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Abstract

In the history of science, it has often occured that an entire community of scientists
believes in a theory that is later proven to be wrong. For example, in 1915, Einstein
and De Haas published a paper on the Einstein-De Haas effect. During the years
after, experimental results showing that the effect was incorrect were ignored by the
scientists in their field. Only ten years later it got accepted by the entire community
that the results of the Einstein-De Haas experiment were false. There are many pos-
sible explanations for such a collective failure of a scientific community. Bayesian
analyses of Kevin Zollman suggest that specific network structures can repair false
beliefs more easily than others, and that varying the weights of beliefs (i.e., ensure
the diversity of opinions) can also positively affect the reliability of scientific com-
munities.

This thesis investigates the truth-tracking abilities of scientific communities from
a logical perspective such that it can highlight the higher-order reasoning abilities
of agents. The thesis starts with a contribution to the most relevant philosophi-
cal debates on truth and the social dimensions of science and knowledge. Then,
a summary of other research on the relationship between the network of epistemic
communities and their truth-tracking abilities will be given. Next, a Multi-agent
Dynamic Evidence-based Logic will be introduced and it will be shown how to ap-
ply this to analyse the subjects under study. The final part of the thesis gives an
overview of different conclusions that a logical analysis can give on the reliability of
scientific communities. The main conclusion of this thesis is that the truth-tracking
ability of scientific communities is greatly affected by the distributions of the bias
evidence and distribution of the failures of the experiments. In fact, in the settings
of this thesis, these distributions affect the behaviour of the agents more dominantly
than the structure of the network or the weights of the bias evidence do.
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“Parrots mimic their owners.
Their owners consider that a sign of intelligence.”

- Marty Rubin
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Chapter 1

Introduction

In the history of science, it has often occured that an entire community of scientists
truthfully believes in a theory that is later proven to be wrong. For example, during
the 1910s, Einstein and De Haas published a paper on the nature of magnetism.
For a long time, everyone in their field believed that the results of the Einstein-De
Haas experiment were correct and experimental results showing that the effect was
incorrect were ignored. It was not until the 1920s that other scientists publicly ar-
gued that Einstein and De Haas’s main claim was false and that a new theory on
the nature of magnetism got accepted by the community. There are many possi-
ble explanations for such a collective failure of a scientific community: for example
insufficient expertise (a good method of experiment was not available yet), social
bias (the high status of Einstein could have mislead other scientists in the group),
or money and pressure (the community could have been bothered by political or
financial issues). Since the main goal of a scientific community is to track the truth,
in a scientific environment it is crucial to use a reliable working method that allows
the community to properly combine different pieces of evidence and be resistent to
false derivations.

In this thesis, I will study the phenomenon of social proof in scientific commu-
nities, by analysing how different factors affect the group interactions. Such a study
can focus on the social constructs or on the psychological and biological mecha-
nisms behind human behavior, typically being based on empirical data. One can
also look at group behavior from a more abstract perspective, for example one can
formalize economic reasoning using logic or math. Any study on the behavior of
scientific communities can be enriched by discussions from philosophy of science. In
this thesis, logic and philosophy of science will be the main disciplines that are used
to study the interactions within epistemic communities. I will first build a philo-
sophical framework to stipulate the problems that surface in communities engaged
in scientific research and communication. In specific, I will discuss two case-studies
that provide the input and guidelines for the features I will investigate later. Addi-
tionaly, using a new multi-agent version of evidence-based logic (such as Justification
Logic, [1]), we can see how different factors have an effect on the social interaction
and decisions of the group. Note that I will use examples from natural science,
as opposed to social science and formal science. It is important to emphasise this,
because theories in social sciences are typically presented as being less definite than
the ‘laws’ of natural science, and theories in formal science are never derived from
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or tested by experiment, unlike those in natural science. I do use tools from formal
science (i.e., logic) and ideas from social science (i.e., those of social epistemology)
in this research, but the notions of ‘experiment’ and ‘theory’ regard those of natural
sciences.

Research by Bala and Goyal in [3, 4] and by Zollman in [41, 42, 43] has shown
that the network structure of an epistemic community and the strenght of the be-
liefs of individuals can affect the truth-tracking ability of the group. Some network
structures and some behaviors can repair wrong beliefs more easily than others.
These analyses use simple Bayesian models to analyse the agents’ behaviors. How-
ever, as argued by Baltag et al. in [5], the agents’ higher-order reasoning is not
explicitly modelled in a Bayesian model. A multi-agent epistemic logic does allow
agents to reason about higher-order phenomena such as other agents’ minds. This
thesis analyses the truth-tracking abilities of scientific communities from a logical
perspective such that it can also shed light on the higher-order reasoning abilities
of agents. To capture the motivation behind people’s beliefs, i.e., their justifica-
tion, I need an evidence-based logic. Unfortunately there does not yet exist a logic
that includes both multi-agents and evidence management and reflects on the social
structure of a group of agents. Therefore, I will combine tools of various epistemic
logics to uncover the formal structure of group behavior. I will adjust the existing
Logic for Dynamic Justified Belief as introduced in [9] to construct a multi-agent
model that manages and compares all available evidence. By focussing on the se-
mantics instead of on a the complete set of axioms, this thesis will provide models of
specific situations but will not contain a presentation of a complete logical system.
However, I have good reasons to believe that it will be possible in future research to
transform the current logic into a well-designed system and prove that it is sound
and complete. With the help of Kripke models from the new logic, I wish to learn
which conditions can help to make scientific communities less susceptible to epis-
temic errors. For example, I will compare different network structures and vary the
strenghts of agents’ prior beliefs. Note that even when I will be focussing on social
groups of scientists, I will not study the group knowledge (as defined in classical
multi-agent epistemic logic) but rather how individual attitudes such as knowledge
and beliefs are based on evidence and influenced by their neighbours.

The research in this thesis touches up the side of social epistemology, which plays a
role in the redesign of epistemic institutions to improve their truth-tracking ability.
Today, this topic has become even more relevant since the Internet has amplified
the problems of the irrational behavior of groups due to easy and wide-spread in-
formation exchange. The more data we collect, the more complex it is to organise,
process and format all the information [21, p. 8]. A logical analysis will give new
insights into the results that have been presented by Bala and Goyal in [3, 4] and
Zollman in [41, 42, 43], where the problem is approached more from an economical
or mild-philosophical fashion by using Baysian reasoning and where the conclusions
are based on a large number of trials and do not concern the details of adoption
behaviour.

In chapter 2 I will describe the philosophical foundations on which the thesis is
built. In chapter 3, I will summarise the current state of affairs of research on net-
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work structures of epistemic communities. In specific, I will discuss Zollman’s claims
on the ideal settings for scientific communities. Further, I will briefly study the rel-
evant existing logics and introduce the new Multi-agent Dynamic Evidence-based
Logic in chapter 4. Consequently, in chapter 5 I will use this new logic to study
the effects of network structure and epistemic behaviour of scientific communities.
Finally, in chapter 6 I will summarise my findings and discuss how the logical model
can be eleborated and generalised.
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Chapter 2

Philosophical Framework

Before I start studying the formal dynamics of network structures, let me first set
up the philosophical framework. There are three relevant (interrelated) topics that
I will now discuss: the objectivity of knowledge, the relation between theory and
experiment and the social dimensions of scientific knowledge. It would be beyond
the scope of this thesis to include a complete discussion on each of these topics
including all arguments for and against, so I will be brief. For a more complete
overview of the philosophical debates, I refer the reader to the Stanford Encyclo-
pedia of Philosophy-pages on social epistemology ([20]) and the social dimension
of scientific knowledge ([26]). To illustrate the philosophical claims, I will describe
two case studies: the discovery of the weak neutral current in the 1970s and the
Einstein-De Haas experiment in 1914.

2.1 The objectivity of knowledge

One of the largest and oldest debates in philosophy concerns truth. Realists, for ex-
ample, argue that the world exists objectively, i.e., independent from any observer.
Believing in the cumulative character of science, realists aim for developing new
theories that are improvements of old ones. For a realist, the experiment will reveal
only the observable part of reality. Existing non-observables are there but might not
be testable for a realist. Anti-realists, on the other hand, do not aim for describing
objective mind-independent reality and put more focus on experiments than real-
ists. For example, Van Fraassen’s constructive empiricism holds that science aims to
give us theories which are empirically adequate, i.e., describe and explain empirical
findings ([28]). Some anti-realists argue that truth is relative to time and context.
For example, Kuhn argues that science evolves through so called paradigm shifts: a
set of concepts that constitutes all true theories, research methods, postulates, etc.
of a specific domain at a certain time span ([23]).

My contribution to this debate is compromising: there might be an absolute truth
(in natural science), but we can rarely be sure that we have reached it. Besides
all true a priori propositions like ‘all bachelors are unmarried’, there are some a
posteriori propositions of whose truth we can be certain, e.g. propositions of the
form ‘Bob gives Alice a bouquet of flowers’. However, most theories in natural sci-
ence are synthetic and universal, i.e. their truth is derived from experiment while
they claim to hold for every execution of the experiment that will ever be done.

14
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To use the results of a set of experiments and derive a universal statement such as
a scientific theory, we must use the principles of induction. Since the justification
of induction requires induction, we may not derive irrevocable universal statements
from experiments.1 Hence, we can never be completely certain that we have found
the absolute truth after conducting a scientific experiment. Fortunately, in this the-
sis I will look at fictive scientific research from a meta-perspective. Assuming that
there is an absolute truth, from this perspective I can distinguish the true theory
from the false. In the next section I will explain in more detail in what sense theory
and experiment are related.

2.2 The relation between theory and experiment

Experiment is an essential feature of natural science. A theoretic claim is perceived
as more convincing when supported by experimental results. Naive scientists treat
discovery as an objective observation of the world, made with unproblematic and
transparant experimental techniques. Moreover, they treat experiment as being in-
dependent from theory. In this light, it is often believed that “experiment tests
theory”. As argued in [29], this is no longer a tenable philosophical position. Most
philosophers of science agree that there is a complex and farreaching interrelation
between theory and experiment.

The history of the discovery of the weak neutral current in the 1970s clearly demon-
strates the interrelation between theory and experiment. From the 1960s untill 1971,
both theorists and experimenters did not believe in the existence of the weak neu-
tral current. Before 1971, a bubble chamber called Gargamelle already gave the first
empirical evidence for the existence of the weak neutral current, but in this time
there were enough theoretical counterarguments to reject this evidence and ascribe
the neutral current candidates to neutron background. Another experiment using
different techniques also failed to convince theorists or experimenters to believe in
the existence of weak neutral currents. It was only in 1971 that, under a different
interpretation, these experiments were used to actually confirm the existence of the
weak neutral currents.

In mid 1971, a proof of the renormalisability of gauge field theories was given.
This means that with the use of sophisticated mathematical techniques, sensible
approximate calculations were carried out. Accepting this proof, gauge theorists
had to believe in the existence of the weak neutral current. The experimenters,
however, were not yet able to show that these neutral currents existed. By adjust-
ing their beliefs to fit the theoretical expectations, experimenters interpreted their
results in a new fashion. This lead to the first item of empirical support for a class
of quantum field theories, gauge theories, in mid 1973. Given the opportunities its

1In short, that is because by definition the only way to justify induction, is to derive from
all individual cases of succesful induction that induction always works (if we would be able to
justify induction without moving from individual cases to universal statements, it would be called
deduction). To conclude that induction in general is a legitimate method of proof requires that
exact same principle of induction that we are trying to justify. This falls down to begging the
question, which is an invalid method of proof. For the complete description of the problems of
induction, please read [40].
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existence offered for future experimental and theoretical practise, in [29] it is as-
sumed that particle physicists accepted the existence of the neutral current for the
social-desirable outcome.2 This example proves how experiments are not passive
and objective observations, but mouldable by the accepted theories of their time.
The other way around, the outcome of experiments generally affects the focus and
choices of theorists. Hence, one should no longer claim that experiment indepen-
dently tests theory, but admit that there exists an interrelation between experiment
and theory.

A more formal argument that demonstrates the interrelation of theory and experi-
ment is given in [14]. It is argued that it is extremely hard to do a good experiment.
In fact, uncertainty about ability is an inevitable feature of doing experiment, which
leads to the Experimenters’ Regress. When there is an accepted theory, we can
judge whether an experiment failed or succeeded: the experiment succeeded when
the results match the theory, and the experiment failed when there is a discrepancy
between the results and the theory. In the last case, the experimenter is accused
of lack of expertise or failure of apparatus. However, when there is not yet one
accepted theory, we cannot tell when the experiment is properly carried out, i.e.,
we have no theory to compare it to. Because of this mutual dependency, new and
disputed areas must inevitably resort to subjective factors, such as competence of
the experimenters themselves. This makes science part of the cultural world rather
than standing outside it. In the next section we will see how this cultural world has
an effect on scientific knowledge.

2.3 Social dimensions of scientific knowledge

The above mentioned influence of theory on experiment suggests that researchers
are biased. There are other social dimensions that influence doxastic choices, such
as perception, memory, reasoning or introspection ([19]). In the light of this thesis
it is important to realise what social factors can influence the beliefs of scientists,
because my aim is to be able to construct a context that increases the chances to
repair false beliefs.

In [42], Zollman refers to Kuhn, ([24]) noting that if there would be an algorithm
at hand to get the best out of experiment and find the true theory, then all con-
forming scientists would make the same decision at the same time and we would not
have disagreements amongst scientists. However, there is no algorithm and there
are often disagreements between scientists. Besides disagreements during scientific
revolutions as described by Kuhn’s paradigm shifts in [23], such disagreements also
occur within one paradigm. In both cases, the disagreement can be due to the fact
that science is conducted by humans, who are never independent of their judgments,
experience, skills, etc.

According to [26], there is more attention for the social impact on science since 1980.
Contextual empiricists argue that the cognitive process that determines knowledge
is a social product. Agreeing with this position, I must take into account that

2All of the above details on the discovery of the weak neutral current are extracted from [29].
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scientists are subject to psychological mechanisms that influence their work, e.g.
greed to fraud, personal and national loyalties, devotion to political causes or moral
judgements, gender and financial interests. As a result, scientsts may unconsciously
and in some cases even consciously overlook crucial factors that greatly affect their
labresults.

When scientists work together on projects (e.g. in the cases of multiple author-
ship or peer reviews), the social influence becomes even more apparant. In [23],
Kuhn argues that we need social factors to settle disputes between competing theo-
ries or paradigms. Factors such as deliberation, (mis)communication, testimony and
(dis)trust become essential aspects of knowledge. From a reductionistic perspective,
we should use observation, memory and induction to judge testimony. From an an-
tireductionistic view, one is justified in trusting someone’s testimony without prior
knowledge about the testifier’s sincerity. Furthermore, we can distinguish the con-
stitutive impact on epistemic outcomes, i.e., the meaning of justifiedness of beliefs
can depend on local norms of an epistemic system. In [20] we read how some fa-
mous philosophers think one should deal with these aspects. Hume, for example,
believes that only with adequate reasons based on personal observations one may
rely on factual statements of others. And Locke too, has strong doubts about giv-
ing authority to the opinion of others. In [26] we read that Mill, who argues that
knowledge is best achieved after critical interaction between scientists, and Peirce,
who says that truth is beyond reach of any individual thus critical interaction is
needed to approach truth, do support deliberation anyhow. I will try to find out
what position to take in this debate in my logical analysis of networks of scientific
communities in the subsequent chapters.

