorem 4.4
( Arrow’s Theorem) Any social welfare function for three alterna-
tives that satisfies the Pareto condition and independence of irrelevant
alternatives must be a dictatorship.

First, the assumption that we are dealing with a social welfare function,
which is a total function, corresponds in the terminology of Theorem 4.2 to
the hypothesis that the outcome of the Condorcet election always be rational.
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Second, the independence of irrelevant alternatives in the terminology of
Theorem 4.2 precisely means that we are doing a Condorcet election using
some (possible different) election functions f, g, h. Third and last, it is clear
that the Pareto condition correlates with f, g and h being unanimous.

Finally, note that Arrow’s Theorem for three candidates implies the general
form of Arrow’s Theorem, in which there is any finite number of candidates at
least three. Indeed, this follows by an easy induction proof, the induction step
of which is the following lemma (based on Lemma 1 in [131]):

Lemma 4.5
Let F be a social welfare function for m + 1 candidates such that F
satisfies the Pareto condition, IIA, and non-dictatoriality, where m ≥ 3.
Then there is a social welfare function for m candidates that satisfies
these three properties.

We omit the proof here; it can be found in [131].
Perhaps a historical anecdote is in place. Interestingly, Arrow did not

actually know about Condorcet’s work, let alone about the paradox named
after him [82]. He rediscovered the result all by himself. At the time, Arrow was
interested in understanding how firms make decisions about their production
plans, keeping in mind the mesh of stakeholders. Even if we assume that all
contributors share the common goal of maximizing profit of the firm, they
might (and in reality indeed do) have different beliefs as to how to reach this
goal. In this context, Arrow started looking at the majority rule, and soon
stumbled upon the paradox. He subsequently referred to it as the “well-known
paradox of voting”. It was only after publication that he was notified by other
researchers that the paradox already had a name. Still hopeful, Arrow was
convinced there ought to be another voting mechanism that would avoid the
Condorcet paradox, and that would be “reasonable” as well. After having
unsuccessfully tried out a number of voting rules, he started to wonder whether
there actually is a voting rule satisfying the aforementioned properties; in
that way he started focusing on finding an impossibility result rather than a
possibility result. Eric Maskin [82] calls it a good example of inductive science,
as Arrow first collected evidence against possibility before he tried to show
impossibility.

4.2 Quantifying Arrow’s Theorem

4.2.1 Benefits of the Analytical Approach

We could ask ourselves what is the advantage of our Fourier analysis-based
approach for proving Arrow’s Theorem compared with classical, mostly combi-
natorial proofs of that theorem. After all, even though the proof of the essential
part of the proof of Arrow’s Theorem, Theorem 4.3, is fairly uncomplicated,
it took us quite some preliminary work to get there. Moreover we proved a
theorem for which plenty of proofs are known already.
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Nevertheless, there are two main benefits of Kalai’s analytic proof [68]. We
briefly describe them now; in the next subsections we go into detail about each
specifically.

1. We have achieved more than we had aspired: Equation (4.1) provides us
with a concrete formula for the probability of having a rational outcome
when doing a 3-candidate election. We can use this formula for example
to calculate the probability of having a Condorcet winner when using the
majority rule.

2. In constrast with earlier proofs [13, 38, 39, 132] of Arrow’s Theorem
which were outspokenly combinatorial and hence qualitative by nature,
the given analytic proof is quantitative by nature. This makes us able to
prove a robust version of Arrow’s Theorem.

4.2.2 Probability of a Rational Outcome

Equation (4.1) says that PrICA[rational outcome] = 3
4 − 3

4 Stab− 1
3
[f ]. Recall

from (3.2) that the noise stability of Majn at ρ converges to 2
π arcsin(ρ) =

1− 2
π arccos(ρ) as n goes to infinity. We have that the probability of having

a rational outcome in a 3-candidate Condorcet election using Majn is equal
to 3

4
2
π arccos(ρ) = 3

2π arccos(ρ). Therefore we can say that, when n is very big,
we have

Pr
ICA

[3-candidate Condorcet election using Majn is rational] ≈ 91.2%. (4.2)

That means that if we assume the public votes independently and uniformly,
the probability that Condorcet’s paradox arises is circa 8.8%. This occurrence
probability is not immense, but non-negligible nonetheless.

Still, for all we know there exists an adequate election scheme for which
Condorcet’s paradox crops up with negligible probability. Arrow’s original
theorem does not shed any light on this issue at all. Using a robust variant of
Arrow’s Theorem, we will answer this question in the next subsection. The
following lemma, which is an easy corollary from the proof of Theorem 4.3,
puts us on track.

Lemma 4.6
Let f : {−1, 1}n → {−1, 1}. Then we have

Pr
ICA

[3-candidate Condorcet election using f is rational] ≤ 7
9

+
2
9

W1[f ].

Proof. The idea is just to go back to the proof of Theorem 4.3. We got the
upper bound on the probability of the outcome being rational by noticing
that the coefficient −1/3 was the smallest one present; note however that
the next smallest coefficient, −1/27, is significantly far from it. Therefore
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we obtain an upper bound on W1[f ] in the following way: we know that
PrICA[rational outcome] = 3

4 − 3
4 Stab− 1

3
[f ], and the latter is equal to

3
4
− 3

4

(
W0[f ] +

(
−1

3

)
W1[f ] +

(
1
9

)
W2[f ] +

(
− 1

27

)
W3[f ] + . . .

)
=

3
4

+
1
4

W1[f ]− 3
4

(
W0[f ] +

(
1
9

)
W2[f ] +

(
− 1

27

)
W3[f ] + . . .

)
≤ 3

4
+

1
4

W1[f ]− 3
4

(
− 1

27

)(
W0[f ] + W2[f ] + W3[f ] + . . .

)
.

This last equation equals 3
4 + 1

4 W1[f ]− 3
4

(− 1
27

) (
1−W1[f ]

)
= 7

9 + 2
9 W1[f ].

Note that in the above calculation the inequality was true since −1/27 is the
lowest (meaning most negative) coefficient present. �

We want to examine if there exists a reasonable election scheme other than
majority for which the probability of having a rational outcome in a 3-candidate
Condorcet election (as always under the impartial culture assumption) is higher
than the percentage of 91.2% by the majority rule in Equation (4.2). Of
course, this depends on what is meant with “reasonable election scheme”. One
condition on f : {−1, 1}n → {−1, 1} is demanding all its degree-one Fourier
coefficients be equal; for example if f is symmetric this condition is satisfied.
This condition is particularly interesting for us as we have an obvious upper
bound on the degree-one weight of such a function:

Lemma 4.7
Let f : {−1, 1}n → {−1, 1} be such that all of its degree one Fourier
coefficients are equal. Then we have W1[f ] ≤ 2

π +O(n−1).

Proof. By Theorem 3.8 and since all degree-one coefficients are equal, for each
j ∈ [n] we have

n f̂(j) =
n∑
i=1

f̂(i) ≤
√

2
π

√
n+O(n−

1
2 ),

so f̂(j) ≤
√

2
πn +O(n−

3
2 ). After squaring we obtain for each j ∈ [n] that

f̂(j)2 ≤ 2
πn

+O(n−3) +O(n−
1
2n−

3
2 ) =

2
πn

+O(n−2).

Since all degree-one coefficients are equal, by summing this inequality we are
done. �

From the previous two lemmas we can conclude the following.
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Theorem 4.8
Let f : {−1, 1}n → {−1, 1} be such that all of its degree-one Fourier
coefficients are equal. Then we have

Pr
ICA

[3-candidate Condorcet election using f is rational] ≤ 7
9

+
4

9π
+O(n−1).

Proof. This follows at once from Lemma 4.6 and Lemma 4.7. �

For f : {−1, 1}n → {−1, 1} such that all of its degree-one Fourier coefficients
are equal, taking the limit for n going to infinity this means that the probability
of obtaining a rational outcome in a 3-candidate Condorcet election using f
is at most 7

9 + 4
9π ≈ 91.9%. This is just slightly higher than the 91.2% we

got by using the majority rule. Therefore it seems that, in order to avoid the
Condorcet paradox, we cannot do significantly better than using the majority
rule.

4.2.3 Robust Version of Arrow’s Theorem

In the proof of Theorem 4.3 we argued as follows:

Pr
ICA

[rational outcome] = 1 if and only if W1[f ] = 1.

However, going back to the calculation of the upper bound immediately after
Equation (4.1), by examining the numeric values of the coefficients we see that
in fact we have something more, namely:

Pr
ICA

[rational outcome] ≈ 1 if and only if W1[f ] ≈ 1.

This can be made precise by using Lemma 4.6, as we will do below.
What does it mean for f : {−1, 1}n → {−1, 1} to satisfy W1[f ] = 1 − ε

with ε > 0 small? Does it then necessarily have to be “close” (in the sense of
Definition 2.6) to a dictator function? Or is it the case that there are functions
which are unlike a dictatorship but that still have degree-one Fourier weight
very close to one? This is not an elementary question, but the answer is known:
the Friedgut-Kalai-Naor (FKN) Theorem.

Theorem 4.9
( FKN Theorem) Let f : {−1, 1}n → {−1, 1} with W 1[f ] ≥ 1 − ε.
Then there exists an i ∈ [n] such that f is O(ε)-close to χi or −χi.

To make the statement more precise: given an f and some ε, “f is O(ε)-close
to χi or −χi” means that there is a universal constant M > 0 such that
dist(f,±χi) ≤Mε.

Before we show the FKN Theorem using Theorem 3.19, it is worth noting
that for any Boolean-valued function h : {−1, 1}n → {−1, 1} we have

for some i ∈ [n], h is O(ε)-close to either χi or −χi
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if and only if
|ĥ(i)| ≥ 1−O(ε).

This is easy to see using Theorem 2.8 and Equation (2.1). We will use this
observation in what follows.

Proof of Theorem 4.9. Without loss of generality we may assume W1[f ] = 1−ε.
To make the below proof easier, we first show that without loss of generality

we may assume that f does not have a constant coefficient in its Fourier
expansion, i.e., W0[f ] = 0. So suppose f : {−1, 1}n → {−1, 1} satisfies
W1[f ] = 1− ε. Consider the function f ′ : {−1, 1}n+1 → {−1, 1} defined by

f ′(x0, x1, . . . , xn) def= x0 f(x0x1, . . . , x0xn).

If the Fourier expansion of f is

f̂(∅) + f̂({1})x1 + . . .+ f̂({n})xn + f̂({1, 2})x1x2 + . . . ,

then by looking at the definition of f ′ we see that the Fourier expansion of f ′

is of the form

f̂(∅)x0 + f̂({1})x1 + . . .+ f̂({n})xn + f̂({1, 2})x0x1x2 + . . . .

Note that here we have used the fact that x2
0 = 1 for any x0 ∈ {−1, 1}. We

did not write the higher-order terms since they are not relevant for us. It is
important to notice that f ′ does not have a degree-zero coefficient so, assuming
the theorem has been proven for such functions, from

W1[f ′] = f̂(∅)2 + W1[f ] ≥W1[f ] = 1− ε
we deduce that f ′ is O(ε)-close to χi or −χi, for some i ∈ [n]. By the comment
preceding this proof, |f̂ ′(i)| ≥ 1−O(ε) for some i ∈ {0} ∪ [n]. However since
f̂ ′(0) = f̂(∅) and W 1[f ] = 1 − ε, it cannot be that i = 0. Thus, i ∈ [n] and
|f̂ ′(i)| ≥ 1−O(ε); but from the Fourier expansions we directly read off that
f̂ ′(i) = f̂(i), so by again applying the comment preceding this theorem we are
done.

The previous argument shows that we can assume without loss of generality
that f does not have a constant coefficient in its Fourier expansion. Therefore
f is of the form

f(x) =
n∑
i=1

f̂(i)xi +
∑
|S|>1

f̂(S)xS .

By hypothesis,
∑n

i=1 f̂(i)2 = 1−ε, so Parseval’s Theorem implies
∑
|S|>1 f̂(S)2 =

ε.
Let us define g, h : {−1, 1}n → R by

g(x) def=
n∑
i=1

f̂(i)xi,

h(x) def=
∑
|S|>1

f̂(S)xS ,
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so that f = g + h.
Since the square of a Boolean-valued funtion is always 1, we have f2 = 1,

where 1 denotes the constant one function. Thus, (g + h)2 = 1, so

g2 + 2gh+ h2 = 1,
g2 + h(2g + h) = 1.

Since f = g + h this can be rewritten as

g2 + h(2f − h) = 1. (4.3)

We now consider these two terms separately.

• First we analyze the term g2. We have

g(x)2 =
n∑
i=1

f̂(i)2x2
i +

∑
i 6=j

f̂(i)f̂(j)xixj =
n∑
i=1

f̂(i)2 +
∑
i 6=j

f̂(i)f̂(j)xixj ,

so

g2 = 1− ε+ q (4.4)

where q : {−1, 1}n → R is defined as q(x) def=
∑

i 6=j f̂(i)f̂(j)xixj .

• Second we analyze the term h(2f − h). As h does not have a constant
coefficient in its Fourier expansion, from of the comment after Definition
2.12 we get Ex[h(x)] = 0; also, Ex[h(x)2] = ε by Parseval’s Theorem, so
we have Var[h(x)] = ε. Chebychev’s inequality implies that

Pr[|h(x)| ≥ 10
√
ε] ≤ 1

102
=

1
100

.

