
Coalitions in Epistemic Planning

MSc Thesis (Afstudeerscriptie)

written by

Suzanne van Wijk
(born 9 July 1991 in Leiden)

under the supervision of Dr. Alexandru Baltag, and submitted to the Board
of Examiners in partial fulfillment of the requirements for the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:
3 September 2015 Dr. Alexandru Baltag

Prof. Dr. Johan van Benthem
Dr. Roberto Ciuni
Prof. Dr. Jan van Eijck
Dr. Jakub Szymanik

Abstract

The aim of this thesis is to augment dynamic epistemic logic and its framework in
order to model planning problems where coalitions of agents try to reach a given
goal. We add an additional control relation to the static epistemic models and
action models of DEL, similar to choice equivalence in stit logics, thereby enabling
us to represent the power of coalitions while keeping the means to talk about spe-
cific actions. We then introduce a sound, complete and decidable logic for these
augmented models, which can express knowledge, distributed knowledge and both
past and future control of coalitions, and we demonstrate how this can be used for
coalitional planning.
We then add common knowledge to the logic, in order to model the coordination of
agents within a coalition: indeed, common knowledge enables agents to trust the
other coalition members to perform the right action. As reduction axioms cannot
be found for common knowledge, we show soundness, completeness and decidabil-
ity for our enriched version of epistemic PDL, where we take as basic programs
group indistinguishability relations rather than single agent indistinguishability.
Finally, the thesis proposes a way in which agents can commit to certain actions,
providing them with a way to communicate their plans and coordinate, thereby
greatly improving their possibilities for achieving their goal.

i

Acknowledgments

The thesis lying before you would not exist in its current form without the help
and support of many different people, who helped the process of its creation in
many different ways - be it in terms of content or in terms of general support.
First of all, I would like to thank my supervisor, Alexandru Baltag. To start, I am
very grateful for your enthusiasm, wonderful ideas and perseverance in the early
days of this thesis. You put so many interesting ideas on the table that I am sad
we could only work on one of them. Furthermore, thank you for your continuous
support, comments and help throughout the writing of this document. Your en-
thusiasm for logic, and dynamic epistemic logic in particular, is very contagious
and kept me engaged in the topic the entire way through.
Moreover, I am grateful to the other members of the thesis committee, Johan van
Benthem, Jan van Eijck, Jakub Szymanic and Roberto Ciuni for taking the time
to read my thesis. I also have to thank Roberto for his comments and corrections,
suggestions for references and for his bringing in a fresh look on things in an earlier
stage.
My gratitude also goes to Thomas Bolander. Thomas, thank you for two very in-
teresting meetings in the early stages of this thesis, and the insightful and spot-on
remarks that greatly influenced the direction this thesis took.
Then last but not least, a big shout-out to Thomas, Julian and Bastiaan for all
the lunches, coffee breaks, late night dinners and rants that kept me sane in those
last couple of weeks. I’m glad I never have to know what they would have been
like without you.

ii

True knowledge exists in knowing that you know nothing
- Socrates

iii

Contents

1 Introduction 1

2 Preliminaries 4
2.1 Dynamic Epistemic Logic . 4

2.1.1 Static models . 4
2.1.2 Action Models . 6
2.1.3 Product Update . 7

2.2 Seeing to it that . 8
2.3 Planning . 9

2.3.1 Epistemic Planning . 10

3 Power of Coalitions 12
3.1 Dynamic Epistemic Coalition Logic . 13

3.1.1 Syntax of DECL . 13
3.1.2 Models and Product Update . 14
3.1.3 Semantics and Examples . 17
3.1.4 Proof System of DECL . 21

3.2 Soundness, Completeness and Decidability of DECL 22
3.2.1 Preliminaries . 22
3.2.2 Plan of the Proof . 24
3.2.3 The Proof . 25

3.3 Planning with DECL . 36

4 Common Knowledge in Epistemic Planning 39
4.1 Dynamic Epistemic Coalition Logic with Common Knowledge 39

4.1.1 Syntax and Semantics of DECL-C 39
4.2 Group Epistemic PDL . 40

4.2.1 Syntax and Semantics of GE-PDL 41
4.2.2 Proof System of GE-PDL . 43

4.3 Soundness, Completeness and Decidability of GE-PDL 45
4.3.1 Preliminaries . 45
4.3.2 Plan of the Proof . 47
4.3.3 The Proof . 48

4.4 Planning with DECL-C . 64

5 Committing to actions 66
5.1 DECL with Common Knowledge and Commitments 67

5.1.1 Syntax and Semantics of DECL-CC 67
5.1.2 Committing Actions . 67
5.1.3 Semantics of DECL-CC . 71

5.2 Group Epistemic PDL with Commitments 72
5.2.1 Proof System of GE-PDLc . 73

iv

5.2.2 Soundness, Completeness and Decidability of GE-PDLc . . . 75
5.3 Responsibility . 75
5.4 Committing strategically . 76

6 Conclusion 78

v

1 Introduction

In the field of automated planning, the main goal is to create software for the
problem of one or more agents creating a long-term plan to reach their goal. To
ensure that it is computationally feasible to solve non-trivial such problems, a
number of constraints is put on these problems in Classical Planning as defined
by Ghallab et al. [18]. In classical planning, the problems have to be finite, static,
fully observable and deterministic. To lift some of these requirements, Bolander
and Andersen proposed epistemic planning [10]. This builds on classical planning,
but uses Dynamic Epistemic Logic to build a planning problem, thereby lifting the
full observability and determinacy constraints.

Dynamic Epistemic Logic (DEL) was created around 2000 by multiple authors.
It models the knowledge of agents, and how this knowledge changes when events
occur. It is based on the assumption that the world is not fully observable nor fully
deterministic, as it deals mainly with what different agents are able to distinguish
or observe. Gerbrandy laid the ground works with his logic for private announce-
ments in a subgroup [17], where the subgroup learns what is being said, but the
others do not. Baltag, Moss and Solecki generalized the existing framework with
’event models’ in [5], which turned out to be a crucial addition. It has since then
been a grateful research subject, as is witnessed by the extensive literature - see
for example an overview from 2008 by Baltag, van Ditmarsch and Moss [6] or van
Benthem [26].

In DEL, every agent has their own indistinguishability relation, which determines
what states of the world look the same to that agent. If all states that are in-
distinguishable to some agent make the same property true, we can say that this
agent knows this property. Also dynamically, DEL assumes partial observability,
as some of the events that can occur appear the same to an agent, just like states
can look the same. This results in indeterminacy, since from then on, the agent
should consider it possible that either of those events happened.

In his PhD dissertation, Andersen [2] started the groundwork for multi-agent epis-
temic planning by generalizing previous work with Bolander and others to include
multi-agent models to their epistemic framework. However, even though the plan-
ning problems are defined on multi-agent plausibility models, there is still only
one acting agent. As it is interesting to look at multi-agent planning with multiple
acting agents, we try to approach this from a different direction.

In this thesis we construct a framework that deals with coalitions of agents co-
operating in an epistemic planning domain. There are many logics around that
express power of coalitions, such as Pauly’s coalition logic [24], CTL and CTL∗,
introduced by Prior [25] and Clark and Emerson [14], ATL, introduced by Alur,

1

Henziger and Kupferman [1], and multi-agent stit, extended from stit by Belnap et
al. [8] and Horty [20]. Stit, short for seeing to it that, talks about what an agent or
coalition brings about, and originated from Belnap en Perloff [7]. It was continued
in many forms in for example Belnap, Perloff and Xu [8], Horty [20] and many
others. A lot of work has been done in connecting these logics with each other:
Broersen, Herzig and Troquard [11] defined a translation from coalition logic to
stit, and Ciuni and Zanardo connected stit and branching-time logics such as CTL
and ATL [13]. Also much has been done to connect the above logics of coalition
power with epistemic logics: van der Hoek and Wooldridge proposed an epistemic
extension of ATL, which they called ATEL [31], which was later extended by Jam-
roga and van der Hoek [22]. Van Benthem and colleagues link models for DEL
and those for epistemic temporal logics in [27], allowing concepts from either type
of logic to carry over to the other. In van Benthem and Pacuit [29], stit and dy-
namic logics of events are connected by embedding stit in matrix games, and the
comparison is pushed further by Ciuni and Horty [12]. Van Benthem and Pacuit
[29] also hint at how DEL and stit can be combined. It is the latter direction that
is followed in this work.

This thesis defines a framework that takes its main components from DEL and
stit. We add an control relation to model the control a coalition has. In contrast
to what van Benthem and Pacuit suggest in [29], we add this relation to the static
as well as the action models to allow for memory of control. The same approach
is taken in DEL logics of question that use issue relations, such as DELQ, pro-
posed by van Benthem and Minica [28]. We define a logic for these models that
also has components from DEL and stit, which we call Dynamic Epistemic Coali-
tion Logic (DECL). It takes modalities for knowledge, distributed knowledge, and
events from DEL and modalities for control from stit. We show that this logic is
sound, complete and decidable. As there are no axioms in standard modal logic to
express that a relation is exactly the intersection of other relations, our distributed
knowledge modality posed some technical difficulties. By following the lines of the
proof in Fagin et al. [16], we avoid these problems and still obtain the desired
results.

To make the logic more expressive and useful for our purpose, we add common
knowledge to DECL. To show completeness for this logic, we need to extend it
further to our version of Epistemic PDL as introduced by van Benthem, van Eijck
and Kooi [30]. Our version differs from that of van Benthem and colleagues in
the basic programs. Where they take basic programs to be epistemic relations of
single agents, we take them to be epistemic relations of groups of agents, which is
why we call it Group Epistemic PDL. This not only gives us what we want - dis-
tributed and common knowledge, completeness and decidability - but it also opens
up possibilities for higher levels of group knowledge, such as common distributed
knowledge.

2

Finally, we add a special type of atomic sentences to the language, which allow the
agents to commit to certain actions. This makes it possible to model the coordina-
tions of agents in a planning problem fully within the logic, rather than using an
external framework for it. As we only add atomic sentences, the completeness and
decidability results of DECL with common knowledge carries over immediately.

The rest of this thesis is organized as follows: in chapter 2 we will briefly go over
the preliminaries needed for this paper. We will introduce the main concepts from
DEL, as well as explain the parts of stit logics that we need, and we give a short
introduction to (epistemic) planning.
In chapter 3 we introduce the framework that we will be working with, which
takes many concepts from the DEL framework, and adds a control relation, which
is similar to choice equivalence in stit. In this chapter we also define Dynamic
Epistemic Coalition Logic. We will go over some examples of what this language
can express and we show that it is sound, complete and decidable. When we apply
it to a planning problem, we will see where this logic falls short for that purpose.
In chapter 4 we add common knowledge to dynamic epistemic coalition logic in
order to arrive at a logic that is better suited for application to a planning problem.
We show that our version of E-PDL, Group Epistemic PDL, which is an extended
version of DECL with common knowledge, is sound, complete and decidable. We
continue to use this logic to define a planning problem and solution, and again
conclude that, although improved, it falls slightly short.
Therefore, in chapter 5 we allow agents to commit to actions, making it easier for
them to coordinate while planning. We argue that the logic including commitments
is still sound, complete and decidable, and we illustrate how committing helps a
coalition in creating a solution for a given planning problem.
We conclude the thesis with a summary of the presented logics and what they can
or cannot express, before we go on to mention some ideas for future research.

3

2 Preliminaries

In this chapter we briefly go over definitions and conventions from the fields that
are used in this thesis. We will start with an introduction to Dynamic Epistemic
Logic (DEL), after which we will go over the main ideas of Seeing To It That logics
(stit). To conclude, we will briefly mention automated planning, and epistemic
planning in particular.

2.1 Dynamic Epistemic Logic

Dynamic Epistemic Logic describes what agents know about the world and how
this changes when they interact with it and each other. Alice might not know
whether it is raining, but she will after Bob tells her that it is. There is a lot of
literature and research on dynamic epistemic logic, and in this chapter we only
go over the basics. If the reader is interested to know more, they can consult for
instance [5, 26].

As the name suggest, DEL deals with an ever changing world. This means that it
uses two different types of models. The first type of models represents the world
as it is at a given time. We call this the static models, and these are the models
at which formulas will be evaluated. The second type of model is used to describe
the changing of the world. These are called action models, and they consist of one
or multiple events. These events will change the initial model, either by changing
facts about the world, or by changing what agents know about facts of the world.
We will introduce both static and action of models, and how we combine them
when events occur.
First we will introduce the language of DEL. There are some variants of this that
may include common knowledge, distributed knowledge or other modalities, but
we will stick to the most basic language.

Definition 2.1 (LDEL). The language LDEL is formed by the following Backus-
Naur form

ϕ ∶∶= p ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣Kiϕ ∣ [σ]ϕ

where p is a propositional letter coming from a finite set P of propositional atoms
(denoting ’ontic facts’), i is an ’agent’ from a finite set A of agents and σ an
’epistemic event’or ’epistemic action’ from some finite set Σ of ’event names’.
We take Kiϕ to mean that agent i knows ϕ, and [σ]ϕ to mean that ϕ holds after
execution of σ.

2.1.1 Static models

The static models of DEL are traditionally based on Kripke models, where the
states represent varying configurations of the world and the relations between the
worlds indicate what configurations the agents consider to ’look the same’. Hence,

4

if two states are connected for some agent, we say that the agent cannot distin-
guish between the two. Very often DEL makes use of pointed Kripke models, which
directly indicate the actual, or real world. This is the state which the modeler, as
all-knowing onlooker, knows to be the real one. This is however not required and
we will define the static models without it.

A multi-agent epistemic model shows which agents consider which states look the
same. Hence, it consists of a nonempty, finite set of worlds, an indistinguishability
relation for each agent and a valuation function, that determines which proposi-
tional letters are true at what states.

Definition 2.2 (Multi-agent epistemic models). A multi-agent epistemic model is
a tuple S = ⟨S,∼i, V ⟩i∈A such that:

� S is a nonempty finite set of states ;

� for each agent i ∈ A,∼i⊆ S × S is an equivalence relation called the indistin-
guishability relation;

� V ∶ P → P(S) is a valuation function, assigning sets of states to each propo-
sitional letter.

As we evaluate formulas at a specific state, the notion of indistinguishability is
similar to the notion of ’considering possible’, if not the same. Hence, the state
where it rains looks the same to Alice as the state where it does not, thus at either
of these states she considers the other possible.

Example 2.3. Consider a situation where Alice flipped a coin, but did not look
at it yet. She does not know whether it landed heads or tails, and neither does
Bob, so they considers both possible. This situation is modeled in Figure 1, where
h means that coin came up heads and ¬h that it came up tails.

s

h

t

¬h
∼{a,b}

Figure 1: A multi-agent epistemic model

In this figure, and from now on, we leave out the transitive and reflexive relations
for the sake of readability, and the reader should remind themselves of the fact
that indistinguishability relations are equivalence relations. Hence, at every world,
both agents consider that world possible.

As one can see, in this model neither Alice nor Bob can distinguish the two states,
and they both consider it possible that the coin landed heads and that it landed
tails.

5

2.1.2 Action Models

In the previous part we showed how DEL models what agents know at a certain
point in time. When the agents interact with each other or with the world, this
knowledge can change. The simplest example of such an interaction is a public
announcement, where one of the agents or another entity announces a certain fact.
After such an event, all agents that heard the announcement know the fact, and
moreover, every agent knows that every agent knows, etcetera. Another example
is an agent turning on the light, therewith not only changing the knowledge of the
other agents, but also facts about the world. We call these interactions with the
world and other agentsevents, and they are modeled in so-called action models.
As the static models, these are Kripke models. Each state in the action model
is called an event. An action, and thus an action model, can consist of multiple
events because it might be the case that (some of) the agents cannot distinguish
between events. For example, if Alice tosses a coin in such a way that Bob cannot
see it, she will know whether it landed heads or tails, but Bob will not, which
means that we need two events: one where the coin landed heads, and one where
it landed tails. Formally:

Definition 2.4 (Action model). An action model is a tuple Σ = ⟨Σ,∼i,pre,post⟩i∈A
such that:

� Σ is the nonempty, finite set of event names (also known as ’actions’) of the
above language LDEL;

� for each agent ∼i⊆ Σ ×Σ is an equivalence relation called the indistinguisha-
bility relation;

� pre ∶ Σ→ L is a function assigning a precondition to each event;

� post ∶ Σ→ (P → L) is a function assigning a postcondition to each event.

Intuitively, the precondition tells us when an event can happen. For example,
we can only walk through a door if it is opened. The postcondition tells us how
the event changes the facts of the world. Hence, it tells us that after the event
’switch the light on’ is performed, the light is on. Many action models used by for
DEL do not have postconditions, as they only change the epistemic states of the
agents. Public announcements for example only change what information agents
have about the world, but it does not change any facts about the world. However,
in this thesis the ontic change is necessary, so we include the postconditions in the
action models.

Example 2.5. To continue the previous example, remember that Alice flipped
a coin, but neither her nor Bob had seen it yet. Now we will model the action
of Alice checking how the coin landed. The action model is depicted in Figure
2, and as one can see, it consists of two events. One event is where Alice checks

6

the coin to see that it landed heads, and the other to find tails. As Bob is not
checking with Alice, he does not know what she finds, so for him the events are
indistinguishable. However, the events are distinguishable for Alice, because the
moment she sees the coin, she knows which event took place.

σ1

pre=h
post=⊺

σ2

pre=¬h
post=⊺

∼b

Figure 2: The action model

Note that in this example, the postcondition is ⊺, meaning that no facts about
the states changed in the execution of these events, only what agents know about
those facts.

2.1.3 Product Update

Now that we know how to model the static world we live in, and the actions that
changes this world, we need a notion of how the actions change the world. This is
done using product updates. First the formal definition:

Definition 2.6 (Product update). The product update of an epistemic model S
and an action model Σ is a tuple S⊗Σ = ⟨S′,∼′i, V

′⟩, such that:

� S′ = {(s, σ) ∈ S ×Σ;S, s ⊧ pre(σ)};

� ∼′i= {((s, σ), (s′, σ′)) ∈ S′ × S′; s ∼i s′ and σ ∼i σ′};

� V ′(p) = {(s, σ) ∈ S′;S, s ⊧ post(σ)(p)}.

What happens here? First of all, the new set of worlds consists of the Cartesian
product of the states and events, leaving out those combinations where the state
does not satisfy the precondition of the event. Hence, we try to combine every state
with every event, but if the event is not possible in that state, the combination
does not get formed. The new indistinguishability relation is such that two states
are related in the product if and only if both the old states and the events were
related. This means that an agent had to be both unsure about the state, and
about the event that happened. The valuation gets adjusted according to the
postcondition.

Example 2.7. To illustrate the concept of the product update, consider Alice and
Bob and their coin again. We will perform the product update between the two
models we defined before, which is shown in Figure 3.
There are a few things to note here. First of all, (s, σ2) and (t, σ1) did not form
since the preconditions of the events did not match up with the valuation of the

7

(s, σ1)

h

(t, σ2)

¬h

∼b

Figure 3: updated model

states. Secondly, as we would expect, Alice now knows the value of the coin
whereas Bob still does not, and thirdly, the valuation did not change because the
action was not one that changed facts.

2.2 Seeing to it that

In philosophy and computer science, seeing to it that logics (stit) are very popular
to talk about agency and obligation (see e.g. Belnap et al. [8]). Stit formalizes
what an agent chooses to do, or to bring about. Many different versions have been
proposed over the years, which is why we will often talk about stit logics.

Formulas from stit logics are often evaluated on branching time structures. These
consist of a finite set of moments that are ordered using a strict partial order
with no backwards branching. The idea is that the ordering ’groups’ the moments
into histories, which represent different ways the world can develop. As in real
life, the past is determined, which is represented by the no backwards branching,
whereas the future can have multiple outcomes. Intuitively, at every branching
point in the structure, the agent can make a choice between the branches at that
point. The choice the agent ends up making can influence the way the world looks
afterwards. This leads to a relatively intuitive notion of seeing to it that : if an
agent chooses in such a way that in the next moment ϕ is true, then he is seeing
to it that ϕ. In the literature, this is often denoted by [i stit ϕ]. The single agent
version of stit has been extended to multi-agent stit by Belnap and colleagues [8]
and Horty [20], where [J stit ϕ] is used to say that the agents in J see to it that ϕ.

As mentioned, over the years many different variants of the original stit logic have
been proposed. These include deliberative stit (dstit, see Horty and Belnap [21]),
where an agent not only sees to it that ϕ, but also had an alternative that would
have resulted in something different, and achievement stit (astit), which instead of
talking about what an agent is about to bring about, talks about what the agent
has already brought about by previous actions (see Belnap et al. [8]). It is this
latter one that is related most to the modality [I] that we will introduce in this
thesis. As astit, it talks about what a coalition has enforced by a prior choice,
thereby expressing the power that coalition enforced in some previous moment.

8

2.3 Planning

Automated planning is a field connected to artificial intelligence that concerns
itself with creating long-term plans for agents to achieve some predetermined goal.
That which we now call Classical Planning stems from the early 60’s and 70’s and
is defined by Ghallab et al. [18]. They define a planning problem as an initial state,
which models the way the world is currently, a transition system, and a set of goal
states. The transition system determines which states there are, which actions are
available and how the actions change the states. Formally, a transition system as
defined by Ghallab et al. looks as follows.

Definition 2.8 (Restricted State-Transition System). Any classical planning do-
main can be represented as a restricted state-transition system Σ = ⟨S,A, γ⟩ where

� S is a finite or recursively enumerable set of states

� A is a finite set of actions

� γ ∶ S ×A→ S is a computable, partial state transition function.

Note that the transition function is just defined - from this state with this action,
we go to this state. It is a function, and thus determined.

A planning problem is then defined as follows:

Definition 2.9 (Classic Planning Problem). A classic planning problem is a tuple
⟨Σ, s0, Sg⟩, where

� Σ is a transition system

� s0 is the initial state

� Sg is the set of goal states

A solution to a classic planning problem is a finite sequence of actions, called a
plan, such that after this sequence the result is a state in Sg.