I argue that science is a social product. On the one hand this means that experimen-
tal results can simply be wrong, because the scientists conducting the experiments
are no perfect robots but social and subjective beings. On the other hand, out-
come of research is also influenced by the interaction between scientists. I did not
come with empirical data to prove these claims; I solely argue that we cannot deny
that scientific knowledge is affected by social dimensions. To what extend exactly
this happens goes beyond the scope of this thesis.3 The following case study will
demonstrate some elementary effects on scientific knowledge.

2.4 The Einstein-De Haas experiment

I will now describe the event of the “discovery” of the Einstein-De Haas effect to
show how inapt communication between scientists and social dimensions such as
status can lead to undesirable outcomes.4

3I believe that it would go beyond the scope of this thesis to include empirical evidence, because
I assume it will be impossible for anyone to claim that scientific knowledge, which is a cultural
product, is not under influence of social factors. If one would argue that scientific knowledge is not
a cultural product, then I suppose that he or she refers to a different kind of knowledge; not the one
that is presented in papers and books, but a knowledge that then apparently exists independently
of us. To be clear: in this thesis I speak about the scientific knowledge that is discovered, believed
in and presented by human beings, i.e., in the cultural world.

4All of the details on the history of the Einstein-De Haas effect are extracted from [17, 16, ?].
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Firstly, let’s describe the context. During the 1910s, Einstein and De Haas wanted to
empirically test Ampère’s hypothesis, who claimed in 1820 that magnetism is caused
by circulation of electric charge. The fact that Einstein wanted to empirically test
something deserves some attention, since Einstein is known for his disapproval of
experiment. In fact, he could be very stubbornly convinced of a theory even if empir-
ical data seemed to falsify the theory. Against all the odds, in 1914 Einstein started
his only experimental work ever published. By that time, Einstein had already built
up quite an impressive reputation, which minimized the distrust of other scientists
to his claims.

Secondly, let’s see what happened during and after the ”discovery” of the Einstein-
De Haas effect. Einstein and De Haas wanted to investigate the nature of magnetism
and intented to show that the spin of a magnetic momentum is of the same nature as
the spin of rotating bodies in classical mechanics. They predicted a so called gyro-
magnetic ration of 1.0. Experiments of Einstein and De Haas showed that g = 1.02
and g = 1.45. Next, Einstein and De Haas discarded the result of g = 1.45 (which
mismatched Ampère’s hypothesis) and published in the spring of 1915 that g = 1.02,
claiming that experiment approximately confirms Ampère’s theory. Their paper did
include an elaborate description and discussion of the experimental setup and an
analysis of possible errors and ways to overcome these. While others later repeated
the experiment and got values around g = 2, Einstein insisted that g = 1. It wasn’t
until the 1920s that other scientists published that the Einstein and De Haas were
wrong and that the correct value of 2.0 got accepted.

Thirdly, let’s analyse what went wrong during and after the Einstein-De Haas ex-
periment. A crucial mistake is made by Einstein and De Haas themselves. In their
paper, they did not share their anomale result that g = 1.45. Furthermore, Ein-
stein and De Haas were too priored at the start of the experiment because they
were strongly committed to the theory. The desire to prove the theory was strong,
because there were a lot of related problems that could be explained with a gyro-
magnetic ration of 1.0. This clearly affected their treatment of the data. Besides
this mistake of Einstein and De Haas, their colleague-experimenters could also have
been more critical. Because of Einstein’s fame, the results of other experimenters
got overshadowed by the publication of the Einstein-De Haas effect. Finally, here
too we see the influence of the interrelation of theory and experiment. Earlier, Bar-
nett (in 1909) and Maxwell (in 1861) did some experiments on the subject that
conflicted with Ampère’s theory. However, they lacked crucial theory on currents
and electrons to properly interpet and design the experiment.

Note that the case of the Einstein-De Haas effect is not representative for science;
such collective faults seem to occur only rarely. However, we should still try to
prevent such faults. It seems that sharing only belief and keeping some evidence
private, as Einstein and De Haas did, can lead to epistemic group failure. Likewise,
we see that priors should not be too high because they might be based on false
assumptions while preventing scientists from switching to another belief.
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Chapter 3

Theoretical Framework

Now that the philosophical framework on science and its practitioners in general is
set, I can start to focus on the effects of the network on the reliability of epistemic
communities. In this chapter, I will discuss several relevant studies on information
control problems among deliberating agents.

3.1 Irrational behavior of groups

Groups might seem to have an epistemic advantage over individuals, because they
have access to more information, but they are at the same time very vulnerable
to irrational collective behavior. In [34], the problems of deliberating groups are
discussed. Ideally, a deliberating group would show the following principles: the
best members pull the others to their level of expertise, the information of all group
members is combined and group discussion creates extra insights. In practise we
see something different: group members tend to become more confident of their
judgments after they speak with one another (“amplification of cognitive errors”),
groups usually get to the level of their average members and people with extreme
views tend to have more confidence that they are right and as people gain confi-
dence, they become more extreme in their beliefs (“group polarization”). Exposure
to the views of others might lead people to silence themselve for two reasons: i) in-
formational pressure, i.e., strong new informational signals contradict and outweigh
private signals, and ii) social influence, i.e., people do not want to be different from
the rest.

Well-studied phenomena of irrational behavior of groups include informational cas-
cades, pluralistic ignorance and the bystander-effect, for example in [21]. People in a
network can influence each other’s behavior and decisions. An informational cascade
occurs when it is optimal for the individuals of a group to follow the behavior of the
crowd whilst ignoring their private evidence, because the information they get from
the crowd outweighs their private information ([13]). We speak of a false cascade
when this leads to a false group belief. Hence in false informational cascades the
agents’ behavior is individually rational, but irrational for the group. Such informa-
tional cascades can occur easily, but they can fortunately also easily be broken, for
example when an individual with hard (true) information appears. When people go
along with the crowd in order to maintain the appreciation of others, we speak of a
reputational cascade.
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1 2

3

45

Figure 3.1: A network graph with 5 nodes, labelled ‘1’,‘2’,‘3’,‘4’,‘5’ and edges between
the pairs (1,2),(1,4),(2,3),(2,5) and (3,4). The network is “connected”, because there
is a path going between every pair in the network.

One way to model the behavior of people in an informational cascade is to use
Bayesian probabilities and network theory. With Bayesian reasoning, we can deter-
mine the probabilities of events given the information that is observed or obtained
by communication. For the probability of event A I write Pr[A]. For the probability
of A given that B has occured I write Pr[A|B]. Bayes’ rule states that

Pr[A|B] =
Pr[A]× Pr[B|A]

Pr[B]

We can use Bayes’ rule for example to detect email spam.

A network graph (see Figure 3.1) consists of a set of objects, called nodes, with
certain pairs of these objects connected by links called edges. For example, the
World Wide Web is an enourmous information network with nodes being webpages
and the edges are links leading from one page to another. For the purpose of this
thesis, nodes will represent the agents and undirected edges will represent the com-
munication between agents. The fact that the edges are undirected implies that
communication is always symmetric, flowing two-ways. Furthermore, we say that
two agents are friends, or neighbors, if they are connected by an edge. A path is a
sequence of nodes such that each consecutive pair in the sequence is connected by
an edge. In a connected network, every pair of agents is connected by a path.

A fundamental feature of a network setting is that we evaluate the actions of agents
not in isolation, but with the expectation that the world will react to what any
agent does.

Let an agent’s choice between strategy A or B be based on the choices made by
all of her friends. Consider any network and suppose everyone in the network has
chosen B. Then let some initial adopters switch to A. If their direct friends copy
their behavior, making their friends to adopt their behavior, a cascade has formed.
When everyone in the network switches, we speak of a complete cascade. It can also
happen that the cascade stops before everyone has switched. This depends on the
structure of the network, specifically on the density of cluster. A cluster of density x
is a set of nodes such that each node in the set has at least a fraction x of its network
friends in the set. For example, the set of nodes 1,2,3,4 forms a cluster of density 2

3

in the network in Figure 3.2. Now if the remaining network (those that did not yet
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Figure 3.2: A network graph with two clusters of density 2
3

switch) contains a cluster of density greater than 1 − q, for q being the threshold,
then the set of initial adopters will not cause a complete cascade. Whenever a set of
initial adopters does not cause a complete cascade with threshold q, the remaining
network must contain a cluster of density greater than 1− q ([15, ch.19]).

It can also happen that the people in the network do not know who chose option A,
for example when it is forbidden to talk about it. It can happen that everyone in the
network wants to switch to A, but does not do it because they do not want to be the
only one. We call this pluralistic ignorance. A special case of this is the bystander
effect, expressing that the more individuals who are gathered in one place, the less
the likelihood of people coming to the aid of a person in need. The observation of
others’ lack of action may lead one to believe that there is no reason to take action
([21, p.23]).

3.2 The effect of the network structure

An important paper on the effect on the process of social learning of network struc-
ture, i.e., the specific configuration of how evidence flows in a community, is about
a technical investigation performed in 1998 by the two economists Bala and Goyal
([3, 4]). The authors consider an infinite society whose members face a decision prob-
lem: to choose an action at regular intervals without knowing the true payoffs from
other actions. The agents use their experience along with the experience of their
friends to upgrade their beliefs. Given these beliefs, each agent repeatedly chooses
an action that maximises the expected utility. It is argued that humans cannot pro-
cess complex calculations that include reasoning about unobserved agents (friends
of friends) and therefore an analysis that relies on the agents’ limited rationality
(omiting higher-order reasoning abilities) is more realistic.

Bala and Goyal show that in a connected network agents’ beliefs necessarily con-
verge to a limit and that these limits are equal for all agents in a connected society.
This implies that in the long run, all agents in a connected network have the same
belief, which is called social conformism. Whether or not this action is optimal,
depends on the distribution of prior beliefs, the structure of neighborhoods and the
informativeness of all actions. Bala and Goyal develop conditions that ensure op-
timal choices. They consider agents arranged on a line where each agent can only
communicate with those agents to the immediate left and right of them. If there
is an infinite number of agents, convergence in this model is guaranteed so long as
the agent’s priors obey some mild assumptions. They also consider adding a special
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group of individuals to this model, a ‘royal family’. The members of the royal fam-
ily are connected to every individual in the model. For this network structure, the
probability of converging the the wrong result is no longer zero. Negative results
obtained by the royal family infect the entire network and mislead every individual.
It is claimed that the conclusions are consistent with empirical findings ([3, sec.5]).

Kevin Zollman analysed in further detail Bala and Goyal’s counterintuitive result
that in some contexts a weakly connected community is more reliable than a highly
connected community in [41, 42, 43, 44]. Zollman works with models of finite groups
instead of infinite groups, which is closer to real-science than Bala and Goyal’s in-
finite model. As in Bala and Goyal’s models, Zollman considers situations called
Bandit problems where the agents are faced with a dilemma to gain information
and meanwhile get the highest payoff. Suppose there are two medicines, medicine
A and medicine B, and each agent believes that either A or B has the best healing
power. The payoff of the old medicine A is known by every agent and the payoff
of B, the new medicine, is unknown. The agents’ beliefs determine their actions:
all agents believing that A is superior will use medicine A on their patients and all
agents believing in B will use medicine B on their patients. Agents want to cure
their patients, so it would be irrational to test the inferior medicine.5 Note that
the incoming evidence depends on the actions of the agents. Moreover, learning
demands communication: the believers of the old medicine A need the evidence of
agents using the opposite medicine in order to compare the two payoffs and if nec-
cessary switch to the new medicine. Zollman uses computer simulations to compare
three different networks: the cycle, the wheel and the complete graph (see Figure
3.3) and different strenghts of prior beliefs.
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Figure 3.3: An 8 person-circle, 9 person-wheel and 8 person-complete graph

I will now sum up the most important conclusions from Zollman’s work and give a
short explanation of each of these. In [41] the conclusions are that:

i) in some contexts, scientific communities with less connections are more reliable
than communities with more connections, and

5This is a simplified version of reallife science. It is not always irrational to test the inferior
medicine, because scientists do realise that gaining information is also worth something. In any
case, at some point (sometimes after n trials trying both medicines, sometimes right after the
presentation of a new medicine) scientists are faced with the dilemma to get more information or
choose for the superior medicine. The research for medicines for HIV, for example, was stopped be-
fore the planned amount of experiments with both medicines was conducted, because one medicine
showed a successrate that was considerably much higher than the other, so it really was immoral
to continue testing the inferior medicine on patients.
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ii) there is a tradeoff between speed of adopting beliefs and reliability to track
the truth. It depends on the epistemic goals of the community whether speed
or reliability is more important.

These conclusions are explained by the fact that in less connected networks bad
results and good results both spread slower, so variety is preserved longer. When
variety is preserved longer, beliefs in the true theory are more likely to survive the
emergence of a false informational cascade whereas in a highly connected commu-
nity the good beliefs can disappear before they get the chance to repair the false
beliefs.

So cognitive diversity, i.e., having all theories investigated by at least one agent,
helps communities to choose the best action. There are two ways to achieve this, as
argued in [42]:

i) by limiting the information that gets to the agents, and
ii) by implementing scientists with strong beliefs.

However, when a group holds both properties, its members will never switch belief.
This is obviously a bad consequence, because if cognitive diversity is maintained
indefinitely, then as a result agents fail to converge to the truth. We want transient
diversity. Zollman uses a network graph and beta-distributions such that he can
vary with the connections and priors α and β (representing the strengths of beliefs)
to prove claim i) and ii).6 These claims are illustrated by a study of the research on
Peptic Ulper Disease (PUD). For a long time, people believed in the wrong theory
to explain PUD (because they used the wrong method) and no one tried the other
method. Zollman argues that this could have been prevented when the researchers
would have taken either i) or ii) into account.

We can see the resemblance between Bandit problems and science, for two ban-
dits (or, in the case of PUD, ‘medicines’) can be treated as two competing theories,
such as in a scientific revolution as described by Kuhn. The reward for the doctors
in [42] is to cure patients from PUD, and the reward for scientists in general is to
develop a true theory. There are some problems that arise when we want to use
logic to analyse Bandit problems, though. I will discuss these in section 5.1.1.