So with probability at least 99% we have

|h(x)(2f(x)− h(x))| ≤ |h(x)| (2|f(x)|+ |h(x)|) < 10
√
ε(2 + 10

√
ε).

Notice that in the term 10
√
ε(2+10

√
ε) = 20

√
ε+100ε, the nonnegligible

one is 20
√
ε. It is therefore easy to see that for ε small enough we have

that the this term is smaller than or equal to 21
√
ε. To be very concrete:

letting ε′ = ε/10000, since ε < 1 this bound will hold.

From Equation (4.3) and Equation (4.4) we deduce h(2f−h) = ε−q. Therefore
we obtain that |ε− q(x)| = |h(x)(2f(x)− h(x))| ≤ 21

√
ε with probability at

least 99%. Since it holds that ε+ 21
√
ε ≤ 22

√
ε, using the triangle inequality

we obtain

Pr[|q(x)| ≤ 22
√
ε] ≥ 99

100
. (4.5)

The idea is now to find an upper bound for E[q(x)2] in the form of a (possible
big) constant times ε. Since the random variable q(x) has a particularly
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“innocent” form being a multilinear polynomial composed of random bits
x1, . . . , xn, this will be possible; here is where the Hypercontractive Inequality
will come into play.

Claim. Let q(x1, . . . , xn) be a random variable which is of multilinear poly-
nomial form, where x1, . . . , xn are independent and uniformly distributed
on {−1, 1}. Then if we have Pr[|q(x)| ≤ 22

√
ε] ≥ 99/100, it follows that

E[q(x)2] ≤ 5000ε.

We prove this claim. First, it is clear we may assume without any loss of
generality that Pr[|q(x)| ≤ 22

√
ε] = 99

100 . Let us say E[q(x)2] = Kε. Taking
conditional expectations, we have

Kε = E[q2] ≤ 99
100

(22
√
ε)2 +

1
100

E[q2|q2 > 484ε].

By the Hypercontractive Inequality (Theorem 3.19) we have E[q4] ≤ 92 E[q2]2 =
92K2ε2. Therefore 92K2ε2 is at least

E[q4] ≥ 1
100

E[q4|q2 > 484ε] ≥ 1
100

E[q2|q2 > 484ε]2 ≥ 1
100

(100K−99·484)2ε2.

Analyzing the quadratic equation in K gives us a bound: we get K ∈ ]252, 4791[.
In particular, K ≤ 5000. This ends the proof of the claim.

Now it is quite easy to finish the proof of the FKN Theorem. By Parseval’s
Theorem we get

E[q(x)2] =
∑
i 6=j

f̂(i)2f̂(j)2 =
( n∑
i=1

f̂(i)2
)2 −

n∑
i=1

f̂(i)4 = (1− ε)2 −
n∑
i=1

f̂(i)4.

By the above claim we get

n∑
i=1

f̂(i)4 ≥ (1− ε)2 − 5000ε = 1− (5002ε− ε2) = 1−O(ε).

Also,
∑n

i=1 f̂(i)4 is at most maxj f̂(j)2
∑n

i=1 f̂(i)2. But this is just equal
to maxj f̂(j)2, by Parseval’s Theorem. Thus there is an i ∈ [n] such that
f̂(i)2 ≥ 1−O(ε).

There are two possibilities. If f̂(i) ≥ √1−O(ε), then by Equation (2.1)
we have

dist(f, χi) =
1− 〈f, χi〉

2
=

1− f̂(i)
2

≤ 1−√1−O(ε)
2

.

By a Taylor expansion we know
√

1− δ = 1− 1
2δ +O(δ2) for each −1 < δ < 1,

so we get dist(f, χi) ≤ 1
4O(ε) = O(ε). If f̂(i) ≤ −√1−O(ε), we can similarly

deduce dist(f,−χi) ≤ O(ε). We conclude that f is O(ε)-close to either χi or
−χi. �
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Finally we get the robust version of Arrow’s Theorem:

Theorem 4.10
( Robust Version of Arrow’s Theorem) Let f : {−1, 1}n →
{−1, 1} be unanimous. Furthermore, suppose f is such that when doing
a 3-candidate Condorcet election based on f , the probability that the
outcome is rational under the impartial culture assumption is 1 − ε.
Then there exists an i ∈ [n] such that f is O(ε)-close to χi.

Proof. From Lemma 4.6 we get 1− ε ≤ 7
9 + 2

9 W1[f ], i.e., W1[f ] ≥ 1− 9
2ε. The

FKN Theorem then implies that there is an i ∈ [n] such that f is O(ε) = O(9
2ε)-

close to χi or −χi. However, unanimity of f implies that the latter of these
two possibilities is not viable. �

Our proof is based on O’Donnell [97], which is in turn based on Kalai [68].

4.3 Arrow’s Theorem in Practice: A Havoc?

4.3.1 No Need for Overpessimism, Says Maskin

When all is said and done, how do we cope with Arrow’s Theorem in practice?
Specifically, how “catastrophic” is it, really? In [82], Eric Maskin warns not to
be overly pessimistic. One key aspect, he points out, is the (in our formalism so
far implicit) assumption that voting rules satisfy the universal domain axiom.
This axiom states that all m! rankings are available for the voters (here m
is the number of alternatives); there are no limitations to the voters’ will.
Roughly stated, Maskin argues that this is a theoretical consideration rather
than a practical one. One fundamental question is: how do people actually vote
in reality? In practice, it might frequently be the case that some preferences
are not very likely. If a given voting rule fails to satisfy some of the desirable
properties only for such unlikely, “degenerate”, instances, then perhaps we
should not worry about the paradox after all.

Maskin gives the example of the 2000 US presidential election. Bush and
Gore had been neck and neck all along. It had become clear that everything
was going to be decided in the Florida election: the candidate (be it Bush or
Gore) winning the Florida election, would become the new president. However,
the crux of the story is that there actually was another candidate, Nader, who
played a decisive role. In fact, we can safely say that his presence in the election
resulted in Bush being elected as the president rather than Gore. Remarkably,
among about 6, 000, 000 votes cast in Florida, the margin between the number
of votes for Bush and Gore was only 600 votes. Nearly 100, 000 people voted
for Nader.

From a number of trustable sources we know for a fact that a lot of people
who in reality voted for Nader, would have voted for Gore in case Nader had
not been candidate in the election. As a result, almost surely Gore would have
become president had Nader not run for president. Nader was, in Maskin’s
words, a “spoiler”. This is a prime example of an election in which the
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independence of irrelevant alternatives condition was heavily violated: the
“irrelevant” alternative (Nader) was not irrelevant at all. On the contrary, to
some extent he was more relevant for the choice than the “real” candidates
(Bush and Gore) themselves. Quoting Maskin [82], “there is a sense in which
that is a highly undemocratic thing to be, because, after all, Nader got less
than 2% of the votes in Florida, and yet he ended up determining the entire
outcome of the election”.

Let us imagine that the voters in the Florida election had cast a complete
ranking of the candidates Bush, Gore, Nader.1 In that case, each voter’s
preference corresponds to one of the elements of the following set:

GB
N

 ,

BG
N

 ,

NG
B

 ,

GN
B

 ,

NB
G

 ,

BN
G

 . (4.6)

Research has shown that a tremendous number of voters opted for one of the
first three rankings, and among those the first two significantly more than
the last one. On the other hand, there were extremely few voters selecting
one of the last two rankings. This is not surprising, as Bush and Nader were
at extreme sides of the political spectrum: Bush was the most right-wing
candidate, while Nader was among these three candidates clearly the most
left-wing one. Therefore, the combinations “liking Bush most, and secondly
Nader” as well as “liking Nader most, and secondly Bush” are implausible,
assuming a mild degree of “ideological consistency”. In other words, people
who like Nader best, almost always like Bush the least; and people who like
Bush best, almost surely like Nader least. Let us call these last two preferences
the ideologically inconsistent preferences.

The central point of the argument comes now: it follows from a general
theorem [121] that, ruling out the two ideologically inconsistent preferences,
the majority rule (applied on pairs of candidates) actually never gives rise
to the Condorcet paradox! This is an instance of what is called single-peaked
preferences [11]: there exists a “left-to-right” ordering on the alternatives such
that any voter prefers x to y if x is between y and her top alternative with
respect to the ordering [39]. In many political elections, single-peakedness
is a quite natural thing to assume. The majority rule does satisfy all of
Arrow’s conditions2 in that case. In practice, besides single-peaked preferences
other preference class restrictions which may cause the majority rule to avoid
the Condorcet paradox can be found. An interesting example of this, given
in [121], is the 2002 French presidential election. At the time, the three
principal contenders were Jospin, Chirac, and Le Pen. According to research,
Le Pen, from the extreme-right Front National, had strong polarizing effects:
nearly 100% of the electorate ranked him either first, or last, among the
three candidates. It can be shown that such restriction (namely, that there

1To be clear: this did not happen in reality. We are pursuing a “thought experiment”.
2These are: the Pareto condition, IIA, non-dictatoriality, and decisiveness. We say that a

voting rule is decisive if it manages to avoid the Condorcet paradox (equivalently, there is
always a Condorcet winner, or the rule is rational).
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is one candidate who is ranked second by no voter) causes the majority rule
to be decisive. Having said that, some research indicates that most real-life
electorates do not fully satisfy restrictions such as single-peakedness [42].

According to Maskin [82], the natural follow-up question regarding Arrow’s
impossibility theorem is: given that the theorem tells us that no voting rule
satisfies all aforementioned desirable properties all the time, which voting rule
satisfies them as often as possible? Metaphorically speaking, we know for sure
that we cannot reach the top of the mountain, but which path leads us to the
highest reachable point, giving the most enjoyable view?

Formalizing3 this question somewhat, we consider classes of preferences.
By definition, this is just a subset of the set of all preferences: e.g., the first four
preferences from (4.6) form a class of preferences, call it C. Given a fixed voting
rule and a class of preferences, we say that the given voting rule works well
for that class of preferences if the voting rule satisfies all desirable properties
(the Pareto condition, IIA, non-dictatoriality, and decisiveness) from Arrow’s
Theorem provided all voters’ preferences belong to that class of preferences.
For example, the majority rule works well for the class C. Our aim, then,
is to look for voting rules that “work well” for as large as possible classes
of preferences. Remarkably, this aim can in some sense indeed be achieved.
The answer lies in the so-called Domination Theorem (Theorem 2 in On the
Robustness of Majority Rule [121]), which, informally speaking, says:

Theorem 4.11
( Domination Theorem) Let f be a voting rule and let C be a class of
preferences. If f works well for C, then the following is satisfied:

1. The majority rule also works well for C.

2. In addition, there is a class of preferences C′ for which the majority
rule works well, but f does not.

In other words, whenever a voting rule works well, also the majority rule works
well, but there are instances in which the majority rule works well but the
given voting rule does not. In this way we can say that the majority rule
dominates all other voting rules.

Quoting Maskin [82], “...we go back to this very old method, hundreds of
years old: majority rule. I think that’s in a sense a satisfying conclusion to
draw. (...) He was led to consider all other possible voting rules as alternatives.
But there’s a sharp sense in which, in the end, we actually can’t really do much
better than majority rule after all”.

3We will not be very formal, and refer to [121] for the mathematical details. Our aim is to
convey the idea rather than to be rigorous. The “theorem” stated below is in this sense not
really a mathematical result, as we refrain from introducing all required concepts formally.
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4.3.2 Occurrence of the Condorcet Paradox: Some Empirical
Findings

We review some data from real-life elections. To start, we ought to mention that
in this context almost all empirical evidence suffers from the same affliction:
nearly each piece of available data on elections excludes the voters’ pairwise
comparisons of all candidates. However, in the context of the occurrence of
the Condorcet paradox, the latter happens to be the most salient piece of
evidence. For example, in the Riker-Mackie discussion from Subsection 1.3.2,
we noted that Riker speculated on how US voters would have voted had they
been required to submit a complete ranking of the four candidates in the 1860
election. It is undoubtedly in part for this reason—lack of reliable data—that,
as we will shortly see, researchers still have not reached a consensus regarding
the actual rarity of the Condorcet paradox.

m

3 4 5 6
3 0.94444 0.88889 0.84000 0.79778
5 0.93056 0.86111 0.80048 0.74865
7 0.92498 0.84977 0.78467 0.72908
9 0.92202 0.84405 0.77628 0.71873
11 0.92019 0.84037 0.77108 0.71231
13 0.91893 0.83786 0.76753 0.70794
15 0.91802 0.83604 0.76496 0.70476
17 0.91733 0.83466 0.76300 0.70235
19 0.91678 0.83357 0.76146 0.70046
21 0.91635 0.83269 0.76023 0.69895
23 0.91599 0.83197 0.75921 0.69769

n 25 0.91568 0.83137 0.75835 0.69664
27 0.91543 0.83085 0.75763 0.69575
29 0.91521 0.83041 0.75700 0.69498
31 0.91501 0.83003 0.75646 0.69431
33 0.91484 0.82969 0.75598 0.69373
35 0.91470 0.82939 0.75556 0.69321
37 0.91456 0.82913 0.75519 0.69275
39 0.91444 0.82889 0.75485 0.69234
41 0.91434 0.82867 0.75455 0.69196
43 0.91424 0.82848 0.75427 0.69162
45 0.91415 0.82830 0.75402 0.69132
47 0.91407 0.82814 0.75379 0.69104
49 0.91399 0.82799 0.75358 0.69078
...

...
...

...
...

