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A B S T R A C T

Structuralism is the view that mathematics is the science of structure.
It has been noted that category theory expresses mathematical objects
exactly along their structural properties. This has led to a programme
of categorical structuralism, integrating structuralist philosophy with
insights from category theory for new views on the foundations of
mathematics.

In this thesis, we begin by by investigating structuralism to note
important properties of mathematical structures. An overview of cat-
egorical structuralism is given, as well as the associated views on the
foundations of mathematics. We analyse the different purposes of
mathematical foundations, separating different kinds of foundations,
be they ontological, epistemological, or pragmatic in nature. This al-
lows us to respond to both the categorical structuralists and their crit-
ics from a neutral perspective. We find that common criticisms with
regards to categorical foundations are based on an unnecessary inter-
pretation of mathematical statements. With all this in hand, we can
describe “schematic mathematics”, or mathematics from a structural-
ist perspective informed by the categorical structuralists, employing
only certain kinds of foundations.

2



A C K N O W L E D G E M E N T S

First and foremost, I would like to thank Luca Incurvati for his fruit-
ful supervision sessions, his eye for detail, and for his enlightening
course on the philosophy of mathematics. I owe Michiel van Lambal-
gen special thanks for pointing me in the direction of this subject and
helping me find a great supervisor. Gerard Alberts, thanks for read-
ing and commenting on the first chapter. I would also like to thank
all members of the committee for agreeing to be on this committee
and read my thesis.

A shout-out goes to my fellow students keeping the MoL-room
crowded on sunday mornings and other ungodly times. Keep it up
guys, and don’t forget to sleep.

Last but not least, I would like to thank my parents for supporting
me throughout my years in Amsterdam.

3



C O N T E N T S

1 structuralism 6

1.1 What is structuralism? 6

1.1.1 Structuralism as a matter of abstraction 7

1.1.2 The identity of structures 10

1.1.3 Structuralism as a matter of dependence 12

1.1.4 Taking stock 16

1.2 The identity of mathematical objects 17

1.2.1 Dedekind abstraction 18

1.2.2 Benacerraf’s Problem and the Caesar Problem 20

1.3 The ontology of structures: Three schools 24

1.3.1 Ante rem and in re Structuralism 24

1.3.2 Eliminative structuralism 27

1.4 Epistemology 30

1.4.1 Pattern recognition 31

1.4.2 Implicit definition 32

2 categorical structuralism 34

2.1 Category Theory and Structuralism 34

2.1.1 A short introduction 34

2.1.2 Mathematical structuralism 36

2.1.3 Revisiting Benacerraf’s Problem 37

2.2 Theories of Categorical Structuralism 40

2.2.1 McLarty: Categorical foundations 40

2.2.2 Landry: Semantic realism 41

2.2.3 Awodey: No foundations 43

3 foundations of mathematics 47

3.1 Ontological foundations 48

3.1.1 Ontology as metaphysics 48

3.1.2 Ontology as mathematics 50

3.1.3 Shapiro on ontology 53

3.2 Epistemological foundations 56

3.2.1 Cognitive foundations 56

3.2.2 Epistemological foundations 58

3.2.3 Frege’s foundational project 59

3.3 Pragmatic foundations 61

3.3.1 Methodological foundations 62

3.3.2 Organisational foundations 62

3.4 What’s important? 63

3.4.1 On the necessity of foundations 63

3.4.2 On mathematical-ontological foundations 66

3.5 Examining contemporary foundations 67

3.5.1 The status of ZFC 67

4



Contents

3.5.2 The status of category-theoretic foundations 70

4 categorical foundations or frameworks 72

4.1 Ontological concerns 72

4.1.1 Assertory versus algebraic foundations 72

4.1.2 Responding to Hellman 76

4.1.3 Revisiting Awodey 77

4.1.4 Interpreting mathematics 79

4.2 Epistemological concerns 81

4.2.1 The matter of autonomy 82

4.2.2 Revisiting McLarty 85

4.3 Pragmatic concerns 86

4.3.1 The matter of coherence and consistency 86

4.3.2 Revisiting Landry 89

4.3.3 On mathematics and philosophy 91

4.4 Schematic mathematics 92

5 bibliography 95

5



1
S T R U C T U R A L I S M

In this chapter, structuralism as a philosophy of mathematics is intro-
duced. We shall go through the concepts central to this philosophy,
such as structure, system, and abstraction. Certain problems in the
philosophy of mathematics will be closed using them, while others
left as open as before; we shall see wherein the difference lies. Fi-
nally, this chapter aims to provide an overview of the ontology and
epistemology of mathematics from a structuralist perspective.

1.1 what is structuralism?

Structuralism in the philosophy of mathematics is perhaps best sum-
med up with its slogan: “Mathematics is the science of structure”.
A structuralist would describe mathematics as not being concerned
with numbers, calculation, triangles, geometric figures, or any such
objects. These may all occur in mathematics of course, but they are
not its subject. The subject of mathematics is, on the structuralist
account, something akin to pattern, relational structure or form.

Structuralism is perhaps best introduced by contrasting it with pre-
vious philosophies of mathematics. Many classic philosophies of
mathematics take mathematics to be about mathematical objects, such
as numbers or geometric figures. It is these objects, abstract as they
may be, existing independently of the human mind or not, that form
the basic “building blocks” of mathematics. Platonism, one of the
most well-established philosophies of mathematics, has been charac-
terised by Michael Resnik as revolving around an analogy between
mathematical objects and physical ones.1 To the platonist, mathemat-
ical objects are, in a way, like physical things, and like physical things,
they may possess certain qualities (such as abstractness) and not pos-
sess others (such as extension or colour).2 On the platonist account
in particular, these objects have a certain independence: they exist re-
gardless of anything external, be it the human mind thinking of these

1 [Resnik 1981], pp. 529

2 It is customary in the philosophy of mathematics to refer to theories positing the
(mind-)independent existence of mathematical objects as platonism, after being so
dubbed by Bernays in the 1930s (see [Bernays 1935]). There are many ways in which
these theories are nothing like the philosophy of Plato, even on the subject of math-
ematics. Following contemporary custom, I shall nevertheless refer to such theories
straightforwardly as “platonism”.
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1.1 what is structuralism?

objects, symbols referring to them, or physical objects exemplifying
them in some way. To the structuralist, by contrast, it makes no sense
to speak of mathematical objects per se. To be a mathematical object
at all is to be part of a larger mathematical structure: no number 2
without a structure of natural numbers, no triangle without a geom-
etry. The structuralist holds that mathematical objects are not truly
independent, but at the very least dependent on the structure they
are part of, and moreover, that they don’t have any intrinsic proper-
ties. Whatever properties an object may have are merely relational
ones, describing the object as it relates to other objects within the
structure. It is through these two means that structuralism is usu-
ally characterised: through this dependence or through the lack of
intrinsic properties.

1.1.1 Structuralism as a matter of abstraction

Turning to the “intrinsic properties account” first, what is typical of
structuralism is that mathematical objects are nothing more than posi-
tions within a structure. We consider objects as mere “empty spaces”
within a structure; that is to say, objects are nothing more than their
relational properties within the structure, and in particular, they have
no further internal structure or intrinsic properties. Michael Resnik
most prominently developed this account of structuralism and de-
scribed it as follows:

In mathematics, I claim, we do not have objects with
an “internal” composition arranged in structures, we have
only structures. The objects of mathematics, that is, the
entities which our mathematical constants and quantifiers
denote, are structureless points or positions in structures.
As positions in structures, they have no identity or fea-
tures outside of a structure.3

What is put to the forefront here is a degree of abstraction charac-
teristic of structures. When dealing with structures, objects may be
involved, but everything about them is disregarded except for the re-
lation they have within a structure. The structure, in turn, is nothing
but the whole of these relations. Typically, a structure can be charac-
terised through a rule or an array of rules. Examples of structures are
typically geometric or algebraic. An easy one to grasp in particular
is the structure of a group: a group consists of a domain D of objects
with an associative operator ∗ on them, an inverse for every element
of the domain, and an identity element e s.t. a ∗ e = a = e ∗ a for
all a in the domain. One may find that certain objects in other ar-
eas of mathematics form a group. The objects in the domain may be

3 [Resnik 1981], pp. 530
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1.1 what is structuralism?

complicated mathematical objects themselves. For the group theorist,
though, this is irrelevant. What is studied are the relations between
objects in the group and through this, the group itself. The structural-
ist claim is then: as in group theory, so in all of mathematics. One
may find something in the physical world that can be regarded as the
group Z/60Z, such as the behaviour of the long hand on a grandfa-
ther clock, but one only engages in mathematics when one takes such
an abstract view of it as to study merely the relations that hold on it.
In such a case, one considers a minute as merely an empty point in
the structure. Resnik further elaborates on the status of such points:

A position is like a geometrical point in that it has no
distinguishing features other than those it has in virtue
of being that position in the pattern to which it belongs.
Thus relative to the equilateral triangle ABC the three
points A, B, C can be differentiated, but considered in iso-
lation they are indistinguishable from each other and the
vertices of any triangle congruent to ABC. Indeed, consid-
ered as an isolated triangle, ABC cannot be differentiated
from any other equilateral triangle.
([Resnik 1981], pp. 532)

Thus, the differentiation between objects relies on a prior notion of
structure. It should be noted that this is still not the strongest formu-
lation of structuralism. The consideration of a geometrical point as
a point in the mathematical sense, that is, not as a physical dot on
paper but as an entity with a length of 0 in every dimension requires
the consideration of a mathematical structure.

We find another expression of this account of structuralism in the
works of Nicholas Bourbaki, characterising elements as having an
unspecified nature prior to their connection by relations. Relations
are in turn made intelligible by stating the axioms true of them, thus
characterising the structure as an object of mathematical study:

[...] to define a structure, one takes as given one or sev-
eral relations, into which [elements of a set whose nature
has not been specified] enter [...] then one postulates that
the given relation, or relations, satisfy certain conditions
(which are explicitly stated and which are the axioms of
the structure under consideration)4

As part of their larger programme emphasising the role of the ax-
iomatic method in mathematics, Bourbaki thus puts the axiomatic
nature of the relations in the forefront.

Another way to characterise structure is in terms of roles and ob-
jects filling that role. A relational structure can take many shapes; it

4 [Bourbaki 1950] pp. 225-226, quoted in [Shapiro 1997]
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1.1 what is structuralism?

can be the structure of natural numbers, of a programming language,
or of a game of Tic-tac-toe. The objects within a structure then are
roles that must be played in the structure. The structure of mathemat-
ical numbers calls for something to fill the role of the second number;
the structure of Tic-tac-toe needs symbols for both players. These
roles can be filled in many ways; traditionally, crosses and circles are
the symbols used in Tic-tac-toe, but this is obviously not fundamental
to the game as a structure. The properties of the game don’t change if
we use squares and triangles instead - in particular, the game will still
be always a draw if both players play perfectly. Mathematics, then,
is the study of structures and the roles therein qua roles. The mathe-
matician completely disregards whatever fills any particular role in a
structure, and then proceeds to see what he can still show about the
structure. As such, it is a mathematical result that Tic-tac-toe always
results in a draw if both players play perfectly.5

Stewart Shapiro introduces the term System for any collection of
objects with interrelations among them. A structure is then the ab-
stract form of such a system taken only as interrelations between
abstract objects, disregarding any feature of the objects, physical or
otherwise, that is not of this nature.6 The Arabic numbering sys-
tem or sequences of strokes may then both be considered systems
expressing the natural number structure. It is important to note that
the system/structure dichotomy is a relative one. A particular mathe-
matical structure may be found in other mathematical structures, and
thus serve as a system as well. For example, the set theorist might
recognise the ordinals ∅, {∅}, {{∅}, ∅}, . . . as a system expressing
the natural numbers structure. Likewise, he might find the same
structure in the series ∅, {∅}, {{∅}}, . . .. It is a particular claim of the
structuralist that neither of these sets are the natural numbers. They
are merely different systems expressing this structure. {{∅}, ∅} and
{{∅}} may both fill the role of 2 in the natural number structure, but
that does not make them the number 2.7

The notion of “object” itself in a structural framework does leave
some room for explication. In particular, the link between a struc-
ture and that what it is abstracted from, and Stewart Shapiro’s sys-
tem/structure dichotomy in particular, leave room for two different
interpretations of the notion of object. Based on the structuralist
slogan “Mathematical objects are places in structures”, Shapiro calls
these the places-are-offices and the places-are-objects perspectives.

5 There is an argument to be made that further properties are necessary for a structure
to be mathematical in nature; for one, deductive proofs need to be applicable as a
tool to investigate the structure. Since we want to concern ourselves with philosophy
of mathematics rather than with general epistemology, we leave this issue open for
now and refer to mathematical structures simply as “structures”.

6 [Shapiro 1989] pp. 146

7 A rather famous argument based on this inequality was made by Benacerraf in
[Benacerraf 1965]. We will come back to this in section 1.2.2.
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1.1 what is structuralism?

One can regard a place as a role to be filled, as an “open office”,
so to speak. Borrowing an analogy from Shapiro, we can consider
the structure of the American federal government. This structure fea-
tures political positions such as “Senior Senator for New York” as its
objects, and relations such as ”x elects y” as its relations. A relation
within this structure might be “The president nominates judges for
the Supreme Court”. Nevertheless, we often use structural terms in
the context of a particular system. For example, we may truthfully
utter the sentence: “The president has a Kenyan father”. This does
not express a structural truth about the system, about the office of the
president as it relates to other positions in the government, as a place
in the structure. It instead talks about a particular system instantiat-
ing this structure by way of referring to objects within the structure;
“The President” is used to refer to Barack Obama. This is the places-
are-offices perspective; we refer to positions in the structures as offices
to be filled, always with a specific interpretation or exemplification in
mind. Our example of a relation in this structure, however, did not
refer to the object “President” in this way. When we express that the
president nominates judges for the supreme court, we aren’t talking
about Barack Obama, or about any holder of the office of president in
particular; rather, we are expressing a property of the position itself.
This perspective regards a position as an object in itself, to be consid-
ered independently from any particular way to fill the position. This
view is called the places-are-objects perspective.8 Unlike the places-are-
offices perspective, it has no need of a system, or of any background
ontology of objects that may fill the offices.9

1.1.2 The identity of structures

The system/structure dichotomy suggests a relation between the struc-
ture on one hand and the structured, the system, on the other. In fact,
there should be a way for two systems to exemplify the same struc-
ture. To make this precise, Resnik took a relation between different
structures as a starting point. The principal relation between different
structures is one of congruence or structural isomorphism. A congruence
relation exists when there is an isomorphism between two structures.
An isomorphism is traditionally taken as the method of saying that
two structures are the same: and two structures A and B are isomor-
phic if there is a bijective relation f : A −→ B on the objects and
relations on A s.t. for every relation R1, R2, ...Rn on A, if aRxb, then
f (a) f (Rx) f (b).10 It is not a rare occurence that two structures are

8 Some philosophers, such as Resnik, deny that there is such an object, and a fortiori,
that there is such a perspective. Statements like these can be interpreted alterna-
tively as generalisations over all the occupants of the office. See section 1.3.2 for a
discussion of this view.

9 [Shapiro 1997], pp. 82

10 [Shapiro 1997], pp. 91
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1.1 what is structuralism?

not isomorphic because they do not feature the exact same relations,
even though they very well could be through a matter of definition.
Resnik cites the example of the natural numbers with the “less than”
operator < and the natural numbers with a successor function S.11 In
order to be able to say in such cases that we are still talking about one
structure rather than two distinct ones, a weaker notion than isomor-
phism has been introduced. One can call two structures structurally
equivalent if there exists a third structure, object-isomorphic to both
structures, and with relations that can be defined in terms of the rela-
tions of both structures.12 For example, let NS be the natural numbers
with a successor relation S but no “less than” relation, and let N< be
the natural numbers with no successor relation but with a “less than”
relation <. We can then formulate a third structure N3 with the re-
lation < as in N< and with a relation S defined as follows: aSb iff
b < a∧¬∃c : b < c < a. Now N3 is object-isomorphic to NS and N<,
and all of its relations can be defined in terms of the relations of NS
and N<. Hence, we can conclude that NS and N< are structurally
equivalent. This construction serves to free us from needing to claim
that these two entities are not the same, because they are not strictly
isomorphic, even though they are intuitively different depictions of
the exact same kind of mathematical structure.

The process distinguishing a certain structure within another is
called Dedekind abstraction: certain relations among the objects are
emphasised, and features irrelevant to these interrelations are left out
completely. The result is a new structure which then again stands in
an isomorphic relation with the old.13

The relation connecting the structured with the structure may also
connect arrangements of concrete objects, such as physical objects or
symbols on paper, with an abstract structure. In such a case the ar-
rangement or system is said to instantiate the structure. This notion
of a relation between arrangements or systems of concrete objects
with abstract concrete objects is not epistemologically simple. In par-
ticular, it presupposes that the concrete objects can be regarded as
having structure of their own in some way. There are many theories
on how such a connection can take place: the Platonist holds that
a concrete object may participate into an eternal, abstract Form, the
Aristotelian that we gain the structure through a mental process of
abstraction, and the Kantian that it is a feature of human conscious-
ness to add such structure to the world in order to understand it. The
structuralist view is not limited to one of these theories and may be
combined with a number of views on the matter, but the viewpoint
does suggest a movement away from theories connecting mental or
ideal objects with concrete objects (such as traditional Platonism) and

11 [Resnik 1981], pp. 536

12 [Resnik 1981], pp. 535-536

13 We will come back to Dedekind abstraction in section 1.2.1.
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1.1 what is structuralism?

towards theories able to handle connections between entire abstract
structures and systems.

1.1.3 Structuralism as a matter of dependence

The other account of structuralism, and the one that prompted a com-
parison with platonism, is the dependence account. On this view,
the main thesis of structuralism is that mathematical objects are de-
pendent on one another or on the structure they are a part of. This
contrasts most sharply with platonism, as that latter theory relies
first and foremost on a notion of independence. It is typically stated
explicitly that mathematical objects are independent of the human
mind. The independence of mathematical objects goes further than
that, though: a number may be said to be independent of any con-
crete physical objects and of other mathematical objects, such as tri-
angles. The strength of this argument relies on a notion of truth: it
is a particularly strong intuition that mathematical truths are “static”,
and that changing the properties of certain objects should leave math-
ematics unaffected.14

When establishing such a thing as a dependence relation among
concrete objects, it seems obvious that objects may depend on other
objects at the very least if we take the notion of dependence to be an
existential one: for example, the existence of a particular table is not
dependent on the existence of a chair, but it seems to be dependent
on the existence of atoms and molecules. An existential dependence
relation tends to hold between concrete objects and relations holding
among them as well; two objects cannot be of the same size if they do
not exist first, while two objects may very well be said to exist without
there existing a same-size relation between them. Another way to
characterize dependence is through identity; in such a case, X can be
said to depend on Y if Y is a constituent of some essential property
of X.15 Considering that the existence of the relata is essential to the
relation, the conclusion may be made that, for concrete objects, the
object is prior to any relations that may hold on it.

The structuralist holds that in the case of mathematics, this priority
is inverted. The mathematical object depends on the existence of a cer-
tain relational structure.16 At the very least, the structuralist claims

14 Of course, this is a crude picture of mathematical platonism, meant merely as con-
trast with the structuralist account. Some of the more obvious problems with re-
gards to the independence of mathematical objects are readily answered by platon-
ists. Traditionally, the necessity of all mathematical objects has been posed, thereby
positing the whole of mathematics, as it were, “at once”, and avoiding situations
in which a mathematical object depends on an entity that doesn’t exist. Hale and
Wright ([Hale & Wright 2001]) characterise the independence of mathematical ob-
jects as merely independence from objects of another sort, not from each other.

15 [Linnebo 2008], pp. 78

16 Whether the converse holds, i.e. whether we can think of mathematical structures
while completely ignoring the possibility of objects in them, is a different and per-
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1.1 what is structuralism?

that there is no such thing as priority between mathematical objects
and their relations. Mathematical objects exist simply as part of the
structure they are part of. It is perhaps easiest to illustrate this using
the example of numbers, due to Shapiro.17 Whereas the traditional,
“object-based” Platonist would hold that all numbers simply exist, in-
dependently of us and of each other, the structuralist holds that the
relation between numbers is what makes them numbers. It consti-
tutes an essential feature without which they would not be numbers.
The structure of natural numbers is such that there is a first number
and a successor relation; numbers, as objects, depend wholly on this
structure, and all their properties derive from it. Numbers can in this
sense be seen as simply being positions within this structure: “3” is
the third position in it, “4” the fourth, and so forth.

In “Structuralism and the notion of dependence”, Øystein Linnebo
has argued that the “intrinsic properties account” of mathematical
structuralism reduces to dependence claims. He distinguishes this
view further into two accounts: one claiming that mathematical ob-
jects have no non-structural properties, and one claiming that they
have no internal composition or intrinsic properties. Dealing with
the latter first, for an object to have any internal composition, or more
generally, any intrinsic properties, is for it to have properties that it
would have regardless of the rest of the universe. Thus, for an object
not to have any intrinsic properties is for it only to have properties
that it has on account of the rest of the structure. On the structuralist
claim that a mathematical object is no more than its position in a rela-
tional structure, this equates to the claim that a mathematical object
is dependent in all its properties on the structure.

The claim that mathematical objects have no non-structural prop-
erties is more directly challenged. The obvious candidate for a defi-
nition of a structural property comes from the “abstraction account”
of structuralism: a property is structural if and only if it is preserved
through the process of Dedekind abstraction. This account runs into
straightforward counterexamples. Numbers seem to have more prop-
erties than merely structural ones: they can be expressed using Ara-
bic numerals, they are abstract, et cetera. Some of these properties,
such as abstractness, are even necessary properties, making a weak-
ened claim that mathematical objects have no non-structural neces-
sary properties false as well. Linnebo suggests that a yet weaker claim
may suffice, though: mathematical objects have no non-structural
properties that matter for their identity. This statement can then be
equated with a dependence claim again: it is equivalent with the
statement that mathematical objects depend for their essential prop-
erties on the structure they are in. Thus on the structuralist account

haps more subtle point. It seems that there are at the very least certain mathematical
structures that operate without objects. Category theory, for example, can be formu-
lated using only the relational notion of a morphism.

17 [Shapiro 2000] pp. 258
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1.1 what is structuralism?

of mathematics, there is an “upward dependence”: objects depend on
the structure to which they belong, as opposed to the “downwards
dependence” typical of physical objects, where larger, more complex
entities cannot exist without their parts.18

Linnebo further argues that set theory, on the usual iterative con-
ception of set, cannot fit into a structuralist framework. This is be-
cause the dependence relation in set theory is fundamentally “down-
wards”. On the iterative conception of set, a set is anything that
exists in some place in the iterative hierarchy of sets. On the first
stage, we have the empty set and any possible set of urelemente we
may wish to have in our universe. Each subsequent stage contains all
sets consisting of some combination of previous sets.19 The totality of
such stages then encompasses the totality of all sets. Linnebo claims
that set theory is thus a counterexample to the dependence claim of
structuralism: sets depend “downwards” on their constituents, out of
which they were formed, and not “upwards” on any sets containing
them.20 A particularly strong example is that of the singleton: it is
clear that the singleton set of some object depends on that object, but
it is hard to imagine the object as being dependent on the singleton it
is contained in.21

Linnebo himself has characterised the dependence relation in two
ways: the claim that any mathematical object is dependent on all
other objects in the structure (“ODO”), and the claim that mathemati-
cal objects are dependent on the structure they are part of (“ODS”).22

The example of the singleton seems, at first sight, a counterexample
to the first claim. It is less clear why it would be a counterexample
to the second, though. A more thorough analysis of the situation is
wanted. Let A be some singleton set: let A = {B}. It is clear that
a singleton set depends for its identity on the element it contains.
But it seems hard to argue that it does not also rely on the entire
set-theoretic structure.

Consider that, in order for the argument to work, the singleton set
here must be a pure mathematical object. It is not a collection of one
object in any metaphysical sense involving more properties than the
mathematically given ones. The singleton set A is entirely given by
the fact that it is part of the set-theoretic hierarchy, and the totality
of ∈-relations defining it: in this case, B ∈ A. It is a set, and what it
means to be a set is for it to occur at some stage in the set-theoretic

18 [Linnebo 2008], pp. 66-68

19 [Boolos 1971], pp. 220-222

20 [Linnebo 2008], pp. 72

21 [Fine 1994] pp. 5

22 [Linnebo 2008], pp. 67-68.
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1.1 what is structuralism?

hierarchy. This is exactly equivalent with the following conjunctive
statement:

A can be formed out of the objects it contains through a
single application of the ∈-relation, and all the objects it
contains are present at some earlier stage in the hierarchy.

(1)

Thus, there is a clear dependence, vital for the identity of the single-
ton set A as a mathematical entity, on the set-theoretic hierarchy as a
whole.23 The case can be made even stronger when we consider that,
since any set is fully given by the sets it stands in the ∈-relation with,
it depends fundamentally on this relation.24 After all, we may imag-
ine a situation wherein there is such a thing as the ∈-relation, but not
this particular set (due to e.gȧ change in the axioms governing the
existence of certain sets), but we cannot conceive of a set without con-
ceiving of it as containing elements. Dependence on this relation can
hardly be considered downward: if we take ∈ as a primitive notion, it
is simply captured by the axioms prescribing its use. It seems difficult
to get closer to the structuralist claim that this equates to dependence
on the very structure of set theory, and hence ODS. If we take ∈ not
to be a primitive, but to be a relation given by the pairs of relata it
connects, then any set is dependent on all those other sets related
somehow by ∈, and we come back to the other of the structuralists’
two dependence claims, ODO.

