
Toward Probabilistic Natural Logic for Syllogistic Reasoning

MSc Thesis (Afstudeerscriptie)

written by

Fangzhou Zhai
(born November 20th, 1989 in Changchun, China)

under the supervision of Dr Jakub Szymanik and Dr Ivan Titov, and submitted to
the Board of Examiners in partial fulfillment of the requirements for the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:
August 31st, 2015 Dr Maria Aloni

Prof Dr Johan van Benthem
Prof Dr Ing Robert van Rooij
Dr Jakub Szymanik
Dr Ivan Titov
Dr Willem Zuidema



Abstract

Logic emerged as the discipline of reasoning and its syllogistic fragment investigates one of
the most fundamental aspect of human reasoning. However, empirical studies have shown
that human inference differs from what is characterized by traditional logical validity. In
order to better characterize the patterns of human reasoning, psychologists and philosophers
have proposed a number of theories of syllogistic reasoning. We contribute to this endeavor
by proposing a model based on natural logic with empirically weighted inference rules.
Following the mental logic tradition, our basic assumptions are, firstly, natural language
sentences are the mental representation of reasoning; secondly, inference rules are among
the basic mental operations of reasoning; thirdly, subjects make guesses that depend on a
few heuristics. We implemented the model and trained it with the experimental data. The
model was able to make around 95% correct predictions and, as far as we can see from the
data we have access to, it outperformed all other syllogistic theories. We further discuss
the psychological plausibility of the model and the possibilities of extending the model to
cover larger fragments of natural language.
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Chapter 1

Introduction

This thesis is about reasoning. The psychology of reasoning tries to answer one question:
how do people reason? The discipline of logic was first to suggest a solution. Aristotle pro-
posed the syllogistic theory as an attempt of characterizing rationality. Nowadays, theory of
reasoning is in the center of the investigations of many scientific disciplines, from psychology
and economics to cognitive science and artificial intelligence1. It is observed through em-
pirical studies that people do not reason according to traditional logical validity and new
paradigms (e.g., the probabilistic validity, see Chapter 2) are being proposed. However,
the syllogistic reasoning remains a central topic as it revolves around the inference within
the most fundamental fragment of natural language that includes the basic quantifiers like
“all”, “some”, and “no” and the monadic predicates. A number of syllogistic theories have
been proposed. Among those Rips (1994) proposed the mental logic model assuming that
formulas are the mental representations for inference, and that when reasoning, subjects
generate a sequence of formulas linked by the adoptions of the specific inference rules. In
turn, Geurts (2003) designed a proof system based on monotonicity which could be used
to evaluate the difficulty of each syllogisms.

In this thesis we design and train a generative model for syllogistic reasoning based on a
probabilistic natural logic2. This can be treated as a first step to to integrate the mental
logic approach and the natural logic approach. The plausibility of the model lies in natural
logic operating on the surface structure of natural language, which is a more reasonable
candidate for the mental representation of reasoning. We assume that the procedure of
reasoning consists of two types of mental events: the inferences made by the subjects,
which are deliberate and precise, and the guesses, which could be less reliable but fast.
Accordingly, the model consists of two parts: the inference part, which takes the form of a
probabilistic natural logic (i.e., the inference rules are weighted with probabilities) and the
guessing part, which leads the subject to a possible conclusion in one step depending on
a few heuristics. We implemented the model, and trained it with experimental data. We
evaluated the model by multiple means of evaluation. The model exhibits nice performance
and outperforms all other theories whose predictions were accessible to us3. Besides, the
training results yields interesting psychological implications.

1cf. Isaac et al. (2014) for a survey of logic and cognitive science. See also Van Benthem (2008); Verbrugge
(2009)

2See also Dotlačil et al. (2014) where the authors designed probabilistic semantic automata for quantifiers
whose parameters are also determined by data.

3However, not all the data we were able to obtain are completely reliable. See Section 4.3
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The thesis is structured as follows. In Chapter 2 we introduce the background of the
thesis, which includes introductions to the syllogistic fragment and the syllogistic theories.
In Chapter 3 we motivate the key designs of our model. In Chapter 4 we introduce the
training methods and the means of evaluations, define the three versions of our model and
present their training results sequentially. We discuss a few interesting aspects of the model
in Chapter 5. The final chapter includes a summary and some concluding remarks.
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Chapter 2

Background

In this chapter we introduce the background of the thesis. We begin with logic and the chal-
lenges it faces as a theory of reasoning. Afterwards, we introduce the mental logic proposal
and the natural logic project which are crucial to our research. Finally, we introduce the
work on syllogistic reasoning, including the theories proposed for it and the experimental
results.

2.1 Logic as A Theory of Reasoning: Challenges and Re-
sponses

Characterization of human reasoning remains a tough challenge. Traditional logic appears
insufficient to completely describe human inference (see also Stenning and Van Lambalgen
(2008)). Therefore, new paradigms have been proposed to tackle that issue.

2.1.1 The Criticisms

The Wason Selection Task

Experiments on Wason selection task (Wason (1968); Wason and Shapiro (1971)) showed
the difference between human behavior and logic. In the experiments participants are
shown four cards and are told that each card has a number on one side and a letter on the
other. Only one side of each card is visible to the subjects. The subjects are then asked
which cards they need to turn over to verify the statement that, e.g., “Each card that has
a D on one side has a 3 on the other”. The visible sides of the cards read D, K, 3 and 7.

According to classical logic, the answer should be D and 7. However, the most frequent
responses from the subjects, in order of descending frequency, are: D and 3; D; D, 3 and
7; D and 7. The result is quite robust and reproducible, which clearly indicates that the
reasoning of humans do not completely follow the prescription of classical logic.

Many studies of Wason’s selection task followed that finding. Among those Griggs and Cox
(1982) showed that if the cards have ages and types of drinks on their sides and the task
is to verify whether “if a person is drinking alcohol, the person must be at least 19 years
old”, the performance of subjects will be almost perfect. Moreover, Chater and Oaksford
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(1999) convincingly analyzed the experimental results on a probabilistic basis.

Monotonicity

Traditional logic is monotonic, that is, if we make a certain inference and then learn some-
thing new then the previous conclusion still stands. However, conclusions of daily reasoning
are usually defeasible: it is quite often that new knowledge contradicts a previous conclu-
sion, and the subjects turn to trust the new knowledge more, hence, withdrawing the
previous conclusion, see, e.g., Stenning and Van Lambalgen (2008).

Psychological Plausibility

Traditional logic is to a huge extent a purely normative enterprise. Logicians try to char-
acterize valid inferences. On the other hand, the goals of the theory of reasoning are more
descriptive. The theory tries to characterize human reasoning. One approach here would
be to ask which of the logical inferences are also psychologically plausible. For instance,
logic can yield infinitely many vapid conclusions. From p follows ‘p and p’, so also ‘p and p
and p’, etc. This is clearly not what people do. More generally, a typical logical system is
closed on deduction; given some statements already belong to the theory, all its conclusions
are also included. Clearly, human rationality is not logically closed. Knowing postulates
of natural number theory does not give us insights into all truths about natural numbers.
This problem with logically based theories of human reasoning is often referred to as ‘logical
omniscience’. The goal of the theory of reasoning is to provide us with an efficient char-
acterization that tells us which conclusions people are likely to draw. See Johnson-Laird
et al. (2015).

2.1.2 The Responses

Many theories have been proposed to face the challenges. Proponents of Bayesian rationality
argue that, as uncertainty plays a role, daily reasoning should have a probabilistic basis, and
that probabilistic validity should replace conventional logical validity (see, e.g., Oaksford
and Chater (2007)). They assume that degree of belief corresponds to subjective probability.
Non-monotonic logics were proposed to achieve defeasible reasoning systems (see, e.g.,
Antoniou (1997)). The theory of mental models (Johnson-Laird (1986)) proposes that
reasoning, as a mental procedure, is the generation and then verification of models. The
theory is psychologically plausible and also admits defeasible conclusions.

2.1.3 The Probabilistic Basis of Reasoning

Chater and Oaksford (1999) have argued that theories of reasoning should generalize to
everyday reasoning that is defeasible. However, traditional logic is not defeasible. Towards
a solution some psychologists have proposed that probability should be the underlying basis
of everyday reasoning (see Oaksford and Chater (1996) for an analysis of Wason’s selec-
tion task based on the same idea). Probabilistic logic has been later proposed as the new
paradigm (see, e.g., Oaksford and Chater (2007); Pfeifer (2013)). The proponents have
assumed that reasoning is a probabilistic calculus: degrees of belief depends on subjective
probability, and that probabilistic validity should replace logical validity, at least in daily
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reasoning.

In the context of the syllogistic reasoning the sentences are assigned probabilistic interpre-
tations. For example, All A are B is naturally understood as “the probability of B given A
is 1”. Let P be a probability assignment and consider the predicates as probabilistic events.
“All A are B” is interpreted as P (B|A) = 1; “Some A are B” is interpreted as P (B|A) > 0;
“No A are B” is interpreted as P (B|A) = 0; “Some A are not B” as P (B|A) < 1. An infer-
ence is probabilistically valid (p-valid) if whenever the premises hold in the probabilistic
manner, the conclusion holds as well.

2.2 The Mental Logic Proposal

Rips (1994) has proposed theories of quantified reasoning based on formal inference rules
(see also Braine and O’Brien (1998) for similar designs). The theory is based on the hypoth-
esis that formulas are the underlying mental representation of reasoning and that inference
rules are the basic reasoning operations of the mind. Rips has argued that, deductive rea-
soning, as a psychological procedure, is the generation of “a set of sentence linking the
premises to the conclusion”, and “each link is the embodiment of an inference rule that
subjects consider intuitively sound”. He has formulated a set of rules that includes both
sentential connectives and quantifiers.

The input of the reasoning system (referred to as PSYCOP) are the representations of
the logical assertions where quantifiers are replaced by names and variables. For example,
“Every paper has an author.” would be represented as

IF Paper(x) then Author(ax, x).

Where x stands for a universally quantified variable. And ax is a name whose value is
determined by x through a Skölem function, which replaces an existential quantifier.

Rips has made necessary constraints on the application of the inference rules to avoid re-
strictions to its computational power and approximate ‘psychologically complete’ theory of
reasoning. Rips has assumed that people reason from two directions: from the premises
to the conclusion, and from the conclusion back to the premises. He has also made the
distinction between forward rules and backward rules: the forward rules are applied on the
premises towards the conclusions while the backward rules are applied to the conclusions
to find out what has to be proved in advance in order to prove that conclusion.

The PSYCOP model uses relatively abstract rules and formal representations (roughly cor-
responding to the natural deduction system for first-order logic). It is possible that such
design reduces the psychological plausibility of the system: humans are unlikely to use such
abstract and sophisticated formal system (see also Johnson-Laird (1997)). Besides, the
model explains only the logically valid inferences, and has no mechanism to explain why
and how people make systematic mistakes (the model does predicts which steps are more
likely to yield mistaken operations though).
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2.3 The Natural Logic Program

2.3.1 Monotonicity

Some natural language quantifiers admits the property of monotonicity (see also Icard III
and Moss (2014)). As an example, consider “Some”. The inference

Some pines are green.
∴ Some plants are green.

is valid since all pines are plants. But note that the “pines” in “some pines are plants” can
be replaced by any object that contains all pines. For example, since “trees” is a super set
of “pines”, it follows that Some trees are green.

The quantifier “Some” takes two arguments (in our example, they are “pines” and “green”).
We say “Some” is upward entailing in its first argument, since the word standing as
the first argument can be replaced by anything it entails, preserving the validity of the
assertion. On the other hand, we say a quantifier is downward entailing in an argument
if the word that is considered as this argument can be replaced with anything that entails
it, preserving the validity of the assertion. As an example, “All” is downward entailing in
its first argument. This is illustrated by the following inference:

All trees are green.
∴ All pines are green.

2.3.2 The Natural Logic Program

Monotonicity is a pervasive feature of natural language. People can reason based on mono-
tonicity, even when the underlying meaning of terms is unclear for them. For example,
from “Every Dachong has nine beautiful tails” people would infer “Every Dachong has nine
tails”, without knowing the meaning of “Dachong” (which simple means tiger in Chinese).
It is hence fair to say that monotonicity operates on the surface of natural language. On
the other hand, reasoning is often narrated in natural language; people often think with
natural language when reasoning, sometimes even “think loudly”. It is hence interesting to
ask whether there is a natural logic that operates on the surface forms of natural language
(see, e.g., van Benthem (1986,9, 2008)). Though it is not hard to see that some fragments of
natural language admits “natural logic” (e.g., anaphora reasoning), yet it is an interesting
question “how much can these fragments possibly cover?”.

2.4 Syllogistic Reasoning

Aristotle defined humans to be the rational animals. Indeed, rationality is crucial to many
aspect of human life such as law, social communication, decision making, etc. But, after
all, what is rationality per se? One plausible definition of rationality is to reason according
to the rules of logic, i.e., rational subjects make deductions only according to the reliable
relations between the propositions (or in terms of modern logic, rational subjects only make
the “valid inferences”). Aristotle proposed the syllogisms, as the first known attempt to
formally characterize human reasoning. Although modern logic has gone far beyond the
syllogisms in most aspects, since the syllogisms investigates the most fundamental fragment
of human reasoning, it continuously receive attention of researchers (see Khemlani and
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Johnson-Laird (2012) for a review of the theories of syllogisms).
The sentences of syllogisms are of four different sentence types (or “moods”), namely:

All A are B : universal affirmative (A)
Some A are B : particular affirmative (I)

No A are B : universal negative (E)
Some A are not B : particular negative(O)

Each syllogism has two sentences as the premises, and one as the conclusion. Traditionally,
according to the arrangements of the terms in the premises, syllogisms are classified in to
four categories, or “figures”:

Figure 1 Figure 2 Figure 3 Figure 4
B C C B B C C B
A B A B B A B A

—————– —————– —————– —————–
A C A C A C A C

Syllogisms are customarily identified by their sentence types and figures. For example,
“AI3E” refers to the syllogism whose premises are of sentence types A and I, and whose
terms are arranged according to figure 3, and whose conclusion is of type E. Therefore,
altogether, “AI3E” refers to the following syllogism:

All B are C
Some B are A
—————–
No A are C

As there are four different sentence types and four different figures, there are 256 equivalent
syllogisms in total. These syllogisms are also referred to as the ones that follows the
scholastic order. Some psychologists (e.g., Johnson-Laird (1986)), however, believe that
the order that the two premises are presented to the reasoners also makes a difference.
Namely, they believe that:

All B are C
Some B are A
—————–
No A are C

and

Some B are A
All B are C
—————–
No A are C

are different syllogisms. In this thesis we stick to the syllogisms following the scholastic
order, since the order that the premises are presented does not make a difference in our
model. Traditionally, the truth value of the syllogistic sentences are similar to their seman-
tics in modern predicate logic. The difference lies in that, according to the former, both
“All A are B” and “No A are B” implies that A is not empty, while according to the latter
this is not necessary. There are 256 equivalent scholastic order syllogisms in total, of which
24 are valid according to the semantics of traditional syllogistic logic, and 15 of these 24
are valid according to the semantics of modern predicate logic.
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2.5 Experimental Investigations Of Syllogistic Reasoning

Experimental psychologists have developed a battery of tests to study human reasoning.
In one typical experimental design, the subjects are presented with the premises and asked
“What follows necessarily from the premises ?” Chater and Oaksford (1999) compared five
experimental studies and found that differences1 in the designs of the experiments appear
to have little effect on the results. They computed the weighted average, i.e., percentage
that each conclusion is drawn. The data is shown in Table 2.1.