Zollman argues that division of labor improves the truth-tracking ability of the
group. If that is achieved, then belief in good methods and theories persist longer,
such that these can repair the bad results. Information about a theory or method
can only be gathered by scientists actively pursuing it. Since the effort for develop-
ing an inferior theory is often regarded as a waste, we want to give scientists some
interest in pursuing the inferior theory in order to divide the cognitive labor. In the
next section we will see how this can be done (and that we are already doing this
in western science).

6A beta-distribution uses Bayesian reasoning for complex probabilistic predictions. It is a
function that represents an agent’s belief over infinitely many hypotheses - values of α and β.
Learning via beta distributions is relatively efficient, because agents directly learn after every
update.
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3.3 Cognitive division of labor

Because of the mismatch between individual rationality (i.e., persuing the superior
theory) and collective rationality (i.e., cognitive division in labor in order to repair
false beliefs in the group), we need to give scientists individual reasons to purchase
collective rationality. In [22], Kitcher argues that a good scientist makes individual
rational choices when she belongs to a community in which the chances of discover-
ing the correct answer are maximised. Good scientists should agree in advance that
it may sometimes be necessary for some to persue an inferior theory, and that it
may fall to her to play this role. We cannot simply force scientists to try the inferior
theory, but we must do it indirectly by promoting the investigation of a new method.

In [33], Strevens claims that our current reward system actually leads to cognitive
division of labor. That is, because scientists are being rewarded for being the first to
discover something. This reward system, reward being prestige (power, credibility,
quotations), follows the priority rule (reward in the sense of salary is rewarded to all
scientist that are employed at a university or other scientific institutions). Hence our
reward system affects the behavior of scientists desirably: it stimulates the cognitive
division of labor. Strevens claims that the priority rule has always and everywhere
ruled in Western science.

3.4 The Independence Thesis

Often, science is depicted as done by isolated scientists, while scientists are always
part of some larger community. My emphasis to look at the group as a whole in-
stead of isolated individuals, is motivated by the claim in [27] that rationality of
individuals and rationality of groups are independent properties of groups. Hence-
forth, we should consider the rationality of individuals as well as the rationality of
groups when analysing social knowledge. Note that even though Bala and Goyal
and Zollman’s Bayesian models use the input of the network graph, and thereby the
relations between the entire community, the calculations themselve are restricted to
one individual.
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Chapter 4

Logical Model

Now that I have built the philosophical framework and studied the most relevant
work on the interaction within (scientific) communities, I can start with the logical
analysis. There have been Bayesian analyses on the effect on the epistemic achieve-
ments of groups of the network structure, i.e., the specific configuration of how evi-
dence flows in a community. For each individual agent, the authors in [3, 4, 41, 42]
count the data of both the agent’s own observation and the testimony of others,
to calculate with the Bayesian Law and beta-distributions which theory the agent
should regard as most plausible. Believing in this chosen theory apparently should
give the highest payoff, henceforth the agent should behave as if that theory is in-
deed the true theory, by designing and interpreting her experiments in the light of
the selected theory. The approaches in [3, 4, 41, 42] incorporate shared information
on experimental results that agents receive from their friends in the network and
omit reasoning about other agents’ minds (e.g. “my friend b knows that all of her
friends believe p, and since she has a lot of friends, I should regard her behavior as
more informative than the behavior of my lonely friend c”) and other higher-order
reasoning powers of the agents (e.g., realising the network structure in general).
Analysing the effects of a specific network configuration on the behavior of agents
by using a system that includes higher-order reasoning, can shed a new light on the
behavior of scientists.

Logic provides the tools and techniques to reason about the higher-order processes
in the agents’ minds. Since there are many different logics, each constructed for
specific objectives, I will first have to choose the particular logic(s) I want to work
with. There are a couple of tasks I want my logic to be able to do, such that I
can analyse the truth-tracking power of scientific communities. Most importantly, I
need a Kripke model and a language with epistemic operators K and B such that
I can model different states of the world and agents’ knowledge and belief about
these states. In addition I want a multi-agent logic, such that besides modelling
the agents’ uncertainty about atomic facts, I can also gain insight on the mutual
uncertainty about other agents’ knowledge and beliefs. Furthermore, I want to see
how agents justify their knowledge and beliefs, so I need evidence-managing tools.
Since I will simulate a dynamic context, where agents update their beliefs, knowl-
edge and evidence, I need a dynamic logic to model actions and a temporal relation.
In the philosophical and theoretical framework I have learnt about some factors
that can have an effect on the epistemic achievements of the group. Firstly, one
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of the most striking results from [41, 42] is that there is a trade-off between the
speed at which beliefs spread in a community and the truth-tracking ability that is
caused by the network structure. Therefore, I want to include the network struc-
ture to describe who communicates with whom. Secondly, Zollman shows us in
[41, 42] that the strenght of prior beliefs has an effect on the adopting behavior of
the agents, so I need to be able to adjust the weights of the agents’ priors, i.e., their
biasses. Thirdly, from the Einstein-De Haas debacle I learnt that it also matters
whát the agents communicate: so I wish to have flexible techniques for sharing data.

This is quite a list of desiderata, but fortunately there are some logics that are
good candidates to handle this list. However, none of them are good enough to
capture the entire list. For example, Justification Logic (JL) provides techniques
to input evidence and justification, but only in a static situation. Standard Dy-
namic Epistemic Logic (DEL) uses dynamic models for updates, but is not refined
enough to talk explicitly about evidence, justification and reliability. Classical DEL
is often extended with tools from Belief Revision Theory (BR) for dealing with fal-
lible evidence and “soft” information. The logic presented by the authors in [9]
combines these three logics into one logic, the Logic of Dynamic Justified Belief
(DJB). Unfortunately, this logic is only suitable for single-agent models. Therefore
I will adjust DJB such that it can produce a multi-agent model. Besides this ad-
justment, in section 4.3 I will add some other necessary tools to the logic and throw
out superfluous features. With the resulting system, I can adjust variables such as
communication connections, distribution of priors and weight of priors. In section
4.3.5 I will tell how one can extend the logic into a more universal system.7 The
model will have different components, including the network structure as well as the
epistemic structure and evidence of individual agents. In my presentation of this
model I will highlight a selection of some specific features of the global model, as
the total picture can become rather complex to draw.

I will first discuss the preliminaries, by briefly introducing DEL, BR and JL, such
that I can thereafter present the relevant features of DJB in section 4.2. After that,
I will describe the Multi-agent Dynamic Justification Logic (MDEL) in section 4.3,
which is built up from ingredients of the former systems. Note that the situations I
want to model will have all ingredients incorporated in one setting.

4.1 Preliminaries

In this section I will present preliminaries that are necessary to understand the
Logic of Dynamic Justified Belief and the Multi-Agent Dynamic Evidence-based
Logic, which are based on techniques from DEL, BR and JL. I will only briefly
discuss the logics because the reader is expected to be familiar with propositional,
first-order logic and formal definitons of truth, and because most technical details
of the extended logics will be explained in the subsequent sections.

7In [30, 31], Renne combines DEL and JL in a multi-agent setting that allows for private commu-
nication. However, this model allows only for deleting evidence instead of adding evidence, which
will be a crucial action of my analysis. Other logics that combine dynamic models with concepts
of justification logic include [6, 25, 32, 38] . All of these logics could be explored in the future.
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4.1.1 Dynamic Epistemic Logic

The framework of Dynamic Epistemic Logic (DEL) as presented in [12] describes
how various changes such as observations by an agent or communication between
the agents affect the epistemic and doxastic states of the agents. Classical DEL is
not hospitable to belief revision, but in most recent literature tools for belief revision
are added. For example, the author of [36] presents a dynamic logic for belief revi-
sion and the authors of [11] give a qualitative theory of dynamic interactive belief
revision. Since I want a DEL that does include the possibility of upgrading beliefs,
I will now introduce a soft version of DEL that uses tools from BR.

I use Kripke frames and models to define semantics for epistemic logics. A Kripke
frame is a 2-tuple F = (W,∼) where W is a set of possible worlds and ∼⊆ W ×W
is the indistinghuisable relation on W . A Kripke model is a 3-tuple M = (W,R, [[·]])
where [[·]] : W → P(F ) is a valuation map for F , being the set of propositional
formulas ϕ of the language. Given a set Φ of atomic sentences, a simple language
L for DEL is defined by recursion:

ϕ := ⊥|p|¬ϕ|ϕ ∧ ϕ|�ϕ with p ∈ Φ

This language can be extended as we will see in the subsequent sections. In epistemic
logic, �ϕ is to be read as ‘I know that ϕ’, but this interpretation can be specified
in further detail, as we will see in section 4.2.1. I use the following abbreviations:

> := ¬⊥
ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ)

ϕ→ ψ := ¬(ϕ ∧ ¬ψ)

A pointed model is a pair (M,w) consisting of a model M and a designated world
w in M called the “actual world” (or the “real world”).

Definition 4.1.1. (Truth for DEL) The satisfaction relation w � ϕ, short for
(M,w) � ϕ when M is fixed, is defined as follows:

w � ⊥ never

w � p iff w ∈ [[p]]

w � ¬ϕ iff w 6� ϕ
w � ϕ ∧ ψ iff w � ϕ and w � ψ

w � �ϕ iff v � ϕ for every vRw

We can extend the valuation map [[·]] to all sentences ϕ, by putting [[ϕ]] = {w ∈
W |w � ϕ}.

We say that ‘ϕ is true at w in M ’ iff M,w � ϕ. We say that ‘ϕ is valid’ iff ϕ
is valid on the class of all frames.

27



Chapter 4 The Reliability of Scientific Communities: a Logical Analysis

Definition 4.1.2. (The logic K) The logic K is given by the following axiomatiza-
tion:

(Necessitation) If ` ϕ (“ϕ is a propositional tautology”), then ` �ϕ
(Modus Ponens) If ` ϕ and ` ϕ→ ψ, then ` ψ

(K) If ` �(ϕ→ ψ), then ` �ϕ→ �ψ

Definition 4.1.3. (The logic S4) The logic S4 is obtained by adding the following
axioms to K:
(4) ` �ϕ→ ��ϕ

Definition 4.1.4. (The logic S5) The logic S5 is obtained by adding the following
axioms to K:
(5) ` ¬�¬ϕ→ �¬�¬ϕ

The rules of S4 entail positive introspection: “if I know something, then I know that
I know it”. The rules of S5 entail also negative introspection: “if I do not know
something, then I know that I do not know it”.

When constructing a multi-agent Kripke model for a set of agents A, the opera-
tor � needs an index i ∈ A to specify who knows ϕ: �iϕ. The nice thing about
using modal logic in epistemology, is that we can express sentences like “Alice knows
that Bob knows that p”, i.e., �a(�bp). We can also express that something is com-
mon knowledge for a set of agents G, written as C�G. If ϕ is common knowledge
to G, then every agent in G knows that ϕ and everyone knows that everyone knows
ϕ, etc. As an example of a multi-agent epistemic model, consider Figure 4.1.

p

w w′

a, b
a, b, c a, b, c

Figure 4.1: A multi-agent epistemic model with three agents a, b and c. In the real
world w, p is true. p is not true in w′. We can see in this model for example that
agent a and b do not know whether p is true or not, but agent c does know that p is
true (he can distinguish between w and w′). Furthermore, c knows that a and b do
not know whether p. And a and b know that c knows whether p.

If I want to model personal beliefs, I have to include another binary relation that
specifies the plausibility order amongst the possible worlds, often written as ≤i and
depicted by an arrow in the model. We define belief Biϕ as truth in the most
plausible worlds:

M,w |= Biϕ iff M,w′ |= ϕ for all w′ ∈ max≤i
{w′ ∈ W |w ∼i w′}

For example, consider Figure 4.2

28



The Reliability of Scientific Communities: a Logical Analysis Chapter 4

p

w w′

a
a, b a, b

Figure 4.2: A multi-agent epistemic model with two agents a and b. Here, agent b
knows that p and agent a does not know whether p. a thinks that world w′ is more
plausible, hence she believes that ¬p. Moreover, a believes that b knows that ¬p.

So far the epistemic logic is static. I do want to capture the truth conditions of
statements concerning the change of knowledge and belief due to new information
becoming available. A framework that can deal with this is the logic of public
announcement PAL. Intuitively, a public announcement of ϕ removes all possible
worlds where ϕ is false. Besides public announcements, we can also imagine private
announcements : Alice tells Bob a secret, but not to Charlie. The framework of DEL
provides a canonical way to model actions. The essential idea of action structures
is that we describe actions as Kripke structures: a 2-tuple (E,R) where E is a set
of events and R the equivalence relation on E. For every α ∈ E we have a formula
pre(α) which is called the precondition of α that defines when an event can happen
(e.g., I can only see a unicorn if there is a unicorn). An action is a 3-tuple (E,R, α)
where α should be seen as the ‘actual action’. Combining the epistemic model and
the event model, we get a product update. The product update is a partial function
that maps pointed models to pointed models by an action. Please read [7, 8, 12, 39]
for more details on models of product update.

4.1.2 Justification Logic

Even though DEL is an impressive and eleborate system, it cannot deal with evi-
dence. A lot of formal and philosophical studies on the meaning of knowledge or
belief are based on the criticised claim that ‘knowledge’ is equal to ‘true justified
belief’. Gettier described a few counterexamples in [18] that show that this claim
is not always applicable, suggesting that there is a missing ingredient to the triple
‘truth’, ‘justification’ and ‘belief’. [18] set fire to many different proposals of these
missing ingredients, some of them focussing on the fact that the justification should
be relevant or truthful. For example, the Defeasibility Theory defines ‘knowledge’ as
‘true justified belief that is stable under belief revision with any new evidence’. As
the authors in [9] point out, the interpretation of ‘evidence’ is not always clear from
the context; do I have to consider all evidence, or only true information? Therefore,
it is good to be very careful and explicit when we define evidence.

Justification Logic provides us with the tools for reasoning about justification and
evidence ([1, 2]). JL introduces structured syntactic objects called terms. There
are different kinds of evidence: directly observing t; testimonial evidence (given by
friends), logical evidence (theorems from logic) and inferential evidence (derived by
combining other pieces of evidence by Modus Ponens, managing or aggregating com-
pound terms). JL allows us to form new formulas of the form t :i ϕ: “t is agent i’s
justification that ϕ is true”, and t �i ϕ: ‘t is agent i’s admissible evidence for ϕ”.
Justification Logic does not directly analyse what it means for t to justify ϕ beyond
the format t : ϕ, but rather attempts to characterize this relation axiomatically.
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The basic operation on justifications are application · and sum +. More elaborate
logics introduce additional operations on justifications. The simplest justification
logic J0 is axiomatised by

(Classical Logic): All classical propositional axioms and the rule Modus Ponens

(Application): s : (ϕ→ ψ)→ (t : ϕ→ (s · t) : ψ

(Sum): s : ϕ→ (s+ t) : ϕ and s : ϕ→ (t+ s) : ϕ

4.2 The Logic of Dynamic Justified Belief

In [9], Baltag et al. introduce dynamic operations of evidence introduction, evidence-
based inference, strong acceptance of new evidence and irrevocable acceptance of
additional evidence. In this section I will discuss some elements of the Logic of
Dynamic Justified Belief, DJB, which will be the basis of the Multi-agent Dynamic
Evidence-based Logic presented in section 4.3. We will see how DEL, BR and JL are
combined to construct the single-agent Logic of Dynamic Justified Belief, DJB as
defined in [9, pp.2-3]. I refer the reader to Appendix A for all the details on DJB
that I will not mention.