The platonist might balk here, claiming that the equation of a math-
ematical entity with its version in a limited mathematical system is
an incorrect one. For example, a set S may turn out to have proper-
ties and relations in the full set-theoretic universe V with the usual
Zermelo-Fraenkel axioms that it does not have in, say, a finitist limita-
tion of it. Likewise, S may have more properties when we add more
axioms, such as ones stating the existence of inaccessible cardinals. If
we consider S “in its full splendor” then, not limited by any specific

23 An alternative formulation is to simply ask that the objects it contains are sets them-
selves. (In our example, this is simply B.) This, in turn, is the case if they can be
formed through a single application of the ∈-relation out of the objects it contains,
and that all the objects it contains are sets themselves. The downward dependence
continues. This manoeuvre does little more than buy time, though. On the iterative
conception of set this process must end somewhere: at a set containing either only
urelemente or at the empty set. It seems impossible to formulate why these are in
turn sets without referring to the definition of the hierarchy, on account of which
they are. Non-well-founded set theories may be trickier on this regard, but in those
cases one may ask whether there is a downward dependence at all. In either case,
the dependence on the ∈-relation is clearly present still.

24 The very idea of depending on a relation is not uncontroversial. One might consider
that a relation always presupposes its relata, and hence putting a relation on top of
the hierarchy of dependence makes little sense. For now, I will leave this with a
suggestion that there may be no need to presuppose relata in mathematics. What
is prima facie prior here are those mathematical terms taken as primitives. A more
thorough way to avoid this problem is given by Awodey, who substitutes the relation
for the morphism. We shall turn to this in detail in section 2.2.3.
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axiomatisation, it may be considered independent of them. The struc-
turalist answer to this is to simply grant this. On the structuralist
account, mathematics is about objects only in as far as they are char-
acterised mathematically, i.e. in a structure. If there is such a thing as
a “true” S with all the properties it “should” have, in such a way that
it cannot be captured by any mathematical system, then it is neither
a mathematical object in the structuralist sense, nor the kind of object
the mathematician actually studies in practice.

Of course, a dependence between a singleton set and the whole set-
theoretic framework does not exist if we consider a set on the naive
conception. On this conception, a set is any extension of a predicate.
To take another singleton example, consider the set containing only
Queen Elizabeth II. On this account, we can disregard the second
conjunct of (1) and thus the dependence on the set-theoretic structure.
But to the structuralist, this is simply to say that naive set theory is
not a proper mathematical structure. The set theorist has known all
along.

As Linnebo points out, many other areas of mathematics seem to
behave straightforwardly in a way in line with structuralism. Chief
amongst these are algebraic structures such as groups. More gener-
ally, this holds for any structure gained through Dedekind abstrac-
tion: for consider such a structure, consisting only of objects as de-
termined by their relations, with all other features left out. The de-
pendency here is clearly “upwards” in a non-roundabout way. the
grander structure of a group, for example, determines the behaviour
of its objects. In particular, consider again the relations R1, . . . , Rn

of a particular structure. Let a(x) denote the arity of Rx. We can
then consider relation R = R1 × R2 × . . .× Rn, which holds between
x1, . . . , xz and y1, . . . , yz if and only if x1, ..., xa(1)R1y1, . . . , ya(1), and
xa(1)+1, . . . , xa(2)R2ya(1)+1, . . . , ya2 and so forth up to Rn. This relation
R then effectively functions as simple combination of all the relations
R1, ..., Rn. In particular, this single relation can now be said to fully
determine the group. The behaviour of any particular object in a
group is defined by its relations with other objects, which is in turn
given entirely by R. We thus have complete dependence of the objects
of the group upon the structure as characterised by R. Thus, we can
characterise any mathematical structure gained through Dedekind ab-
straction by its structure, considered as the whole of its relations.

1.1.4 Taking stock

We can conclude that characterising structuralism in terms of its ob-
jects, in particular through their supposed lack of internal structure,
does not suffice. Rather, we can establish structures as determining
their objects, or as gained through Dedekind abstraction. These ac-
counts may be considered equivalent, as they straightforwardly im-
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1.2 the identity of mathematical objects

ply one another. There seems to be no particular reason to take the
dependency view of structuralism over views based on the abstract
nature of structures, although Linnebo’s demand for more attention
to the notion of dependency in structuralist philosophy seems well-
placed.

Summarising the structuralist account of mathematics, we can state
the following:

1. One engages in mathematics when one treats any arrangement
of objects, concrete or abstract, merely in terms of the relations
that hold amongst the objects therein.

2. The whole of such relations is a structure, and is typically char-
acterised by rules establishing the behaviour of the relations.

3. Structures are obtained through a process of Dedekind abstraction
from other structures.

4. As a consequence, structures are only determined up to isomor-
phism.25

5. Mathematical objects are dependent on the structure they are
part of. In particular, they are thus also only determined up to
isomorphism.

The philosophy of mathematics has always been concerned with
ontological questions, regarding the existence or status of mathemat-
ics, and epistemological questions of how we can gain mathematical
knowledge. The structuralist view has shifted the focus of these ques-
tions: rather than philosophise about mathematical objects, we now
ponder the structures they are part of. This shift in attention has al-
lowed certain questions regarding mathematical objects to be solved.
Other, more dire problems, such as the platonist thesis of a mind-
independent existence of mathematical objects, have simply shifted
along: they are now questions about structures as a whole. In the
following paragraphs, we shall go through these systematically. First
we shall deal with questions regarding the ontology and identity of
mathematical objects, second we shall pay attention to the ontology
of structures, and finally, attention shall be paid to questions of epis-
temology on which the structuralist account can shed new light.

1.2 the identity of mathematical objects

The question “What are mathematical objects?” is not merely a ques-
tion of dependence or independence. It is a general demand in philos-
ophy that we be able to identify an object and be able to differentiate

25 More precisely, they are determined up to structural equivalence, but this difference
is mathematically nigh-trivial.
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1.2 the identity of mathematical objects

it from different objects. This echoes a dictum by Quine: “No en-
tity without identity”. There are a few philosophical problems with
regards to the identity relation and mathematical objects: in particu-
lar, Frege’s “Caesar Problem”, relating to the identity between math-
ematical objects and non-mathematical ones, and Paul Benacerraf’s
challenge in “What Numbers Could Not Be”, relating to the identity
between different kinds of mathematical objects. The structuralist
view of mathematics does not purport to answer all problems in the
philosophy of mathematics, but these identity problems seem to have
a tendency to fold to a structuralist analysis. To aid in this endeavour,
a more precise look at Dedekind abstraction is due first.

1.2.1 Dedekind abstraction

The term “Dedekind abstraction” was introduced by William Tait to
describe the process of obtaining new types of objects in mathematics.
The canonical example is the acquisition of the natural numbers from
a different, more complicated mathematical system, such as as the
collection of all ordinal numbers ∅, {∅}, {∅, {∅}}, . . ..26 This process
goes back to Dedekind’s 1888 article “Was sind und und was sollen
die zahlen?”. In this article, Dedekind took up the challenge of giv-
ing a mathematically precise notion of the natural numbers. He was
responding to a mathematical challenge at the time; Frege, amongst
others, took up this same challenge and identified numbers with ex-
tensions, which are then captured by sets. In [Resnik 1981], Michael
Resnik remarks that the importance of this work today does not lie in
its mathematical value, but rather in the philosophical interpretation
it gives of notions such as the natural number.

A key difference between Frege and Dedekind in their interpreta-
tion of the natural numbers is that while the former identified them
with a singular kind of mathematical object, Dedekind emphasised
their generality. To Frege, numbers were a kind of set. Dedekind’s ap-
proach, on the other hand, was to identify a specific kind of system
within other mathematical objects: the simply infinite system. If one
can specify a successor function such that there is a unique successor
S(n) for each n in the domain N and an initial object 0, such that
induction holds (in second-order logic, ∀X(0 ∈ X ∧ ∀x((x ∈ X) −→
(S(x) ∈ X)) −→ N ⊆ X)), then one is dealing with a simply infinite
system (N, 0, S). The direction where Dedekind is going seems clear:
the initial element 0 has to do with the natural number 0, S(0) with
1, et cetera. However, the natural numbers are not simply identified
with the objects in any such system. Rather, an extra step is taken:

If, in considering a simply infinite system N, ordered
by a mapping φ, one abstracts from the specific nature

26 [Tait 1986], footnote 12
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1.2 the identity of mathematical objects

of the elements, maintains only their distinguishability,
and takes note only of the relations into which they are
placed by the ordering mapping φ, then these elements are
called natural numbers or ordinal numbers or simply num-
bers, and the initial element 1 is called the initial number
(Grundzahl) of the number series N.27

Here, the notion of abstraction is made explicit. When we talk
of “Dedekind abstraction”, this an be seen as a process in two steps.
The first step is decidedly mathematical: one has to show that specific
relations hold in some mathematical structure, connecting a collection
of objects within the system. The second step is to consider the objects
thus connected as no longer within the original system, but as a new
mathematical structure, featuring only the relations shown in the first
step and the objects involved by these relations. This structure can
then be seen as a new object of study for the mathematician.28 Thus,
our earlier quick characterisation of Dedekind abstraction as a matter
of simply emphasising certain relations and leaving out others should
be seen as, while true, oversimplified. It makes it seem as a simple
matter of picking and choosing from a system that is already clear,
whereas in reality, it will often be mathematically nontrivial to locate
a particular mathematical structure within some system.

Dedekind’s account gains strength through a categoricity proof:
any two simply infinite systems (N, 0, S), (N′, 0′, S′) are isomorphic.
Thus, whenever we find that the relation S holds on some domain
N with some initial object 0, we may consider ourselves to be talk-
ing about the same structure: the natural numbers. The source of
our structure, the mathematical system it was once abstracted from,
does not matter at all. Once we have characterised a certain structure,
we have identified it: there are, after all, no mathematical properties
of the structure to be found outside the scope of our structure. The
appeal to the structuralist should be clear: the natural numbers are,
after having been acquired through a process of abstraction, of such
a nature that the only mathematical properties that hold of them are
the relational properties essential to the natural numbers structure,
and the natural numbers are unique and identifiable only up to iso-
morphism.

27 [Dedekind 1888] par. 73, quoted in [Parsons 1990], pp. 307

28 There is nothing in principle preventing this from being a vacuous exercise; one
could emphasise relations so fundamental to the original system that after the pro-
cess of abstraction, we are left with a new structure that is structurally equivalent
to the old. For example, if we start out with a natural number structure with an
ordinary addition operator +, and leave out the successor function S, we do not
change anything: in the new system, one could define S again through S(x) = x + 1.
Whether one would still consider such processes a matter of Dedekind abstraction
is a semantic choice of little philosophical interest; but for the remainder of this the-
sis, it may be assumed that when we mention Dedekind abstraction, a non-trivial
abstraction is intended.
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1.2 the identity of mathematical objects

1.2.2 Benacerraf’s Problem and the Caesar Problem

With this new tool in hand, we can turn to a problem raised by Be-
nacerraf in his famous 1965 article “What Numbers Could Not Be”
([Benacerraf 1965]). In this, he sketches a picture of two children
raised and taught mathematics in slightly different ways. While both
are taught that numbers are to be identified with particular kinds of
sets, the devil is in the details. The first child is taught that numbers
are the Von Neumann ordinals: 0 is the empty set ∅, 1 is {∅}, 2 is
{∅, {∅}}, and so forth. In particular, the ordinals are transitive: a ∈ b
if and only if a ( b. The “less than” relation can be easily defined on
these ordinals as follows: a < b iff a ( b iff a ∈ b. Since the natural
numbers are identified with these ordinals, it then follows that since
3 < 7, 3 ∈ 7.

The second of the two children is taught a similar thing. However,
he learns that the natural numbers are a different set of ordinals, the
Zermelo numerals: 0 is ∅, 1 is {∅}, 2 is {{∅}}, and generally n + 1
is {n}. On this account, a ∈ b if b is the direct successor S(a) of a,
not if a < b in general. For purposes of ordinary arithmetic, the two
children will agree. For each child, 3 + 7 = 10 and 11 is a prime
number. However, there are set-theoretic matters that drive a wedge
between them. Whereas the first child will insist that 3 ∈ 7, the
second finds that only the direct successor of a number contains that
number, and hence while 6 ∈ 7, 3 6∈ 7.

It is notable that the mathematician has no way to settle the mat-
ter.29 Both accounts of the natural numbers lead to a consistent arith-
metic. In fact, both accounts lead to the same arithmetic: any notion
that can be expressed in the language of arithmetic can be thus ex-
pressed regardless of the set-theoretic identity of the numbers, and
any question formulated in that language will have the same answer
regardless of that identity. The questions that the children will dis-
agree on are matters of set theory. What makes the issue particularly
thorny is that there is no set-theoretic answer to the question, either.
The difference between the two accounts is a result of a different defi-
nitional choice. Neither derives from a previous mathematical result;
such a thing would be impossible, the natural numbers not being
part of the language of set theory prior to such a definition. Never-
theless, it is clear that these different identities of arithmetic cannot
both be true. 3 ∈ 7 cannot be both true and false; and more directly,
{{∅}} = 2 = {∅, {∅}} 6= {{∅}} is a straightforward inconsistency.

Our understanding of Dedekind abstraction can then be used to
shed light upon this problem. Both formulations of the natural num-

29 The mathematician may have more subjective reasons to prefer one series of ordinals
over the other. Considerations of e.g. mathematical beauty may play a role in such a
choice. This goes beyond the scope of this essay; for our present point, it is sufficient
that there is no strictly mathematical way to establish which set of ordinals has the
best claim to “being” the natural numbers. See [Paseau 2009].

20



1.2 the identity of mathematical objects

bers can be seen as applications of this technique. We can identify
the natural numbers, as a simply infinite structure, in either of the
ordinals. More accurately perhaps, we can acquire two different sys-
tems of natural numbers through abstraction from the set-theoretic
universe V. By Dedekind’s result, these two systems are then isomor-
phic to one another. And since structures are only determined up to
isomorphism, this means that both systems exemplify the very same
structure. The structuralist would simply hold that both series of or-
dinals instantiate the natural numbers structure, if provided with the
correct successor function.

The question of the identity of mathematical objects is then tackled
by restricting domain on which questions with identity statements
are considered meaningful. Benacerraf sought such a solution to the
problem in his original formulation:

“For such questions to make sense, there must be a well-
entrenched predicate C, in terms of which one then asks
about the identity of a particular C, and the conditions as-
sociated with identifying C’s as the same C will be the de-
ciding ones. Therefore, if for two predicates F and G there
is no third predicate C which subsumes both and which
has associated with it some uniform conditions for identi-
fying two putative elements as the same (or different) C’s,
the identity statements crossing the F and G boundary
will not make sense.”30

Within a contemporary structuralist framework, we can make this
notion more precise. Whereas Benacerraf could not yet formulate the
conditions for identifying two elements under the single predicate C,
we may now avoid finding such a predicate and such conditions alto-
gether. Rather than finding a specific predicate, we can be certain that
identity is unproblematic within a single structure. We can simply
take the mathematical rules already governing identity within such
a structure be decisive in the matter. Moreover, and perhaps more
importantly, this is all there is to say on the identity of mathematical
objects. Their identity is always relative to the structure they are in,
and it is simply nonsensical to ask for an identification of a position
within a structure with an object outside it.

We may, of course, choose to do so as a matter of convention - as
it is convention to associate the natural numbers with the Von Neu-
mann ordinals in set theory - but even if such identities are regarded
as truth, they are truths of convention in a way that identities within
a structure will never be. A group of mathematicians cannot sim-
ply decide that 12 is a prime number within the ordinary structure
of natural numbers; such mathematical properties of 12 are set in
stone by the axioms of the number structure. Any identity such as

30 [Benacerraf 1965] pp. 65
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2 = {∅, {∅}}, however, can be overturned at any moment. Such an
identity can be seen either as acknowledgement that the natural num-
bers structure can be obtained through Dedekind abstraction from a
particular collection within set theory, or even simply as a notational
shorthand for the Von Neumann ordinals. We should likewise inter-
pret certain other common associations between different structures,
for example the association between the numbers 1, 2, 3... in the natu-
ral number structure, and the “same” numbers in the rationals, reals,
or complex number structure. These too are not strictly identifica-
tions. The natural number 3 has a direct successor in 4, but the real
number 3 does not; the real number −e has no square root, but the
complex number does. Generally, the ontology of mathematical ob-
jects is always relative to their structure. Cross-structure identifica-
tions are at best not strictly speaking identities, and at worst nonsen-
sical.

The realist with regards to mathematical objects, in particular the
Fregean, faces an even more general version of this particular prob-
lem. If mathematical objects are granted existence on par with phys-
ical entities or other objects, the identity relation needs to be defined
over all these objects, lest we be unable to individuate between cer-
tain independently existing objects. To Frege, the notions of identity
and object are always unambiguous.31 This leads to a particularly
strange version of the above identity problem, which does not con-
cern identity across different areas of mathematics, but rather across
mathematical and non-mathematical realms. This problem came to
be known as the Caesar Problem, after an example by Frege: what is
the truth value of the identity 4 = Julius Caesar? Without a criterion
to decide the matter, this is a rather awkward open problem. The
relativity of identity to a particular structure allows us to conclude
that there simply is no answer to this question, that it is nonsensical.
There is no identity criterion that crosses the boundary between a
structure and what lies outside it; identity within a structure is part
and parcel of that structure. As a welcome consequence, the math-
ematician is then always free to create a new structure, taking care
to have a mathematical criterion for identity on its objects, without
having to worry about its relation to other mathematical structures
or non-mathematical objects.32

We should take care to note that ordinary usage of “is” is open to
multiple interpretations. We are familiar with using “is” to signify
identity, and the “is” of role-filling (“{∅, {∅}} is 2”) should be rather
unproblematic as well. We have seen that one may also associate ob-
jects within one structure with objects within another. Another case
worthy of special attention is our tendency to associate numbers with
real objects; for example, we may want to consider it true that the

31 [Shapiro 1997], pp. 80-81

32 Ibidem, pp. 81

22



1.2 the identity of mathematical objects

number of planets in the solar system is eight. This is to be inter-
preted as finding a particular structure in these objects: the cardinal
structure eight. The cardinal number structures are perhaps the sim-
plest of structures. They consist simply of a fixed number of objects
with no relations amongst them, or exclusively with an identity rela-
tion on each single one. Thus, we can see the cardinal number eight,
as a structure, exemplified in the planets of the solar system.

If we want to do calculations with this, it is fine to again associate
this cardinal structure with the natural number 8 within the natural
numbers, but again, this is not strictly an identity. This means that
certain complex sentences, such as “The number of planets in the so-
lar system is one more than the number of cardinal virtues”, require a
bit of interpretation. First we have to acquire two cardinal structures
(the 8-structure “||||||||” and the 7-structure “|||||||”), then we have
to associate them with places 8 and 7 in a natural number structure,
and finally we can determine the truth of this sentence by checking
whether 8 = 7 + 1 is true within that structure. Perhaps such an in-
terpretation offends our sense of mathematical beauty or simplicity,
but that does not mean it is not accurate; it may even explain why the
sentence itself strikes us as rather awkward and artificial.

Cross-structure identifications over mathematical objects like these
do allow us to illustrate a certain relativity in the perspective we take
on mathematical objects. What is a mathematical object within one
structure is merely a system exemplifying it within another. The num-
ber 2 is an object in and of itself in ordinary arithmetic, and we refer
to it as an object (using Shapiro’s terms, from the places-are-offices per-
spective) when we say that 2 is prime. When working in another
structure, however, we may make statements about 2 as an office, to
refer to an object within the structure taking the role of 2. In the
context of Zermelo-Fraenkel set theory, for example, “2 has two el-
ements” uses 2 not to refer to the natural number directly, but to
the set {∅, {∅}} filling the role of that number.33 There is a certain
ambiguity in how we interpret such a statement; it does not seem in-
tuitively wrong to see “2” here as mere shorthand for {∅, {∅}}. This
does not, however, do justice to the mathematical import of calling
the set “2” and not “X” or “Johnny”. The symbol “2” is not neutral
but carries a certain weight: it is primarily associated with a certain
number - the second natural number, or the cardinal 2 (“||”) - and
thus with certain well-known structures, such as the natural num-
bers, the reals, or simply the cardinal number structure 2. While we
cannot say that it is wrong to use 2 as a mere shorthand for a certain
set, we capture more of what is happening mathematically when we
see it as a places-are-offices reference to that set. Using this interpre-
tation, we make explicit what is implicit in calling the set “2′′: that
a certain structure, in this case the natural numbers, can be obtained

33 [Shapiro 1997] pp. 83
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within the set-theoretic universe V we are working in. The tool with
which we do this is simply the Dedekind abstraction we encountered
earlier - though once we are familiar with the process of abstracting a
specific structure from another, terms such as “2” and {∅, {∅}} may
grow to seem increasingly synonymous.

1.3 the ontology of structures : three schools

We have seen that certain problems in the philosophy of mathemat-
ics get a clear answer when reformulated in structuralist terms. The
concept of structure is a powerful tool that can allow us to explain
certain phenomena that we struggled with previously. Like any con-
cept, though, it has a limited capacity to explain and clarify, and as
a result, certain problems remain stubborn in the face of a structural-
ist account. And though we may gain a new perspective on these
issues, a reformulation in structuralist terms may truly feel like little
more than just a reformulation. A significant number of ontological
questions with regards to mathematics seem to fall in this category.
Certain ontological questions, after introducing the concept of struc-
ture, suddenly clearly concern objects or relations within a structure,
or multiple such objects in multiple structures. The Caesar problem
was one such concern. These are suddenly placed in the middle of a
rich framework of concepts, and may fold to a bit of analysis. Others,
though, when viewed from a structuralist framework, simply shift
along, turning into questions about a structure as a whole. And al-
though new insights may still be gathered by regarding these ques-
tions as questions regarding structures rather than simply regarding
objects, it is less clear that this helps us forward in any large way.

Issues that fall in this second, stubborn category include traditional
ontological questions regarding the way in which mathematical ob-
jects - now structures - exist. Are they to be found “out there” in
the world of phenomena, like physical objects? Are they construc-
tions of our minds, bound to our psychology? Do they exist indepen-
dently of both our minds and physical worlds? Do they exist at all?
These questions - matters of realism and antirealism, psychologism
and nominalism - remain as open questions about structures. A few
of these have gotten thorough reformulations in structuralist terms,
and it is these we will focus on in the following section.

1.3.1 Ante rem and in re Structuralism

Shapiro’s system/structure dichotomy equips us particularly well to
discuss the main ontological division amongst structuralists: the dis-
tinction between ante rem, in re, and eliminative structuralism. Leaving
aside the latter for now, the difference between the first two is one of
ontological priority between structures and the systems expressing
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a structure. According to the in re structuralist, structures exist, but
only in as far as they are expressed in systems. The game of Tic-
tac-toe, as a structure (i.e. as studied by the mathematician), exists
because there are games of Tic-tac-toe that are actually played, em-
bodying this structure in the world. Thus, mathematical structures
do exist, and they exist within the objects expressing the structure,
or as a result of certain features of human cognition on certain ob-
jects. Hence, in re structuralism: structures exist in the things of our
ordinary perception.

In re structuralism is the structuralist equivalent of a much older
position within the philosophy of mathematics, Aristotelean realism.
In both philosophies there is a one-way dependence relation between
mathematical or abstract entities and physical ones, and the physi-
cal come first. In both cases, this has advantages and disadvantages
compared to other viewpoints such as platonism. Advantages in-
clude an arguably simpler epistemology, since we need not conceive
of abstract objects independently of the world around us, and a clear
explanation of the applicability of mathematics. If we gain mathe-
matical structures from physical objects and phenomena, it does not
stretch the imagination to say that perhaps these mathematical struc-
tures can be used to explain them.

The main problem haunting Aristotelean realism and in re struc-
turalism alike is a matter of ontological poverty. There is an infinite
wealth of mathematical objects and structures that the mathematician
investigates in practice, but it is not clear that each and every one of
these can be said to exist “in things” of the physical world. Perhaps
the most straightforward example is literal infinity, which is not ex-
emplified in the world if the world is finite.34 The consequences can
be dire. For the in re structuralist, there is no such thing as a struc-
ture of chess games if there is no game of chess; likewise, there cannot
be a natural number structure if there is no simply infinite object or
constellation of objects in the physical world. Likewise, given that
the world around us is not structured spatially according to the laws
of Euclidian geometry, there can be no such thing as an Euclidian
square or triangle. Given how familiar we are with just such objects,

34 A historically common method to avoid problems involving infinities such as these
is to distinguish actual from potential infinity. A potential infinity is not a finished
whole; it exists merely as a limit of finite entities (such as numbers), as a practical
way to speak of such a limit. The position denying the existence of actual infinities
held popularity for a long time, but has dwindled since Cantor’s mathematical use
of, and philosophical defense of, actual infinities as full-fledged entities in and of
themselves. Even if one would seek such a way out in the modern day, it seems
to be outright prevented by the structuralist view of mathematics. After all, if each
natural number depends on the structure of the natural numbers as a whole, the
finite numbers depend on an actually infinite entity. Perhaps one may feel called to
develop a finitist-structuralist account in which we consider structures as potential
entities, but here we are not concerned with structures as anything other than a
finished whole.

25



1.3 the ontology of structures : three schools

this leaves a burden of explanation with the in re structuralist. What
is required to make this philosophy work is an account of how there
are all these objects “out there” nonetheless, in the physical world,
in our minds, or in some interaction between our minds that world.
The poverty of actual systems in relation to the wealth of structures
dependent on just these systems is a question that requires answer.