Limit 0.91226 0.82452 0.74869 0.68476

Table 4.1: Probability under ICA of having a Condorcet winner in a majority
election for n voters and m alternatives. Taken from [56].
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Source # elections # candidates # voters Paradox?
Flood [47] 1 16 21 No
Riker [109] 1 4 255 Yes
Riker [110] 1 3 426 Yes
Taylor [135] 1 3 16 Yes
Niemi [93] 22 3− 6 81− 463 Yes (1)
Blydenburgh [14] 2 3 386 Yes (1)
Fishburn [44] 1 5 175 No
Dyer & Miles [34] 1 36 10 No
Bjurulf & Niemi [10] 1 3 87 Yes
Norpoth [94] 5 3 818− 1872 No
Dobra & Tullock [31] 1 37 4− 6 No
Riker [111] 2 3− 4 172 Yes (2)
Toda et al. [138] 1 6 5281 No
Dobra [32] 32 3− 37 4− 27 Yes (1)
Chamberlin et al. [20] 5 5 > 11000 No
Dietz & Goodman [30] 1 4 Large No
Fishburn & Little [45] 3 3− 5 > 1500 No
Rosen & Sexton [113] 1 4 31 No
Radcliff [105] 4 3 Large No
Neufeld et al. [92] 1 3 70 Yes
Gaubatz [53] 1 4 Large Yes
Browne & Hamm [18] 1 3 621 Yes
Vergunst [146] 1 3 150 Yes
Lagerspetz [73] 10 3− 4 300 Yes (3)
Beck [5] 3 4− 8 20 Yes (1)
Flanagan [46] 1 3 224 Yes
Morse [84] 1 4 52 Yes
Taylor [134] 1 3 Large No
Hsieh et al. [64] 1 3 350 No
Taplin [133] 1 4 12 No
Regenwetter et al. [107] 7 3 Large Yes (1)
Truchon [139] 24 5− 9 5− 23 No
Van Dam [142] 1 3 133 Yes
Van Deemen et al. [143] 4 9− 13 1500 No
Stensholt [127] 1 3 165 Yes
Kurrild-Klitgaard [71] 1 20 Large No
Tideman [137] 87 3− 29 9− 3500 No
Regenwetter et al. [108] 4 5 Large No
Kurrild-Klitgaard [72] 8 9− 11 > 1000 No
Smith [124] 1 4 Large Yes
Bochsler [15] 1 3 Large Yes

Table 4.2: Summary of the occurence of the Condorcet paradox in several
elections. The first column names the sources, which are put in chronological
order. The first three columns represent the number of elections, candidates,

and voters, respectively. The last column indicates whether an instance of the
Condorcet paradox was observed. If so, the number of paradoxes observed is
written in parentheses in case the number of elections is greater than one.

This table is taken from van Deemen [145].
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Table 4.1 suggests that, under ICA, the probability of cycles increases as
the number of alternatives increases and also as the number of individuals
increases. Note that the table confirms the value of 91.2% for the probability of
having a Condorcet winner in case m = 3, which we obtained in Equation (4.2).
This table, together with the impossibility results that this thesis has been
dealing with, have initially led some researchers (Riker is just one example) to
adopt a pessimistic attitude regarding the feasibility of meaningful consensus
formation [102]. Additionally, given a large number of voters, the probability
rapidly increases with the number of alternatives. For example, for m = 3
the probability of encountering the Condorcet paradox under ICA is 8.77%,
for m = 5 already 25.13%, further 45.45% for m = 9, and 51.87% for m = 11
[145]. In summary, under the impartial culture assumption the Condorcet
paradox is ubiquitous, the more so when the number of voters or the number
of alternatives is high.

Conspicuously, these results are out of line with a great part, though not
all, of the empirical findings. An overview due to van Deemen [145] is listed
in Table 4.2 on page 71. We immediately see that both Yes and No are
omnipresent. All in all, in the 265 elections listed in Table 4.2 we find 25
empirical4 occurrences of the Condorcet paradox. This comes down to about
9.4% of all5 elections.

We give some remarks.

• Researchers have quite different viewpoints as to the occurrence of the
Condorcet paradox. In Subsection 1.3.2 we have seen that Mackie argues
that cycles are empirically improbable; in Democracy Defended [79], he
contends that most of Riker’s claims to the contrary are false. Researchers
from the social sciences, most notably psychology, often seem to think
so, too. Quoting the psychologist Regenwetter [106], “Theoretical and
empirical work in psychological science takes a more optimistic perspective
[than the mathematically sophisticated literature]. Psychologists have
found little empirical evidence for voting paradoxes and, so far, little
behavioral support for the famed incompatibility of social choice methods.
These findings suggest that technical assumptions or theoretical problem
formulations in social choice theory might bias our understanding”.

• One can try to explain the fact that the paradox occurrence probabilities
from Table 4.1 seem relatively high compared to the empirical data from
Table 4.2. In [140], Regenwetter et al. showed that, for three candidates,
the impartial culture assumption is the “worst-case scenario” among a

4The data from the table vary greatly in nature: German political elections during the
60s and 70s [94], a case treated in the Dutch Tweede Kamer [146], more Dutch politics [142],
a Swiss referendum in Bern [15], and a U.S. federal government policy case [92], just to name
a few. We refer to [145] for a more complete overview.

5Table 4.2 is a somewhat (but not entirely) complete overview of the empirical evidence
from the literature that deals with the Condorcet paradox. (One interesting recent research
not included in Table 4.2 is [83], in which Netflix data are used to generate several million
elections; remarkably, the Condorcet paradox is almost completely absent (< 0.4%).) In any
case, the number 9.4% is rather artificial, so we should be careful not to overvalue it.
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very broad range of possible voter preference distributions. More precisely,
any deviation from the impartial culture over linear orders reduces the
probability of majority cycles in infinite samples (unless, of course, the
culture from which we sample is itself inherently intransitive). List [76]
(Chapter 4) had already observed a similar result.

• Some research [74, 144] suggests that the Condorcet paradox may be less
salient in case orderings are modeled as weak (i.e., a partial ordering).
rather than total orderings. For example, in [74] shows that for three
candidates, the paradox probability rapidly decreases for increasing
number of voters. This might explain why in a significant number of
cases the Condorcet paradox cannot be found. We refer to [145] for a
more in-depth discussion.

In conclusion, van Deemen [145] argues that it is too soon to come to a
final conclusion regarding the actual occurrence of the Condorcet paradox.
The occurrence percentage of 9.4% from Table 4.2 that we got is too big to
neglect; however, to use these data to contend that the paradox is omnipresent
(such as, among others, Riker [111] argues), is not justifiable either. The fact
of the matter is that the empirical evidence collected so far is, according to
him, “casual” and mainly “ad hoc”, and thus insufficient either to confirm or
to refute the statement that the paradox is empirically relevant. Quoting van
Deemen [145], “...we are still far away from being able to settle the question of
the empirical relevance of Condorcet’s paradox. Much research still has to be
done”.



Chapter 5

Gibbard-Satterthwaite
Theorem

In this chapter we investigate the Gibbard-Satterthwaite Theorem. First,
we give an introduction. After that, we state and prove the theorem in
classical setting. Then we arrive at our main goal of this chapter: we show a
quantitative version of the Gibbard-Satterthwaite Theorem, which says that
a random manipulation by a single random voter will succeed with a non-
negligible probability for any election rule among three alternatives that is “far”
from being a dictatorship and from having only two alternatives in its range.

Further, we give an overview of other recent approaches and improvements.
Some of these results have important consequences in computational social
choice theory. Most notably we will see that certain advances imply that using
computational complexity as a barrier against manipulation cannot solve the
problem of manipulation completely; the reason is that manipulation is easy on
average, unless the voting rule in question is very unsatisfying, namely, either
very similar to a dictator or none but at most two candidates can get elected.

All the definitions and results from this chapter are based on [57, 39, 38,
50, 88]. Unless specifically mentioned, all our results come from these sources.

5.1 Introduction

The Gibbard-Satterthwaite Theorem is a result about deterministic voting
systems that choose a single winner using the preferences of all voters. Here,
each voter ranks all candidates in order of preference. We will represent this
mathematically by a linear order; in the next section we will elaborate on the
used mathematical notations.

The theorem deals with strategic voting. Strategic voting arises when voters
purposely vote untruthfully in order to achieve a for them better outcome
according to their “true” preferences. Indeed, sometimes it is in the voters’
interests not to reveal their true preferences. Consider for example the follow-
ing situation, taken from [38], which connects well with the discussion from
Subsection 4.3.1:

49% : Bush > Gore > Nader
20% : Gore > Nader > Bush
20% : Gore > Bush > Nader
11% : Nader > Gore > Bush

Suppose that the plurality rule is used, i.e., the candidate most often elected

74
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first is the winner. Let us moreover assume the above preferences are truthful.
According to these preferences, Bush wins. However, the Nader supporters had
better voted differently: if instead they had voted Gore as their top preference,
then Gore would have won the contest instead of Bush—which they, the Nader
fans, would have liked better.

The question arises if there is a reasonable voting rule for at least three
candidates that manages to avoid this problem altogether. The Gibbard-
Satterthwaite Theorem answers this question negatively. It says that for any
voting rule for at least three candidates at least one of the following properties
must hold:

1. The rule is dictatorial, i.e., the winner is chosen by one particular fixed
voter.

2. There is a candidate who can never win under the rule.

3. The rule is susceptible to strategic voting, i.e., there are conditions under
which a voter with full knowledge of how the other voters are to vote
and of the rule being used would have an incentive to vote in a manner
that does not reflect that voter’s true preferences.

A rule not susceptible to strategic voting is called strategy-proof. Note
the presence of the full-information assumption in the above: when studying
strategy-proofness, we make the classical assumption that the manipulator has
full information about the ballots of the other voters. Although this assumption
is far from realistic, it is not bad to inoculate against manipulation even in
such a “worst-case” model in which everyone has full knowledge about the
entire situation.

5.2 Classical Formulation and Proof

In this section we formulate and prove the classical Gibbard-Satterthwaite
Theorem. There are two main reasons for doing so. First, to get the reader
acquainted with the notion of manipulability. Second, to show the reader the
difference between the qualitative proofs and quantitative proofs. A reader
who is already familiar with the classical Gibbard-Satterthwaite Theorem is
advised to skip to Section 5.3.

5.2.1 Preliminaries

In this section we briefly introduce the formalism necessary to formulate the
classical Gibbard-Satterthwaite Theorem. Most of the notations are based on
[39, 38].

• N = {1, 2, . . . , n} with n ≥ 2 is the set of voters;

• X is the set of alternatives;
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• L is the set of all irreflexive total linear orders on X ;

• A preference, also called ballot, is an element of L;

• A profile is a vector R = (R1, . . . , Rn) ∈ LN of ballots, where Ri is voter
i’s preference;

• For given alternatives x, y ∈ X , we denote with NR
x>y the set of all voters

which rank alternative x above alternative y under profile R;

• A social choice function is a function LN → P(X ) \ {∅}. It is called
resolute if |F (R)| = 1 for all profiles R, i.e., if there is always a unique
winner. In that case we write F (R) = {x} shorthand as F (R) = x.

We say that a resolute social choice function F : LN → X is

• Pareto, if whenever all voters rank x above y, then y cannot win, i.e.,
for all x, y ∈ X and each profile R it is the case that NR

x>y = N implies
y 6= F (R).

• surjective, also called nonimposed, if for each x ∈ X there is a profile R
such that F (R) = x.

• S-dictatorial, where S ⊆ X is nonempty, if there exists an i ∈ N such
that F (R) = top(Ri|S) for all profiles R = (R1, . . . , Rn). (Here Ri|S is
the restriction of Ri to S and top(Ri|S) is the maximal element in the
order Ri|S .)

• dictatorial, if F is S-dictatorial for some nonempty S ⊆ X .

• range-dictatorial, if F is range(F )-dictatorial.

• strong-dictatorial, if F is X -dictatorial.

• weakly-dictatorial, if F is a 1-junta, i.e., if F is a function of only one
coordinate.

• independent, if for all alternatives x 6= y and all profiles R,R′, if it holds
that F (R) = x and the relative rankings of x versus y do not change,
then y will still not win under R′. That is,

∀x, y ∈ X ∀R,R′ [ (x 6= y & F (R) = x & NR
x>y = NR′

x>y)⇒ F (R′) 6= y ].

• weakly monotonic, if for any alternative x and any profile R for which x
is the winner, if R′ is a profile in which, with respect to R, the alternative
x has been moved up (or stayed the same) in each voter’s preference
while all other relative preferences have remained the same, then x is
still the winner under R′. That is,

∀x ∈ X ∀R,R′ [ ∀y, z ∈ X \ {x} (NR
x>y ⊆ NR′

x>y & NR
y>z = NR′

y>z)

⇒ (x = F (R) ⇒ x = F (R′)) ].



CHAPTER 5. GIBBARD-SATTERTHWAITE THEOREM 77

• strongly monotonic, if for any alternative x and any profile R for which
x is the winner, if R′ is a profile for which for each voter it holds that
any alternative that was lower-ranked than x in R is still ranked lower
than x in R′, then x is still the winner under R′. That is,

∀x ∈ X ∀R,R′ [ ∀y ∈ X \ {x} (NR
x>y ⊆ NR′

x>y)

⇒ (x = F (R) ⇒ x = F (R′)) ].

The difference between weak monotonicity and strong monotonicity is
that in the latter it is allowed for the other relative rankings to change,
whereas in the former it is not.