Classic planning requires that any planning problem be fully observable, deter-
ministic, finite and static to ensure that planning problems are computationally
easier to solve. Another consequence of these restrictions is that a solution is also
theoretically easier to construct, as it does not take into account that the world is
only partially observable, or that other agents might be acting in it as well.

Bolander and Andersen ([10]) proposed a new method of planning, which they call
epistemic planning. For their planning problems they lifted the constraints of full
observability and determinacy, making it suitable for multi-agent planning in a
partially observable world.

9

2.3.1 Epistemic Planning

Bolander’s epistemic planning uses the concepts from DEL, mentioned before, to
define a planning problem that does not require that the world be fully observable
or deterministic. Instead of a predefined, deterministic transition system as used
by Ghallab et al., epistemic planning makes use of epistemic events to define how
the world changes. Events in DEL are designed to be used in a partially observable
framework, and are by definition non-deterministic, which immediately lifts two
requirements of classical planning.

Using these events to define how the world changes allows for an agent-dependent
view of the world, which ensures that agents can plan for what they know or do
not know, and allowing different agents knowing different things about the world.
Bolander and Andersen therefore define their state-transition system differently:

Definition 2.10 (Epistemic Planning Domain). Given a finite set P of proposi-
tions and a finite set A of agents, an epistemic planning domain on (P,A) is a
restricted state-transition system Σ = ⟨S,A, γ⟩ where

� S is a finite or recursively enumerable set of epistemic states

� A is a finite set of actions

� γ is defined by

γ(s, a) =

⎧⎪⎪
⎨
⎪⎪⎩

s⊗ a if s ⊧ pre(a)

undefined otherwise

Aside from the way states transition into one another, an epistemic planning prob-
lem as defined by Bolander and Andersen in [10] is similar to a classic planning
problem:

Definition 2.11 (Epistemic Planning Problem). An epistemic planning problem
is a tuple ⟨Σ, s0, ϕg⟩ where

� Σ is an planning domain

� s0 is the initial state

� ϕg is the goal formula. The set of goal states consists of those states where
ϕg holds

A solution is still a finite sequence of actions such that after execution of all these
actions, ϕg holds in the updated model.

The main difference between classical and epistemic planning problems is the way
in which actions lead to new states. In a classic planning problem the transition

10

system Σ determines a partial transition function γ, which defines what state we
arrive in after a combination of action and state took place. In an epistemic plan-
ning problem, Σ consists of a set of actions and states, and γ is determined by the
product update of actions applied to states.

What makes epistemic planning especially interesting is that it allows one to look
into conditional planning (see for example [3]): situations where an agent does not
have all necessary information yet, but knows that she will get it after a certain
action. She can then conditionalize her plan, to say that if she finds out a, she
will do σ, whereas if she finds out ¬a she will do σ′, and still be sure to reach her
goal because she knows that she will find out either a or ¬a. This means that even
though an agent is not sure about the world, she can still create a long-term plan
in such a way that she is sure to reach her goal.

To formalize this, Andersen and colleagues introduce the concept of a solution to
a planning problem [3]. They say a sequence of actions is a strong solution if it is
the case that every step is executable and the agent knows that after the sequence
happened, the goal holds. A sequence of actions is a weak solution if every action
in the sequence is executable at the right step, and the agent does not know that
the goal does not hold after execution. Hence, a strong solution is a sequence of
actions such that it is guaranteed to reach the goal, whereas a weak solution is a
sequence of actions such that it is possible that it reaches the goal.

11

3 Power of Coalitions

DEL provides us with a way to talk about what agents know, and how this changes
when they interact with each other and the world, and is already used to model a
planning problem where one agent plans his course of actions in a world with in-
complete information [10, 3]. However, one can conceive of situations where agents
cannot perform a task or reach a goal on their own. They might need someone
else’s knowledge, or they are simply incapable of performing a crucial action them-
selves. In this chapter we introduce Dynamic Epistemic Coalition Logic, or DECL
for short, for exactly these situations. It models what coalitions are able to achieve
by performing one or more actions. As in coalition logics such as ATL and related
logics, Pauly’s Coalition Logic or STIT-logics [24, 1, 8], DECL keeps track of what
coalitions can achieve, and, like DEL [26], it uses specific actions. Hence, rather
than merely stating that a coalition can reach a certain goal, it can also talk about
the specific action that brings this about. Combining these properties gives us a
way to talk about solutions to planning problems for coalitions.

The models and logic that we will be using are inspired by the fact that, whenever
anyone performs an action, the ultimate result is hardly ever determined. Alice
might decide that she goes dancing, but whether or not Bob will join her, is up
to him rather than her. So when she chooses to go dancing, in fact she chooses
to go dancing independent of whether Bob goes as well. Another example is the
situation where one can perform the action of flipping a coin, but one cannot
beforehand decide that one is going to flip the coin and that it will land heads.
There are many different factors that can alter the outcome of an action, and our
framework models the control of an agent or coalition over the world, by making
explicit that which it cannot control.

In this framework, performing an action is therefore modeled as choosing a ’group’
of events. Then, when all agents, and possibly nature, have chosen an action,
the actual event that will happen gets determined. So when Alice decided to go
dancing, this included the event where Bob would join her and the one where he
would not. Only when he makes his choice is it determined whether they will go
together or not. Hence, this framework works with the assumption that we do not
always have full control over the consequences of our actions, and that there are
other decisions, made by either other agents or some external force like nature,
that influence the result of our action.

From now on, whenever we talk about an event, we mean a determined, single
event. An example is the event of some agent flipping a coin and it landing heads
up. The event of Alice and Bob both going dancing. When we say action, we
mean something an agent can decide to do. It will most often consist of multiple
events. Hence, Alice going dancing is an action that consists of two events: the

12

one where Bob joins her and the one where he does not.

This gives rise to a notion of controllability, or forcing, rather intuitively. If an
agent can choose an action in such a way that, no matter what anyone else does,
ϕ holds, we say that this agent can force ϕ. Thus if every event in an action of an
agent has the same result, we say that the agent forces that result, as none of the
other agents can change it once the first agent makes up their mind.

3.1 Dynamic Epistemic Coalition Logic

In this chapter we introduce Dynamic Epistemic Coalition Logic (DECL), which
combines Dynamic Epistemic Logic and components from stit logics to model
coalitional planning. In this section, we first give the syntax of DECL, after which
we continue with its models and its product update. After this, we discuss some
examples, and finally we show that the logic is sound, complete and decidable.

3.1.1 Syntax of DECL

Definition 3.1 (The Language LDECL). Let Σ be a finite set of ’action names’, A
be a finite set of ‘agents’, 0 /∈ A be a symbol denoting ‘Nature’ (seen as a non-agent
force that comprises all the influences that are beyond agents’ control) and P be
a set of propositional letters, denoting ‘ontic’ (i.e. non-epistemic) facts. . Then
LDECL has the following Backus-Naur form:

p ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣DIϕ ∣ [J]ϕ ∣ [σ]ϕ

Where I ⊆ A and J ⊆ A ∪ {0} are coalitions and σ ∈ Σ.
We call the static fragment of LDECL without the dynamic modality LDECL− .

We take [I]ϕ to mean that the agents in I have forced ϕ and DIϕ to mean that ϕ
is distributed knowledge among the agents in I, which is traditionally interpreted
as a situation where, if all agents in I combine their knowledge, they will all know
that ϕ.
As in DEL, [σ]ϕ means that after the event σ happened, ϕ is the case.

Abbreviations

� We write Kiϕ for D{i}ϕ to mean that agent i knows ϕ

� We will write [σI]ϕ for ⋀
σ′≈Iσ

[σ′]ϕ, to mean that the agents in I can together

enforce ϕ by each of the agents in I choosing the equivalence class that
contains σ.

� We’ll write ◇Iϕ for ⋁
σ∈Σ

[σI]ϕ, to say that the agents in I can enforce ϕ, by

choosing their actions wisely.

13

� ⟨I⟩ is the dual of [I].

3.1.2 Models and Product Update

The models that we use are based mainly on the multi-agent epistemic models and
action models of DEL. Besides having an epistemic indistinguishability relation,
we also have a control relation, or choice relation, which is an equivalence relation
that models the control an agent can exercise. In our action models, this relation
defines a partition on the events, where each equivalence class is a specific action
of that agent. In the static models, the control relation keeps track of what agents
or a coalition have previously forced. It is important to realize that the control
relation is extra, and does not replace the indistinguishability relation. In fact,
it complements it, as we assume that if an agent cannot tell two events apart,
these two events should be in the same choice equivalence class, and similarly in
the static models: if an agent forced something, he must know it. This seems like
an intuitive constraint, as we see actions as the choice of an agent. If an agent
cannot distinguish between two events, it makes sense that it is impossible for him
to choose the one, but not the other, because they look the same to him.

Formally, the action models that we use are defined as follows:

Definition 3.2 (Action Control Model). An action model for the language LDECL
is a structure
Σ = ⟨Σ,∼i,≈j,pre,post⟩i∈A,j∈A∪{0} where

� Σ is the non-empty set of action names of the language LDECL;

� ∼i is an equivalence relation for each agent i ∈ A called the indistinguishability
relation;

� ≈j is an equivalence relation for every j ∈ A ∪ {0} such that for all σ ∈ Σ we
have ⋂

j∈A∪{0}
[σ]≈j = {σ};

� pre ∶ Σ → LDECL is a function called the precondition mapping actions to
formulas of L;

� post ∶ Σ→ (P → L) is a function called the postcondition.

� for all i ∈ A we require ∼i⊆≈i

There are some remarks to be made about the action models.

1. The control relation ≈i is also defined for 0. Here, 0 denotes ’nature’, or ’en-
vironment’, which consists of all external forces that are beyond the control
of the agents, but might still influence the current event. Clearly, 0 does not
get an epistemic relation.

14

2. When every agent and 0 has made a choice of action, the combination de-
termines the event. We can make these action models determined, exactly
because of 0, as anything that is not directly determined by the agents alone
can be explained as being determined by ’nature’.

3. We require that ∼i⊆≈i to ensure that agents can only choose what they know
or can distinguish.

In this thesis we always work with one big action model. This model contains all
possible events that could at some point happen. All these events are partitioned
according to the control relations, and at each moment, every agent chooses one
of his equivalence classes. The intersection of all equivalence classes is then the
event that will actually happen.

In the static models, we have an analogous extra equivalence relation. Instead of
showing dynamic control, here it shows control by past choices. Hence, we say
that if an entire equivalence class satisfies a formula, the agent has forced that
formula. Note the difference in time when comparing with the action models: in
the static models, having forced ϕ means having made choices in the past, such
that ϕ is now the case, whereas in the action models, forcing ϕ means the current
choice will result in ϕ, no matter what the other agents choose.

Definition 3.3 (Static Epistemic Control Model). A static epistemic model is a
structure S = ⟨S,∼i,≈j, V ⟩i∈A,j∈A∪{0} such that

� S is a non-empty set of states ;

� ∼i is an equivalence relation for each agent i ∈ A called the indistinguishability
relation;

� ≈j is an equivalence relation forevery j ∈ A ∪ {0} such that for all s ∈ S we
have ⋂

j∈A∪{0}
[s]≈j = {s};

� V ∶ P → P(S) is the valuation function that maps propositional letters to
subsets of states.

� for all i ∈ A we require ∼i⊆≈i

This relational way of defining control equivalence is an alternative semantics for
stit logics, as proposed first by Kooi and Tamminga [23], and was later shown
to be equivalent to the usual semantics on branching-time models by Herzig and
Schwarzentruber [19]. Balbiani and colleagues gave another axiomatization of stit
based on this new semantics in [4].

Now that we have action control models and static epistemic control models, we
have to define the product update. This works almost the same as product updates

15

with ontic change in DEL, with the addition that two states are ≈i related if both
the original states and the events were. This captures the intuition of keeping
track of the history, as it requires not only that an agent or coalition chose an
action in a certain way, but it also demands something of how things came to be
before they chose that action.

Definition 3.4 (Product Update). Let S be a static epistemic model and Σ
an action model. Then the product update of S and Σ is S ⊗ Σ = ⟨S′,∼′i,≈

′
j

, V ′⟩i∈A,j∈A∪{0} such that

� S′ = {(s, σ) ∈ S ×Σ;S, s ⊧ pre(σ)}

� ∼′i= {((s, σ), (s′, σ′)) ∈ S′ × S′; s ∼i s′ and σ ∼i σ′}

� ≈′j= {((s, σ), (s′, σ′)) ∈ S′ × S′; s ≈j s′ and σ ≈j σ′}

� V ′(p) = {(s, σ) ∈ S′;S, s ⊧ post(σ)(p)}.

As one can see from the product update, having a control relation in the static
models as well allows us to keep track of control throughout multiple numbers of
actions. If we do not do this, as van Benthem and Minica suggested in [28], it is
almost as if we start on a fresh canvas after each product update, and previous
forcing actions are forgotten. By enabling the remembering of control, we in fact
also enable coalitions planning multiple steps ahead, while keeping control over
what they forced. We will get back to this later in Example 3.12.

Example 3.5. An agent flips a coin. As mentioned before, the agent can only
decide to throw it, but not how it lands. Hence the events where the coin lands
heads and where it lands tails are connected by the control relation of the agent.
This is depicted in Figure 4.

T

pre=⊺
post=h

H

pre=⊺
post=¬h

≈a

Figure 4: The action control model of flipping a coin

Note that in this example, the agent has complete information about the world
and the events - they only do not have full control. Following is an example where
one agent neither has full control, nor complete information.

Example 3.6. Alice and Bob want to visit Charlie, but Alice does not know
whether to go left or right at the intersection. Bob has been there before, so he
knows. Consider the static model and action model in Figures 5 and 6.
Alice knows that Bob knows whether to go left or right, but of course, she cannot
make him tell her. He is the one who decides whether to do that or not. Given
that we assume a cooperative setting, we suppose that Bob will tell her, after
which the updated model looks as in Figure 7.

16

s

l

t

¬l
∼a

Figure 5: The initial model

!bl

pre ∶ l

skip

pre ∶ ⊺

≈a

Figure 6: The action model

s

l

Figure 7: The updated model

3.1.3 Semantics and Examples

Definition 3.7 (Satisfaction). The satisfaction of formulas of DECL on static
epistemic models, denoted S, s ⊧ ϕ is defined as follows:

� S, s ⊧ p iff s ∈ V (p)

� S, s ⊧ ¬ϕ iff S, s ⊭ ϕ

� S, s ⊧ ϕ ∨ ψ iff S, s ⊧ ϕ or S, s ⊧ ψ

� S, s ⊧DIϕ iff ∀s′ ∼I s ∶ S, s′ ⊧ ϕ

� S, s ⊧ [I]ϕ iff ∀s′ ≈I s ∶ S, s′ ⊧ ϕ

� S, s ⊧ [σ]ϕ iff (s, σ) ∈ S⊗Σ implies S⊗Σ, (s, σ) ⊧ ϕ

Where ≈I ∶= ⋂
i∈I

≈i and ∼I ∶= ⋂
i∈I

∼i.

It is clear that the case where one agent forced something is a special case where
I = {i}.

We now discuss some examples that illustrate what DECL is capable of expressing.

Example 3.8 (A coalition can achieve something the separate agents cannot).
Agent a is in the process of stealing a diamond from a vault. She is, however,
in a wheelchair, so she called in help from agent b, who has to push her around.
Currently, they are in the vault(¬o, for not outside), while agent a is carrying the
diamond (d). The initial model is depicted in Figure 8. They would like to be
standing outside the vault while still carrying the diamond, hence the goal formula
is ϕg ∶= d∧o. Both agents currently have two actions they can choose from. Agent
a can hold on to the diamond (H), or she can drop it (D - for the sake of the
example we assume dropping the diamond is a conscious decision), and agent b
can either push agent a outside (P) or he can stay where they are (S). The action
model is depicted in Figure 9.

17

s

d ∧ ¬o

Figure 8: The initial model

HS

pre ∶ ⊺

DS

pre∶d
post∶¬d

HP

pre∶¬o
post∶o

DP

pre∶d∧¬o
post∶¬d∧o

≈b

≈a ≈a

≈b

Figure 9: The action model

One can see that there is exactly one event in this action model such that after
this event, ϕg holds, and that is if b pushes and a holds on to the diamond (HP).
Hence, together they can ensure that they reach their goal: s ⊧ [HP{a,b}]ϕg, but
each agent on his own cannot: s ⊧ ¬◇{a} ϕg and s ⊧ ¬◇{b} ϕg.

Example 3.9 (One agent knows that cooperating can achieve the goal, but the
other does not). Suppose ϕg = p and currently agent a does not know whether
p, but agent b does know. This situation is depicted in Figure 10. The agents
can now both decide whether they want to flip the truth value of p, or whether
they want to do nothing. This action is shown in Figure 11. One can check
that s ⊧ Kb[flip{a,b}]ϕg ∧Kb¬[flip{b}]ϕg. Hence, agent b knows that he has to
cooperate with agent a to be sure to achieve his goal. Furthermore, it is the case
that s ⊧ ¬Ka[flip{a,b}]ϕg, so agent a does not know that flipping the truth value of
p will achieve their goal, since she isn’t sure about the initial truth value. Hence,
b cannot be sure that she will decide to perform flip, and thus if they do not
coordinate, he cannot be sure that they reach their goal.

s

¬p

t

p
∼a

Figure 10: The initial model

skip

pre ∶ ⊺

flip

pre∶⊺
post∶p↦¬p
post∶¬p↦p

skip

pre ∶ ⊺

≈b ≈a

Figure 11: The action model

Example 3.10 (Two agents know different ways of achieving their goal). Consider
the initial static model in Figure 12. Agent a knows that p and agent b knows
that q. Also consider the action model in Figure 13, where we see that only if they
both choose either !p or !q something happens, otherwise the event skip occurs.
If p is the case, then the action !p will achieve the goal, but if it isn’t it will achieve
the opposite. Similarly for q: if it is the case, then action !q will achieve the goal,

18

s

p

t

p ∧ q

u

q
∼a ∼b

Figure 12: The initial model

skip

pre ∶ ⊺

!p

pre∶⊺
post∶p↦ϕg
post∶¬p↦¬ϕg

skip

pre ∶ ⊺

!q

pre∶⊺
post∶q↦ϕg
post∶¬q↦¬ϕg

≈b

≈a

≈b

≈a

Figure 13: The action model

and if not, it will achieve the opposite. Since a knows p, but not q, she will want
to do action !p, whereas agent b will want to do action !q, as he knows that will
achieve the goal. Hence, t ⊧ Ka[!p{a,b}]ϕg ∧Kb[!q{a,b}]ϕg. However, also note that
both agents do not know that the other agent’s favorite action will also lead to the
goal: t ⊧ ¬Kb[!p{a,b}]ϕg ∧ ¬Ka[!q{a,b}]ϕg. Hence, they both need one another, but
they both want to achieve the goal in a different way.

Example 3.11 (Causing). We have been talking about agents forcing a certain
outcome, but we can express something more. Agent i forcing ϕ might, after
all, have been a coincidence. ϕ might have been unavoidable, which makes it
immediate that i forced it, rather than a result of something agent i did. Thus we
would like to express the notion of ’causing’, where it is really the actions of an
agent that made the world the way it is. Thus we say that agent i caused ϕ if and
only if he forced it, and he could have avoided it. So we can express that agent i
caused ϕ with

[i]ϕ ∧ ⟨A ∪ {0} ∖ i⟩¬ϕ

As this thesis is concerned about the power of coalitions, it is interesting to extend
this single-agent causing to coalitions. A coalition causing a certain formula entails
again that they forced it, but also that if any of the members of the coalition had
done something else, the result could have been different. This last part means
that a coalition caused something if the entire coalition was needed to force it. In
the language, we express this by

[I]ϕ ∧⋀
i∈I

⟨A ∪ {0} ∖ {i}⟩¬ϕ

This notion of causing relates more to the dstit operator introduced by Horty and
Belnap [21] than our earlier notion of forcing did, in the same way that for them
dstit also means that the agent had another choice, but decided in favor of this
particular action.

19

Example 3.12 (Remembering control). We have previously claimed that includ-
ing a control relation in the static models allows us to keep track of control through-
out multiple actions. In this example we will show what we mean with this.

Suppose a coalition I can perform a joint action σI , such that after all events in
that action, ϕ holds. Then surely it is the case that [σI]ϕ. It is natural to say
that then, after the joint action happened, the agents in I forced ϕ, so [σI][I]ϕ.
This is however not valid, and we only need a simple counterexample to show this:

s

p

t

¬p
≈I

Figure 14: Initial model S

σ

pre=p
post=⊺

σ′

pre=¬p
post=⊺

≈I

Figure 15: Action model Σ

(s, σ)

p

(s′, σ′)

¬p

≈I

Figure 16: The updated model S ⊗Σ

As the reader can check, it is the case that ∀σ′ ≈I σ ∶ S ⊗Σ, (s, σ′) ⊧ p, and thus
that S, s ⊧ ⋀

σ′≈Iσ
[σ′]ϕ. Hence indeed, S, s ⊧ [σI]ϕ. However, (s′, σ′) ⊭ p, and thus

it is not the case that ∀σ′ ≈I σ ∶ ∀(s′, σ′) ≈I (s, σ) ∶ (s′, σ′) ⊧ p, and therefore
∀σ′ ≈I σ ∶ (s, σ′) ⊭ [I]p, and hence also S, s ⊭ [σI][I]p.

Hence, we do not have that ⊧ [σI]ϕ → [σI][I]ϕ. The reason for this is that, even
though the coalition I can force ϕ from the situation as it is now, it could very
well be that there is some other coalition J that made the situation the way it is
now. Hence, we cannot attribute ϕ completely to I, as J also played a crucial role.
One could argue that it is such an intuitive implication that we should add it as a
requirement to the model. However, suppose that we do add it as a requirement,
so suppose we force the implication [σI]ϕ → [σI][I]ϕ. The following would then
also be valid:

S, s ⊧ [σi]ϕ⇒ S, s ⊧ [σi][i]ϕ⇒ S, s ⊧ [σi]Kiϕ⇒ 1S, s ⊧Ki[σi]ϕ

Hence, forcing the implication leads to the validity that if an agent has an action
with which they can force ϕ, they know that with this action they can force ϕ.