If in re structuralism can be considered an equivalent to Aristote-
leanism, then ante rem structuralism is the younger brother of Platon-
ism. On this view, there are such things as structures regardless of
any instantiation, in our minds, in the world or otherwise. Structures
exist as the “one over many” unifying all the different systems instan-
tiating a particular structure, and they exist independently of these
systems. The ante rem structuralist reverses the existential priority
between structures and physical objects; or more generally, between
structures and systems. There can be a structure that is not instan-
tiated in any particular system, and the mathematician may indeed
study such structures. On the other hand, there can’t be any sys-
tem, physical or otherwise - and thus, something that is structured in
some way or another - without the existence of a structure. Hence,
structuralism ante rem: before the thing.

In particular, this means that structures that may not be instanti-
ated in any systems, such as Euclidian geometry, still exist. Thus, the
problem of “ontological poverty” that strikes the in re structuralist is
keenly avoided. On the other hand, some of the weaknesses platon-
ism has vis-a-vis that view fall upon the ante rem structuralist as well.
The applicability of mathematics is still somewhat problematic, even
if we can get halfway to a solution. After all, if it is not independent
mathematical objects that we can apply to the world, but entire struc-
tures, then it follows that if we can apply such a structure, we can
manipulate it mathematically and thus help us understand or manip-
ulate the physical objects instantiating the structure. Thus, once the
link between structure and physical system is made, it follows that
mathematical tools are highly useful. The establishment of this link,
however, is more difficult: how come physical objects can reflect a
certain structure?

It is this inaccessibility of ante rem structures that lies behind other
major challenges to this position as well. Which structures exist?
How can we gain knowledge of them? The latter problem has been
put forward to challenge traditional platonism as well, in particular
by Paul Benacerraf: if mathematical objects are independent of the
world and of our minds, then how is it possible for us to have knowl-
edge of these objects?35 This particular epistemological question can
perhaps be answered more readily by the structuralist than by the pla-
tonist, and we will turn to it in section 1.4. For now, let us turn to the

35 See [Benacerraf 1973].
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third major position within structuralism: that there are no structures
at all.

1.3.2 Eliminative structuralism

Eliminative structuralism is one of the philosophies of mathematics
that favour a strict ontological parsimony. As the nominalist rejects
the existence of mathematical objects, the eliminativist structuralist
denies that there are such things as structures. On this account, we
make sense of mathematical expressions not as referring to structures,
but as generalisations over systems expressing this structure.

Take the simple mathematical statement:

3 < 6 (2)

The traditional platonist sees this as expressing something about
the objects 3 and 6, and the ante rem or in re structuralist as express-
ing a truth regarding the natural numbers structure. The eliminativist
structuralist, however, wants to avoid direct reference to both struc-
tures and objects within these structures. After all, according to this
view there is no structure to directly refer to, only particular systems
that can be regarded as instantiations of the structure. Thus, even
a basic statement such as (2) has to be seen as an implicitly general
statement, and may be interpreted as follows:36

In any system S expressing the natural number structure,
the S-object in the 3-place of the structur is S-smaller than
the S-object in the 6-place of the structure.

(4)

36 The idea of reinterpreting mathematical statements has been criticised as a radi-
cal departure from ordinary semantics. The reinterpretation (4) of (2) is, however,
not a radical departure from other structuralist theories simply for reinterpreting a
mathematical statement. Both ante rem and in re structuralism can be regarded as a
reinterpretation of the meanings of mathematical statements as well. After all, the
structuralist would see an expression regarding numbers not strictly as a statement
about mathematical objects, but as expressing something about the natural number
structure. The ante rem structuralist ought then to interpret (2) as

“In the natural number structure N, 3 is smaller than 6.” (3)

There is no implicit quantification in the ante rem interpretation of (2), but there is
an implicit reference to the structure 3 and 6 are part of.
Some authors, notably Benacerraf in [Benacerraf 1973] and Shapiro in [Shapiro 1997],
have argued against any such reinterpretations of mathematical statements, arguing
that they are to be taken at face value, in as far as that their interpretation should
not differ radically from the semantics of ordinary sentences. Benacerraf noted that
semantic theories of mathematics seemed to be either unlike other semantic theories
or epistemologically unsatisfactory. It seems difficult to regard (3) as wrong within
a structuralist framework, though. It might be wiser to strive for a more uniform
epistemology, and to argue that the way in which we gain knowledge of structures
is little different from the way in which we gain knowledge of other sorts of objects.
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It should be noted that this view of structuralism entails a different
view of reference to mathematical objects, and a different interpreta-
tion of what Dedekind abstraction is. Reference to positions within
structures as objects in and of themselves, the places-are-objects per-
spective, is eschewed completely, in favour of generalised places-are-
offices statements, ranging over a variety of systems. Any mathemati-
cal term is seen as a role to be fulfilled by some other object.

Recall that on our previous account of Dedekind abstraction, which
is consistent with an ante rem view of structuralism, we truly do ob-
tain a new structure when we abstract e.g. the natural numbers from
the set-theoretic universe. The first step remains the same - we go
through the mathematical process of establishing that certain rela-
tions hold among a certain collection of objects in the system. In the
case of the natural numbers, that means that we have to establish
that they obey the axioms of a simply infinite system. However, we
do not follow this up by disregarding everything in our system that
is not part of our chosen collection of objects and relations; rather,
we see any theorem proven on this collection as an implicitly general
statement over every system in which we can perform the first step.37

Generalising this, let x1, ..., xn be the objects we choose to distin-
guish, X1, ..., Xn sets, and R1, ..., Rn relations. We can then define
C(x1, ..., xn, X1, ..., Xn, R1, ..., Rn) as the conjunction of all conditions
that have to hold on these objects, set, and relations for them to “be”
our intended structure C (e.g. the conditions to be a simply infinite
system).

Say we want to prove some statement S(x1, ..., xn, X1, ..., Xn, R1, ..., Rn)

that holds on C. Rather than interpreting S straightforwardly as ex-
pressing something about the objects, sets and relations it involves,
we would consider it to be shorthand for the following:

For any x1, . . . , xn, X1, . . . , Xn, R1, . . . , Rn,

if C(x1, ..., xn, X1, ..., Xn, R1, ..., Rn),

then S(x1, ..., xn, X1, ..., Xn, R1, ..., Rn)

(5)

This reformulation of mathematical statements successfully avoids
direct reference to mathematical objects in favour of a generalised
statement. Like any such statement, though, this means that we are
now dealing with quantifiers of some sort. Likewise, the formulation
(4) quantified over various systems. However, in order for there to be
any systems for the statement to express something of, there must be
some domain for the quantifier to range over. In any places-are-offices
statement, some kind of background ontology is required.

Various such domains are available to the eliminative structural-
ist. The most straightforward option, referred to by Shapiro as the

37 [Parsons 1990] pp. 307
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“ontological option”38, is to accept a background ontology of objects,
rich enough to allow all mathematical structures to be instantiated in
some form or another. This option brings eliminative structuralism
very close to in re structuralism, and in particular the same problem of
ontological poverty rears its head. It is not clear that there are enough
physical objects to instantiate all the structures the mathematician is
interested in.

A second option for a background ontology, known as “Set-Theo-
retic Structuralism”39 is to accept an explicitly mathematical back-
ground theory, rich enough to feature instantiations of every mathe-
matically interesting structure. Such a background ontology is classi-
cally provided by set theory, since the set-theoretic universe V associ-
ated with the Zermelo-Fraenkel axioms with Choice (ZFC) is widely
considered sufficiently rich to found mathematics, and in particu-
lar to feature all mathematically interesting structures. An infinite
regress threatens this solution though. If the background theory is
mathematical, it is then to be interpreted in a structuralist way, and
the eliminative structuralist will require a mathematical background
ontology for their mathematical background ontology, and another
one for that, and so forth. One can interpret the background on-
tology non-structurally, and this has been proposed for set theory
specifically. But it is, of course, highly unsatisfying for a structural-
ist to rely on a mathematical universe built up out of objects, in the
end. Moreover, per above, the dependence account of structuralism
seems to point in the direction of set theory being interpreted in the
structuralist manner, too.

Another manner to avoid reference to structures as objects without
running into the problem of the background ontology is to interpret
mathematical sentences in yet another way, avoiding the problematic
quantifier. Geoffrey Hellman’s project of modal structuralism aims to
do just that by interpreting mathematical sentences as preceded by a
modal quantifier:40

In any logically possible system S expressing the natural
number structure, the S-object in the 3-place of the struc-
ture is S-smaller than the S-object in the 6-place of the
structure.

(6)

Thus, rather than quantifying over any particular fixed ontology,
modal structuralism aims to be open-ended in nature: as long as it
is logically possible for some structure to occur, the quantifier ranges
over it.41 Thus, the possibility for it to actually encompass all of math-
ematics is not excluded as it is in set-theoretic structuralism. That is

38 [Shapiro 1997] pp. 87

39 [Hellman 2001] pp. 185

40 [Hellman 2001] pp. 189

41 This particular rendition is inspired primarily by Shapiro’s expression of modal
structuralism in [Shapiro 1997].
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not to say that this school of structuralism has not been argued to run
into the problem of a background ontology. This is because logical
possibility can be argued to require one, just as quantification does.
After all, semantic truth in logic is usually treated model-theoretically.
The open-endedness of the endeavour would be sabotaged as well.
The obvious answer is to reject that the importance of model theory
in logic amounts to a reduction of logic to set theory, and indeed
Hellman has responded by taking logical possibility as a primitive.42

Similar problems face each of the different schools of structuralism:
they all revolve around demarcating which structures there are. For
ante rem structuralism, this is the problem straightforwardly. Without
an idea of which structures there are, it seems impossible to distin-
guish true statements from false ones. In re structuralism provides a
limit to which structures can and cannot exist, as does set-theoretic
structuralism - and as a result, both face the problem of ontological
poverty, as it is not clear that every mathematically interesting struc-
ture exists, or can even be referred to sensibly. Modal structuralism
seems open-ended enough to not run into the problem of ontological
poverty, but faces essentially the same problem as ante rem structural-
ism in being unable to state which structures are logically possible
and which are not; and should we use mathematics to analyse this,
we are left with a background ontology that might be both too poor
and threatening an infinite regress.

1.4 epistemology

Mathematics concerns, prima facie, a different kind of object than
most fields of scientific enquiry - or even ordinary day-to-day en-
quiry. Whereas the latter involves physical objects in some way, math-
ematical enquiry typically concerns purely abstract objects. Perhaps
more has been made of this distinction than is warranted. It does not
stretch the imagination to claim that most scientific fields deal with
a great amount of abstracta in their theories, or even that ordinary
human perception seems tightly bound to them. Nevertheless, there
is something unique to mathematics in that there is typically no clear
object of sensory perception linked with our enquiries. There may be
borderline cases - one could argue that geometry has something to do
with physical shapes or physical distances - but the mathematician is
generally not concerned with any concrete particulars. This may be a
matter of generality rather than one of abstractness per se: according
to some philosophies - in re structuralism comes to mind - mathemat-
ics does concern concrete individuals, but it is certainly not aimed
at any specific ones. It is possible that it is concerned with whatever
objects fit a certain structure.

42 [Hellman 2005], pp. 557
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Whichever is the case, it is clear that the epistemology of math-
ematics faces some problems that not every epistemological theory
does. The lack of a concrete object one aims to gain knowledge about
has driven philosophers since Plato to formulate different theories
of knowledge regarding mathematical objects. Scepticism, too, has
been fuelled by the apparently peculiar nature of mathematical ob-
jects, usually taking the form of nominalism: the rejection of abstract
objects. On the subject of the epistemology of mathematics, a famous
modern case for it has been made by Benacerraf in [Benacerraf 1973],
arguing that since we have no causal interaction with abstract objects,
we cannot gain knowledge of them. Of course, it is not a given that
causal interaction is necessary for knowledge - in particular for the
a priori knowledge that mathematical enquiry purports to give. Nev-
ertheless, nominalist theories hold sway in both the ontology and
epistemology of mathematics. Epistemological concerns are never far
in the background in any philosophy of mathematics.

Structuralism, as a relatively young member of the family of philoso-
phies of mathematics, does not have a single, canonical epistemology
behind it, but multiple attempts have been made to provide it with
one. Some of these epistemologies are deeply linked with human
perception, others with mathematical practice. All give us valuable
insight on what it really means to be a structure.

1.4.1 Pattern recognition

Michael Resnik, though a structuralist, prefers to speak of patterns
rather than of structures. It suggests a stronger link with scientific
research on pattern recognition and pattern cognition.43 The episte-
mology of structures he proposes is strongly linked to such faculties.
This epistemology consists of different stages of experience, rather
than proposing a uniform solution, such as a faculty for intuiting
abstract objects.

The process of knowing structures or patterns starts with experi-
encing everyday objects as structured or patterned in some way or
another. We recognise objects of our senses, be they sounds or sights,
as shaped in a certain way. Eventually we may recognise an equiva-
lence between objects of our senses; they may share a shape, a colour,
or there may be equally many of two collections of things. At this
point, we may express statements concerning all the objects that share
such a property. There are two significant leaps involved until we
arrive at structures proper, though. The first is the extension of state-
ments that have a definite basis in experience to statements that do
not, but that nevertheless make sense based on the equivalences we
previously discovered:

43 [Resnik 1982], pp. 96
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There is no reason to believe, however, that our knowl-
edge that one million and three things are fewer than one
million and five things has the same sort of evidential ba-
sis or genesis. This knowledge would derive, I conjecture,
from a rudimentary theory of counting and principles con-
cerning the generation and use of numerals.44

The second leap is then the full movement to abstraction:

[...] the next move is to supplement predicates with
names for shapes, types, and other patterns. In addition
to talk of square, circular and triangular things there is
now talk of squares, circles, and triangles.45

At this point we study the commonality between different objects
as entities in their own right. With this comes the introduction of
the places-are-objects perspective on structures.46 Resnik points to an
analogy with mathematics itself: the movement from equivalence
relations to equivalence classes.47 In mathematics in particular, we
eventually cleansed our speech of reference to physical entities, and
attempt to define them strictly in abstract terms. The association with
instances may remain in our understanding, though, as we try to vi-
sualise a concept (say, a square) in order to understand it.

1.4.2 Implicit definition

The introduction of many a student to a new sort of mathematical
structure does not take place in this roundabout manner, however.
Typically, he is introduced to it through a direct description. This de-
scription usually consists of a few axioms; the characterisation of the
natural numbers through the definition of a simple infinite structure
comes to mind.

Through an implicit definition, one can gain knowledge of an ab-
stract structure without ever gaining knowledge of an instantiation
of it, or of any non-mathematical origins or relations to it. The only
relations introduced are those internal to the structure itself, a sub-
collection of the relations that compose the structure as a whole. The
definition introduces objects and relations strictly in terms of each
other, in a matter that is rich enough to imply a grander structure
than merely what was expressed directly in the axioms. It is the role
of the mathematician to discover relations or objects within a struc-

44 [Resnik 1982], pp. 98

45 Ibidem
46 This does not need to imply an ante rem structuralism.The eliminative structuralist

may very well hold that even if we do speak as if there were abstract entities, this is
merely an easy method to express a complex quantified statement.

47 [Resnik 1982] pp. 98
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ture that are necessarily part of the structure, even if they were not
explicitly mentioned in its definition.48

It is noteworthy that this view of knowing abstract objects does not
conflict with Resnik’s multi-stage approach. Resnik’s approach does
not focus on the process of acquiring knowledge as an individual, as
a culture, or as a child learning to use patterns and structures at all.
Rather, it sets this matter aside and attempts to give a general account.
In this light, we may see implicit definition as a “shortcut” mecha-
nism to bring an individual up to speed with the abstraction process
another individual - or the culture as a whole - has gone through. A
culture may develop abstract arithmetic from particulars, through re-
lations of equinumerousity, to numbers as abstract objects and strictly
abstract arithmetical relations. Perhaps children go through a similar
process when learning to count. An individual unfamiliar with a
certain structure may learn it through such a slow process. Alterna-
tively, if others around him are familiar with it, he can be instructed
in the properties of the structure directly and acquire knowledge of
it in this manner. Implicit definition is then the tool with which this
educational goal is achieved. If the student is familiar with abstract
mathematical objects in the first place, such a direct introduction may
not prove too difficult for him to grasp.

Implicit definition can then be seen as a valid method for gain-
ing knowledge of abstract structures without thereby severing the
link with the concrete particulars it was abstracted from in begin-
ning. We need not deny that the road towards new mathematical
structures is long-winded, arduous, and an enormous investment by
professional mathematicians. It may very well be impossible to re-
call which abstract structures or semi-abstract equivalence structures
have all played a role on the road from the experience of concrete
particulars to knowledge of fully abstract structures. This need not
convince us that mathematical objects are truly “free standing”, that
they are created out of thin air when they are defined, or that they
were suddenly discovered once the right definition was written down.
The “shortcut theory of implicit definition” allows us to recognise two
intuitions that are seemingly at odds: the awareness of the historical
contingency and origins of a mathematical structure, and the experi-
ence of structures as a finished whole, as entities “out there” for us
to grasp.

48 The various tools the mathematician has to do this, notably including deduction, fall
beyond the scope of this thesis. Suffice to say that they are rightfully a subject of
study on their own, and that their role in a structuralist framework per se is also
worthy of further research.
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2
C AT E G O R I C A L S T R U C T U R A L I S M

In this chapter, we shall introduce the link category theory has been
claimed to have with structuralism. Various manners in which this
connection is thought to exist are brought to light. The role of cat-
egory theory plays in mathematics according to a few authors shall
be set out in detail, without delving too much into the manners in
which category theory could be seen as foundational to mathematics;
we shall turn to that matter in chapter 4.

2.1 category theory and structuralism

Category theory is a relatively young branch of mathematics: cate-
gories were introduced in 1945 by Eilenberg and MacLane, and be-
came objects of study in their own right only in the 1950s. It has
quickly proven itself useful in many branches of mathematics, start-
ing with topology and algebra. The particular properties of this
branch of mathematics have endeared it not just to mathematicians,
but to quite some structuralist philosophers of mathematics. Cate-
gory theory itself has been described as the mathematical theory of
structures.49

2.1.1 A short introduction

Category theory is mathematical theory of great generality, consisting
only of objects and arrows, and concerned, roughly, with the compo-
sition of arrows. Without further ado, let us introduce the Eilenberg-
MacLane axioms for category theory:

Definition. A category C is a system with two kinds: Objects X, Y, ... and
morphisms (or “arrows”) f , g, h, ... that satisfy the following:

1. Each morphism has a domain and a codomain, both of which are ob-

jects; write X
f−→ Y or f : X −→ Y

2. For each pair of morphisms X
f−→ Y, Y

g−→ Z where the codomain
of f is the domain of g, there is a composite morphism g f such that

X
g f−→ Z

49 [Marquis 2014]
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3. For each object X, there is an identity morphism 1X : X −→ X such
that for all f : X −→ Y, f 1X = f and for all g : Z −→ X, 1Xg = g

4. Composition is associative: f (gh) = ( f g)h.

A category is then anything that satisfies these axioms. For exam-
ple, groups and homomorphisms on groups satisfy these conditions,
as do topological spaces and continuous functions. Hence, we can
work in categories whose objects are groups, and whose morphisms
are group homomorphisms, or whose objects are topological spaces
and morphisms are continuous functions. These are, then, the cate-
gory of groups Group and the category of topological spaces Top. This
wide applicability is one of main strengths of category theory, along
with the fact that it is self-applicable: we can take our objects to be
categories, and let our morphisms be “category homomorphisms” or
functors: that is to say, mappings between categories that preserve
domains, codomains, composition and identity morphisms. We can
“move up” further in our analysis, and investigate morphisms of func-
tors (natural transformations), and so forth.50

In the history of category theory, the way in which we looked at
categories and morphisms has changed. Early in its history, category
theory was used as a language for describing other sorts of objects.
We were always concerned with the category of something or other -
usually some topic in algebra. From the 1960s onward, a reversal in
priority occurred: it became more and more commonplace to start out
explicitly from the categorical perspective. The category, morphisms
and objects are left uninterpreted by themselves, and are then used to
define other notions, such as “set”.51 This approach was started by F.
William Lawvere, whose Elementary Theory of the Category of Sets does
not assume that its objects are sets, but makes them sets by defining
elements in terms of morphisms from a specific object, defining a
subset relation, and so forth.52

With this came a new “perspective” on mathematics. Rather than
building up mathematical objects out of (usually set-theoretic) atoms,
structures could now be defined from within a category. The context
of a mathematical object is then no longer the set-theoretic universe,
but the overarching category. This approach was first made explicit
as “an alternative foundation” for mathematics in Lawvere’s Category

50 For an introduction to category theory, see the classic textbook [MacLane 1978],
[Lawvere and Schanuel 1997], or [Awodey 2010].

51 [Landry & Marquis 2005], pp. 8-9. In general, see [Landry & Marquis 2005] for a
historical overview of category theory culminating in the “categorical structuralism”
under investigation here, and see [Marquis 2009] for a thorough account of the his-
tory and philosophy of category theory.

52 See [Lawvere 1964]. A more accessible contemporary reiteration can be found in
[Linnebo & Pettigrew 2011].
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of Categories as A Foundation.53 Category theory, and the method of
defining mathematical objects from within it, have been used with
success across many areas of mathematics. A while after their in-
troduction as a foundation for mathematics in a mathematical paper,
then, it is the turn for the philosophers of mathematics to turn their
eyes and ears as well.

2.1.2 Mathematical structuralism

Steve Awodey distinguishes philosophical structuralism - structural-
ism as a philosophy of mathematics - from a tendency to value struc-
tures and structural properties highly in mathematics itself. The latter
he dubs mathematical structuralism. Category theory, being the mathe-
matical study of structure par excellence, is the most prominent frame-
work in which the structural properties of a mathematical object are
studied. In fact, category theory is employed to make precise the very
notion of a structural property of mathematical objects.54

It is a common occurrence in mathematics for a particular kind of
structure to be instantiated in different systems. Of course, these sys-
tems may be quite different in nature otherwise, and certain strongly
differing properties may seem fundamentally linked to notions that
seem analogous at first glance (recall Benacerraf’s problem regard-
ing the set-theoretic properties of numbers). Thus, it is not merely a
philosophical problem to figure out when two objects have the “same”
structure. It is a question of mathematical import. Leaving aside for
now whether a mathematical solution could truly solve the philo-
sophical problem involved - we are dealing with mathematical struc-
turalism at the moment - there is such a mathematical solution to the
problem.

Suppose some morphism f is an isomorphism from A to B; that
is, there is an inverse f−1 of f such that f f−1 = 1B and f−1 f =

1A. This categorical notion of isomorphism serves as the definition
of two objects A and B having the same structure. Of course, the
particulars of this isomorphism depend on the particular structure
we are investigating: group isomorphisms are different creatures than
isomorphisms of sets. Once we know what isomorphism looks like
on a particular structure, we also know what a morphism in general
looks like, and with this information we can construct a category of
systems exhibiting a certain kind of structure. With this, in turn, we
have a notion of what the structural properties of an object are. It is
simply those properties which are invariant under isomorphism. If a
property is maintained through an isomorphism in the category we

53 See [Lawvere 1965] for the original formulation of this foundation, unfortunately not
free of error, and [McLarty 1991] for a more recent version avoiding the problems of
the original.

54 [Awodey 1996], pp. 214.
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are working in, it is structural in nature. Better yet, the very notion
of being expressable in category-theoretical terms will guarantee that
something is a structural property: if a property can be expressed in
terms of morphisms, it will remain invariant under isomorphism.55

The link with philosophical structuralism can be shown to be rather
strong by revisiting the issue of Dedekind abstraction. We can make
precise both steps of the process. Recall that the first step in the
process was one of showing that specific relations hold in the mathe-
matical system we are working in. By defining an isomorphism over
two systems sharing our proposed structure, we can make precise
which relations are the ones that are emphasised: the isomorphism-
invariant ones. The other relations are particulars of the system the
structure is expressed in, and are abstracted away from in the process.
The second step was to consider these relations, and the objects thus
connected, as no longer within the original system, but as a new math-
ematical structure. But this is no more than to treat these systems as
objects in a category! After all, by working within the framework of a
category and expressing properties in terms of morphisms, the very
properties we would like to abstract away from - those which are not
isomorphism-invariant - cannot be expressed.

2.1.3 Revisiting Benacerraf’s Problem

If expressing something categorically is indeed enough to ensure that
no non-structural properties can be captured, this suggests a straight-
forward way out of Benacerraf’s problem. If the natural numbers
can be defined categorically - or more generally, if we can define sets,
including the set of natural numbers, in the language of category the-
ory, we can avoid the inconsistencies invited by multiple different
“natural numbers” in ZFC. Moreover, we may do this without having
to abandon the set-theoretic level.

Recall that Benacerraf’s Problem is only mathematically fatal if we
directly identify the natural numbers with particular sets (and hence
{{∅}} = 2 = {∅, {∅}} 6= {{∅}}). We preserve the association of
numbers with sets by regarding this “equality” not as an identifica-
tion, but as a case of the use of Dedekind abstraction; what we mean
by 2 = {{∅}} or 2 = {∅, {∅}} is not that 2 and these sets they are
the same entities, but that the former can be obtained from the latter
by Dedekind abstraction. One can compare this “is” with the “is” of
predication; “the cat is black” and “the dog is black” do not imply
that the cat is the dog.

The upside of this is that we can identify natural number series
in Zermelo-Fraenkel set theory, and that we can reason about these
numbers as numbers, that is to say, at the level of the natural number
structure. The downside is that we cannot do both at the same time.