4.2.1 Syntax

Definition 4.2.1. (Language JB) Given a set Φ of atomic sentences, the language
L := (T ,F ) consists of the set T of evidence terms t and the set F of propositional
formulas (sentences) ϕ defined by the following double recursion:

ϕ ::= ⊥|p|¬ϕ|ϕ ∧ ϕ|Et|t� ϕ|�ϕ|Kϕ|Y ϕ with p ∈ Φ

t ::= cϕ|t · t|t+ t

Subterms and subformulas are defined to construct preconditions. The operation
(·)Y is introduced in order to deal with the famous Moore sentence “ϕ ∧ ¬Bϕ”.
Please see Appendix A for the construction of these objects.

Explaining formulas of L

Et says that evidence t is available to the agent (though not necessarily accepted).
t � ϕ says that t is admissible evidence for ϕ: if accepted, this evidence supports
ϕ (“t justifies ϕ”). �ϕ says that the agent (implicitly) defeasibly knows ϕ (rules of
S4 so positive introspection). Kϕ says that the agent (implicitly) infallibly knows ϕ
(rules of S5, so negative introspection). And Y ϕ says that “yesterday” (i.e.,before
the last epistemic action) ϕ was true.

In [9], two different types of knowledge are defined: infallible knowledge K (ab-
solutely unrevisable belief - even in the face of false evidence), corresponding to the
principles of S5; and defeasible knowledge � (unrevisable belief in the face of any
new true information), corresponding to the principles of S4. This implies that �
does not have negative introspection, while K does. Belief is defined as ¬�¬�ϕ
and is abbreviated as Bϕ. Note that K and B are universal operators, i.e., true
independently of the possible worlds, as opposed to � which is to be evaluated on
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a specific world. The relation � is also universal in a model M , that is, it is not
defined on a specific world but any formula of the form t� ϕ holds over the entire
model.

Explaining evidence terms of L

cϕ is an evidential certificate: a canonical piece of evidence in support of sentence
ϕ. t · s combines two pieces of evidence t and s, using MP. t+ s aggregates (without
performing logical inference) all evidence provided by t and s.

Definition 4.2.2. (Admissibility) Admissibility is the smallest binary relation �⊆
T ×F satisfying the following conditions:

(1) cϕ � ϕ;
(2) if t� (ψ ⇒ ϕ) and s� ψ then (t · s)� ϕ; and
(3) if t� ϕ or s� ϕ, then (t+ s)� ϕ.

Definition 4.2.3. (Admissible terms) T e := {t ∈ T |∃ϕ such that t � ϕ} is the
set of admissible terms.

Definition 4.2.4. (Propositional content) For every term t ∈ T , the propositional
content cont of t is the conjunction of all the formulas for which t is admissible
evidence: cont :=

∧
{θ|t � θ}. For t 6∈ T e, this is the conjunction of an empty set

of formulas.

Further notes

One of the objectives of [9] is to deal with the problems of logical omniscience.
Agents are logically omniscient if they know or believe all of the logical consequences
of their knowledge or beliefs. For instance, logical omniscient agents necessarily
know all theorems of the logic in use. The classical interpretations of the modalities
K,� and B satisfy logical omniscience. In an ordinary sense, people do not possess
such supernatural reasoning powers. By distinguishing between implicit and explicit
knowledge (belief), the authors of [9] allow for non-logically omniscient agents. In
JB, only implicit knowledge, Kϕ or �ϕ, and implicit belief, Bϕ, satisfy logical
omniscience. “Implicit knowledge may be thought of as “potential knowledge” of ϕ
that the agent might in principle obtain, though perhaps she will never have this
knowledge in actuality” ([9, p.8]). In other words, knowledge (belief) of ϕ that can
be derived in the epistemic model. Explicit knowledge (belief) represents the agent’s
actual knowledge (belief), obtained when the agent realises her implicit knowledge
(belief) and can verify, or reason about, the evidential certificate for ϕ, i.e., cϕ is in
her evidence set:

Keϕ := Kϕ ∧ Ecϕ
�eϕ := �ϕ ∧ Ecϕ
Beϕ := Bϕ ∧ Ecϕ

To get a better grip on the relationship between formulas and terms, consider the
following abbreviations:

• A(t) is short for (implicitly) accepting t, i.e., when the agent believes all sen-
tences ϕ for which cϕ ∈ sub(t)) (define sub(t) as in Appendix A;
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• G(t) stands for t is good (implicit) evidence, i.e., the agent defeasibly knows
all sentences ϕ for which cϕ ∈ sub(t);

• I(t) for t is infallible (implicit) evidence, i.e., the agent infallibly knows all
sentences ϕ for which cϕ ∈ sub(t); and

• t : ϕ for t is (implicit) evidence for believing that ϕ, i.e., the agent accepts t
and t� ϕ (“t justifies ϕ and t is accepted as justification of ϕ”).

Similarly as with Ke,�e and Be, we can state that t is explicit evidence for belief
of ϕ:

t :e ϕ := t : ϕ ∧ Et

An important conceptual difference between evidence on the one side and knowledge
and belief on the other side, is that evidence can be contradicting, while knowledge
and beliefs cannot. For example, it is possible that t � ϕ and t′ � ¬ϕ, and t ∈ E
and t′ ∈ E, for either t or t′ can be unaccepted. It cannot, however, occur that both
t and t′ are accepted, for then the agent would believe ϕ and ¬ϕ, which leads to a
logical contradiction.

I will not go into further detail on the subject of implicitness and explicitness,
since it is not the focus of this thesis. In chapter 5 I will assume that all evidence
is automatically accepted. Though in theory, as we have seen above, evidence does
not need to be accepted. In that case, the consequences of t would not necessarily
be believed even though t ∈ E.

4.2.2 Semantics

Definition 4.2.5. (Model for JB) A model M = (W, [[·]],∼,≥, , E) is a structure
consisting of a nonempty set W of possible worlds ; a valuation map [[·]] : Φ →
P(W ); binary relations ∼ (“epistemically indistinguishable from”), ≥ (“no more
plausible than”), and  (“the temporal predecessor of”) on W ; and an evidence
map E : W → P(T ). Model M satisfies a number of conditions that can be found
in Appendix A.

Definition 4.2.6. (Standard Model) A model M is standard if the strict plausibil-
ity relation > is conversely well-founded and the immediate temporal predecessor
relation  is well-founded.

Definition 4.2.7. (Best World Assumption) A model M satisfies the Best World
Assumption iff for every non-empty set P ⊆ W such that w ∼ w′ for all w,w′ ∈ P ,
the set

min≥P := {w ∈ P |w′ ≥ w for all w′ ∈ P}
is also non-empty. That is, there is always at least one “most plausible world”.

Lemma 4.2.1. (Best Worlds Assumption) Every standard model satisfies the Best
Worlds Assumption as defined in definition 4.2.7.

Proof. This follows from the converse well-foundedness of > and the Local Connect-
edness condition in definition A.2.1.

Truth for JB is defined in Appendix A.
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4.2.3 Proof system

Theorem 4.2.2. (Proof system) Consider the following theorems that hold for JB:
i) For each ϕ ∈ F , we have ` ϕ iff there exists a logical term t such that
` I(t) ∧ t� ϕ (Internalization)

ii) JB is sound and strongly complete with respect the the class of all models
iii) JB is sound and weakly complete with respect the the class of standard models
iv) JB is decidable

Please read [9, pp.7-11] for the complete theory of JB and proofs for i), ii), iii) and
iv).

4.2.4 Evidence dynamics

Now let’s add the actions to transform JB into a dynamic logic. The authors of [9]
introduce four types of epistemic actions: t+, t⊗ s, t! and t ⇑.

Definition 4.2.8. (Language DJB) L act := (T act,F act) is the extension of the
static language for JB (see definition A.2.1) obtained by adding modal operators
[α] for epistemic actions α ∈ {t+, t ⊗ s, t!, t ⇑}, for every t, s ∈ T . The notions of
subterm, subformula, admissibility and model are lifted to L act in the obvious way.

The actions are to be interpreted as follows: t+ means that the evidence term t
becomes available (not necessarily accepted), that is, added to the evidence set E.
By performing t⊗ s, the agent forms a new term t · s representing the logical action
of performing a Modus Ponens interference and hence adding t · s to E. t! updates
with some hard evidence t (coming from an absolutely infallible source), such that
all worlds that do not fit the new evidence get eliminated. Finally, t ⇑ upgrades
with some soft evidence t (coming from a strongly trusted, though not infallible,
source), and as a consequence, the new evidence is accepted and all worlds that fit
the new evidence become more plausible than the worlds that do not fit it. Note
that these actions are only suitable for updating with terms; not for updating with
formulas.

Please see Appendix A for the preconditions preα that capture the condition of
possibility of action α, and the evidence set T (α) that consists of all the evidence
terms that become available due to α. Furthermore, in Appendix A the reader can
find the truth definition for DJB.

4.2.5 Shortcomings

Comparing my list of desiderata and the characteristics of DJB, I need to adjust a
couple of aspects to get a logic that fits the goal of my analysis. Firstly, I need to
make the logic suitable for multi-agents, including techniques for private communi-
cation. Secondly, I want to include prior-evidence of agents, which is conceptually
different from regular evidence, so I need to distinguish the priors from the normal
evidence. Thirdly, I want to update not only with evidence terms, but also with
formulas. In the next two sections I will describe how I can integrate these features
into a Multi-agent Dynamic Evidence-based Logic.
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4.3 Multi-agent Dynamic Evidence-based Logic

Recall the motivation behind constructing a Multi-agent Dynamic Evidence-based
Logic: I want to compare specific network configurations and see how they affect
the ability to repair false beliefs of the agents in the group. In specific, I want to
test Zollman’s hypothesis that transient diversity guarantees a high reliability, and
that this is achieved by either limiting the communication between agents or by
strenghtening the priors. I will first present the Multi-agent Static Evidence-based
Logic, MSEL, that shows similarities with JB.

4.3.1 Syntax

Definition 4.3.1. (Language MSEL) Given a set Φ of atomic sentences, and a set
of agents A, the language L ∗ := (T ∗,F ∗) consists of the set T ∗ of observational
evidence terms t and the set F ∗ of propositional formulas (sentences) ϕ defined by
the following double recursion:

ϕ ::= ⊥|p|¬ϕ|ϕ ∧ ϕ|Ei(t,m)|Ci(t,m)|Nij|t� ϕ|�iϕ|Kiϕ|Y ϕ

with p ∈ Φ, i, j ∈ A and m ∈ N

t ::= oϕ with ϕ ∈ L −

Notes on language

Consider the following informal readings of each language construct:
1. The formulas ⊥, p,¬ϕ and ϕ ∧ ϕ are classic formulas saying, respectively,

‘falsum’, ‘proposition p holds’, ‘ϕ does not hold’ and ‘ϕ and ϕ hold’.
2. We can construct ∨ by using ∧ and ¬ as usual in predicate logic, i.e., ¬(¬ϕ∧
¬ψ)⇔ ϕ ∨ ψ

3. Ei(t,m) says that ‘evidence term t occurs m times in the evidence set of agent
i’.

4. Likewise, Ci(t,m) says that ‘evidence term t occurs m times in the bias set of
agent i’.

5. Nij says that ‘j is a friend of i’.
6. t � ϕ says that ‘t is admissible evidence for ϕ’. Note that � is not labelled

for agents. We already saw in section 4.1.2 that admissibility � is universal
for all worlds. Now that we have a multi-agent model, � is also universal for
all time and all agents.

7. �iϕ and Kiϕ are lifted from the single agent formulas of DJB saying ‘agent i
defeasibly knows ϕ’ and ‘agent i infallibly knows ϕ’.

8. Y ϕ says that ‘yesterday (i.e., before the last epistemic action) ϕ was true’.
9. Finally, L − is the Boolean propositional fragment of the language (the frag-

ment built up by means of propositional letters, their negation, conjunction
and disjunction) and oϕ is a piece of observational evidence for ϕ. Compared
to JB, this is the replacement of the more general evidential certificate for ϕ:
cϕ. Note that if oϕ ∈ Ea then it is agent a who observed that ϕ, so we can
see from the context who exactly observed that ϕ and do not need an index in
the term construct itself. Recall that I agreed that observation can fail or be
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misleading (see section 2.3 for the philosophical debate on the social dimen-
sions of science), hence it might often occur that a piece of oϕ gets overriden
by pieces of o¬ϕ.

Compared to JB, I omit the the term compounders + and ·, because I will not need
them in my analysis and I want to keep things as simple as possible.

4.3.2 Semantics

Definition 4.3.2. (Model for MSEL) A model M = (A,W, [[·]],∼i,≤i, , N,Ei, Ci)
is a structure consisting of a nonempty set of agents A, a nonempty set of possible
worlds W , a valuation map [[·]] : Φ → P(W ), binary relations ∼i (epistemically
indistinguishability), ≤i (relative plausibility), and  (immediate temporal prece-
dence), a friendship map N : A → P(A), an evidence map Ei : W → (P(T ,m)),
and a bias map Ci : W → (P(T ∗,m)), satisfying the following conditions:

• ∼ is an equivalence relation (i.e., reflexive, symmetric and transitive) and ≥
is a preorder (i.e., reflexive and transitive).

• Indefeasibility : w ≤ v ⇒ w ∼ v
• Local Connectedness : w ∼ v ⇒ (w ≤ v ∨ v ≤ w)
• Propositional Perfect Recall : (w  v ∼ v′) ⇒ ∃w′(w ∼ w′  v′) (i.e.,

knowledge of yesterday is still known today)
• Evidential Perfect Recall : w  w′ ⇒ (((t,m) ∈ E(w) ∧ (t,m′) ∈ E(w′)) ⇒
m′ ≥ m) (i.e., evidence of yesterday is still evidence today)

• Uniqueness of Past : (w′  w ∧ w′′  w)⇒ w′ = w′′

• Persistence of Facts : w  w′ ⇒ (w ∈ [[p]]⇔ w′ ∈ [[p]]) for p ∈ Φ
• Evidential Introspection: w ∼ v ⇒ E(w) = E(v) (i.e., agents know what is in

their evidence set)
• Admissibility : oϕ � ϕ
• Bias Introspection: w ∼ v ⇒ Ci(w) = Ci(v) (i.e., agents know what is in their

bias set)
• Persistence of Bias : w  w′ ⇒ ((t,m) ∈ Ci(w)⇔ (t,m) ∈ Ci(w′)
• Consistency of Bias : t� ϕ ∧ t′ � ¬ϕ⇒ ((t,m) ∈ Ci(w)⇔ (t′,m′) 6∈ Ci(w))

(the consequences of bias evidence may not be contradicting)

Note the following general differences with JB:
1. The model contains a set of agents A and the binary relations ∼i and ≤i and

the sets Ei and Ci are indexed with agent i ∈ A, to be able to refer to a specific
agent.