1Proof: S, s ⊧ [σi]Kiϕ⇒ S, s ⊧ ⋀

σ′≈iσ
[σ′]Kiϕ⇒ ∀σ′ ≈i σ ∶ (S ⊗Σ), (s, σ′) ⊧ Kiϕ⇒ ∀σ′ ≈i σ ∶

∀(s′, σ′′) ∼i (s, σ
′
) ∶ (S ⊗Σ), (s′, σ′′) ⊧ ϕ ⇒ ∀σ′ ≈i σ ∶ ∀s

′
∼i s ∶ (S ⊗Σ), (s′, σ′) ⊧ ϕ ⇒ ∀s′ ∼i s ∶

S, s′ ⊧ [σi]ϕ⇒ S, s ⊧Ki[σi]ϕ

20

This is not desirable, as it completely blurs the difference between having a strat-
egy and knowing that one has a strategy, which was the core of many discussions
in coalition logics, see e.g. [22].

The knowledge that ⊭ [σI]ϕ→ [σI][I]ϕ because the current situation might have
been due to some other coalition does give rise to another implication that has a
similar intuition, but which is a validity: ⊧ [I][σI]ϕ→ [σI][I]ϕ. This implication
says that if, by previous actions, the agents in I forced the fact that they are now
in a position where they can force ϕ by choosing σI , then after performing this
action, they will have forced ϕ.
This exactly says what we want: if the agents in I made the world the way it is,
and they can now perform an action such that afterwards ϕ, then clearly after
that action, they forced ϕ. This follows from the fact that not only can they from
the way the world is now, force ϕ, but they forced the way the world is now as
well.

3.1.4 Proof System of DECL

Now that we have shown some examples of what DECL can express, we present
its proof system, and show that it is sound, complete and decidable.

� All axioms and rules of classical propositional logic

� Necessitation rules for all modalities

� S5 for [I] for all I ⊆ A ∪ {0}

� S5 for DI for I ⊆ A

� Knowledge of (Individual) Control
[I]ϕ→DIϕ for I ⊆ A

� Monotonicity of Control
[I]ϕ→ [J]ϕ for I ⊆ J ⊆ A ∪ {0}

� Monotonicity of Distributed Knowledge
DIϕ→DJϕ for I ⊆ J ⊆ A

� Determinism of Grand Coalition
ϕ→ [A ∪ {0}]ϕ

In addition to the axioms for the static language, we have reduction axioms that
will form the basis of reducing the dynamic language to the static language.

21

Reduction Axioms

� [σ]p↔ (pre(σ)→ post(σ)(p))

� [σ]¬ϕ↔ (pre(σ)→ ¬[σ]ϕ)

� [σ](ϕ ∧ ψ)↔ [σ]ϕ ∧ [σ]ψ

� [σ]DIϕ↔ (pre(σ)→ ⋀σ∼Iσ′DI[σ′]ϕ)

� [σ][I]ϕ↔ (pre(σ)→ ⋀σ≈Iσ′[I][σ
′]ϕ)

Some remarks about these axioms are in order. First, notice that [i]ϕ → Kiϕ
is a special case of [I]ϕ → DIϕ. It is easily argued that, after one agent forced
something, he knows it. One might, however, argue that in the multi-agent case
we would prefer something stronger: indeed one can argue that we would like it
to be the case that after a coalition forced ϕ, they commonly know that ϕ. In
response, we point out that this axiom, in fact, emphasizes the meaning of the
modality [I], as this in fact does not mean that forcing ϕ was a conscious decision
for a coalition of agents. No one agent in the group may intend ϕ, and it could
even be the case that no one is aware that it is being forced, but nonetheless, it is
being forced by the actions chosen by the members of the coalition. In Section 4
we add common knowledge to the language of DECL, with which we can express
this conscious forcing.

Secondly, both monotonicity axioms imply that a bigger coalition is always more
powerful, both in terms of knowledge as in forcing power. In our setting this is
a reasonable assumption, as everyone works together. In a setting where agents
might try to thwart one another, it could be interesting to allow smaller coalitions
to be more powerful.

3.2 Soundness, Completeness and Decidability of DECL

We first show completeness for LDECL− , the fragment of LDECL without dynamic
modalities. Afterwards we show that the latter can be reduced to the former,
implying completeness for the full language.

3.2.1 Preliminaries

Before we can start the proof, we give some definitions and general results that
are used later on.

Definition 3.13 (Filtration). Let S be a general Kripke model, and Σ ⊆ L a set
of formulas. The relation ≡Σ on S, defined as

s ≡Σ t⇔ for all σ ∈ Σ ∶ (S, s ⊧ σ⇔ S, t ⊧ σ)

22

defines an equivalence on S; we denote its equivalence classes with [s]Σ, but we
will often leave out the subscript if Σ is clear from context. The model Sf = ⟨Sf ,∼fI
,≈fJ , V

f ⟩ is a filtration of S through Σ if

� Sf = {[s]; s ∈ S}

� For each Rf
◻ ∈ {∼fI ,≈

f
J ; I ⊆ A, J ⊆ A ∪ {0}} the following hold:

minf For all [s], [t] ∈ Sf , if sR◻t, then [s]Rf
◻[t].

maxf For all [s], [t] ∈ Sf , if [s]Rf
◻[t], then for all

◻ϕ ∈ Σ(S, s ⊧ ◻ϕ→ S, t ⊧ ϕ)

� V f(p) = {[s]; s ∈ V (p)}

Lemma 3.14. Let Sf be a filtration of a general Kripke model S through some Σ.
Then for all [s] ∈ Sf and ϕ ∈ Σ, we have S, s ⊧ ϕ⇔ Sf , [s] ⊧ ϕ.

Proof. The proof is by induction on the complexity of the formula.
Base case. Suppose ϕ = p for some p ∈ P .
Then by definition [s] ∈ V f(p)↔ s ∈ V (p), and hence S, s ⊧ ϕ⇔ Sf , [s] ⊧ ϕ.
Inductive step. The boolean cases are straightforward.
Suppose ϕ is of the form ◻ψ for some ◻ ∈ {∼I ,≈J ; I ⊆ A, J ⊆ A ∪ {0}}.
For the left-to-right direction, suppose S, s ⊧ ◻ψ. Now take an arbitrary [t] ∈ Sf

such that [s]Rf
◻[t]. Then by the maxf condition of filtrations and the fact that

S, s ⊧ ◻ψ, we get that S, t ⊧ ψ. But then by the induction hypothesis Sf , [t] ⊧ ψ,
and thus Sf , [s] ⊧ ◻ψ.
For the other direction, suppose Sf , [s] ⊧ ◻ψ. Hence, for all [t] ∈ Sf such that
[s]Rf

◻[t], we have that Sf , [t] ⊧ ψ. By the induction hypothesis, we get S, t ⊧ ψ.
Now take an arbitrary u ∈ S such that sR◻u. Then, as sR◻u, we get by the minf

condition of filtrations that [s]Rf
◻[u], and thus that S,u ⊧ ψ. Hence S, s ⊧ ◻ψ.

Definition 3.15 (Bounded Morphism). Let S = ⟨S,∼I ,≈J , V ⟩I⊆A,J⊆A∪{0} and S′ =
⟨S′,∼′I ,≈

′
J , V

′⟩I⊆A,J⊆A∪{0} be two regular Kripke models. A mapping f ∶ S → S′ is
a bounded morphism if the following hold for all I ⊆ A and J ⊆ A ∪ {0}:

1. for all s ∈ S ∶ s ∈ V (p) if and only if f(s) ∈ V ′(p).

2. (a) for all s, t ∈ S, if s ∼I t then f(s) ∼′I f(t)

(b) for all s, t ∈ S, if s ≈J t then f(s) ≈′J f(t)

3. (a) for all s ∈ S and t′ ∈ S′, if f(s) ∼′I t
′, then there exists a t ∈ S such that

s ∼I t and f(t) = t′.

(b) for all s ∈ S and t′ ∈ S′, if f(s) ≈′J t
′, then there exists a t ∈ S such that

s ≈J t and f(t) = t′.

23

Proposition 3.16. Let S = ⟨S,∼I ,≈J , V ⟩I⊆A,J⊆A∪{0} and S′ = ⟨S′,∼′I ,≈
′
J , V

′⟩I⊆A,J⊆A∪{0}
be two regular Kripke models, and let f ∶ S → S′ be a bounded morphism. Then
for any formula ϕ of DECL− and world s ∈ S, it is the case that S, s ⊧ ϕ iff
S′, f(s) ⊧ ϕ.

Proof. The proof is by induction on the complexity of ϕ:
Base case: The base case follows from the definition of bounded morphisms.
Inductive step: The Boolean cases where ϕ = ¬ψ and ϕ = ψ1∧ψ2 follow immediately,
which leaves only the modalities.
Suppose S, s ⊧ DIψ. Take an arbitrary t′ ∈ S′ such that f(s) ∼′I t

′. According
to condition 3(a) there exists a t ∈ S such that s ∼I t and f(t) = t′. By the first
consequence we get that S, t ⊧ ψ, and by the second and the induction hypothesis
we get that S′, f(t) ⊧ ψ. Hence it is the case that S′, f(s) ⊧DIψ.
The case for [I] is analogous, which completes the proof.

3.2.2 Plan of the Proof

We are now ready to start the completeness proof, but before we start we first
give a brief explanation of the steps we will take, as this will make it easier for the
reader to follow the main argument throughout the proof itself. The completeness
proof uses the method introduced by Fagin et al.[15], and consists of three steps.

1. Step 1: Soundness and Completeness for Pseudo-models. First, we create
pseudo-models. These are structures that look like static epistemic control
models, but have separate ∼ and ≈ relations for every subset of agents, instead
of just one for every agent. We then show soundness of DECL− with respect
to these pseudo-models and argue that as static epistemic control models
are a special case of pseudo-models, the logic is sound with respect to static
epistemic control models. Then we define the canonical pseudo-model and
prove completeness of DECL− with respect to this.

(b) Step 1b: Decidability. In a small detour, we use our version of a Fischer-
Ladner closer to filtrate the canonical pseudo-model. Using this, we ob-
tain a finite pseudo-model, with which we prove decidability of DECL−.

2. Step 2: Unraveling. In the second step, we unravel the canonical pseudo-
model. This means that we create all possible histories in the pseudo-model:
paths that can be taken when we follow the ∼ and ≈ relations. These histories
are related in such a way that they form a tree.

3. Step 3: Completeness of DECL−. In the third step, we take the tree we just
created, and from it define a static epistemic control model. We do this by
defining the proper relations, and showing that this newly created structure
satisfies the necessary semantic properties. Then we define a bounded mor-
phism between the canonical pseudo-model and the static epistemic control
model, which makes completeness with respect to those models immediate.

24

4. Step 4: Completeness of DECL. In the fourth step, we show how the dynamic
language DECL can be reduced to the static language DECL−, thereby show-
ing that the previously obtained results carry over to the dynamic language.

3.2.3 The Proof

STEP 1: Soundness and Completeness for Pseudo-models

Definition 3.17 (Pseudo-Model). A pseudo-model is a structure M = ⟨S,∼I ,≈I
, V ⟩, where

� ∼I and ≈I are equivalence relations;

� ∼I⊆≈I ;

� for J ⊆ I ∶∼I⊆∼J and ≈I⊆≈J ;

� ≈A∪{0}= id.

It is clear that all epistemic control models are in fact pseudo-models, as they have
the same requirements except for also requiring that ≈I ∶= ⋂

i∈I
≈i and ∼I ∶= ⋂

i∈I
∼i.

Proposition 3.18 (Soundness). All axioms of DECL are valid on pseudo-models.

Proof. Let M = ⟨S,∼I ,≈I , V ⟩ be an arbitrary pseudo-model. We will show that all
axioms are valid on M . The proof is per axiom.

� All S5 axioms follow easily.

� [I]ϕ → DIϕ: Suppose M,s ⊧ [I]ϕ. Take an arbitrary t ∈ S such that s ∼I t.
It follows that s ≈I t, thus we have that M, t ⊧ ϕ, and hence for any t such
that s ∼I t, we get M, t ⊧ ϕ, thus M,s ⊧DIϕ.

� [I]ϕ → [J]ϕ for I ⊆ J : Suppose M,s ⊧ [I]ϕ. Take an arbitrary t ∈ S such
that s ≈J t. From our requirements, it follows that s ≈I t, and thus M, t ⊧ ϕ.
Thus for all t such that s ≈J t we have M, t ⊧ ϕ, and hence M,s ⊧ [J]ϕ.

� DIϕ→DJϕ for I ⊆ J : Similar as above.

� ϕ → [A ∪ {0}]ϕ: Assume Ms,⊧ ϕ, and take an arbitrary t ∈ S such that
s ≈A∪{0} t. Then, as ≈A∪{0}= id, we get that t = s, and thus M, t ⊧ ϕ, and
thus for all t such that s ≈A∪{0} t ∶M, t ⊧ ϕ, hence M,s ⊧ [A ∪ {0}]ϕ.

Now to prove completeness with respect to the pseudo-models, I will build the
canonical structure MC .

25

Definition 3.19 (Canonical structure). The canonical structure is a general Kripke
model MC = ⟨S,∼I ,≈I , V ⟩, such that

� S = {s; s is a maximally consistent set of DECL formulas}

� s ∼I t iff ∀ϕ(DIϕ ∈ s⇒ ϕ ∈ t)

� s ≈I t iff ∀ϕ([I]ϕ ∈ s⇒ ϕ ∈ t)

� V (p) = {s ∈ S;p ∈ s}.

Note that the relations can alternatively be defined as follows (see Blackburn et
al. [9]):

� s ∼I t iff ∀ϕ(ϕ ∈ t⇒ D̂Iϕ ∈ s)

� s ≈I t iff ∀ϕ(ϕ ∈ t⇒ ⟨I⟩ϕ ∈ s)

Proposition 3.20. Let MC be the canonical structure as described above. Then
MC is a pseudo-model.

Proof. All semantic properties are treated separately.

� To show that ∼I is reflexive, suppose DIϕ ∈ s. Then by our axioms, ϕ ∈ s.
From the definition of ∼I , it follows that id ⊆∼I , and thus that ∼I is reflexive.

� To show that ∼I is transitive, suppose s ∼I t ∼I s, and suppose DIϕ ∈ s. By
axiom 4, we get that DIDIϕ ∈ s. From that we obtain that DIϕ ∈ t, and
thus ϕ ∈ s. Thus, by definition of ∼I , we have that s ∼I s.

� To show that ∼I is symmetric, suppose s ∼I t and ϕ ∈ s. Then by axiom (B),
we have DID̂Iϕ ∈ s. Since s ∼i t, we then get that D̂I ∈ t. By definition, this
means that t ∼I s.

� Equivalence for ≈I follows the same lines as the previous case.

� To show that ∼I⊆≈I , suppose s ∼I s′, and let [I]ϕ ∈ s. Then since we have
the axiom [I]ϕ→DIϕ, we get that DIϕ ∈ s. But then as s ∼I s′, this means
that ϕ ∈ s′, and thus s ≈I s′.

� To show that ∼I⊆∼J for J ⊆ I, assume s ∼I s′, and let DJϕ ∈ s. Then since
DJϕ → DIϕ is an axiom, we get DIϕ ∈ s. But then as s ∼I s′, we get that
ϕ ∈ s′, and hence s ∼J s′.

� ≈I⊆≈J for J ⊆ I is similar to the ≈ case.

� To show that ≈A∪{0}= id, suppose that s ≈A∪{0} s′, and let ϕ ∈ s. Then by the
axiom ϕ → [A ∪ {0}]ϕ, we get that [A ∪ {0}]ϕ ∈ s. But then, as s ≈A∪{0} s′,
we have that ϕ ∈ s′. Hence, s ⊆ s′, but as both are maximally consistent sets,
and hence s′ cannot be strictly bigger than s, it must be the case that s = s′,
and thus ≈A∪{0}= id.

26

Hence we showed that the canonical structure is in fact a pseudo-model. As all
axioms are valid on pseudo-models, they are also valid on the canonical structure.

Lemma 3.21 (Truth Lemma). MC , s ⊧ ϕ iff ϕ ∈ s.

Proof. In [9, p.199], the Truth Lemma is proved for any normal modal logic and
any canonical model, hence it also holds for MC .

Proposition 3.22. The logic DECL− is sound and complete with respect to pseudo-
models.

Proof. We showed soundness before.
To show completeness, suppose Γ is a consistent set of formulas from LDECL. By
the Lindenbaum Lemma it follows that in the canonical pseudo-model there is a
s ∈ S such that Γ ⊆ s. From the Truth Lemma it follows that MC , s ⊧ Γ. Hence Γ
is true in the canonical pseudo-model, and since the MC is a pseudo-model, Γ is
satisfiable in pseudo-models.

STEP 1b: Decidability

In this step we will show that LDECL is decidable, by using a filtration to create a
finite model that satisfies the same formulas as the canonical structure we ended
up creating in Step 1.

First we have to define our version of the Fischer-Ladner closure. We call this a
suitable set.

Definition 3.23 (Closed set under single negation). Let Γ be a set of formulas.
Then Γ is closed under single negation if and only if ϕ ∈ Γ implies that ∼ ϕ ∈ Γ ,
where

∼ ϕ =

⎧⎪⎪
⎨
⎪⎪⎩

ψ if ϕ = ¬ψ

¬ψ else

Definition 3.24 (A suitable set). Let ϕ be in the language. Then Σϕ is a suitable
set for ϕ if it is the smallest set such that;

(1) ϕ ∈ Σϕ

(2) Σϕ is closed under subformulas

(3) Σϕ is closed under single negation

(4) DIϕ ∈ Σϕ implies DJDIϕ ∈ Σϕ for I ⊂ J

(5) [I]ϕ ∈ Σϕ implies [J][I]ϕ ∈ Σϕ for I ⊂ J

27

(6) [I]ϕ ∈ Σϕ implies DI[I]ϕ ∈ Σϕ

(7) ϕ ∈ Σϕ implies [A ∪ {0}]ϕ ∈ Σϕ if ϕ is not of the form [A ∪ {0}]ψ for some ψ.

Lemma 3.25. Let Σϕ be a suitable set for some ϕ ∈ L. Then Σϕ is finite.

Proof. Define Σ0
ϕ ∶= {ψ;ψ is a subformula of ϕ}.

Then as ϕ is defined by recursion, which ensures that the subformula relation is
well-founded, we get that this set is finite.
Now let

Σ1
ϕ ∶= Σ0

ϕ ∪ {DJ1DJ2 . . .DJmDIθ;DIθ ∈ Σ0
ϕ, I ⊂ Jm ⊂ ⋅ ⋅ ⋅ ⊂ J2 ⊂ J1}

∪ {[J1][J2] . . . [Jm][I]θ; [I]θ ∈ Σ0
ϕ, I ⊂ Jm ⊂ ⋅ ⋅ ⋅ ⊂ J2 ⊂ J1}

∪ {DJ1 . . .DJmDI1[I1][I2] . . . [In]θ; [In]θ ∈ Σ0
ϕ, In ⊂ . . . I1 ⊂ Jm ⋅ ⋅ ⋅ ⊂ J1}

Note that every separate part of Σ1
ϕ is finite, as it must be the case that all

sequences are finite - they can be as most as long as there are agents), and that
thus there can only be finitely many (different) sequences.
The reader can check that Σ1

ϕ is closed under constraints (1), (2) and (4) - (7).
Finally, let Σϕ ∶= Σ1

ϕ ∪ {∼ θ; θ ∈ Σ1
ϕ}.

Clearly, ∣Σϕ∣ ≤ 2× ∣Σ1
ϕ∣, so also Σϕ is finite, and clearly closed under all constraints.

Definition 3.26. Let M = ⟨S,∼I ,≈I , V ⟩ be a general Kripke model, and consider
a suitable set Σϕ for some ϕ ∈ L. Then we define a general Kripke model M+ =
⟨S+,∼+I ,≈

+
I , V

+⟩ such that

� S+ = {[s]Σϕ ; s ∈ S};

� [s] ∼+I [t] if and only if ∀DIψ ∈ Σ(M,s ⊧DIψ⇔M, t ⊧DIψ);

� [s] ≈+I [t] if and only if ∀[I]ψ ∈ Σ(M,s ⊧ [I]ψ⇔M, t ⊧ [I]ψ);

� V +(p) = {[s]; s ∈ V (p)}.

Lemma 3.27. M+ is a filtration of M through Σ.

Proof. Clearly, M+ satisfies the constraints on Sf and V f , so it is left to show that
∼+I and ≈+I satisfy minf and maxf .

� minf for ∼+I : Take an arbitrary [s], [t] ∈ S+ such that s ∼I t, and suppose
DIψ ∈ Σϕ. Then, as ∼I is an equivalence relation, we get that M,s ⊧ DIψ if
and only if M, t ⊧DIψ. Hence, by definition, we get [s] ∼+I [t].

� maxf for ∼+I : Take arbitrary [s], [t] such that [s] ∼+I [t], and suppose DIψ ∈
Σϕ and that M,s ⊧DIψ. Then again, M, t ⊧DIψ. But as ∼I is reflexive, we
get that M, t ⊧ ψ.

28

� Both minf and maxf are analogous for ≈+I .

Corollary 3.28. Let M = ⟨S,∼I ,≈I , V ⟩ be a general Kripke model, and let M+

and Σϕ be as above. Then for all σ ∈ Σϕ and s ∈ S, we get that

M,s ⊧ σ⇔M+, [s] ⊧ σ

Proof. This follows from Lemma 3.14 and Lemma 3.27.

Theorem 3.29. Let M = ⟨S,∼I ,≈I , V ⟩ be a pseudo-model. Then M+ constructed
as described above is a pseudo-model.

Proof. To show that M+ is a pseudo-model we have to show that it satisfies all
the semantic properties of pseudo-models.

� It is clear that ∼+I and ≈+I are equivalence relations.