55 [Awodey 1996], pp. 214.
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Any set-theoretic formulation invites non-structural properties. Thus,
doing arithmetic means abandoning the set-theoretic perspective, and
vice versa. As Colin McLarty has a character in [McLarty 1993b] sur-
prisedly exclaim: “So the advantage of your set theory is that mathe-
maticians never work with your sets!”56

McLarty suggests we work with categorical set theory instead. If
the properties we can express in the syntax of category theory are
simply the structural properties, and if we can formulate sets cate-
gorically and the natural numbers in terms of sets, then we should
be able to talk of numbers from a set-theoretic perspective without
treating them non-structurally. We can do this by treating sets accord-
ing to the axioms of Lawvere’s Elementary Theory of the Category
of Sets (henceforth ETCS). Herein, the sets are the objects in the cate-
gory of sets, and elements of a set S are defined as morphisms 1→ S
where 1 is the terminal object.57 We can then define the usual kinds of
sets, such as products, subsets and disjoint unions using the category-
theoretical apparatus: with products, equalisers and coproducts, re-
spectively.

Sets, of course, take a different character all together in this kind
of set theory. This difference can be characterised as the difference
between concrete and abstract sets: whereas the former are defined
as collections of concrete individuals, the latter are defined in terms
of relations to each other.58 Hence the element as a relation between
the singleton and a set, for example. This again can be characterised
as Dedekind abstraction; what we are left with is the structure of sets
regardless of their elements, that is, their structure at the subset level
at best. Thus, there is only one singleton set: the set 1 containing
just one element. In effect, this means that this set theory abandons
extensionality on the level of elements for extensionality on the level
of subsets.

We can then define a natural number object within this set theory as
follows: let N be a natural number object if it is a set with an element
0 and a successor s : N → N such that for any A with element x and
a function f : A→ A, there is a mapping u : N → A such that u0 = x
and usn = f un for all n ∈ N.59 Then we have defined numbers
set-theoretically in such a way that Benacerraf’s problem is avoided:
0, s0, ss0, .... Each number is an element of N, and has only the prop-
erties it has on account of being a number in a natural number object.

56 [McLarty 1993b], pp. 496

57 That is, the object 1 such that for each object, there is exactly one morphism to 1.
Compare the singleton set, to which there is only one function from any set: the
function projecting each element of the set to the single element of the singleton.

58 [McLarty 1993b], pp. 489

59 [McLarty 1993b], pp. 492. To recover the Peano axioms, we need a slightly stronger
definition which allows us to have a recursive definition with parameters: let P be
any parameter set, x : P → A an initial condition. Then for every f : A× P → A
there must be a unique u : N × P → A such that u(0, p) = x(p) and u(s(n), p) =
f (u(n), p).
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Recall Dedekind’s definition of a number as an element of a simply
infinite system, stripped of all properties but their distinguishability
and the relations they are placed in by virtue of their ordering in
the system. The numbers defined in this way are “really” numbers
on this account, since there is nothing to strip away; there is no fur-
ther level of abstraction to go to, no properties they have by virtue of
something other than to be a number in this system. Those that seem
“un-numberlike” at first glance - such as their being a mapping from
1 to N - are no more than a formulation of a fact that is necessary on
account of their structural properties: it is an expression of the fact
that they are elements of the set of natural numbers. In particular, the
kind of “internal structural baggage” that the Zermelo ordinals have
is avoided. The numbers stand in no relation to each other other than
those of arithmetic; we need not ask whether 3 ∈ 7 or not.

One might wonder why sets defined categorically are “purely struc-
tural”, whereas sets defined in ZFC would not be. If the structural-
ist thesis is that all mathematics is about structure or pattern, then
shouldn’t either construction be structural? The difference lies in a
matter of explicitness. In either case, the mathematical system does
rely, in the end, on a structure - and thus, on a whole of relations. But
only in one of these set theories, sets are also defined that way. Thus,
in categorical set theory, the definitions of sets track their structural
properties, whereas in “full-blown”60 set theory, they do not. That
does not mean that they cease to be structures, but it does mean that
it requires more mathematical or conceptual work to identify struc-
tural properties. The difference does not come to light, of course,
until we try to find some new (sub-)structure - in other words, until
we move up or down a level of abstraction. And it is exactly there
that Benacerraf’s problem rears its head for traditional set theory, but
not for the categorical variant. We will come back to this difference
in section 2.2.3 with Awodey’s view of categorical structuralism.

McLarty notes that one advantage to orthodox set theory is that its
sets obey Leibniz’ Law of indiscernibles: two set-theoretic objects that
are indiscernible in their properties are, indeed, identical. Categorical
set theory does not obey this law, since we can prove that there are
infinitely many natural number objects, each isomorphic to all others,
and stronger yet, each with exactly the same properties.61 McLarty
suggests, by word of a character in his article, that we then abandon
this principle: categorical set theory falsifies it. Nothing quite so dras-
tic is necessary. Leibniz’ principle concerns metaphysics, and hence
applies if we seek to identify mathematical structures metaphysically
with categories, functors or objects. Whether we want to make this
step depends on our view of the metaphysics of structure. The elimi-

60 From this point on, I will occasionally refer to the usual mathematical approach to
set theory in this manner to distinguish it from categorical set theory.

61 See [McLarty 1993b], pp. 493 for a full proof.
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nativist structuralist would deny the metaphysical existence of struc-
tures in the first place, seeing them as mere quantifications over sys-
tems expressing them - including the set-theoretic ones - and hence
deny this equality in the first place. The ante rem structuralist might
balk at the idea of there being many metaphysical versions of the
same structure in the first place, regardless of Leibniz’ law - to him, all
the different systems expressing some structure truly do express the
same single structure, defined up to isomorphism. The problem with
Leibniz only arises if we adopt a straight-up metaphysical category-
theoretic structuralism, wherein structures are metaphysically iden-
tified with category-theoretic constructs, and hence, for example, all
set-theoretic number objects are simply to be seen as expressing some
category-theoretic one. If we want to metaphysically identify struc-
tures with some kind of mathematical object, we ought to do it with
a kind of mathematical theory wherein isomorphic objects are always
identical if we want to obey Leibniz’ law.

2.2 theories of categorical structuralism

The supposed “natural match” between category theory and a struc-
turalist account of mathematics has not been without consequence. A
number of programmes have been put forward employing category
theory in conjunction with a structuralist view of mathematics in or-
der to make a philosophical or foundational point. Prominent among
these are McLarty, Landry and Awodey, whose views we introduce
in this section.

2.2.1 McLarty: Categorical foundations

McLarty sees promise for the role of category theory in a foundational
project. Mathematical foundations are not taken as a single theory on
which all other mathematics is - in some way or other - based, or
which justify mathematics. Rather, he views the foundational project
as a continuous and ongoing process of organising mathematics. The
upside of foundations is their continuing effect of allowing mathe-
maticians in different fields to express themselves in a single frame-
work, thus promoting understanding and error-finding. In particular,
their role in making explicit the assumptions made in proofs makes
it less likely that unwarranted leaps are made.62

Given the contemporary tendency to approach mathematical ob-
jects among isomorphism-invariant lines, often explicitly employing
category-theoretical tools, category theory is a promising candidate
to put in some work in this field. McLarty emphasises the ubiquity
of categorical tools to argue that category theory already plays an im-
portant role in the process of making mathematics, more uniformly

62 [McLarty 2013], pp. 81-82
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understandable and error-free. In particular, when set theory is em-
ployed to strictly define some notion or other, it is usually formulated
in such a way as to be neutral towards an interpretation in either full-
blown set theory or categorical set theory. This is not to say that
categorical foundations are frequently referred to, which they are not;
but given their current use, they could very well be.

The focus of McLarty’s contributions to discussions on categorical
structuralism, then, lie in his view of the foundations of mathematics,
and in a defence of the role categorical foundations in particular can
play therein. We will turn to various views on the foundations of
mathematics, including McLarty’s “organisational” notion of founda-
tions, in chapter 3, and to his arguments with regards to categorical
foundations in chapter 4.

2.2.2 Landry: Semantic realism

Elaine Landry employs category theory to find a compromise posi-
tion between ante rem and eliminative realism.63 Rather than aiming
to establish the existence of mathematical objects or structures meta-
physically, through an ante rem approach, or an in re approach in
which they arise from a process of abstraction, Landry attempts to
provide a linguistic basis for our talk about these structures and ob-
jects.

... the only reality that categories need to be taken as
part of is ‘linguistic reality’, that is, the reality that con-
cerns us with what we say. Interpreted along semantic
realist lines, categories are not claimed to exist indepen-
dently of their linguistic use and even when they are held
as “objects”, they are only taken to exist in the sense of
being required to talk about the way things are in a given
structure.64

This position she dubs semantic realism. Objects and structures are
established as existing in as far as is necessary to provide our linguis-
tic utterings with content. She aims to secure this measure of realism
by analysing structures as they behave in category theory. She investi-
gates the manner in which we refer to a singular object in a particular
structure, expressed in the language of category theory, and the way
in which this changes if we in turn approach the structure from a
general perspective. From all this, she finds that the former analysis
leads us to an ante rem interpretation of structures, whereas the latter
is best captured on an eliminative interpretation.

63 See [Landry 1999a]. Landry herself refers to the latter as in re structuralism, follow-
ing Shapiro’s older method of classifying all non-ante rem variants of structuralism
as in re. I will continue using the term “in re” to refer to the position arguing that
mathematical structure are to be found in the world specifically.

64 [Landry 1999a], pp. 138, emphasis hers.
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Consider first the case in which we work in a specific category -
that is, a category defined according to the Eilenberg-MacLane ax-
ioms above, wherein the undefined terms are composition, identity
and domain, with an interpretation of its terms. In other words, con-
sider any particular set of objects and mappings that happen to fit the
Eilenberg-MacLane axioms. In this case, we can safely run with the
ante rem view of structures, and take statements about singular terms
at face value. That is to say, when establishing what we are talk-
ing about when we refer to some object in a structure, we need not
see it as an implicit generalisation over all objects of a certain kind;
rather, from the perspective of the mathematician working within this
structure, we can take the object at face value. We can use a model-
theoretic argument, and assert that we can safely talk of a singular
term referring to an object if there is a model for the structure wherein
the singular term has some denotation.

However, we cannot interpret statements containing singular terms
in the same way when we speak of a structure in general - that is to
say, when we speak of all structures of a certain kind. Since there is
no theory establishing the existence or non-existence of a structure
as a whole, we cannot refer to said theory to fix the reference of our
terms. It is here that we can employ category theory to fix structures
as a whole as objects within some other theory, thereby fixing the ref-
erence and securing a semantic realist position not just for singular
terms, but for mathematical structures as a whole. This is possible
because we can “move up a level” in category theory and establish
categories not by defining them with the Eilenberg-MacLane axioms,
but as objects in the Category of Categories. We are still talking of the
same structure, in this case: if we can express the structure as a cat-
egory in the first place, then we can preserve the objects as functors
1 → C and the morphisms as functors 2 → C, where C represents
our category, 1 is the terminal category and 2 is a category with two
objects, 0 : 1 → 2 and 1 : 1 → 2. Clearly, C in this system expresses
the same structure as the original formulation of our category. Now,
we can fix the reference of the term referring to the structure by tak-
ing its representation as an object in the category of categories as its
denotation. This happens, however, at the expense of the interpreta-
tion of the original structure: whereas our category previously might
have been a category of groups or of sets, it is now indistinguishable
from all other categories that feature the same pattern of morphisms
and objects. Thus, Landry argues, we move towards the eliminativist
interpretation here when we refer to singular terms in the structure:
we can establish its reference if we take the singular term to implicitly
quantify over all categories of a specific kind. Using Shapiro’s termi-
nology, it would be seen as quantifying over all systems expressing
the structure exhibited by the general category C. This neatly fits
with the eliminativist interpretation of structuralism.
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The role of category thus becomes that of “the language of mathe-
matics”. It functions as the foremost mathematical theory in which to
represent our talk about mathematical structures.65 This idea builds
on Frege’s position that a philosophy of mathematics should account
for the content and structure of what we say. We can see model the-
ory as providing us with a mathematical framework in which we
can express what we say about the content of mathematical concepts.
Category theory then performs a similar role in providing us with a
mathematical framework in which to express what we say about the
structure of mathematical concepts.66 In either case, the mathemati-
cal theory is employed not to express some metaphysical fact about
some mathematical concept, but to express something about their
meaning. The very fact that we can separate these two is a feature
of structuralism. If mathematics is not about any particular objects,
but rather about their patterns, represented in axiomatically-captured
structures, we can investigate the structure and content of mathemat-
ical expressions without needing to commit to a corresponding meta-
physical position.

Landry’s analysis highlights the possibility category theory gives
us to make explicit the level of generality at which we approach a
single mathematical structure. What sets it apart is that it allows us
quite naturally to analyse not just mathematical structures, but the
structure of mathematical structures in turn.

2.2.3 Awodey: No foundations

Steve Awodey, in tandem with his view on mathematical structural-
ism, sets out a categorical theory of philosophical structuralism.

The principal idea behind his approach to the philosophy of math-
ematics is that it is well-served by using a category-theoretical math-
ematical apparatus. Awodey suggests that set theory most naturally
implies a monolithic kind of foundational thinking that is at odds
with a structuralist approach to mathematics, i.e. an approach in
which mathematics is concerned with various structures, each charac-
terised by their own rules. The Bourbaki approach to structure, that
is, the technical view of structures as sets with an additional struc-
ture defined upon them, is not readily adaptable for a mathemati-
cal analysis of structure. When working with structures rather than
strictly within one, the mathematician will not separate set-theoretical
and additional features of a structure in order to make sense of his
structure, but will rather identify it in terms of mappings. The accu-
rate description of, and separation between, different structures calls
for an approach in terms of morphisms. Hence, the natural mathe-

65 [Landry 1999a], pp. 137

66 [Landry 1999b], pp. S18
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matical environment for the study of structures is the category.67 In
short, mathematical structuralism is done category-theoretically, and
this should be reflected in our philosophical beliefs with regards to
the nature of structures, and hence the nature of mathematics in gen-
eral. In other words, it should be reflected in philosophical structural-
ism. This is not to say that there is anything fundamentally category-
theoretic about mathematics per se: rather, category theory is just
an excellent theory to capture the structural features of mathematics,
and we do see mathematics as being concerned with structure at a
fundamental level.68

Consider, then, what is required for the mathematician to prove
something about a structure he is interested in. Since we are dealing
with a structure here, we are not concerned with specific objects, but
rather with a network of relations. The array of tools that the mathe-
matician requires to make headway in this network are then suited to
exactly that purpose: they are the tools defined in the structure itself
and in the axioms explicitly governing it.

The proof of a theorem involves the structures men-
tioned, and perhaps many others along the way, together
with some general principles of reasoning like those col-
lected up in logic, set theory, category theory etc. But it
does not involves the specific nature of the structures, or
their components, in an absolute sense. That is, there is a
certain degree of “analysis” or specificity required for the
proof, and beyond that, it doesn’t matter what the struc-
tures are supposed to be or to “consist of” - the elements
of the group, the points of the space, are simply undeter-
mined.69

We see here a reiteration of the structuralist reaction to Benacerraf’s
problem: rather than to look at the elements and subsets the natural
numbers are supposed to consist of, we take the natural numbers
as something more general than either the Zermelo ordinals or the
Von Neumann ordinals. The tools we use to investigate the natural
numbers are the tools that are defined on those numbers as numbers,
or more abstractly, on some constellation of objects we mapped these
numbers onto, but almost never on a specific internal structure given
to these numbers through a mapping, such as internal structure of
the Zermelo or the Von Neumann ordinals.

More generally, we see that the categorical account Awodey pro-
poses harks closely to the structuralist accounts of the nature of math-
ematical structures. This is perhaps most clear on the abstraction ac-
count of structures. The indeterminacy of its objects beyond the struc-
tural level is a clear reflection of the idea that mathematical objects

67 [Awodey 1996], pp. 211-212

68 [Awodey 2003], pp. 9-10

69 [Awodey 2003], pp. 7, emphasis his.
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are mere empty points within a structure, with no inner structure of
their own.

Category theory, however, also provides us with tools to tackle an
open problem in the dependence account of mathematics. Recall that
structures are seen as relational wholes, and that objects, on the struc-
turalist account, are said to depend on the structure as a whole or
on the relations it consists of. Dependence on a relation, however, is
difficult to make sense of. Relations, after all, are only relations on ac-
count of their relating two objects. This brings us back to relata, and
hence objects, as the fundamental building block of mathematics.70 A
categorical approach avoids this problem by substituting morphisms
for relations, as the former do not presuppose any objects, and can in
fact be defined entirely without reference to them.

What Awodey rejects, then, is the marriage of a structuralist phi-
losophy of mathematics with an approach to the mathematics them-
selves that does reduce all mathematics to objects of some sort. In par-
ticular, ZFC, taken as a foundation as mathematics, is exactly such an
object-based approach. Of course, the rejection here is not one of the
mathematics per se. There is no objection if one has a valid mathemati-
cal reason to express a number set-theoretically (e.g. in order to make
an argument that requires reference to a cardinal sufficiently large to
make it ill-describable outside set theory). Rather, on Awodey’s ac-
count, the problem lies in the foundational claims that are linked with
such a set-theoretic construction. If one wants to adhere to a struc-
turalist philosophy and analyse philosophically interesting features
of mathematics, one should not do so set-theoretically or even from
within a set-theoretic mindset, as either approach irrevocably leads
us back to object-based thinking. Category theory gives us a way to
express mathematical ideas that does not trap us in non-structuralist
terms, and in fact naturally focuses on the structural properties of
various theories.71

Awodey describes the contrast as one between bottom-up and top-
down mathematics. The former idea is of mathematics as an archi-
tectural structure, built from the ground up; we start with a large
pool of objects and proceed to build mathematical structures out of
them, reaching ever higher up as we use old structures to create new
ones. Or rather, we have some foundational system consisting of ob-
jects and certain axioms governing these objects. If we have enough
objects and if the axioms are strong enough, all of common mathe-
matics can be done with some mix of objects and axioms to represent
respectively the objects we actually want to talk about and the axioms

70 [Awodey 2003], pp. 9

71 We will see a very concrete difference in section 4.1.4, where the philosophical inter-
pretation of a simple group-theoretic statement will be informed by either a categor-
ical or set-theoretic background.
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governing them.72 With this approach each mathematical object car-
ries with it an internal structure in the sort of objects that form our
foundational system. This is exactly the sort of thing that the struc-
turalist view tells us is no part of the mathematical objects proper, so
why invite its presence through a bottom-up approach to mathemat-
ics?

The top-down approach to mathematics is, by contrast, thoroughly
structural from the outset. When we set out to work on a particular
structure, we require a determination of its properties only up to a
certain degree; and on the top-down approach, we simply only deter-
mine the mathematics up to that degree. Going back to our standard
example, this means that we take numbers as a simply infinite sys-
tem, and stop there - unless we need some further structure for our
specific proof, of course. This means that there is not always a way
to express our structure in the currently prominent foundational sys-
tem, and there in fact needs not be. The exact extent of our objects
and the very rules that govern them are dependent on the structure
we work in, and hence, might vary from field to field, from problem
to problem, or even from mathematician to mathematician. We may,
of course, still use further tools to create new mathematical objects
and structures, but this is not seen as “building them up” from the
previously created structures, let alone from some foundational stuff.
It is seen as further specification, as a “going down” from a general
case to a more specific kind of structure.

In order to give a serious take on Awodey’s rejection of “founda-
tional thinking”, and of McLarty’s “organisational” view of founda-
tions, we need to know what foundational thinking in mathematics
is. To this end, we turn our attention to various forms of foundation-
alism in mathematics in the next chapter.

72 Of course, there are never enough objects, and our axioms are never strong enough
to capture all of mathematics. This does not matter at this juncture: for one, there
are ways to still consider such a system as foundational, as we will see in chapter
3. For now, it is the form of the entire approach that is questioned, regardless of its
formal adequacy.
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F O U N D AT I O N S O F M AT H E M AT I C S

In order to clarify how category theory, or any mathematical theory
for that matter, can serve as a foundation for mathematics, we need to
clarify what exactly is meant by the term “foundation”. In the follow-
ing chapter, we shall identify various kinds of foundation, that is to say,
various ways in which a theory can be taken to be foundational for
mathematics or part of mathematics. The view of mathematics here
shall remain structuralist - implicitly so at first, and then explicitly
when we investigate what kinds of foundation are sensible to ask for
from a structuralist point of view.

Various mathematical theories and philosophical frameworks have
been proposed as foundations of mathematics. What exactly is meant
by such a declaration, though, is not unambiguous. Perhaps the only
thing universally held as true is that a foundational theory has a spe-
cial place within mathematics or alongside it. Therefore, in order to
evaluate whether a category-theoretic foundation of mathematics is
feasible, we need to make it clear exactly what is meant by a “foun-
dation of mathematics” in different contexts.

There are various senses in which one theory can be said to be
a foundation of another. Marquis in [Marquis 2005] and Shapiro in
[Shapiro 2004] and [Shapiro 2011] attempt to give an overview, and
note that these different kinds of foundations tend to be interrelated.
In the following chapter, we will do a modest taxonomy of “kinds of
foundations”, with emphasis on the varieties most important to the
discussion at hand, and relate them to the structuralist philosophy.
We will see that different kinds of foundations are often difficult to
distinguish from one another, and that many proposed foundations
for mathematics will not be limited to a single kind of foundation.

The criterion we will use to classify foundations will be their pur-
ported goals. A foundation is a mathematical theory, a structure, and
is thus worthy of attention out of mathematical interest - to see if we
can prove something new. This goal is not served by heaving a “foun-
dational” status upon the structure. By naming something a foun-
dation, we must serve goals that are not strictly structural in nature.
By classifying foundations according to the purpose they serve, we
can identify why they have a claim to being a foundation of anything,
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and judge them by the progress they make towards this goal.73 It also
lets us judge the goal itself. Of course, certain mathematical theories
will be exceptionally suited to certain foundational goals by virtue of
their mathematical structure. This is exactly why these structures are
taken as foundations of a certain kind - once a certain goal has been
chosen. It does not make their particular mathematical structure a
foundational goal in and of itself.

Thus, we will not see “logical foundations” as a separate kind of
foundation, despite its presence in the taxonomy of e.g. Marquis.
The goals served by giving a logical foundation to a particular area of
mathematics may be classified as epistemological, cognitive, or even
metaphysical. What sets logical foundations apart is their mathemat-
ical form, which, though an interesting subject on its own, does not
concern us here.

3.1 ontological foundations

Perhaps the most prominent aspect of foundations is their claim to
providing mathematics with its ontology. The objects of mathematics,
if there are such things, exist by virtue of the foundations, or are
at least delimited or described by the foundation. The theory that
classically plays this role, providing the field of mathematics with a
large “universe” of objects, is set theory, in particular as defined by
the Zermelo-Fraenkel Axioms with Choice (ZFC).

3.1.1 Ontology as metaphysics

Most straightforwardly, ontological foundations can be seen as de-
scribing what sort of things mathematics is about. Thus, the set-
theoretic foundationalist may hold that the objects of mathematics
are sets. Likewise, a category theorist may claim that mathematics is
about categories, morphisms and objects. More abstractly, Shapiro, as
an ante rem structuralist, holds that the ontology of mathematics con-
sists of structures.74 The classical platonist is most straightforward:
he posits a universe of mathematical objects, consisting of numbers,

73 This approach assumes that we can distinguish between strictly mathematical and
philosophical aims and arguments. Any analysis of a structure from the internal
perspective of another (or the same) structure is considered mathematical. Any other
sort of argument is not. In particular, this means that there are no mathematical
reasons bar proof to reject a certain statement as false. Any theory that allows us
to do this, then, has some philosophical import: it adds something to the strictly
mathematical study of structure. For example, if we want to outright reject the
Continuum Hypothesis or its negation in a structure in which it is undecidable, such
as ZFC, any arguments to that end would be considered philosophical in nature.
Taken to its extreme, this implies a form of logical pluralism, as we cannot reject any
of a variety of internally coherent logics.

74 He makes this notion more precise with his structure theory, which we will discuss
in more detail in section 3.1.3.
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geometric objects, and so forth. The foundational claim is then a
metaphysical one: the foundation describes or even provides the very
subject matter of mathematics.

This is a strong claim which is generally accompanied by a claim
of exclusivity: since this foundational theory describes exactly what
mathematics is really about, it cannot be about anything else as well.75

Thus, the set-theoretic foundationalist holding that e.g. ZFC describes
the “mathematical universe” thereby excludes alternative theories as
well as extensions of, and variations on, itself.

The exact strength of this claim may vary. One may hold that there
is a single mathematical universe in the metaphysical sense, but not
in mathematical practice. That is to say, there is one “universe” of
mathematical objects in some way, and perhaps we may capture it or
describe it accurately using set theory for example, but a mathemati-
cal theory may not fully cover all of this universe.

This view has recently been challenged by Hamkins,76 where he
proposes that our familiarity with both set-theoretical “universes” in
which CH is true and ones in which it is false make it impossible for
us to decide the matter either way. Thus, we cannot hold to a single-
universe view of mathematics, and we must admit that there can
be multiple, mutually inconsistent mathematical “universes” existing
side-by-side: a mathematical “multiverse”.