1These experiments differ in various ways. For example, to answer the question “What follows necessarily
from the premises”, some researchers (e.g.,Johnson-Laird (1986)) asked the participants to narrate in natural
language the entailments while the rest of them made it explicit that the conclusions are among the four
syllogistic conclusions and “nothing follows”.
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Syllogism Conclusion Syllogism Conclusion
————————— —————————

A I E O NVC A I E O NVC

AA1 90 5 0 0 5 AO1 1 6 1 57 35
AA2 58 8 1 1 32 AO2 0 6 3 67 24
AA3 57 29 0 0 14 AO3 0 10 0 66 24
AA4 75 16 1 1 7 AO4 0 5 3 72 20

AI1 0 92 3 3 2 OA1 0 3 3 68 26
AI2 0 57 3 11 29 OA2 0 11 5 56 28
AI3 1 89 1 3 7 OA3 0 15 3 69 13
AI4 0 71 0 1 28 OA4 1 3 6 27 63

IA1 0 72 0 6 22 II1 0 41 3 4 52
IA2 13 49 3 12 23 II2 1 42 3 3 51
IA3 2 85 1 4 8 II3 0 24 3 1 72
IA4 0 91 1 1 7 II4 0 42 0 1 57

AE1 0 3 59 6 32 IE1 1 1 22 16 60
AE2 0 0 88 1 11 IE2 0 0 39 30 31
AE3 0 1 61 13 25 IE3 0 1 30 33 36
AE4 0 3 87 2 8 IE4 0 42 0 1 57

EA1 0 1 87 3 9 EI1 0 5 15 66 14
EA2 0 0 89 3 8 EI2 1 1 21 52 25
EA3 0 0 64 22 14 EI3 0 6 15 48 31
EA4 1 3 61 8 28 EI4 0 2 32 27 39

OE1 1 0 14 5 80 OO1 1 8 1 12 78
OE2 0 8 11 16 65 OO2 0 16 5 10 69
OE3 0 5 12 18 65 OO3 1 6 0 15 78
OE4 0 19 9 14 58 OO4 1 4 1 25 69

IO1 3 4 1 30 62 OI1 4 6 0 35 55
IO2 1 5 4 37 53 OI2 0 8 3 35 54
IO3 0 9 1 29 61 OI3 1 9 1 31 58
IO4 0 5 1 44 50 OI4 3 8 2 29 58

EE1 0 1 34 1 64 EO1 1 8 8 23 60
EE2 3 3 14 3 77 EO2 0 13 7 11 69
EE3 0 0 18 3 78 EO3 0 0 9 28 63
EE4 0 3 31 1 65 EO4 0 5 8 12 75

Table 2.1: Percentage of times each syllogistic conclusions was endorsed. The data is from
a meta-analysis by Chater and Oaksford (1999). “NVC” stands for “No Valid Conclusion”,
all numbers have been rounded to the closest integer. A bold number indicates that the
corresponding conclusion is valid.

One important observation made by Chater and Oaksford (1999) is that validity is a crucial
factor in the performance of the participants. Firstly, the average percentage of subjects
arriving at a valid conclusion is 51%, while that of arriving at an invalid conclusion is 11%:
participants, indeed, made an effort along the path of validity. Secondly, subjects tends to
mistakenly arrive at invalid syllogism that is different from a valid one just by its figure. For
example, the AO2O syllogism is the only valid one among the four AOO syllogisms, how-

11



ever, subjects endorse the other three AOO syllogisms (namely AO1O,AO3O and AO4O)
with fairly high probability. This might be a sign that people are actually not that bad at
syllogistic reasoning (Geurts (2003)): even if an error is made, the most probable wrongly
endorsed syllogism is quite similar to a valid one, which differs only in the figure. Thirdly,
the mean entropy of the syllogistic premises that yields at least one valid conclusion, ac-
cording to the table above, is 0.729, however, that of the ones that yield no valid syllogisms
is 0.921. The difference indicates that the psychological procedures triggered by the two
groups of premises are likely to be different.

2.6 The Meta-Analysis of Theories of Syllogisms

Khemlani and Johnson-Laird (2012) published a meta-analysis of twelve existing theories of
syllogisms. They classified the theories into three categories: heuristic theories that capture
principles that could underlie intuitive responses; theories of deliberative reasoning based
on formal rules of inference akin to those of logic; and theories of deliberative reasoning
based on set-theoretic diagrams or models. They collected the experimental data from six
empirical studies, and compared the predictions of seven theories out of the twelve2. A
brief version of their comparison is shown in Table 2.2.

Theory Correct Predictions (%) Lower Limit Upper Limit

Verbal Models Theory 84 80 89
Conversion 83 80 86

Mental Models Theory 78 75 81
Atmosphere 78 75 81

PSYCOP Model 77 73 80
Probability Heuristic Model 73 69 77

Matching 71 66 75

Table 2.2: Meta Analysis of Seven Theories of Syllogisms. The limits admit 95% confidence
intevals.

The authors pointed out that all twelve theories of syllogisms lack a system to determine
how an inferential task is carried out. They proposed that a unified theory of monadic
reasoning should be able to explain the following:

• the interpretation and mental representation of monadic assertions, including syllo-
gistic premises;

• what the brain computes and how it carries out all inferential tasks with such asser-
tions;

• the differences in difficulty from one inference to another, and common errors;

• how contents affect performance;

2The empirical data they collected includes the syllogisms arranged according to the scholastic arrange-
ments as well as those that are not. Hence, the theories whose predictions are not available on all syllogisms
(possibly only available for those arranged according to the scholastic orders) are excluded from the meta-
analysis.

12



• how the ability to reason with monadic assertions develops;

• differences in performance from one person to another, which are likely to reflect the
processing capacity of working memory, experience in deductive reasoning tasks, and
motivation (these subject differences, however, call for much more research).

2.7 Theories of the Syllogisms

In this section we introduce a few syllogistic theories.

2.7.1 The Atmosphere Hypothesis

The atmosphere hypothesis proposes that a conclusion should fit the premises’ “atmo-
sphere”, namely, the sentence types of the premises (Sells (1936); Woodworth and Sells
(1935); Begg and Denny (1969)). In particular, whenever at least one premise is nega-
tive, the most likely conclusion should be negative; whenever at least one premise contains
“some”, the most likely conclusion should contain “some” as well; otherwise the conclusion
are likely to be affirmative and universal.

The idea of atmosphere is plausible since the types of the premises may encode a consid-
erable amount of information about the type of the conclusions. Indeed, the atmosphere
effect seems to capture one of the most significant phenomena of human behavior in the
syllogistic reasoning, however, this one observation is clearly not sufficient to tell the com-
plete story. One inevitable drawback is that the hypothesis has no mechanism to possibly
explain why people can correctly conclude that nothing follows (but see Revlis (1975) for
a model based on the atmosphere hypothesis where the subject can make errors).

Johnson-Laird and Byrne (1989) reported an experiment whose outcome might be con-
trary to the atmosphere hypothesis. The experiment included reasoning with the quantifier
“only” or sentences like “only A are B”. The meaning of “only” is, in essence, negative,
since “only A are B” means “not A” entails “not B”. Experimental results show that when
both premises include “only”, a mere 16% of the conclusion drawn by the subjects contains
it; when one of the premises contains “only”, it appears in just 2% of the conclusions.

2.7.2 The Illicit Conversion

It is observed that subjects often make invalid conversions on sentences of types “All” and
“some not”, i.e., they illicitly conclude “All B are A” from “All A are B” and “Some B are
not A” from “Some A are not B” (Revlis (1975); Chapman and Chapman (1959)). Illicit
conversions might have a probabilistic basis: quite often these conversions result in true
conclusions in everyday life: no man is woman hence no woman is man; sugar is sweet hence
sweet things contains sugar; no car can fly hence a flying thing is not a car. Additionally,
subjects do make one-step illicit conversions when they are requested to infer from even
one single premise sentence (e.g., they directly conclude “All B are A” from “All A are
B”), and particularly when abstract predicates like A and B are used (Wilkins (1929); Sells
(1936)).
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Illicit conversions can explain why would subjects endorse some invalid inferences, for ex-
ample

All C are B
All A are B
—————– (Invalid)
All A are C

It could be that, by the illicit conversion, people infer “All B are A” from “All A are B”,
hence with “All C are B” they get “All C are A”. The illicit conversion can also explain
why subjects often endorse invalid syllogisms that are similar to valid ones (in the sense
that they only differ in the figure and hence needs only few conversions, see also Section
2.5).

2.7.3 The Mental Model Theory

The Dual Processing Theory

Famously, recently it is often hypothesized that there are two cognitive systems for rea-
soning. System 1 makes rapid, unconscious, heuristic guesses while system 2 makes slower,
conscious considerations based on systematic principles (see, e.g., Evans (2003); Sloman
(1996); Kahneman and Frederick (2002)). Mental model theorists (Johnson-Laird (1983))
distinguish the systems from a computational perspective: system 1 has no access to work-
ing memory and is hence equivalent to finite state automata (at least restricted reasonably
in size); system 2 has access to working memory and can carry out all recursive procedures,
at least before the memory runs out.

As for how the two systems cooperate in the context of syllogistic reasoning, it could be that
subjects use system 1 to generate plausible conclusions and then use system 2 to deliberate
on them. It could also be that system 2 is used in the beginning, however later, subjects
may turn to system 1 due to the increasing complexity or the exhaustion of the cognitive
resources. It appears that system 1 is faster and costs less resources and may be less precise,
hence, accounts more for the errors, yet it is proposed that subjects still makes errors when
reasoning consciously and deliberately (Johnson-Laird and Byrne (1991)).

Mental Models

Johnson-Laird (1975) formulated the mental model theory. The theory proposes that sub-
jects represent sets or models iconically. They build an iconic mental models for reasoning,
each icon representing one object. For example, “all trees are plants” may be represented
as

tree plant
tree plant
tree plant

or alternatively, as

tree plant
tree plant
tree plant

plant
plant
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Each row in these models represents an object of the model. A set of assertions may yield
multiple possible models and each model represents a distinct possibility that goes consis-
tent with the assertions. The models explicitly represent only what is true in each possibility
(e.g., in the second model, the fifth object is a plant), however, each model can be fleshed out
to be a fully explicit representation (also, in the second model, the fifth object is not a tree).

In terms of algorithmic level theory of reasoning, the theory of mental models is a dual
processing theory. System 1 has no access to working memory and rapidly generates men-
tal models and conclusions by heuristics (Khemlani and Johnson-Laird (2013)). System 2,
however, has access to working memory and can perform any recursive procedure before
the cognitive capability becomes overloaded. In particular, system 2 verifies whether a
conclusion is consistent with the generated mental models. If a conclusion is falsified by a
model then it will be withdrawn, otherwise it will be output as a conclusion.

The theory of mental models has been further developed and implemented as the “mRea-
soner” (Khemlani and Johnson-Laird (2013)). In a meta analysis (Johnson-Laird et al.
(2015)), mReasoner outperformed all other theories available for the analysis.

2.7.4 The Probability Heuristic Model

Marr’s Levels

To take a better view of the model, we firstly introduce Marr’s levels of cognitive models.
When analyzing the visual system, David Marr proposed that, from the computational
perspective, tasks performed by the cognitive system must be analyzed at three levels
(Marr and Vision (1982)):

• The computational level: what is the function computed by the cognitive system?

• The algorithmic level: what is the algorithm used by the brain to obtain the solution?

• The implementation level: how is the algorithm implemented in the neural system?

These levels are not independent from each other, as it is well possible that considerations
at each level constrain the answers at the other levels. In fact, the more fundamental levels
can be seen as an implementation of the level above it.

Marr’s levels have been a popular and useful guideline for analyzing the cognitive system
(however some argued that the classification is not without shortcomings. See McClamrock
(1991) for a proposed refinement). Many theories of reasoning are mainly devoted to the
algorithmic level theory and has an underlying computational level theory (but see also
Section 5.3 for different opinions).

Probability Heuristic Model

Chater and Oaksford (1999) proposed the Probability Heuristic Model (PHM). The model
has a probabilistic basis. According to the proponents, an appropriate computational level
theory of reasoning should be formalized as probability calculus. As for the algorithmic
level theory, Chater and Oaksford (1999) did not suppose that subects are able to compute
the p-validities in order to reason, but instead postulated that subjects are equipped with
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a few heuristics that often result in p-valid inferences. They propose that, people use these
heuristics to generate putative conclusions (system 1); some subject will later test (accord-
ing to the proponents, the “test” part is not well developed among humans) the validities
of these possible conclusions (system 2).

The generation heuristics are:

· Min-heuristics: the most preferred conclusion has the same sentence type as the least
informative premise.

· P-entailments: the second most preferred conclusion is a p-entailment of the most
preferred conclusion.

· Attachment heuristic: If just one possible subject noun phrase (e.g., Some R) matches
the subject noun phrase of just one premise, then the conclusion has that subject noun
phrase.

The terminology “informativeness” origins from Shannon’s information theory: the smaller
the probability of a signal, the greater the amount of information it carries. Hence, sen-
tence that carry the least information admits the highest probability. Therefore, subjects
are supposed to have a preference for sentences of the less informative sentence types over
the rest. Taking the p-entailment relation into consideration (means, the entailed sentence
should not contain more information than its premise), a rank order for the sentence types
of syllogistic sentences is: all > some > no > some not.

The two test heuristics are:

· Max-heuristics: subjects’ confidence in the conclusions generated is in positive pro-
portion to the informativeness of the more informative premise. Lower confidence
level means that subject is more likely to conclude that nothing follows.

· Some not heuristic: avoid producing some not sentences since they are highly unin-
formative.

Chater and Oaksford (2008) used the following example to illustrate the heuristics.

Premises: All P are Q
Some R are not Q
————————–

Some Not (Min-Heuristic)
Some R are not P (Attachment Heuristic)

A further conclusion:
Some R are P (p-entailment)

According to Chater and Oaksford (1999) the PHM performs well in predicting human
behavior in syllogistic reasoning. The introduction of informativeness, both in evaluating
subjective confidence and in generating the conclusions, interestingly brings the probabilis-
tic basis into the modelling. However, there are critics as well: the model sometimes arrives
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at conclusions that are not p-valid, which is inconsistent with its own proposal; besides,
the five heuristics appears to be quite “magical”: it is hard to imagine how the brain could
have developed such capabilities.

2.7.5 The Natural Logic Approach

Geurts (2003) designed a proof system for syllogistic reasoning that operates on the syl-
logistic sentences. He further enriched the proof system with a difficulty weights assigned
to each inference rules to evaluate the difficulty of valid syllogisms. The most important
component of the proof system is the monotonicity rule. Geurts’ proof system for syllogistic
reasoning, equivalently, consists of the following rules.

· All-Some: “All A are B” implies “Some A are B”.

· No-Some not: “No A are B” implies “Some A are not B”.

· Conversion: “Some A are B” implies “Some B are A”; “No A are B” implies ”No B
are A”.

· Monotonicity : If A entails B, then the A in any upward entailing position can be
substituted by a B, and the B in any downward entailing position can be substituted
by an A.

· Additional Rule: “No A are B” and “Some C are A” implies ”Some C are not B”.

Here the additional rule is a supplement of the monotonicity rule: we see “No A are B” is
equivalent as “All A are not B”, or “A” entails “not B”; by applying the monotonicity rule
to “Some C are A” we have “Some C are not B”.