� ∼+I⊆≈
+
I : Take arbitrary [s], [t] ∈ S+ such that [s] ∼+I [t]. This means that

∀DIψ ∈ Σϕ(M,s ⊧DIψ⇔M, t ⊧DIψ).
Let [I]ψ ∈ Σϕ, and suppose that M,s ⊧ [I]ψ. As ⊢LDECL [I]ψ → DI[I]ψ,
and since by construction DI[I]ψ ∈ Σϕ, we get that M,s ⊧ DI[I]ψ. But
then, as DI[I]ψ ∈ Σϕ and [s] ∼+I [t], we have M, t ⊧ DI[I]ψ. As DI is
truthful, it is the case that M, t ⊧ [I]ψ, and hence [s] ≈+I [t].

� ∼+I⊆∼
+
J for J ⊆ I: Take arbitrary [s], [t] ∈ S+ such that [s] ∼+I [t].

Clearly, if J = I, it is immediate that [s] ∼+J [t], so we focus on the case
where J ⊂ I. Suppose DJψ ∈ Σϕ, and M,s ⊧ DJψ. As ⊢LDECL DJψ →
DJDJψ, we can apply the Monotonicity of Distributed Knowledge axiom to
get ⊢LDECL DJDJψ → DIDJψ. Hence, we have that M,s ⊧ DIDJψ. But
then as [s] ∼+I [t] and DIDJψ ∈ Σϕ by construction of Σϕ, we get that
M, t ⊧ DIDJψ. Again, as DI is truthful, we obtain M, t ⊧ DJψ, and thus
[s] ∼+J [t].

� ≈+I⊆≈
+
J for J ⊆ I: this is analogous to the previous case.

� ≈+A∪{0}= id: Take arbitrary [s], [t] ∈ S+ such that [s] ≈+A∪{0} [t], and suppose
M,s ⊧ ψ for some ψ ∈ LDECL, and let Σϕ be the suitable set for ψ.

(a) Suppose ψ is of the form [A ∪ {0}]θ, thus M,s ⊧ [A ∪ {0}]θ. Then as
[s] ≈+A∪{0} [t] and Σϕ is closed under subformulas, we get that M, t ⊧

[A ∪ {0}]θ. Thus we have that for all ψ ∈ L,M, s ⊧ ψ if and only if
M, t ⊧ ψ. Hence it is the case that [s] = [t].

29

(b) Now suppose ψ is not of the form [A ∪ {0}]θ. By the Determinism of
Grand Coalition axiom, we get that M,s ⊧ [A∪{0}]ψ. By construction
of Σϕ and since [s] ≈+A∪{0} [t], we get that M, t ⊧ [A ∪ {0}]ψ. As

[A ∪ {0}] is truthful, we get that M, t ⊧ ψ. Thus we have that for all
ψ ∈ L,M, s ⊧ ψ if and only if M, t ⊧ ψ. Hence it is the case that [s] = [t].

Lemma 3.30. LDECL has the strong finite model property with respect to pseudo-
models.

Proof. Let ϕ be a formula of LDECL. Then it is satisfiable if and only if it is
satisfied in the canonical pseudo-model MC by Proposition 3.22. Now let M+ be
the filtration of MC over the suitable set Σϕ for ϕ. Then by Lemma 3.28, ϕ is
satisfied in MC if and only if it is satisfied in M+, hence ϕ is satisfiable iff it is
satisfied in M+. Also, we know that M+ has at most 2∣Σϕ∣ states. Hence, every
satisfiable formula is satisfied in a model containing at most 2∣Σϕ∣ states, thus giving
LDECL strong finite model property.

Theorem 3.31. The logic LDECL is decidable.

Proof. This follows from Lemma 3.30 and Theorem 6.7 in [9, p.340] which states
that any normal modal logic that has the strong finite model property with respect
to a recursive set of models is decidable.

STEP 2: Unraveling

Now we will unravel the canonical pseudo-model. For that we first need a few
notions.

Definition 3.32 (History). Let M = ⟨S,∼I ,≈J , V ⟩I⊆A,J⊆A∪{0} be a general Kripke
model and take some s ∈ S. Then a history with origin s is a finite sequence
h ∶= (s0,R0, s1, . . . ,Rn−1, sn) such that

� for all k ≤ n ∶ sk ∈ S;

� s0 = s;

� for all k ≤ n ∶ Rk ∈ {∼I ; I ⊆ A} ∪ {≈I ; I ⊂ A ∪ {0}};

� for all k ≤ n ∶ skRksk+1.

For any history h we write first(h) = s0 and last(h) = sn. These histories form
the statespace of the unravelled tree.
For two histories h = (s0,R0, . . . ,Rn−1, sn) and h′ = (s′0,R

′
0, . . . ,R

′
m−1, s

′
m) we write

the concatenation of the two h + h′ ∶= (s0,R0, . . . ,Rn−1, sn = s′0,R
′
0, . . . ,R

′
m−1, s

′
m).

30

Note that the Rk’s come from the union of all ∼I relations where I ⊆ A and all ≈I
relations with I ⊂ A ∪ {0}. Hence, we do not unravel the ≈A∪{0} relation. This is
to ensure the semantical property of determinism of the grand coalition when we
later go back to the actual models.

Definition 3.33 (Unraveled tree). Let M be a general Kripke model and let s ∈ S.
The unraveling of M around s is a tuple M⃗ = ⟨S⃗,R∼I ,R≈J , V⃗ ⟩I⊆A,J⊆A∪{0} such that

� S⃗ = {h; first(h) = s}

� hR∼Ih
′ iff h + (last(h),∼I , s′) = h′

� hR≈Ih
′ iff h + (last(h),≈I , s′) = h′

� V⃗ ∶ P → P(S⃗) such that V⃗ (p) ∶= {h ∈ S⃗; last(h) ∈ V (p)}.

Now we have defined histories on the canonical pseudo-model. They basically tell
us which worlds in M are related by any sequence of relations from a specific world
s. These form a tree. Now we will define paths on this tree of histories.

Definition 3.34 (R-path). Let M⃗ be the unraveling of some general Kripke model
M around some world s ∈ S. LetR ⊆ {R∼I ,R

−1
∼I ,R≈J ,R

−1
≈J ; I ⊆ A, J ⊂ A∪{0}} =∶ Rel.

An R-path from h to h′ is a finite sequence p ∶= (h0,R0, h1, . . . ,Rn−1, hn) such that

� for all k ≤ n ∶ hk ∈ S⃗;

� h0 = h;

� hn = h′;

� for all k < n ∶ Rk ∈R;

� for all k < n ∶ hkRkhk+1.

If R is not further specified, we speak of a path. For any path p we define again
first(p) = h0 and last(p) = hn. Composing paths works the same as composing
histories.

Definition 3.35 (Non-redundancy). Let R ⊆ Rel and p an R-path. We say that p
is a non-redundant path if there is no k < n−1 such that hk = hk+2 and Rk+1 = R−1

k .

Intuitively, this definition means that a path is non-redundant if it doesn’t imme-
diately traverses an edge back.

Lemma 3.36. Let M⃗ be the unraveling of a general Kripke model model M around
some world w ∈ S. Let h,h′ ∈ S⃗ be such that h ≠ h′. Then there is exactly one
non-redundant path p from h to h′.

Lemma 3.37. Any path p from h to h′ contains the unique non-redundant path
from h to h′.

31

STEP 3: Completeness of DECL−

Now we’ll return from the land of trees to the land of models for DECL, and with
that show completeness of LDECL with respect to these models.

Definition 3.38. Let M⃗ = ⟨S⃗,R∼I ,R≈J , V⃗ ⟩I⊆A,J⊆A∪{0} be the unraveling of the

canonical pseudo-model MC around some world s ∈ S. Then define S = ⟨S⃗,∼i,≈j
, V⃗ ⟩i∈A,j∈A∪{0} to be such that

∼i= (⋃{R∼I ; i ∈ I ⊆ A} ∪⋃{R−1
∼I ; i ∈ I ⊆ A})

∗

≈i= (⋃{R≈I ; i ∈ I ⊂ A ∪ {0}} ∪⋃{R−1
≈I ; I ∈ I ⊂ A ∪ {0}}∪

⋃{R∼I ; i ∈ I ⊆ A} ∪⋃{R−1
∼I ; i ∈ I ⊆ A)

∗

∼I ∶=⋂
i∈I

∼i

≈I ∶=⋂
i∈I

≈i

Proposition 3.39. For all I ⊆ A, h ∼I h′ if and only if the unique non-redundant
path from h to h′, p = (h = h0S0h1 . . . Sn−1hn = h′) is an R-path, with
R = {R∼J ,R

−1
∼J ; I ⊆ J ⊆ A}.

Proof. Suppose h ∼I h′. Then by definition h ∼i h′ for all i ∈ I. Hence, for all
i ∈ I there is an R′-path p′ such that R′ = {R∼J ,R

−1
∼J ; i ∈ J ⊆ A}. But then by

Proposition 3.37 it must be the case that the unique non-redundant path between
h and h′ is contained in p′. But then it must be the case that the non-redundant
path between h and h′ is an R∗-path with R∗ = {R∼J ,R

−1
∼J ; I ⊆ J ⊆ A}.

Proposition 3.40. For all I ⊂ A ∪ {0} and h,h′ ∈ W⃗ , h ≈I h′ if and only if the
unique non-redundant path from h to h′, p = (h = h0S0h1 . . . Sn−1hn = h′) is an
R-path with R = {R≈J ,R

−1
≈J ,R∼K ,R

−1
∼K ; I ⊆ J ⊂ A ∪ {0}, I ⊆K ⊆ A}.

Proof. Suppose h ≈I h′. Then by definition h ≈i h′ for all i ∈ I. Hence, for
all i ∈ I there is an R′-path p′ such that R′ = {R≈J ,R

−1
≈J ,R∼K ,R

−1
∼K ; i ∈ J ⊂ A ∪

{0}, i ∈ K ⊆ A}. But then by Proposition 3.37 it must be the case that the
unique non-redundant path between h and h′ is contained in p′. But then it must
be the case that the non-redundant path between h and h′ is an R∗-path with
R∗ = {R≈J ,R

−1
≈J ,R∼K ,R

−1
∼K ; I ⊆ J ⊂ A ∪ {0}, I ⊆K ⊆ A}.

Proposition 3.41. S is a model for DECL.

Proof. All relations in S are equivalence relations by definition. It is also im-
mediate from the definition that ∼i⊆≈i for all i ∈ A. It remains to show that

⋂
i∈A∪{0}

[s]≈I = {s} for all s ∈ S, i.e. we have to show that h ≈A∪{0} h′ → h = h′.

So suppose h ≈A∪{0} h′. Then by definition, h ≈i h′ for all i ∈ A ∪ {0}. But for all
i ∈ A ∪ {0}, we have that

32

≈i= (⋃{R≈I ; i ∈ I ⊂ A∪{0}}∪⋃{R−1
≈I ; I ∈ I ⊂ A∪{0}}∪⋃{R∼I ; i ∈ I ⊆ A}∪⋃{R−1

∼I ; i ∈
I ⊆ A})∗.
However, note that this means that all separate parts are empty, and hence

⋂
i∈A∪{0}

≈i= id. Thus h ≈A∪{0} h′ implies h = h′.

So S is in fact a model for DECL. Now we have to show that this model can be
mapped into the canonical pseudo-model MC with a bounded morphism.

Proposition 3.42. Let S′ be the pseudo-model obtained from S by taking ∼I ∶= ⋂
i∈I

∼i

and ≈I ∶= ⋂
i∈I

≈i, and let f ∶ S′ → MC be such that f(h) = last(h). Then f is a

bounded morphism.

Proof. The proof is per condition on bounded morphisms.

1. Take an arbitrary h ∈ S⃗. We have to show that h ∈ V⃗ (p) iff f(h) ∈ V (p). We
know that h ∈ V⃗ (p) if and only if last(h) ∈ V (p) since we defined V⃗ (p) ∶=
{h ∈ S⃗; last(h) ∈ V (p)}. Hence, h ∈ V⃗ (p) if and only if f(h) ∈ V (p).

2. (a) We have to show that for all h,h′ ∈ S⃗, if h ∼I h′, then f(h) ∼I f(h′). So
take arbitrary I ⊆ A and h,h′ ∈ S⃗ such that h ∼I h′. This means that the
non-redundant path p is an R-path such that R = {R∼J ,R

−1
∼J ; I ⊆ J ⊆ A}.

Thus p = (h = h0R0h1 . . .Rn−1hn = h′) where for all k < n,Rk ∈ R.
Hence by definition of the R∼J ’s, we get that for all k < n, last(hk) ∼I
last(hk+1). but then as ∼I is transitive, we get last(h) ∼I last(h′), and
hence f(h) ∼I f(h′).

(b) We have to show that for all h,h′ ∈ S⃗, if h ≈I h′, then f(h) ≈I f(h′).
Take arbitrary I ⊆ A ∪ {0} and h,h′ ∈ S⃗ such that h ≈I h′.
Suppose I ⊂ A ∪ {0}. Then this means that the non-redundant path p
is an R-path such that R = {R≈J ,R

−1
≈J ,R∼K ,R

−1
∼K ;J ⊂ A ∪ {0}, I ⊆ A}.

Hence, p = (h = h0R0h1 . . .Rn−1hn = h′) where for all k < n,Rk ∈ R.
Thus for all k < n, last(hk) ∼I last(hk+1) or last(hk) ≈I last(hk+1). Note
that as ∼i⊆≈i for all i ∈ A, we get that last(hk) ∼I last(hk+1) implies
last(hk) ≈I last(hk+1), and thus we get that for all k < n, last(hk) ≈I
last(hk+1). But then as ≈I is transitive, we get last(h) ≈I last(h′), and
hence f(h) ≈I f(h′).
Now suppose I = A ∪ {0}. Then h ≈A∪{0} h′ means that h = h′, and
hence last(h) = last(h′), and thus last(h) ≈A∪{0} last(h′), and thus
f(h) ≈A∪{0} f(h′).

3. (a) We have to show that for all h ∈ S⃗ and t′ ∈ S, if f(h) ∼I t′, then there
exists a h′ ∈ S⃗ such that h ∼I h′ and f(h′) = t′.
Take arbitrary I ⊆ A, h ∈ S⃗ and t ∈ S such that f(h) ∼I t. This means
that last(h) ∼I t. We have to show that there is a h′ ∈ S⃗ such that
h ∼I h′ and f(h′) = t.

33

Let h′ = h + (last(h),∼I , v). Then h ∼I h′ by definition and last(h′) = t,
and thus f(h′) = t.

(b) The ≈ case is analogous to the ∼ case.

Theorem 3.43 (Completeness for DECL−). LDECL− is weakly complete with re-
spect to DECL models: For any DECL−-consistent formula ϕ there is a DECL
M such that there is a s such that M,s ⊧ ϕ.

Proof. Let ϕ be an DECL−-consistent formula. By Lindenbaum’s Lemma, {ϕ}
can be extended to a maximal consistent set Φ. By definition, Φ ∈ SC , where SC

is the set of states in the canonical structure MC .
Now let M⃗ be the unraveling of MC around s ∶= Φ, and let S be the generated
DECL model. Note that the history (s) ∈ S⃗. Define f ∶ S →MC to be such that
f(h) = last(h). By Lemma 3.42, this is a bounded morphism. By Lemma 3.16,
we have that S, (s) ⊧ ϕ if and only if MC , s ⊧ ϕ as last(s) = s. But as ϕ ∈ Φ, we
have that MC , s ⊧ ϕ, and hence S, (s) ⊧ ϕ.

STEP 4: Completeness for DECL

Now that we have completeness for LDECL− , we will show that LDECL can be
reduced to that language. We will show this in two steps, the first one being that
any formula of the form [σ]ϕ can be rewritten as a formula without the dynamic
modality, and from there we will show that hence, any formula of LDECL can be
rewritten as a provably equivalent formula of LDECL− .

Lemma 3.44. The reduction axioms are valid on all DECL models.

Proof. Take an arbitrary DECL model S. We will show that each reduction axiom
is valid on S.

� [σ]p↔ (pre(σ)→ post(σ)(p))
Proof:
S, s ⊧ [σ]p ⇔ S, s ⊧ pre(σ)⇒ S ⊗Σ, (s, σ) ⊧ p

⇔ S, s ⊧ pre(σ)→ post(σ)(p)

� [σ]¬ϕ↔ (pre(σ)→ ¬[σ]ϕ)
Proof:
S, s ⊧ [σ]¬ϕ ⇔ S, s ⊧ pre(σ)⇒ S ⊗Σ, (s, σ) ⊧ ¬ϕ

⇔ S, s ⊧ pre(σ)⇒ S ⊗Σ, (s, σ) ⊭ ϕ
⇔ S, s ⊧ pre(σ)⇒ S, s ⊭ [σ]ϕ
⇔ S, s ⊧ pre(σ)→ ¬[σ]ϕ

� [σ](ϕ ∧ ψ)↔ [σ]ϕ ∧ [σ]ψ
Proof:
S, s ⊧ [σ](ϕ ∧ ψ) ⇔ S ⊗Σ, (s, σ) ⊧ ϕ ∧ ψ

⇔ S ⊗Σ, (s, σ) ⊧ ϕ and S ⊗Σ, (s, σ) ⊧ ψ
⇔ S, s ⊧ [σ]ϕ ∧ [σ]ψ

34

� [σ]DIϕ↔ (pre(σ)→ ⋀σ∼Iσ′DI[σ′]ϕ)
Proof:
S, s ⊧ [σ]DIϕ ⇔ S, s ⊧ pre(σ)⇒ S ⊗Σ, (s, σ) ⊧DIϕ

⇔ S, s ⊧ pre(σ)⇒ ∀(s′, σ′) ∼I (s, σ) ∶ S ⊗Σ, (s′, σ′) ⊧ ϕ
⇔ S, s ⊧ pre(σ)⇒ ∀(s′, σ′) ∼I (s, σ) ∶ S, s′ ⊧ [σ′]ϕ
⇔ S, s ⊧ pre(σ)⇒ ∀σ′ ∼I σ ∶ S, s ⊧DI[σ′]ϕ
⇔ S, s ⊧ pre(σ)→ ⋀σ′∼IσDI[σ′]ϕ

� [σ][I]ϕ↔ (pre(σ)⋀σ≈Iσ′[I][σ
′]ϕ)

Proof:
S, s ⊧ [σ][I]ϕ ⇔ S, s ⊧ pre(σ)⇒ S ⊗Σ, (s, σ) ⊧ [I]ϕ

⇔ S, s ⊧ pre(σ)⇒ ∀(s′, σ′) ≈I (s, σ) ∶ S ⊗Σ, (s′, σ) ⊧ ϕ
⇔ S, s ⊧ pre(σ)⇒ ∀σ′ ≈I σ∀s′ ≈I s ∶ S, s′ ⊧ [σ′]ϕ
⇔ S, s ⊧ pre(σ)⇒ ∀σ′ ≈I σ ∶ S, s ⊧ [I][σ′]ϕ
⇔ S, s ⊧ pre(σ)→ ⋀σ′≈Iσ[I][σ

′]ϕ

Proposition 3.45. Let ϕ be a formula of LDECL of the form [σ]ψ. Then there
exists a formula ϕ′ ∈ LDECL− such that ⊢LDECL ϕ↔ ϕ′.

Proof. We will show this by induction on the complexity of ψ.
Base case Let ϕ = [σ]ψ, with ψ = p for some p ∈ P , and σ ∈ Σ. Then by the
reduction axiom, we get that [σ](p) ↔ (pre(σ) → post(σ)(p)(. Hence let ϕ′ ∶=
pre(σ)→ post(σ)(p). Then ϕ′ ∈ LDECL− , and ⊢ [σ]ϕ↔ ϕ′.
Inductive step Suppose that for [σ]ψ ∈ LDECL there exists a ψ′ ∈ LDECL− such that
[σ]ψ ↔ ψ′. We want to show that for ϕ = [σ]χ where χ has a complexity of one
more than ψ, we have that there is a ϕ′ ∈ LDECL− such that ⊢L ϕ↔ ϕ′.

� Suppose ϕ = [σ]¬ψ. Then by the reduction axiom, we get that ⊢ ϕ ↔
(pre(σ)→ ¬[σ]ψ). Then by the induction hypothesis,⊢ ϕ↔ (pre(σ)→ ¬ψ′).
Note that pre(σ) → ¬ψ =∶ ϕ′ is in fact a formula of LDECL− . This concludes
this case.

� Suppose ϕ = [σ](ψ1 ∧ ψ2). Then by the reduction axiom we have ⊢ ϕ ↔
[σ]ψ1 ∧ [σ]ψ2. By the induction hypothesis, we get ⊢ ϕ ↔ ψ′1 ∧ ψ

′
2, so let

ϕ′ ∶= ψ′1 ∧ ψ
′
2, which is a formula of LDECL− , which concludes this case.

� Suppose ϕ = [σ]DIψ. Then by the reduction axiom, we get that ⊢ ϕ ↔
(pre(σ) → ⋀

σ∼Iσ′
DI[σ′]ψ). By the induction hypothesis we get that ⊢ ϕ ↔

(pre(σ)→ ⋀
σ∼Iσ′

DIψσ′). Hence if we define ϕ′ ∶= ⋀
σ∼Iσ′

DIψσ′ , we can conclude

this case.

� Suppose ϕ = [σ][I]ψ. Then by the appropriate reduction axiom, we get
⊢ ϕ ↔ (pre(σ) → ⋀

σ≈Iσ′
[I][σ′]ψ). Thus by the induction hypothesis, we get

35

that ⊢ ϕ↔ (pre(σ) → ⋀
σ≈Iσ′

[I]ψ′), which concludes this case, and hence the

proof.

Proposition 3.46. For any formula ϕ of LDECL, there exists a formula ϕ′ of
LDECL− such that ⊢LDECL ϕ↔ ϕ′.