The crux of either position is that a Gödelian view of a mathemati-
cal universes77 can handle plausible extensions of the common founda-
tional theory by claiming that such an extension simply covers more
of the true mathematical universe, but cannot handle variations on
the commonly accepted theory lest the mathematical universe itself
contain inconsistencies. On this view the mathematical universe is
to be seen as static, as a landscape for us to discover, but it is only
partially captured by our best present axioms. Thus, we extended
Zermelo’s axioms first with a replacement scheme, and later with the
Axiom of Choice, so as to cover more and more of this landscape. We
cannot, however, replace one of these axioms (e.g. by dropping well-
foundedness and replacing it with an axiom allowing for non-well-
founded set theory), since our previous axioms did correctly describe
the landscape. At best, we might find that we were mistaken pre-
viously and work with these alternative axioms instead, but the dif-
ferent axiomatic systems cannot exist side-by-side: that would mean
that the mathematical landscape itself allows for a statement (e.g. the
well-foundedness of sets) to be both true and false. If Hamkins is
right about the Continuum Hypothesis, then this interpretation is too
strict: we can, and should, investigate multiple mathematical land-
scapes.

75 [Shapiro 2011]
76 [Hamkins 2015]
77 See [Tieszen 2005] for a thorough account of Gödel’s view on the philosophy of

mathematics.
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The strongest position here is a conjunction of the metaphysical
and practical claims. On this position, there exist exactly those math-
ematical objects that can be described by the foundational system.
This view is conceptually tricky, since such a view with regards to
ZFC would mean that CH really is true nor false. Since we are speak-
ing in metaphysical terms, this would mean that there is no truth
to the matter of the existence of sets with a size strictly in-between
the cardinality of the naturals and the cardinality of the reals. One
would need to employ a non-classical semantics to account for objects
that neither exist nor fail to exist without having to abandon classical
logic.

3.1.2 Ontology as mathematics

If ontological foundations were a matter of metaphysics proper, it
would be the battlefield of philosophers exclusively, while the math-
ematicians ignore the ruckus and continue their work. This is not
the case - the question of existence is a matter within mathematics as
well. The structuralist can distinguish two variations of this problem:
the matter of the existence of an object or relation within a certain
structure, and the question of the existence of a certain mathematical
structure.

The former is relatively unproblematic. Without the philosophical
baggage of establishing the metaphysical existence of an object, say,
the number 63, it is not a problem that such an object exists in N but
not in Z/60Z. The mathematician will without further thought refer
to it in the former case, and will not refer to it in the second, unless
he is establishing a relation between two different structures (e.g. by
linking N and Z/60Z in the usual way and establishing that 63 ≡
3 mod 60). Likewise, mathematicians have learnt to live with the fact
that complex structures tend to lead to unanswerable mathematical
questions about them (most famously the Continuum Hypothesis in
ZFC). Although controversy can arise when long-standing traditions
or intuitions within a mathematical community are put into question,
there tends to be no significant problem with regards to the existence
of objects within a structure as a mathematical fact.

The existence of new structures, not in a metaphysical sense, but
simply as proper objects of mathematical study, is not unproblematic,
however. Mere intuition, or even the intuition of great mathemati-
cians, does not suffice to establish that a proposed structure is not
inconsistent, incoherent or otherwise trivial. This is where a new,
mathematical use of foundations comes in. Mathematical ontological
foundations serve as an arbiter in mathematical disputes of existence.
The idea is simple. There are a number of structures whose coher-
ence we are generally convinced of, either through a mathematical
proof of some sort or through a long tradition of working within said
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structure. Some of these “safe” structures are rich enough for many
other structures to be translated into. That is to say, we can give
faithful representations of most interesting mathematical structures
within the safe structure. As long as the objects and relations essen-
tial to the structure are represented properly in the safe structure, we
can be sure that the structure we are interested in is likewise safe.78

This is perhaps most naturally explained through Hilbert’s process
of giving a reinterpretation of some term in another theory. In his
Grundlagen der Geometrie,79 Hilbert translated geometric objects into
different mathematical theories, such as the reals, in order to prove
things about the consistency of geometric axioms. For example, one
could reinterpret a point as an ordered set of two real numbers. This
allowed for us to say something not just about geometrical objects,
but about their axioms. The axioms could, after all, be reinterpreted
in the theory of the reals, in which they would not turn out to trans-
late into axioms but into “mere” ordinary sentences. This means that
we can establish their dependence or independence from each other,
and moreover, this allowed us to give relative consistency proofs: if
the theory we translated our axioms into is consistent, then so is the
axiomatic system we are interested in.80

On a structuralist analysis, what we are doing here is expressing
one and the same structure in two different ways. Thus, using two
different syntaxes, we give two different systems expressing the struc-
ture. The mathematical gain is evident when one of these systems is
part of a larger system, expressing some other, larger structure. Thus
we employ Dedekind abstraction once more to relate two structures:
we emphasise certain relations within the larger structure - the trans-
lated relations of the smaller one. Rather than then disregarding the
rest of the larger structure, though, we use the tools in the larger struc-
ture to prove things about the smaller one. We have the explicit goal
of allowing one structure to piggyback on the mathematical “safety”
the other. We do in fact require a bit more of our abstraction process
than usual, since we do not only want to guarantee the existence of
a particular structure, but we want our safety to be closed under the
methods employed in the structure we’re interested in. It is little use
to establish that the structure we’re interested in can be translated to
a “safe structure” if the proofs we aim to establish cannot. Hence,
we require that the axioms of our “safe structure” are likewise strong
enough.

Nowadays, the role of “safe structure” is usually taken by set the-
ory, in the form of the set-theoretic universe generated by the ZFC
axioms, although some alternatives have been proposed. Notable ex-
amples include alternative set theories and category-theoretical foun-

78 [Shapiro 2011], pp. 99-100

79 [Hilbert 1899]
80 [Blanchette 2014]
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dations of mathematics, such as ETCS and the Category of Categories
as A Foundation (henceforth CCAF).

It is noteworthy that the practice of translating a certain part of
mathematics to establish its coherence presupposes that its important
features, such as its coherence, are preserved in such a translation.
In other words, we are assuming that structurally equivalent systems
express the same structure. Thus, this very practice has been taken by
some authors, notably Shapiro, as evidence of structuralism. Those
seeking a single metaphysical background, such as the position that
all mathematical objects are really sets, should seek to establish that
the original and its translation are indeed the “same” mathematical
structure in every relevant sense; a question that quickly devolves
into a variant on Benacerraf’s problem.

One should be aware that there is a certain circularity to this kind
of argument, however. The very practice of establishing the (relative)
consistency of a system through reinterpreting it in another theory
was challenged when it was introduced. Gottlob Frege held that
Hilbert’s consistency proofs based on the tactic of reinterpretation
were invalid. One could not be sure that the same thought was ex-
pressed by a sentence in some theory A and its interpretation in an-
other theory B. Therefore, the relative consistency of the translated
sentences in B said very little to nothing about their consistency in
A. Hilbert’s counterargument defending the validity of these proofs
hinges on what we would nowadays call a structuralist interpreta-
tion of mathematical objects. To him, there was nothing more to the
objects he was talking about than the logical interrelations between
them, and hence, we were talking about the same objects still after
translation. Hence, the justification of the reinterpretative method by
Hilbert relies on a structuralist view of mathematics. Thus there is
the threat of a circular argument if we in turn take the use of this
method as an argument for structuralism, as Shapiro does.

Those sceptical of the structuralist thesis might therefore well re-
gard both this method and structuralism to be false, thereby invali-
dating the structuralist argument either way. The structuralist merely
shows that his philosophy and the validity of the process of mathe-
matical reinterpretation imply one another, which is of no great con-
sequence if you hold both to be strictly false to begin with. One might
go as far as to say that perhaps the reason structuralism seems such
a natural fit for mathematical objects is not because mathematical ob-
jects really behave in the way structuralism prescribes, but because
we have (falsely) gotten used to treating mathematical objects in this
way. For present purposes, though, we consider foundational issues
from an explicitly structuralist background, and leave this debate for
another time.

The difference between mathematical and metaphysical ontologi-
cal foundations should be emphasised. A metaphysical ontological
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foundationalist may hold that all mathematical objects truly are sets,
whereas his mathematical counterpart may translate all of mathemat-
ics into set theory without holding such a belief. The mathematical
foundationalist may simply consider it a very convenient way to se-
cure the coherence of many mathematical structures and the existence
of many mathematical objects. Moreover, it has mathematical advan-
tages to have many different theories present in a common playing
field; it allows us to make notions precise that cross different fields of
mathematics, which in turn may lead to new proofs and theorems.

From this perspective, there is no reason beyond practicality to de-
mand that there be one mathematical “universe”. It is entirely pos-
sible for multiple large structures to serve as safety nets for differ-
ent displays of mathematical acrobatics. It is worth keeping this in
mind when we turn to the vivid arguments for and against different
kinds of mathematical foundations in the next chapter. An argument
against the use of a certain foundation is necessarily “philosophi-
cal” in nature: it assumes, explicitly or implicitly, that foundations
have a bigger role to play than merely serving as a mathematical on-
tology. There are metaphysical or epistemological demands in the
background whenever there is a claim of exclusivity for one theory,
or a claim of foundational failure for another.81

The mathematical naturalist position of authors such as Penelope
Maddy, holding that the goal of foundations is to be found in the
principles which the mathematicians employ in creating these foun-
dations, is then obviously mathematical-ontological in nature. In fact,
it is very strongly so - any other ontological concerns, e.g. metaphys-
ical ones, are regarded as scientific non-questions. At the same time,
ontological concerns are very much placed at the centre of mathemat-
ical discourse, and a foundation - in Maddy’s proposal, set theory -
is regarded as the final adjudicator in discussions of existence.82

3.1.3 Shapiro on ontology

Shapiro, the ante rem structuralist par excellence, has attempted to es-
tablish a theory of structures themselves. Given that we allow struc-
tures in our ontology, it is argued, we need a way to differentiate be-
tween structures, to identify structures, and to establish which struc-

81 Of course, one could also be uncertain of the consistency of the proposed foun-
dation. This problem is, unfortunately, not to be solved mathematically. Gödel’s
second incompleteness theorem holds that for any structure of sufficient complexity,
its consistency can only be proved internally if it is, in fact, inconsistent. We cannot
be mathematically sure of the consistency of even the most used foundation, ZFC.
Uncertainty regarding the consistency of any proposed foundation then simply ex-
presses unfamiliarity with a certain kind of structure - one that is best solved by
studying the structure and its consequences. Thus, this kind of argument can be
little more than a warning: “Perhaps study this structure a bit more before invoking
it to establish the coherence of other structures!”

82 [Maddy 2011] pp. 33-34
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tures exist and which do not.83 To this end, he developed structure
theory, which amounts to a set of axioms settling the existence of
structures.

Structure theory allows for an ontology of structures, relations,
functions and places, with a second-order background language. The
axioms of structure theory are largely analogous to those of Zermelo-
Fraenkel set theory, encompassing axioms of powerstructure84 and
infinity, as well as a replacement scheme. These axioms seem to be
present for mathematical-ontological reasons: they are necessary to
ensure that the large systems we tend to use in mathematics, partic-
ularly in set theory, indeed exist. Further axioms establish the par-
ticular behaviour of structures: one may add or subtract functions
or relations from a structure and still have a structure, and one may
take any subclass of places as a structure without any relations and
functions on it.

The central claim Shapiro wants to make is that there is a structure
for every “good” mathematical theory.85 A straightforward statement
of this idea within structure theory is problematic, however. The prin-
ciple of coherence states that whenever some formula φ is coherent
in a second-order language, there is a structure that satisfies φ.

Unfortunately this is either difficult to make mathematical sense of,
or it relies on a mathematical theory, be it set theory or model the-
ory taken as primitive, thus undermining the entire project of struc-
ture theory. If we leave “coherence” as an informal notion, mathe-
matically uninterpreted, we might as well do away with the entire
quasi-mathematical format of structure theory and simply state that
every coherent structure exists. The only addition the axioms of struc-
ture theory would then provide is a minimum on existence: at least
roughly the structures that can be expressed in ZFC exist.

If, on the other hand, we choose to give a mathematical interpreta-
tion of coherence, by stating that a mathematical structure exists if, for
example, it has a model, we are left in no better waters. This would
render the principle of coherence nearly empty: if there is a structure
satisfying φ if and only if there is a model satisfying it, all our theory
says is that models are, indeed, valid mathematical structures. An
alternative is formulated in terms of a reflection scheme, establishing

83 [Shapiro 1997], pp. 92-96

84 This serves as the equivalent of the powerset axiom.
85 Coherence is the term here used to describe the informal notion of a structure “being

good” or “making sense”. Shapiro notes the difficulty in establishing the coherence
of a formula. Consistency seems the most natural mathematical fit for this, but
results in some intuitively wrong results: Shapiro mentions the conjunction of the
axioms of Second-Order Peano arithmetic with the statement that Peano Arithmetic
is not consistent. This theory is free of inconsistencies, but not satisfiable. To avoid
this pitfall, Shapiro proposes to use satisfiability as the measure of coherence. See
[Shapiro 1997], pp. 95.
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the existence of structures satisfying the axioms of structure theory
themselves.

Reflection: If φ, then there is a structure S that satisfies
the (other) axioms and φ.

(7)

Here φ is any second-order sentence in the language of structure
theory.86 This results in a “structure-theoretic universe” of increas-
ingly large size as the complexity of φ increases, up to and including
large cardinal structures.

Shapiro’s aims here are metaphysical: since the ante rem structural-
ist allows for the existence of structures, he herein tries to delimit their
ontology. The theory seems to be stilted on two thoughts: it needs to
be like mathematics, in order to ensure that there are structures for
our mathematical theories, and it needs to be extremely large in scope,
in order to ensure that there is a structure for every such theory. The
result is a quasi-set-theoretic universe that is itself structurally equiv-
alent to second-order ZFC with a reflection principle akin to (7). This
ensures that structure theory cannot serve as a mathematical ontolog-
ical foundation by any standard, as the consistency of such a theory
is likely to be more doubtful than that of any common mathematical
structure. This is then not the goal of structure theory. As a metaphys-
ical background, though, it is uncertain why mathematical structures
should metaphysically be anything like sets. We simply seem to lack
sources for such knowledge. This is a defect Shapiro readily acknowl-
edges for metaphysical foundations in general, but does not apply
to structure theory. If the aim is to make the theory sufficiently gen-
eral as to allow for any mathematical theory to have an associated
structure in structure theory, then there it is unclear the goal can ever
be achieve. Mathematics is open-ended in nature; if we formulate
some mathematical structure, no matter how broad, we can always
go beyond it and formulate a mathematical object that does not fit in
the structure in any way. Dismissing such objects as incoherent out-
of-hand cannot have been the goal of Shapiro, but any mathematical
formulation of structure theory is going to result in such situations,
as there cannot be a single formalisation of all of mathematics. What
we’re left with, then, is an ever-incomplete copy of all of mathematics.

All in all, this leaves it uncertain what goals a project like structure
theory achieves. There are no epistemological or organisational ele-
ments to this theory - aspects of foundations we will discuss in the
following sections - but the ontological value of the theory seems lim-
ited as well. The ante rem structuralist may be better off following
the footsteps of Bourbaki in treating structure (mostly) as an infor-
mal concept. Recalling the motto of structuralism, there is already a
formal study of structure: mathematics itself.

86 Ibidem
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3.2 epistemological foundations

Whereas the ontological variety of foundations take a perspective re-
moved from the mathematician, preferring to talk of “mathematics”
as a whole, the brands of foundation in this section are expressly
concerned with him as thinking subject. Epistemological foundations
are concerned with the epistemological properties of the foundational
and founded theories. This is quite evident in Frege’s logicist project.
We will come back to Frege’s view on foundations after establishing
the cognitive element foundations may have.

3.2.1 Cognitive foundations

Cognitive foundations concern the way in which we come to know
different mathematical structures. More specifically, we are concerned
with the pedagogical ordering of different theories. We call some
structure or theory a cognitive foundation for another structure if
we need to get to know the former structure before we can properly
grasp the latter.87 For example, we need to be familiar with the nat-
ural numbers before we can make sense of coordinate systems using
them.

Cognitive foundations take an unique spot in the pantheon of foun-
dations, in that it can be tested empirically whether a certain theory
serves as a cognitive foundation for another. One may simply try to
teach someone a theory without going through its supposed cognitive
foundation first. Of course, the usual caveats for empirical research
of this sort will apply, and there might be exceptional cases. Further-
more, cognitive foundations are relative in character. Whereas onto-
logical foundations admit of no further foundations for these founda-
tions, we are bound to find exactly such situations in the context of
cognitive foundations. The reals may serve as cognitive foundations
for the complex numbers, but natural numbers may play such a role
for the reals. Of course, this relation is transitive: the aforementioned
situation also makes knowledge of the natural numbers necessary for
knowledge of the complex plane.

The exact degree of knowledge required of a proposed foundation
may also differ from case to case. We may only need to have lim-
ited knowledge of the natural numbers to understand theory A, but
need to be extremely well-versed in the theory of natural numbers to
understand B. Given the relative character of cognitive foundations,
though, this need not be a problem: we can simply acknowledge that
a single theory can serve as a cognitive foundation for different struc-
tures in different ways.

There is also a difference in strength between proposed cognitive
foundations. In the strongest sense, a theory can simply not be under-

87 See also [Marquis 2005], pp. 427-429
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stood at all without a proper understanding of the theory founding
it. In weaker senses, learning a theory may simply become more dif-
ficult or less intuitive. Marquis suggests another sense, weaker yet:
a role as a heuristic foundation. In this case, the role of the foun-
dational theory is not pedagogical. It may be very possible to come
to learn, understand and be familiar with the theory without knowl-
edge of its heuristic cognitive foundation. However, familiarity with
it will serve the researcher with a wealth of pointers for further re-
search. Application of the methods of this field on our theory, or the
reformulation of this field in terms of this theory, may reveal links
to the beholder that were invisible before. Consider for example the
use of category theory to find useful material in mathematics by ask-
ing questions such as “What are the morphisms?” or following the
dictum to “Look for adjoints”. The formulation of certain fields in
category-theoretic terms promotes the progress of research in those
fields.

This kind of foundation may be the most relative of all, considering
that the connection of most fields of mathematics may prove fruitful
in the right circumstances; indeed, some successful mathematicians
are known for the ease with which they switch between different
fields and combine insights from within them. Thus, for us to con-
sider some theory a cognitive foundation proper, it needs a measure
of generality and consistency: if in order to do successful research in
some theory A we consistently reach for the methods and syntax of
theory B, we may consider A a heuristic foundation.

Even with all these caveats in mind, though, it is clear what this
kinds of foundations is, relative to other types. The practicality and
empirical quality of it make it stand out amongst the crowd. That is
not to say it is not commonly linked with other kinds of foundations.
This is especially true for the stronger kind of claims, e.g. metaphysi-
cal ones.

Consider one last variety of cognitive foundations, which we may
call internal cognitive foundations. These have to do with the internal
workings of our mind. Suppose that we consider the brain to function
probabilistically: that all the operations perform when reasoning or
when doing mathematics are in fact probabilistic calculations. We
can then consider probability theory to cognitively found the rest of
mathematics, since what we are doing when we do e.g. set-theoretic
calculations is really probability theory, whether we are aware of it
or not. Let us say in this case that probability theory is an internal
cognitive foundation for (some field of) mathematics. Again, this
notion of foundation may be relative to a field; our brains could be
doing probability theory for one sort of problem and predicate logic
for another. What’s more - we cannot be sure that there even is such
a thing as an internal cognitive foundation in any meaningful sense.
Nevertheless, positions like these do play a role in our thinking about
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mathematics. Suppose one takes a strong metaphysical stance, e.g.
the position that all mathematics is “really” set theory. Although it
does not strictly follow, it is then tempting to hold that we internally
“do set theory” whenever we perform an algebraic operation.

When considering the internal processes necessary for mathemati-
cal reasoning, we can also take the perspective of transcendental phi-
losophy. We may consider the a priori necessary conditions for the
possibility of gaining mathematical knowledge. We can refer to these
preconditions as the transcendental foundations of mathematics. For
example, we may consider the possibility of intuiting space a nec-
essary precondition for the possibility of geometrical knowledge.88

Since this kind of foundation, too, concerns our cognitive faculty of
doing mathematics, it is here shared under the header of cognitive
foundations, although it is arguably more suitable to transcendental
argument than empirical research.

Cognitive foundations in the pedagogical or heuristic sense may
not align well with more theoretical foundations, such as the meta-
physical-ontological variety or even the (rather practical) mathema-
thical-ontological brand. Since matters of mathematical existence
tend to be complex when compared to simple algebra for example,
it may require quite a hefty amount of education to understand the
theory providing ontological foundations for the algebra. Thus, the
algebra that is ontologically dependent on another theory may be
cognitively prior to it. Scenarios like these are unavoidable for mathe-
matical-ontological foundations, as the drive for a single framework
to express as many mathematical fields as possible in is at odds with
the drive to create small, easily-understood theories. Metaphysical-
ontological foundations, especially ones with a claim of exclusivity,
are bound to create the same situation.

3.2.2 Epistemological foundations

Following Marquis,89 we shall refer to foundations as epistemological
foundations if their purpose is to transfer some epistemological prop-
erty from the foundation to the founded theory. The exact nature of
such a property may vary from case to case, but certain themes are
common. For example, we may see an emphasis on the self-evidence
of the axioms in the foundation. The thought behind this would be
that this ensures their truth; and if we then deduce some theory from
these foundations using only truth-preserving operations (e.g. logical
ones), we are thereby ensured of the truth of the theory thus founded.
We find similar ideas whenever it is argued that the justification of
some theory derives from the foundation the theory is based on. In

88 Marquis has a number of examples of transcendental foundations by Hilbert and
Russell in [Marquis 2005], footnote 26.

89 [Marquis 2005], pp. 429

58



3.2 epistemological foundations

this case, the foundational arrangement is supposed to convince us
that some theory of mathematics is justified, because its foundation
is, and the theory is related to its foundation in such a way as to be
justification-preserving.

We can distinguish statements of different strength whenever we
invoke epistemological foundations to transfer some property x upon
a theory. For some x, it is clear that mathematics as a whole, or some
mathematical theory, already possesses it - for example, few would
argue that geometry isn’t justified as a practice. In such cases, if we
invoke a foundational relation of this kind, our aim is not to dispense
x on a theory that didn’t have it before, but to explain why it is
that the theory possesses property x. In other cases, the goal of the
scheme may be exactly to show that some field possesses a property
that it is not widely considered to have (e.g. analyticity). It is then
simply demonstrated that x holds of the theory; it is another matter
whether this foundational scheme is the ultimate reason why the field
possesses x.

The fact that the exact purpose of an epistemological foundation
depends on the property it aims to transfer means that the exact rela-
tion that holds between the foundation and the founded theory will
not be consistent across different epistemological foundations either.
Whatever relates the two theories, the only demand is that it be x-
preserving. Since one can imagine quite a few properties that are pre-
served under logical consequence, it is not surprising that many an
epistemologically founded theory simply be deduced from its foun-
dation, but it is by no means necessary.

3.2.3 Frege’s foundational project

Gottlob Frege concerned himself heavily with the foundations of math-
ematics, and in particular with the foundations of arithmetic. His
aims therein are perhaps most well-known as a programme of logi-
cism: the idea that mathematics can be reduced to logic. Such a sum-
mary does not suffice for our analysis of the kind of foundation he
tried to provide for mathematics, as this statement alone can be inter-
preted as merely mathematical; as merely a matter of form. The trans-
lation of one mathematical system into the syntax of another need
not be more than an enterprise of mathematical curiosity. Indeed,
Frege believed that whenever a proof could be provided of some state-
ment previously taken for granted, it should. He therein aspired to
ever greater generality. This is the more modest reading of Frege’s
programme: as merely a mathematical programme.90 More gener-
ous readings have Frege proclaiming extensive philosophical goals:
for example, his logicist programme had the aim of showing that
mathematical concepts can be defined in terms of purely logical con-

90 See [Benacerraf 1981] for this account of Frege’s programme.
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cepts, or it had to prove that mathematical principles can be derived
from the laws of logic alone. The first of these aims may be seen as
metaphysical-ontological in nature; it aims to tell us something about
the nature of mathematics. The second aim points us at Frege’s wish
to establish an epistemological foundation for mathematics. On the
strongest reading, he is truly “securing” the epistemological status of
arithmetic, since its axioms may be doubtful in nature unless based
on truly self-evident notions; on a weaker one, he is merely investigat-
ing the epistemology of arithmetic by establishing the epistemological
status of statements of arithmetic: in this case, that they are analytic.

Robin Jeshion identifies different readings of Frege’s goals.91 She
identifies three different ways of reading Frege and his intentions.
According to the Mathematical rationale, his aim were simply mathe-
matical: he wanted to prove statements admitting of proof, including
ones that were generally taken as axioms. According to the Logico-
Cartesian rationale, his aims were to secure arithmetical knowledge in
a logical source, as only that is beyond doubt; and according to the
Knowledge-of-Sources rationale, his aims were to describe the epistemo-
logical and ontological properties of arithmetical knowledge. These
different aims ascribed to Frege encompass different kinds of founda-
tion.92

Perhaps most directly, the mathematical reading of Frege’s aims is
not strictly foundational at all. After all, there would be no philosoph-
ical aims or claims involved.93 In particular, as Shapiro rightly points
out, different “foundational” systems could very well exist alongside
each other, providing multiple different proofs for the same state-
ments.94 On the Logico-Cartesian and Knowledge-of-Sources read-
ings of Frege, his project is epistemological in nature. Showing arith-
metic to be analytic is clearly the job of an epistemological foundation.
But from this point onwards, other kinds of foundations tend to run
together in Frege. If the truth of general arithmetic is truly in doubt
prior to its reduction to fully logical principles, then we are not merely

91 [Jeshion 2001], pp. 940. In general, this is an excellent overview of the different
interpretations of Frege’s foundational aims.