Geurts assumed that different rules cost different amount of cognitive resources. He gives
each subject an initial budget of 100 units; each use of the monotonicity rule costs 20
units (the extra rule costs 30 units); a proof containing a ”Some Not” proposition costs
an additional 10 units. Taking the remaining budget as an evaluation of the difficulty of
each syllogism, the evaluation system fits the experimental data from Chater and Oaksford
(1999) well. However, the system cannot make any evaluation on most invalid syllogisms,
hence cannot explain why subjects can possibly arrive at invalid conclusions (according to
Geurts, the system was never intended to give a “full-blown account of syllogistic reasoning”
in the first place, see also Khemlani and Johnson-Laird (2012)).

2.7.6 The Mental Logic System

The mental logic theory (see Section 2.2), proposed as a unified theory of reasoning, also
yields its syllogistic version. Rips investigated the model through a number of experiments.
He has showed that the system is able to fit the data reasonably well. The model, however,
is not able to make concrete predictions about the invalid syllogisms that are likely to be
endorsed by people: after all, the system only makes logically sound inferences, hence, has
no mechanism to explain the mistakes made by people. According to Rips, errors may
occur for various reasons, such as failure to recognize the possibility of applying a rule,
failure to retrieve a rule, trying to apply a complicated rule, etc. Although the model can
predict which steps of the inference are more likely to lead to mistakes, the model is not
able to specify which particular mistakes the subject is likely to make.
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Chapter 3

Motivations

This thesis is devoted to the psychology of reasoning, or in particular, a probabilistically
weighted natural logic for syllogistic reasoning. Mathematically the logic takes the form
of a generative model in which the values of the parameters are derived from data using
machine learning techniques. In this chapter we motivate the key factors that shape the
design of the model.

3.1 Mental Representation

The intimate connection between reasoning and language generation indicates that it is
worthwhile to ask whether reasoning has a linguistic mental representation, or to what
extent can the mental state of reasoning be represented by natural language. We have
mentioned the mental logic proposal by Rips, for which a natural deduction system is de-
signed and implemented. Let us note that apart from logical quantifiers, Rips has also
included sentential connectives in his system. However, the system is still formulated as so-
phisticated formal language, its rules and language being relatively abstract, and thus, it is
hard to imagine that these formal systems are implemented in the human brain, especially
for those who have no formal trainings (see also Johnson-Laird (1997)).

As an attempt to make the mental representation more intuitive and psychologically plau-
sible we hope to design natural logic based theories for reasoning. That means, the mental
representations will be given directly as natural language sentences, without an intermediate
layer of an abstract formal language.

3.2 Probability on the Arena: Reasoning as a Stochastic
Process

We assume that reasoning, at least as far as we can learn from psychological experiments,
admits an underlying stochastic process. The randomness may come from two sources.
Firstly, randomness may origin from the subject level, namely, each subject may adopt
different possible inferential operations with different probabilities. Secondly, randomness
may origin from the population level. It may be that each subject makes relatively constant
choices when reasoning, however, different subjects may vary significantly in their ‘reason-
ing style’, hence, the reasoning on the population level may be best viewed as a random
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process. Our model is designed assuming that the randomness comes from the subject level,
however, when the population is measured as a whole, we cannot distinguish which of the
two possibilities (or both) yields the source of the randomness.

3.3 Mistakes or “Realistic Validity”

The Wason selection task (see Chapter 2) shows that human reasoning does not follow the
path predicted by traditional logic. We may say that people make mistakes. The use of
the word “mistake” is justified here by the fact that what people do is not logically valid;
or we may say that traditional logic fails to capture the pattern of human reasoning, and
there may be a “realistic validity” beyond traditional logical validity, whose characteriza-
tion would be the ultimate task of the cognitive computational level theories of human
reasoning. In the context of this thesis we will prefer the latter solution. We would like
to capture the human reasoning, in some sense, regardless of its level of agreement with
traditional logical validity. We shall, in our model, enable the reasoners to diverge from the
track of logical validity and make their “favorite” mistakes.

3.4 The Difficulty of Reasoning

Evaluating difficulty of reasoning is a very interesting topic of research. Geurts (2003)
designed a natural logic for syllogistic reasoning (see Section 2.7). He estimated the cogni-
tive difficulty of each inference rule and used the complexity of the minimal proof, which
depends on the difficulty of the inference rules, to evaluate the difficulty of each syllogisms.
Similarly, Gierasimczuk et al. (2013) designed a model of the deductive mastermind game
based on analytic tableau method. By analyzing the data collected online the authors were
able to find out a few factors that are crucial to the difficulty of the problem items.

We agree that each inference step is of different cognitive complexities and that the difficulty
of each syllogism depends on the overall complexity of its proof. We will adopt machine
learning techniques to evaluate these difficulties, and int turn, weight the logic with them.
This should improve the descriptive performance of the reasoning model based on natural
logic. Methodologically, machine learning techniques serve as a natural extension of the
statistical tools experimental psychologists have been using to analyze the experimental
data.
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Chapter 4

A Generative Model For Syllogistic
Reasoning

In this chapter we propose models for syllogistic reasoning and then train them from the
data. The model has three versions of increasing complexity. In the following, we introduce
the models, the training method, and the results of experimental evaluation.

4.1 Bayesian Generative Model

A Bayesian generative model is a probabilistic model that randomly generates observable
data and possibly depends on a few parameters. It could be used to simulate a procedure
modeled as a stochastic process. As an example, a random number generator that gener-
ates zeros with probability 0.4 and ones with probability 0.6 could simulate unfair coin flips.

In this thesis we will use a Bayesian generative models to simulate the procedure of rea-
soning. We assume that the mental events constituting reasoning have a random structure.
The conclusions of reasoning are the observable data. The randomness depends on a few
parameters, and the training will help to find the values of these parameters under which
the model achieves optimal performance with respect to the data.

4.2 A Generative Model: Version 1

Version 1 of the model is based on a sound and complete probabilistic natural logic for
the syllogistic fragment. We begin this section by discussing some theoretical assumptions;
afterwards we formally define the model.

4.2.1 Theoretical Assumptions

Mental Representation

Similar to what Rips (1994) proposed, we take set of syllogistic sentences as the mental
representation of reasoning. Namely, the subject maintains a set of sentences in the working
memory to represent the state of reasoning, or more specifically, the subject keeps a record
of the sentences that he considers true at the moment. As an example, given the “AE4”
premises, the subject generates the mental representation that looks like
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All C are B
No B are A

We will refer to each representation as a state. Reasoning operations change the mental
states. When performing reasoning, the subject generates a sequence of states in the
working memory, where the initial state is the set of premises, and the final state contains
the conclusion. These states are linked by the reasoning events, which can be a specific
adoption of an inference rule. For example, given the “AE4” premises, if the subject adopt
the “All - Some” rule (i.e., “All A are B” implies “Some A are B”) on the premise “All C
are B”, a “Some C are B” will be obtained, possibly as a conclusion. The subject may also
terminate the reasoning and decide that nothing follows, see Figure 4.2.1.

All C are B; No B are A

All−Some

��

Terminate

++

All C are B; No B are A; Some C are B All C are B; No B are A; Nothing Follows

Figure 4.1: The Mental Representations

We would like to point out here that the sentences in each state may not be logically con-
sistent. There are many reasons for this assumption. For example, people tends to adopt
illicit conversions (see Section 2) which often leads to the inconsistency. After all, peo-
ple do often make mistakes resulting in conclusions that are inconsistent with assumptions,
even if reasoning in a conscious, deliberate way (see, e.g., Johnson-Laird and Byrne (1991)).

4.2.2 Model Definition

Language and Proof System

We restrict ourselves to the syllogisms following the scholastic order (see Section 2.4 for the
details). We base our model on a slightly simplified version of the proof system provided in
Geurts (2003), which is sound and complete with regard to the traditional validity of the
syllogistic fragment. The proof system has four rules. The most important component is
the monotonicity rule:

A⇒ B B ⇒ A
. . . A+ . . . . . . A− . . .

—————– —————–
. . . B+ . . . . . . B− . . . Monotonicity

where a “ + ”(−) indicates that the sentence is upward (downward) entailing at the corre-
sponding argument (see Section 2.7.5). In words, any predicate A in an upward entailing
position can be replaced by its entailments; any predicate A in an downward entailing
position can be replaced by the predicate that entails it. Specifically, in the context of
syllogistic reasoning, we have

21



? If A entails B (i.e., All A are B), then the A in any upward entailing position can be
substituted by a B, and the B in any downward entailing position can be substituted
by an A.

? “No A are B” and “Some C are A” implies “Some C are not B”.1

The second rule is the conversion rule:

Some A are B No A are B
—————– —————–

Some B are A No B are A Conversion

One source of psychological plausibility of this rule is that people may have preference for
symmetric relations (see, e.g., Dickstein (1981)). The remaining two rules are:

All A are B
—————–

Some A are B All-Some

No A are B
—————–

Some A are not B No-Some not

Note that these rules implicitly indicate that both “All A are B” and “No A are B” implies
that A is not empty. We summarize the rules as follows.

• All-Some: “All A are B” implies “Some A are B”.

• No-Some not: “No A are B” implies “Some A are not B”.

• Conversion: “Some A are B” implies “Some B are A”; “No A are B” implies “No B
are A”.

• Monotonicity :

– If A entails B (i.e., All A are B), then the A in any upward entailing position
can be substituted by a B, and the B in any downward entailing position can be
substituted by an A.

– “No A are B” and “Some C are A” implies “Some C are not B”.

As an illustration, a proof for the EA2E syllogism is as follows.

No C are B (1)
All A are B (2)
—————–
No B are C (3) Conversion(1)
No A are C (4) Monotonicity(2,3)

1To make it explicit that this is also an adoption of the monotonicity rule, note that “No A are B” means
“A entails not B”. See also Section 2.7.5
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The Tree Representation

Recall that each syllogism consists of two sentences as the premises. If we take the repre-
sentations of the mental states (i.e., the formulas that have been “proved” to be true) as
the nodes and the adoption of inference rules as the edges, the reasoning process can be
represented by a tree.

Definition 4.2.1 (The inference tree). Given P as the set of premises, R = {Monotonicity,
Conversion, Allsome, Nosomenot} as the set of inference rules, the inference tree is
determined as follows.

• Each node S is identified by 〈PS , indS〉, where PS is the set of sentences that have
been proved at node S, indS is an index that is unique for each node.

• The root R represents the initial state. Its set of proved sentences PR = P .

• An inference event is the specific adoption of a particular inference rule; the type
of the event is the name of the inference rule. For each node S, the set E(S) col-
lects all events that can happen at node S, i.e., all possible proper adoptions of the
inference rules (“proper” meaning the adoption expands the set of proved sentences).

• Each element of E(S) yields a child node of S, with the set of “proved” sentences
modified accordingly.

As an example, consider the EI1 premises for which the set of premises is

Some A are B (1)
No B are C (2)

Now consider the inference options: we can apply the conversion rule on any one of the
sentences, and we can apply the monotonicity rule on both sentences. Hence the set of
possible events at the root is

E(R) = {Conversion(1), Conversion(2),Monotonicity(1, 2)}

Now consider the OE1 premises. The set of premises is

No A are B (1)
Some B are not C (2)

The set of events at the root is

E(R) = {No− Somenot(1), Conversion(1)}

There are two elements in E(R), hence the root has two children. For the first one, event
No−Somenot(1) would take place, expanding the set of premises with a “Some A are not
B”; for the other one, event Conversion(1) would occur, adding a “No B are A” to the set
of proved sentences. See Figure 4.2.2.
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No A are B; Some B are not C

No−Somenot(1)

��

Conversion(1)

++

No A are B; Some B are not C; No B are A

No A are B; Some B are not C; Some A are not C . . . . . .

. . . . . .

Figure 4.2: The first two levels of the inference tree of the OE1 premise

Note that each path in the tree, from the root to a leaf, yields a proof of the syllogism that
consists of the premises and the latest member of the set of proved sentences of the leaf.

We made two technical adjustments to the inference tree, due to both computational and
psychological considerations.

We excluded the adoption of the rules that generates no new members for the set of proved
sentences. From the computational perspective, we want to make sure that the tree is finite
(without the assumption this is not guaranteed: as an example, the conversion rule can be
infinitely adopted whenever there is a sentence of type “Some” or “No”); from the psycho-
logical perspective, it is simply not plausible to consider the scenario in which a subject
repeatedly use one rule.

We limit the height of the tree to four, i.e., each path from the root to a leaf has a
maximum length of four, endpoints included (that means, each proof sequence has at most
five sentences). From the computational perspective, limiting the height of the tree keeps
the size of the tree reasonable, which makes possible the training procedure (this also makes
the tree finite, with or without the first assumption). Besides, the restriction is safe, since it
has been verified that all valid syllogisms can indeed be proved by our system within three
steps, and three is minimal (as for the model, the subject does not necessarily follow the
optimal paths). From the psychological perspective, it is plausible to assume that subjects
do have restricted cognitive resources that may correspond to something like a limited
steps of inference. One could naturally question our arbitrary choice of the cut-off point.
However, the number has been actually determined from the data: the model performs
best with the step restriction equal three. So it is the data that tells us what is the proper
threshold.

Probabilistic Weights

We now bring probability into play, making the model a Bayesian generative model. We
base the model on the inference tree we just defined. We assume that different inference
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rules are of different cognitive complexities: the possibility to apply some of the rule can
be quite straightforward while that of adopting some other may be harder. Or under
alternative interpretation, the subject may prefer some rules over others. We represent
the difference by the probabilities with which the subject adopts each rule: easier (more
preffered) rules get higher probability, while more difficult (less preferred) ones receives
lower probability. Formally, we assign each inference rule a tendency value, which is
intended to be positively related to the probability that the rule is assigned. Consequently,
each node of the inference tree receives a probability.

Definition 4.2.2 (The generative story. Version 1). The set of parameters are the tenden-
cies:

θ0 = {Tmonotonicity, Tconversion, TAll−Some, TNo−Somenot}

The generating probabilities are determined as follows.

• The root receives probability 1.

• For each node S, the probability N receives is inherited by its children. Specifically,
a node Sr resulting from the adoption of inference rule r at S receives conditional
probability

p0(Sr|S, θ0) =
Tr∑

r∈R cr · Tr
where R is the set of inference rules; cr is the number of ways that rule r can be
adopted at S; Tr represents the tendency value of rule r.

As an illustration, consider the OE1 premises we have discussed above. Recall that the set
of premises is

No A are B (1)
Some B are not C (2)

The set of events at the root is

E(R) = {No− Somenot(1), Conversion(1)}

Hence by the definition, the probability to adopt the No-Somenot rule at the root, namely
the conditional probability that the first node Nl receives is

p0(Sl|R, θ0) =
TNo−Somenot

1 · TNo−Somenot + 1 · TConversion

and the second node receives probability

p0(Sr|R, θ0) =
TConversion

1 · TNo−Somenot + 1 · TConversion
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The Predictions of the Model

The model predicts probability with which every syllogistic inference should be endorsed.
For any premise set (note that this the figure is also determined by the two particular
premise sentences in the premise set), there are five possible conclusions in total:

Y = {A, I,E,O,NV C}

where A, I,E,O,NV C stands for All A are C, Some A are C, No A are C, Some A are
not C and ‘nothing follows’ (or No Valid Conclusion), respectively. When the inference
terminates (i.e., when the subject arrive at a leaf node), the subject draw conclusion A, I,
E or O if the sentence is included in the set of proved sentences of the leaf node; the subject
concludes ‘nothing follows’ if none of the A, I, E, O conclusion sentence has been proved.
We say that a node N is consistent with a conclusion y if y can be concluded from N .