Proof. The proof is by induction on the complexity of ϕ.
Base case Suppose ϕ = p for some p ∈ P , and define ϕ′ = p. Then clearly ϕ′ ∈
LDECL− and ⊢ ϕ↔ ϕ′.
Inductive step Suppose that any ψ ∈ LDECL is such that there exists a ψ′ ∈ LDECL−
such that ⊢ ψ↔ ψ′. We have to show that for any formula ϕ of the form ¬ψ,ψ1 ∧
ψ2,DIψ, [I]ψ or [σ]ψ, there is a formula ϕ′ ∈ LDECL− such that ⊢ ϕ↔ ϕ′.
The Boolean, DI and [I] cases are trivial.
Suppose ϕ is of the form [σ]ψ. Then by Proposition 3.45, we get that there is a
ϕ′ ∈ LDECL− such that ⊢ ϕ↔ ϕ′, which concludes the proof.

Theorem 3.47 (Completeness of DECL). For any formula ϕ, if ⊢DECL ϕ, then
there is a DECL-model S such that there is a s ∈ S such that S, s ⊧ ϕ.

Proof. This follows from Theorem 3.43 and Proposition 3.46.

3.3 Planning with DECL

We introduced a dynamic epistemic logic that can talk about the power of coali-
tions. In this section we will discuss how to use DECL to define and solve specific
planning issues. We have talked about agents’ goal before in several examples, and
we have hinted at what agents would probably decide to do in several situations.
We will now formalize this intuition by introducing planning problems and how to
reach a solution to them.

Planning problems

When we as human beings try to plan for a certain goal, the information we have
at that moment is some, possibly incomplete, information about the world as it is
now, the way we would like the world to be, and the things we can do to change
the world. We follow the approach by Andersen and Bolander [10] when we take
these three things as the main ingredients for formal planning problems:

Definition 3.48 (Planning Problem). A planning problem is a tuple P = ⟨(S, s),Σ,A, ϕg⟩
where

� (S, s) is a pointed epistemic model called the initial state;

� Σ is an action model containing the available actions ;

36

� A is a set of agents

� ϕg is a formula in LDECL called the goal

Throughout the thesis we have assumed that the full set of agents has the same
goal, and we will keep to this assumption. Thus, the idea of a planning problem
is that the agents in A will try to achieve ϕg, using the actions available to them
in Σ, from the initial model (S, s), of which they might not have full information.

Depending on the information the agents have, they will want to perform a se-
quence of events such that after this sequence, their goal is true. Thus a solution
to a planning problem is a sequence of n events σ1, . . . , σn such that after this
sequence, their goal is true:

(((S ⊗Σ) . . .)⊗Σ), (((s, σ1), . . .), σn) ⊧ ϕg

In this thesis we are mainly concerned with single-step solutions, as they on their
own convey the power of the logic very well. A single-step solution is a solution
that consists of only one joint action, rather than a sequence.

Note that a solution is defined on a pointed model. This means that since we are
often working with incomplete information, agents might not have full knowledge
of the world or of what state they are in. Because of this, we need a notion of
solution that deals with what agents know - and with how their knowledge differs.

Leading up to this we have given some examples where some agents knew how to
reach the goal, while others did not, or where agents knew of different ways to
reach their goal. This has given us some intuition about what makes a solution
a solution - if one agent knows that some joint action will lead to the goal, then
surely that would be a good way to go. Hence we need that at least one agent
knows that a certain sequence of actions is a solution to ensure that the agents
reach their goal. If such a solution does not exist, the next best thing is to decide
on the sequence of actions of which no agent knows that it does not reach the goal:
a sequence that might achieve what they want.

Formally, we say:

Definition 3.49 (Single-step Solution). For a planning problem P = ⟨(S, s),Σ,A, ϕg⟩
and joint action σI such that for all σ,σ′ ∈ σI we have that σ ∼I σ′, we say that σI
is a
strong single-step solution if S, s ⊧ ⋁

i∈I
Ki[σI]ϕg

weak single-step solution if S, s ⊧ ⋀
i∈I
¬Ki¬[σI]ϕg

for I ⊆ A

37

The notion of a single-step solution can easily be extended to that of a k-step
solution for some k ∈ N. A solution is then a sequence of actions, rather than a
single action. The conditions can be kept the same, except for then requiring that
after the entire sequence has happened, we need the goal to hold.

As we define it, a solution is an action for which one agent knows that it will achieve
the goal. The other agents, however, might not be aware of this, or they might
even have other ideas about which joint action is the right one. In our setting,
we do not have a way for agents to communicate. Hence, because the agents do
need some way to communicate, as they need to coordinate on their actions, we
will for now assume that they are, outside of our framework, in a situation where
they can discuss and coordinate their possibilities. We suppose that they have all
means and actions to reach a joint conclusion. With this added assumption, it is
clear why one agent knowing that an action leads to the goal is enough: he can
tell the other agents, who then also know. If there are multiple actions that are
solutions, the agents can in this external way discuss which to choose.

Finding a plan

Iit is trivial to check whether any of the available joint actions is a strong or
weak single-step solution for a given planning problem by computing the result of
applying every event. It is more interesting to check whether a sequence of actions
is a k-step solution of either kind. It would most certainly involve the notion of
a planning tree as mentioned in [3], where one iteratively applies the available
actions before using model checking to see whether any sequence of joint actions
satisfies the conditions to be considered a solution.

38

4 Common Knowledge in Epistemic Planning

In the previous chapter we introduced a logic that talks about the power of coali-
tions in a dynamic setting. We could express that some joint action of agents
would lead them to their goal, and we could express knowledge about this fact.
What we could not express was a way in which every agent is sure of the course
to take and what his or her colleagues would do. Hence, we assumed that the
agents had some external way in which they could coordinate their choice, rather
than us modeling this part. In this chapter we extend the logic we introduced in
the previous chapter in order to be able to model agents that can coordinate and
make a deliberate decision.

4.1 Dynamic Epistemic Coalition Logic with Common Knowl-
edge

For agents to be able to coordinate, it is important that they can rely on other
agents’ information. It might be that Alice knows that only one option leads to the
goal, but if she does not know that Bob knows this, she still cannot be sure that
together they will reach it, as he might think another action is better. Maybe she
knows that Bob knows, but then Bob doesn’t know that she knows that he knows,
in which case he cannot be entirely sure about the choice that Alice will make. This
clearly can go on forever, so what we would like to be able to express is common
knowledge: all agents know, that all agents know, that . . . that ϕ. Therefore we
add common knowledge to dynamic epistemic coalition logic to obtain Dynamic
Epistemic Coalition Logic with Common Knowledge, or DECL-C.

4.1.1 Syntax and Semantics of DECL-C

Definition 4.1 (LDECL−C). The language LDECL−C is given by the following
Backus-Naur form:

ϕ ∶∶= p ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣DIϕ ∣ CIϕ ∣ [J]ϕ ∣ [σ]ϕ

where I ⊆ A and J ⊆ A ∪ {0} are coalitions, σ ∈ Σ for some given Σ and p is a
propositional letter.

The formulas of DECL-C are evaluated on the same models and in the same way
as the formulas of DECL. The only thing we have to define is when common
knowledge is satisfied.

Definition 4.2 (Satisfaction). The satisfaction of these formulas on static epis-
temic models, denoted S, s ⊧ ϕ is defined as follows:

� S, s ⊧ CIϕ iff ∀t s.t. (s, t) ∈ (⋃
i∈I

∼i)∗ ∶ S, t ⊧ ϕ

39

Where (⋃
i∈I

∼i)∗ is the reflexive, transitive closure of ⋃
i∈I

∼i.

Example 4.3 (It is common knowledge that two agents can only reach the goal
together). Consider the initial model in Figure 17 and the action model in Figure
18. Both agents have complete information about the world, but they do not have
full control: it takes both of them to flip the truth value of p. However, their goal
is p, and currently it is ¬p.

s

¬p

Figure 17: The static model S

skip

pre=⊺
post=⊺

flip

pre=⊺
post(p)=¬p
post(¬p)=p

skip

pre=⊺
post=⊺

≈a ≈b

Figure 18: The action model Σ

One can see that not only is it the case that S, s ⊧ CI[flip{a,b}]p, but also that
S, s ⊧ CI¬ ◇{a} p ∧ CI¬ ◇{b} p. Hence, it is common knowledge that if they work
together, they can reach their goal by both choosing flip, but also that neither of
them has any way to reach the same result on his or her own. Hence, it is common
knowledge that it would make sense for them to both choose flip, and thus they
can both trust the other agent to help out.

Example 4.4 (There are two joint actions for which it is common knowledge that
they achieve the goal). Suppose two agents, Annie and Bernadette, want to go
out some evening, but before they can make a decision on whether to go dancing
or to go to a bar, Annie’s phone loses power. Now each of them has to choose
whether to go dancing or to go to the bar. They prefer to be out together, so
ϕg = (Da ∧Db)∨ (Ba ∧Bb). The situation can be represented as in Figures 19 and
20. One can check that it is the case that S, s ⊧ CI[BaBb{a,b}]ϕg∧CI[DaDb{a,b}]ϕg.
This means that although there are two sure ways to reach the goal, they cannot
be sure of which one the other will pick, and hence they cannot count on the other
agent to make the same choice without further communication.

4.2 Group Epistemic PDL

It is well known within the DEL literature that it is not possible to derive a
reduction axiom for CI like we did for all modalities in DECL. Without a reduction
axiom, we cannot show that the dynamic language reduces to the static language,
which means that we cannot prove completeness for the entire language. However,
if we extend the language further, we are able to obtain reduction axioms. Thus
for this completeness proof, we create our own version of epistemic propositional
dynamic logic (E-PDL) as presented first by van Benthem et al. in [30]. Thus we
will present this extended language, argue why it does everything DECL-C does,
and proceed to prove that it is sound, complete and decidable.

40

s

Figure 19: The static model S

BaBb

pre=⊺
post=Ba∧Bb

BaDb

pre=⊺
post=Ba∧Db

DaBb

pre=⊺
post=Da∧Bb

DaDb

pre=⊺
post=Da∧Db

≈a

≈b

≈a

≈b

Figure 20: The action model Σ

4.2.1 Syntax and Semantics of GE-PDL

E-PDL is basically PDL where the programs are reinterpreted as the epistemic
relations in the model. The way more complex programs are constructed from the
basic programs reflect sequences and deeper levels of knowledge. Thus, using the
Kleene star we can represent common knowledge. The E-PDL presented by van
Benthem et al. [30] uses the single epistemic relations as basic programs. However,
as we are concerned with group knowledge and control, our basic programs are in
fact epistemic group relations, and the language we will use is Group Epistemic
PDL, or GE-PDL.

Definition 4.5 (Language). GE-PDL is formed as follows:

ϕ ∶∶= p ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣Kπϕ ∣ [J]ϕ ∣ [σ]ϕ

π ∶∶= I ∣ π + π′ ∣ π;π′ ∣ π∗ ∣?ϕ

where I ⊆ A and J ⊆ A ∪ {0} are coalitions.

There are some remarks to be made about this language.
First, to prevent confusion with notation we will use Kπ where van Benthem and
colleagues use [π], and where they use π1 ∪ π2, as is the usual notation in PDL,
we write π1 + π2, because ∼I∪J is something very different than ∼I ∪ ∼J in our
framework.

Definition 4.6 (Satisfaction). The satisfaction of these formulas on static epis-
temic models, denoted M,s ⊧ ϕ is defined as follows:

� M,s ⊧ p iff s ∈ V (p)

� M,s ⊧ ¬ϕ iff M,s ⊭ ϕ

� M,s ⊧ ϕ ∨ ψ iff M,s ⊧ ϕ or M,s ⊧ ψ

41

� M,s ⊧Kπϕ iff ∀s′ ∼π s ∶M,s′ ⊧ ϕ

� M,s ⊧ [I]ϕ iff ∀s′ ≈I s ∶M,s′ ⊧ ϕ

� M,s ⊧ [σ]ϕ iff (s, σ) ∈M ⊗Σ implies M ⊗Σ, (s, σ) ⊧ ϕ

Where ∼π is defined inductively as follows:

� ∼I ∶= ⋂
i∈I

∼i

� ∼π1;π2 ∶=∼π1 ;∼π2

� ∼π1+π2 ∶=∼π1 ∪ ∼π2

� ∼π∗ ∶= (∼π)∗

� s ∼?θ t iff s = t and M,s ⊧ θ

To get some intuition behind this, we will show how to ’translate’ formulas of
DECL to formulas of GE-PDL.

� DIϕ is written as KIϕ

� [I]ϕ is still written as [I]ϕ

� CIϕ is written as K(∑ I)∗ϕ

Where ∑ I = i1 + i2 + . . . + ik for a fixed enumeration i1, . . . , ik of I.

So we can express all modalities of DECL into modalities of GE-PDL. However,
the latter can also sequences of modalities of the former into one modality. For
example KI;J is equivalent to KIKJϕ, which expresses that it is distributed knowl-
edge between the agents in I that it is distributed knowledge between the agents
in J that ϕ.

By taking epistemic group relations as basic programs, rather than the singular
epistemic relations, we can express ’Common Distributed Knowledge’. In this
language this can be expressed as K(I+J)∗ , meaning to say that it is common dis-
tributed knowledge between the two groups that ϕ. Hence, in both groups I and J
it is distributed knowledge that it is distributed knowledge in the other group that
it is distributed knowledge in the other group . . . that ϕ. Note that this is some-
thing very different from K(I∪J)∗ as this denotes common distributed knowledge in
the single group I∪J , which is equivalent to the usual notion of distributed knowl-
edge KI∪J = DI∪J as the distributed knowledge relation is already transitive and
reflexive. Both of these modalities are different from K(∑(I∪J))∗ϕ, which merely
denotes common knowledge CI∪Jϕ in the big group I ∪ J .

42

The interesting thing about this common distributed knowledge K(I+J)∗ between
two groups is that it can be converted into full common knowledge only by commu-
nications performed within the two distinct groups, whereas to similarly convert
simple distributed knowledge KI∪Jϕ into common knowledge we need public an-
nouncements to the entire group I ∪ J .

Example 4.7 (Common Distributed Knowledge). To see an example of common
distributed knowledge consider the static model in Figure 21.

1

¬p

2

p

3

¬p
∼{a,c} ∼{b,d}

Figure 21: Static model

One can see that in this model it is the case that K{a,b}p and that K{c,d}p. How-
ever, it is also the case that K{c,d}K{a,b}p and K{a,b}K{c,d}p. We can continue this
argument an arbitrary number of times, so we reach K({a,b}+{c,d})∗p - it is common
distributed knowledge between a, b and c, d that p. It is also immediately clear that
if only a and b share their information, and c and d share theirs in a semi-public
way where everyone can see that some message is being sent, but is not necessarily
aware of the contents of the message, we achieve common knowledge of p for the
entire set of agents.

Example 4.8. Suppose two countries are at war - a very special kind of war
where everything happens only after representatives for each party have agreed
on it. Also these representatives are very special, as it is common knowledge that
a representative will announce to his side what he agreed upon with the other
representative. Now say a is the representative of one side of the war, whereas
b is the representative of the other side. Together they decide that the battle
will happen tomorrow at dawn. Now this fact is common knowledge between a
and b, and thus common distributed knowledge between the two sides of the war.
Hence, after both a and b go back to their respective armies, and announce their
decision, it will be common knowledge between both camps that the battle will
happen tomorrow since it is common knowledge that both a and b will announce
the decision.

4.2.2 Proof System of GE-PDL

Before we can show that GE-PDL is sound and complete, we list the axioms that
we use. They partly overlap with the axioms for DECL, but we add axioms for
programs.

Axioms

Inference rules

43

� All axioms and rules of classical propositional logic

� Necessitation rules for all modalities

Axioms for DECL

� S5 for [I] for all I ⊆ A ∪ {0}

� S5 for KI for all basic programs I

� Knowledge of (Individual) Control
[I]ϕ→KIϕ for I ⊆ A

� Monotonicity of control
[I]ϕ→ [J]ϕ for I ⊆ J ⊆ A ∪ {0}

� Monotonicity of distributed knowledge
KIϕ→KJϕ for I ⊆ J ⊆ A

� Determinism of grand coalition
ϕ→ [A ∪ {0}]ϕ

Axioms for programs

� Kπ(ϕ→ ψ)→ (Kπϕ→Kπψ)

� Kπ1;π2ϕ↔Kπ1Kπ2ϕ

� Kπ1+π2ϕ↔Kπ1ϕ ∧Kπ2ϕ

� Kπ∗ϕ↔ ϕ ∧KπKπ∗ϕ

� Kπ∗(ϕ→Kπϕ)→ (ϕ→Kπ∗ϕ)

� K?θψ↔ (θ → ψ)

Reduction Axioms

Let N be the number of events in Σ, and suppose σ1, . . . , σN is an enumeration
of all events without repetitions, and let σ = σn be any of these events (for some
arbitrary n ≤ N). Then we have the following reduction axioms.

� [σ]p↔ (pre(σ)→ post(σ)(p))

� [σ]¬ϕ↔ (pre(σ)→ ¬[σ]ϕ)

� [σ](ϕ ∧ ψ)↔ [σ]ϕ ∧ [σ]ψ

� [σ]Kπϕ↔ (
N−1

⋀
m=0

[Tnm(π)][σm]ϕ)

44

� [σ][I]ϕ↔ (pre(σ)→ ⋀σ≈Iσ′[I][σ
′]ϕ)

Where Tnm is a program transformer, which is defined as follows:

Definition 4.9 (Tnm program transformers).

Tnm(I) = {
?pre(σn); I if σn ∼I σm
?� otherwise

Tnm(π1;π2) =
N−1

⋃
k=0

(Tnk(π1);Tkm(π2))

Tnm(π1 + π2) = Tnm(π1) ∪ Tnm(π2)

Tnm(?θ) = {
?pre(σn) ∧ [σn]θ if n =m
?� otherwise

Tnm(π∗) =KnmN(π)

Where KnmN(π) is given by Definition 5.10:

Definition 4.10. Knmk(π) is defined by recursion on k as follows:

Knm0(π) =

⎧⎪⎪
⎨
⎪⎪⎩

?(p ∨ ¬p) ∪ Tnm(π) if n =m

Tnm otherwise

Knm(k+1)(π) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(Kkkk(π))∗ if n = k =m

(Kkkk(π))∗;Kkmk(π) if n = k ≠m

Knkk(π); (Kkkk(π))∗ if n ≠ k =m

Knmk(π) ∪ (Knkk(π); (Kkkk(π))∗;Kkmk(π)) otherwise

4.3 Soundness, Completeness and Decidability of GE-PDL

We will first show completeness for the static language, after which we will continue
with completeness for the dynamic language. Before we start the proof, we will
give a brief explanation of the steps we will take, as this will make it easier for the
reader to follow the main argument.

4.3.1 Preliminaries

Again, before we start the proof we will state some definitions and general results
that we will use during the proof.

Definition 4.11 (Filtration). Let M be a general Kripke model, and Σ ⊆ L a set
of formulas. The relation ≡Σ on S, defined as

s ≡Σ t⇔ for all σ ∈ Σ ∶ (M,s ⊧ σ⇔M, t ⊧ σ)

defines an equivalence on S; we denote its equivalence classes with [s]Σ, but we
will often leave out the subscript if Σ is clear from context. The model M f =
⟨Sf ,∼fπ,≈

f
I , V

f ⟩ is a filtration of S through Σ if

45

� Sf = {[s]; s ∈ S}

� For each Rf
◻ ∈ {∼fπ,≈

f
J ;π a program, J ⊆ A ∪ {0}} the following hold:

minf For all [s], [t] ∈ Sf , if sR◻t, then [s]Rf
◻[t].

maxf For all [s], [t] ∈ Sf , if [s]Rf
◻[t], then for all

◻ϕ ∈ Σ(S, s ⊧ ◻ϕ→ S, t ⊧ ϕ)

� V f(p) = {[s]; s ∈ V (p)}

Lemma 4.12. Let Sf be a filtration of S through some Σ. Then for all [s] ∈ Sf

and ϕ ∈ Σ, we have S, s ⊧ ϕ⇔ Sf , [s] ⊧ ϕ.

Proof. The proof is by induction on the complexity of the formula.
Base case. Suppose ϕ = p for some p ∈ P . Then by definition [s] ∈ V f(p) ↔ s ∈
V (p), and hence S, s ⊧ ϕ⇔ Sf , [s] ⊧ ϕ.
Inductive step. The boolean cases are straightforward.
Suppose ϕ is of the form ◻ψ for some ◻ ∈ {∼π,≈J ;π a program, J ⊆ A ∪ {0}}.
For the left-to-right direction, suppose S, s ⊧ ◻ψ. Now take an arbitrary [t] ∈ Sf

such that [s]Rf
◻[t]. Then by the maxf condition of filtrations and the fact that

S, s ⊧ ◻ψ, we get that S, t ⊧ ψ. But then by the induction hypothesis Sf , [t] ⊧ ψ,
and thus Sf , [s] ⊧ ◻ψ.
For the other direction, suppose Sf , [s] ⊧ ◻ψ. Hence, for all [t] ∈ Sf such that
[s]Rf

◻[t], we have that Sf , [t] ⊧ ψ. By the induction hypothesis, we get S, t ⊧ ψ.
Now take an arbitrary u ∈ S such that sR◻u. Then, as sR◻u, we get by the minf

condition of filtrations that [s]Rf
◻[u], and thus that S,u ⊧ ψ. Hence S, s ⊧ ◻ψ.

Definition 4.13 (Bounded Morphism). Let M = ⟨S,∼π,≈I , V ⟩I⊆A∪{0} and M ′ =
⟨S′,∼′π,≈

′
I , V

′⟩I⊆A∪{0} be two general Kripke models. A mapping f ∶M →M ′ is a
bounded morphism if the following hold for all programs π and I ⊆ A ∪ {0}:

1. for all s ∈ S ∶ s ∈ V (p) if and only if f(s) ∈ V ′(p).

2. (a) for all s, t ∈ S, if s ∼π t then f(s) ∼′π f(t)

(b) for all s, t ∈ S, if s ≈I t then f(s) ≈′I f(t)

3. (a) for all s ∈ S and t′ ∈ S′, if f(s) ∼′π t
′, then there exists a t ∈ S such that

s ∼π t and f(t) = t′.

(b) for all s ∈ S and t′ ∈ S′, if f(s) ≈′I t
′, then there exists a t ∈ S such that

s ≈I t and f(t) = t′.