92 Frege’s actual aims remain a source of debate, with e.g. Benacerraf holding that
Frege had a purely mathematical rationale and Kitcher holding that the Logico-
Cartesian rationale is correct. In [Jeshion 2001], Jeshion holds that none of these
strict readings are broad enough. Stewart Shapiro follows Jeshion’s analysis in
[Shapiro 2011]. Here, we accept it as well, though not based on any specific read-
ing of Frege. Rather, by taking as a starting point broader view of Frege’s project
as encompassing both mathematical and “philosophical” goals, we can aim to char-
acterise these different readings. In particular, Jeshion’s readings can be put into a
wider context as “kinds of foundation” that are not limited in their scope to Frege’s
specific foundational project.

93 [Shapiro 2011], pp. 102.
94 Of course, not all kinds of foundation are incompatible with alternatives: for exam-

ple, any complex area of mathematics is going to have various cognitive foundations.
Ontological foundations, of course, are generally considered exclusive (although al-
ternatives exist, see e.g. [Hamkins 2012]).
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using these foundations epistemologically, to heave the property of
truth upon arithmetic. On the assumption that no contradiction can
be true, we are simultaneously establishing that arithmetic is free of
contradiction. Thus, there is a mathematical-ontological element to
these foundations as well. After all, any foundation with a goal of
establishing mathematical coherence falls in this category.

Moreover, Frege took an absolute view of justifications. He was
not concerned with any kind of personal justification, or with any-
thing even vaguely reeking of cognitive foundations for mathematics.
Rather, he was concerned with the objective ground of mathematical
propositions. This gives a peculiar “ontological” flavour to a foun-
dational project that seems epistemological at first glance. We are
not concerned much with the thinking subject anymore, but rather
with objective grounding relations holding between propositions, and
hence with the metaphysics of propositions.95

Thus, Frege’s foundations serve as an interesting case study to illus-
trate kinds of foundations to identify not only different foundational
aims of different programmes, but multiple possible (and arguably
non-exclusive) readings of a single foundational programme.

3.3 pragmatic foundations

Whereas ontological foundations were concerned with mathematics
as a whole and epistemological foundations were concerned with
mathematics as knowledge, as related to the thinking subject, there is
a further perspective to consider: the view of the working mathemati-
cian. The goals of ontological and epistemological foundations are an-
alytical. We study these foundations and apply them to mathematical
fields to gain an understanding of or about established mathematical
practices. Of course, certain fields of mathematics, such as model the-
ory, are themselves concerned with mathematical practice. Still, this
leaves foundations apparently completely removed from those math-
ematicians whose primary concern lies elsewhere, from the geometer
or the probability theorist. And yet, they too talk of certain areas of
their field serving as foundations for another. Thus, we stumble upon
yet another sense of foundation, perhaps one less “philosophical” in
nature: foundations as practical preconditions for mathematical prac-
tice.

95 [Shapiro 2011], pp. 104. This builds on the rationalist reading of Frege, wherein he
is concerned not with any personal justification for any statements, but with the true
reasons grounding any arithmetical truth, and thereby with the dependency struc-
ture between arithmetical statements. Thus, the metaphysical and epistemological
aims run together. See [Burge 1990] for this account of Frege.
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3.3.1 Methodological foundations

Methodological foundations serve as the array of tools a mathemati-
cian in a certain field needs to develop objects and structures within
this field. The relation here is one of mathematical necessity: the
mathematician needs to use tools of the foundational theory to be ac-
tive as a mathematician in his field. For example, we need to employ
the toolkit of group theory to get anywhere in algebraic geometry.96

Methodological foundations are explicitly relative like that: the meth-
ods useful in one branch of mathematics may be of dubious worth in
another. Thus, methodological foundations will generally be founda-
tions of a specific structure or group of structures, rather than foun-
dations of mathematics as a whole.

This brings methodological foundations close to cognitive founda-
tions, but methodology need not be concerned with understanding
per se. Rather, these tools are needed to be active in creating new
mathematical structures. It is very well possible we may reformulate
a theory in such a way as to make it comprehensible without knowl-
edge of its methodological foundations - but it is not likely we could
effectively develop the theory in such a manner. Thus, the comparison
with heuristic cognitive foundations seems more apt. Methodologi-
cal foundations are not to be confused with ontological foundations
either - the latter may be constructed after the fact, to settle issues
of existence of some object or other, or to soothe our doubts and as-
sure us that some strange or unintuitive new theory in fact does make
sense. Methodological foundations, on the other hand, are employed
during the development of strange and unintuitive new theories. Of
course, we may see a link here as well, as it is unlikely that some
theory may provide the proper methods for a fields of mathematics if
it is ontologically unreliable; a methodology resulting in impossible
objects is a doubtful methodology.

3.3.2 Organisational foundations

Finally, we can consider pragmatic foundations in a weaker, yet more
general sense: as a body of truths not for creating mathematics, but
for organising it.97 An organisational foundation is a mathematical
framework of sufficient generality to connect various distinct bod-
ies of mathematical work. If effective, it boasts some of the same
advantages that mathematical-ontological foundations did: a single
encompassing framework makes it easier to get an overview of the in-
terrelations between different areas of mathematics, and is conducive

96 [Marquis 2005], pp. 430-431

97 I borrow the term “organisational” from McLarty in [McLarty 2013], but with a fur-
ther distinction; whereas he runs together methodological and organisational foun-
dations, I attempt to distinguish between matters of organisation and matters of
methodology.
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to finding and correcting errors within theories. It is as this kind of
foundation that category theory is least controversial. On the other
hand, this kind of foundation, and perhaps all pragmatic foundations
in general, are often not deemed worthy of the honorific “foundation”
by philosophers used to using foundations for analytic purposes.

3.4 what’s important?

Mathematicians and philosophers have proposed foundations for a
variety of purposes - and most, if not all, of their goals seem to be lofty.
Nevertheless, different approaches call for different priorities, and a
structuralist philosophy puts certain questions in the foreground.

3.4.1 On the necessity of foundations

Recently, the necessity of foundations has been called in to question.98

If we are to answer the question of the necessity of foundations, how-
ever, we should be sure to ask what kind of foundation we are doubt-
ing.

For certain kinds of foundations, the question is seemingly irrel-
evant. The question for these is not whether mathematics ought to
have them - they simply do have them, as an empirical fact. Cogni-
tive foundations concern our ability to understand a certain structure
prior to understanding another. Unless one is really willing to hold
that we can understand complex numbers before ever even becom-
ing familiar with the natural numbers, it seems that the presence of
these kinds of foundations is beyond discussion. Likewise, unless
each mathematical theory henceforth provides its own unique tools
for proving theorems within them, it is a given that certain theories
serve as methodological foundations for others.

For others, I consider the kind of foundation to be defined broadly
enough that the mathematician will always aim to have them for
purely mathematical reasons. There is no reason why one would
not want good heuristic methods to find new mathematical truths.
Likewise, its serves the mathematician well to have organisational
foundations, to help him structure his work and find errors in it. For
argument sake, we can consider the possibility that mathematics will
grow so fragmented that we cannot really speak of one organisational
framework for all of mathematics anymore. In this case, though, we
may still have limited organisational foundations, relative to a specific
field. It seems difficult to imagine that mathematics will ever be so
fragmented that it will truly be an agglomeration of islands with little
to connect them in any meaningful way. Organisational foundations
for a certain field, such as category theory is for algebraic geometry,
are indispensable for the working mathematician.

98 See [Awodey 2003]
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Thus, when the necessity of foundations is called in doubt, we are
concerned about mathematical-ontological, metaphysical-ontological,
or epistemological foundations. We should take care to differentiate
between the need for any of the latter two foundations and the need
for a metaphysics or an epistemology of mathematics. We could have
a metaphysics or an epistemology without having a foundation serv-
ing an important role in them. This would simply mean that there is
no specific mathematical theory that plays a special role in either.

For metaphysics, this means that there would be a theory about
the nature of mathematical structures and objects, but this theory it-
self is not mathematical in nature, or cannot be reduced to a single
mathematical structure.99 Thus, the position reducing mathematics
to either set theory or category theory is generally excluded. Like-
wise, logicist projects are to be excluded, unless we take “logic” more
generally than can be captured in any mathematical theory, e.g. as a
schematic approach to human reasoning in general. A metaphysics of
mathematics without a mathematical, foundational level would have
to provide a metaphysics of all of mathematics directly, without tak-
ing a detour through any particular structure. One can easily imagine
a variant of in re or ante rem structuralism fitting the bill, or, a theory
linking mathematics directly to our cognitive faculties or to our lin-
guistic capacities. None of these philosophies are without their own
problems, of course. The fact that they are sensible positions to hold,
though, means that a rejection of metaphysical-ontological founda-
tions is a valid philosophical position.

The situation is somewhat trickier when one wants to reject epis-
temological foundations. Up to a certain point, the situation is anal-
ogous to the one regarding metaphysical-ontological foundations. If
one favours an epistemology of mathematics that does not take any
particular mathematical structure as epistemologically special, one
might bite the bullet and reject epistemological foundations of math-
ematics. The situation is not quite as straightforward, though, as
the exact role of an epistemological foundation my vary from case to
case. Recall that an epistemological foundation of mathematics is em-
ployed to transfer some epistemological property from a single theory
upon the rest of mathematics, or part of it, at least. Recall as well that
this can be taken in two ways: the epistemological foundation can be
the reason why mathematics as a whole has a certain property x, or

99 Of course, the position that a certain kind of mathematics (e.g. set theory) plays
a special metaphysical role, but cannot be fully captured in a single mathematical
structure, does not immediately exclude the possibility of mathematical foundations.
One could take a large theory of this kind as foundational while simultaneously
seeing the foundation as temporary and incomplete in nature. An outright rejection
of foundations may or may not exclude positions like these as well. One could accept
such theories as being truly metaphysically foundational and thus reject them, or
one may accept them as carrying some metaphysical worth but reject the honorific
“foundation”. We have seen a few of the subtleties positions like these hinge on in
section 3.1.1.
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it may have the property x anyway, and the foundation just serves as
a convenient method to show the reader that it holds for all of math-
ematics. For example, one reading of Frege’s logicist programme is
as a case of the former: one attempts to show that all of mathemat-
ics is analytic by providing a logical foundation of mathematics. The
property of analyticity transfers because this would establish math-
ematics as a logical enterprise, and because classical logic is in an
analytic enterprise if there is any. Thus, the foundation in this case
truly is the reason why all of mathematics would be analytic. Imag-
ine, though, that some clever philosopher has an argument for the
analyticity of mathematics that should hold for all of mathematics
equally. She happens to have shown particularly convincingly that
some number theory is analytic - not because number theory plays
a role in ensuring the analyticity of mathematics, but because it hap-
pened to be an easy and convincing case to make. She then estab-
lishes this theory as an epistemological foundation for mathematics
by translating most mathematical fields into number theory in such
a way that the reader is convinced that the property of analyticity is
transferred. In this example, the status of number theory as an episte-
mological foundation for mathematics would be clear. It is not clear,
however, that the rejection of this sort of foundation for mathematics
is a sensible position to hold. One can imagine opposition to taking
any particular part of mathematics to be epistemologically special -
and hence opposition to e.g. Frege’s logicist project. It is difficult to
imagine any sensible opposition to the kind of epistemological foun-
dation number theory is in our example, though. It would amount
to opposition to the fact that a particular mathematical structure may
be more convenient than others to establish a certain epistemological
property of. This is simply a fact; historical events and current knowl-
edge make us more readily able to talk of epistemological properties
of certain mathematical structures than others. We have a lot more to
say epistemologically about first-order logic than we do about some
new number-theoretical construct, for example.

The necessity of mathematical-ontological foundations is a partic-
ularly tricky subject, since it does not concern just philosophical ne-
cessity, but claims to a need for this kind of structure in mathematics
- much like methodological foundations, for example. At the same
time, it invites questions of a philosophical nature because of its onto-
logical form, because it describes mathematics in terms of what exists
and what does not. We shall turn to mathematical-ontological foun-
dations at length in the next section. Suffice it for now to say that
opposition to the very idea of mathematical foundations seems to be
directed at this kind of foundation in particular.
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3.4.2 On mathematical-ontological foundations

First and foremost, the functions of proposed foundations that are im-
portant to the mathematician rather than the philosopher cannot be
dispensed with. Now, of course, no one is suggesting that mathemat-
ical theories are dispensed with because they are the wrong species of
foundations. Those opposed to e.g. category theory as a foundation
rather see a lack of qualities in it that they feel necessary for anything
worthy of the honorific “foundation” - typically, a foundation should
be epistemological, cognitive or ontological. But the importance of
pragmatic foundations does relativise the claim of mathematical ne-
cessity that comes with mathematical-ontological foundations. The
need for the latter kind of foundations is invoked regularly with a
claim to prevent mathematical error. The frameworks mathematicians
themselves use just to prevent error and link up their works are prob-
ably more well-suited to error-finding than a single ontological frame-
work, however. For these purposes, the mathematician may employ
methodological or organisational foundations. In spite of claims to
the contrary100, the mathematician does not tend to define his objects
in a single ontological framework to ensure the well-behavedness of
his proposed structure. In a textbook, set-theoretic interpretations
of common tools and structures may be absent or cursory, and may
in most cases not be identified as grounding the field in any spe-
cific set-theoretic framework.101 Without such a framework, we can
hardly claim that the mathematician relies on it to ensure the well-
behavedness of his objects. For the mathematically necessary pur-
pose of error-finding, perhaps ontological foundations are not quite
as indispensable as they purport to be.

The mathematical-ontological perspective equates matters of coher-
ence with matters of existence: a theory is coherent if and only if it
exists within some theory. This brings us to a second concern with
regards to ontological foundations. Questions of ontology take on a
different guise in a structuralist framework. As far as mathematics is
concerned, the question of the existence of some structure can only
be considered from the perspective of another structure, wherein the
former plays the role of substructure. Thus, mathematical ontology
itself is always relative to some mathematical structure, lest we try to

100 e.g. Penelope Maddy in [Maddy 2011], pp. 33-34:

[...] set theory has solidified its role as the backdrop for classical
mathematics. Questions of the form - is there a structure or a math-
ematical object like this? - are answered by finding an instance or a
surrogate within the set-theoretic hierarchy. Questions of the form -
can such-and-such be proved or disproved? - are answered by investi-
gating what follows or doesn’t follow from the axioms of set theory.

101 See [McLarty 2012] for a number of examples of this kind. McLarty notes that set
theory might not usually be absent completely, but can not commonly be identified
as some foundational system or other.
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stuff all of mathematics into one superstructure. This puts ontological
foundations in an awkward spot, however, as those aim to establish,
once and for all, the existence or non-existence of mathematical ob-
jects and structures. If the answer to the question “whether x exists”
is always simply the counter-question “That depends - what struc-
ture are you working in?”, mathematical-ontological foundations lose
most of their sting.

The combined force of these two arguments should serve to “de-
mote” mathematical-ontological foundations from the position as all-
important judges of mathematical coherence that some philosophers
would assign to them. Rather, matters of mathematical error and co-
herence, if they play a role in foundations, need not favour ontological
foundations over other varieties.

Frege’s foundational programme had an air of mathematical ne-
cessity around it. Without his extensive programme, one could ar-
gue that arithmetic was messy and error-prone, and that arithmetic
knowledge could be seen as uncertain. This served as a justification
for an extensive epistemological and ontological programme. Nowa-
days, mathematics is still in need of clarity and error-finding. But it
can fend for itself better. Clarity and formal thoroughness have be-
come accepted as mathematical virtues. It is seen as good practice
to specify which particular structure the mathematician is working
in, what axioms he takes to be true, and perhaps with most difficulty,
what assumptions he is willing to make. With “merely” good heuris-
tic and organisational foundations, the mathematician can provide us
with knowledge unmarred by doubt and vagueness.

3.5 examining contemporary foundations

3.5.1 The status of ZFC

The Zermelo-Fraenkel axioms with Choice are perhaps most widely
used explicitly as “foundation of mathematics”. Indeed, we have re-
ferred to ZFC for purposes of example or comparison a number of
times. Given our taxonomic enterprise above, we may wonder what
kind of foundation ZFC indeed is. We cannot expect it to play every
role at once.

Let us start with a rather obvious exclusion: ZFC is not a cognitive
foundation in the pedagogical sense. We need no prior knowledge of
set theory to understand algebra, arithmetic or calculus. Of course,
it is possible to teach someone set theory first (and it has been at-
tempted on a rather grand scale in the United States with the New
Maths programme), but such an ordering is exceptional. We are cer-
tainly able to understand many fields of mathematics without any
knowledge of set theory, as evidenced by the long history of mathe-
matics before the advent of set theory.
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There is an argument due to Feferman claiming that set-theoretical
notions such as ZFC do indirectly serve as cognitive foundations.
This is not through a cognitive priority of the set-theoretic axioms
of ZFC themselves, but rather because they capture certain ideas that
the subject must be able to conceive of before engaging in any other
mathematical activity. These are the ideas of collection and opera-
tion. In order to understand, for example, a group, we need to be
able to conceive of a collection first, as to understand the collection
of elements in the group, and we need to be able to understand the
concept of operation, so as to understand the functions defined on
this collection that make it a group.102 Thus, by making explicit the
assumptions we make about our ability to collect and our ability to
relate objects, ZFC stays close enough to these cognitive foundations
to function as a believable foundation of mathematics. It is difficult
to put our finger on the exact sense in which this makes ZFC a foun-
dation for the rest of mathematics. Feferman’s argument harks close
to a transcendental argument, noting necessary presuppositions for
our ability to reason in mathematics. Perhaps the argument is to be
taken as a staged one: the ideas of operation and collection are tran-
scendental foundations for ZFC, and ZFC are in turn found the rest
of mathematics. Using non-set-theoretical foundations then amounts
to skipping a step: by omitting the set-theoretic level, the transcen-
dental foundation that the ideas of operation and collection provide
are not transferred onto the rest of mathematics.

The main claim to fame of ZFC, however, is its position as the
go-to mathematical-ontological foundation. This is due to two math-
ematical virtues. Firstly, its axioms speak almost exclusively of the
existence and nonexistence of sets. Hence, in the language of set
theory, every mathematical question is an ontological question. The
existence of a relation is as much governed by the axioms of ZFC as
the existence of a group or a hypercube. All of these are simply sets;
they occur at some point in the set-theoretic hierarchy if they exist,
and otherwise they do not. Second, ZFC is extremely rich. Most of
conventional mathematics can be given a set-theoretic interpretation
in ZFC. In particular, a part of mathematics that has been historically
tricky for mathematicians and philosophers, the study of infinity, has
found a fruitful basis in set-theoretic study, most commonly within
the context of ZFC. The structural nature of mathematics ensures that
the set-theoretic system expresses the exact same structure that was
investigated in the original formulation, provided that the essential
properties of the structure were preserved - in other words, provided
that the set-theoretic formulation is indeed isomorphic with the orig-
inal formulation. The combination of these two virtues makes it a
prime candidate as a mathematical-ontogical foundation, since most
structures the mathematician encounters in his research can be ex-

102 [Feferman 1977], pp.150
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pressed set-theoretically and consequently investigated for their exis-
tence within Zermelo-Fraenkel set theory.

It is this very call for a translation of various kinds of mathemati-
cal systems into set-theoretic terms that makes it less successful as a
methodological or organisational foundation, however. These sorts
of foundations are expressly not syntax-neutral. Certain formula-
tions of the same structure may be more conducive to creating or
organising mathematics than others. And although many structures
often can be expressed in set-theoretic terms, they often are not - at
least not beyond a definition of primitive concepts as sets. This gen-
erally means that all is well on the mathematical-ontological front,
bar operations that turn out to be untranslatable into a succession of
applied axioms of ZFC. But such a translation does not make ZFC,
or any form of set theory, a methodological foundation for mathe-
matics. The methods employed are, outside of set theory, typically
not set-theoretical. In fact, when it comes to complex proofs, it can
even turn out to be very difficult, not to mention a daunting task,
to translate them into a purely set-theoretic proof on the basis of
ZFC. This alone means that it does not function as a methodologi-
cal foundation for many of the fields it purports to found. After all,
a methodological foundation provides the very tools that the mathe-
matician uses in his proofs. Had ZFC functioned as a methodological
foundation in these situations, the proofs would have been expressed
set-theoretically, or at least easily understood for the most part in set-
theoretic terms. The fact that it is difficult to express common proofs
set-theoretically means ZFC does not serve as a methodological foun-
dation commonly.

Another consequence is that it is of limited use as an organisa-
tional foundation. Links between different parts of mathematics are
rarely found through translation of all the systems involved into set-
theoretic terms. Error-finding, likewise, is not done through a set-
theoretic lens. Long, complex proofs that are subject to extensive
error-finding sessions (such as, famously, Andrew Wiles’ proof of
Fermat’s last theorem) are not generally submitted to error-finding
through set-theoretic methods - and, perhaps more ominously for
ZFC’s role as an organisational foundation, may be accepted as valid
before such a translation is finished or even attempted.

The discussion with regards to the status of ZFC as a metaphysical-
ontological foundation is ongoing. The trouble with this particular
kind of foundation is that there are few methods if any for us to
acquire the kind of metaphysical knowledge required to settle this
debate. What kind of argument could convince us that mathemati-
cal objects “really are” sets or categories? Thus, this debate is often
held through connections with other manners in which ZFC claims
to be a foundation. Those that greatly value a status as mathematical-
ontological foundations may tend towards accepting it as a metaphys-
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ical one, while those who feel that the behaviour of mathematical
objects in practice tells us more about the nature of mathematical
objects may oppose, on the grounds that it is a mediocre methodolog-
ical foundation. At present, we would like to note that structural-
ism does not in particular point us to a single mathematical universe,
which has to be captured through metaphysical foundations, in a way
that platonism arguably does. Structures are relatively self-standing:
we can investigate the natural numbers independently of group the-
ory just as easily as we can link the two. Hence, ZFC, if taken as
a metaphysical foundation for mathematics, would place mathemat-
ical structures into a single framework, which is at best arbitrary in
its portrayal of mathematical structures, and at worst contrary to our
understanding of mathematical structures as self-standing.

A link between cognitive and metaphysical foundations of mathe-
matics, however, seems hard to deny. It is difficult to imagine that
we could get to know mathematical structures in such a way that it
would be completely independent from the very nature of these struc-
tures. Thus, if we accept Feferman’s claim of the cognitive priority
of the ideas of collection and operation for all of mathematics, set
theory may metaphysically found most of mathematics in the same
staged manner in which it cognitively does. One might suggest that
the reason it may appear to us as arbitrary is because of this staged
approach; in fact, it may be an arbitrary, yet sufficient way to capture
these ideas and hence found mathematics. Indeed, Feferman did not
intend his work as a defense for ZFC or any current set-theoretical
foundations of mathematics.103 The exact manner in which these two
ideas might be said to found mathematics, via set theory or otherwise,
lies beyond the scope of this thesis, however.

3.5.2 The status of category-theoretic foundations

Category theory, when taken as foundational for mathematics, tends
to be considered such in a different manner than set theory is. It
is controversial as “a foundation for mathematics” as classically con-
ceived, that is to say, as an epistemological, cognitive or mathematical-
ontological foundation. We will come back to this at length in chapter
4. In particular, category theoretic mathematical-ontological founda-
tions and its criticism will be treated in section 4.1.1.

For now, suffice it to say that Feferman’s argument in the previous
section was aimed primarily at category theory. The primitives in-
troduced in the Eilenberg-MacLane axioms for category theory - that
is, objects and morphisms - can indeed be argued to be cognitively
dependent on a notion of collection or operation. There are two av-
enues for response to this; the first is to accept it, but deny that it
is a problem. This amounts to letting go of any category-theoretical

103 [Feferman 1977], pp. 154
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foundations as cognitive foundations, but sticking with it as another
kind of foundation. The other is to argue that category theory simply
captures these concepts at the right level of generality in its objects
and morphisms,104 and that there is nothing more cognitively “re-
mote” from these ideas than there is in the case of set theory. If
the rather natural fit of category theory with structuralism reflects a
closeness with our capacity for understanding mathematics, then we
might make the latter case. In practice, however, we know too little of
the cognitive features involved in mathematics to argue either way.

Category theory as a whole105 is perhaps most uncontroversial in
its role as a heuristic cognitive foundation. Category-theoretic tools
are commonly used as tools in mathematical research to indicate
promising venues for further work. Identifying the morphisms in a
given structure is often a fruitful enterprise, as is looking for adjoints.
Likewise uncontroversial is its status as a methodological foundation
for many fields of mathematics - in particular, those in algebra or
closely related fields.

Moreover, as we saw reflected in the position held by McLarty, cat-
egory theory has a good claim to being an organisational foundation
for mathematics. The links between different fields can often accu-
rately be reflected through a categorical framework. A formulation
in category-theoretic terms tends not to obfuscate the meaning of the
terms involved as much as the translation of a proof in set-theoretic
terms might.

Thus, category theory shines as a foundation of the kinds that set
theory was weak in. At first glance, however, it seems that the con-
verse might also hold. As such, the status of category-theoretic foun-
dations stirred up some debate, which we will turn to in chapter 4.

104 This view is held by Marquis; see [Marquis 2014] pp. 436

105 That is to say, categories as simply conceived by any traditional axiomatisation of
categories, not as in any specific proposed foundation of mathematics, such as the
ETCS or CCAF.
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C AT E G O R I C A L F O U N D AT I O N S O R F R A M E W O R K S

In this chapter, we turn towards the contemporary debate regarding
categorical structuralism and category-theoretic foundations of math-
ematics. We shall examine the criticism of category theoretic foun-
dations and the rejoinders from the categorical structuralists. Using
the structuralist view of mathematics from chapter 1 and the analy-
sis of mathematical foundations from chapter 3, we can analyse the
arguments on both sides of the debate, and come to a view of mathe-
matics, and the role of category theory therein, that avoids the pitfalls
of either side.