2. We write w ≤ w′ for “w′ is at least as plausible as w” (whereas for JB we
wrote w ≥ w′).

3. N : A→ P(A) is the friendship map that tells who is friends with whom.
4. Ei maps a world w ∈ W to a multiset (T ,m), i.e., to an element of P(T ∗,m)

such that for all m, m(t) ∈ N+ = N \ {0}. 8

8m is a partial map from T ∗ into the set of positive natural numbers. The image m(t) is
undefined if t 6∈ T ∗ and else m gives us the multiplicipty of t ∈ T ∗, i.e, how often t is included
in the multiset Ei(w). Note that for example the multiset {t, t, t, t′, t′} will also be denoted by
me as {(t, 3), (t′, 2)} where I list each element of the set with its multiplicity. So I say (t, 3) is an
element of {(t, 3), (t′, 2)}. The powerset of (T ,m) is denoted as P(T ,m). The powerset is defined
by taking all submuliplicities into account, so as an example the powerset of {(t, 1), t′, 2)} is given
by {∅, {(t, 1)}, {(t′, 1)}, {(t′, 2)}, {(t, 1), (t′, 1)}, {(t, 1), (t′, 2)}.
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5. Ci(w) is a bias map that gives the biasses for every agent, also mapping worlds
to the multiset, i.e., to an element of (P(T ∗,m)). Even though Ei and Ci look
similair, they are conceptually different. The bias set represents the agents’
biases, and by presenting it as a multiset it specifically represents the agents’
strength of bias. The bias set is fixed throughout time, while the evidence set
gets updated with new evidence terms during the trial.

Definition 4.3.3. (Pointed Model) A pointed model is a pair (M,w) consisting of
a model M and a designated world w in M called the “actual world”.

Definition 4.3.4. (Standard Model) A model M is standard if strict plausibility re-
lation < and the immediate temporal predecessor relation are both well-founded.

Definition 4.3.5. (Truth for MSEL) The satisfaction relation (M,w) � ϕ, writing
w � ϕ when M is fixed, is defined as follows:

w 6 � ⊥
w � p iff w ∈ [[p]]

w � ¬ϕ iff w 6� ϕ
w � ϕ ∧ ψ iff w � ϕ and w � ψ

w � Ei(t,m) iff (t,m) ∈ Ei(w)

w � Ci(t,m) iff (t,m) ∈ Ci(w)

w � t� ϕ iff t� ϕ

w � �iϕ iff v � ϕ for every v ≥i w
w � Kiϕ iff v � ϕ for every v ∼i w
w � Y ϕ iff v � ϕ for every v  w

Extend the valuation map [[·]] to all sentences ϕ, for putting [[ϕ]] = {w ∈ W |w � ϕ}.

Lemma 4.3.1. (Belief) In a standard model, M = (A,W, [[·]],∼i,≤i, , N,Ei, Ci),
“belief” is the same as “truth in the most plausible worlds”:

(M,w) |= Biϕ iff (M,w′) |= ϕ for all w′ ∈ max{w′ ∈ W |w ∼i w′}

4.3.3 Network graph

In order to highlight the network structures, I will separately draw a network graph,
as we know it from section 3.1, that shows us in a clear picture who is friends with
whom, i.e., who communicates with whom. Recall that agents are represented by
nodes and undirected edges represent communication.

Definition 4.3.6. (Set of friends) The group of friends of agent a, defined by N(a),
is the set of nodes that are connected to a via maximally one edge. Note that a is
also a member of N(a).

In definition 4.3.2 we saw that the epistemic model M contains the map N : A →
P(A), going from the set of all agents A to the powerset P(A), that determines
whose evidence an agent takes into account when updating his belief. In definition
4.3.1 we saw that the sentence Nij says that j is a friend of N .
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One can use different network structures, hence different network mappings N and
compare the effects they have on the epistemic model. It is required for any network
to be connected, i.e., that there is a path between any pair of agents.

For the purpose of this thesis I let the network graph be stable throughout time,
although it is possible that the network structure changes within one trial. Such
an evolution of the network would appear when two non-friends become friends
during the period of one trial. Also, it is only allowed for information to flow
between friends. In principle it would be possible to let information flow be-
tween friends-of-friends of a, i.e., to the set {i|i ∈ N(j) ∧ j ∈ N(a)}, or more
complex sets like “every agent that is friends with at least two of my friends”:
{i|i ∈ N(j) ∧ i ∈ N(k) ∧ j 6= k 6= a ∧ j, k ∈ N(a)}.

4.3.4 Evidence dynamics

So far, the new logic differs only in the details from JB. Adding the actions to make
the model dynamic will make a greater difference. I will add two kinds of actions
to the Multi-agent Static Evidence-based Logic: actions that do something with
terms and actions that do something with formulas. Both actions are public: when
agent a does α then everyone will learn that a did α. In case action α concerns
an evidence term, the receiver(s) will update their evidence set; in case action α
concerns a formula, the receiver(s) will update their epistemic state.

Definition 4.3.7. (Language MDEL) L ∗,act := (T ∗,act,F ∗,act) is the extension
of the static language (see definition 4.3.2) for MDEL obtained by adding modal
operators [α] for epistemic actions α ∈ {t+i, Ei(t,m)!i, Ci(t,m)!i,

∧
cont ⇑i}, for

every t ∈ T ∗, ϕ ∈ F ∗, i ∈ A, and m ∈ N.

These action are to be interpreted as follows:9

• t+i means that (an extra instance of) evidence t becomes available to i (pu-
bicly). For example, say w  w′ and (t,m) ∈ Ea(w). After t+a, (t,m + 1) ∈
Ea(w

′) becomes true.

• Ei(t,m)!i means that agent i publicly announces to his friends in N(i) that
she has m instances of evidence t in her evidence set.

• Ci(t,m)!i means that agent i pubicly announces to his friends in N(i) that she
has m instances of evidence t in her bias set.10

9I do not include hard updates of formulas supported by evidence (only hard updates on the
content of agents’ evidence sets Ei(t,m)!i ), coming from an infallible source, because I will assume
that scientists only get soft evidence, i.e., observational evidence.

10This division between communicating Ei and Ci is quite unnatural. Even though evidence
and bias are conceptually different objects, one expects the two to be communicated at the same
time. However, it is not necessary to separately announce the two, because I want agents to
upgrade their beliefs according to the knowledge they have about both the evidence and the bias
(see precondition for

∧
cont ⇑i below). I take the bias to play the same role as the prior credences

in probabilisitc frameworks as in [10]. This problem could be solved in more complex ways, but
for reasons of ease I now assume that evidence and bias are separately communicated.
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•
∧

cont ⇑i means that agent i upgrades her epistemic state with cont := {ϕ|t�
ϕ} (i.e., all formulas that are supported by t) and thereby accepting t and
upgrading her plausibility order ≤i such that all worlds matching cont become
more plausible than all other worlds.

Note that adding evidence is a public action and announcing that an agent has
some evidence is public too. Firstly, in this setting, it is unnessecary to have both
actions represented in the model, because when the evidence is publicly added, then
everyone allready knows what evidence the agent has. I do want to keep both
actions, because it will be important when I would let both actions be private in
further development of the logic. Secondly, not having private updates does not
seem to match my objectives to model a situation where scientists privately conduct
experiments and share their results with each other. This is not a problem, because
I let the soft upgrades depend only on the knowledge of an agent about the evidence
of her friends (see preconditions). Yet, it is unnatural that agents know about the
evidence of everybody while only considering the evidence of friends, but for now it is
the best solution to avoid the complexity that comes with making the actions private.
Since the actions are public, the contents of everyone’s bias and evidence sets are
common knowledge. Given that the network structure is also common knowledge,
agents are also able to derive how the other agents in the network upgrade their
plausibility order. This results in a compact model where everybody knows each
others evidence sets and beliefs. If private actions would be included, then the model
will quickly grow for two reasons: uncertainty about evidence sets and uncertainty
about doxastic states of other agents. In section 4.3.5 I will informally explain how
to extend the language and the semantics such that the agents can perform private
actions. For now, the evidence set of any agent is the same for every possible world
within one timestep.

Lemma 4.3.2. (Admissible terms of t ∈ T ∗) T ∗ = T ∗,e

Proof. For all t ∈ T ∗, it holds that t is of the form oϕ. Also, it always holds that
oϕ � ϕ. Therefore, for all t ∈ T ∗ there exists a ϕ ∈ F ∗ such that t� ϕ.

With t always being of the form oϕ and the only action that causes an evidential
change being +i, we can define the set of term T ∗(α) that becomes available due
to α:

T ∗(α) = t

Of course, if one would allow other types of evidence and actions, T ∗(α) would have
to be generalised.

Preconditions actions

For every action α define the precondition preα:

pret+i
:= (t� ϕ ∧ t′ � ¬ϕ) ∧

∧
ϕ∈cont′

¬Biϕ

preEi(t,m)!i
:= Ei(t,m)

preCi(t,m)!i
:= Ci(t,m)
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A precondition is a formula that needs to be true for the action to be performed.
The action t+i can happen when (t � ϕ ∧ t′ � ¬ϕ) ∧ ¬Bicont′ is true. Since I
have only observational evidence and one theory p, in this setting the precondition
for op+i would be that ¬Bi¬p. This is derived from the Restricted Outcome rule
that I will introduce in definition 5.1.1, that states that an agent can only observe t
when she already believes in the consequences of t or when she is indifferent about
the consequences of t or t′. To announce Ei(t,m), agent i needs to have indeed m
instances of t in her evidence set. Let me emphasise that agents do not share the
piece of evidence t, but the proposition that she has evidence t (i.e., she has done
an experiment and observed t). The same applies to Ci(t,m)!I .

Recall that I require that m(t) 6= 0, which implies that in order to communicate
Ei(t,m) or Ci(t,m), there has to be at least one instance of t in the evidence (or
bias) set of i.

Now let’s define the preconditions for the soft upgrade ⇑. Let θ ∈ [0, 1] be the
threshold that determines what is required for agents to change their beliefs. Next,
define the following abbreviations:

tm+n>0
i :=

∨
m∈N+

Ei(t,m) ∨
∨
n∈N+

Ci(t, n)

saying “there exists t-terms either as evidence or as bias”, and

tm+n=0
i :=

∧
m∈N+

¬Ei(t,m) ∧
∧
n∈N+

¬Ci(t, n)

for “there are no t-terms as evidence or bias”.

Furthermore, define ti > t′i as the formula

(t� ϕ ∧ t′ � ¬ϕ) ∧ ((tm+n>0
i ∧ t′m′+n′=0

i ) ∨
∨

m+n>m′+n′

(tm+n>0
i ∧ t′m′+n′>0

i ))

In words this expression captures that ‘term t is related to ϕ and t′ to ¬ϕ and agent
i has more evidence t than t′’. This means that in any case the agent needs to have
t-terms either as evidence or as bias. When the agent has terms t and no terms t′,
then she definetely has more t than t′. In case the agent has both t and t′ in her
evidence set, then the last part of the disjunction in the above formula expresses
that there are more items of evidence t than items of evidence t′.
Now I can define the preconditions:

pre∧ cont ⇑i :=
∨

G⊆N(i)

(
|G|
|N |

> θ ∧
∧
j∈G

Ki(tj > t′j))

This expression captures that agent i performs an upgrade of the consequences of t
iff she infallibly knows that strictly more than θ of her friends (possibly including
herself, possibly not11) have more evidence t than t′.12

11Note that in the settings of this thesis, the evidence of an agent i herself is considered exactly
as important as the evidence of her friends. So > θ of her friends j having ti > t′j while the agent
herself has ti < t′i still moves the agent to upgrade with

∧
cont.

12This causes one debatable situation: suppose θ = 1
2 and exactly 1

2 of a’s friends have more
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Truth

For the truth clauses of the dynamic operators [α] in MDEL, I need to define an
operation of what it means to add an element of multiplicity 1 to a multiset, i.e.,
how to define the union of two multisets where one is consisting of a singleton with
one element and has multiplicity 1 (e.g. the sum of {(t, 3), (t′, 2)} and {(t, 1)} should
give {(t, 4), (t′, 2)}). To do this, I will define the extended multiset that has value 0
for each element not contained in the original set. Let T be the set (a regular set,
not a multiset) of all terms that are defined by m, i.e., of all terms that are in the
multiset under consideration. Let m∗ be the extension of m, such that m∗(t) = 0
for every t 6∈ T and m∗(t) = m(t) for every t ∈ T . With the extensions given, I can
define the multiset sum of (T,m∗) and (T ′, g∗) (a map that acts on the elements of
T ∪ T ′) as follows:13

(m∗ ⊕ g∗)(t) = m∗(t) + g∗(t)

Let the resulting multiset be reduced to a regular multiset (T ∪ T ′,m⊕ g) where I
delete the elements in which the multiplicity is 0.

Definition 4.3.8. (Truth for MDEL) Let wα denote the ordered pair (w, α) to rep-
resent the “updated” world resulting from performing action α in world w. Then:14

(M,w) � [α]ϕ iff (M [α], wα) � ϕ with M [α] := (Aα,Wα, [[·]]α,∼αi ,≤αi , α, Nα, Eα
i , C

α
i ), and

Aα := A

Wα := W ∪ {wα|w ∈ [[preα]]}
[[p]]α := [[p]] ∪ {wα ∈ Wα|w ∈ [[p]]}
∼αi :=∼i ∪{(wα, vα)|w ∼i v}
≤αi :=≤i ∪{(wα, vα)|w ≤i v} for α ∈ {t+i, Ei(t,m)!i, Ci(t,m)!i}
≤αi :=≤i ∪{(wα, vα)|(w 6∈ [[cont]] ∧ v ∈ [[cont]]) ∨ (w 6∈ [[cont]] ∧ w ≤i v)∨

(v ∈ [[cont]] ∧ w ≤i v)} for α =
∧

cont ⇑i
 α := ∪{(w,wα)|w ∈ [[preα]]}
Nα := N

Eα
i (w) := Ei(w) for w ∈ W

Eα
i (wα) := (T ∪ {t},m⊕ g) for α = t+i and Ei(w) = (T,m)

Eα
i (wα) := Ei(w) for α 6= t+i

Cα
i (w) := Ci(w) for all w ∈ Wα

t than t′ and exactly 1
2 of a’s friends have more t′ than t, and a knows all of this. The current

precondition says that in this case, the agent does not upgrade, so she stays with her old belief.
One could also propose a contraction action

∧
cont ⇓i, making the cont-worlds and cont′ -worlds

equiplausible. The authors in [25] propose a contraction operator that can be used. Another
unnatural situation arises in the case where N(c) = {a, b, c}, ta > t′a and both b and c have an
equal amount of evidence t and for t′. It would be natural for c to believe in the consequences of t,
but according to this definition she does not upgrade his beliefs and stays with his old plausibility
order. This is something for further research to explore.