Proposition 4.14. Let M = ⟨S,∼π,≈I , V ⟩I⊆A∪{0} and M ′ = ⟨S′,∼′π,≈
′
I , V

′⟩I⊆A∪{0}
be two general Kripke models, and let f ∶M →M ′ be a bounded morphism. Then
for any formula ϕ of DECL −C− and world s ∈ S, it is the case that M,s ⊧ ϕ iff
M ′, f(s) ⊧ ϕ.

46

Proof. The proof is by induction on the complexity of ϕ:
Base case: The base case follows from the definition of bounded morphisms.
Inductive step: Suppose that for all s ∈ S and formulas ψ with a lower complexity
that ϕ it is the case that M,s ⊧ ψ if and only if M ′, f(s) ⊧ ψ. The Boolean cases
where ϕ = ¬ψ and ϕ = ψ1∧ψ2 follow immediately, which leaves only the modalities.

� For the left-to-right direction, suppose M,s ⊧Kπψ. Take an arbitrary t′ ∈ S′

such that f(s) ∼π t′. According to condition 3(a) there exists a t ∈ S such
that s ∼π t and f(t) = t′. By the first consequence we get that M, t ⊧ ψ,
and by the second we get that M ′, f(t) ⊧ ψ. Hence it is the case that
M ′, f(s) ⊧Kπψ.
For the right-to-left direction, suppose M ′, f(s) ⊧Kπψ. Take t ∈ S such that
s ∼π t. Then by condition 2(a) it is the case that f(s) ∼′π f(t), and thus that
M ′, f(t) ⊧ ψ. Hence, M, t ⊧ ψ, and thus M,s ⊧Kπψ.

� The case for [I] is analogous.

4.3.2 Plan of the Proof

The completeness proof consists of three steps, which are similar to the ones taken
in the previous chapter.

1. Step 1: Soundness and Completeness for Pseudo-Models. First, we create
pseudo-models. These are structures that look like static epistemic control
models, but have separate ∼ relations for every possible program and separate
≈ relations for every subset of agents, instead of just one for every agent. We
then show soundness with respect to these pseudo-models and argue that as
static epistemic control models are a special case of pseudo-models, the logic
is sound with respect to static epistemic control models. Then we define the
canonical pseudo-model and prove completeness with respect to this.

(b) Step 1b: Decidability. After this, we use a filtration of the canonical
pseudo-model to obtain a finite pseudo-model with some additional nice
properties, hence proving decidability.

2. Step 2: Unraveling. In the second step, we unravel the finite pseudo-model
that was the result of the filtration. This means that we create all possible
histories in the pseudo-model: paths that can be taken when we follow the
∼ and ≈ relations. These histories are related in such a way that they form
a tree.

3. Step 3: Completeness for GE-PDL−. In the third step, we take the tree we
just created, and from there define a static epistemic control model. We

47

do this by defining the proper relations, and showing that this newly cre-
ated structure satisfies the necessary semantic properties. Then we define a
bounded morphism between the filtered pseudo-model and the static epis-
temic control model, which makes completeness with respect to those models
immediate.

4. Step 4: Completeness for GE-PDL. In the last step we show that the dynamic
language can be reduced to the static language using the reduction axioms
and a translation mechanism, hence showing that also the dynamic language
is complete.

4.3.3 The Proof

STEP 1: Soundness and Completeness for Pseudo-Models

Definition 4.15 (Pseudo-model). A pseudo-model is a structure M = ⟨S,∼π,≈I
, V ⟩ where

� ≈I and ∼I (for I a basic program) are equivalence relations

� ∼I⊆≈I for I a basic program

� For J ⊆ I ∶∼I⊆∼J and ≈I⊆≈J

� ≈A∪{0}=id

� We define by induction:

– ∼?θ iff s = t and s ⊧ ϕ

– ∼π1;π2=∼π1 ;∼π2

– ∼π1+π2=∼π1 ∪ ∼π2

– (∼π)∗ ⊆∼π∗

Proposition 4.16. All axioms are valid on pseudo-models

Proof. We will show this per axiom

� S5 for KI and [I] follows easily, as ∼I and ≈I are equivalence relations

� [I]ϕ → [J]ϕ for I ⊆ J : Suppose M,s ⊧ [I]ϕ. Take an arbitrary t ∈ S such
that s ≈J t. From our requirements, it follows that s ≈I t, and thus M, t ⊧ ϕ.
Thus for all t such that s ≈J t we have M, t ⊧ ϕ, and hence M,s ⊧ [J]ϕ.

� KIϕ→KJϕ for I ⊆ J : Similar as above.

� ϕ → [A ∪ {0}]ϕ: Assume Ms,⊧ ϕ, and take an arbitrary t ∈ S such that
s ≈A∪{0} t. Then, as ≈A∪{0}= id, we get that t = s, and thus M, t ⊧ ϕ, and
thus for all t such that s ≈A∪{0} t ∶M, t ⊧ ϕ, hence M,s ⊧ [A ∪ {0}]ϕ.

48

� Kπ(ϕ → ψ) → (Kπϕ → Kπψ): Suppose M,s ⊧ Kπ(ϕ → ψ) and M,s ⊧ Kπϕ,
and take an arbitrary t ∈ S such that s ∼π t. Then M, t ⊧ ϕ→ ψ and M, t ⊧ ϕ,
and thus M, t ⊧ ψ. Hence, M,s ⊧Kπψ.

� Kπ1;π2ϕ↔ Kπ1Kπ2ϕ: M,s ⊧ Kπ1;π2ϕ iff for all t ∈ S such that s ∼π1;π2 t it is
the case that M, t ⊧ ϕ. This is the case iff for all t such that s ∼π1 ;∼π2 t, we
have M, t ⊧ ϕ. This happens if and only if for all t such that there is a u
such that s ∼π1 u and u ∼π2 t, we have M, t ⊧ ϕ. This is true iff for all u such
that s ∼π1 u and all t such that u ∼π2 t, it is the case that M, t ⊧ ϕ. Which
happens if and only if M,s ⊧Kπ1Kπ2ϕ.

� Kπ1+π2ϕ↔Kπ1ϕ ∧Kπ2ϕ:

M,s ⊧Kπ1+π2ϕ⇔ ∀t s.t. s ∼π1+π2 t ∶M, t ⊧ ϕ

⇔ ∀t s.t. s ∼π1 ∪ ∼π2 t ∶M, t ⊧ ϕ

⇔ ∀t s.t. s ∼π1 t or s ∼π2 t ∶M, t ⊧ ϕ

⇔ ∀t s.t. s ∼π1 t ∶M, t ⊧ ϕ and ∀t s.t. s ∼π2 t ∶M, t ⊧ ϕ

⇔M,s ⊧Kπ1ϕ ∧Kπ2ϕ

� Kπ∗ϕ → ϕ ∧KπKπ∗ϕ: Suppose M,s ⊧ Kπ∗ϕ, and take an arbitrary t ∈ M
such that s ∼π; (∼π)∗t. Then since ∼π∗= (∼π)∗ =∼π; (∼π)∗, we get that it is
also the case that s ∼π∗ t, but then since M,s ⊧Kπ∗ϕ, we have that M, t ⊧ ϕ,
and hence M,s ⊧ KπKπ∗ϕ. Note that as (∼π)∗ is the reflexive, transitive
closure, it is immediate that M,s ⊧ ϕ.

� Kπ∗(ϕ → Kπϕ) → (ϕ → Kπ∗ϕ): Suppose M,s ⊧ Kπ∗(ϕ → Kπϕ) and M,s ⊧
ϕ, and take an arbitrary t such that s ∼π∗ t. Then s(∼π)∗t, and thus there
is a sequence of u1 . . . un such that s ∼π u1 ∼π ⋅ ⋅ ⋅ ∼π un ∼π t. As s ∼π∗ s and
M,s ⊧ ϕ, we have that s ⊧ Kπϕ, and thus M,u1 ⊧ ϕ. But then as s ∼π u1,
also s ∼π∗ u1, and thus M,u1 ⊧ Kπϕ. Repeating this argument eventually
gives us that M, t ⊧ ϕ, and thus M,s ⊧Kπ∗ϕ.

� K?θψ↔ (θ → ψ):

M,s ⊧K?θψ⇔ ∀t s.t. s ∼?θ t ∶M, t ⊧ ψ

⇔ ∀t s.t. t = s and M,s ⊧ θ ∶M, t ⊧ ψ

⇔ ∀t((t = s ∧M, t ⊧ θ)→M, t ⊧ ψ)

⇔M,s ⊧ θ →M,s ⊧ ψ

⇔M,s ⊧ θ → ψ

Definition 4.17 (Canonical Structure). Let MC = ⟨SC ,∼π,≈I , V C⟩ be such that

49

� SC = {s; s is a maximally consistent set}

� s ∼π t if and only if ∀ϕ(Kπϕ ∈ s→ ϕ ∈ t)

� s ≈I t if and only if ∀ϕ([I]ϕ ∈ s→ ϕ ∈ t).

� s ∈ V C(p) if and only if p ∈ s.

Lemma 4.18 (Truth Lemma). For all ϕ ∈ LGE−PDL− we have that in the canonical
structure MC, s ⊧ ϕ if and only if ϕ ∈ s.

Proposition 4.19. The canonical structure is a pseudo-model

Proof. We will prove this per property of pseudo-models.

� To show that ∼I is reflexive, suppose KIϕ ∈ s. Then by our axioms, ϕ ∈ s.
From the definition of ∼I , it follows that id ⊆∼I , and thus that ∼I is reflexive.

� To show that ∼I is transitive, suppose s ∼I t ∼I s, and suppose KIϕ ∈ s. By
axiom 4, we get that KIKIϕ ∈ s. From that we obtain that KIϕ ∈ t, and
thus ϕ ∈ s. Thus, by definition of ∼I , we have that s ∼I s.

� To show that ∼I is symmetric, suppose s ∼I t and ϕ ∈ s. Then by axiom (B),
we have KIK̂Iϕ ∈ s. Since s ∼i t, we then get that K̂I ∈ t. By definition, this
means that t ∼I s.

� Equivalence for ≈I follows the same lines as the previous case.

� To show that ∼I⊆≈I , suppose s ∼I s′, and let [I]ϕ ∈ s. Then since we have
the axiom [I]ϕ→KIϕ, we get that KIϕ ∈ s. But then as s ∼I s′, this means
that ϕ ∈ s′, and thus s ≈I s′.

� To show that ∼I⊆∼J for J ⊆ I, assume s ∼I s′, and let KJϕ ∈ s. Then since
KJϕ → KIϕ is an axiom, we get KIϕ ∈ s. But then as s ∼I s′, we get that
ϕ ∈ s′, and hence s ∼J s′.

� ≈I⊆≈J for J ⊆ I is similar to the ≈ case.

� To show that ≈A∪{0}= id, suppose that s ≈A∪{0} s′, and let ϕ ∈ s. Then by the
axiom ϕ → [A ∪ {0}]ϕ, we get that [A ∪ {0}]ϕ ∈ s. But then, as s ≈A∪{0} s′,
we have that ϕ ∈ s′. Hence, s ⊆ s′, but as both are maximally consistent sets,
and hence s′ cannot be strictly bigger than s, it must be the case that s = s′,
and thus ≈A∪{0}= id.

� ∼π1;π2=∼π1 ;∼π2 .
For the right-to-left direction, suppose s ∼π1 ;∼π2 t. Then there is a u such that
s ∼π1 u and u ∼π2 t. Thus, by definition, there is a u such that ∀ϕ(Kπ1ϕ ∈
s → ϕ ∈ u) and ∀ψ(Kπ2ψ ∈ u → ψ ∈ t). Now suppose Kπ1;π2ϕ ∈ s. Then

50

Kπ1Kπ2ϕ ∈ s. Hence Kπ2ϕ ∈ u, and thus ϕ ∈ t. This means that s ∼π1;π2 t.
For the left-to-right direction, suppose s ∼π1;π2 t. Then ∀ϕ(Kπ1;π2ϕ ∈ s →
ϕ ∈ t). We can rewrite this as ∀ϕ(Kπ1Kπ2ϕ ∈ s → ϕ ∈ t). Now we have to
construct a w such that s ∼π1 w and w ∼π2 t.
Let {ϕ;Kπ1ϕ ∈ s} ∪ {K̂π2ψ;ψ ∈ t} ⊆ w′. If we can show that w′ is consistent,
then we know that there is a maximally consistent set w that contains w′,
which ensures that s ∼π1 w and w ∼π2 t, which means that s ∼π1 ;∼π2 t. Hence,
showing that w′ is consistent completes this part of the proof.
Suppose towards a contradiction that w′ is inconsistent. Hence, suppose
there are ϕ1, . . . , ϕn and ψ1, . . . , ψm such that Kπ1ϕ1, . . . ,Kπ1ϕn ∈ s, and
ψ1, . . . , ψn ∈ t, and ⊢ (ϕ1 ∧ ⋅ ⋅ ⋅ ∧ ϕn ∧ K̂π2ψ1 ∧ ⋅ ⋅ ⋅ ∧ K̂π2ψn)→ �.
Now take ϕ ∶= ϕ1 ∧ ⋅ ⋅ ⋅ ∧ϕn. We claim that Kπ1ϕ ∈ s, since it is the case that
⊢ Kπ1ϕ ↔ Kπ1ϕ1 ∧ ⋅ ⋅ ⋅ ∧Kπ1ϕn. Since for all i we have that Kπ1ϕi ∈ s, it is
surely the case that the conjunction is in s, and thus also Kπ1ϕ.
Now let ψ ∶= ψ1 ∧ ⋅ ⋅ ⋅ ∧ψm. We claim that ψ ∈ t. For this it is enough to note
that as each ψi ∈ t, surely also the conjunction is.
Now since
⊢ ϕ→ (ϕ1 ∧ ⋅ ⋅ ⋅ ∧ ϕn)
and
⊢ K̂π2ψ → (K̂π2ψ1 ∧ ⋅ ⋅ ⋅ ∧ K̂π2ψn)
it is also the case that
⊢ ϕ ∧ K̂π2ψ → (ϕ1 ∧ ⋅ ⋅ ⋅ ∧ ϕn ∧ K̂π2ψ1 ∧ ⋅ ⋅ ⋅ ∧ K̂π2ψn).
But then as
⊢ (ϕ1 ∧ ⋅ ⋅ ⋅ ∧ ϕn ∧ K̂π2ψ1 ∧ ⋅ ⋅ ⋅ ∧ K̂π2ψn)→ �
we get that
⊢ (ϕ ∧ K̂π2ψ)→ �.
This rewrites to
⊢ ϕ→Kπ2¬ψ.
But then by necessitation and the (K) axiom, we get
⊢Kπ1ϕ→Kπ1Kπ2¬ψ.
Then as we just showed that Kπ1ϕ ∈ s, it is also the case that Kπ1Kπ2¬ψ ∈ s.
But then also Kπ1;π2¬ψ ∈ s. But then as s ∼π1;π2 t, it must be the case that
¬ψ ∈ t, but we showed that ψ ∈ t, thus we have a contradiction. Hence, w′ is
consistent.

� ∼π1+π2=∼π1 ∪ ∼π2 : Take arbitrary s, t ∈ S. Then s ∼π1+π2 t if and only if
∀ϕ(Kπ1+π2ϕ ∈ s → ϕ ∈ t). This is the case if and only if ∀ϕ(Kπ1ϕ ∧Kπ2ϕ ∈
s→ ϕ ∈ t), which happens if and only if ∀ϕ((Kπ1ϕ ∈ s→ ϕ ∈ t)∨ (Kπ2ϕ ∈ s→
ϕ ∈ t)). Which is the case if and only if s ∼π1 t or s ∼π2 t, which is equivalent
to s ∼π1 ∪ ∼π2 t.

� (∼π)∗ ⊆∼π∗ : Suppose s(∼π)∗t. Then there is a sequence u1, . . . , un such that
s ∼π u1 ∼π ⋅ ⋅ ⋅ ∼π un ∼π t. Now suppose Kπ∗ϕ ∈ s. Then by since ⊢ Kπ∗ϕ →
KπKπ∗ϕ, we have that KπKπ∗ϕ ∈ s. This means that Kπ∗ϕ ∈ u1, but that

51

in turn means that KπKπ∗ϕ ∈ u1, which gives us that Kπ∗ϕ ∈ u2. Repeating
this argument eventually gives us that Kπ∗ϕ ∈ t. Then since ⊢Kπ∗ϕ → ϕ, it
is the case that ϕ ∈ t, and thus s ∼π∗ t.

� s ∼?θ t if and only if s = t and s ⊧ θ:
For the left-to-right direction suppose s ∼?θ t. Then by construction ∀ψ(K?θψ →
ψ ∈ t). Then since ⊢ K?θϕ → (θ → ϕ), this means ∀ψ((θ → ψ) ∈ s → ψ ∈ t).
It is trivial that θ → θ ∈ s, which means that θ ∈ t. Now take an arbitrary
ψ ∈ s. Then θ → ψ ∈ s, and hence ψ ∈ t. Thus s ⊆ t, but as they are both
maximally consistent sets, we get that s = t. Since θ ∈ t, we get by the Truth
Lemma that t ⊧ θ, and thus we get that s = t and s ⊧ θ.
For the right-to-left direction suppose s = t and s ⊧ θ, and suppose θ → ψ ∈ s
for some ψ. Then clearly ψ ∈ s, and as s = t, we get that ψ ∈ t, so for any ψ it
is the case that (θ → ψ ∈ s→ ψ ∈ t), so for any ψ we have (K?θψ ∈ s→ ψ ∈ t),
and hence s ∼?θ t.

Proposition 4.20. LGE−PDL− is complete with respect to pseudo-models.

STEP 1b: Decidability

In this step we will show that the logic is decidable. We will do this using a
filtration.

Definition 4.21 (Closed set under single negation). Let Γ be a set of formulas.
Then Γ is closed under single negation if and only if ϕ ∈ Γ implies that ∼ ϕ ∈ Γ ,
where

∼ ϕ =

⎧⎪⎪
⎨
⎪⎪⎩

ψ if ϕ = ¬ψ

¬ψ else

Definition 4.22 (A suitable set). Let ϕ be in the language. Then Σϕ is a suitable
set for ϕ if it is the smallest set such that;

(1) ψ ∈ Σϕ

(2) Σϕ is closed under subformulas

(3) Σϕ is closed under single negation

(4) KIψ ∈ Σϕ implies KJKIψ ∈ Σϕ for I ⊂ J

(5) [I]ψ ∈ Σϕ implies [J][I]ψ ∈ Σϕ for I ⊂ J

(6) [I]ψ ∈ Σϕ implies KI[I]ψ ∈ Σϕ

(7) ψ ∈ Σϕ implies [A ∪ {0}]ψ ∈ Σϕ if ψ is not of the form [A ∪ {0}]θ for some θ.

52

(8) Kπ1;π2ψ ∈ Σϕ implies Kπ1Kπ2ψ ∈ Σϕ.

(9) Kπ1+π2ψ ∈ Σϕ implies Kπ1ψ ∧Kπ2ψ ∈ Σϕ

(10) Kπ∗ψ ∈ Σϕ implies KπKπ∗ψ ∈ Σϕ

(11) K?θψ ∈ Σϕ implies θ → ψ ∈ Σϕ.

Lemma 4.23. Let Σϕ be a suitable set for some ϕ ∈ LGE−PDL−. Then Σϕ is finite.

Proof. Define Σ0b
ϕ ∶= {ψ;ψ is a subformula of ϕ}. Note that this is finite, since ϕ

is defined by recursion and thus the subformula relation is well founded.
We will now recursively make sure that the set is closed under conditions (8)−(11).
Let

Σia
ϕ ∶= Σ

(i−1)b
ϕ ∪ {Kπ1Kπ2ψ;Kπ1;π2ψ ∈ Σ

(i−1)b
ϕ }

∪ {Kπ1ψ ∧Kπ2ψ;Kπ1+π2ψ ∈ Σ
(i−1)b
ϕ }

∪ {KπKπ∗ψ;Kπ∗ψ ∈ Σ
(i−1)b
ϕ }

∪ {θ → ψ;K?θψ ∈ Σ
(i−1)b
ϕ }

and define Σib
ϕ ∶= {ψ;ψ is a subformula of some θ such that θ ∈ Σia

ϕ }.

We keep recursively closing the set until we arrive at Σnb
ϕ such that Σnb

ϕ = Σ
(n−1)b
ϕ .

Let Σn
ϕ = Σnb

ϕ , and note that the only programs that feature in it are basic pro-
grams, and that it is closed under conditions (1), (2) and (8)−(11). We now argue

that there exists an n for which Σnb
ϕ = Σ

(n−1)b
ϕ , and that Σn

ϕ is finite.

First, there is an n such that Σnb
ϕ = Σ

(n−1)b
ϕ , because programs are defined recur-

sively, which means that with the above procedure, all programs will eventually
be reduced to basic programs.
Secondly, Σn

ϕ is finite, because at each step i we add at most 2× ∣Σ
(i−1)b
ϕ ∣ formulas,

namely the new formula in step (i−1)a and its subformula in step (i−1)b. Hence,
Σn
ϕ is finite.

Now we will make sure Σϕ is closed under conditions (3) − (7) as well: Define

Σn+1
ϕ ∶= Σn

ϕ ∪ {DJ1DJ2 . . .DJmDIθ;DIθ ∈ Σn
ϕ, I ⊂ Jm ⊂ ⋅ ⋅ ⋅ ⊂ J2 ⊂ J1}

∪ {[J1][J2] . . . [Jm][I]θ; [I]θ ∈ Σn
ϕ, I ⊂ Jm ⊂ ⋅ ⋅ ⋅ ⊂ J2 ⊂ J1}

∪ {DJ1 . . .DJmDI1[I1][I2] . . . [In]θ; [In]θ ∈ Σn
ϕ, In ⊂ . . . I1 ⊂ Jm ⋅ ⋅ ⋅ ⊂ J1}

And finally let Σϕ ∶= Σn+1
ϕ ∪ {∼ θ; θ ∈ Σn+1

ϕ }.
The proof that this is finite follows the same lines as the proof of Lemma 3.25.