The project of founding mathematics - in one sense or another - in
a category-theoretic framework quickly became a target of criticism,
usually following the lines of Feferman’s [Feferman 1977], which we
discussed before in section 3.5. Further criticism mostly concerned
the mathematical form that categorical foundations necessarily take
just by being categorical. Nevertheless, the criticisms are quite varied
in nature. To bring some order to these concerns, we deal with them
according to the kind of foundation they see categorical foundations
failing in, following our taxonomy from chapter 3.

4.1 ontological concerns

First on the agenda is, again, the ontological aspect of foundations.
Whereas there is an established (if informal) ontological background
to full-blown set theory, the “set-theoretic universe”, there is no cate-
gorical equivalent quite as established. Moreover, there are concerns
that category theory cannot give any satisfactory ontology a priori. The
chief proponent of this line of thinking is Geoffrey Hellman.106

4.1.1 Assertory versus algebraic foundations

To treat Hellman’s criticism properly, we need to introduce the exact
difference in mathematical form that his argument hinges on. Using
modern terminology for a distinction going back to the early twen-

106 See section 1.3.2 for his alternative account of modal structuralism
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tieth century, we can distinguish between assertory statements and
algebraic ones.107

“Algebraic” axiomatic statements go back at least to Hilbert. As
a mathematician in the late nineteenth century, he was faced with
the flourishing of many different geometries besides the traditional
Euclidean geometry. It had grown increasingly obvious that these ge-
ometries, while mutually inconsistent, were more than passing fads
of the mathematician’s fancy. With geometry becoming less obviously
a study of space but rather the study of a certain range of structures,
geometry lost its status as the example of epistemic certainty.108 The
role of physical space in geometry became that of an application of
a mathematical theory that has a status of its own. Shapiro charac-
terises Hilbert’s Grundlagen der Geometrie as the culmination of this
process of abstraction:

Issues concerning the proper application of geometry to
physics were being separated from the status of pure ge-
ometry, the branch of mathematics. Hilbert’s Grundlagen
der Geometrie [1899] represents the culmination of this de-
velopment, delivering a death blow to a role for intuition
or perception in the practice of geometry. Although intu-
ition or observation may be the source of axioms, it plays
no role in the actual pursuit of the subject.109

Hilbert’s axiomatic system of geometry did not set out to capture a
pre-mathematical concept of space, but rather to provide a schematic
set of axioms, which, taken together, describe a geometric pattern on
any possible interpretation of its terms. The undefined primitives
in Hilbert’s axioms could be filled by anything at all as long as the
axioms are satisfied. In this way, they describe a schema of concepts
and their interrelations, not a particular chunk of reality. What it
means to be a geometric object, such as a line, then, is defined by these
axioms: anything that satisfies the axiom will fulfil the schematic
requirements for being a line, and thus be one. Hellman and Shapiro
call axioms formulated in this way algebraic, based on an analogy with
elementary algebra: a group or ring is anything satisfying the axioms
of a group or a ring, rather than any specific unitary object.

Hilbert’s formulation of axioms was attacked by Frege, on whose
account axioms, like other sentences, should express a proposition
that can be grasped by the listener.110 In particular, axioms should
be true, and for them to be true, the terms expressed in them should
have a definite sense. Hilbert’s schematic axioms seemingly lack this

107 [Shapiro 2005], pp. 67. The term “schematic” is sometimes used synonymously with
“algebraic” in the literature.

108 [Torretti 1999]
109 [Shapiro 2005] pp. 63

110 See [Blanchette 2014] for a full account of the Frege-Hilbert controversy, and
[Shapiro 2005] for a summary aimed at defining the algebraic/assertory dichotomy.
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property. Should, however, they be seen as having meaning before-
hand, they then cannot be said to define what it means to be a geo-
metrical object of some sort or other. Hence, these proposed axioms
fail either as defining what it is to be a mathematical object of some
sort, or fail as being meaningful axioms. On Frege’s account, axioms
should express a definite and true proposition about concepts that
have been defined already, or are otherwise known already. Hence,
the axioms of arithmetic express truths regarding the realm of natural
numbers, and the axioms of geometry express truths regarding phys-
ical space. As a result, the axioms will have a definite truth value.
Reverting to Hellman and Shapiro’s terminology, we shall refer to
statements formulated in this way as assertory.

Turning back to the matter of categorical foundations, then, it is crit-
ical to note that the axioms of category theory itself are algebraic.111

A category, after all, is anything satisfying the Eilenberg-MacLane ax-
ioms. Categories are presented as schematic: there is no obvious ex-
ternal referent involved in the understanding of these terms. Rather,
the structure is stated by defining some mathematical terms in terms
of their interrelations.

Hellman’s criticism now resides in the inappropriateness of alge-
braic axioms as a foundation of mathematics.

[...] somehow we need to make sense of talk of structures
satisfying the axioms of category theory, i.e. being categories
or topoi, in a general sense, and it is at this level that an
appeal to “collection” and “operation” in some form seems
unavoidable.112

Or, more recently:

Of course we know what the primitives of the first-order
CT axioms are; however, the question is not about the
definition of “category,” but rather about the primitives
of the background (informal) substantive mathematical-
foundational (meta-)theory, which, as Feferman observed,
employs notions of collection and operation and functor.113

Thus, the problem lies a conceptual level below the actual Eilenberg-
MacLane axioms. In order for there to be any content to these axioms,
we need something more, and it is this “something more” that we
cannot deal with categorically.

We can analyse the idea behind this criticism by investigating the
purported logical form of their axiom. The idea is that, being alge-
braic, they feature a “silent” quantifier ranging over possible systems
exemplifying the categorical structure:

111 Recall the definition of a category on page 34.
112 [Hellman 2003], pp. 135

113 [Hellman 2005], pp. 550
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For all systems A, if A satisfies the Eilenberg-MacLane
axioms, then it is a category.

and by extension:

For all systems A, if A satisfies the Eilenberg-MacLane
axioms, the following mathematical statements hold of it...

As such, mathematics requires the existence of such an A, which
would in turn require a proof likewise based on category theory. It
was this very same weakness that haunted the in re structuralist try-
ing to reinterpret the meaning of mathematical statements, and the
ante rem structuralist trying to give an account of which structures
truly exist: the problem of the background ontology. There needs
to be a domain for the quantifier “any” to range over in their inter-
pretation of even simple mathematical statements. But on Hellman’s
account, such a domain was exactly what the foundation was sup-
posed to provide! Thus, a non-assertory theory cannot play the role
of foundation itself.

This informs what Hellman calls the “problem of the home ad-
dress” - where do all these categories live? If the axioms do not
establish a universe of structures, how can we be sure what domain
these axioms range over? As Hellman puts it:

[...] just as in the cases of more familiar algebraic the-
ories, the question about mathematical existence can be
put: what categories or topoi exist?114

We can see that the problem here is quite straightforwardly failure
as mathematical-ontological foundations. What is lacking is a mathe-
matical theory establishing the existence or non-existence of certain
structures or other. In the quotes above, of course, Hellman directly
referred to the concepts of collection and function, and thus to Fefer-
man’s famous argument. The idea is that we cannot conceive of the
background theory in terms other than those. As this is rather clearly
an epistemological matter, we will return to this issue in section 4.2.

Moreover, if we employ algebraic axioms, it would leave mathemat-
ical statements with an issue of modality: whereas these statements
are supposed to be categorical (in the ordinary sense of the word),
they would take the form of a generalised hypothetical. Their truth
would hinge on the existence of some sort of structure in the back-
ground ontology. In this way, the mathematician working with alge-
braic statements and without an assertory foundation for them, will
see his mathematics reduced to a variation on hypothetico-deducti-
vism. Any theorem proved will not be a truth, but rather a hypothet-
ical dependent on the structure it is supposed to clarify.

114 [Hellman 2003], pp. 137
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All these problems are made possible directly by the algebraic na-
ture of these axioms. Because they seem to quantify some domain of
background objects, there is uncertainty over the extent of these ax-
ioms as long as there is uncertainty about the existence of the objects
they are about. Likewise, we can ask questions about other properties
of the background ontology - cognitive, epistemological, and so forth.
By contrast, the standard reading of the axioms of full-blown set the-
ory is in an assertory sense: they are seen as expressing truths con-
cerning the set-theoretic universe. The set-theoretic axioms of ZFC
simultaneously define the behaviour of sets and the extent of existing
sets. Hence, there is no ontological uncertainty even if there were a
problem of background ontology for full-blown set theory.

According to Hellman then, to avoid any of these problems with-
out appealing to set theory, mathematics needs not be assertory per
se, but its foundation should be. Only this can ensure the existence
of mathematical objects for the statements to be true of, and avoid
the problem of the background ontology. Thus there is, on Hellman’s
account, a fundamental mismatch between the assertory nature of
proper foundations and the algebraic nature of category-theoretic ap-
proaches.

4.1.2 Responding to Hellman

Now first and foremost, let us refer back to section 3.4.2 on mathemati-
cal-ontological foundations in response. We do not need this kind
of foundations per se for the strictly mathematical purpose of error-
finding. We can distinguish between organisational and ontological
kinds of foundations and rely on the latter to avoid impossible or
trivial structures. Nevertheless, distinguishing between coherent and
incoherent structures is something that we must be able to do, one
way or another. We will come back to the matter of coherence in
section 4.3.1.

For now, let us recall that on the structuralist account, mathemati-
cal existence can only be defined from within another mathematical
structure. Thus, what we can take from Hellman’s criticism is that,
if we want to get anywhere ontologically on a categorical account of
mathematics - or at least if we want to get “as far” as full-blown set
theory does - then we need some category-theoretic theory asserting
the extent of the existence of mathematical objects.115 Of course, the
Eilenberg-MacLane axioms themselves do not meet this demand in

115 It is important to note that it is not necessary to have one once-and-for-all categorical
account of all of mathematics, or even in principle one framework that could be ex-
tended indefinitely (as full-blown set theory on some accounts purports to be - see
e.g. Gödel’s views as set out in [Tieszen 2005]). Rather, one can see this as meeting
the demand for mathematical-ontological foundations halfway: such foundations
might not be necessary, or even reflective of the nature of mathematics on a struc-
turalist account, but given their mathematical usefulness, i.e. their way of serving si-
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any way. What is needed for a categorical, ontological account then,
it some sort of assertory mathematical foundation.

Now as a matter of fact, there are such foundations. In fact, one
of the most prominent categorical foundations for mathematics, Law-
vere’s ETCS, is assertory in nature.116 It features extensive ontological
claims: for example, it has an axiom establishing the existence of a
terminal object 1, and an axiom establishing the existence of a natural
number object (analogous with ZFC’s axiom of infinity.) There is no
need to wonder about the background ontology, then: it is carefully
delineated by our axiomatic system. We do not invite these problems
back in the long way around simply by using category theory, either.
The algebraic character of the Eilenberg-MacLane axioms never en-
ters play, as we are concerned from the start with a single, concrete
category. Thus, we never have to consider the axioms as defining
some indeterminate number of categories, raising questions on the
level of the background ontology. The axioms concern, in this case,
the category of sets, whose behaviour we further establish through
our axioms.117

Alternatively, one may reject Hellman’s analysis that there is some-
thing wrong with algebraically-formulated axioms in the first place.
This line of thinking is due to the antifoundationalist Awodey.

4.1.3 Revisiting Awodey

Using our analysis in terms of kinds of foundations from chapter 3, we
can make further sense of Awodey’s straight-up rejection of “foun-
dations”. What is clear is that his top-down view of mathematics
precludes any kind of foundation that aims to provide the “building
blocks” of mathematics, or that aims to define the universe of math-
ematical objects. As such, he rejects ontological foundations, both
mathematical and metaphysical, almost explicitly. More strongly, his
rejection of “foundationalism” in general implies a rejection of any
kind of foundation that is not strictly relative to some structure or
to some field of mathematics - that is to say, any kind of foundation
of “all of mathematics” rather than of a specific structure or class of
structures. This then includes most, if not all, epistemological founda-
tions. After all, if we wish to transfer some epistemological property
from one specific structure to all of mathematics, that structure needs
to find its way to all of mathematics in such a way as to transfer the
property. Such a situation is unlikely at best if we do not see all of
mathematics as somehow derived from a particular structure. Hence,

multaneously as an organisational foundation for mathematics, a category-theoretic
account is useful and must then be assertory in nature.

116 See [Linnebo & Pettigrew 2011], pp. 233

117 One might ask whether we need not understand the Eilenberg-MacLane axioms be-
forehand in order to make sense of these theories. That way, we might run into the
cognitive aspect of Feferman’s criticism. We shall come back to this in section 4.2.1.
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if we want to make an argument about e.g. the cognitive accessibil-
ity of mathematical structures, we have to start from a structuralist
analysis in order to “transfer” any kind of property over all of math-
ematics - no single mathematical structure in particular will do. In
other words, an ontology or epistemology of foundations will need
to be explicitly philosophical in nature rather than mathematical. We
might get pretty far still if we use category theory, since it allows us
to express things on a structural level easily - but since Awodey does
not identify mathematics with category theory (i.e. as metaphysical
foundation), but rather sees it as just a good way to express structural
mathematics, it is unlikely that this method will get us any categorical
(in the ordinary sense of the word) epistemological knowledge.

Turning back, then, to the issue of the correct form of foundations,
Awodey is perhaps most direct in answering Hellman’s problems
with algebraic foundations: he rejects the problems outright. He does
not share the interpretation of any algebraically formulated sentence
as featuring a silent universal quantifier, and does not put it shyly:

This lack of specificity or determination is not an acci-
dental feature of mathematics, to be described as univer-
sal quantification over all particular instances in a specific
foundational system as the foundationalist would have it
- a contrived and fantastic interpretation of actual mathe-
matical practice (and even more so of historical mathemat-
ics!).118

From the perspective of top-down mathematics, this is indeed clear.
Awodey does not see a specific instance of a general theorem as that
theorem applying to something more basic, or as expressing a truth
about an infinity of basic building blocks. Rather, by proving the
theorem, we have established it as true of a generic structure “higher
up”, and when we “apply” it, we are only adding more structure to it
to bring it down to a lower, more detailed, more specific level. Thus,
a truth established of groups in general can be seen as still true of
Abelian groups by adding commutativity.

Even an algebraic axiom or theorem then simply establishes a truth.
It does not rely on a further level to quantify over - until we specifi-
cally want to quantify over something, there is no such level needed
in our analysis. The seeming indeterminacy of algebraic axioms is
then no mistake to be avoided, but is reflective of the very nature
of mathematics. Mathematical truths are expressed on a structural
level - that is, they are expressed regardless of any inner structure to
the objects in the structure. As any mathematical statement concerns
structure, not objects, this invites a different reading of mathematical
statements.

118 [Awodey 2003], pp. 7
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4.1.4 Interpreting mathematics

To close the gap between Awodey and Hellman, we can formulate
Awodey’s interpretation of mathematical statements, much like Hell-
man does in his account of modal-structuralism. Let us take a simple
example:

In every group, the unit e is unique. (8)

Clearly, this statement is algebraic in nature. On the “standard read-
ing” - perhaps more accurately the foundationalist reading - we would
see this sentence as implicitly quantifying over some ontological do-
main:

For all G, if G is a group, then its unit e is unique. (9)

Of course, this formulation harks closer to platonism than to any kind
of structuralism. We can bring this formulation in line with a generic
account of structuralism, be it ante rem, in re or eliminative, as follows:

For all systems G, if G expresses the group structure, then
the unit e of G is unique.

(10)

For completeness sake, recall that, on Hellman’s modal-structuralist
account, we would interpret the sentence thus:

For all logically possible systems G, if G expresses the
group structure, then the unit e of G is unique.

(11)

On an “algebraico-structuralist” reading, though, we can also give an
interpretation that does not imply a background ontology, let alone
an implicit quantification over it. Rather, we want to read (8) as stat-
ing a truth about the structure of a group:

Groups are such that the unit e is unique. (12)

The sentence then expresses something at the level of a structure,
and only at that level. Thus, the problems invited by Hellman’s read-
ing of algebraic sentences are avoided. This does not mean that the
indeterminacy involved is lost - and with it, the strength in variation
that category theory has (by taking its objects to be groups, categories,
rings, sets, etc., and morphisms to be the associated homomorphisms).
Rather, we can avoid a reading in which we have to fix a background

79



4.1 ontological concerns

domain and determine the extent of our algebraic statement rather
than taking it at face value.119

Note that our aim in giving this alternative interpretation of a math-
ematical statement is not meant to, once-and-for-all, give a correct
account of “how to read” mathematical statements on a structuralist
view. Rather the aim is to show, by providing an alternative, that
the universal quantifier reading is not the only one. In fact, on a
structuralist account, both readings - or something akin to them - are
necessary. We need to be able to see this rule as quantifying over
systems, i.e. as in (10), in order to identify some particular structure
as an instance where the rule expressed in (8) holds. For example,
we want to be able to apply this rule to say that Z/60Z has a unique
unit, and so do the quarternions. At the very least, we want to be able
to quantify over some given collection of groups. At the same time,
though, we can work within the structure of a group, determined only
by the axioms of group theory, and assert the rule from a top-down
perspective. For this, we need a reading akin to (12). We can see a
mathematical statement either as a rule to be applied or as constitut-
ing some truth, as implicitly defining something. It is worth noting
that the problem of modality is sidestepped completely, as there is
nothing hypothetical about such a statement.

It is crucial to note here that on Hellman’s account, we are forced
by the mathematical structure of an algebraic statement into a certain
philosophical interpretation of the statement. Simply because it is not
assertory in form, we are to read it as if it had a quantifier over some
background domain. What the above example shows, then, is that
this is a misunderstanding. Mathematical statements, including ones
algebraic in form, can be read at face value.

Of course, one may still have philosophical objections to such a
reading, or to any particular reading. It is such concerns that led
Hellman to his modal account of structuralism, for example. But it is
important to note that the face-value reading of algebraic statements
is entirely in line with the nature of mathematical structures. After
all, these have a certain indeterminacy: they are only determined up
to isomorphism. Thus, there is always room for further interpreta-
tion, and yet, such a interpretation would go beyond the structure as
described. Thus, a face-value interpretation of many mathematical
statements is necessary to neutrally describe any particular structure
- that is, to describe it without describing it from the perspective of a
richer structure.120

119 One can see this “face value reading” as an extension of Shapiro’s places-are-objects
perspective in section 1.1.1, allowing us to refer to structures as a whole at face value
“as objects”, as well as to places in the structure.

120 Of course, a “face value” reading presupposes that it is clear what structure we are
talking about; if it is not, multiple interpretations involving various structures are
possible. This would lead us to the kind of interpretation of (quasi)mathematical
statements we saw in the footnote on page 27.
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The interpretation of even simple mathematical statements such as
(8) is not set in stone. We may even switch freely between these inter-
pretations as mathematical need arises.121 We are not, then, forced
into any particular philosophical view of mathematics due to the
mathematical form of an expression, despite Hellman’s gripes with
algebraic statements.

What is happening on the foundationalist reading of (8) is inad-
vertent non-structural thinking, invited by a certain interpretation of
mathematics rather than by mathematical fact. By interpreting the
sentence as quantifying over some universe of objects, we are invit-
ing an object-based view of mathematics. Hellman then tries to draw
a philosophical conclusion with regards to the categorical-structural
approach by inviting a nonstructural view of mathematics in the first
place. That is simply begging the question; of course we cannot ex-
press mathematics categorically in a structuralist manner if we ex-
plicitly ask for a non-categorical-structuralist interpretation of those
axioms.

On Awodey’s account, the only thing we need check to be sure of
an algebraic statement is whether the antecedent of a mathematical
statement is ever filled - in other words, whether there is a system ex-
pressing the proposed structure at all - or in other words yet, whether
the structure is coherent.122 This, he notes, is done simply by inves-
tigating the structure itself and the consequences of the statement
whose antecedent we doubt.123 We do not, then, invite any particular
new sort of doubt on the coherence of our mathematical structures
by employing a non-foundationalist point of view.

4.2 epistemological concerns

We saw that the bulk of Hellman’s argument is mathematical-ontolo-
gical in nature. Through a specific reading of mathematical state-
ments, we invite questions that are ontological in nature - questions
of the kind that the categorical structuralist wants to avoid simply by
not aiming for such a foundation at all. There are further concerns
though, regarding the associated epistemology.

121 Of course, this freedom may be limited by philosophical concerns; for example to
ensure reference to structures is avoided if one is an eliminative structuralist, or to
ensure a background ontology is avoided if one follows Awodey.

122 By asking “in cases where it is not sure whether the conditions at issue are ever
satisfied” ([Awodey 2003] pp. 9), Awodey uses language inadvertently suggestive of
the “quantifier reading” of mathematical statements. It is clear that the only thing
he means is that we need to ensure the consistency of the antecedent. Hence, we are
speaking of matters of coherence, and thus of organisational foundations if we speak
of foundations at all, and not of ontological foundations “the long way around”.

123 [Awodey 2003], pp. 9
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4.2.1 The matter of autonomy

Suppose that we aim to establish a categorical foundation in much
of the same way that ZFC can be a foundation for mathematics. We
grant, for the sake of argument, the assertory/algebraic distinction,
follow Hellman’s advice to avoid any algebraically formulated ax-
ioms, and seek to adopt an assertory categorical theory. Even though
we’ve then dealt with the mathematical-ontological concerns, we are
not out of the woods yet. Our foundations are expressed in the lan-
guage of category theory: in terms of objects and morphisms. Hence,
in order to understand our foundations, we need to understand these
category-theoretic basics first. But this means that we risk running
afoul of Feferman’s argument the long way around. For if we need
to understand concepts of collection and function, or even the full-
blown concept of set, in order to understand the Eilenberg-MacLane
arguments, and thus to understand categories at all, there is indeed a
cognitive dependence in play.

The notion appealed to here is one of the foundational autonomy. In
order for any theory to take a role as a non-relative foundation of
mathematics, for example as a mathematical-ontological foundation,
it must be autonomous: it cannot depend in any way on another
mathematical theory external to the proposed foundation.124 To fail
this demand of autonomy would be to fail as a foundation: how
is some other part of mathematics to be described as depending on
the proposed foundation if the foundation itself cannot be expressed
without referring to these mathematics? It is important to note that
likewise, the tools employed by the antifoundationalist cannot be de-
pendent on some foundation either, lest the entire enterprise reduces
to some foundational system the long way around.

Linnebo and Pettigrew, in their investigation whether category the-
ory can provide a foundation of mathematics, make a distinction
between three different types of autonomy which any foundation
must have.125 The Logical Autonomy requirement is straightforward:
if a proposed foundation depends logically upon another foundation,
such as the orthodox one, it cannot itself function as a foundation.
This is a syntactic, mathematical matter: if we were to explicitly need
full-blown set theory to formulate our categorical set theory, for exam-
ple, we simply cannot say to be doing categorical set theory proper.126

Another requirement is that of justificatory autonomy: can the existence

124 Foundations that are relative a certain mathematical structure by nature, such as
methodological or cognitive foundations, of course need not be autonomous - al-
though we need to start somewhere with understanding mathematics. Thus, a
proper thorough account of the cognitive foundations of all mathematics has to start
with something as basic as learning to count.

125 [Linnebo & Pettigrew 2011], pp. 227

126 It should be clear that this is not the case. The sceptical reader is invited to read an
account of ETCS in [Linnebo & Pettigrew 2011] or the original [Lawvere 1964] and
find a full-blown set-theoretic term in the axioms.
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of the objects of a certain foundational scheme be argued without re-
lying on a justification belonging to some other theory? We leave this
matter of coherence to section 4.3. The conceptual autonomy require-
ment demands that a foundation can be fully understood by itself;
there should be no need to refer to concepts belonging to another
foundation to explicate the concepts at work here. It is this latter
form of autonomy that concerns us here. For if we truly need to un-
derstand full-blown set theory in order to make sense of categorical
set theory, for example, then the latter cannot serve as a cognitive
foundation for mathematics.127

This leads us straight to the primary weakness of Feferman and
Hellman’s argument with regards to cognitive matters. The struc-
ture of both their arguments is roughly as follows: There is a reason
why set theory is cognitively prior to category theory. Thus, category-
theoretic theories cannot be cognitive foundations. Thus, they cannot
be foundations at all. Now the latter simply does not follow. At the
least, what we lack is a substantive argument why a theory that is
cognitively prior to another also has to found it ontologically - or has
a greater claim to being an organisational or methodological founda-
tion to mathematics. There is simply no such argument made. The
implicit assumption is that a “proper foundation” needs not to rely
cognitively on another theory. This might conceivably have been ac-
ceptable if what proper foundations are were not the very thing con-
tested, but that is the case. Moreover, the idea that an ontological
foundation of mathematics also has to be a cognitive foundation for
all of it is frankly preposterous. Recall that cognitive founding, as
in 3.2.1, is a relation of pedagogical priority: some theory A cogni-
tively founds B if we need to understand A in order to understand
B. But we can all certainly understand the natural numbers without
being familiar with the axioms of Zermelo-Fraenkel set theory. In
fact, lots of mathematical research is done by people who are hardly
familiar with ZFC (or ETCS for that matter). None of the currently
proposed foundations for mathematics have a decent claim to cogni-
tively founding mathematics. And so they shouldn’t. Finding our
way back from algebraic geometry or set theory to counting is per-
haps an epistemologically or cognitively interesting project,128 but it
is unlikely it will help the mathematician organise his many theories
and find errors in his work.