Note that each leaf node S uniquely determines a path from the root to itself. We denote
the path by S0 . . . Sn where S0 = R (the root) and Sn = S (the current node). Hence the
node S receives probability

p0(S|R, θ0) =
∏

0≤i<n
p0(Si+1|Si, θ0)

where each conditional probability is defined as in Definition 4.2.2. The probability that a
conclusion y is drawn is hence

p′0(y|R, θ0) =
∑

S is a leaf consistent with y

p0(S|R, θ0)

in order to align the predictions with the experimental data, we normalize the probabilities,
i.e., the predicted probability of conclusion y given premises X is

p0(y|X, θ0) =
p′0(y|R, θ0)∑

y′∈Y p
′
0(y
′|R, θ0)

4.3 Data

We use the data from the meta-analysis by Chater and Oaksford (1999), as is shown in
Table 2.1. Occasionally we denote the data set as {Xi, yi}i≤n, where Xi stands for the pair
of premises and yi stands for the conclusion. We randomly select 50% of the premises (i.e.,
half the member of X) and use the corresponding data as the training data, according to
which we train the model; while the rest of the data are used as the testing data (which
was kept invisible during the training).

4.4 Training

We train the model according to the maximum likelihood target function. Namely, we need
to compute

arg max
θ0

p0({(Xi, yi)}i≤n|θ0)
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Intuitively, we want to find the values of the parameters that maximizes the probability
of the observed data, which is one of the plausible definitions of “optimal performance”.
We use the Expectation-Maximization algorithm to train the model. The initial values of
the parameters are sampled from the uniform distribution over [0, 1]. The sketch of the
training goes as follows2

• E − SteptE − SteptE − Stept: For each Xi, yi, we compute

p0(yi|Xi, θ
t
0)

• M − SteptM − SteptM − Stept: The purpose is to estimate θt+1
o by

θt+1
0 = arg max

θ0

L(θ0; θ
t
0) = arg max

θ0

∑
i≤n

∑
S∈S(Xi,yi)

p0(S|Xi, θ
t
0)

p0(yi|Xi, θt0)
· p0(S|Xi, θ0)

where S(Xi, yi) collects all nodes in the tree of Xi that has a child who is consistent
with yi. In each iteration, to follow the gradient direction, we compute

θt+1
0 = θt0 + η · ∂L(θ0; θ

t
0)

∂θ0

where η is the step size.

4.5 Evaluation

We use a mixed means of evaluation. We mainly use the evaluation method proposed by
Khemlani and Johnson-Laird (2012) that is based on the signal detection theory, and is
applicable to all theories of the syllogisms. Where applicable, we also adopt a few more
means of evaluation as an attempt to extract more information from the data.

4.5.1 The Khemlani and Johnson-Laird (2012) Method

Khemlani and Johnson-Laird (2012) assume that the conclusions of the participants are
noisy, in the sense that unsystematic errors occur frequently. Hence, according to Khem-
lani and Johnson-Laird (2012), the experimental data are classified into two categories:
those conclusions that appear reliably more often than chance level, which a theory of the
syllogisms should predict to occur; and those that do not occur reliably more than chance
level, which a theory should predict will not occur.

In our context, there are five possible conclusions that can be drawn by subject. The
chance level is thus 20%. In the following we count a conclusion as reliable if it is drawn
significantly often, i.e., in at least 30%3 of the trials.4

2The details of the training algorithm is not important for our thesis. In case of need, one could cf. e.g.,
Dempster et al. (1977); Baum et al. (1970).

3To align with Khemlani and Johnson-Laird (2012), we set the significant level as 1.5 times the probability
of the chance level as they did.

4This is slightly different from what used by Khemlani and Johnson-Laird (2012) since they also included
the non-scholastic order syllogisms, hence there are nine possible conclusions in their experiments, while we
have five.
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The method is generally applicable to all theories of the syllogisms. As far as a theory
predicts what will be concluded from each pair of premises, the method can be applied
to evaluate the theory. According to the type of fitting, the predictions of a model are
classified into four categories:

Predictions \ Exp. Data < 30% ≥ 30%

< 30% Correct Rejection Miss
≥ 30% False Alarm Hit

Table 4.1: Break-down of Predictions

4.5.2 The Entropy Based Measurements

The entropy of a discrete random variable X with possible values X is defined as

H(p) =
∑
x∈X
−p(x) · log(p(x))

where p(x) is the probability of {X = x}. For each item x ∈ X , −log(p(x)) is also called the
surprisal of x. The idea is that, the less the probability, the higher the amount of informa-
tion that is contained in the occurrence of the item. Entropy measures the average amount
of information contained in each item of the distribution, weighted by the probabilities. It
is a measurement of the amount of information (or uncertainty) contained in a probabilis-
tic distribution. To be more elaborative, the entropy of constants is zero; the entropy of a
binary distribution where the items takes probabilities 0.01, 0.99 is close to zero (since the
amount of uncertainty is low: for 99% probability the second item shall occur); the entropy
of a binary distribution where the items take probabilities 0.5, 0.5 is 1, which is highest
among binary distributions: the distribution is completely random. Entropy is a crucial
parameter of a distribution. In the context of cognitive science, it is also a lower bound of
the amount of information that is processed during a cognitive task. Besides, differences in
the entropy are indicators that the corresponding cognitive processes are different.

The formulation of the predictions of our model and that of the experimental data coincides
with each other, in the sense that they both take the form of probabilistic distributions: if
we fix the premises, the experimental data we use provides the probability (or frequency)
that participants draw each conclusion; on the other hand, our model is a Bayesian gen-
erative model, which, given the set of premises, predicts the probability that the subject
draws each conclusion (this is not the case for many other syllogistic theories that only pre-
dict which conclusions should be drawn). Therefore, we are enabled to use a few entropy
based measurements as applied to probabilistic distributions: the mean entropy, the mean
entropy error and the mean KL divergence.

The mean entropy computes the average entropy of the probabilistic distributions of the
conclusion following from each pair of premises. Namely, we compute

MEnt =
∑
i≤n

(
1

n
·
∑
y∈Y
−p(y|Xi)log(p(y|Xi)))

where Xis are the pairs of premises and Y collects all possible conclusions. For each pair of
premises, it measures the average amount of information of the distributions of the possible
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conclusions. It is also a lower bound of the amount of information that is processed by the
cognitive system, or in some senses, the workload. For example, if the experimental data
admits a 99% − 1% distribution, of which the entropy is low, then the cognitive system
should have done that with ease; if the distribution is instead 50% − 50%, then it is well
possible that the participants struggled between the two options, and that the cognitive
system made a lot of difficult decisions to arrive at the conclusion. Khemlani and Johnson-
Laird (2012) also observed that the entropy of the distribution appears positively related
to the difficulties of the syllogisms: the higher the entropy, the more difficult the choice.

The mean entropy error is the mean absolute value of the differences between the entropies
of the predicted distributions and the distributions provided by experimental data, and is
computed as

MEE =
∑
i≤n

(
1

n
|H(p(·|Xi))−H(p′(·|Xi))|)

where H(·) computes the entropy of a random variable. The mean entropy error is used
to aid the mean entropy measurement in evaluating the difference in the entropy of the
distributions.

The mean KL divergence from the data distribution to the predictions of a model is com-
puted as

MKLD =
∑
i≤n

(
1

n
·D(p(·|Xi)||p′(·||Xi))) =

∑
i≤n

(
1

n
·
∑
y∈Y

p(y|Xi)log(p(y|Xi)/p
′(y|Xi)))

where p′(y|Xi) is the predicted probability of conclusion y given pair of premises Xi. The
KL divergence measures the information loss caused by replacing the data distributions with
the predictions of the model, or in some senses, the “distance” from the data distribution
to the predictions (the KL divergence is not symmetric, though). The KL divergence
D(p||q) is only defined if for all x, q(x) = 0 implies p(x) = 0. In our context, that means
whenever a conclusion is drawn in at least one experimental trial, the model should assign
positive probability to the corresponding prediction. This requirement is only fulfilled by
the complete version of our model, which is also the only case when we compute the mean
KL divergence. As a summary, the MKLD is positively related to the difference between
the two distributions, every item counted.

4.5.3 The Approval Rate

We compute the proportion of premises for which the conclusion that receives the highest
probability agrees with the experimental data (i.e., is also the one that is most likely to be
endorsed by the experimental participants. We refer to this item as the chief conclusion in
the following, and the proportion is referred to as the approval rate). Compared with the
KL divergence which measures the distance between the distributions, the approval rate
evaluates the predictions of the model on the item that is endorsed by most experimental
participants.

The approval rate is interesting from the following perspectives: the chief conclusion holds
the highest probability (and quite often, a dominating majority), and carries a lot of infor-
mation of the distribution; it is also the one that is most likely to be endorsed, and a model
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should be able to predict the most likely response well.

The approval rate is applicable only when the predictions of the model takes the form of
probabilistic distributions. All versions of our model fulfils this condition.

4.6 Version 1: Training Result and Discussion

4.6.1 Training Result

The training results are shown in the following tables.

Data Set Correct Prediction Size Mean Entropy
————————– ————————–
Count Percentage Predictions Data

Test Set 133 83.1% 160 0.140 0.875
Training Set 128 80.0% 160 0.210 0.852
Complete Set 261 81.6% 320 0.175 0.864

NVC Premises* 187 83.1% 225 0 0.921
Valid Syl. Premises* 74 77.9% 95 0.589 0.729

Valid Syllogisms 23 95.8% 24 N/A N/A

Table 4.2: Version 1: Training results evaluated according to the Khemlani and Johnson-
Laird (2012) method.
* The NVC Premises are those from which no valid conclusion follows; the valid syl.
premises are those from which at least one valid conclusion follows; the valid syllogisms
are the subject syllogisms that is valid.

We see that the model is good at prediction the behavior of participants on valid syllogisms,
making 95.8% correct predictions; whereas the number is 83.1% on the test set.

Data set Approval Rate Mean Entropy Error

Testing Set 0.66 0.783
Training Set 0.56 0.784
Complete Set 0.61 0.783

NVC Premises* 0.42 0.921
Valid Syl. Premises* 0.69 0.457

Table 4.3: Evaluation: Version 1
* The NVC Premises are those from which no valid conclusion follows; the valid syl.
premises are those from which at least one valid conclusion follows.

The approval rate is around 0.6. The mean entropy error is very high, which indicates that
what simulated by the model is probability far from the realistic psychological process. The
following table shows a break down of the predictions.
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Data set Hit Correct Rejection Miss False Alarm Size

Testing Set 26 107 15 12 160
Training Set 25 103 18 14 160
Complete Set 51 210 33 26 320
NVC Premises 35 152 28 10 225

Valid Syl. Premises 16 58 5 16 95
Valid Syllogisms 14 9 0 1 24

Experimental Data 85 235 0 0 320

Table 4.4: Version 1: Break Down of Predictions
* The NVC Premises are those from which no valid conclusion follows; the valid syl.
premises are those from which at least one valid conclusion follows.

The table shows the break down of predictions according to the Khemlani and Johnson-
Laird (2012) method. We see that the performance of the model admits no noticeable
difference between the test set and the training set. Also we see that the experimental data
admits some bias between the positive samples and the negative samples: 85 out of 320
syllogisms are endorsed by the participants, while 235 are rejected.

The logarithms of values of the parameters are shown in the following table.

Tendencies Tmonotonicity Tconversion Tall some Tno somenot
Logarithm Values 0.78 2.92 2.06 0.96

Table 4.5: Version 1: Logarithms of the Values of the Parameters.

The model appears good at predicting the behavior of subjects on valid syllogisms, making
95.8% correct predictions. The only valid syllogism that the model is not able to predict
correctly is the EI4O syllogism: experiments admits a percentage of 27% that subjects
endorse it, while the model predicted a 32%, causing a close false alarm.

The shortcomings of the model is also obvious. In most cases, the model has no mechanism
to explain the errors subjects make. When no valid conclusion follows from the premises,
the model can only conclude that nothing follows (this is also why the mean entropy of
the predictions are so low), however, the experimental data clearly indicates that subjects
do make systematic mistakes. The later versions will be devoted to the modelling of these
mistakes.

4.6.2 Summary

We now summarize the basic version of the model.

Based on a probabilistic natural logic of syllogistic reasoning, we implemented a Bayesian
generative model by assuming that different inference rules are adopted with different prob-
abilities by subjects. The theoretical assumptions are as follows.

• Sentences are the mental representation of the state of reasoning.
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• Inference rules are among the basic mental operations of reasoning.

• Different inference rules are of different cognitive difficulties. The differences are
reflected by the differences in the probabilities that they are adopted.

• Adoptions of inference rules are probabilistically independent of the previous rules.

• Subjects have limited cognitive resources for reasoning. This difference is reflected by
a maximum step they can make in a proof.

• Subjects make no redundant application of inference rules, at least in our context
when the lengths of the proofs are restricted.

The performance of the model is summarized as follows.

• The model appears good at predicting the behavior of subjects on valid syllogisms.

• One vital shortcoming is that the model has little mechanism to predict the patterns
of mistakes. In fact, the model can only conclude nothing follows when no valid
conclusion follows from the set of premises, which is clearly different from the behavior
of the subjects.

4.7 The Generative Model: Version 2

4.7.1 Model Definition

Previous discussion shows that version 1 has the principle shortcoming when it comes to
predicting the errors. The second version attempts to partially solve the problem by in-
cluding the illicit conversions.

One systematic mistake people make is adopting the Illicit Conversions, which is ob-
served in a number of experiments and is psychologically plausible (see Section 2.7.2). We
expect the inclusion of these operations to simulate some systematic mistakes. We decide
not to distinguish between the illicit conversions and their licit counterparts: it is simply
psychologically implausible that people distinguish between them while adopting the illicit
conversions without doubt as if they were licit. Hence what we do is to extend the existing
conversion rule to include the illicit conversions. After integrating the illicit conversions
into the model, the rules of our underlying proof system are now

• All-Some: “All A are B” implies “Some A are B”.

• No-Some not: “No A are B” implies “Some A are not B”.

• Conversion: For all sentence types Q, Q(B,A) follows from Q(A,B).

• Monotonicity :

– If A entails B (i.e., All A are B), then the A in any upward entailing position
can be substituted by a B, and the B in any downward entailing position can be
substituted by an A.

– “No A are B” and “Some C are A” implies “Some C are not B”.

The definition of the inference tree and the training methods remains unchanged.
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4.7.2 Training Results

The following tables show the training result.

Data Set Correct Prediction Size Mean Entropy
————————– ————————–
Count Percentage Predictions Data

Test Set 149 93.1% 160 0.228 0.875
Training Set 145 90.6% 160 0.354 0.852
Complete Set 294 91.9% 320 0.291 0.864

NVC Premises* 205 91.1% 225 0.534 0.921
Valid Syl. Premises* 89 93.7% 95 0.188 0.729

Valid Syllogisms 23 95.8% 24 N/ A N/ A

Table 4.6: Training results evaluated according to the Khemlani and Johnson-Laird (2012)
method.
* The NVC Premises are those from which no valid conclusion follows; the valid syl.
premises are those from which at least one valid conclusion follows.