Definition 4.24. Let M = ⟨S,∼π,≈I , V ⟩ be a general Kripke model, and consider
a suitable set Σϕ for some ϕ ∈ LGE−PDL− . Then we define a general Kripke model
M+ = ⟨S+,∼+π,≈

+
I , V

+⟩ such that

53

� S+ = {[s]; s ∈ S};

� [s] ∼+I [t] if and only if ∀KIψ ∈ Σ(M,s ⊧KIψ⇔M, t ⊧KIψ);

� [s] ≈+I [t] if and only if ∀[I]ψ ∈ Σ(M,s ⊧ [I]ψ⇔M, t ⊧ [I]ψ);

� We define by induction

– [s] ∼+?θ [t] if and only if [s] = [t] and M,s ⊧ θ

– ∼+π1;π2=∼
+
π1 ;∼

+
π2

– ∼+π1+π2=∼
+
π1 ∪ ∼+π2

– ∼+π∗= (∼+π)
∗

� V +(p) = {[s]; s ∈ V (p)}.

Lemma 4.25. M+ is a filtration of M through Σϕ.

Proof. Clearly, M+ satisfies the constraints on Sf and V f , so it is left to show that
∼+π and ≈+I satisfy minf and maxf .

� We will show minf for ∼+π by induction. Hence, we will show that for all
[s], [t] ∈ S+, if s ∼π t, then [s] ∼+π [t].
Base case Take arbitrary [s], [t] ∈ S+ such that s ∼I t, and suppose KIψ ∈ Σϕ.
Then, as ∼I is an equivalence relation, we get that M,s ⊧KIψ if and only if
M, t ⊧KIψ. Hence, by definition, we get [s] ∼+I [t].
Inductive step

– Take an arbitrary[s], [t] ∈ S+ such that s ∼π1;π2 t. Then by definition
s ∼π1 ;∼π2 t, so there is a u such that s ∼π1 u ∼π2 t. By the induction
hypothesis, minf holds for π1 and π2, so [s] ∼+π1 [u] ∼+π2 [t]. This means
that [s] ∼+π1 ;∼

+
π2 [t], and thus by definition [s] ∼+π1;π2 [t].

– Take arbitrary [s], [t] ∈ S+ such that s ∼π1+π2 t. Then by definition
s ∼π1 ∪ ∼π2 t. By the induction hypothesis, for both π1 and π2 we have
that minf holds, so we know that [s] ∼+π1 [t] or [s] ∼+π2 [t]. But this
means that [s] ∼+π1 ∪ ∼+π2 [t], and hence [s] ∼+π1+π2 [t].

– Take arbitrary [s], [t] ∈ S+ such that s ∼?θ t. Then by definition, s = t
and M,s ⊧ θ. But this means that [s] = [t] and M,s ⊧ θ, and thus
[s] ∼?θ [t].

– Take arbitrary [s], [t] ∈ S+ such that s ∼π∗ t. Define A ∶= {[u]; [s] ∼+π∗
[u]} and define Form(s) to be the conjunction of formulas in Σϕ that
are true in M,s, and define σA to be the disjuction of all Form(a) such
that [a] ∈ A. Then M,s ⊧ σA if and only if [s] ∈ A.

54

Claim 1:M,s ⊧Kπ∗σA.
To see this, note that M,s ⊧ Kπ∗(σA → KπKπ∗σA) → (σA → Kπ∗σA).
Also we will prove the following claim. Together with the fact that
M,s ⊧ σA since [s] ∼+π∗ [s], and thus [s] ∈ A, Claim 2 implies Claim 1.

Claim 2 M,s ⊧Kπ∗(σA →KπKπ∗σA)
Take an arbitrary t such that s ∼π∗ x and suppose M,x ⊧ σA. We
have to show that M,x ⊧ KπKπ∗σA, so take an arbitrary y such that
x ∼π y. Then since x ∈ A, we get that [s] ∼+π∗ [t], and thus [s](∼+π)

∗[t],
which means that there is an n such that [s](∼+π)

n[t]. By the induction
hypothesis, we have that [x] ∼+π [y], and thus [s](∼+π)

n+1[y], and thus
[s] ∼+π∗ [y]. This means that y ∈ σA, and thus M,y ⊧ σA, and therefore
M, t ⊧ KπσA. However, since [s] ∼+π∗ [y], we can do repeat the same
procedure to obtain that M,y ⊧ KπσA. By repetition, we get that
M,x ⊧ KπKπ . . .KπσA, and therefore M,x ⊧ KπKπ∗σA, which proves
Claim 2, and thus we proved Claim 1. But this gives us what we want,
as this implies that M, t ⊧ σA since s ∼π∗ t, and thus [t] ∈ A, and
therefore [s] ∼+π∗ [t].

� We will show maxf for ∼+π by induction. Hence, we will show that for all
[s], [t] ∈ S+, if [s] ∼+π [t], then for all ◻ϕ ∈ Σϕ(M,s ⊧ ◻ϕ→M, t ⊧ ϕ)
Base case Take arbitrary [s], [t] such that [s] ∼+I [t], and suppose KIψ ∈ Σϕ

and that M,s ⊧ KIψ. Then M, t ⊧ KIψ. But as ∼I is reflexive, we get that
M, t ⊧ ψ.
Inductive step

– Take arbitrary [s], [t] such that [s] ∼+π1;π2 [t], and suppose Kπ1;π2ψ ∈ Σϕ

and that M,s ⊧ Kπ1;π2ψ. As [s] ∼+π1;π2 [t], we get that [s] ∼+π1 ;∼
+
π2 [t],

and thus that there is a [u] such that [s] ∼+π1 [u] ∼+π2 [t]. Also note that
as M,s ⊧Kπ1;π2ψ, also M,s ⊧Kπ1Kπ2ψ. As maxf holds for ∼π1 and Σϕ

is a suitable set, we get that M,u ⊧Kπ2ψ, and thus, as maxf holds for
∼π2 , we get that M, t ⊧ ψ.

– Take arbitrary [s], [t] such that [s] ∼+π1+π2 [t] and suppose Kπ1+π2ψ ∈ Σϕ

and that M,s ⊧Kπ1+π2ψ. As [s] ∼+π1+π2 [t], we get that [s] ∼+π1 ∪ ∼+π2 [t],
hence [s] ∼+π1 [t] or [s] ∼+π2 [t]. As M,s ⊧ Kπ1+π2ψ, also M,s ⊧ Kπ1ψ ∧
Kπ2ψ. Then since maxf holds for both ∼+π1 and ∼+π2 and Σϕ is suitable,
we get that M, t ⊧ ψ.

– Take arbitrary [s], [t] such that [s] ∼+?θ [t], and suppose K?θψ ∈ Σϕ and
M,s ⊧ K?θψ. Since [s] ∼+?θ [t], we have that [s] = [t] and M,s ⊧ θ. As
M,s ⊧ K?θψ, it is also the case that M,s ⊧ θ → ψ. But then M,s ⊧ ψ.
Then since [s] = [t] we know that ∀σ ∈ Σϕ(M,s ⊧ σ⇔M, t ⊧ σ). This
combined with the fact that Σϕ is a suitable set, we know that M, t ⊧ ψ.

55

– Take arbitrary [s], [t] such that [s] ∼+π∗ [t] and suppose M,s ⊧Kπ∗ψ for
someKπ∗ψ ∈ Σϕ. As [s](∼+π)

∗[t], there is a sequence [s] = [u1], [u2], . . . , [un] =
[t] such that for all k < n, [uk] ∼π [uk+1]. Note that as Σϕ is suitable,
we have that KπKπ∗ψ ∈ Σϕ, and as M,s ⊧ Kπ∗ψ, we also have that
M,s ⊧ KπKπ∗ψ. Together, this means that M,u1 ⊧ Kπ∗ψ. By repeat-
ing this argument, we eventually obtain that M, t ⊧ Kπ∗ψ. But then
since ⊢Kπ∗ψ → ψ, we have that M, t ⊧ ψ.

� Both minf and maxf for ≈+I are analogous to the basecase of ∼+π.

Corollary 4.26. Let M = ⟨S,∼I ,≈I , V ⟩ be a general Kripke model, and let M+

and Σϕ be as above. Then for all σ ∈ Σϕ and s ∈ S, we get that

M,s ⊧ σ⇔M+, [s] ⊧ σ

Proof. This follows from Lemma 4.12 and Lemma 4.25

Definition 4.27 (Regular Pseudo-Model). A general Kripke model M = ⟨S,∼π,≈I
, V ⟩ is a regular pseudo-model if it satisfies all conditions on pseudo-models and in
addition satisfies the following constraint:

� ∼π∗= (∼π)∗

Theorem 4.28. Let M = ⟨S,∼I ,≈I , V ⟩ be a pseudo-model. Then M+ as described
above is a regular pseudo-model.

Proof. To show that M+ is a pseudo-model we have to show that it satisfies all
the semantic properties of pseudo-models.

� It is clear that ∼+I and ≈+I are equivalence relations.

� ∼+I⊆≈
+
I : Take arbitrary [s], [t] ∈ S+ such that [s] ∼+I [t]. This means that

∀DIψ ∈ Σϕ(M,s ⊧DIψ⇔M, t ⊧DIψ).
Let [I]ψ ∈ Σϕ, and suppose that M,s ⊧ [I]ψ. As ⊢ [I]ψ → DI[I]ψ, we
get that M,s ⊧ DI[I]ψ. But then, as DI[I]ψ ∈ Σϕ and [s] ∼+I [t], we have
M, t ⊧ DI[I]ψ. As DI is truthful, it is the case that M, t ⊧ [I]ψ, and hence
[s] ≈+I [t].

� ∼+I⊆∼
+
J for J ⊆ I: Take arbitrary [s], [t] ∈ S+ such that [s] ∼+I [t].

Clearly, if J = I, it is immediate that [s] ∼+J [t], so let’s focus on the case
where J ⊂ I. Suppose DJψ ∈ Σϕ, and M,s ⊧ DJψ. As ⊢ DJψ → DJDJψ,
we can apply the Monotonicity of Distributed Knowledge axiom to get ⊢
DJDJψ → DIDJψ. Hence, we have that M,s ⊧ DIDJψ. But then as [s] ∼+I
[t] and DIDJψ ∈ Σϕ by construction of Σϕ, we get that M, t ⊧ DIDJψ.
Again, as DI is truthful, we obtain M, t ⊧DJψ, and thus [s] ∼+J [t].

56

� ≈+I⊆≈
+
J for J ⊆ I: this is analogous to the previous case.

� ≈+A∪{0}= id: Take arbitrary [s], [t] ∈ S+ such that [s] ≈+A∪{0} [t], and suppose
M,s ⊧ ψ for some ψ ∈ L, and let Σϕ be the suitable set for ψ.

(a) Suppose ψ is of the form [A ∪ {0}]θ, thus M,s ⊧ [A ∪ {0}]θ. Then as
[s] ≈+A∪{0} [t] and Σϕ is closed under subformulas, we get that M, t ⊧

[A ∪ {0}]θ. Thus we have that for all ψ ∈ L,M, s ⊧ ψ if and only if
M, t ⊧ ψ. Hence it is the case that [s] = [t].

(b) Now suppose ψ is not of the form [A∪{0}]θ. Then by the Determinism
of Grand Coalition axiom, we get that M,s ⊧ [A∪ {0}]ψ. By construc-
tion of Σϕ and since [s] ≈+A∪{0} [t], we get that M, t ⊧ [A ∪ {0}]ψ. As

[A ∪ {0}] is truthful, we get that M, t ⊧ ψ. Thus we have that for all
ψ ∈ L,M, s ⊧ ψ if and only if M, t ⊧ ψ. Hence it is the case that [s] = [t].

� That ∼π1;π2=∼π1 ;∼π2 and ∼π1+π2=∼π1 ∪ ∼π2 and ∼π∗= (∼π)∗ follows immediately
from the definition.

� That[s] ∼+?θ [t] iff [s] = [t] and M+, [s] ⊧ θ follows from the definition and
Corollary 4.26.

Lemma 4.29. LGE−PDL− has the strong finite model property with respect to
pseudo-models.

Proof. Let ϕ be a formula of LGE−PDL− . Then it is satisfiable if and only if it
is satisfied in the canonical structure MC by Proposition 4.20. Now let M+ be
the filtration of MC over the suitable set Σϕ for ϕ. Then by Corollary 4.26, ϕ is
satisfied in MC if and only if it is satisfied in M+, hence ϕ is satisfiable iff it is
satisfied in M+. Also, we know that M+ has at most 2∣Σϕ∣ states. Hence, every
satisfiable formula is satisfied in a model containing at most 2∣Σϕ∣ states, thus giving
GE-PDL− strong finite model property.

Theorem 4.30. The logic LGE−PDL− is decidable.

Proof. This follows from Lemma 4.29 and Theorem 6.7 in [9, p.340] which states
that any normal modal logic that has the strong finite model property with respect
to a recursive set of models is decidable.

STEP 2: Unraveling

Now we will partially unravel the regular pseudo-model that we constructed at the
end of step 1. For that we need a few notions.

57

Definition 4.31 (History). Let M = ⟨S,∼π,≈I , V ⟩I⊆A∪{0} be a general Kripke
model and take some s ∈ S. Then a history with origin s is a finite sequence
h ∶= (s0,R0, s1, . . . ,Rn−1, sn) such that

� for all k ≤ n ∶ sk ∈ S;

� s0 = s;

� for all k < n ∶ Rk ∈ {∼I ; I is a basic program} ∪ {≈I ; I ⊂ A ∪ {0}};

� for all k ≤ n ∶ skRksk+1.

For any history h we write first(h) = s0 and last(h) = sn. These histories will
form the state space of the unraveled tree.
For two histories h = (s0,R0, . . . ,Rn−1, sn) and h′ = (s′0,R

′
0, . . . ,R

′
m−1, s

′
m) we write

the concatenation of the two h + h′ ∶= (s0,R0, . . . ,Rn−1, sn = s′0,R
′
0, . . . ,R

′
m−1, s

′
m).

Note that the Rk’s come from the union of all ∼I relations where I ⊆ A and all
≈I relations with I ⊂ A ∪ {0}. Hence, we do not unravel the ≈A∪{0} relation. This
is to ensure the semantical property of determinism of the grand coalition when
we later go back to the actual models. We also do not unravel the more complex
programs, as we do not need them.

Definition 4.32 (Unraveled tree). Let M be a general Kripke model and let s ∈ S.
The unraveling ofM around s is a general Kripke model M⃗ = ⟨S⃗,R∼π ,R≈I , V⃗ ⟩I⊆A∪{0}
such that

� S⃗ = {h; first(h) = s}

� hR∼Ih
′ iff h + (last(h),∼I , s) = h′

� hR≈Ih
′ iff h + (last(h),≈I , s) = h′

� V⃗ ∶ P → P(S⃗) such that V⃗ (p) ∶= {h ∈ S⃗; last(h) ∈ V (p)}.

Now we have defined histories on the canonical pseudo-model. They basically tell
us which worlds in MC are related by any sequence of relations from a specific
state s. These form a tree. Now we will define paths on this tree of histories.

Definition 4.33 (R-path). Let M⃗ be the unraveling of a general Kripke model M
around some world s ∈ S. Let R ⊆ {R∼I ,R

−1
∼I ,R≈J ,R

−1
≈J ; I ⊆ A, J ⊆ A ∪ {0}} =∶ Rel.

An R-path from h to h′ is a finite sequence p ∶= (h0,R0, h1, . . . ,Rn−1, hn) such that

� for all k ≤ n ∶ hk ∈ S⃗;

� h0 = h;

� hn = h′;

58

� for all k < n ∶ Rk ∈R;

� for all k < n ∶ hkRkhk+1.

If R is not further specified, we speak of a path. For any path p we define again
first(p) = h0 and last(p) = hn. Composing paths works the same as composing
histories.

Definition 4.34 (Non-redundancy). Let R ⊆ Rel and p an R-path. We say that p
is a non-redundant path if there is no k < n−1 such that hk = hk+2 and Rk+1 = R−1

k .

Intuitively, this definition means that a path is non-redundant if it doesn’t imme-
diately traverses an edge back.

Lemma 4.35. Let M⃗ be the unraveling of a general Kripke model M around
some world s ∈ S. Let h,h′ ∈ S⃗ be such that h ≠ h′. Then there is exactly one
non-redundant path p from h to h′.

Lemma 4.36. Any path p from h to h′ contains the unique non-redundant path
from h to h′.

STEP 3: Completeness for GE-PDL−

Now we’ll return from the land of trees to the land of models for DECL, and with
that show completeness of LGE−PDL− with respect to models for DECL.

Definition 4.37. Let M⃗ = ⟨S⃗,R∼I ,R≈J , V⃗ ⟩I⊆A,J⊆A∪{0} be the unraveling of M+

around some world [s] ∈ S+. Then define S = ⟨S⃗,∼i,≈j, V⃗ ⟩i∈A,j∈A∪{0} to be such
that

∼i= (⋃{R∼I ; i ∈ I ⊆ A} ∪⋃{R−1
∼I ; i ∈ I ⊆ A})

∗

≈i= (⋃{R≈I ; i ∈ I ⊂ A ∪ {0}} ∪⋃{R−1
≈I ; I ∈ I ⊂ A ∪ {0}}∪

⋃{R∼I ; i ∈ I ⊆ A} ∪⋃{R−1
∼I ; i ∈ I ⊆ A)

∗

Then, as we want this to be an actual model for DECL, we define

� ≈I ∶= ⋂
i∈I

≈i

� ∼I ∶= ⋂
i∈I

∼i

� ∼π1;π2 ∶=∼π1 ;∼π2

� ∼π1+π2 ∶=∼π1 ∪ ∼π2

� ∼π∗ ∶= (∼π)∗

� h ∼?θ h′ if and only if h = h′ and last(h) ⊧M+ θ

59

Proposition 4.38. For all I ⊆ A, h ∼I h′ if and only if the unique non-redundant
path from h to h′, p = (h = h0S0h1 . . . Sn−1hn = h′) is an R-path, with R = {R∼J ,R

−1
∼J ; I ⊆

J ⊆ A}.

Proof. Suppose h ∼I h′. Then by definition h ∼i h′ for all i ∈ I. Hence, for all
i ∈ I there is an R′-path p′ such that R′ = {R∼J ,R

−1
∼J ; i ∈ J ⊆ A}. But then by

Proposition 4.36 it must be the case that the unique non-redundant path between
h and h′ is contained in p′. But then it must be the case that the non-redundant
path between h and h′ is an R∗-path with R∗ = {R∼J ,R

−1
∼J ; I ⊆ J ⊆ A}.

Proposition 4.39. For all I ⊂ A ∪ {0} and h,h′ ∈ W⃗ , h ≈I h′ if and only if the
unique non-redundant path from h to h′, p = (h = h0S0h1 . . . Sn−1hn = h′) is an
R-path with R = {R≈J ,R

−1
≈J ,R∼K ,R

−1
∼K ; I ⊆ J ⊂ A ∪ {0}, I ⊆K ⊆ A}.

Proof. Suppose h ≈I h′. Then by definition h ≈i h′ for all i ∈ I. Hence, for
all i ∈ I there is an R′-path p′ such that R′ = {R≈J ,R

−1
≈J ,R∼K ,R

−1
∼K ; i ∈ J ⊂ A ∪

{0}, i ∈ K ⊆ A}. But then by Proposition 4.36 it must be the case that the
unique non-redundant path between h and h′ is contained in p′. But then it must
be the case that the non-redundant path between h and h′ is an R∗-path with
R∗ = {R≈J ,R

−1
≈J ,R∼K ,R

−1
∼K ;J ⊂ A ∪ {0}, I ⊆K ⊆ A}.

Proposition 4.40. Let f ∶ S → M+ be such that f(h) = last(h). Then f is a
bounded morphism.

Proof. The proof is per condition of bounded morphisms.

1. We have to show that for any h ∈ S⃗ that h ∈ V⃗ (p) iff f(h) ∈ V C(p).
Take an arbitrary h ∈ S⃗. then h ∈ V⃗ (p) if and only if last(h) ∈ V C(p) since
we defined V⃗ (p) ∶= {h ∈ S⃗; last(h) ∈ V C(p)}. Hence, h ∈ V⃗ (p) if and only if
f(h) ∈ V C(p).

2. (a) We have to show that h ∼π h′ implies f(h) ∼π f(h′). We will show this
by induction on the complexity of programs.
Base case Take arbitrary I ⊆ A and h,h′ ∈ S⃗ such that h ∼I h′. This
means that the non-redundant path p∗ is an R-path such that R =
{R∼J ,R

−1
∼J ; I ⊆ J ⊆ A}. Thus p∗ = (h = h0R0h1 . . .Rn−1hn = h′) where

for all k < n,Rk ∈ R. Hence by definition of the R∼J ’s, we get that for
all k < n, last(hk) ∼I last(hk+1). but then as ∼I is transitive, we get
last(h) ∼I last(h′), and hence f(h) ∼I f(h′).
Inductive step

� Take arbitrary h,h′ ∈ S⃗ such that h ∼π1;π2 h
′. Then by construction

h ∼π1 ;∼π2 h
′, and thus there is an l ∈ S⃗ such that h ∼π1 l ∼π2 h

′.
Then by the induction hypothesis, we get f(h) ∼+π1 f(l) ∼

+
π2 f(h

′),
and hence f(h) ∼+π1 ;∼

+
π2 f(h

′), and thus by construction
f(h) ∼+π1;π2 f(h

′).

60

� Take arbitrary h,h′ ∈ S⃗ such that h ∼π1+π2 h
′. Then by construction

h ∼π1 ∪ ∼π2 h
′. Thus we have that h ∼π1 h

′ or h ∼π2 h
′. Then by the

induction hypothesis we have f(h) ∼+π1 f(h
′) or f(h) ∼+π2 (h′). This

gives us f(h) ∼+π1 ∪ ∼+π2 (h′), and thus by construction f(h) ∼+π1+π2
(h′).