Now of course, Feferman, and Hellman following him, do not
claim something quite so radical. Rather, what they claim is that

127 Linnebo and Pettigrew make the same mistake as Hellman and Feferman by assum-
ing that any foundation of mathematics must necessarily serve as various kinds of
foundation when they argue that any foundation needs all these kinds of autonomy
at the same time. We proceed with their work, though, as an analysis of these differ-
ent kinds of autonomy.

128 Compare [Resnik 1982] for an attempt to build up to mathematics from an account
of pattern recognition.
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there are certain informal notions, the ideas of collection and function,
that we cannot dispense with when talking about categories. This
again happens at the supposed level of the background ontology.129

The idea is that the very notions of category and morphism them-
selves are not fully determinate, and implicitly quantify over various
possible intended interpretations (e.g. morphisms can be group ho-
momorphisms, functors, etc). Now to understand all these structures
that are quantified over, we need notions of collection or function.
Hellman rejects130 attempts to give content to the category theory,131

as those implicitly reject the algebraic nature of the axioms, which
are vital to the multiple interpretability of category theory. Hence,
on Hellman’s account, category theory necessarily invites the very
indeterminacy that makes it unsuitable as a cognitive foundation.

This is to place categorical structuralism before a dilemma it need
not answer. For if we reject the “implicit quantifier” reading of the
axioms of category theory, we then need not worry about a reliance
on notions of collection in an ontological domain we do not quan-
tify over. Likewise, taking the axioms at face value, there is nothing
wrong with giving “common-sense content” to the axioms - it is fine
for “straight up” category theory to be about composition, or com-
posing functions.

The possibility remaining open is that category theory somehow
requires set-theoretic concepts not in its very definition, but in the
process of founding mathematics. Linnebo and Pettigrew use ETCS
as a case study in their investigation of categorical foundations. They
recognise that the axioms of ETCS are assertory. Clearly, there is no
logical dependence on the traditional foundational scheme, since we
can define our categories “from scratch” without referring to sets or
functions directly: morphisms can function as completely autonomous
concepts. The demand of conceptual autonomy is trickier, since we
are presented with a theory of sets. The question then becomes
whether we can understand sets based on their presentation in this
foundational system. The answer is yes: although ZFC has the advan-
tage of being the traditionally accepted axiomatisation of set theory,
that does not mean that ETCS cannot have an equal claim to the con-
cept. There is nothing in particular about the way it is presented that
suggests that we require some kind of full-blown set-theoretical intu-
ition of the objects in question in order to understand the theory.132

129 [Hellman 2003] pp. 134-135

130 [Hellman 2005] pp. 549

131 See for example [Logan 2015] who gives content to the notion of morphism as “com-
bining two things to make a third”. Specifically, it is about doing this in a specific
way: through composition. Thus, category theory is about “combining two things
to make a third” in much the same way set theory is about “collections of things”.

132 [Linnebo & Pettigrew 2011] pp. 242-244
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4.2.2 Revisiting McLarty

McLarty views the entire matter of “foundations” as an ongoing
project, starting with the sense of “foundation” used in common par-
lance among mathematicians - that is, meaning very little compared
to the foundations philosophers often have in mind, thick with in-
terpretations and meanings. Rather, the starting point for research
on foundations is the methodological foundation the mathematician
uses relative to some mathematical theory. It is then a mathemati-
cal task to investigate and generalise over all these foundations. The
philosophical investigation is a third step, investigating the episte-
mology of that foundation.133 McLarty’s aim is then combine metho-
dological, organisational and epistemological kinds of foundations.
This arguably puts him in a position where he does need to answer
Hellman’s criticism - which he does.

First, it is important to note that most of the time, use of a cate-
gory is not done in an algebraic sense, but with a definite intended
interpretation.134 This allows us to partially answer the problem of
cognitive foundations: we can, and do, gain access to category theory
in a nonalgebraic sense before investigating it abstractly. Thus, we can
come to know categories and how they work before needing to make
sense of the Eilenberg-MacLane axioms and the implied level of the
ontological background. This reflects a development in the history
of category theory, where it took quite a few years until the theory
became a subject of research without an intended interpretation in
algebra.135

More straightforwardly, though, McLarty too rejects the idea that
we need to make sense of background level that the Eilenberg-Maclane
axioms are about:

All categorical foundations begin with the Eilenberg-
MacLane category axioms, but not by saying anything is a
model of them. Rather, we affirm them.136

McLarty’s theory, then, is extremely close to Awodey’s. This is
despite the seemingly large gap between McLarty as proponent of
categorical foundations and Awodey as antifoundationalist. This lies
in the fact that there is barely any difference between the kinds of
foundation either proposes. It is hardly possible to oppose organisa-
tional and methodological foundations, as these are indispensible to
mathematical practice - and hence Awodey doesn’t, focusing instead
on mathematical-ontological foundations. The main difference lies in

133 [McLarty 2013], pp. 80-81.
134 [McLarty 2005], pp. 50: “forty-one of the latest fifty references to “category” in Math-

ematical Reviews were to specific categories, i.e. they had intended interpretations”.
135 [Landry & Marquis 2005] pp. 4-6
136 [McLarty 2013] pp. 83
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an interest in cognitive foundations from McLarty’s side, and perhaps
in how broadly either takes the concept of “foundation” to be.

McLarty rightly notices that Awodey skips a few steps when he
asserts that all we need to do to establish the coherence of a theory
is to investigate its consequences to see if it is consistent. After all,
whether it is or not depends on the ambient structure we are working
in, or at the very least on the logic we employ.137 It is this notion of
“ambient structure” then, that deserves more attention. Even on an
antifoundationalist view such as Awodey’s, we cannot get very far
mathematically without placing the structure we are interested in in
a larger environment. To Awodey, this is just “specifying more of the
ambient structure to be taken into account”.138 But McLarty rightly
emphasises that therein lies another foundational task: to specify and
clarify these ambient structures. Again, this is largely in line with the
project of finding organisational foundations for mathematics.

4.3 pragmatic concerns

The matter of establishing the coherence of a theory, then, brings us
to the last kinds of foundation at issue. In spite of earlier claims
that this is a strength of categorical foundations, there are concerns
as to their functioning as organisational foundations - that is, as the
kind of framework we employ to find mathematical errors. If we
cannot establish the existence, and thereby the coherence of mathe-
matical structures in a single framework, since we lack mathematical-
ontological foundations, how else are we to ensure the coherence of
our theories?

4.3.1 The matter of coherence and consistency

Another function of foundations, and a mathematically prominent
one, is as a guarantee that whatever mathematical structure we are
describing is not an impossible one. If we set out to research a sys-
tem X and it will turn out to be incoherent, the mathematician is to
recognise the error. Preferably, he should know in advance whether
his system is coherent, so as not to waste time proving theorems in
an impossible or trivial system. Traditionally, this question is linked
with one of existence: as long as we are researching objects which ex-
ist, we are researching a coherent system, and hence all is going well.
Any framework for mathematics that does not govern existence, then,
should at least allow for the mathematician to secure coherence.

Hilbert suscribed to the view that as long as a theory is consis-
tent, the mathematician is in safe waters, exploring a coherent sys-

137 Borrowing an example from McLarty: x ∈ x is inconsistent in ZFC, but consistent in
various non-wellfounded set theories.

138 [McLarty 2005], pp. 53
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tem. While a stronger statement than the more generally accepted
converse, that something has gone wrong if one is exploring an in-
consistent system, this too is commonly accepted. Hilbert went as far
as saying that the objects of a consistent system must then exist;139 for
the moment, we can accept that he effectively reduced the philosoph-
ical question of existence to a mathematical question of consistency
for the working mathematician.

However, the question of consistency itself is metamathematical in
nature. But meta-mathematics, too, faces the assertory/algebraic di-
chotomy. Meta-mathematical statements concern mathematical sys-
tems, or express a property of any system of such-and-such sort.
Shapiro claims they must be assertory even to the algebraically-incli-
ned structuralist, since the philosopher or mathematician must be as-
serting something when stating the algebraic position.140 Moreover,
if we employ algebraic terms, quantifiers in meta-mathematical state-
ments would have to range over some sort of structure themselves. If
we define this background structure algebraically as well, we would
be stuck without assertory metamathematical statements about this
structure in turn, leaving us with an infinite regress.

Nevertheless, metamathematical questions of the coherence of cer-
tain mathematical structure are needed beyond mere intuition. After
all, even great mathematicians have worked with “intuitively sound”
objects that turned out to be impossible. Thus, we need some guar-
antee of the coherence of the structures we are researching. The stan-
dard solution for this is to find a way to reduce a structure to a more
traditional one, allowing it to piggyback on the arguments supporting
the existence of the traditional mathematical structure.141 In contem-
porary mathematics, this usually involves expressing the structure
in set-theoretic terms. Hellman’s criticism of the category-theoretic
approach can be seen in this last light: the algebraically expressed
structures the mathematician pertains to work with need some asser-
tory basis to ensure their coherence, if not just their consistency.

Now we could, of course, employ an assertory, categorical theory
such as ETCS and be done with it. However, if we prefer a non-
foundational approach in the style of Awodey, we must defend the
claim that everything in mathematics is algebraic, up to and including
meta-mathematical statements. If metamathematics needs to be as-
sertory, then any questions of coherence will be seen in a non-mathe-
matical context. Shapiro notes that this is difficult to accept, given
the existence of some mathematical answers to questions of existence.
Relative consistency proofs are of course still obtainable, and may be
seen as algebraic in themselves, lacking a real subject matter.

139 [Shapiro 2005], pp. 69

140 [Shapiro 2005], pp. 68

141 [Shapiro 2005], pp. 72
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Suppose that the meta-mathematical framework we are using for
such a proof is algebraic in nature as well. We are then faced with
the question whether this structure itself is coherent, lest our consis-
tency proof be void. If the only way we can prove its consistency
is through another meta-mathematical algebraic system, we are left
in an infinite regress. The alternative is to move meta-mathematical
questions out of the domain of mathematics and into the domain
of philosophy, which seems awkward to Shapiro given the wealth of
mathematical results in the field of meta-mathematics. Taking into ac-
count this infinite regress, Shapiro argues that we do indeed need an
assertory statement of meta-mathematics to ensure the coherence of a
mathematical system, and emphasises that we should see Hellman’s
critique of non-assertory theories in this light.

Let us take a step back and look at full-blown set theory once more.
The hierarchy of sets can be seen as a solution to two distinct prob-
lems. On one hand, it eliminates a particular challenge to the coher-
ence of set theory by disallowing self-referential sets such as the one
used in Russell’s Paradox. On the other, because it is formulated in
an assertory manner, it solves a central semantic problem of math-
ematics, by providing subject matter to it in the form of a specific
collection of sets that exist. The incoherent sets can be claimed to sim-
ply not exist by virtue of the way the Zermelo-Fraenkel axioms are
set up. It is worth noting here that by making this manoeuvre, the ex-
istence of mathematical objects is in a sense bound to their coherence
simply because of the axioms we chose. In particular, there is an ob-
vious parallel with Hilbert’s belief that a set of axioms, if consistent,
describes objects which therefore exist.

Thus, if we abandon the set-theoretic approach and in fact any as-
sertory theory of mathematics, we need to tackle but two problems:
the coherence of our mathematical structures, and the semantic sense
that mathematical statements should make. If both these goals can
be achieved without resorting to an assertory theory, then we have a
mathematical foundation on par with set theory. Further philosoph-
ical questions, for example on the nature of mathematical objects,
should then be tackled by the philosopher from this point of view.
It is not the role of the philosopher to dictate which mathematics are
valid and which are not. He must try to answer why and how we
can understand and communicate mathematical facts. As such, he
should attempt to discover what the epistemology and ontology of
mathematics must be, without being bound to a single mathematical
framework.

Shapiro acknowledges the role of a philosophical defence for an
assertory meta-mathematical theory, to explain the existence of the
objects asserted by the theory. We have no other guarantee of the
coherence of even commonly used large mathematical systems such
as ZFC. In this light, his “infinite regress” argument against algebraic
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meta-mathematics misses the mark. If we allow for such a philo-
sophical defence of assertory theories, we should certainly allow a
philosophical defence of an algebraic meta-mathematical theory with
much weaker aims - merely to indicate the coherence of our theory,
rather than to establish the existence of a set-theoretic universe.142

Should we accept that providing an account of coherence for an al-
gebraic theory is a valid philosophical enterprise, much like account-
ing for the existence of the objects asserted by an assertory theory,
then there is no reason why we could not admit of algebraic, math-
ematical meta-mathematics before grasping for philosophical meth-
ods to defend these methods in turn. The very same manoeuvre is
practised routinely for assertory theories. Should Shapiro worry that
there can be no proper philosophical defence for non-assertory theo-
ries, then we refer back to our above observation that the two main
questions to be answered are those of mathematical coherence and
semantic sense. Perhaps unlike the call for mathematical existence,
there is no immediate reason why these cannot be answered in an
algebraic framework.

4.3.2 Revisiting Landry

Landry’s semantic realism takes an interesting spot in light of the above
discussion and our foundational taxonomy. The label “realism” leads
us to ontological associations, but Landry explicitly notes that these
are to be avoided - we are talking “existence” only in as far as as
is necessary to fix a denotation.143 What then, is the goal of such a
mathematical project? If the goal is to answer Frege’s demand for a
fixed denotation, then we must ask - what is the purpose served by
that in turn? Surely it is not patch a leak in Frege’s theory.

The answer is dual in nature. On one hand, by establishing the de-
notation of our mathematical objects, we gain a measure of epistemo-
logical certainty. It allows us to answer the epistemological question
of whether we can know what we are referring to when we assert a
mathematical position. In the terms of “property-transfer” we have
characterised epistemological foundations as, what we are transfer-
ring is a notion of semantic accessibility or knowability. On the other,
providing a context in which we can give an interpretation of a cer-
tain structure is a method to give us confidence in the coherence of
said structure. For example, non-Euclidian geometries gained signif-
icantly in status when they were first given an Euclidian model.144

142 Compare [Landry 2011], pp. 25

143 [Landry 1999a], pp. 81-82

144 Nevertheless, we are not “really talking about Euclidian geometry” when we talk
about non-Euclidian geometry. Here, we see again the possibility to vary in our
hermeneutic approach to a certain concept: we can see it as interpreted within one
structure, within another, or we can take it at face value. One can see the analogy
with the role of set theory in mathematics: one can give a set-theoretic interpretation
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Thus, the semantic project also has a role to play as an organisational
kind of foundation. It allows us to move our mathematical knowl-
edge to a more general level, thereby allowing us to gain confidence
in the coherence of our structure, whether that be through increased
familiarity with our structure, or through “piggybacking” on an es-
tablished structure.

In response to Shapiro’s criticism, Landry defends the position
that we can remain a structuralist “all the way down” - that is, we
can interpret mathematics, meta-mathematics, and so forth, all al-
gebraically, without ever “hitting bedrock” through either an asser-
tory metamathematical theory or a turn to philosophy.145 This is
pictured as a generalisation of Hilbert’s programme employing cat-
egory theory. Hilbert worked algebraically, up to a degree - that
is to say, ordinary mathematics employs algebraic terms, and be-
comes known to us by implicit definition. But the meta-mathematical
project was not entirely in the algebraic form - rather, relative con-
sistency proofs were sought grounding mathematics in finitary proof
theory, which was taken in turn as fully assertory and contentful, and
as grounded in concrete sign configurations. What the categorical
structuralist can do, then, is largely analogous. On the mathematical
level, set-theoretic and category-theoretic objects can be investigated
using ETCS or CCAF, respectively, or abstractly using the Eilenberg-
MacLane axioms. On the meta-mathematical level, categorical logics,
topos theory, and category-structured proof theory all suffice to say
what we want to say about the logical and proof-theoretic aspects
of our mathematics.146 Meta-mathematics thus needs no assertory
theory for any structural reasons. What remains is the naked claim
that a metamathematical statement itself must be assertory in order
to state anything about the theory it is about. But this betrays an un-
derestimation of the mathematical tools at our disposal. We can take
the statement “as assertory in the theory”147 - that is to say, as given
an interpretation in some further level of (algebraically-formulated)
analysis. As before, this fixes an interpretation and thereby a refer-
ence, allowing us to state a meaningful position when asserting the
metamathematical statement. The threat of infinite regress is hand-
waved with an et tu; statements asserting the truth of a set-theoretic
position, too, must “turn to philosophy” at some point, or risk an
infinite regress.

Though an impressive display of the power of algebraic mathemat-
ics, this conflates our ability to give a mathematical account of seman-
tic reference with our ability to understand a mathematical structure

of some concept in algebraic geometry if one really wants to, but this does not mean
we are “really” talking about a set theoretic universe when we do algebraic geometry,
any more than we “really” do Euclidian geometry if we do non-Euclidian geometry.

145 [Landry 2011], pp. 24

146 [Landry 2011], pp. 21-23.
147 [Landry 2011], pp. 24
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per se. Though the ability to fix the reference of mathematical terms
by moving up a level in abstraction is interesting, such a move neces-
sarily introduces the mathematics of the superstructure. For example,
we may understand a simple category just fine, but to fix the denota-
tion of that category on Landry’s account, we would have to see it as
a general category in the category of categories in e.g. CCAF - and we
may have little in the way of understanding with regards to this the-
ory. And if we take Landry’s goals to be merely organisational rather
than epistemological in nature as well, the questions are whether this
move helps us in organising mathematics and in error-finding - to
which the answers are respectively “yes” and “maybe”, because of
course, we may have less confidence in the coherence of the entire
CCAF than in some simple category.

Thus, while Landry’s approach is valuable in showing how alge-
braically formulated mathematics can contribute to the larger meta-
mathematical project, it does not settle anything epistemologically. In
particular, what is lacking is an account of our understanding of al-
gebraic structure “at face value”. There is nothing in the structuralist
view of mathematics that should make us believe that we can only
grasp a structure from within some larger structure we can place it
in.148 Quite to the contrary, we can understand many mathematical
structures without an inkling of mathematical interpretation. To con-
vince oneself of this, one only needs to compare the number of people
who understand the natural numbers with the number of people who
know model theory.

4.3.3 On mathematics and philosophy

It is true that full-blown set theory has access to a philosophical ar-
gument for the truth and existence of its theorems and objects, in
a way that categorical theories do not (yet).149 It is for this reason
that Linnebo and Pettigrew argued that the Elementary Theory of
the Category of Sets has no justificationary autonomy just yet, unless
we take mathematical practice as “sufficient justification”. I whole-
heartedly follow McLarty’s answer150 that, while we indeed should
search for philosophical justifications if we can, it is not reasonable
that we should decide it is not a justified practice without.

Nevertheless, it is true that for now, there is no positive argument
explicitly for the coherence of categorical foundations. Given the
growing literature on mathematics as the science of structure, and
of category theory as the mathematical study of structure, one might
hope that it is not far off. But for now, at least a negative result can

148 By contrast, Landry explicitly holds that categories do not exist independently of
a system that exemplifies them, but by virtue of being exemplified in some other
category. See [Landry 1999a], pp. 136

149 See for example Boolos’ seminal [Boolos 1971].
150 [McLarty 2012], pp. 113
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be set aside - we can reject Hellman’s and Shapiro’s argument for the
a priori failure in philosophical aspects of categorical theories.

What I want to suggest, then, is that the distinction between alge-
braic and assertory statements is not just a matter of mathematical
form, but of philosophical interpretation. We are free to take any
statement formulated in an algebraic manner as algebraic, that is, as
waiting for interpretation to be contentful or as staying without one
to be general - but we may likewise take it as contentful at face value.
Thus, we can read a sentence such as (8) in the contentful manner
given by (12). Likewise, we may take any meta-mathematical state-
ment formulated in an algebraic manner as nevertheless asserting
something regarding the mathematics it is about, without inviting an
infinite regress. If we can understand the statement at face value, and
if we have good reason to trust in its coherence, then there is no rea-
son to shun algebraically formulated metamathematics - including
categorical ones.

On the structuralist account, all mathematics is structure. This in-
cludes, then, assertory theories such as full-blown set theory. If there
is a certain indeterminacy to all mathematics then - as the abstraction
account of structure would suggest there is, as objects are merely to
be taken as empty points - then all mathematical statements can like-
wise be taken in an algebraic manner. There is nothing, in principle,
precluding us from re-interpreting full-blown set theory by giving
further structure to the ∈-relation.151 On such a view, the difference
between assertory and algebraic form evaporates. We can take full-
blown set theory as implicitly quantifying over interpretations of ∈
just as easily as we can take the axioms of category theory to quantify
over different interpretations of the morphisms and objects. Likewise,
we can take both in an assertory sense. The ease with which we can
take category theory algebraically is then not a philosophical down-
side, but merely a sign of its wide applicability.

4.4 schematic mathematics

We have everything we need then, to paint a picture of mathematics
on a categorical-structuralist view. Let us first recall the main points
of the structuralist philosophy. Mathematics concerns structures; that
is to say, it concerns wholes of relations between objects, concrete or
abstract, regardless of any further structure to these objects. There
is then always an amount of indeterminacy to a structure - we are
talking of some arrangement of objects merely in terms of the ar-
rangement, thus leaving out the particulars, if any. Finally, we can
relate different structures by placing one within another through a
process of Dedekind abstraction.

151 Consider, for example, a set theory restricted to trees, or ordered pairs.
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Appropriating a term of Awodey’s, used only vaguely so far, let
me give a description of schematic mathematics. On this view, all of
mathematics is schematic, or algebraic “in form”, so to speak. The dif-
ference between algebraic and assertory statements is a hermeneutic
one: it depends on how we wish to interpret a particular statement.
If we see it as generalising over other objects, it is algebraic; and if
we take it as having a definite interpretation, or as contentful at face
value, it is assertory. Using Landry’s work, we can provide a math-
ematical semantic interpretation of our statement either way, should
we be so inclined.

Schematic mathematics implies a rejection of ontological founda-
tions. This is because any mathematical foundation implies that there
is a fixed interpretation for our mathematical statements. Moreover,
the interpretation would itself not admit of any further interpretation,
contrary to its structural nature. On the schematic view, interpreta-
tion is a business that can be done independently from any particular
mathematical theory - or from all of them, if we so wish. Of course,
the rejection of ontological foundations does not mean the rejection
of mathematical ontology per se. Rather, it means that if we are to for-
mulate an ontology, the starting point would be philosophical rather
than mathematical in nature - for example, by starting with an analy-
sis of structure. As such, the schematic view is consistent with in re
and ante rem interpretations of structuralism.

Likewise, if we wish to formulate an epistemology of mathematics,
it should not be through the epistemology of one particular theory of
mathematics. There is nothing to guarantee that this theory is always
in the picture when we know some mathematical structure. Thus,
there is no room for epistemological foundations for all of mathemat-
ics either. Of course, should one find an epistemological peculiarity
to a certain field, there is nothing preventing foundation relative to
that field. The more promising avenue for an epistemology seems to
be within a general theory of knowing structures or patterns. We are
free, however, to provide a philosophical interpretation of some struc-
ture, including “algebraic” ones. Cognitive foundations, on the other
hand, are part and parcel of mathematics, and always will be - it is
a simple fact of human cognition that we need to understand certain
fields of mathematics before we can understand certain others.

Turning to organisational matters next, we can recognise the wide
applicability of category theory in providing links between different
parts of mathematics. I have spoken little of category theory in my
description of schematic maths so far. Category theory takes a special
place with regards to a structural approach because it allows us to de-
scribe things purely in terms of relations - something that falls neatly
in line with the structuralist account of the very nature of mathemat-
ics. This does not, however, imply that mathematics is about cate-
gories in any metaphysical sense. It merely means that category the-
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ory is a good way to describe mathematical structures. There might
very well be better ones yet!

The boon of category theory to the philosopher is that it allows us
to avoid implicitly “unstructural” notions. It is tempting to see struc-
tures as “the new objects” and reason about them as if they were,152

but they are not. Mathematical structures are schematic in the sense
that they lack content unless we explicitly choose to give an interpre-
tation. It is this very feature that allows us to make sense of them
semantically, by giving a mathematical interpretation, without mak-
ing metaphysical sense of them first.

What schematic mathematics is not, is a rejection of the role of sets
in mathematics. The concept of a set is a powerful one without doubt,
and one that will continue to carry weight in mathematics. Rather,
sets, as put forward by full-blown set theory, are not indispensable
in a foundational sense. Of course, sets as a structure are still im-
portant, and will continue do be found all over mathematics, though
not necessarily always as defined by the axioms of a full-blown set
theory. Set theory itself, as a field of mathematics, likewise is still
of mathematical interest - especially since sometimes it is exactly the
behaviour of elements taken as atoms that we are interested in. But
it should not form the ontological background for all of mathematics,
if only because no theory should. The upside is that mathematics
doesn’t need it to. As long as we can generalise when we need to
and give an intended interpretation when we need to, we can explore
mathematical structures as much as we like. We can guarantee the
coherence of our theories not by defending the coherence of a sin-
gle mathematical structure or of a single idea,153 but by giving an
interpretation in any ambient structure we find trustworthy.

Let me conclude with a note on philosophy. If we want to fur-
ther philosophical arguments in debates regarding the foundations
of mathematics, different foundational goals can and should be sepa-
rated to make sense of the different ways one can employ mathemat-
ical structures. Only by careful communication in this regard can we
prevent misunderstanding, sharpen the battle lines, and investigate
the viability of new proposed foundations from a neutral perspective.

152 Shapiro’s structure theory harks dangerous close to this when attempts to give a
quasi-mathematical account of the existence of structures.

153 e.g. the iterative concept of set
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