13This definition is found at http://planetmath.org/operationsonmultisets.
14Note that since it always holds that t ∈ T e, I do not need to give a seperate definition for the

update of t 6∈ T e.
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Let me informally explain how I obtain the updated model M [α].

• The agents are fixed throughout time, so Aα := A.
• I keep the old worlds w ∈ W and add new worlds that are the result of

the action α, which are updated versions of those worlds that satisfy the
precondition of α.

• The atomic facts that hold at w are carried on to the new worlds wα.
• Since there are no hard updates, the indistinguishability relation ∼αi simply

copies all pairs from the old model.
• When α is not the soft upgrade

∧
cont ⇑i, then the plausibility order is also

copied to the new worlds. When α =
∧
cont ⇑i, then I have to correctly

update the new worlds to match α: I let wα ≤i vα for all pairs such that either
i) cont do not hold at w but do at v; or ii) cont do not hold at w and in the
original worlds w ≤i v, or iii) cont hold at v and in the original worlds w ≤i v.

• The temporal relation α has to include the pairs between the original worlds
w and their updated versions wα.

• The network connections are stable, so Nα := N .
• Evidence in the old worlds stays the same. Evidence in the new worlds wα

have to be updated when α = t+i, such that the new evidence set (obtained
by adding the new evidence ({t}, g)) contains this extra term t. This is done
with the help of the sum operation ⊕ on extended multisets m∗ as explained
above. If α 6= t+i, then the evidence sets stay intact.

• Finally, the bias set stays equal throughout any update.

4.3.5 Extension

There are many possibilities for extending this system into a more generally ap-
plicable system. To give an idea, I will name a few. The most urgent extension
concerns the public actions +i, Ei(t,m)!i and Ci(t,m)!i. To simulate more naturally
what happens in everyday science ( scientists privately conduct experiments and
later either publicly or privately communicate that they found a particular result), I
must make these actions private. To let agent a privately announce Ea(t,m), I have
to distinguish the set of ‘insiders’, N(a), and the set of ‘outsiders’ A \ N(a). We
can learn from DEL how to use action models that implement uncertainty of agents
about the actions of others (for example, see [12]). There are different ‘degrees’
of privacy: the action can be completely private: then the outsiders might think
nothing has happened, and the action can be semi-private: then the outsiders know
that something has happened but it is unclear what (i.e., they know that agent a
conducted an experiment, but they do not know the results. Or they know that
a communicated something with her friends, but they do not know what exactly).
The semantics need to be extended with uncertainty about actions that happened
for different agents and I need full event models with uncertainty over actions.
With these adjustments, I can let +it be necessarily private and add Ei(t,m)!

N(i)
i

and Ci(t,m)!
N(i)
i for private announcements of Ei(t,m) and Ci(t,m) from i to her

friends in the set N(i).

As an example, suppose that agent a privately updated with +at. Then in the
updated model, I take a copy of all worlds and relations of the original timestep
three times. One part keeps the same relations and evidence sets, one part adds t to
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Ea and one part adds t′ to Ea (or, if I would consider more outcomes of experiment,
worlds with those terms added to Ea should also be added to the updated model).
These three parts of the model will have arrows between them for all the outsiders
who are uncertain between that part of the old copied model and the new parts of
the model in which I added the new evidence t or t′. For example, c 6∈ N(a) does
not know whether +at, +at

′ or that a observed nothing.

If I would let the biasses be private and keep the concept of prior beliefs, then
the extension would have to adjust the system in one of the following ways: i) let
the agents communicate their biasses in order for the agents to upgrade their beliefs;
ii) make a special upgrading rule that applies to the initial state where agents did not
yet hear about their friends’ biasses; iii) else, let the prior belief be neutral and such
that after one round of conducting experiments and accordingly communicating the
results, the agents will upgrade their beliefs for the first time. I leave this choice open
for further research. In the current settings with public updates the bias does not
need to be communicated to get prior beliefs, because everybody knows about each
others’ biasses and network structure beforehand. Further research should specify
the exact adjustments to the semantics of the extended system.

Furthermore, one can add compound terms t · s and t + s, as in JB. We can also
add (negative) weights to the Y ’s in a formula, such that for instance old evidence is
less important than more recent evidence. To handle these additions, we should de-
sign more complex tools to store and manage the evidence. Additionally, one could
include other updates, such as a contraction operator that I mentioned earlier, or
hard updates of infallible evidence.
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Chapter 5

Logical Analysis

In the previous chapter I have created a logical system that will help us to analyse the
effects of several network configurations on the reliability of scientific communities.
Before I will actually model and compare different setups, I will first discuss some
assumptions I have to make for the analysis to be manageable. In section 5.3 I will
model some simple situations, to see how updating and adopting behavior works.
Finally, I will model the more complex networks and conclude which factor has what
effect on the reliability of the community.

5.1 Assumptions and simplifications

Since it is impossible to model every single aspect of reallife science, I will make
simplifications and assumptions. Despite the philosophical discussion on the impos-
sibility of knowing when we have reached the absolute truth, in the logical analysis
I will speak of the ‘true world’. I can do this, because I will be analysing from a
meta-perspective, from which I can denote one of the worlds as the ‘true world’, also
referred to as the ‘actual world’ or ‘real world’. I assume that the agents involved
all want to find out which is the true theory, what in Zollman’s analyses stands for
“getting the highest payoff”.15 Apart from this philosophical point, I make some
other practical assumptions and simplicifactions that I will now discuss.

5.1.1 Zollman’s Bandit-studies

One crucial point for Zollman’s Bandit problems is that learning, or revising beliefs,
demands the input concerning the observation of others. In the case mentioned in
section 3.2, it is important that the agents in the network who believe in medicine A
exchange their experimental outcomes in order for the agents believing in medicine
B to adopt the belief in A. Recall that in Zollman’s example ([42]) agents only
focus on the medicine they believe is best, since it is generally taken to be irrational
to test the inferior medicine. In Bandit problems, agents who believe in p observe
a certain payoff P (p). This payoff does not say whether the payoff for the other
theory, P (q), is higher or lower then P (p). Only information about both payoffs
gives the data which is needed to compare p or q and conclude which is the best

15If in reality there is not a true theory, the agents want to approach the true theory; they want
to find the theory that most closely describes the truth. Then the goal remains to find out which
theory gives the highest payoff.
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medicine. When everyone believes in the same medicine, the group is stable and no
one will ever learn about the other medicine, henceforth no one will ever test the
other medicine again.

In bandit situations, the agent has to decide between two opposing theories p and
q. Believing one will necessarily entail disbelieving the other. In classical logic,
this implies that Biq is equivalent to B¬p. Therefore, I will use Bip and Bi¬p to
denote the belief in theory p or belief in the opposite theory q. Furthermore, using
theory p in logic can only result in confirming that p or disconfirming that p; which
implies that ¬p. The loss here is that we do not get payoff values which have to
be compared in order to decide the value of the theory, but merely a “yes p (or
¬p)” or “no p (or ¬p)” that directly gives information about the opposing theories:
“yes p” implies “no ¬p” and “no p” implies “yes ¬p”. In this case, agents do not
need the input of the experimental results of their friends to learn about the other
theory. A rational strategy could be to simply individually conduct the experiment
a million times and conclude whether p or ¬p. This independence is however not
the type of situations I am studying in this thesis. My aim is to capture at least
some aspects of the problems of communication in science. If we do not let learning
be dependent on communication, then a community will end up in a state where
no one will ever learn about the other medicine because everyone believes in the
same medicine. This is an interesting state, because communities can end in this
state after a few rounds of sharing and updating. I would like to see which factors
increase the chances of getting to such a state where everyone believes in the true
theory, compared to everyone believing the false theory. I call such a state finished
learning.

Note that keeping two seperate propositions p and q will not make the outcomes be
independent from each other (and thus forcing the agents to communicate), since to
express the independence I have to add the bi-implication Bip iff Bi¬q. I will take
this independence into account, assuming the agents follow the rule:

Definition 5.1.1. (Restricted Outcome Rule) If an agent believes p, then she can
conduct an experiment for p, which means observing either p (“confirming that
p”) or > (“observing nothing”); if an agent believes ¬p, then she can conduct an
experiment for ¬p and observe either ¬p or >. If an agent is indifferent about p or
¬p, then she conducts both experiments and observes either p or ¬p, i.e., she does
not choose between testing p or ¬p.

Note that by testing p and not obtaining any confirming evidence (observing >),
the agent does not obtain confirming evidence for the opposing theory. To obtain
confirming evidence for ¬p the agent has to conduct an experiment for ¬p. The idea
behind this is that the agents use the theory they believe in (because that’s the most
rational thing to do) and that the agents need the input about the experimental re-
sults of others in order for them to change their mind. With this rule, the group
can reach a state of finished learning (because the group will never in the future
reach a state where they can in the future learn about the other theory, since no one
will be able to observe something about it). Restricting the agents to observe only
either a confirmation of their belief or nothing, comes most close to the feature of
Zollman’s Bandit problems. The last sentence in definition 5.1.1 which deals with
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the state of indifference does not match with Zollman’s bandit cases, where agents
always test either medicine 1 or medicine 2 and never both, but I think it is the
most natural way to deal with agents who are forming their beliefs on the basis of
an equal amount of evidence for p and for ¬p.

Compared to Zollman’s analysis in [41, 42], this reconstruction cannot capture all el-
ements at play. Even with the Restricted Outcome Rule, logic cannot fully simulate
Zollman’s Bandit studies one-on-one, because in principle the outcomes of Zollman’s
method are subjective probabilistic values and the outcomes of the qualitative logi-
cal setting are 0 and 1.16 Another difference is found in the fact that in Zollman’s
use of a payoff function, the agents thereby also directly communicate their belief:
an agent can communicate a payoff value P (p) = x if and only if she believed in p
and therefore tested p. By using the Restricted Outcome Rule in my setting, the
agents only communicate their belief if the outcome is p or ¬p; if they observe >
this can be the result of believing both p or ¬p.

Keeping the differences with Zollman’s setting in mind, the added value we get
from logic, i.e., insight on the agent’s higher-order reasoning, is still good enough
to proceed with my analysis. We can still analyse the effect of specific network
configurations on reliability of communities. We cannot put the results directly
next to Zollman’s, due to the limitations mentioned above, but we can say sensible
things about effects of different network configurations on the epistemic behaviour
of scientific groups.

5.1.2 Distribution of priors and failures

By using logic instead of computer simulations (as done in [41, 42]) I have to make
another “sacrifice”. Zollman lets his agents believe in a medicine; then they conduct
the experiment that tests that medicine; then the agents share their results with their
neighbours; then they maybe change their beliefs, etc. He lets the computer run this
protocol for 10.000 iterations. Then, he lets the computer run this trial many times.
Describing the outcomes of these simulations, Zollman does not explicitly say how
he distributes the failures of the experiments, i.e., how often does an experiment
give the ‘wrong result’? Suppose medicine 2 is the best. Then how often do we
get a payoff for medicine 2 that is lower than the avarage payoff for medicine 1? It
looks like Zollman lets the computer randomly distribute the failures. Zollman does
mention how he distributes the prior believes: he “assigns the agents random beliefs
uniformly drawn from the interior of the probability space” [41, p.579]. By running
so many different experiments and trials, it does not really matter how these are
distributed. It is the average outcome that is presented in his papers, so extreme
individual trials will be overriden by the mean value. In my models, I will model
each trial manually, looking closely at what happens at each step: giving the agents
prior evidence - implementing prior beliefs - choosing a method and apply - getting
results - updating evidence set -communicating evidence - updating epistemic state
- choosing a method - etc. Since I will not repeat this 10.000 trials, it does matter
how the priors and failures are distributed. In fact, Bala and Goyal ([3]) clearly

16One could turn to a probabilistic logic or multi-valued logic, however I leave that analysis for
future work. Probabilistic logics have been used to model social scenarios in [5].
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state that the distribution of priors has an effect on the success of the group. The
main question is then: how should I decide how to distribute the priors and failures
of the experiments?

The important thing to note here, is that the most important condition is that
I have to keep the distributions of the priors and failures equal. When I compare
two network structures, I have to keep these distributions the same to conclude
something about the effect of the network structure. Since I have to deal with the
Restricted Outcome Rule, it may sometimes occur that an agent at timestep x ob-
served oϕ in one trial, but believes ¬ϕ at timestep x in the other trial, such that she
cannot observe oϕ. In this case, let the agent observe >. I can change these distribu-
tions and see how this affects the comparison between different network structures.
Let me emphasize that my results will not be statistically motivated, but I focus on
getting more insight into the details; into the process of agents’ adopting behavior.

5.1.3 Other assumptions

I highlight a couple of other simplifications and assumptions for my analyses. As
for the network, I let the number of agents be fixed. In further research, one could
also compare different sizes of groups.17 I also assume that everyone in the group
knows the network structure, i.e., who communicates with whom. Furthermore, let
evidence be automatically accepted. Of course, this can easily be loosened, since
the authors in [9] already gave the techniques to do this.18 Further, I keep the
threshold θ for updating fixed at 1

2
, such that an agent will adopt a belief p when

more than half of her friends have more evidence t for this belief than evidence t′

for the opposite belief ¬p. I also keep the strenght of biasses per agent the same,
as well as the reliability of the testimony of all friends. These three factors can be
varied in further research. For now, however, I have kept the system as simple as
possible. In section 5.4 I will use this to compare the few variations that I do allow
for, dealing with network structure and the universal weight of biasses.

5.2 Definitions

The next two sections will be dedicated to computing different circumstances. To
compare the outcomes in an organised way, please consider the following definitions:

Definition 5.2.1. (Round) When I refer to a round in the analysis, I refer to one
sequence of ‘conducting an experiment’, according to the Restricted Outcome Rule
(action t+i), then ‘communicating the results’ (action Et!i) and finally ‘upgrading
belief’ (action

∧
cont ⇑i).

Definition 5.2.2. (Trial) When I model different circumstances, in the initial state
the biasses are distributed. The next thing I do is upgrade the prior beliefs such that
they correctly match the biasses. Next, I repeatedly compute rounds. The total of

17The ongoing investigations of the team directed by S. Perovic in Belgrade does focus exactly
on this team number aspect.

18This could actually be quite interesting, since we saw for example in section 2.2 that sometimes
experimental results are only accepted when there is a theory that can explain it, as in the discovery
of the weak neutral current.
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all of the prior-work and these rounds is called one trial. By adjusting the variables
I will compare different trials.