Data set Approval Rate Mean Entropy Error

Testing Set 0.97 0.665
Training Set 0.88 0.538
Complete Set 0.92 0.601

NVC Premises* 0.95 0.733
Valid Syl. Premises* 0.91 0.290

Table 4.7: Evaluation: Version 2
* The NVC Premises are those from which no valid conclusion follows; the valid syl.
premises are those from which at least one valid conclusion follows.

We see that the performance of the model has been significantly improved compared with
the first version. The model now makes 93.1% correct predictions on the test set (and 91.9%
on the complete set), which is around 10% higher than the previous version, or makes less
than half the mistakes. Also, the approval rate is significantly better, reaching a 0.97 on
the test set. However, the mean entropy error remains quite large, which again indicates
that the model is not telling the whole story. Also note that the mean entropy error of the
premises that yields at least one valid conclusion (the item “Valid Syl. Premises”, the mean
entropy error is 0.290) is dramatically lower than that of the rest (e.g., the test set, where
the error is a 0.665). The difference indicates that what our model fails to capture about
human reasoning is most likely related to what people do when there is no valid conclusion:
do they guess, and how do they make mistakes.
The following table shows a break-down of the predictions.
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Data set Hit Correct Rejection Miss False Alarm Size

Testing Set 33 116 8 3 160
Training Set 34 111 9 6 160
Complete Set 67 227 17 9 320

Valid Syllogisms 14 9 0 1 24
NVC Premises* 47 158 16 4 225

Valid Syl. Premises* 20 69 1 5 95
Experimental Data 85 235 0 0 320

Table 4.8: Break-down of Predictions
* The NVC Premises are those from which no valid conclusion follows; the valid syl.
premises are those from which at least one valid conclusion follows.

The values of the parameters are shown in the following table.

Tendencies Tmonotonicity Tconversion Tall some Tno somenot
Logarithms of Values 1.84 4.50 -0.63 -0.24

Table 4.9: Values of the Parameters.

4.7.3 Discussion

The performance of the model saw a significant improvement. The inclusion of illicit con-
versions improved the model’s capability for predicting the errors in: the vanilla version
suffered 33 misses, while the number is halved to 17 for the extended version.

The model reached an overall percentage of correctness of 91.9% which appears promising.
However, the training results clearly indicate that the model is not telling the complete
story. Even though the inclusion of illicit conversions allowed the model to predict some
mistakes, there are still a lot that the model cannot predict. For example. in the case
of the II, IO, EE, OI, OE, OO syllogisms, the model can conclude nothing but ‘nothing
follows’. According to the Khemlani and Johnson-Laird (2012) method, the failure to
predict the behavior of the participants on these syllogisms is systematic. Therefore, the
model needs further improvements to predict these mistakes. We can also see the shape
difference between the mean entropies: the mean entropy of the experimental data is 0.864,
while that of the predictions is 0.291. This is a clear signal that what the model simulates
is a different procedure from the psychological process.

4.7.4 Summary

We extended the conversion rule in version 1 of the model to include the illicit conversions.
The modification is made based on the following assumptions.

• Subjects can deliberate and still err when reasoning.

• Subjects frequently adopt the illicit conversions, without realizing that the conversions
are different from their licit counterparts.
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The training results of the extended version shows that the inclusion of illicit conversions
significantly improved the performance of the model. However, the predictions still suffer
a lot of systematic problem; meanwhile, the mean entropy of the predictions differs a lot
from that of the data, which indicates that what the model does is still quite different from
the behavior of the subjects. The mean entropy error is significantly lower for the premises
that yield at least one valid conclusion, which indicates that what the model fails to capture
about human reasoning may have mostly to do with handling the situation when no valid
conclusions follow.

4.8 The Generative Model: the Complete Version

4.8.1 Theoretical Assumptions

As an attempt to improve the performance of version 2 of the model, and in particular, to
allow the model to further predict the errors subjects make, we extend the model further
to include the guessing events, which, in parallel with the inference events (i.e., the
adoption of inference rules), are yet another kind of mental events that lead to the expan-
sion of the set of proved sentences. The underlying assumption is that in the reasoning
procedure, apart from the formal reasoning, subjects have a probability to “fall off” and
make a heuristic guess. The guessing procedure is a less deliberate process, intended to
explain what happens when subjects partially give up on the inference and try to obtain a
most likely conclusion within one inference step. The reason to turn to the guessing sce-
nario may have to do with an increasing complexity of reasoning or the subject doubting
the conclusion that was already obtained. Conceptually, the complete version of the model
has two parts: the inference part, as is already defined, and the guessing part, which is to
be introduced.

Our model of the guessing scenario consists of two components. One of them determines the
probability that a subject guesses “nothing follows”, the other determines the probability
that she guesses the most likely conclusion from the remaining set of conclusions.

For the first part, we involve the notion of informativeness. Recall that informativeness
is the measure of the amount of information that each type of sentence carries (see Section
2.7.4). Chater and Oaksford (1999) proposed that the level of confidence subjects have in
conclusions is related to the level of informativeness of the premises. In particular, the more
informative the premise sentences, the more confident are the subjects in the existence of
their conclusions, namely, the less likely they will conclude “nothing follows”. We adopt this
assumption by making the probability that a subject guesses “nothing follows” negatively
related to the informativeness of the premise sentences. We further assume that, when
the subject concludes ‘nothing follows’ from the inference, there is a probability, which is
positively related to the informativeness of the premises, that she doubts the conclusion
and makes a guess to try to get another conclusion.

For the second part, we integrate the atmosphere hypothesis into our model. Recall that
the atmosphere hypothesis claims that when there is a negation in the premises, subjects
are likely to draw a negative conclusion; when there is a “some” in the premises, subjects
tend to include a “some” in the conclusion; when neither is the case, the conclusion is often
affirmative. The premises are creating a kind of “atmosphere” that affects the conclusion.
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In the following we will refer to the type of sentence that is predicted by the atmosphere
hypothesis as the dominant type. To be precise, the dominant type in the premises is
the one that is greater by the order

A < I < E < O

5 We assume that when making a guess, the subject is likely to arrive at the conclusion
with the dominant type.

One interesting question concerns he potential relationship between atmosphere and infor-
mativeness. The proponents of informativeness assumed the following order:

A > I > E > O

which is exactly the reverse of our order of dominant type. It could be that people prefer
the conclusions indicated by atmosphere because they are less informative, hence, have a
higher probability to hold. However, we would like to clarify that in our model, atmosphere
and informativeness are two independent components. We implemented the atmosphere
hypothesis and the order of dominant types, yet made no assumptions of the amount of
informativeness of each sentence type, but rather leave the model to learn it from the data.

To summarize, based on the atmosphere hypothesis and the research on informativeness,
we added guessing events to enrich the mechanism of our model. When the subject makes
an inference, or when she concluded ‘nothing follows’ but doubt the conclusion since the
premises might be highly informative, a guessing event occurs with a certain probability.

4.8.2 Model Definition

The underlying proof system remains unchanged. Firstly we modify the inference tree to
include the leaf nodes generated by guessing events.

The Tree Representation

In addition to the inference events, we now include in our model the guessing events
which represents the scenario when the subject makes guesses. After each guessing event,
the subjects arrive at a conclusion and the proof terminates. Therefore, guessing events, if
considered as edges, leads to the leaf nodes in the tree.

Definition 4.8.1 (The inference tree, complete version). Given P as the set of premises,
R = {Monotonicity, Conversion,Allsome,Nosomenot} as the set of inference rules, the
inference tree is determined as follows.

• Each node S takes the form 〈PS , indS〉, where PS is the set of sentences that have
been proved at node S, indS is an index that is identical for each node.

• The root R represents the initial state. Its set of proved sentences is PR = P .

• An inference event is a specific adoption of a particular inference rule; the type of
the event is the name of the inference rule.

5Not all formulations of atmosphere include the order I < E. We included this pair since from the data
E is indeed dominant over I.
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• A guessing event represents the incident when a subject makes a guess and gets to a
conclusion, instantly terminating the reasoning. A guessing event is likely to happen
if there is at least one inference event that is possible (in other words, whenever the
subject makes inference, there is a probability to drop off and make a guess, probably
leading to a mistake), or the subject has concluded ‘nothing follows’ through inference
events.

• For each node S, the set E(S) collects all the events that can possibly happen at node
S, including the inference events and the guessing events. There are five possible
guessing events when a guess takes place, corresponding to five possible conclusions:
guessing A, I, E, O or nothing follows.

• Each element of E(S) yields a child node of S, with the set of “proved” sentences
modified accordingly.

• As before, inference events that generates no new formulas for the set of proved sen-
tences are not considered; maximum number of occurrences of inference events is
restricted to three in any path of the tree (see section 4.2.2).

As an example, consider the EI1 premise, i.e., the set of premises is

Some A are B (1)
No B are C (2)

Now, consider the inference options: we can apply the conversion rule to any one of the
sentences, and we can apply the monotonicity rule to both sentences. Hence, the set of
inference events at the root is

E1(R) = {Conversion(1), Conversion(2),Monotonicity(1, 2)}

The set of the guessing events at the root is

E2(R) = {A, I,E,O,NV C}

Hence, the set of the events at the root is

E = E1 ∪ E2 = {Conversion(1), Conversion(2),Monotonicity(1, 2), A, I, E,O,NV C}

Now, consider a node Se with the following set of proved sentences

Some A are B (1)
Some B are A (2)
Some B are C (3)
Some C are B (4)

We see that no sentences of the form “Q(A,C)” has been proved. Further, no inference
rules set can be adopted. In this situation, the subject has to conclude ‘nothing follows’.
However, according to our new model, the reasoner may consider the premises (in our
example, the premises can be, for example, II1) so informative that he doubts the conclusion
he just derived. “Really? Nothing follows?”, he says, “the premises are so informative and
I should have inferred a lot!” He may then, with a probability, decides that the inference
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he just made is not reliable and he should guess what is the correct conclusion based on his
life experiences. There is a probability that he concludes ‘nothing follows’ immediately, or
his doubt may trigger a guessing event. The set of events at the node is hence

E(Se) = {A, I,E,O,NV C,NV C ′}

Note that NV C stands for the event that the subject turned to a guessing event but still
guessed ‘nothing follows’, while NV C ′ stands for the event that the subject continue to
trust the outcome of the inference and conclude that ‘nothing follows’.

The model inherits the constraints on the tree we made for version 1, namely, inference
events that does not generate a new sentence are not applied; in each path, a maximum
of three adoptions of inference rules can be made. These does not apply to the guessing
events, though.

Probabilistic Weights

We now define the probability that each node in the inference tree will receive.

Definition 4.8.2 (The generative story. Complete Version). There are three types of
parameters. The tendency parameters

T = {Tmonotonicity, Tconversion, TAll−Some, TNo−Somenot}

represents the tendencies with which the subject adopts each inference rule. The atmo-
sphere strength

A = {AS}
which represents the strength of the atmosphere effect, which is positively related to the
probability that subjects guess the conclusion predicted by the atmosphere hypothesis. The
informativeness parameters

IF = {IFA, IFI , IFE , IFO}

represent the informativenesses of each type of sentence. We denote the full set of param-
eters as

θ = T ∪A ∪ IF
The probabilities are determined as follows.

• The root receives probability 1.

• For each node S, the probability N receives spreads over its children. Specifically, if the
node S is not consistent with ‘nothing follows’, i.e., if a sentence of the form Q(A,C)
(which is a potential conclusion) is already proved at the node or some inference rules
can still be applied to the set of proved sentences properly, the subject could either
make an inference step or make a guess.

– A node Sr resulting from the adoption of inference rule r at S receives conditional
probability

p(Sr|S, θ) =
Tr∑

r∈R cr · Tr + 1

where R is the set of inference rules; cr is the number of ways that rule r can be
adopted at S.
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– Guessing events take place with the rest of the probability, namely

p(Guess|S, θ) =
1∑

r∈R cr · Tr + 1

There are five candidates for the guess, namely, the conclusion predicted by the
atmosphere hypothesis, ‘nothing follows’ and one of the remaining three.

– We denote the confidence level of the premise set by

CL = IFt1 + IFt2

where t1, t2 represents the sentence types of the premises. The probability of
guessing ‘nothing follows’ is positively related to its inverse, the doubt level

DL =
1

CL

the probability of guessing ‘nothing follows’ is

p(NV C|Guess, S, θ) =
DL

3 +AS +DL

– the probability of guessing the dominant type is

p(td|Guess, S, θ) =
A

3 +AS +DL

where td stands for the dominant type.

– the probability of guessing any one of the remaining three options is

p(Non-Dominant-Type|Guess, S, θ) =
1

3 +AS +DL

• if at node S some conclusion has already been proved and no further inference rule
could be applied, the inference terminates and the subject concludes the conclusion;

• if the node S is consistent with ‘nothing follows’ (i.e. no potential conclusion has
been proved) and no further inference rule could be applied, there are two possibilities:
firstly, the subject feels sufficiently confident in the inference and concludes ‘nothing
follows’; secondly, the subject doubts the conclusion since the premises are so unin-
formative, and decides to give up the inference conclusion and make a guess.

– The probability that the subject continues to trust the formal inferences and con-
cludes ‘nothing follows’ is

p(NV C ′|S, θ) =
1

1 + CL

Namely, the more confident the subject is in the premises, the less likely that the
subject trusts ‘nothing follows’ conclusion.

– The probability the subject doubts the conclusion so much (since the confidence
level is high) that he decides it to be unreliable, and takes a guess is

p(Guess|S, θ) =
CL

1 + CL
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– If the subject chooses to make a guess, the conditional probability that each option
receives is the same as what we already defined, i.e.,

∗ the probability of guessing ‘nothing follows’ is

p(NV C|Guess, S, θ) =
DL

3 +AS +DL

∗ the probability of guessing the dominant type is

p(td|Guess, S, θ) =
AS

3 +AS +DL

where td stands for the dominant type.

∗ the probability of guessing any rest of the options is

p(Non-Dominant-Type|Guess, S, θ) =
1

3 +AS +DL

4.8.3 Training Results and Discussions

The training methods remains the same. The following tables show the training result.

Data Set Correct Prediction Size Mean Entropy
————————– ————————–
Count Percentage Predictions Data

Test Set 153 95.6% 160 0.901 0.875
Training Set 151 94.4% 160 0.830 0.852
Complete Set 304 95.0% 320 0.870 0.864

NVC Premises* 212 94.2% 225 0.939 0.921
Valid Syl. Premises* 92 96.8% 95 0.706 0.729

Valid Syllogisms 23 95.8% 24 N/ A N/ A

Table 4.10: Training results evaluated according to the Khemlani and Johnson-Laird (2012)
method.
* The NVC Premises are those from which no valid conclusion follows; the valid syl.
premises are those from which at least one valid conclusion follows.

Data set Approval Rate Mean KL Divergence Mean Entropy Error

Testing Set 0.94 0.161 0.270
Training Set 0.78 0.246 0.276
Complete Set 0.86 0.203 0.273

NVC Premises* 0.82 0.212 0.297
Valid Syl. Premises* 0.95 0.184 0.214

Table 4.11: Evaluation: The Complete Version
* The NVC Premises are those from which no valid conclusion follows; the valid syl.
premises are those from which at least one valid conclusion follows.
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We see that the proportions of correct predictions have been further improved. Besides,
the predictions and the data admits similar mean entropy. The mean entropy error also
decreased to a reasonable level (which is around one third of that of the previous version).
The following table shows a break-down of the predictions.