• strategy-proof, also called immune to manipulation, if for no individual
i ∈ N there exists a profile R (including the “truthful preference” Ri of
voter i) and a linear order R′i (representing the “untruthful” ballot of i)
such that F (R−i, R′i) is ranked above F (R) according to Ri. (Following
notation from game theory, given a profile R, with (R−i, R′i) we mean
the profile obtained when in R we replace Ri by R′i.)

Note the relations between the several notions of dictatorships:

strong dictator ⇒ range dictator ⇒ dictator ⇒ weak dictator. (5.1)

5.2.2 The Muller-Satterthwaite Theorem

Intuitively this theorem says that surjectivity and strong monotonicity are
jointly too strong for a voting rule in order to still be “reasonable”. The
proof essentially consists of a reduction to Arrow’s Theorem for social choice
functions, as will become apparent in the proof.1

One way to formulate the theorem is as follows.

Theorem 5.1
( Muller-Satterthwaite Theorem) Any resolute social choice func-
tion for at least three alternatives that is surjective and strongly mono-
tonic must be a strong dictatorship.

Proof. As said before, the proof is essentially a reduction to Arrow’s Theorem.
The hardest part is proving Arrow’s Theorem; the remainder of the proof is
not at all complicated.

Let F be a social choice function that is surjective and strongly monotonic.
The proof plan is as follows:

(1) We show that strong monotonicity implies independence.
1Note that Arrow’s Theorem is originally about social welfare functions, i.e., about

functions which take profiles and return a linear order (rather than a unique winner, as is
the case with resolute social choice functions). However, with the same effort we can prove
Arrow’s Theorem also when voting rules are instead formalized as social choice functions.
We will do so in Subsection 5.2.4.
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(2) Using (1), we show that F is Pareto.

(3) Finally, we prove a version of Arrow’s Theorem for social choice functions.

(1) Let x, y ∈ X and let R,R′ be profiles such that x 6= y, F (R) = x, and the
relative rankings of x and y in R and R′ are the same. We have to show that
F (R′) 6= y.

Let R′′ be any profile satisfying the following conditions:

• x and y are ranked at the top-two positions for every voter;

• the relative rankings of x and y are as in R.

Note that R′′ is a profile for which for each voter it holds that any alternative
that was lower-ranked than x in R is still ranked lower than x in R′′. Thus
strong monotonicity implies that F (R′′) = x. If, by contradiction, we would
have F (R′) = y, then because of a similar reasoning by strong monotonicity
we would obtain F (R′′) = y, implying the contradiction x = y. Therefore we
have F (R′) 6= y.

(2) Let x 6= y ∈ X . Let R be a profile such that NR
x>y = N . We have to show

that F (R) 6= y.
By surjectivity, let R′ be such that F (R′) = x; by strong monotonicity

(in fact, weak monotonicity suffices) if necessary we can move x to the top
of each voter’s ranking, so without loss of generality we may suppose x tops
each voter’s ranking in R′. Now note that, as NR

x>y = N = NR′
x>y, the relative

rankings of x and y are the same in R′ and R. Therefore independence implies
F (R) 6= y.

(3) Arrow’s Theorem for social choice functions, which says that any resolute
social choice function for at least three alternatives that is independent and
Pareto must be a dictator, is proved in Subsection 5.2.4 below.

Now (1), (2), and (3) together imply that F is a dictator. �

This proof is based on [39].
We can strengthen the Muller-Satterthwaite Theorem a little by replacing

the assumption that F be surjective and defined for at least three alternatives
by the slightly weaker assumption that F be a voting rule the range of which
has at least three elements. To do that, we use the notion of range-dictatoriality.
The reason for doing so is that a strong dictator function is always surjective,
whereas a range-dictator function need not necessarily.

Then we have the following stronger version of the Muller-Satterthwaite
Theorem:

Theorem 5.2
( Strong Muller-Satterthwaite Theorem) A resolute social choice
function whose range contains at least three alternatives and which
satisfies strong monotonicity must be a range dictatorship.
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Proof. Suppose F is a social choice function that has at least three alternatives
in its range and that satisfies strong monotonicity. If F is surjective then we
are done by the previous theorem, so we may assume F is not surjective.

The idea is a reduction to the weaker version of the theorem, Theorem 5.1.
For notational convenience we assume that

X = {x, y, z, t}, range(F ) = {x, y, z}, X \ range(F ) = {t}.
Below it will become apparent that this assumption is without loss of generality.

We now define, for all fixed positions of the alternative t in the voters’
rankings, a “reduction function” which is a social choice function for the
alternatives {x, y, z}. To do this, let (p1, p2, . . . , pn) be a list of “positions”, i.e.,
pi ∈ {1, 2, 3, 4} for each i ∈ [n]. The idea is that pi indicates the position that
the alternative t has in voter i’s preference (given that voter i already made
up his mind about the ranking of the alternatives x, y, z). Concretely, if we let
the alternatives x, y, and z be symbolized by dots, then in the below picture
the circles represent the four respective positions where t may be placed:

© > · > © > · > © > · > ©
From left to right the first circle we call the first position, the second circle is the
second position, etc. For example if voter i votes according to z > x > t > y
then we have pi = 3, and if voter j votes according to t > z > y > x then we
have pj = 1.

For such a fixed list of positions p = (p1, p2, . . . , pn), we define a social
choice function Fp for the three alternatives x, y, z as follows. For any given
{x, y, z}-profile R, let Rp be the {x, y, z, t}-profile which is exactly like R but
with alternative t placed at spot pi for each voter i ∈ [n]. Then we define
Fp(R) def= F (Rp).

Of course, Fp is still strongly monotonic, and by construction it is surjective
as well. Therefore the Muller-Satterthwaite Theorem that we already proved
implies that Fp is a dictator function; say the i-th voter is the dictator.

We now claim that for any choice of list of positions we make, we always
get the same dictator:

Claim. Let p = (p1, p2, . . . , pn) and q = (q1, q2, . . . , qn) be two lists of positions.
Then we have that Fp = Fq and furthermore this function is dictatorial.

Proof of claim. Because of the above reasoning both Fp and Fq are dictator
functions. By contradiction, suppose they are different; without loss of gen-
erality we may assume that the first voter is the dictator Fp and the second
voter is the dictator Fq.

Let R be any {x, y, z}-profile in which the voters vote as follows:

• Voter 1: x > y > z;

• Voter 2: y > x > z.

Then we have F (Rp) = Fp(R) = x and F (Rq) = Fq(R) = y. However, from
the proof of part (1) of Theorem 5.1 we know that F satisfies independence.
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But clearly the x-versus-y rankings are the same in Rp and Rq, so the fact
that x wins in Rp implies that y cannot win in Rq, i.e., F (Rq) 6= y. This
contradiction finishes the proof of the claim. �

Because of the claim we can say that Fp is the i-th dictator function, for
every list of positions p = (p1, p2, . . . , pn). But this immediately implies that
F is a range-dictator function, namely the i-th voter is the range-dictator. �

Because of (5.1) we have that Theorem 5.2 also holds when the word range
dictatorship is replaced by dictatorship, or by weak dictatorship.

5.2.3 Classical Gibbard-Satterthwaite Theorem: Statement and
Proof

The precise formulation of the theorem is as follows:

Theorem 5.3
If any resolute social choice function for at least three alternatives is
both surjective and strategy-proof, then it must be a dictatorship.

Proof. Because of Lemma 5.4 below, we have that the given social choice
function is strongly monotonic as well; the result then follows immediately by
an application of the Muller-Satterthwaite Theorem. �

Lemma 5.4
For a resolute social choice function, strategy-proofness implies strong
monotonicity.

Proof. We use contraposition. So let us assume F is not strongly monotonic;
we then show that F is not strategy-proof.

Since F is not strongly monotonic, there exist x, x′ ∈ X such that x 6= x′

and profiles R,R′ such that

• NR
x>y ⊆ NR′

x>y for all alternatives y ∈ X \ {x}; (∗)
• F (R) = x and F (R′) = x′.

There must be a first voter affecting the outcome. We can go from R to R′ by
changing one coordinate at a time. Hence there will exist two profiles (which
for simplicity we call again R and R′) differing on one exactly one coordinate,
say i, which satisfy the above conditions. Now there are two cases:

Case 1: i ∈ NR′
x>x′ . That is, x >i x′ in R′. Say voter i’s “true preferences”

are as in R′. Then voter i can benefit from voting instead as in R. Thus F is
not strategy-proof.

Case 2: i 6∈ NR′
x>x′ . By (∗) we get i 6∈ NR

x>x′ . That is, x′ >i x in R. Say
voter i’s “true preferences” are as in R. Then voter i can benefit from voting
instead as in R′. In consequence, once again F is not strategy-proof. �



CHAPTER 5. GIBBARD-SATTERTHWAITE THEOREM 81

Because of the stronger version of the Muller-Satterthwaite Theorem,
namely Theorem 5.2, we have the following:

Theorem 5.5
Any resolute social choice function which has at least three alternatives
in its range and which is strategy-proof must be a range dictatorship.

Because of Theorem 5.2, Lemma 5.4, and (5.1), we have the following:

Theorem 5.6
( Gibbard-Satterthwaite Theorem) If any resolute social choice
function takes at least three values and is not a weak dictator (i.e., not
depending on one voter only), then it is manipulable.

Usually it is this version of the theorem which is called the Gibbard-Satterthwaite
Theorem.

5.2.4 Arrow’s Theorem for Social Choice Functions

We will prove Arrow’s Theorem for social choice functions, based on [39]. The
reason for having deferred this proof is that one proof strategy to show Arrow’s
original result, which deals with social welfare functions, applies equally well
also when showing the result for social choice functions; in fact the proof
can essentially be copied. Exactly the same proof approach works in both
formalisms: the decisive coalition method. This proof approach is demonstrated
below.

Theorem 5.7
( Arrow’s Theorem for resolute social choice functions)
Any resolute social choice function for at least three alternatives that is
independent and satisfies the Pareto condition must be a dictatorship.

Proof. Let F be a resolute social choice function for at least three alternatives
that is independent and Pareto. The proof plan is as follows:

(1) We show the Coalition Lemma (to be explained below).

(2) Using (1), we prove the Reduction Lemma (to be explained below).

(3) We finish by applying the Reduction Lemma multiple times.

Before we start, we first need some more terminology. A coalition is just a
nonempty subset of N .

Given distinct alternatives x, y ∈ X , we say that a coalition G ⊆ N is
decisive on (x, y) if and only if

∀R (G ⊆ NR
x>y ⇒ F (R) 6= y).
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Given distinct alternatives x, y ∈ X , we say that a coalition G ⊆ N is weakly
decisive on (x, y) if and only if

∀R (G = NR
x>y ⇒ F (R) 6= y).

The idea behind the proof is the so-called decisive coalition strategy.

(1) Coalition Lemma. For any distinct alternatives x, y ∈ X and G ⊆ N ,
if G is weakly decisive on (x, y), then G is decisive on (x′, y′) for all distinct
x′, y′ ∈ X .

Proof. Take distinct x′, y′ ∈ X . We assume x, y, x′, y′ are all distinct, as all
other cases are proved analogously.

Let R be any profile satisfying the following conditions:

• G-members: x′ > x > y > y′ > rest;

• non-G-members: x′ > x, y > y′, y > x, x, y, x′, y′ > rest.

Note that here the x′-versus-y′ rankings were not specified for the non-G-
members; this will in fact be crucial further on in the proof.

Since G is weakly decisive on (x, y) and the G-members are precisely the
ones ranking x > y, we have F (R) 6= y. All voters rank x′ > x, so because
of the Pareto condition we get F (R) 6= x; similarly we get F (R) 6= y′ as well.
The Pareto condition implies also that no alternative in X \ {x, x′, y, y′} can
win. Therefore, F (R) = x′.

We now show that G′ is decisive on (x′, y′). Let R′ be such that G ⊆ NR′
x′>y′ .

Then let R be any profile satisfying the above two conditions but which
furthermore is such that the set of non-G-members which satisfy x′ > y′ in R
is exactly equal to NR′

x′>y′ \ G. (We can do this precisely because earlier we
had left the x′-versus-y′ rankings for non-G-members undetermined.) Then, of
course, we still have F (R) = x′. However the relative rankings of x′-versus-y′

are, by construction, the same in R and R′. Hence independence of F implies
that F (R′) 6= y′, concluding the proof of the Coalition Lemma. �

(2) Reduction Lemma. Suppose G ⊆ N is decisive on all pairs of alternatives
(x, y), and |G| ≥ 2. Then there exists a smaller coalition G′ ⊂ G that is decisive
on all pairs as well.

Proof. Let G1 and G2 be disjoint nonempty subsets of G such that G = G1∪G2;
these can be found for G has at least two elements. Let x, y, z be three distinct
alternatives, which exist by assumption.

Let R be any profile satisfying the following conditions:

• G1-members: x > y > z > rest;

• G2-members: y > z > x > rest;

• all other voters: z > x > y > rest.
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Since G = G1 ∪ G2 is decisive on (y, z), we have F (R) 6= z. Because F is
Pareto, F (R) 6∈ X \ {x, y, z}, and hence we have F (R) ∈ {x, y}. Consequently
there are two cases:

Case 1: F (R) = x. Then by independence we get that G1 is weakly decisive
on (x, z). By the Coalition Lemma we obtain that G1 is decisive on all pairs.