Definition 5.2.3. (Stable) A community is stable if performing one round of up-
dating and communicating will have no effect on the doxastic states of any agent in
the community.

A community can be stable for one round, but may change again after another
round. When the community will be stable no matter how many rounds I compute,
the community has finished learning.19

Definition 5.2.4. (Finished learning) A community has finished learning if the
community is stable for any future round.

Definition 5.2.5. (Successful learning) A community has successfully finished learn-
ing if all agents a ∈ A believe the true theory.

Definition 5.2.6. (Semi-successful learning) A community has semi-successfully
finished learning if at least 1

2
of the set A believes the true theory and the community

has finished learning.

Definition 5.2.7. (Failed learning) A community has failed learning if less than 1
2

of the set A believes the true theory and the community is finshed learning.

5.3 Basic trials

Now let me slowly increase the complexity of the models, starting with some simple
networks that are intented to illustrate how MDEL works and how to judge networks
on their behaviour. In the following sections, let t = op and t′ = o¬p, hence t � p
and t′ � ¬p. In the drawings of my Kripke models I leave all reflexive and transitive
arrows for ∼i and ≤i implicit. I will sometimes write Ei = {t, t} and sometimes
Ei = {(t, 2)}.20 Note that since I assume agents have the same biasses in every
possible world, I will often use Ci instead of Ci(w). Finally, let p be the true theory.

Basic trial I: Two agents without bias

Let’s start with a network of two friends, a and b.

a b

Figure 5.1: Network graph for two friends a and b

19The authors in [25] also define a community that will never have finished learning, because the
agents will endlessly keep on switching back and forth from one belief to another, as being in a
flux. In my analysis communities will never be in a flux in that sense. The most important cause
for this difference is that in [25] more credits are given to the belief of a friend than to those of the
agent herself, whereas in boths settings the evidences are valuad equally.

20Note that I leave out the case when an agent has no evidence for a term, as the multiplicity
map is partial and leaves out the case for m = 0, although the notion of multiset can be extended
to include this if needed.
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Note that this is a complete graph, since every pair of nodes is connected by one
edge. This gives us the map of N such that N(a) = {a, b} = N(b). Suppose that a
and b’s bias sets Ca and Cb are empty. The initial epistemic model looks as follows:

p

w0 w′0
Ca = Cb = ∅
Ea = Eb = ∅

a, b

Figure 5.2: Initial epistemic model for Basic trial I

In Figure 5.2 we see that it is common knowledge that nobody conducted any ex-
periment untill now, because the multisets Ei are the same at every possible world.
Hence agent a knows that b has no evidence and b knows that a knows this, etc.
Since all updates +it, Ei(t,m)!i and Ci(t,m)!i are public, this will always be the
same at every world in one timestep.

I will now stepwise update the model. Suppose that the first actions are +at and
+bt

′. That is, agent a observes that p and agent p observes that ¬p. These outcomes
are legimite according to the Restricted Outcome Rule, since both agents were still
indifferent about whether p or ¬p. Further, note that the order in which one updates
the two actions does not matter, so I will update the model with both actions in
one timestep. I will only update multiple actions at the same time when this does
not change the results. This is always the case when agents simultanously do the
same kind of action: updating their evidence set, communicating their evidence and
bias, or upgrading their beliefs. In the updated model M [+at,+bt

′] (Figure 5.3) it
holds that Ea = {t} and Eb = {t′}. I will only write the bias states for the first time
moment, because it will not change within one trial.

p

w0 w′0

p

w1 w′1

Ca = Cb = ∅
Ea = Eb = ∅

Ea = {t}
Eb = {t′}

a, b

a, b

Figure 5.3: Basic trial I after +at,+bt
′

Next, the agents will communicate their observations: Ea(t, 1)!a and Eb(t
′, 1)!b. In

the updated model the evidence sets nor do doxastic states of the agents have
changed (see Figure 5.4).
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p

w0 w′0

p

w1 w′1

p

w2 w′2

Ca = Cb = ∅
Ea = Eb = ∅

Ea = {t}
Eb = {t′}

Ea = {t}
Eb = {t′}

a, b

a, b

a, b

Figure 5.4: Basic trial I after Ea(t, 1)!a, Eb(t
′, 1)!b

Let’s see if the agents will upgrade their plausibility order. Since the fraction of
friends supporting t is exactly 1

2
for both agent a and b, they will both stay with their

initial belief state: being indifferent about whether p or ¬p. Henceforth, no upgrade
action happens. Then, after another round of experiments with full visibility to all
agents, we have public updates +at and +bt that add terms to the evidence sets of a
and b (and inform everybody about this event). See Figure 5.5 for the corresponding
epistemic model.

p

w0 w′0

p

w1 w′1

p

w2 w′2

p

w3 w′3

Ca = Cb = ∅
Ea = Eb = ∅

Ea = {t}
Eb = {t′}

Ea = {t}
Eb = {t′}

Ea = {t, t}
Eb = {t′, t}

a, b

a, b

a, b

a, b

Figure 5.5: Basic trial I after +at,+bt

After updating their evidence sets, the agents will publicly communicate Ea(t, 2)!a,
Eb(t, 1)!b and Eb(t

′, 1)!b. Since nothing changes in the model, I do not draw this
timestep now. Note that the fraction of agents having more support for p than ¬p
is equal to 1

2
, hence no soft upgrade will be made. In the next round, both a and b

observe p. This causes the public updates +at and +bt, as depicted in Figure 5.6.
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p

w0 w′0

p

w1 w′1

p

w2 w′2

p

w3 w′3

p

w4 w′4

Ca = Cb = ∅
Ea = Eb = ∅

Ea = {t}
Eb = {t′}

Ea = {t}
Eb = {t′}

Ea = {t, t}
Eb = {t′, t}

Ea = {t, t, t}
Eb = {t′, t, t}

a, b

a, b

a, b

a, b

a, b

Figure 5.6: Basic trial I after another round of +at,+bt

Consequently, agent a and agent b will communicate Ea(t, 3)!a, Eb(t, 2)!b and Eb(t, 1)!b.
Now, both agents know that every agent in their set of friends has more instances
of t than t′ in her evidence set and bias set. Because of that they will upgrade
their plausibility set such that for all worlds w′ ∈ [[p]] it holds that w <A w′ for
A = {a, b} (see Figure 5.7). Since the agents have common knowledge about the
network structure and common knowledge about each others’ evidence sets, they
can both deduce the plausibility order of their friend.

Now, the community has finished learning : both agents believe that p, so by the
Restricted Outcome Rule they will only get new evidence p or >, and no one will
ever observe ¬p in the future. Furthermore, since p is the true theory, the commu-
nity has achieved a status of successful finished learning.

Let’s quickly analyse Basic trial I. Firstly, since all agents in the network share
the same information about each others evidence, the content of the evidence sets
are common knowledge to all agents in the network. Secondly, imagine that the
agents observed more often that ¬p (which is a false result, hence a ‘failed experi-
ment’). One can guess that this will change the adopting process. This means that
the distribution of failures probably has a great effect on the outcome of the trial.

In the next examples I will only highlight some aspects of the trial. When the
network grows and the network needs more time to stabilise, the epistemic model
can get very big. In the actual analysis in section 5.4 I will present the outcomes
(whether or not the community has successfully finished learning) in a table and
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p

w0 w′0

p

w1 w′1

p

w2 w′2

p

w3 w′3

p

w4 w′4

p

w4 w′4

Ca = Cb = ∅
Ea = Eb = ∅

Ea = {t}
Eb = {t′}

Ea = {t}
Eb = {t′}

Ea = {t, t}
Eb = {t′, t}

Ea = {t, t, t}
Eb = {t′, t, t′}

Ea = {t, t, t}
Eb = {t′, t, t′}

a, b

a, b

a, b

a, b

a, b

a, b

Figure 5.7: Basic trial I after
∧
cont ⇑a,

∧
cont ⇑b

afterwards discuss the most striking behaviors.21

Basic trial II: Two agents with bias

Let’s see what happens when I add strong biasses to the model and then compare
the process and the outcome to the previous example. Since I will be comparing the
effect of the bias, I have to be careful to keep the other variables, i.e., the network
structure and the distribution of failures, exactly the same.

For this trial, I give a a strong bias for p, so Ca = {t, t, t} and b a strong bias
for the opposite theory, so Cb = {t′, t′, t′}. We see that the strenght of the biasses
has a value of 3 and that this value is universal for all agents in the network. Recall
that the bias sets are public, so the agents know from each other what bias they
have. Before I let the agents conduct experiments, I first have to set he agents’ prior
beliefs. Since it is not the case that more than half of a’s friends have more evidence
for t or for t′, a will not upgrade her beliefs and stay indifferent about whether p or
¬p. The same holds for agent b. See Figure 5.8 for the initial model.

21If the reader is interested, he or she can ask the author for the calculations.
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p

w0 w′0
Ca = {t, t, t}
Cb = {t′, t′, t′}
Ea = Eb = ∅

a, b

Figure 5.8: Initial epistemic model for Basic trial I

As in Basic trial I, the first round of updates will be +at and +bt
′, the second round

of updates will be +at and +bt and the third round of updates will be +at and +bt.
After three rounds, b’s evidence set Eb = {t′, t, t} is not strong enough to overrule
her bias set Cb = {t′, t′, t′}. As a consequence of b’s strong bias set, we have to ‘wait’
for at least five updates of +bt in order for tb > t′b (“having more evidence t than
t′, see precondition for cont ⇑i). Assuming a realistic distribution of failures, after
a certain number of rounds both a and b reach a state of t > t′. After that round,
more than 1

2
of N(a) and more than 1

2
of N(b) will have ti > t′i. As both agents will

know this, they will upgrade their beliefs such that Bap and Bbp. As a result, the
community will have successfully finished learning.

Comparing these results to Basic trial I, we see that it took this community longer
to reach the state of finished learning: in Basic trial I it took 3 rounds, while in
Basic trial II this took 6 rounds.

We can learn from the first two examples that it is more informative to let agents
have an uneven number of friends, because in those cases the fraction of friends
having more evidence of one kind than of the other will be more often > 1

2
. Using

uneven numbers of friends will force the agents to upgrade more often.

Basic trial III: Four agents in a circle

Now I will increase the number of agents to make the model slightly more complex.
Consider a network of four agents a, b, c and d, that are structured as a circle:

a b

cd

Figure 5.9: Network graph for four friends a, b, c and d in a circle

Let the biasses be such that Ca = Cb = {t} and Cc = Cd = {t′}. In Figure 5.10 we
see the initial state and the upgrades according to the biasses. Recall that since the
bias sets are public and thus common knowledge, as well as the network structure,
all agents know what the other agents in the network believe. If I would let the
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bias sets be private, then the epistemic model would be a lot bigger, modelling the
agents’ mutual uncertainty about each other’s beliefs.

p

w0 w′0

p

w1 w′1

Ca = Cb = {t}
Cc = Cd = {t′}
Ea = Eb = ∅

Ea = Eb = ∅

A

a, b

c, d

Figure 5.10: Basic trial III after cont ⇑a, cont ⇑b, cont′ ⇑c, cont′ ⇑d

This network has now reached an interesting state: as two friends a and b both
believe in p and two friends c and d both believe in ¬p, the agents will never change
their beliefs in the future. Two friends form a team that is too strong for a third
friend with opposite belief to change the beliefs of the two friends. See section 5.4.2
for the explanation of this phenomenon. Since the network will be stable throughout
any update, the network has finished learning. Exactly half of the network believes
in the correct theory p, so the network has semi-successfully finished learning.

5.4 Comparing actual models

In this section I will compare some specific network configurations. As mentioned
before, I will not draw each model nor describe what happens at every step. I will
present a table with the outcomes of different network configurations and informally
describe what conclusions we can draw from the analysis.

For the analysis I use networks consisting of five agents. With five agents the num-
ber of friends in a complete graph is uneven, which gives more decisive power (see
section 5.3). With less than five agents either the number of friends in a complete
graph is even (in the case of four agents) or we cannot distinguish a circle from a
complete graph (for less than four agents). A network with 5 agents is still relatively
small such that the calculations are relatively simple. I will compare two different
structures: the circle and the complete graph,22 see Figure 5.11. I will also vary with
a bias of weight 1 and bias of weight 2, and see how this influences the difference
between the circle and the complete graph.

22This is a fair comparison, because in both cases the communication is equally divided amongst
the agents. Zollman ([42]) and Bala and Goyal ([3]) also analysed ‘the wheel’. However, as argued
by Zollman himself, the difference in the results between the wheel network and the complete
network can also be caused by the fact that the wheel network has unequal connections: the hub
is connected to everyone while the others are not.
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a b

c

d

e

a b

c

d

e

Figure 5.11: A 5 person-circle and a 5 person-complete graph

5.4.1 The results

Since I already suspect that the distribution of biasses and failures will affect the be-
haviour of the agents, I have modelled different distributions. In this section, I will
present the results of some specific distributions. Let me emphasise that the results
below highlight some extraordinary behaviours, that show the differences between
the different configurations. These results should not be regarded as statistical data,
such as the results of Zollman in [42]. These results are the motivation behind the
informally described effects in the next section. As I have argued in chapter 4, the
good thing about using modal logic compared to statistical tools, is exactly that I
can focus on the details of behaviour adoption, instead of studying the results of
10.000 trials.

For that reason, I will present the results of the following cases in Table 5.1 be-
low (let ‘i observes ϕ or >’ be short for ‘i observes ϕ if ¬Bi¬ϕ, else i observes
>):

A: Biasses: Ca = Cb = Cc = Cd = {t}, Ce = {t′}
Experimental results: 0

B: Biasses: Ca = Cb = Cc = {t}, Cd = Ce = {t′}
Experimental results: 0

C: Biasses: Ca = Cb = {t}, Cc = Cd = Ce = {t′}
Experimental results: 0

D: Biasses: Ca = Cc = Ce = {t}, Cb = Cd = {t′}
Experimental results: Round 1: all agents i ∈ A observe ¬p or >.
Round 2: a, e observe p or > and b, c, d observe ¬p or >.

E: Biasses: Cb = Cd = {t}, Ca = Cc = Ce{t′}
Experimental results: Round 1: all agents i ∈ A observe p or >.
Round 2: a, e observe ¬p or > and b, c, d observe p or >.

The following distributions are derived from the distributions above by multiplying
the biasses by 2:

A*: Biasses: Ca = Cb = Cc = Cd = {t, t}, Ce = {t′, t′}
Experimental results: 0

B*: Biasses: Ca = Cb = Cc = {t, t}, Cd = Ce = {t′, t′}
Experimental results: 0

C*: Biasses: Ca = Cb{t, t}, Cc = Cd = Ce = {t′, t′}
Experimental results: 0

D*: Biasses: Ca = Cc = Ce = {t, t}, Cb = Cd = {t′, t′}
Experimental results: Round 1: all agents i ∈ A observe ¬p or >.
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Round 2: a, e observe p or > and b, c, d observe ¬p or >. Round 3: a, e observe
p or > and b, c, d observe ¬p or >.