Data set Hit Correct Rejection Miss False Alarm Size

Testing Set 37 116 4 3 160
Training Set 37 114 6 3 160
Complete Set 74 230 10 6 320

Valid Syllogisms 14 9 0 1 24
NVC Premises* 55 157 8 5 225

Valid Syl. Premises* 19 73 2 1 95
Experimental Data 85 235 0 0 320

Table 4.12: Break-down of Predictions
* The NVC Premises are those from which no valid conclusion follows; the valid syl.
premises are those from which at least one valid conclusion follows.

The values of the parameters are shown in the following tables.

Tendencies Tmonotonicity Tconversion Tall some Tno somenot
Logarithms of Values 1.82 4.45 -0.66 -0.28

Table 4.13: Values of the Tendency Parameters.

Sentence Types A I E O

Logarithms of Informativenesses 1.11 0.33 0.19 -0.78

Table 4.14: Values of the Informativeness Parameters.

Parameter Name Atmosphere Strongth

Logarithms of Value 1.32

Table 4.15: Values of the Informativeness Parameters.

Overall Performance

The addition of the guessing events, to some degree, reshaped the model. Compared with
the previous version, the performance of the model has been, in general, noticeably im-
proved. The proportion of correct predictions reached around 95% (that of the test set/
training set/complete data set being 95.6%, 94.4% and 95.0% respectively); also the mean
entropy of the predictions is quite close to that of the data (error is less that 3% on all data
sets). The mean KL divergence from the data to the predictions is around 0.2. The mean
entropy error dropped significantly to around 0.27 (it was, in version 2, around 0.60). The
approval rate is around 0.8, which is lower than that of version 2. This drop is partially
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predictable: in version 2, only the NVC conclusion and what can be proved through the
more-than-complete proof system can possibly receive positive probability, which covers
most items that are endorsed by most participants; however, the complete version is de-
signed to explain why participants endorse the syllogisms that received zero probability in
version 2 (i.e., those not NVC and not provable in the proof system of version 2), which
consequently caused the most favored conclusion to receive lower probability.

The Informativeness Parameters

The values of the informativeness parameters, as shown in Table 4.14, allow to make an
interesting observation. Recall that we assumed that informativeness determines the confi-
dence the subject has in the premises and, hence, the probability with which he concludes
‘nothing follows’. We made no assumptions on “which type of sentences” are more infor-
mative. The training results show that the amounts of informativeness follow the order:

A(1.11) > E(0.33) > I(0.19) > O(−0.78)

which completely coincides with the order proposed by Chater and Oaksford (1999). Be-
sides, we see that sentence type “O” is exceptionally un-informative, which also agrees
with the authors’ proposal. The values of the informativenesses were learnt by the model.
The result supports the proposal that the probabilistic validity plays an important role in
human reasoning.

The Tendency Parameters

The values of the tendency parameters are sharply different from each other. Recall that
these parameters are positively related to the probability that the corresponding rule is
adopted. And note that the values in Table 4.13 are the logarithms. The values yield the
order

Tconversion(4.45) > Tmonotonicity(1.82) > Tall some(−0.28) > Tno somenot(−0.66)

The most immediate observation is that according to our model, the conversion rule is
more likely to be adopted than the other rules, which is plausible since the conversion rule
is simple and natural. To follow is the monotonicity rule, which is slightly surprising, since
it involves two sentences and has a good reason to be cognitively more difficult than the
all-some rule and the no-somenot rule. One explanation of this phenomenon is that both
the all-some rule and the no-somenot rule contains the procedure to introduce new type
of sentence that does not appear in the premises. In that case, the adoption of those two
rules might have to employ the cognitive resources to process the new objects.

We see that Tconversion = 4.45, and that Tmonotonicity = 1.82, that means, when both
rules can be adopted, the probability to adopt the conversion rule is e4.45−1.82 ≈ 14 times
that of the probability of adopting the monotonicity rule; the probability of adopting the
monotonicity rule is e1.82−−(0.28) ≈ 8 times that of adopting the no-somenot rule. Only
the tendencies of the all-some rule and the no-somenot rules appear comparable to one
another. The first two differences are dramatic. This suggest that people simply may
have a deterministic preference order among the inference rules. The result can be also
consistent with a mixture of ‘preference order’, ‘complexity’, and the availability of rules in
this particular reasoning task.
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The Remaining Errors

Most sharp errors occur in the IE syllogisms. Our model incorrectly favors the O conclu-
sions. The reason is, given the IE premises, quite often only one application of the additional
monotonicity rule (may be accompanied by necessary adoptions of the conversion rule) is
enough to results in the O conclusion. For example the IE4 premises

Some C are B
No B are A

The solution should be an adjustment of the proof system. One possible approach would
be assigning higher costs to the additional monotonicity rule.

4.8.4 Summary

The complete version is based on the following theoretical assumptions.

• Sentences are the mental representation of the state of reasoning.

• Inference rules are among the basic mental operations of reasoning.

• Different inference rules are of different cognitive difficulties. The differences are
reflected by the differences in the probabilities that they are adopted with.

• Adoptions of inference rules are probabilistically independent of the previous rules.

• Subjects have limited resources for reasoning (the difference is reflected by a maximum
step they can make in a proof).

• Subjects make no redundant application of inference rules, at least in our context
when the lengths of the proofs are sufficiently short.

• Subjects can deliberate and still err when reasoning.

• Subjects frequently adopt the illicit conversions, without realizing that the conversions
are different from their licit counterparts.

• In the reasoning procedure, subjects sometimes depart from the formal approach and
make a heuristic guess.

• The informative level of the premises determines the confidence level subjects have
for their conclusions. That means, if they arrive at “nothing follows” in the inference
part but are not confident at the premises, they are likely to abandon the conclusion
from the inferences and make a guess instead.

• The atmosphere effect exist: when making a guess, subjects tend to guess the type
of sentences that is supported by the atmosphere hypothesis, i.e., that is greater by
the order A < I < E < O.

The model, making around 95% correct predictions, performs well under our means of
evaluation.
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Chapter 5

Further Discussion

5.1 Psychological Plausibility

In this section we discuss various psychological aspects of the model.

• Different inference rules are of different cognitive difficulties. The differ-
ences are reflected by the differences in the probabilities that they are
adopted with.
Assuming the mental logic framework, it is plausible that different mental operations
have different cognitive complexities, as they are supposed to corresponds to different
mental processes. However, whether this difference is reflected by probability remains
questionable. From the subject level, it is hard to imagine that the brain is equipped
with a random number generator and people adopt the operations randomly. It is
even harder to imagine that if a participant is asked to infer from one pair of premises
repeatedly, his conclusions approximates some probabilistic distribution. However,
even if reasoning does not admit underlying probabilistic basis, it may still exhibit
probabilistic behavior when we investigate the reasoning behavior of the population
through psychological experiments.

We assumed the tendency parameters to reflect some sort of inherent cognitive com-
plexity. But is it possible what reflected is rather a kind of preference order (e.g.,
preferences gained through past experience)? As a matter of fact, the training result
of our model indicates that the latter could be the case: the tendency parameters
admits sharp differences, sometimes to the point that it could be considered as a non-
probabilistic model (as the preferred inference rule could make a dominating majority
of the probability). The mechanism could be a non-probabilistic one: the subject may
have a strict preference order for the inference rules, and always adopt the one that
is most preferred.

• In the reasoning procedure, subjects sometimes depart from the formal
approach and make a heuristic guess.
The plausibility of the guessing scenario is hard to evaluate. Perhaps, one possible
explanation is the dual processing theory (see Evans (2012)). It might be that guess-
ing, which uses no working memory and is fast, happens in parallel with the formal
inference procedure which is deliberate and slower.
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• The assumptions on informativeness.
We assumed that each type of sentence has a informativeness level, and that subject
make use of the value as if they know the informativeness. The question is, how
do people come equipped with this knowledge? One explanation is that it becomes
accumulated in daily reasoning. Based on life experience, people may become sophis-
ticated in unconsciously evaluating the amount of information to expect from each
type of sentence.

5.2 A Parallel Comparison to Other Theories of the Syllo-
gisms

We examined the predictions of a number of existing theories of the syllogisms. We were
able to obtain the predictions of the PSYCOP model from its proponent. The rest of
the predictions were obtained from table 7 of Khemlani and Johnson-Laird (2012)1. The
summary is shown in Table 5.1.

Theory Hit Miss False Alarm Correct Rejection Correct Predictions

Atmosphere 44 41 20 215 259 /80.9%
Matching 41 44 55 180 221 /69.1%

Conversion 52 33 12 223 275 /85.9%
PHM* 40 45 63 172 212 /66.3%

PSYCOP 45 40 26 209 254 /79.4%
Verbal Models* 54 31 29 206 260 /81.2%
Mental Models* 85 0 55 180 265 /82.8%
Ver. 1 Test Data 26 15 12 107 133/83.1%
Ver. 2 Test Data 33 8 3 116 149/93.1%

Ver. 3 Complete Data** 70 14 5 231 301/94.1%
Ver. 3 Test Data 37 4 3 116 153/95.6%

Table 5.1: Predictions of the Theories of Syllogisms: A Summary.
*: Due to the limitations of the data we were able to obtain, the corresponding theory is
likely to perform better than what is shown in the table.
**: The data in this line result from a cross-test: we take the predictions on the test data,
then switched the test data and the training data and train the model again to get the
predictions on the other half of the data.

As far as we can see from the data we had access to, we see that based on a similar version
of the means of evaluation proposed by Khemlani and Johnson-Laird (2012), our model
outperforms other models whose predictions are available. Yet we would like to make a
comment here:our model, although intended as a first step in designing a uniform theory of
reasoning, now covers only the syllogistic fragment and is highly dependent on the structure

1The table provided the predictions of the syllogistic theories on both the syllogisms that follow the
scholastic order and the ones that do not. We obtained the data we use by restricting the conclusions to the
ones that follow the scholastic order. The restriction has no influence on the predictions of the atmosphere,
matching and conversion theories. However, for the PHM, the verbal model theory, and the mental model
theory, we are unsure about the consequences.
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of the latter; whereas some other theories in the table (e.g., the PSYCOP, the mental models
theory) are intended as a uniform theory of reasoning.

5.3 Towards a Uniform Theory of Reasoning

The syllogistic fragment is a good yet small arena for theories of reasoning. It is good
since it investigates a few most fundamental quantifiers; however it is far from covering
all aspects of reasoning. Our model is designed just for the syllogisms. We would like to
discuss the possibility of extending it to a uniform theory of reasoning.

Conceptually, our model consists of two parts: the inference part, which consists of the
probabilistic natural logic and the guessing part, which takes care of the guessing events.
The first part is based on the fragment of natural language for which there is a natural logic
operating on its surface (see, e.g., MacCartney and Manning (2009) for another example).
The second part, however, yields no immediate means of extension. Recall that the sec-
ond part of our model is based on the assumptions of informativeness and the atmosphere
hypothesis. We so designed the model that the subject simply guesses the conclusion.
Compared with the first part, where we made precise assumptions on the underlying psy-
chological procedure of reasoning (which should belong to the algorithmic level according to
David Marr, see Section 2.7.4), the second part simply tells what happens during a guessing
event, instead of how it happens. And yes, the second part of our model belongs to the
computational level. We do not know the details of guessing as a psychological procedure.

The situation may appear messy at first glance: we are proposing a Bayesian generative
model that is represented by a tree. The first part of the model is on the algorithmic level,
however, closer to the leaves the tree is decorated with a lot of black-boxes, namely, the
guessing events, which encapsulates the guessing procedure as computational level theories.
We expect a second glance to make it a little bit more intuitive: after all, we could only
give sophisticated theories (in our context, an algorithmic level theory) for the procedure
we have more knowledge about; what remains has to be described in less detail. As research
goes deeper these black-boxes could be open and modelled more precisely.

Now let us return to the original topic: how to extend our model toward a uniform theory
of reasoning? As discussed, the guessing events are used to encapsulate what is not cap-
tured by the inference part of the model. Therefore, one way to extend our model would
be, firstly, design a natural logic for a larger fragment of natural language (that does not
necessarily follow traditional logical validity); secondly, extend the logic into a Bayesian
generative model by determining probability distributions among the inference operations
that could be applied, train the model with experimental data; thirdly, describe what could
not be captured by the first part as a psychologically plausible computational level theory;
thirdly, when further knowledge is acquired, investigate the computational level theories
and model the cognitive task.

One crucial remark is that our model has a high requirement on the amount of experimental
data. It is the relatively abundant experimental data on syllogistic reasoning that makes
possible the training of a Bayesian generative model: the probability that people arrive
at every possible conclusion from every possible premise set has been approximated by
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experiments. For larger fragments of natural language, we definitely do not have the luxury
to expect such abundance, as the amount of required data would increase dramatically
with the size of the fragment. One possible way out might be to automatically extract
the instances of reasoning that is encoded in natural language corpora, which is another
challenging task.
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Chapter 6

Conclusion

6.1 Summary and Future Work

We designed a probabilistic logical model for syllogistic reasoning. The model combines the
ideas from the mental logic, the natural logic approach, the probabilistic basis of reasoning
and the atmosphere hypothesis. Our theory infers not only the valid conclusions but also
some invalid ones.
We trained the model and evaluated it in multiple ways. The performance of the model
is promising, making around 95% correct predictions. As far as we can see, our model
outperformed all other theories of the syllogistic reasoning whose predictions were available
to us. The results indicate that natural logic based probabilistic model may be a reasonable
candidate for the theory of reasoning.

One interesting future direction is to try to extend the theory to richer fragments of natural
language (see Section 5.3). Besides, more benchmarks for evaluating are also needed.

6.2 Coda: Theory of Reasoning, a Mosaic?

Elegant theories has been popular in the scientific world. Simple and universal theories are
favored by many researchers. Every pair of particles obey the law of gravitation. All recur-
sive functions are computed by a Turing machine. Every member of the market is rational.
It hence appears natural to seek an elegant theory of reasoning. For now, the mental model
theorists propose that the mental representation of reasoning is iconic; the mental logic
proposal assumes that the state of reasoning is represented by formulas; the proponents of
the probabilistic paradigm propose that the computational level theory should be a kind
of probabilistic calculus. Unfortunately, these proposals, although all being psychologically
plausible and capturing some aspects of human reasoning, are not completely consistent
with each other. Besides, reasoning is no simple procedure. Subjects differ in their rea-
soning strategies; even one particular subject may keep switching his strategies. It makes
perfect sense to use natural language to reason when trying to convince a friend that not
everyone is rational and switch to graphs or icons when imagining the scene described in
an exercise about classical mechanics or models of set theory.

The point we want to make here is that various theories might be able to coexist harmo-
niously with each other The mechanism of reasoning may be a mosaic of different paradigms,
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switching from one to another when the reasoning task changes. As van Benthem (2008)
wrote,

. . . it is a telling fact that mathematicians have never abandoned natural lan-
guage in favor of logical formalisms. . . mathematicians use mixtures of both,
with the logical notation coming in dynamically when natural language needs
to be made more precise. This mixture suggests that ‘natural logic’ and ‘modern
logic’ can coexist harmoniously, because both have their place. . .

The way each subject reason may, to some degree, be shaped by the previous experiences,
which depend on a random yet particular life trajectory; these life experiences further
depend on the living environments of the subject that are shaped by a particular history
of the society. It may well be that people trigger a mental proof to reason about history
of logic and adopt an iconic representation when puzzling about models of set theory. To
summarize, in terms of a uniform theory of reasoning, what we expect is not an elegant and
concise theory, but rather a mosaic of plausible theories, one that form some shape at first
glance but highly depends on the particular task of reasoning. That is why in this thesis
we rather focused on investigating how much natural logic can help in building the model
of syllogistic reasoning than developing another grand theory of reasoning.
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Benedikt Löwe and Yde Venema for their excellent lectures.