Case 2: F (R) = y. Similarly as above, by independence we obtain that
G2 is weakly decisive on (y, x). By the Coalition Lemma we obtain that G2 is
decisive on all pairs. �

(3) Since F is Pareto we have that N is decisive on all pairs. Now we can apply
the Reduction Lemma over and over again; finally we obtain a coalition of size
one, say {i}, that is decisive on all pairs. Then the i-th voter is a dictator,
finishing the proof of Arrow’s Theorem. �

5.3 Quantifying the Gibbard-Satterthwaite Theorem

The classical Gibbard-Satterthwaite Theorem says roughly speaking that for any
“reasonable” voting rule manipulation is possible. It does, however, say nothing
about how frequently manipulation may occur. In particular, it is possible that
manipulation is conceivable only a very small, perhaps negligible, fraction of
time. Quantitative approaches to the Gibbard-Satterthwaite Theorem intend
to answer such questions. It will turn out that manipulation is easy on average,
giving a negative answer to the above question.

We will give an overview of the developments regarding the quantification
of the Gibbard-Satterthwaite Theorem. The first, from 2011, is due to Friedgut,
Keller, Kalai, and Nisan [50]. It builds directly on the quantitative version of
Arrow’s Theorem from Kalai [68] that we proved in Subsection 4.2.3.

This publication prompted a great deal of follow-up work, all attempting to
generalize or strengthen (by weakening the assumptions) previously obtained
results. We will focus on only one of these papers, due to Mossel and Rácz [88],
which contains the strongest quantitative version of the Gibbard-Satterthwaite
Theorem to date. In the last subsection we discuss the consequences of
the achieved results, in particular regarding the idea of using computational
hardness against manipulation.

In this section, all voting rules are assumed to be resolute, meaning that
for any input profile there is exactly one winner.

5.3.1 The Friedgut-Keller-Kalai-Nisan Approach

In this subsection we sketch the approach given in [50].
We use the same terminology as introduced in Subsection 5.2.1. As always,

n is the number of voters, and in what follows we let m be the number of
alternatives. We now write profiles as x = (x1, . . . , xn) ∈ L. A profitable
manipulation by voter i at the profile (x1, . . . , xn) is a preference x′i ∈ L such
that F (x′i, x−i) is preferred by voter i over F (xi, x−i). Note that this definition
makes sense because all voting rules are assumed to be resolute. A profile is
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called manipulable if there exists a profitable manipulation for some voter at
that profile.

Definition 5.8
Let F be a social choice function. The manipulation power of voter
i on F , denoted as Mi(F ), is the probability that x′i is a profitable
manipulation of F by voter i at profile (x1, . . . , xn), where x1, . . . , xn, x

′
i

are chosen uniformly at random among all elements of L. The total
manipulation power of F is

∑n
i=1 Mi(F ).

Once again, note the presence of the impartial culture assumption in this
definition; all quantitative results in this thesis will typically require it. Also,
notice the similarity between this notion and the notion of influence from
Definition 3.1.

It might at first seem a bit strange that in this definition the x′i is taken at
random. To get some intuition, what is Mi(Majn) equal to? The answer lies in
Equation (3.1): remember that Infi[Majn] =

√
2/π/

√
n+O(n−

3
2 ) = O(1/

√
n).

Therefore, only a O(1/
√
n) fraction of profiles can be manipulated at all by

any given voter.
The main result from [50] can be formulated as follows:

Theorem 5.9
( Robust Version of the Gibbard-Satterthwaite Theorem)
There exists a universal constant C > 0 such that for every ε > 0 and
any n the following holds: if F is a neutral social choice function for
n voters and three alternatives such that the distance of F from any
dictatorship and from having only two alternatives in its range is at least
ε, then

n∑
i=1

Mi(F ) ≥ Cε2.

The distance between two social choice functions F,G is defined as the fraction
of inputs on which they differ, i.e., it is Prx[F (x) 6= G(x)], which is the
probability that they are different under the impartial culture assumption. The
distance between a social choice function F and a finite set of social choice
functions is simply the minimum of the distances between F and any member
of the set.

What Theorem 5.9 says is: if the total manipulation power of a voting rule
on three alternatives is small, then it is either close to being a dictatorship or
close to having only two alternatives in its range. Of course, the significance of
this theorem also depends on how big the universal constant C is. The result
could become insignificant for too small C; ideally we would like C to be as
big as possible.

Theorem 5.6 implies that any non-weak-dictatorship (i.e., not depending
on one coordinate only) that has at least two alternatives in its range, is



CHAPTER 5. GIBBARD-SATTERTHWAITE THEOREM 85

manipulable. Dictatorships are obviously non-manipulable. But what is the
set of all non-manipulable SCFs equal to? Given a fixed number of voters and
number of alternatives, define the set

NONMANIP def= {F is an SCF depending on one coordinate only}

∪ {F is monotone and takes on exactly two values}.
Here, an SCF is called non-monotone if for some profile a voter can change
the outcome from, say, alternative a to alternative b by moving a ahead of b in
her preference. Such an SCF is clearly manipulable. An SCF is monotone if it
is not non-monotone. Note that this notion of monotonicity is weaker than the
ones defined in Subsection 5.2.1. By Theorem 5.6 it is then easy to see that
NONMANIP indeed equals the set of all non-manipulable SCFs. From now
on, if we say “F is a non-manipulable SCF”, we mean that F ∈ NONMANIP.

We will need the following notion:

Definition 5.10
Let n be the number of voters and m the number of alternatives. A
generalized social welfare function (GSWF) is a function

G : Ln → {0, 1}(m2 ),

where L is the set of total orders on the set of all alternatives. That is,
given the preference orders of the voters (i.e., a profile), G outputs the
preferences of the society amongst each pair of alternatives.

This means that G consists of a function Ga,b : Ln → {0, 1}, for each pair of
distinct alternatives a, b. For example, Ga,b(x1, . . . , xn) = 1 means that under
profile (x1, . . . , xn) on the societal level a is preferred to b.

Of course, it is possible that a GSWF will fail to output a total order: the
ordering it induces could be inconsistent.2

The IIA condition, neutrality, dictatoriality, etc., can be readily defined as
before. For completeness, we give the formal definitions. Let G be a GSWF
for three alternatives a, b, c.

• We say that G satisfies the independence of irrelevant alternatives (IIA)
condition if for all alternatives a, b the function Ga,b depends only on
xa,b ∈ {0, 1}n. Here xa,b is the vector whose i-th coordinate is 1 if
candidate i prefers a > b, and 0 if he prefers b > a. In other words, a
GSWF satisfying IIA is given by

(
m
2

)
functions Boolean-valued Boolean

functions Ga,b : {0, 1}n → {0, 1} (one for each pair of alternatives a, b)
where a 1 in the i-th bit of the input corresponds to candidate i preferring
a to b and a 0 to candidate i preferring b to a.

2In the terminology of Subsection 4.1.1, we would say that its output is irrational or has
a cycle, or also that there is no Condorcet winner.
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Note that the condition thatG satisfy IIA in the terminology of Subsection
4.1.1 precisely means that we are doing a Condorcet election, say based
on (f, g, h) (here, f is Ga,b, g is Gb,c, and h is Gc,a).

• A GSWF is called neutral if all alternatives are treated symmetrically.
A neutral GSWF for three alternatives that satisfies IIA corresponds
exactly with the condition that we are doing a Condorcet election based
on (f, g, h), say, for which we have f = g = h (see Definition 4.1).

• G is called a dictator if there is a voter i such that the output of G
is completely determined by xi, for any input profile (x1, . . . , xn); G is
called an anti-dictator if there is a voter i such that the output of G is
completely determined by −xi (which is the reverse order of xi), for any
input profile (x1, . . . , xn).

Definition 5.11
Let G be a GSWF on three alternatives. We put

NT(G) def= Pr
ICA

[G gives a non-transitive outcome].

Recall from Subsection 4.1.1 that “a non-transitive outcome”, “a non-rational
outcome”, “a cycle”, “no Condorcet winner”, are all different expressions to
mean the same thing.

The strengthened version of Arrow’s Theorem, Theorem 4.10, can then be
formulated in terms of generalized social welfare functions as follows:

Theorem 5.12
( Robust Version of Arrow’s Theorem for GSWFs) There is
an absolute constant C such that the following holds. If G is a neutral
GSWF for three alternatives satisfying IIA, then in case G is at least
ε-far from dictatorships and anti-dictatorships, we have NT(G) ≥ Cε.

Proof. As explained before, G being a GSWF that satisfies IIA and neutrality
means that we are doing a 3-candidate Condorcet election based on the Boolean
functions f, g, h, say (see Definition 4.1). Neutrality implies that f = g = h.
The proof is thus in essence the same as the one from Theorem 4.10. �

We will now sketch the proof of Theorem 5.9. Although the idea behind
the proof is quite natural and elegant, some parts of the proof are a bit tedious.
Hence we will skip some details along the way. It will be our primary aim to
convey the idea of the proof to the reader.

On the highest level, the proof in essence consists of a reduction to the
quantitative version of Arrow’s Theorem (Theorem 5.12). The question, of
course, is how to achieve this reduction. For one thing, the quantitative version
of Arrow’s Theorem uses the formalism of social welfare functions (i.e., the
outcome of the voting mechanism is a full ranking of all alternatives), whereas
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the Gibbard-Satterthwaite Theorem deals with social choice functions (i.e.,
the outcome is one alternative).

On the second-highest level, this goes in three steps. Given is an SCF F
with low total manipulation power. Our aim is to show that F is either close
to a dictatorship or close to having only two alternatives in its range.

Step 1. We show that an SCF F with low total manipulation power has
weak dependence on irrelevant alternatives. Below we will make this notion
more precise, but intuitively the idea is: given any two alternatives a, b, how
much does the irrelevant alternative c affect the question whether a or b is
elected by F? If this is small, we say that F has weak dependence of irrelevant
alternatives.

Step 2. Given is an SCF F with weak dependence on irrelevant alternatives,
obtained from the first step. It is then shown how F can be used to construct
a GSWF G which satisfies IIA and is “almost transitive”. (This construction
will require that F be far from having only two alternatives in its range.
Clearly this assumption is without loss of generality, since otherwise we are
done immediately.) Additionally, this “translation” of F into G preserves the
relevant distances, in the sense that the distance of G from any dictatorship, any
anti-dictatorship and from always ranking one alternative at the top/bottom is
about the same as the distance of F from any dictatorship, any anti-dictatorship
and from having only two alternatives in its range, respectively.

Step 3. This is the easy step, given that we already established the quantitative
version of Arrow’s Theorem: indeed, in the previous step we obtained a GSWF
G which satisfies IIA and is “almost transitive”, so by Theorem 5.12 G has to
be close to a dictator or an anti-dictator. Thus, by the stipulation from Step 2,
F too has to be close to a dictator or an anti-dictator. The latter possibility,
however, cannot actually happen: an SCF close to an anti-dictator is clearly
highly manipulable by the anti-dictator, so its total manipulation power is big.
We conclude that F is close to a dictator, finishing the sketch of the proof.

Next, we go through all three steps in more detail. A reader who is not so
interested in the technical details can consider skipping to Subsection 5.3.2.

Step 1. We show that an SCF F with low total manipulation power has
weak dependence of irrelevant alternatives. Throughout, F is an SCF on three
alternatives.

If x ∈ Ln is a profile and a, b are alternatives, then xa,b ∈ {0, 1}n is defined
by xi = 1 if a > b, and xi = 0 if b > a.
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Definition 5.13
Let F be an SCF on three alternatives, and let a, b be two alternatives.
The dependence of the choice between a and b on the third (irrelevant)
alternative c is

Da,b(F ) def= Pr[F (x) = a, F (x′) = b],

where x, x′ ∈ Ln are chosen uniformly at random but subject to the
restriction xa,b = (x′)a,b.

Kalai et al. [50] write Ma,b(F ) instead of Da,b(F ). Imagine Da,b(F ) is high.
This means that there is a significant dependence of the election rule F on
where c is put in the voters’ preferences. Hence Da,b(F ) measures how much
the irrelevant alternative c affects the question whether F elects a or b.

The following lemma is crucial.

Lemma 5.14
Let F be an SCF on three alternatives. Then for any alternatives a, b it
holds that

Da,b(F ) ≤ 6
n∑
i=1

Mi(F ).

Crucially, this lemma implies that if the total manipulation power is small,
then there is weak dependence of irrelevant alternatives, which is the essence
of Step 1.

As it turns out, proving this lemma is the most tedious part of the whole
proof. Furthermore, in some ways it can also be seen as the most crucial part
of the entire argument. For example, the other parts of the proof are relatively
straightforward (although we will not show it) generalizable to the case in
which there are more than three voters. At the time, Kalai et al. [50] were,
however, not able to generalize this first lemma to the case of more than three
voters.