E*: Biasses: Cb = Cd = {t, t}, Ca = Cc = Ce{t′, t′}
Experimental results: Round 1: all agents i ∈ A observe p or >.
Round 2: a, e observe ¬p or > and b, c, d observe p or >. Round 3: all agents
i ∈ A observe p or >.

I will abbreviate the outcomes (see section 5.2 for the meanings of these outcomes):

SFL := Successful Finished Learning

SSFL := Semi-Successful Finished Learning

FFL := Failed Finished Learning

In Table 5.1, the following explanations are given to specify roughly what the main
cause for the outcome is:23

(1) := In the finished state, the network is split up into two groups of friends that

each believes in the opposite theory.

(2) := The distribution of the biasses is such that more than half of the agents have

ti < t′i or ti > t′i.

(3) := The distribution of failures is extraordinary.

Consider Table 5.1 that presents the results of trials A, B, C, D, E, A*, B*, C*, D*
and E* for both a circle and a complete graph:

A B C D E

circle SFL,(2),0 SSFL,(1),0 FFL,(1,2),0 FFL,(1,3),2 SSFL,(1),2
complete SFL,(2),0 SFL,(2),0 FFL,(2),0 SFL,(2),0 FFL,(2),0

A* B* C* D* E*

circle SFL,(2),0 SSFL,(1),0 FFL,(1,2),0 FFL,(1,3),3 SSFL,(1),3
complete SFL,(2),0 SFL,(2),0 FFL,(2),0 SFL,(2),0 FFL,(2),0

Table 5.1: The results of the analysis. Let X, Y, Z be such that X:= the outcome,
Y :=the rough explanation and Z:= the number of rounds it takes to reach a state of
finished learning

5.4.2 Effects described

There are a couple of remarkable behaviours that I will discuss in this section. The
most striking result is that all trials of the complete graph do not need any round of
conducting experiments and upgrading to get to a state of finished learning. Because
of the connections in the network, everybody is friends with everybody, so all beliefs
are upgraded according to the evidence and bias set of the entire network. Since the

23Since p is the true theory, it is “extraordinary” when observations of ¬p (i.e., o¬p) occur more
often than observations of p (i.e., op).

55



Chapter 5 The Reliability of Scientific Communities: a Logical Analysis

network has an uneven number, and I give all agents prior evidence that supports
either p or ¬p, the agents directly choose between believing p or ¬p. Whether the
entire community believes p or ¬p depends on the distribution of the biasses. So in
a complete network with an uneven number of agents, the distribution of the bias
is crucial for whether the network will be successful or not.

In general, we see that the distribution of biasses and the distribution of priors
has a great effect on the outcome of the trial. There are two cases where the circle
network could overrule the distribution of biasses, namely in D and E. In D, more
than half of the agents in the network got a bias in t, so every agent in the com-
plete graph directly upgraded to believing p, achieving successful finished learning.
However, in the circle an extraordinary sequence of experimental results moved the
network to a state of failed finished learning, where three agents believed in ¬p
and only two in the true theory p. The same thing happened in E, only the other
way around: biasses were distributed such that more than half of the agents in the
network got a bias in t′, drawing the complete graph to a state of failed finished
learning. In E, the circle could repair the bad distribution of biasses. Note that the
distribution of failures in E is not extraordinary, while the distribution of failures in
D is (because it involves a lot of observations of the false theory). So even though
there are cases where the circle network causes the network to achieve successful
learning as well as failed learning, the former is more realistic.

Another factor that greatly affects the adopting behaviour of agents in a circle,
is the presence of two friends that have the same belief. We see the same result
in [25]. For example in situation B, we have a, b and c believing in p and d and e
believing in ¬p. Since the threshold θ is 1

2
, a p-believer needs two friends to have

more t′ than t to affect her doxastic state such that she believes ¬p (which is a con-
sequence of t′). Note that b is in the middle of two p-believers, so she is least likely
to switch to the group of ¬p-believers. Let’s consider a and c. Note that a and c
both have only one ¬p-believer as a friend, Nae and Ncd. These friends cannot beat
the beliefs of the two p-believing-friends of a and b. For this reason, agents a and c
will never change their beliefs. The same holds for the duo d and e, who will never
switch to believing that p. So in a circle network, whenever friends hold the same
belief they will never change this belief. Moreover, if there exists two such groups
of friends in a circle network with opposing beliefs, then the group will never reach
a state of successfully finished learning.

Finally, we see that increasing the weights of the biasses from 1 to 2 does not have
a big impact on the behaviour of the agents. Neither increasing the weight even
more will have a big impact on the models. Only in settings D and E the adopting
behaviour was slightly slowed down after the weights of the biasses were increased,
but the final outcome stayed the same.
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Conclusion

In this thesis, I studied the effect of different network configurations on the reliability
of scientific communities. In the philosophical framework, I have argued that sci-
ence is a social product. On the one hand this means that experimental results can
simply be wrong, because the scientists conducting the experiments are no perfect
robots but social and subjective beings. On the other hand, outcome of research is
also affected by the interaction between scientists. In the theoretical framework, I
introduced Zollman’s hypothesis that transient diversity guarantees a high reliabil-
ity, and that this is achieved by either limiting the communication between agents
or by strenghtening the priors.

By introducing a new Multi-agent Dynamic Evidence-based Logic, I aimed at be-
ing able to say under what circumstances a network is more likely to recover a
false group-belief. Even though the model is built on many simplifications and no
general conclusions can be drawn, there are some interesting features that can be
investigated in more detail in further research. Firstly, the distribution of priors
and failures greatly affects the outcome of the network. Especially, in a complete
network with an uneven number of agents, the distribution of the bias is crucial for
whether the network will be successful or not. Secondly, in some circumstances the
circle network is better at tracking the truth, and in some circumstances the com-
plete graph is. However, the circumstance where the circle is more realistic is more
realistic. Thirdly, whenever friends in a circle network hold the same belief, they
will never change this belief. This implies that in my setting, cognitive diversity
does not per se improve the truth-tracking abilities of a community. Finally, in my
setting, increasing the weights of the biasses does not have a strong impact on the
behaviour of the agents.

Summarizing the above results, I conclude that whether a scientific community will
track the truth or not, depends more on the distribution of the biasses and failures
than on the network structure or weights of the bias. Previous studies by Zollman
([41, 42]) and Bala and Goyal ([3]) suggest that the effect of the latter factors is
more explicit. The reason for this difference is most likely that I have used a differ-
ent system than Zollman and Bala and Goyal to analyse the behaviour of epistemic
agents in a network. In section 5.1.1 I explained that logic is not suitable to analyse
Bandit problems in the way Zollman did, so I had to make some adjustments to
the context. In future research, one could investigate the option to use probabilistic
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logic or multi-value logic to deal with the Bandit problem.

The outcomes of the analysis in chapter 5 rely not only on the distributions of
the biasses and failures, but also greatly on the set-up of the semantics of MDEL.
In future research, one can adjust the semantics (and the language), aiming for the
most realistic set-up. For example, I can adjust the value of the threshold θ or the
preconditions for the actions. I can also add private actions to the language. The
case-study of the Einstein-De Haas effect suggest that the content of communication
is crucial. In my system, agents communicate that they have a piece of evidence t,
namely Ei(t,m)!i. In future research, I could investigate what happens to the reli-
ability of communities when the agents communicate t or Bp. Furthermore, I can
generalize the model in such a way that it allows for more variation. For example,
I could give relative weights to different kinds of evidence (e.g. testimony from a
respected professor versus testimony from an inexperienced student).

The system I have presented can be quite easily transformed into a complete proof
system, adding the relevant theorems and principles. A completeness proof could
be constructed by first giving the completeness for the static logic MSEL and then
prove completeness of dynamic models by reduction of all dynamic sentences into
static sentences, as shown in [37].
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Appendix A

The Logic of Dynamic Justified
Belief: Details

A.1 Syntax

Definition A.1.1. (Language JB) Given a set Φ of atomic sentences, the language
L := (T ,F ) consists of the set T of evidence terms t and the set F of propositional
formulas (sentences) ϕ defined by the following double recursion:

ϕ ::= ⊥|p|¬ϕ|ϕ ∧ ϕ|Et|t� ϕ|�ϕ|Kϕ|Y ϕ with p ∈ Φ

t ::= cϕ|t · t|t+ t

The set sub(t) of subterms of a term t is defined by induction on the construction
of t as follows:

sub(cϕ) = {cϕ}
sub(s · u) = {s · u} ∪ sub(s) ∪ sub(u)

sub(s+ u) = {s+ u} ∪ sub(s) ∪ sub(u)

The set sub(ϕ) of subformulas of a formula ϕ is defined by induction on the con-
struction of ϕ as follows:

sub(⊥) = {⊥}
sub(p) = {p}

sub(¬θ) = {¬θ} ∪ sub(θ)

sub(θ ∧ θ′) = {θ ∧ θ′} ∪ sub(θ) ∪ sub(θ′)

sub(Et) = {Et}
sub(t� θ) = {t� θ}

sub(�θ) = {�θ} ∪ sub(θ)

sub(Kθ) = {Kθ} ∪ sub(θ)

sub(Y θ) = {Y θ} ∪ sub(θ)

The operation (·)Y : T ∪F → T ∪F is defined by setting for terms:

(cϕ)Y := c(ϕY )

(t · s)Y := tY · sY

(t+ s)Y := tY + sY
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and for formulas:

⊥Y := ⊥
pY := p

(¬ϕ)Y := ¬ϕY

(ϕ ∧ ψ)Y := ϕY ∧ ψY

(Et)Y := EtY

(t� ϕ)Y := tY � ϕY

(�ϕ)Y := Y�ϕ

(Kϕ)Y := Y Kϕ

(Y ϕ)Y := Y Y ϕ

A.2 Semantics

Definition A.2.1. (Model for JB) A model M = (W, [[·]],∼,≥, , E) is a structure
consisting of a nonempty set W of possible worlds ; a valuation map [[·]] : Φ→ P(W );
binary relations ∼ (“epistemically indistinguishable from”), ≥ (“no more plausible
than”), and  (“is the temporal predecessor of”) on W ; and an evidence map
E : W → P(T ), satisfying the following conditions:

• ∼ is an equivalence relation (i.e., reflexive, symmetric and transitive) and ≥
is a preorder (i.e., reflexive and transitive).

• Indefeasibility : w ≥ v ⇒ w ∼ v
• Local Connectedness : w ∼ v ⇒ (w ≥ v ∨ v ≥ w)
• Propositional Perfect Recall : (w  v ∼ v′) ⇒ ∃w′(w ∼ w′  v′) (i.e.,

knowledge of yesterday is still known today”)
• Evidential Perfect Recall : w  w′ ⇒ {tY |t ∈ E(w)} ⊆ E(w′) (i.e., evidence

of yesterday is still evidence today)
• Uniqueness of Past : (w′  w ∧ w′′  w)⇒ w′ = w′′

• Persistence of Facts : w  w′ ⇒ (w ∈ [[p]]⇔ w′ ∈ [[p]]) for p ∈ Φ
• (Implicit) Evidential Introspection: w ∼ v ⇒ E(w) = E(v) (i.e., agents know

what is in their evidence set)
• Subterm Closure: If t ·t′ ∈ E(w) or t+t′ ∈ E(w), then t ∈ E(w) and t′ ∈ E(w)

(i.e., a compound evidence is available to the agent only if its component pieces
of evidence are available)

• Certification of Evidence: If t ∈ E(w) and t � ϕ then cϕ ∈ E(w) (i.e., every
actual evidence in support of a sentence ϕ can be converted into a canonical
piece of evidence cϕ that certifies it, implying that all explicit knowledge can
be certified)

Definition A.2.2. (Truth for JB) The satisfaction relation w � ϕ, short for (M,w) �
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ϕ when M is fixed, is defined as follows:

w 6 � ⊥
w � p iff w ∈ [[p]]

w � ¬ϕ iff w 6� ϕ
w � ϕ ∧ ψ iff w � ϕ and w � ψ

w � Et iff t ∈ E(w)

w � t� ϕ iff t� ϕ

w � �ϕ iff v � ϕ for every v ≤ w

w � Kϕ iff v � ϕ for every v ∼ w

w � Y ϕ iff v � ϕ for every v  w

We can extend the valuation map [[·]] to all sentences ϕ, for putting [[ϕ]] = {w ∈
W |w � ϕ}.

Definition A.2.3. (Belief) We define belief: Bϕ := ¬�¬�ϕ as truth in the most
plausible worlds:

M,w |= Bϕ iff M,w′ |= ϕ for all w′ ∈ min{w′ ∈ W |w ∼ w′}

A.3 Evidence dynamics

Definition A.3.1. (Language DJB) L act := (T act,F act) is the extension of the
static language for JB (see definition A.2.1) obtained by adding modal operators
α for epistemic actions α ∈ {t+, t ⊗ s, t!, t ⇑}, for every t, s ∈ T . The notions of
subterm, subformula, admissibility and model are lifted to L act in the obvious way.

Definition A.3.2. (Preconditions and evidence set for DJB) For every action α,
define a sentence preα, called the precondition of α, and a set of terms T (α) called
the evidence set of α:

pret+ = pret⇑ := >

pret! := cont =
∧
{θ|t� θ}

pret⊗s := Et ∧ Es
T (t+) = T (t!) = T (t ⇑) := sub(t) ∪ {cθ|s� θ for some s ∈ sub(t)}
T (t⊗ s) := {t · s} ∪ {cθ|t · s� θ}

Definition A.3.3. (Truth for DJB) Let wα denote the ordered pair (w, α) to rep-
resent the “updated” world resulting from performing action α in world w. Then:

61



Chapter A The Reliability of Scientific Communities: a Logical Analysis

(M,w) � [α]ϕ iff (M [α], wα) � with M [α] := (Wα, [[·]]α,∼α,≥α, α, Eα), and

Wα := W ∪ {wα|w ∈ [[preα]]}
Eα(w) := E(w) for w ∈ W
Eα(wα) := {uY |u ∈ T (α) ∪ E(w)}

[[p]]α := [[p]] ∪ {wα ∈ Wα|w ∈ [[p]]}
∼α :=∼ ∪{(wα, vα)|w ∼ v}
 α := ∪{(w,wα)|w ∈ [[preα]]}
≥α :=≥ ∪{(wα, vα)|w ≥ v} for α ∈ {t+, t⊗ s, t!}
≥t⇑ :=≥ ∪{(wt⇑, vt⇑)|(w 6∈ [[cont]] ∧ v ∈ [[cont]] ∧ w ≥ v)} for t ∈ T e

≥t⇑ :=≥ ∪{(wt⇑, vt⇑)|w ≥ v} for t 6∈ T e
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