I owe my thesis supervisor a lot. To begin with, it is always a pleasant to work with
Jakub Szymanik, who supervised my master thesis and also a research project. He is super
friendly, helpful and humorous, willing to sacrifice his weekend to take the trouble to review
my messy documents written in weird English, and comment with his lovely accent and
hand-writing. He brought me a lot of interesting questions of research and without him I
would not have finished my study.

Ivan Titov co-supervised my thesis project. As an expert in NLP he took the great trouble
to communicate with me who knew little about what algorithm we need to use and knew
little machine learning terminology in English. Going through the interdisciplinary barrier,
he was able to enable me to implement the EM algorithm and provided enlightening ideas
for my thesis project.

I thank Maria Aloni for chairing my defense, and all other committee members, i.e., Jelle
Zuidema, Johan van Benthem, Robert van Rooij, for reviewing my messy thesis. I thank
Henk Zeevat for joining the defense.

Thank everyone mentioned above again. Your help was really indispensable in my life. It
is a deep pleasure to know everyone of you.

50



References

Antoniou, G. (1997). Nonmonotonic reasoning. MIT Press.

Baum, L. E., Petrie, T., Soules, G., and Weiss, N. (1970). A maximization technique
occurring in the statistical analysis of probabilistic functions of markov chains. The
annals of mathematical statistics, pages 164–171.

Begg, I. and Denny, J. P. (1969). Empirical reconciliation of atmosphere and conver-
sion interpretations of syllogistic reasoning errors. Journal of Experimental Psychology,
81(2):351.

van Benthem, J. (1986). Essays in logical semantics. Number 29. Springer.

van Benthem, J. (1987). Meaning: interpretation and inference. Synthese, 73(3):451–470.

van Benthem, J. (2008). A brief history of natural logic. Logic, Navya-Nyaya and Applica-
tions.

Van Benthem, J. (2008). Logic and reasoning: do the facts matter? Studia Logica, 88(1):67–
84.

Braine, M. D. and O’Brien, D. P. (1998). Mental logic. Psychology Press.

Chapman, L. J. and Chapman, J. P. (1959). Atmosphere effect re-examined. Journal of
Experimental Psychology, 58(3):220.

Chater, N. and Oaksford, M. (1999). The probability heuristics model of syllogistic reason-
ing. Cognitive Psychology, 38(2):191–258.

Chater, N. and Oaksford, M. (2008). The probabilistic mind: Prospects for Bayesian cog-
nitive science. Oxford University Press.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from in-
complete data via the em algorithm. Journal of the Royal Statistical Society. Series B
(methodological), pages 1–38.

Dickstein, L. S. (1981). Conversion and possibility in syllogistic reasoning. Bulletin of the
Psychonomic Society, 18(5):229–232.
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Appendix A

The Predictions Of the Model
With the Experimental Data

A.1 Predictions: Version 1

Premises A I E O NVC

AA1 37.0* 27.0* 0.0 0.0 36.0
AA1 90.0 5.0 0.0 0.0 5.0
AA2 0.0 0.0 0.0 0.0 100.0
AA2 58.0 8.0 1.0 1.0 32.0
AA3 0.0 24.0* 0.0 0.0 76.0
AA3 57.0 29.0 0.0 0.0 14.0
AA4 0.0 14.0* 0.0 0.0 86.0
AA4 75.0 16.0 1.0 1.0 7.0

AI1 0.0 68.0* 0.0 0.0 32.0
AI1 0.0 92.0 3.0 3.0 2.0
AI2 0.0 0.0 0.0 0.0 100.0
AI2 0.0 57.0 3.0 11.0 29.0
AI3 0.0 66.0* 0.0 0.0 34.0
AI3 1.0 89.0 1.0 3.0 6.0
AI4 0.0 0.0 0.0 0.0 100.0
AI4 0.0 71.0 0.0 1.0 28.0

AE1 0.0 0.0 0.0 0.0 100.0
AE1 0.0 3.0 59.0 6.0 32.0
AE2 0.0 0.0 32.0* 6.0* 62.0
AE2 0.0 0.0 88.0 1.0 11.0
AE3 0.0 0.0 0.0 0.0 100.0
AE3 0.0 1.0 61.0 13.0 25.0
AE4 0.0 0.0 30.0* 4.0* 66.0
AE4 0.0 3.0 87.0 2.0 8.0

AO1 0.0 0.0 0.0 0.0 100.0
AO1 1.0 6.0 1.0 57.0 35.0
AO2 0.0 0.0 0.0 100.0* 0.0
AO2 0.0 6.0 3.0 67.0 24.0
AO3 0.0 0.0 0.0 0.0 100.0
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AO3 0.0 10.0 0.0 66.0 24.0
AO4 0.0 0.0 0.0 0.0 100.0
AO4 0.0 5.0 3.0 72.0 20.0

IA1 0.0 0.0 0.0 0.0 100.0
IA1 0.0 72.0 0.0 6.0 22.0
IA2 0.0 0.0 0.0 0.0 100.0
IA2 13.0 49.0 3.0 12.0 23.0
IA3 0.0 68.0* 0.0 0.0 32.0
IA3 2.0 85.0 1.0 4.0 8.0
IA4 0.0 66.0* 0.0 0.0 34.0
IA4 0.0 91.0 1.0 1.0 7.0

II1 0.0 0.0 0.0 0.0 100.0
II1 0.0 41.0 3.0 4.0 52.0
II2 0.0 0.0 0.0 0.0 100.0
II2 1.0 42.0 3.0 3.0 51.0
II3 0.0 0.0 0.0 0.0 100.0
II3 0.0 24.0 3.0 1.0 72.0
II4 0.0 0.0 0.0 0.0 100.0
II4 0.0 42.0 0.0 1.0 57.0

IE1 0.0 0.0 0.0 0.0 100.0
IE1 1.0 1.0 22.0 16.0 60.0
IE2 0.0 0.0 0.0 0.0 100.0
IE2 0.0 0.0 39.0 30.0 31.0
IE3 0.0 0.0 0.0 0.0 100.0
IE3 0.0 1.0 30.0 33.0 36.0
IE4 0.0 0.0 0.0 0.0 100.0
IE4 0.0 1.0 28.0 44.0 27.0

IO1 0.0 0.0 0.0 0.0 100.0
IO1 3.0 4.0 1.0 30.0 62.0
IO2 0.0 0.0 0.0 0.0 100.0
IO2 1.0 5.0 4.0 37.0 53.0
IO3 0.0 0.0 0.0 0.0 100.0
IO3 0.0 9.0 1.0 29.0 61.0
IO4 0.0 0.0 0.0 0.0 100.0
IO4 0.0 5.0 1.0 44.0 50.0

EA1 0.0 0.0 32.0* 11.0* 57.0
EA1 0.0 1.0 87.0 3.0 9.0
EA2 0.0 0.0 30.0* 8.0* 62.0
EA2 0.0 0.0 89.0 3.0 8.0
EA3 0.0 0.0 0.0 11.0* 89.0
EA3 0.0 0.0 64.0 22.0 14.0
EA4 0.0 0.0 0.0 8.0* 92.0
EA4 1.0 3.0 61.0 8.0 27.0

EI1 0.0 0.0 0.0 43.0* 57.0
EI1 0.0 5.0 15.0 66.0 14.0
EI2 0.0 0.0 0.0 35.0* 65.0
EI2 1.0 1.0 21.0 52.0 25.0
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EI3 0.0 0.0 0.0 35.0* 65.0
EI3 0.0 6.0 15.0 48.0 31.0
EI4 0.0 0.0 0.0 32.0* 68.0
EI4 0.0 2.0 32.0 27.0 39.0

EE1 0.0 0.0 0.0 0.0 100.0
EE1 0.0 1.0 34.0 1.0 64.0
EE2 0.0 0.0 0.0 0.0 100.0
EE2 3.0 3.0 14.0 3.0 77.0
EE3 0.0 0.0 0.0 0.0 100.0
EE3 0.0 0.0 18.0 3.0 79.0
EE4 0.0 0.0 0.0 0.0 100.0
EE4 0.0 3.0 31.0 1.0 65.0

EO1 0.0 0.0 0.0 0.0 100.0
EO1 1.0 8.0 8.0 23.0 60.0
EO2 0.0 0.0 0.0 0.0 100.0
EO2 0.0 13.0 7.0 11.0 69.0
EO3 0.0 0.0 0.0 0.0 100.0
EO3 0.0 0.0 9.0 28.0 63.0
EO4 0.0 0.0 0.0 0.0 100.0
EO4 0.0 5.0 8.0 12.0 75.0

OA1 0.0 0.0 0.0 0.0 100.0
OA1 0.0 3.0 3.0 68.0 26.0
OA2 0.0 0.0 0.0 0.0 100.0
OA2 0.0 11.0 5.0 56.0 28.0
OA3 0.0 0.0 0.0 100.0* 0.0
OA3 0.0 15.0 3.0 69.0 13.0
OA4 0.0 0.0 0.0 0.0 100.0
OA4 1.0 3.0 6.0 27.0 63.0

OI1 0.0 0.0 0.0 0.0 100.0
OI1 4.0 6.0 0.0 35.0 55.0
OI2 0.0 0.0 0.0 0.0 100.0
OI2 0.0 8.0 3.0 35.0 54.0
OI3 0.0 0.0 0.0 0.0 100.0
OI3 1.0 9.0 1.0 31.0 58.0
OI4 0.0 0.0 0.0 0.0 100.0
OI4 3.0 8.0 2.0 29.0 58.0

OE1 0.0 0.0 0.0 0.0 100.0
OE1 1.0 0.0 14.0 5.0 80.0
OE2 0.0 0.0 0.0 0.0 100.0
OE2 0.0 8.0 11.0 16.0 65.0
OE3 0.0 0.0 0.0 0.0 100.0
OE3 0.0 5.0 12.0 18.0 65.0
OE4 0.0 0.0 0.0 0.0 100.0
OE4 0.0 19.0 9.0 14.0 58.0

OO1 0.0 0.0 0.0 0.0 100.0
OO1 1.0 8.0 1.0 22.0 68.0
OO2 0.0 0.0 0.0 0.0 100.0
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OO2 0.0 16.0 5.0 10.0 69.0
OO3 0.0 0.0 0.0 0.0 100.0
OO3 1.0 6.0 0.0 15.0 78.0
OO4 0.0 0.0 0.0 0.0 100.0
OO4 1.0 4.0 1.0 25.0 69.0

Table A.1: The Predictions of Version 1 of the Model. First
line is the prediction, followed by another line that gives the
experimental data. A * indicates that the conclusion is valid.

A.2 Predictions: Version 2

Premises A I E O NVC

AA1 86.0* 1.0* 0.0 0.0 14.0
AA1 90.0 5.0 0.0 0.0 5.0
AA2 85.0 0.0 0.0 0.0 15.0
AA2 58.0 8.0 1.0 1.0 32.0
AA3 85.0 0.0* 0.0 0.0 15.0
AA3 57.0 29.0 0.0 0.0 14.0
AA4 85.0 0.0* 0.0 0.0 14.0
AA4 75.0 16.0 1.0 1.0 7.0

AI1 0.0 86.0* 0.0 0.0 14.0
AI1 0.0 92.0 3.0 3.0 2.0
AI2 0.0 85.0 0.0 0.0 15.0
AI2 0.0 57.0 3.0 11.0 29.0
AI3 0.0 86.0* 0.0 0.0 14.0
AI3 1.0 89.0 1.0 3.0 6.0
AI4 0.0 85.0 0.0 0.0 15.0
AI4 0.0 71.0 0.0 1.0 28.0

AE1 0.0 0.0 69.0 1.0 31.0
AE1 0.0 3.0 59.0 6.0 32.0
AE2 0.0 0.0 72.0* 1.0* 28.0
AE2 0.0 0.0 88.0 1.0 11.0
AE3 0.0 0.0 69.0 0.0 31.0
AE3 0.0 1.0 61.0 13.0 25.0
AE4 0.0 0.0 71.0* 1.0* 28.0
AE4 0.0 3.0 87.0 2.0 8.0

AO1 0.0 0.0 0.0 85.0 15.0
AO1 1.0 6.0 1.0 57.0 35.0
AO2 0.0 0.0 0.0 86.0* 14.0
AO2 0.0 6.0 3.0 67.0 24.0
AO3 0.0 0.0 0.0 86.0 14.0
AO3 0.0 10.0 0.0 66.0 24.0
AO4 0.0 0.0 0.0 85.0 15.0
AO4 0.0 5.0 3.0 72.0 20.0
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IA1 0.0 85.0 0.0 0.0 15.0
IA1 0.0 72.0 0.0 6.0 22.0
IA2 0.0 85.0 0.0 0.0 15.0
IA2 13.0 49.0 3.0 12.0 23.0
IA3 0.0 86.0* 0.0 0.0 14.0
IA3 2.0 85.0 1.0 4.0 8.0
IA4 0.0 86.0* 0.0 0.0 14.0
IA4 0.0 91.0 1.0 1.0 7.0

II1 0.0 0.0 0.0 0.0 100.0
II1 0.0 41.0 3.0 4.0 52.0
II2 0.0 0.0 0.0 0.0 100.0
II2 1.0 42.0 3.0 3.0 51.0
II3 0.0 0.0 0.0 0.0 100.0
II3 0.0 24.0 3.0 1.0 72.0
II4 0.0 0.0 0.0 0.0 100.0
II4 0.0 42.0 0.0 1.0 57.0

IE1 0.0 0.0 0.0 64.0 36.0
IE1 1.0 1.0 22.0 16.0 60.0
IE2 0.0 0.0 0.0 65.0 35.0
IE2 0.0 0.0 39.0 30.0 31.0
IE3 0.0 0.0 0.0 65.0 35.0
IE3 0.0 1.0 30.0 33.0 36.0
IE4 0.0 0.0 0.0 68.0 32.0
IE4 0.0 1.0 28.0 44.0 27.0

IO1 0.0 0.0 0.0 0.0 100.0
IO1 3.0 4.0 1.0 30.0 62.0
IO2 0.0 0.0 0.0 0.0 100.0
IO2 1.0 5.0 4.0 37.0 53.0
IO3 0.0 0.0 0.0 0.0 100.0
IO3 0.0 9.0 1.0 29.0 61.0
IO4 0.0 0.0 0.0 0.0 100.0
IO4 0.0 5.0 1.0 44.0 50.0

EA1 0.0 0.0 72.0* 1.0* 28.0
EA1 0.0 1.0 87.0 3.0 9.0
EA2 0.0 0.0 71.0* 1.0* 28.0
EA2 0.0 0.0 89.0 3.0 8.0
EA3 0.0 0.0 69.0 1.0* 31.0
EA3 0.0 0.0 64.0 22.0 14.0
EA4 0.0 0.0 69.0 1.0* 31.0
EA4 1.0 3.0 61.0 8.0 27.0

EI1 0.0 0.0 0.0 70.0* 30.0
EI1 0.0 5.0 15.0 66.0 14.0
EI2 0.0 0.0 0.0 67.0* 33.0
EI2 1.0 1.0 21.0 52.0 25.0
EI3 0.0 0.0 0.0 67.0* 33.0
EI3 0.0 6.0 15.0 48.0 31.0
EI4 0.0 0.0 0.0 66.0* 34.0
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EI4 0.0 2.0 32.0 27.0 39.0