How does one go about proving Lemma 5.14? We will not go into all the
details. At the risk of being vague, we briefly sketch the main ideas and tools
that are used. The lemma relates Da,b(F ) to

∑n
i=1 Mi(F ). The idea is to

search for a combinatorial structure that can be connected to both.
Let za,b ∈ {0, 1}n, where a, b are any alternatives. (This is just notation; z

need not necessarily be a profile here.) We think of za,b as fixing the positions
of all a-versus-b preferences, for all voters. In order to completely specify a
profile x for which xa,b = za,b, it suffices to determine for each voter whether
the third alternative c is ranked “before”, “in between”, or “after” a and b.
These three options are symbolically represented as 0, 1, 2, respectively. Thus,
for any fixed za,b ∈ {0, 1}n, the sets

A(za,b) def= {x |xa,b = za,b, F (x) = a}, B(za,b) def= {x |xa,b = za,b, F (x) = b}
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can be considered subsets of {0, 1, 2}n.
Since “x, x′ are random profiles subject to xa,b = (x′)a,b” means precisely

“first, let p be a random profile, subsequently let x, x′ be random subject to
xa,b = pa,b = (x′)a,b”, we have

Da,b(F ) = Pr[F (x) = a, F (x′) = b] = Ep∈Ln
[ |A(pa,b)|

3n
|B(pa,b)|

3n

]
. (5.2)

Next, we want to relate Mi(F ) to A(xa,b) and B(xa,b). To do that, Kalai et
al. use the notion of upper edge border of any given S ⊆ {0, 1, 2}n. Intuitively,
δiS is the set of all points which lie on the border of S and for which one “step”
in direction i is still possible. That is,

δiS
def= {(v−i, vi, v′i) | (v−i, vi) ∈ S, (v−i, v′i) 6∈ S, vi < v′i} ⊆ {0, 1, 2}n+1.

We also put δS def=
⋃n
i=1 δiS.

There is an obvious link with manipulability. For example, for x a profile
and a, b alternatives, what is δi(A(xa,b))? Suppose (v−i, vi, v′i) ∈ δi(A(xa,b)).
Let x′i be the profile which is the same as xi on a-versus-b, and whose preferences
regarding c are as given by v′i. Let x′ be the same as x but with xi replaced
with x′i.

We claim that either x′i is a manipulation of x or xi is a manipulation of x′.
Moving from xi to x′i caused the output of F to change from a to t ∈ {b, c};
notice that xi and x′i are the same, except c is ranked strictly lower. If voter i
has t > a in xi, then voting instead according to x′i is a profitable manipulation
for him. If, on the other hand, voter i has a > t in xi, then also a > t in x′i
(since t is b or c, c moved to the right, and a-versus-b stayed the same); thus,
xi is a profitable manipulation for voter i in the profile x′.

From this we conclude that each point in δi(A(xa,b)) leads to profitable
manipulation for voter i. Analyzing this probabilistically results in the following
lemma:

Lemma 5.15
Let F be an SCF on three alternatives, and 1 ≤ i ≤ n. Then for any
alternatives a, b it holds that

Mi(F ) ≥ 1
6

3−n Ex∈Ln
[
|δi(A(xa,b))|+ |δi(B(xa,b))|

]
.

Proof. Fix a profile x. Because of the above reasoning, we must have

Pr
x′i

[
x′i is a profitable manipulation of x

] ≥ |δi(A(xa,b))|
|{0, 1, 2}n+1| =

|δi(A(xa,b))|
3n+1

.

Therefore, Mi(F ) ≥ 1
3 3−n Ex[|δi(A(xa,b))|]. But the same holds of the part

involving B, so by summing the conclusion follows. �
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Taking the sum, we obtain

n∑
i=1

Mi(F ) ≥ 1
6

3−n Ex∈Ln
[
|δ(A(xa,b))|+ |δ(B(xa,b))|

]
.

Keeping in mind Equation (5.2), Lemma 5.14 then follows by the next lemma,
the proof of which we will not give:

Lemma 5.16
Let A,B ⊆ {0, 1, 2}n be disjoint. Then we have

|δ(A)|+ |δ(B)| ≥ 3−n|A| |B|.

We refer to Proposition 3.6 in [50] for a proof, although it is not particularly
hard. The proof is a consequence of a famous correlation inequality between
monotone functions on the discrete cube, the Harris-Kleitman Lemma [62], or
its generalization, the FKG Inequality [48]; see also [69].

This ends Step 1. We managed to show that an SCF F with low total
manipulation power has weak dependence of irrelevant alternatives.

Step 2. Given an SCF F with weak dependence on irrelevant alternatives,
we show how F can be used to construct a GSWF G which satisfies IIA and is
“almost transitive”.

We let

TR3
def= {G a GSWF |G satisfies IIA and G is always transitive},

where the 3 refers to the fact that we are only considering GSWFs on three
alternatives. What is this set equal to? Mossel [85] gave a full characterization:
besides the dictators and anti-dictators, it contains only GSWFs which always
output a fixed alternative at the top, or those that always output a fixed
alternative at the bottom. In any case, it is clear that any GSWF in TR3 is
objectionable from the point of view of social choice: we want any reasonable
voting rule to be as far as possible from any member of TR3.

If G is a GSWF, the distance between G and a finite set S of GSWFs is

dist(G,S) def= min{dist(G,G′) |G′ ∈ S},

i.e., it is the minimal number of output values of G that should be changed in
order to make G a member of S.

The following lemma quantifies the intuitions we described in the informal
description of Step 2:
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Lemma 5.17
Let ε1, ε2 > 0. Suppose F is an SCF for three alternatives which satisfies
the following three conditions:

(1) Da,b(F ) ≤ ε1 for all pairs a, b.

(2) F is at least ε2-far from dictators and anti-dictators.

(3) Prx∈Ln [F (x) = a] ≥ ε2, for each alternative a.

Then there exists a GSWF G on three alternatives for which:

(1’) G satisfies IIA.

(2’) dist(G,TR3) ≥ ε2 − 3
√
ε1.

(3’) NT(G) ≤ 3
√
ε1.

The construction of G itself is straightforward: given F , define a GSWF G
by

Ga,b(x)=

{
1 if Prx′ [F (x′) = a | (x′)a,b = xa,b] > Prx′ [F (x′) = b | (x′)a,b = xa,b]
0 if Prx′ [F (x′) = a | (x′)a,b = xa,b] < Prx′ [F (x′) = b | (x′)a,b = xa,b]

,

for each profile x ∈ L3 and alternatives a, b. If the probabilities happen to be
equal, then some arbitrary but fixed voter takes the decision.

By the very construction, G satisfies IIA, so (1’) is fulfilled.
We now show that (3’) is satisfied. We need the following notion. A profile

x ∈ Ln is called a minority preference on the alternative a, b if F (x) = a while
Ga,b(x) = 0, or if F (x) = b while Ga,b(x) = 1. Intuitively, this means that x
belongs to a minority, since, e.g., Ga,b(x) = 0 by definition means that on most
profiles with the same a-versus-b rankings, F elects b. We call a profile x a
minority preference if there are alternatives (a, b) for which x is a minority
preference. For fixed alternatives a, b, we put

Na,b(F ) def= Pr
x∈Ln

[x is a minority preference on a, b].

If there are lots of minority preferences for a, b, then deciding on whether a
or b is elected under F depends significantly on the irrelevant third alternative
c:

Lemma 5.18
Let F be an SCF. For any pair of alternatives a, b, we have

Da,b(F ) ≥ (Na,b(F ))2.

Proof. For any t ∈ {0, 1}n (which we imagine to be determining the a-versus-b
rankings), we define

pa(t)
def= Pr[F (z) = a], pb(t)

def= Pr[F (z) = b],
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where z ∈ L3 is randomly distributed but subject to za,b = t.
Since “x, x′ are random profiles subject to xa,b = (x′)a,b” means precisely

“first, let p be a random profile, subsequently let x, x′ be random subject to
xa,b = pa,b = (x′)a,b”, it is clear that Da,b(F ) = Et∈{0,1}n [pa(t) pb(t)]. In a
similar fasion, Na,b(F ) = Et∈{0,1}n [min{pa(t), pb(t)}]. Then, we get

Da,b(F ) = Et[pa(t) pb(t)] ≥ Et[(min{pa(t), pb(t)})2]

≥ Et[min{pa(t), pb(t)}]2 = Na,b(F )2,

where we used the Cauchy-Schwarz inequality in the last inequality. �

Given a GSWF G and profile x, we call an alternative a a generalized
Condorcet winner (GCW) at profile x if for any alternative b 6= a, we have
Ga,b(x) = 1. Clearly “G has no GCW at x” is equivalent with “G gives a
non-transitive outcome on x”.

Note that if G does not have a GCW at profile x, then x must be a minority
preference of F . Indeed, were x not a minority preference of F , then for all
a, b, either Ga,b(x) = 1 and F (x) = a, or Ga,b(x) = 0 and F (x) = b; letting
a = F (x), we obtain that Ga,b(x) = 1 for all alternatives b, so a is a GCW.
Therefore, we have

NT(G) = Pr
x

[G gives a non-transitive outcome on x]

= Pr
x

[G does not have a GCW at x]

≤ Pr
x

[x is a minority preference of F ].

Notice that by Lemma 5.18, this is at most∑
a,b

Na,b(F ) ≤
∑
a,b

√
Da,b(F ) ≤ 3

√
ε1.

Thus, (3’) is met.
Finally, we show that condition (2’) is satisfied. Put ε = dist(G,TR3). We

need to show that ε ≥ ε2 − 3
√
ε1. Let H ∈ TR3 achieve the minimum, i.e., G

can be converted into H by changing just an ε-fraction of its values.
Case 1: H ranks one fixed alternative, say a, at the top. In that case, as G

and H are ε-close, we must have Pr[a is a GCW] ≥ 1−ε. If x is not a minority
preference and a is a GCW of G at x, then evidently F (x) = a. Therefore,

Pr[F (x) = a] ≥ (1− ε)− Pr[x is a minority preference] ≥ 1− ε− 3
√
ε1.

However, (3) implies in particular that Pr[F (x) = a] ≤ 1−Pr[F (x) = b] ≤ 1−ε2,
from which ε ≥ ε2 − 3

√
ε1 follows.

Case 2: H ranks one fixed alternative, say a, at the bottom. This follows
similarly as the previous case, instead using the concept of a generalized
Condorcet loser.
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Case 3: H is dictatorship and i is the dictator. If x is a profile, xtop(i) is
the top alternative in the preference order of voter i. Then

Pr[xtop(i) is a GCW at x] ≥ 1− dist(G,H) = 1− ε,

so similarly as before we have

Pr[F (x) = xtop(i)] ≥ (1− ε)− Pr[x is a minority preference] ≥ 1− ε− 3
√
ε1.

Were ε2 > ε + 3
√
ε1, then F would be ε2-close to a dictatorship, which

contradicts condition (2). Thus, ε2 ≤ ε+ 3
√
ε1.

Case 4: H is an anti-dictatorship and i is the anti-dictator. This case is
similar to the previous one.

This finishes the proof of Lemma 5.17, and thus also Step 2: we have shown
that, given an SCF with weak dependence on irrelevant alternatives, it can be
used to construct a GSWF which satisfies IIA and is “almost transitive”.

Step 3. Finally, we prove Theorem 5.9. By contradiction, suppose that for
each universal constant C > 0 there is an ε > 0, an n, a neutral social choice
function F for n voters and three alternatives, such that the distance of F
from a dictatorship and from having only two alternatives in its range is at
least ε, and

∑n
i=1 Mi(F ) < Cε2.

Concretely, suppose
∑n

i=1 Mi(F ) < C ′′ε2 where C ′′ is some as of yet
undetermined absolute constant. From Step 1 (Lemma 5.14) we get Da,b(F ) <
6C ′′ε2. Letting ε1 = 6C ′′ε2 and ε2 = ε, from Step 2 (Lemma 5.17) we obtain a
GSWF G such that

(1’) G satisfies IIA.

(2’) dist(G,TR3) ≥ ε2 − 3
√
ε1 = ε− 3ε

√
6C ′′.

(3’) NT(G) ≤ 3
√
ε1 = 3ε

√
6C ′′.

As F is neutral, by the construction of G in Step 2, G is neutral as well;
this together with (1’) implies that we may apply the quantitative version
of Arrow’s Theorem (Theorem 5.12). However, by taking C ′′ to be small
enough it is clear that we can get dist(G,TR3) to be at least ≈ ε. By contrast,
NT(G), the probability under ICA that the Condorcet paradox arises, will be
arbitrarily close to 0 for C ′′ small enough. This contradicts Theorem 5.12: the
quantitative version of Arrow’s Theorem says that being ε-far from dictators
and anti-dictators means that the Condorcet paradox will appear at the rate
of at least Ω(ε). The proof of Theorem 5.9 is finished. �

This finishes the proof of Step 3. The argument is complete.

5.3.2 The State of the Art: the Mossel-Rácz Approach

Another way of stating Theorem 5.9 is as follows: there is a universal constant
C such that, given a neutral social choice function for n voters and three
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alternatives which is at least ε-far from any member of NONMANIP (in
particular, from any dictatorship and from any SCF having only two alternatives
in its range), then

Pr
ICA,i

[a random manipulation by voter i is profitable] ≥ C ε
2

n
,

where i is uniformly random among all voters. That is, a random manipulation
by a random voter i will succeed with nonnegligible3 probability.

Two apparent limitations regarding Kalai et al.’s version of the quantified
Gibbard-Satterthwaite Theorem immediately come to mind: first, the result
(Theorem 5.9) holds only for three number of voters, and second, it requires the
assumption of neutrality. It is for many reasons important to be able to drop
neutrality; below we will briefly discuss some of those reasons. Supplementary
research was therefore needed.

Driven by their result, Kalai et al. [50] also conjectured the following:

Conjecture 5.19
If a social choice function for n voters and m alternatives is ε-far
from the family of non-manipulable functions NONMANIP, then the
probability of a profile being manipulable is bounded from below by a
polynomial in 1

n ,
1
m , and ε. Furthermore, a random manipulation by a

random voter will succeed with nonnegligible probability.

The above statement is at the current time not a conjecture anymore, as we
will see in the following overview.

Overview of Developments. Further research by Isaksson, Kindler, and
Mossel [65] generalized the quantitative Gibbard-Satterthwaite Theorem to
any number of alternatives, while still assuming neutrality. Additionally, they
showed that a random manipulation which replaces four adjacent alternatives
in the preference order of the manipulating voter by a random permutation
of them succeeds with nonnegligible probability. Their paper is titled The
Geometry of Manipulation - A Quantitative Proof of the Gibbard-Satterthwaite
Theorem. As the title suggest, besides combinatorics the employed proof
techniques are mostly geometrical in nature. In particular, they do not involve
discrete harmonic analysis (Fourier analysis), which is the reason why we will
not go into the details of their proof. We just mention that a variant of the
canonical path method to prove isoperimetric bounds is applied.

3In computer science, a function f : N → R is called negligible [99] if for every positive
polynomial poly(·) there exists an integer N > 0 such that for all x > N , it holds that
|f(x)| < 1

poly(x)
, and nonnegligible if it is not negligible. The reason why the 1/poly(·) form

is used is similar to the reason why in computational complexity computational tractability is
defined in terms of polynomial running time [99]. In the context of cryptography, for example,
an attacker might have a success probability of hacking some cryptographic scheme with
negligible probability; however, even if the attack is repeated a polynomial number of times,
the success probability of the overall attack still continues to be negligible.
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Finally, in 2012 Mossel and Rácz [88] managed to remove the assumption of
neutrality, and thus turned Conjecture 5.19 in a theorem. In fact, they proved
the following:

Theorem 5.20
Let n ≥ 1 and m ≥ 3. Given a social choice function F for n voters and
m alternatives that is at least ε-far from any member of NONMANIP, the
probability under ICA that a randomly picked voter obtains a profitable
manipulation by randomly permuting four randomly picked adjacent
alternatives in her own preference, is at least

p

(
ε,

1
n
,

1
m

)
=

ε15

1041n68m167
.

The proof combines ideas and techniques from both Kalai et al.’s approach
as well as the paper by Isaksson, Kindler, and Mossel [65]. We will not go
into the proof, as it is long and tedious. Interestingly, one of the crucial new
ingredients in their proof is a reverse Hypercontractive Inequality leading to a
new isoperimetric inequality on the discrete cube. This result is due to Mossel
et al. [87]; we refer to their Theorem 3.2 for the precise formulation.

Importance of Omitting Neutrality. Neutrality might at first seem a
rather innocent condition. This need not be the case. We give two motives.

• First, Moulin [89] has shown that there is a conflict between neutrality
and anonymity. More specifically, he proved that there exists an SCF
on n voters and m alternatives that is both anonymous and neutral if
and only if m cannot be written as the sum of non-trivial divisors of n.
This problem arises due to tie-breaking. Clearly, anonymity is a highly
desirable property, the more so in real-life elections. Many of the common
voting rules (Borda, plurality, STV, etc.) are anonymous; therefore, by
Moulin’s result, for some values of n and m those rules cannot be neutral
too.

• Second, for computer science applications neutrality is often unnatural.
Imagine, for example, a so-called “meta-search engine” (see [33] and
[40]). This is a search engine based on other search engines (like Google,
Yahoo, etc.): given a user request, it queries the other search engines, all
of which give a ranking of the relevant web pages, and subsequently it
aggregates those into a final ranking of web pages. Various restrictions
are possible, making such a rule non-neutral. Think for example about
language restrictions: if the user only wants to be suggested pages in
Dutch, say, then clearly the voting rule cannot be neutral: all non-Dutch
web pages are excluded in advance.
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5.3.3 Computational Hardness vs. Manipulation: Hopeless?

Already in 1989, Bartholdi, Tovey and Trick [4] suggested to use computational
complexity as a barrier against manipulation. The rationale is: if it is hard
for a voter to compute a manipulation for a given voting rule, then finding a
manipulation is practically infeasible and thus we should not worry about it.
For example, the manipulation problem for the well-known voting rule called
single transferable vote (STV) was proven to be NP-hard [3].

A fundamental problem with this idea is that computational complexity
is a worst-case approach. Concretely, in the case of STV for example, in the
worst case it is infeasible to find a manipulation. It does not imply anything
about the more relevant question: how hard is it to manipulate on average?
Ideally we would like manipulation to be hard for most instances.

The establishment of Conjecture 5.19 is pivotal in this regard: under ICA,
for any social choice function which is far from the non-manipulable voting
rules, a random manipulation by a single randomly chosen voter will succeed
with non-negligible probability. In particular this means that a voter with
black-box access to the social choice function will be able to find a manipulation
efficiently (if it exists). The conclusion is:

Under the impartial culture assumption, manipulation is easy on
average.

Do these results end the project of the use of computational hardness
against manipulation? Not necessarily. A few remarks:

• The result from Theorem 5.20 is mostly of importance from a theoretical
perspective. After all, the number

ε15

1041n68m167

is very small. In practice, for example if we think about a real-life
political election (say, in Belgium, which has roughly 10, 000, 000 ≈ 107

inhabitants), m might be about 10 while n might be about 107. In
that case, the above lower bound on the probability is about ε15

10684 , a
devastatingly small number. From a practical viewpoint it is just too
small.

• Are we willing to accept the impartial culture assumption? If so, then
indeed computational hardness cannot prevent manipulation. However, as
we have seen before in this thesis, the impartial culture assumption, while
useful, is in some (many?) cases not realistic. Furthermore, in Subsection
4.3.2 we have seen empirical findings suggesting that in practice the
Condorcet paradox does not arise frequently. These observations can, in
some sense, be seen as a reductio ad absurdum of the statement “the ICA
is a realistic assumption” (at least for those empirical findings): were
ICA realistic, then the Condorcet paradox would arise significantly more
frequently than has been observed.
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• It can be expected that voting profiles have some structure. What would
be interesting, is to go through empirical data to find out more about
voter tendencies, and then to put them into a feasible mathematical model.
This appears to be complicated. If we could prove a result suggesting
that even for such distributions manipulation is easy on average, the
inevitable conclusion would be that manipulation is inescapable. Given
the mathematical prowess shown in [88] that was needed just to establish
that manipulation on average is easy even assuming ICA, such a result
seems out of reach for the moment.

• As Kalai et al. [50] point out, one has to interpret the above result
(Theorem 5.20) carefully. It says that a random manipulation by a
randomly chosen voter succeeds with non-negligible probability. This
statement does not, however, preclude the possibility that for most of the
voters manipulation cannot be found efficiently (and for a polynomially
small portion of the voters a manipulation can be found efficiently). That
is, it is still possible that only a few voters can manipulate efficiently
whereas most voters cannot.

The conclusion is: although the above results appear to indicate the
existence of a burden for the hardness-against-manipulation agenda, not all
hope is lost. In the words of Faliszewski and Procaccia [43]: “...the final
word regarding the (non-)existence of voting rules that are usually hard to
manipulate is yet to be said”.



Chapter 6

A Simple Model for Biases in
Sequential Binary Voting

Inspired by Kahneman’s Thinking, Fast and Slow [67, 35], in this short last
chapter we come up with a simple, new, model to simulate the various biases
that show up in small meetings in which people have to vote, one after the
other, “yes” or “no” for a given proposal.

6.1 Introduction

Meetings are prevalent in the working life of plenty of individuals. To give
an example, a recent anthropological study at a US university [150] shows
that their professors spend as much as 17 percent of their workweek days in
meetings. Remarkably, a significant amount of those who regularly attend
meetings consider them to be costly, unproductive, and dissatisfying [112].
Many salient decisions, such as in courtrooms or at corporate executive boards,
are taken during assemblies. Although it is clear that our society depends
profoundly on decisions that resulted from meetings, work by Kahneman
and Tversky [67] has shown that decisions taken by committees are liable to
pervading biases.

We noted in Subsection 1.2.2 that people as a whole can make a better
choice than individuals separately, a phenomenon named “the wisdom of the
crowd” [129]. Condorcet’s Jury Theorem formalizes this idea. The following
example is given in [67]. Suppose a large number of individuals have to estimate
the number of pennies in a glass jar. Some people will overestimate the number,
and some will underestimate it. Assuming the people’s errors are independent,
in the long run the errors tend to cancel each other out, thus providing a good
estimate by taking the average of all individuals’ estimates. The requirement
of independence is, however, a conditio sine qua non: as Kahneman [67] puts
it, the “magic” of error reduction works well only when the observations are
independent and their errors uncorrelated. The motto: decorrelate error!

The essential point is hence: by the wisdom of the crowds, meetings could, in
principle, give rise to well-conducted decisions, but because of several obstinate
biases, in practice it often turns out differently.

What are these biases, exactly? We give a brief overview of the most
pertinent ones. Most of the items we mention below come from [67].

• Exaggerated Emotional Coherence (Halo Effect). Human beings tend
to like (dislike) everything about a person, idea, or agument—including

98
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features that have not been observed—whenever just one aspect of it
attracts (repels) them. Favorable first impressions therefore influence
later judgments. For example, a charming speaker might “automatically”
be perceived by an audience as competent too.

• Anchoring Effect. This bias connects well with the Halo effect; it says
that, when making decisions, individuals have the tendency to rely too
much on the first piece of information put forward, the so-called “anchor”.
Subsequent judgments are made by comparing with the anchor, even if
the anchor was completely irrelevant. For example, when negotiating the
price of a new car, it is advantageous for a buyer to “start low”, i.e., first
to offer a ridiculously low amount, just to set the anchor; afterwards,
all prices will be compared with respect to that very low price. The
following example from [67], in which a random anchor is used, illustrates
the anchoring effect more blatantly. In Germany, experienced judges first
read a description of a woman who had been caught shoplifting. Then,
two biased dice (fixed in such a way that they give either a 3 or a 9 on
each throw) were rolled; directly after that the judges were asked whether
they would sentence the woman to a term in prison greater or lesser than
the number, in months, shown on their die. Lastly, the judges were asked
how many months imprisonment they would impose on the shoplifter.
The results were astonishing: on average, those who had rolled a 9 stated
they would sentence her to 8 months, whereas those who rolled a 3 stated
they would sentence her to 5 months.

• Social Conformity and the Bandwagon Effect. The bandwagon effect,
strongly related to groupthink and herding, is a form of convergent social
behaviour that can be broadly defined as the alignment of the thoughts
or behaviours of individuals in a group (“herd”) through local interaction
and without centralized coordination [104]. In other words, in case many
people come to believe in something, others also join in and “jump on
the bandwagon”. An interesting example is the phenomenon of “likes”
on Facebook and similar social media, studied by Aral et al. [90]. Briefly
summarized, “likes” (i.e., upvotes) of online articles or webpages make
other people “like” that article as well; on the other hand, negative
reactions1 (i.e., downvotes) do not prompt others to dislike the article.
That is, a positive nudge can institute a bandwagon of approval, but
a negative gesture fails to achieve a negative effect. These findings are
particularly bad news for users of websites such as TripAdvisor, Amazon,
or Yelp: in order to receive good service they would have to benefit from
the “wisdom of the crowd”. Instead, there seems to be a persistent bias.

1Note that Facebook actually does not have a “dislike” button, but other similar websites
such as Reddit and YouTube do. Mark Zuckerberg commented “that’s [a dislike button] not
something that we think is good for the world” [98], but perhaps (part of) the real reason
has something to do with the bandwagon effect. At the least, the bandwagon effect shows
once more why, for Zuckerberg, having a “like” button is positive: it attracts more people,
resulting in more data extrapolation and thus an increase in revenue.
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6.2 A Simple Model

In this section we will study the effects and biases that occur when people vote
sequentially instead of in parallel. The model seeks to capture the effect that
individuals who come later will be influenced by the speakers who have cast
their vote already, and the strength of this “influence” is expressed by a sway.
Below we will explain this notion in more detail.

6.2.1 Description

Suppose we have a committee consisting of n individuals, marked by 1, 2, . . . , n.
There is some proposal. They have to come to an agreement together, i.e.,
at the end of the meeting the group as a whole has to output a 1 (“proposal
accepted”) or a 0 (“proposal rejected”). Each individual, one after the other,
has an opportunity to expand on their viewpoints. All individuals vote publicly,
and they do so in order of their index, so 1 goes first, then 2, etc.. When
all individuals have cast their vote, the majority rule2 is applied: thus, if the
majority of individuals accepted the proposal, then the output is 1, else the
output is 0.

We can imagine that among these individuals some have more “weight”
than others. For example, in a court where there are junior and senior judges,
if only because of their maturity and skill, among the judges the senior ones
may be regarded as carrying more influence or weight; by their very seniority,
they “carry a halo”, metaphorically speaking. Therefore, we assign a real
number wi ∈ [0, 1] to each individual i ∈ [n], and call it individual i’s sway,3

with the additional proviso that w1 + w2 + . . .+ wn−1 ≤ 1. We let xi ∈ {0, 1}
be individual i’s vote. We still need to stipulate the probabilistic model we
use, which we do now:

• Individual 1 votes uniformly at random.

• For any i ∈ {2, 3, . . . , n}, individual i votes according to

xi
def=

{
xj with probability wj (j < i)
{0, 1} uniformly at random with probability 1−∑i−1

j=1wj
.

That is, voter i mimics (“follows”) voter j with probability wj , for each
j < i, and votes uniformly at random otherwise.

We write the joint probability distribution of x1, x2, x3 briefly as x. When
we write Prx[·] in this context4 it means that we take the probability over
x1, x2, x3 as defined above.