EE1 0.0 0.0 0.0 0.0 100.0
EE1 0.0 1.0 34.0 1.0 64.0
EE2 0.0 0.0 0.0 0.0 100.0
EE2 3.0 3.0 14.0 3.0 77.0
EE3 0.0 0.0 0.0 0.0 100.0
EE3 0.0 0.0 18.0 3.0 79.0
EE4 0.0 0.0 0.0 0.0 100.0
EE4 0.0 3.0 31.0 1.0 65.0

EO1 0.0 0.0 0.0 0.0 100.0
EO1 1.0 8.0 8.0 23.0 60.0
EO2 0.0 0.0 0.0 0.0 100.0
EO2 0.0 13.0 7.0 11.0 69.0
EO3 0.0 0.0 0.0 0.0 100.0
EO3 0.0 0.0 9.0 28.0 63.0
EO4 0.0 0.0 0.0 0.0 100.0
EO4 0.0 5.0 8.0 12.0 75.0

OA1 0.0 0.0 0.0 85.0 15.0
OA1 0.0 3.0 3.0 68.0 26.0
OA2 0.0 0.0 0.0 86.0 14.0
OA2 0.0 11.0 5.0 56.0 28.0
OA3 0.0 0.0 0.0 86.0* 14.0
OA3 0.0 15.0 3.0 69.0 13.0
OA4 0.0 0.0 0.0 85.0 15.0
OA4 1.0 3.0 6.0 27.0 63.0

OI1 0.0 0.0 0.0 0.0 100.0
OI1 4.0 6.0 0.0 35.0 55.0
OI2 0.0 0.0 0.0 0.0 100.0
OI2 0.0 8.0 3.0 35.0 54.0
OI3 0.0 0.0 0.0 0.0 100.0
OI3 1.0 9.0 1.0 31.0 58.0
OI4 0.0 0.0 0.0 0.0 100.0
OI4 3.0 8.0 2.0 29.0 58.0

OE1 0.0 0.0 0.0 0.0 100.0
OE1 1.0 0.0 14.0 5.0 80.0
OE2 0.0 0.0 0.0 0.0 100.0
OE2 0.0 8.0 11.0 16.0 65.0
OE3 0.0 0.0 0.0 0.0 100.0
OE3 0.0 5.0 12.0 18.0 65.0
OE4 0.0 0.0 0.0 0.0 100.0
OE4 0.0 19.0 9.0 14.0 58.0

OO1 0.0 0.0 0.0 0.0 100.0
OO1 1.0 8.0 1.0 22.0 68.0
OO2 0.0 0.0 0.0 0.0 100.0
OO2 0.0 16.0 5.0 10.0 69.0
OO3 0.0 0.0 0.0 0.0 100.0
OO3 1.0 6.0 0.0 15.0 78.0
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OO4 0.0 0.0 0.0 0.0 100.0
OO4 1.0 4.0 1.0 25.0 69.0

Table A.2: The Predictions of Version 2 of the Model. First
line is the prediction, followed by another line that gives the
experimental data. A * indicates that the conclusion is valid.

A.3 Predictions: Version 3

Premises A I E O NVC

AA1 85.0* 1.0* 1.0 1.0 13.0
AA1 90.0 5.0 0.0 0.0 5.0
AA2 83.0 1.0 1.0 1.0 14.0
AA2 58.0 8.0 1.0 1.0 32.0
AA3 83.0 1.0* 1.0 1.0 14.0
AA3 57.0 29.0 0.0 0.0 14.0
AA4 84.0 1.0* 1.0 1.0 13.0
AA4 75.0 16.0 1.0 1.0 7.0

AI1 1.0 84.0* 1.0 1.0 13.0
AI1 0.0 92.0 3.0 3.0 2.0
AI2 1.0 82.0 1.0 1.0 14.0
AI2 0.0 57.0 3.0 11.0 29.0
AI3 1.0 84.0* 1.0 1.0 13.0
AI3 1.0 89.0 1.0 3.0 6.0
AI4 1.0 82.0 1.0 1.0 14.0
AI4 0.0 71.0 0.0 1.0 28.0

AE1 1.0 1.0 68.0 1.0 29.0
AE1 0.0 3.0 59.0 6.0 32.0
AE2 1.0 1.0 71.0* 2.0* 26.0
AE2 0.0 0.0 88.0 1.0 11.0
AE3 1.0 1.0 68.0 1.0 29.0
AE3 0.0 1.0 61.0 13.0 25.0
AE4 1.0 1.0 71.0* 1.0* 26.0
AE4 0.0 3.0 87.0 2.0 8.0

AO1 1.0 1.0 1.0 83.0 14.0
AO1 1.0 6.0 1.0 57.0 35.0
AO2 1.0 1.0 1.0 84.0* 13.0
AO2 0.0 6.0 3.0 67.0 24.0
AO3 1.0 1.0 1.0 83.0 13.0
AO3 0.0 10.0 0.0 66.0 24.0
AO4 1.0 1.0 1.0 83.0 14.0
AO4 0.0 5.0 3.0 72.0 20.0

IA1 1.0 82.0 1.0 1.0 14.0
IA1 0.0 72.0 0.0 6.0 22.0
IA2 1.0 82.0 1.0 1.0 14.0
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IA2 13.0 49.0 3.0 12.0 23.0
IA3 1.0 84.0* 1.0 1.0 13.0
IA3 2.0 85.0 1.0 4.0 8.0
IA4 1.0 84.0* 1.0 1.0 13.0
IA4 0.0 91.0 1.0 1.0 7.0

II1 10.0 39.0 10.0 10.0 30.0
II1 0.0 41.0 3.0 4.0 52.0
II2 10.0 39.0 10.0 10.0 30.0
II2 1.0 42.0 3.0 3.0 51.0
II3 10.0 39.0 10.0 10.0 30.0
II3 0.0 24.0 3.0 1.0 72.0
II4 10.0 39.0 10.0 10.0 30.0
II4 0.0 42.0 0.0 1.0 57.0

IE1 2.0 2.0 6.0 59.0 32.0
IE1 1.0 1.0 22.0 16.0 60.0
IE2 2.0 2.0 6.0 60.0 31.0
IE2 0.0 0.0 39.0 30.0 31.0
IE3 2.0 2.0 6.0 60.0 31.0
IE3 0.0 1.0 30.0 33.0 36.0
IE4 1.0 1.0 6.0 63.0 29.0
IE4 0.0 1.0 28.0 44.0 27.0

IO1 9.0 9.0 9.0 34.0 39.0
IO1 3.0 4.0 1.0 30.0 62.0
IO2 9.0 9.0 9.0 34.0 39.0
IO2 1.0 5.0 4.0 37.0 53.0
IO3 9.0 9.0 9.0 34.0 39.0
IO3 0.0 9.0 1.0 29.0 61.0
IO4 9.0 9.0 9.0 34.0 39.0
IO4 0.0 5.0 1.0 44.0 50.0

EA1 1.0 1.0 71.0* 2.0* 26.0
EA1 0.0 1.0 87.0 3.0 9.0
EA2 1.0 1.0 71.0* 2.0* 26.0
EA2 0.0 0.0 89.0 3.0 8.0
EA3 1.0 1.0 68.0 2.0* 28.0
EA3 0.0 0.0 64.0 22.0 14.0
EA4 1.0 1.0 68.0 2.0* 29.0
EA4 1.0 3.0 61.0 8.0 27.0

EI1 1.0 1.0 6.0 64.0* 27.0
EI1 0.0 5.0 15.0 66.0 14.0
EI2 2.0 2.0 6.0 62.0* 29.0
EI2 1.0 1.0 21.0 52.0 25.0
EI3 2.0 2.0 6.0 62.0* 29.0
EI3 0.0 6.0 15.0 48.0 31.0
EI4 2.0 2.0 6.0 61.0* 30.0
EI4 0.0 2.0 32.0 27.0 39.0

EE1 2.0 2.0 8.0 2.0 85.0
EE1 0.0 1.0 34.0 1.0 64.0
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EE2 2.0 2.0 8.0 2.0 85.0
EE2 3.0 3.0 14.0 3.0 77.0
EE3 2.0 2.0 8.0 2.0 85.0
EE3 0.0 0.0 18.0 3.0 79.0
EE4 2.0 2.0 8.0 2.0 85.0
EE4 0.0 3.0 31.0 1.0 65.0

EO1 4.0 4.0 4.0 13.0 76.0
EO1 1.0 8.0 8.0 23.0 60.0
EO2 4.0 4.0 4.0 13.0 76.0
EO2 0.0 13.0 7.0 11.0 69.0
EO3 4.0 4.0 4.0 13.0 76.0
EO3 0.0 0.0 9.0 28.0 63.0
EO4 4.0 4.0 4.0 13.0 76.0
EO4 0.0 5.0 8.0 12.0 75.0

OA1 1.0 1.0 1.0 83.0 14.0
OA1 0.0 3.0 3.0 68.0 26.0
OA2 1.0 1.0 1.0 83.0 13.0
OA2 0.0 11.0 5.0 56.0 28.0
OA3 1.0 1.0 1.0 84.0* 13.0
OA3 0.0 15.0 3.0 69.0 13.0
OA4 1.0 1.0 1.0 83.0 14.0
OA4 1.0 3.0 6.0 27.0 63.0

OI1 9.0 9.0 9.0 34.0 39.0
OI1 4.0 6.0 0.0 35.0 55.0
OI2 9.0 9.0 9.0 34.0 39.0
OI2 0.0 8.0 3.0 35.0 54.0
OI3 9.0 9.0 9.0 34.0 39.0
OI3 1.0 9.0 1.0 31.0 58.0
OI4 9.0 9.0 9.0 34.0 39.0
OI4 3.0 8.0 2.0 29.0 58.0

OE1 4.0 4.0 4.0 13.0 76.0
OE1 1.0 0.0 14.0 5.0 80.0
OE2 4.0 4.0 4.0 13.0 76.0
OE2 0.0 8.0 11.0 16.0 65.0
OE3 4.0 4.0 4.0 13.0 76.0
OE3 0.0 5.0 12.0 18.0 65.0
OE4 4.0 4.0 4.0 13.0 76.0
OE4 0.0 19.0 9.0 14.0 58.0

OO1 6.0 6.0 6.0 23.0 58.0
OO1 1.0 8.0 1.0 22.0 68.0
OO2 6.0 6.0 6.0 23.0 58.0
OO2 0.0 16.0 5.0 10.0 69.0
OO3 6.0 6.0 6.0 23.0 58.0
OO3 1.0 6.0 0.0 15.0 78.0
OO4 6.0 6.0 6.0 23.0 58.0
OO4 1.0 4.0 1.0 25.0 69.0
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Table A.3: The Predictions of the complete version of the
model. First line is the prediction, followed by another line
that gives the experimental data. A * indicates that the
conclusion is valid.

A.4 Predictions of Other Theories of the Syllogisms

Syllogisms Atm. Mat. Conv. PHM PSYCOP V.Models M.Models Data

AA1 A A A A,I A,I A A A
AA2 A A A A,I NVC I,NVC A,I,NVC A,NVC
AA3 A A A A,I I NVC A,I A
AA4 A A A A,I I NVC A,I A
AI1 I I,O NVC I,O I,O I I I
AI2 I I,O NVC I,O NVC I,NVC I,NVC I
AI3 I I,O NVC NVC I,O I,NVC I I
AI4 I I,O NVC NVC NVC NVC I,NVC I
AE1 E E NVC E,O I NVC E,O,NVC E,NVC
AE2 E E NVC E,O E,O NVC E E
AE3 E E NVC NVC I NVC E,O,NVC E
AE4 E E NVC NVC E,O NVC E E
AO1 O I,O NVC I.O NVC NVC O,NVC O,NVC
AO2 O I,O NVC I,O I,O NVC O,NVC O
AO3 O I,O NVC NVC I NVC O,NVC O
AO4 O I,O NVC NVC NVC NVC O,NVC O
IA1 I I,O I I,O NVC I I,NVC I
IA2 I I,O I NVC NVC I,NVC I,NVC I
IA3 I I,O I I,O I,O NVC I I
IA4 I I,O I NVC I,O NVC I I
II1 I I,O NVC I,O NVC I I,NVC I,NVC
II2 I I,O NVC I,O NVC NVC I,NVC I,NVC
II3 I I,O NVC I,O NVC NVC I,NVC NVC
II4 I I,O NVC I,O NVC NVC I,NVC I,NVC
IE1 O E NVC E,O I NVC E,O,NVC NVC
IE2 O E NVC E,O I NVC E,O,NVC E,O,NVC
IE3 O E NVC NVC I NVC E,O,NVC E,O,NVC
IE4 O E NVC NVC I NVC E,O,NVC O,NVC
IO1 O I,O NVC I,O NVC NVC O,NVC O,NVC
IO2 O I,O NVC I,O NVC NVC O,NVC O,NVC
IO3 O I,O NVC NVC NVC NVC O,NVC NVC
IO4 O I,O NVC NVC NVC NVC O,NVC O,NVC
EA1 E E E E,O E,I,O E E E
EA2 E E E NVC E E,NVC E E
EA3 E E E E,O I,O E,NVC E,O,NVC E
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EA4 E E E NVC I,O NVC E,O,NVC E
EI1 O E O E,O O,I O O,E,NVC O
EI2 O E O E O,I O,I,NVC O,E,NVC O
EI3 O E O E O,I O,NVC O,E,NVC O,NVC
EI4 O E O E O,I O,NVC O,E,NVC E,NVC
EE1 E E NVC E,O NVC E,NVC E,NVC E,NVC
EE2 E E NVC E,O NVC I,NVC E,NVC NVC
EE3 E E NVC E,O NVC NVC E,NVC NVC
EE4 E E NVC E,O NVC NVC E,NVC E,NVC
EO1 O E NVC O,I NVC O,NVC E,O,NVC NVC
EO2 O E NVC I,O NVC NVC E,O,NVC NVC
EO3 O E NVC NVC NVC NVC E,O,NVC NVC
EO4 O E NVC NVC NVC NVC E,O,NVC NVC
OA1 O I,O O I,O NVC O O,NVC O
OA2 O I,O O NVC I NVC O,NVC O
OA3 O I,O O I,O O O,NVC O,NVC O
OA4 O I,O O NVC NVC NVC O,NVC NVC
OI1 O I,O NVC I,O NVC I,O O,NVC O,NVC
OI2 O I,O NVC NVC NVC I,NVC O,NVC O,NVC
OI3 O I,O NVC I,O NVC O,NVC O,NVC O,NVC
OI4 O I,O NVC NVC NVC NVC O,NVC NVC
OE1 O E NVC I,O NVC O,NVC E,O,NVC NVC
OE2 O E NVC NVC NVC I,NVC E,O,NVC NVC
OE3 O E NVC I,O NVC NVC E,O,NVC NVC
OE4 O E NVC NVC NVC NVC E,O,NVC NVC
OO1 O I,O NVC I,O NVC NVC O,NVC NVC
OO2 O I,O NVC I,O NVC NVC O,NVC NVC
OO3 O I,O NVC I,O NVC NVC O,NVC NVC
OO4 O I,O NVC I,O NVC NVC O,NVC NVC

Table A.4: Predicted Responses for Each Syllogisms From
Eight Theories of Syllogistic Reasoning.
Atm. = atmosphere; Mat. = maching; Conv. = conver-
sion; V.Models = verbal models; M.Models = mental mod-
els; G.Model = generative model. Data from the first seven
theories are from Khemlani and Johnson-Laird (2012)
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