2The reason why we opt for the majority rule is clear: for a 2-candidate election the
majority rule is the best choice, as, e.g., May’s Theorem (Theorem 2.15) shows.

3We do not want to use the word influence, as we reserved that name for another concept;
see Definition 3.1 in Subsection 3.1.1.

4Note that in all previous chapters of the thesis this actually meant “x = (x1, . . . , xn) is
uniformly random”.
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Our model intends to capture small group deliberation; indeed, for bigger
groups such sequential voting seems infeasible due to practical constraints.
Therefore, we should focus mostly on small values of n, say n ≤ 10.

random

same as x1 random

same as x1 same as x2 random same as x1 same as x2 random

w1 1− w1

w1

w2

1− (w1 + w2)

w1

w2

1− (w1 + w2)

x1 =

x2 =

x3 =

Figure 6.1: The probabilistic model for n = 3. The edges of the graph denote
the probabilities, whereas the nodes at depth i indicate the possible values of xi.

The tree in Figure 6.1 will be useful in order to calculate probabilities.
We are particularly interested in the probability that individual i’s choice

will end up winning the election:

Definition 6.1
The force of individual i, denoted by Fi, is the probability that the
election outcome is equal to individual i’s choice. That is,

Fi
def= Pr

x
[Majn(x1, . . . , xn) = xi].

In general, for a given n the force Fi will be a function of w1, . . . , wn−1. What
is the relationship between force and influence? It is not hard to see that, when
w1 = w2 = . . . = wn−1 = 0, then we have

Fi =
1
2

+
Infi[f ]

2
.

In the next subsection we analyze the smallest interesting case: n = 3.

6.2.2 Analysis of the Case n = 3

We will use the following lemma repeatedly:
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Lemma 6.2

(1) Prx[x1 = x2] = 1
2w1 + 1

2 .

(2) Prx[x2 = x3] = 1
2w

2
1 + 1

2w2 + 1
2 .

(3) Prx[x1 = x3] = 1
2w1w2 + 1

2w1 + 1
2 .

(4) Prx[x1 = x2 = x3] = 1
4 (w1 + 1) (w1 + w2 + 1).

Proof. (1) We have Prx[x2 = x1] = w1 1 + 1
2(1− w1) = 1

2w1 + 1
2 .

(2) Using part (1), in a similar fashion it holds that

Pr
x

[x3 = x2] = w1 Pr
x

[x1 = x2] + w2 1 +
1
2

(1− (w1 + w2)) =
1
2
w2

1 +
1
2
w2 +

1
2
.

(3) In the same way, we get

Pr
x

[x3 = x1] = w1 1 +w2 Pr
x

[x2 = x1] +
1
2

(1− (w1 +w2)) =
1
2
w1w2 +

1
2
w1 +

1
2
.

(4) Looking at Figure 6.1, we see that

Pr
x

[x1 = x2 = x3] = w1w1 + w1w2 +
1
2
w1(1− (w1 + w2))

+
1
2

(
(1− w1)w1 + (1− w1)w2 +

1
2

(1− w1)(1− (w1 + w2))
)
.

A calculation shows that this expression equals 1
4 (w1 + 1) (w1 + w2 + 1). �

The introduction of the sways w1, w2 clearly induce correlations into the
model: x2 and x3 are not independent anymore from x1, but instead match
the first individual’s vote some percentage of the time (depending on the first
individual’s sway w1).

A Tendency to Agree. In addition to the biases mentioned in Section
6.1, here is another, related, bias [35]. Even leaving aside a bias such as the
halo effect, some members of the meeting might be more anxious about their
outward appearance (for example, to make sure one looks competent, well-liked
by the others, and with one’s reputation intact) than about making correct
decisions. Such a bias differs from, e.g., the Halo effect in that here the aim
is changed; in a sense, for a person affected by this bias, the situation at
hand is not about voting anymore, but more about self-preservation. This
can lead participants of a meeting to avoid disagreement.5 However, when
members of a committee have incentives to agree with one another, they tend
to overweight public information and discard private insights; this can, in turn,

5Note that although this effect might seem somewhat similar to the bandwagon effect,
they are actually quite different.
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generate a status quo bias [58].6 Also, a bias towards “the obvious” is possible.
For example, consider the scenario in which some professors are evaluating
candidates for a PhD position. The professors might then only look at the
self-evident, obvious, features that an apt candidate should possess (the ones
about which all professors have common knowledge that they are objective,
important, traits), whereas there could in fact be important issues which are
more subjective, less self-evident, but nevertheless of great importance.

In any case, the probability that all three individuals agree in this model,
Prx[x1 = x2 = x3], is of concern. What could be interesting, is to compare
this quantity (which involves sways and thus correlations) with the scenario in
which the three voters take decisions completely independently: the impartial
culture assumption.

Therefore, we define an agreement bias function B by

B(w1, w2) def=
∣∣∣Pr
ICA

[x1 = x2 = x3]− Pr
x

[x1 = x2 = x3]
∣∣∣ .

Of course, PrICA[x1 = x2 = x3] = 1
4 , so using item (4) from Lemma 6.2 we find

B(w1, w2) =
1
4

(w1 + 1) (w1 + w2 + 1)− 1
4

=
1
4

(w2
1 + w1w2 + 2w1 + w2).

This function seems somewhat complicated at first, although it is actually quite
simple. The idea is to look at the contour lines. A drawing clarifies things.
From the graph we deduce the following: in order to keep the bias small, it
is foremost important that w1 be small. Clearly, values for which w1 ≤ w2

(corresponding to the left triangle of the dashed area) are generally better—
in the sense that they keep the bias low—than values for which w1 ≥ w2

(corresponding to the right triangle of the dashed area).

Calculating the Forces. Using Lemma 6.2, we can calculate all forces:

Theorem 6.3
We have

(1) F1 = 1
4w1w2 − 1

4w
2
1 + 1

2w1 − 1
4w2 + 3

4 ;

(2) F2 = −1
4w1w2 + 1

4w
2
1 + 1

4w2 + 3
4 ;

(3) F3 = 1
4w1w2 + 1

4w
2
1 + 1

4w2 + 3
4 .

Proof. (1) Note that

F1 = Pr
x

[Maj3(x1, x2, x3) = x1] = 1− Pr
x

[Maj3(x1, x2, x3) 6= x1]

6The status quo bias indicates a preference for the current state of affairs. The status quo
is taken as a reference point and any deviation from that baseline is perceived as a loss [37].
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Figure 6.2: Contour lines of the function B. The gray area consists of points
for which w1 + w2 > 1 and is thus irrelevant. Made using MATLAB.

= 1− Pr
x

[x2 = x3 & x1 6= x2].

Now, Prx[x2 = x3 & x1 6= x2] = Prx[x2 = x3]− Prx[x1 = x2 = x3], so Lemma
6.2 implies that

F1 = 1−
(

1
2
w2

1 +
1
2
w2 +

1
2
− 1

4
(w1 + 1)(w1 + w2 + 1)

)
.

A calculation shows that this equals 1
4w1w2 − 1

4w
2
1 + 1

2w1 − 1
4w2 + 3

4 .
The proofs of (2) and (3) are very similar, again using Lemma 6.2. �

Below, figures depicting the contour lines of the functions F1, F2, and F3

are included.
On Figure 6.3 we see that, whenever w1 ≥ 0.55, the probability that the

meeting outcome will be in correspondence with the first individual’s choice, is
at least 90%. Of course, we have to keep in mind here: relative to what are
we comparing? It seems most natural to compare with the impartial culture
assumption. In that culture, the probability that any fixed individual’s choice
corresponds with the election outcome, is exactly 75%. This means that, given
that the first person’s sway is somewhat significant, the probability that his
choice will correspond with the meeting outcome will be big.



CHAPTER 6. A MODEL FOR BIASES IN SEQUENTIAL VOTING 105

0.
54

0.
56

0.
58

0.
6

0.
62

0.
64

0.
66

0.
68

0.
7

0.
72

0.
72

0.
74

0.
74

0.
76

0.
76

0.
78

0.
78

0.
8

0.
8

0.
82

0.
82

0.
84

0.
84

0.
86

0.
86

0.
88

0.
88

0.
9

0.
9

0.
92

0.
92

0.
94

0.
94

0.
96

0.
96

0.
98

0.
98

w1

w2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.3: Contour lines of the function F1. Made using MATLAB.

What is essential to the biases that we have been describing in this chapter,
is that each of them in some way or the other involves individuals adapting to,
or correlating with, other individuals’ opinions. In this way we can think of
biases as “deviating from the norm”.7 Similarly as in the previous paragraph,
it makes sense to model the “norm” as independence; that is, we use the
impartial culture assumption again. Again, the reason why this is justifiable is
that the ideal scenario (i.e., “norm”) we have in mind, is that all individuals
act independently of one another. Indeed, in such a scenario the wisdom of
the crowd works well.

Similarly as we did in the previous paragraph, we want to define a bias
function. In this case, we define

B(w1, w2) def= max
i∈{1,2,3}

∣∣∣Pr
x

[Maj(x1, x2, x3) = xi]− Pr
ICA

[Maj(x1, x2, x3) = xi]
∣∣∣ .

The idea is that the deviation from the impartial culture should not be too big:
indeed, by the above reasoning, deviating greatly from impartiality (and
thus independence) indicates a bias.8 Indeed, if B(w1, w2) is significant,
then it means that there is a voter i for which Prx[Maj(x1, x2, x3) = xi]
and PrICA[Maj(x1, x2, x3) = xi] differ considerably. Intuitively, this signifies

7Perhaps better said: we model (define) biases as such.
8In fact, one could even say that his holds true by the very definition that we have given

to the notion of bias in our model.
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Figure 6.4: Contour lines of the function F2. Made using MATLAB.

that there is a substantial correlation, and hence the presence of a bias. Note
that

B(w1, w2) = max
i∈{1,2,3}

(
Pr
x

[Maj(x1, x2, x3) = xi]− 3
4

)
.

The bias being small means, say, that B(w1, w2) ≤ ε, where ε > 0 is some
small but fixed number. Equivalently,

Fi = Pr
x

[Maj(x1, x2, x3) = xi] ≤ 3
4

+ ε

for each i ∈ {1, 2, 3}, i.e., none of the forces should be much greater than 75%.
What does this concretely mean? Let us pick ε = 0.05, so that 3

4 + ε = 0.8.
Looking at the contour lines in Figures 6.4 and 6.5, we deduce that w2 should
be small,9 say at most 0.2, while w1 should definitely be smaller than 0.4. In
fact, the area in the (w1, w2)-plane in which the values of w1, w2 lie that are
“allowed” (meaning that they have force at most 0.8), is approximately given
by the area encompassed by the triangle {(0, 0), (0, 0.2), (0.4, 0)}. However,
looking back at Figure 6.3, we see that most of the values in that triangle
that satisfy F1(w1, w2) ≤ 0.8, satisfy w1 ≤ w2.10 Furthermore, the values of

9Of course, if we would want to be completely formal way, we should pick these values
depending on the given ε. We will not be so precise, and just speak about “small” and “big”.

10A rough estimation using triangles suggests that the fraction is about 5 : 3.
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Figure 6.5: Contour lines of the function F3. Made using MATLAB.

(w1, w2) that “minimize”11 the bias B all satisfy w1 ≤ w2.
We conclude that, in order to keep keep the bias low, we have to do two

things:

• First, both w1 and w2 should not be too big.

• Second, given such “reasonably small” w1, w2, most pairs (w1, w2) which
achieve a small bias satisfy w1 being smaller than w2. Moreover, all the
pairs achieving the minimum (in the sense as explained in the above
footnote) satisfy this inequality.

6.2.3 Case n ≥ 4 and Concluding Remarks

Unfortunately, we did not find time to further investigate the case n ≥ 4.
Besides time constraints, there are a couple of technical issues. First, to
calculate the probabilities precisely is, in principle, still possible using a tree-
argument as we did earlier, but tedious; note that the number of branches of

11Of course, there is a unique minimum value of the bias B, namely 0. Obviously, we are
not interested in that case, so we dismiss it. What we actually mean is: the set of nonzero
values of the bias function B. Because the contour lines of Figure 6.3 lie much more closely
together than the contour lines in Figures 6.4 and 6.5, the values of (w1, w2) that have a
nonzero but “minimal” bias B(w1, w2) can actually be found at the beginning (starting from
the origin) of the 0.75-contour line in Figure 6.3. Observe that such couples (w1, w2) indeed
satisfy w1 ≤ w2.
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the tree from Figure 6.1 increases exponentially in n. Also, we could still get
numerical estimates by using a computer, but to make visualizations would be
harder, as in this case all functions depends on at least three variables.

We finish by connecting back to the discussion about biases. What are
the conclusions? As we have seen, what is certainly clear is the ultimate goal:
to make the conditions such that individuals are capable of expressing their
thoughts without inhibitions; that way, the group derives as much benefit from
the diversity in the group as possible.

The question, then, is how that goal can be achieved. Kahneman [67, 35]
advises the following concrete steps:

1. Before the meeting starts, all members secretly write down on paper a
summary of their opinion.

2. The first person to speak is either picked uniformly at random (to
avoid the same dominant personalities dominating the discussions time
and again), or individuals are required to speak in reverse order of
“dominance”. In our terminology, that is: in reverse order of sway. In
practice, this could, for example, be the level of seniority. The Supreme
Court of the United States applies this method [22].

3. Disagreement should be supported and even rewarded.

A possible future challenge could be to try to incorporate rewards in our
simple model for sequential voting.
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