� Take arbitrary h,h′ ∈ S⃗ such that h ∼π∗ h′. By construction this
means that h(∼π)∗h′, and thus that there is a sequence l1, . . . , ln
such that h ∼π l1 ∼π ⋅ ⋅ ⋅ ∼π ln ∼π h′. Then by the induction hy-
pothesis, this means that f(h) ∼+π f(l1) ∼+π ⋅ ⋅ ⋅ ∼+π f(ln) ∼+π f(h

′),
and thus we get f(h)(∼+π)

∗f(h′), which by construction means that
f(h) ∼+π∗ f(h

′).

� Take arbitrary h,h′ ∈ S⃗ such that h ∼?θ h′. Then by construction
h = h′ and last(h) ⊧M+ θ. Since h = h′, also f(h) = f(h′), and as
f(h) = last(h), we have that f(h) ⊧ θ, and thus f(h) ∼?θ f(h′).

(b) We have to show that h ≈π h′ implies f(h) ≈π f(h′)Take arbitrary
I ⊆ A ∪ {0} and h,h′ ∈ S⃗ such that h ≈I h′.
Suppose I ⊂ A∪{0}. Then this means that the non-redundant path p is
an R-path such that R = {R≈J ,R

−1
≈J ,R∼K ,R

−1
∼K ; I ⊆ J ⊂ A ∪ {0}, I ⊆ K ⊆

A}. Hence, p = (h = h0R0h1 . . .Rn−1hn = h′) where for all k < n,Rk ∈ R.
Thus for all k < n, last(hk) ∼I last(hk+1) or last(hk) ≈I last(hk+1). Note
that as ∼i⊆≈i for all i ∈ A, we get that last(hk) ∼I last(hk+1) implies
last(hk) ≈I last(hk+1), and thus we get that for all k < n, last(hk) ≈I
last(hk+1). But then as ≈I is transitive, we get last(h) ≈I last(h′), and
hence f(h) ≈I f(h′).
Now suppose I = A ∪ {0}. Then h ≈A∪{0} h′ means that h = h′, and
hence last(h) = last(h′), and thus last(h) ≈A∪{0} last(h′), and thus
f(h) ≈A∪{0} f(h′).

3. (a) We have to show that f(h) ∼π t′ implies that there is a h′ ∈ S⃗ such that
f(h′) = t′ and h ∼I h′. We will show this by induction on the complexity
of programs.
Base case Take arbitrary I ⊆ A, h ∈ S⃗ and t ∈ S+ such that f(h) ∼+I t.

This means that last(h) ∼+I t. We have to show that there is a h′ ∈ S⃗
such that h ∼I h′ and f(h′) = t.
Let h′ = h + (last(h),∼I , t). Then h ∼I h′ by definition and last(h′) = t,
and thus f(h′) = t.
Inductive step

� Take arbitrary h ∈ S⃗ and t′ ∈ S+ such that f(h) ∼+π1;π2 t
′. Then

by definition f(h) ∼+π1 ;∼
+
π2 t

′. Hence there exists a u′ ∈ S+ such
that f(h) ∼+π1 u

′ ∼+π2 t
′. Then by two applications of the induction

hypothesis there is a u ∈ S⃗ such that h ∼π1 u and f(u) = u′ and
there is a t ∈ S⃗ such that u ∼π2 t and f(t) = t′. Thus h ∼π1 u ∼π2 t,

61

and thus h ∼π1 ;∼π2 t, and thus h ∼π1;π2 t.

� Take arbitrary h ∈ S⃗ and t′ ∈ S+ such that f(h) ∼+π1+π2 t
′. Then

by definition f(h) ∼+π1 ∪ ∼+π2 t
′, and thus f(h) ∼+π1 t

′ or f(h) ∼+π2 t
′.

Then by the induction hypothesis there is a t ∈ S⃗ such that h ∼π1 t
and f(t) = t′ or there is a t ∈ S⃗ such that h ∼π2 t and f(t) = t′.
Hence, there is a t ∈ S⃗ such that h ∼π1 t or h ∼π2 t and f(t) = t′.
Thus h ∼π1 ∪ ∼π2 t, and thus h ∼π1+π2 t.

� Take arbitrary h ∈ S⃗ and t′ ∈ S+ such that f(h) ∼+π∗ t
′. Then by

definition f(h)(∼+π)
∗t′, and thus there are u′1, . . . , u

′
n ∈ S

+ such that
f(h) ∼+π u

′
1 ∼

+
π ⋅ ⋅ ⋅ ∼

+
π u

′
n ∼

+
π t

′. But then by the induction hypothesis,
there are u1, . . . , un, t ∈ S⃗ such that h ∼π u1 ∼π ⋅ ⋅ ⋅ ∼π un ∼π t such
that for all i ≤ n ∶ f(ui) = u′i and f(t) = t′. Hence there is a t such
that h(∼π)∗t and f(t) = t′, and thus there is a t such that h ∼π∗ t
and f(t) = t′.

� Take arbitrary h ∈ S⃗ and t′ ∈ S+ such that f(h) ∼+?θ t
′. Then by

definition f(h) = t′ and f(h) ⊧ θ. Let t = h. Then it is immediate
that h = t and last(h) = f(h) ⊧M+ θ, and thus that h ∼θ t. Also
f(t) = f(h) = t′, so there is a t such that h ∼?θ t and f(t) = t′.

(b) The ≈ case is analogous to the base case of the ∼ case.

Proposition 4.41. S is a model for DECL-C.

Proof. All relations in S are equivalence relations by definition. It is also im-
mediate from the definition that ∼i⊆≈i for all i ∈ A, and that ∼π1;π2=∼π1 ;∼π2 and
∼π1+π2=∼π1 ∪ ∼π2 and ∼π∗= (∼π)∗ follows immediately from the construction. It
remains to show that ⋂

i∈A∪{0}
[s]≈I = {s} for all s ∈ S and that h ∼?θ h′ if and only if

h = h′ and h ⊧ θ.

� ⋂
i∈A∪{0}

[s]≈I = {s} for all s ∈ S: We have to show that h ≈A∪{0} h′ implies

h = h′.
So suppose h ≈A∪{0} h′. Then by definition, h ≈i h′ for all i ∈ A ∪ {0}. But
for all i ∈ A ∪ {0}, we have that
≈i= (⋃{R≈I ; i ∈ I ⊂ A ∪ {0}} ∪ ⋃{R−1

≈I ; I ∈ I ⊂ A ∪ {0}} ∪ ⋃{R∼I ; i ∈ I ⊆
A} ∪⋃{R−1

∼I ; i ∈ I ⊆ A)
∗.

However, note that this means that all seperate parts are empty, and hence

⋂
i∈A∪{0}

≈i= id. Thus h ≈A∪{0} h′ implies h = h′.

� h ∼?θ h′ iff h = h′ and h ⊧ θ. We have that h ∼?θ h′ iff h = h′ and M+, last(h) ⊧
θ. Since f ∶ h↦ last(h) is a Bounded Morphism, we know that for all σ, we
have that M,h ⊧ σ if and only if M+, f(h) ⊧ σ. This means that h = h′ and
M+, last(h) ⊧ θ if and only if h = h′ and M,h ⊧ θ. Thus h ∼?θ h′ if and only
if h = h′ and M,h ⊧ θ.

62

Theorem 4.42 (Completeness for GE-PDL−). LGE−PDL− is weakly complete with
respect to DECL-C models.

Proof. Let ϕ be an GE-PDL− -consistent formula. By Lindenbaum’s Lemma, {ϕ}
can be extended to a maximal consistent set Φ. By definition, Φ ∈ SC , where SC

is the set of states in the canonical pseudo-model. Let M+ be the filtration of MC

over Σϕ.
Now let M⃗ be the unraveling of M+ around [s] such that Φ ∈ [s], and let S be the
generated DECL-C model. Note that the history ([s]) ∈ V⃗ . Define f ∶ S → MC

to be such that f(h) = last(h). By Lemma 4.40, this is a bounded morphism. By
Lemma 4.14, we have that S, ([s]) ⊧ ϕ if and only if M+, [s] ⊧ ϕ. But as ϕ ∈ Φ
and by Lemma 4.26, we have that M+, [s] ⊧ ϕ, and hence S, ([s]) ⊧ ϕ.

Step 4: Completeness for GE-PDL

We showed that the static language GE-PDL− is complete. We will now show
that the dynamic language can be reduced to the static language, thereby showing
completeness for the dynamic language as well.

Lemma 4.43. The reduction axioms are valid on models for DECL-C.

Proof. Showing that the reduction axioms for [σ]p, [σ]¬ϕ, [σ](ϕ∧ψ) and [σ][I]ϕ
are valid follows the exact same lines as it did in the proof of completeness for
DECL. The proof of the reduction axiom for [σ]Kπϕ is analogous to the same
proof in [30, Thm. 48].

The reduction axioms we defined before give rise to a translation function from
formulas from GE-PDL to formulas from GE-PDL−, thereby showing that the
former can be reduced to the latter.

Definition 4.44 (Translation). The function t takes a formula of GE-PDL and
yields a formula of GE-PDL−.

t(⊺) = ⊺
t(p) = p
t(¬ϕ) = ¬t(ϕ)
t(ϕ1 ∧ ϕ2) = t(ϕ1) ∧ t(ϕ2)
t(Kπϕ) =Kr(π)t(ϕ)
t([I]ϕ) = [I]t(ϕ)
t([σ]⊺) = ⊺
t([σ]p) = t(pre(σ))→ t(post(σ)(p))
t([σ]¬ϕ) = t(pre(σ))→ ¬t([σ]ϕ)
t([σ](ϕ1 ∧ ϕ2)) = t([σ]ϕ1) ∧ t([σ]ϕ2)
t([σn]Kπϕ) = ⋀N−1

m=0[Tnm(r(π))]t([σm]ϕ)
t([σ][I]ϕ) = t(pre(σ))→ ⋀σ′≈Iσ[I]t([σ

′]ϕ)
t([σ][σ′]ϕ) = t([σ]t([σ′]ϕ))

63

Where the function r is defined as follows:

r(I) = I
r(?θ) =?t(θ)
r(π1;π2) = r(π1); r(π2)
r(π1 + π2) = r(π1) ∪ r(π2)
r(π∗) = (r(π))∗

Theorem 4.45 (Completeness of GE-PDL). For any ϕ in the language LGE−PDL
we have that

⊧ ϕ iff ⊢ ϕ

Proof. By Theorem 4.42, the static language GE-PDL− is complete, and with
the translation procedure above we showed that any formula from GE-PDL is
equivalent to a formula of GE-PDL−.

4.4 Planning with DECL-C

With the extended language that includes common knowledge, we have the possi-
bility to model more of the planning process, and exclude the idea that the agents
have some external way of communicating. The main advantage of common knowl-
edge is that if a joint action is commonly known to be the one that the agents are
performing, everyone can rely on everyone to perform their part of that action.
Hence, we can define what it means for an action to be a solution, without assum-
ing that this condition is only a prerequisite for some agent telling the others that
this joint action is the one that we are performing, as it is in planning with DECL.

In Example 4.3 we touched upon a possible criterion for an action being a good
choice: it was common knowledge between the agents that it would achieve the
goal. However, in Example 4.4 we saw that this might not be enough. If there are
multiple joint actions the agents can perform such that they achieve the goal, the
agents still do not know which one to choose. Thus we say that a joint action σI
is a strong salient solution if it is common knowledge between the agents in I that
σI will achieve the goal, and that there is no different action that has the same
property.

It being common knowledge that σI is the only action such that it will achieve the
goal is a very strict condition on it being a solution, and it will often be the case
that there does not exists such a joint action. There are multiple other, less strong,
constraints one can define for solutions. We call the one that we will highlight here
a weak salient solution, and we define this as the single joint action σI such that
it is common knowledge that it might reach the goal whereas all the other joint
actions will definitely not reach the goal. One can see this as the ’last resort’ - if

64

we cannot be sure to reach the goal, we should at least perform the action that
will not exclude it. Of course, there are many other levels of solutions one can
define, but for the purpose of this thesis we will stick to these two.

Definition 4.46 (Single-step Solution). For a single-step planning problem P =
⟨(M,s),Σ,A, ϕg⟩ and joint action σI such that for all σ,σ′ ∈ σI we have that
σ ∼I σ′, we say that σI is a :
strong salient solution if M,s ⊧ CI([σI]ϕg ∧ ⋀

σ′∉σI
¬[σ′I]ϕg)

weak salient solution if M,s ⊧ CI(¬[σI]¬ϕg ∧ ⋀
σ′∉σI

[σ′I]¬ϕg)

for I ⊆ A

Again, extending to k-step solutions and searching the tree for a solution is triv-
ial. Also finding a solution follows the same steps as it does for planning without
common knowledge.

Both strong and weak salient solutions depend on there being exactly one such
solution, but this is a situation that will not occur very often. It is therefore not
very likely that agents will find a solution with these constraints, but we need them
to ensure that everyone is aware of the one plan the agents will use to reach their
goal. In the next chapter we extend the logic further in order to make it easier for
the agents to reach a situation that makes these constraints true.

65

5 Committing to actions

In the previous section, we introduced a logic for coalitions in epistemic planning,
and we defined a planning problem and two solution concepts. These concepts
depended on there being exactly one salient solution. However, it might not al-
ways be the case that there is such a joint action of which it is common knowledge
that it will reach the goal, or that it is the only one that satisfies that constraint.
Especially if the latter is the case, the agents will need some way to talk about
which of the possible joint actions they will take, and hence, agents have to be
able to talk about what they will do themselves. Hence, there needs to be some
form of coordination. For this purpose we introduce commitments.

In this chapter we will extend the logic to allow for commitments, we argue that
also the extended logic is sound, complete and decidable. We then go on to explain
how committing to actions work and give some examples. We show how to use
commitments to express the concept of responsibility, and finally we will give an
idea of how committing can be used for planning.

Intuitively, committing in the sense of this thesis is very comparable to committing
as humans do it. There is number of actions available, and we communicate to
other agents (or humans) that we will restrict ourselves to only a subset of those
actions. The result of an agent committing is that other agents will also be limited
in their actions. By iteratively committing, agents might be able to coordinate
which joint action they will perform.

To facilitate this committing to a subset of actions, we introduce a new type of
atomic sentences: commiti(Γ), saying that agent i is committed to do an action
in Γ, where Γ ⊆ Σ. We extend the valuation of the static model to also range
over these atomic sentences, thereby making the commitment of an agent state-
dependent. We write C for the set of all atomic sentences of the form commiti(Γ)
for some i ∈ A and Γ ⊆ Σ.

The models we use for this extension of the language are similar to the models we
used previously, but we have to augment both the static and the action models
with a structure that refers to commitments. For the static models, this means
that the valuation is now a function from both propositional letters and the new
atomic sentences to the power set of the state space. Thus:

Definition 5.1 (Augmented Static Model). A static epistemic model is a structure
M = ⟨S,∼i,≈j, V ⟩i∈A,j∈A∪{0} such that

� S is a non-empty set of states ;

� ∼i is an equivalence relation for each agent i ∈ A called the indistinguishability
relation;

66

� ≈j is an equivalence relation for every j ∈ A ∪ {0} such that for all s ∈ S we
have ⋂

j∈A∪{0}
[s]≈j = {s};

� V ∶ P ∪C → P(S) is the valuation function that maps propositional letters
and commit sentences to subsets of states.

� for all i ∈ A we require ∼i⊆≈i

5.1 DECL with Common Knowledge and Commitments

We adjust the language and satisfaction to enable commitments from agents by
incorporating the new atomic sentences.

5.1.1 Syntax and Semantics of DECL-CC

Definition 5.2 (The language LDECL−CC). The language LDECL−CC is defined by
the following Backus-Naur form:

ϕ ∶∶= p ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣DIϕ ∣ CIϕ ∣ [J]ϕ ∣ [σ]ϕ ∣ commiti(Γ) ∣ [!Γi]ϕ

where I ⊆ A, J ⊆ A ∪ {0} and i ∈ A and Γ ⊆ Σ for Σ a given action model.

Here, DIϕ,CIϕ, [I]ϕ and [σ]ϕ have the same meaning as before. commiti(Γ) is
the atomic sentence meaning that agent i is committed to the set of actions Γ. We
use !Γi as a notation for the action where agent i commits to Γ, and thus [!Γi]ϕ
says that ϕ holds after the event of agent i committing to Γ.

Abbreviations

� We will write commitI(Γ) for CI(⋀
i∈I
commiti(Γi)) such that (⋂

i∈I
Γi) = Γ. This

assumes that a group of agents can only commit to a set of actions if it is
common knowledge within that group that everyone committed to his or her
part of that set of actions.

5.1.2 Committing Actions

As said before, we want agents to iteratively commit to actions. Hence, we need a
way in which they can do this. In fact, by introducing these new atomic sentences,
this becomes very simple. We just add events to the action model that might have
some preconditions, depending on the requirements that we will set to committing
to actions, and that have a postcondition that changes the truth value of the extra
atomic sentences.
In our framework, agents can commit to multiple subsets of actions. If Alice first
commits to paying her taxes, and then to have dinner with Bob, she basically
commits to do both. Hence, we define

Commitsi ∶=⋂{Γ;S, s ⊧ commiti(Γ)}

67

Hence, Commitsi is the set of actions that is compatible with all the commit-
ments agent i made at state s. Note that when i did not make a commitment
yet, Commitsi = Σ. This is an intuitive consequence, because if an agent has not
committed to doing a specific action, she can still do anything she wants.

We can now talk about the commitments of agents and groups of agents, but this
is only interesting if agents can actually commit to something. For this we add
committing actions to the action model. As we assume throughout this thesis that
agents have the same goal and are willing to cooperate to reach this, we make these
committing actions analogous to public announcements: after committing to a set
of actions, this becomes common knowledge within the entire set of agents. We
therefore denote the action of agent i committing to Γ as !Γi. Just as for public
announcement, we assume the conventions that all actions of the form !Γi, such
that Γ is a subset of the given Σ and i an agent, are well formed actions, although
it is not necessarily the case that all of them are available.

All committing actions have an analogous postcondition, which ensures that the
valuation function gets updated appropriately:

post(!Γi)(commiti(Γ)) = ⊺

Note that we do not change the truth value of previous commitments. Together
with the fact that Commitsi is the intersection of all commitments that are valid
at state s, defining the postcondition in this way ensures that an agent can only
narrow down his commitments, as the intersection will at most get smaller. This is
a choice we made in this framework, as we wanted to model agents that are cooper-
ating and trying to reach a salient action to reach their goal. In other frameworks
it might be that one wants to make a different decision about this.

How committing actions work is shown in the following example.

Example 5.3. Alice and Bob want to spend the evening together, but they don’t
know where to go. Both of them can either go to the boxing or the dancing, but
their goal is to go together. They have just raised the issue of where to go, so no
one has committed to anything. The model is shown in Figure 22.
The action model is shown in Figure 23. Note that Alice cannot decide for Bob
where he is going to, and vice versa. Since Commita = Commitb = Σ in the initial
model, neither of them knows what the other one will do (they might not even
know it of themselves!).
It is clear that without any communication, Alice and Bob can only guess at what
the other person will do, and hence have only a limited chance at reaching their
goal. However, if Alice commits to either one of her possibilities, Bob knows what
she will do. So we add the action of Alice committing to going dancing. It is
shown in Figure 24, and it is a single event, like public announcement, meaning
that after it happened, it is common knowledge that Alice committed.

68

Commita = Σ,Commitb = Σ

Figure 22: The initial model

BaDb

post = Ba ∧Db

DaDb

post =Da ∧Db

BaBb

post = Ba ∧Bb

DaBb

post =Da ∧Bb

≈a

≈b

≈b

≈a

Figure 23: The action model

!Daa

pre∶⊺,
post=commita(Da)

Figure 24: The action of Alice committing to going dancing

As Alice hadn’t committed to anything before, and thus it was the case that
Commita = Σ, the result of committing in the initial state is as follows:

commita(Da), commitb(Σ)

Figure 25: The static model after committing

Hence, after Alice publicly committed to go dancing, Bob knows she did so, and
that, if he wants to spend time with her, he should go dancing as well.

In this example, we argued that as Alice publicly committed to dancing, Bob knows
that, in order to spend time with Alice, he should go dancing. However, there are
currently no mechanisms in the framework that assure that Alice will actually
stick to her commitments. There are multiple ways of ensuring this, some more
strict than others. As this thesis deals with agents that want to cooperate, and
are therefore not interested in lying to one another, we decided on the following
construction:

Definition 5.4 (Augmented action model). Let Σ be the given action model. We
then define the augmented action model as Σ+ = ⟨Σ+,∼i,≈i, pre, post⟩ where

� Σ+ = Σ ∪ {!Γi; Γ ⊆ Σ s.t. Γ is closed under ≈i, i ∈ A}

69

� ∼Σ+

i =∼Σ
i ∪{(!Γj, !Γj); j ∈ A ∪ {0},Γ ⊆ Σ closed under ≈j}

� ≈Σ+

i =≈Σ
i ∪{(!Γi, !Γi); Γ ⊆ Σ closed under ≈i} ∪ {(!Γj, !Γ′

j); j ∈ A, j ≠ i,Γ,Γ
′ ⊆

Σ closed under ≈j}

� preΣ+(σ) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

preΣ(σ) ∧ ⋀
Γ⊆Σ
σ∉Γ

i∈A∪{0}

¬commiti(Γ) iff σ ∈ Σ

⊺ otherwise

� postΣ+(σ) = postΣ(σ)
postΣ+(!Γi)(commiti(Γ)) = ⊺
postΣ+(!Γi)(q) = q for every atomic sentence q ≠ commiti(Γ)

Here, ∼Σ
i and ≈Σ

i , preΣ(σ) and postΣ(σ) are the epistemic relations, control rela-
tions, preconditions and postconditions in the original action model Σ.

Intuitively, we add possible committing actions to the action state space, and
we put an extra constraint on the previously existing actions in the form of an
extended precondition. This extra constraint says that none of the agents can
currently be committed to a set of actions that excludes σ. If this were the case,
this agent would be violating at least one of his commitments, which we do not
wish to allow in our framework.

In the augmented action model, we require that the committing actions available
to a certain agent are closed under his control relation. This means that an agent
can only commit to an action, or a set of actions, he can decide to do. Consider
Example 5.3, where Alice commits to going dancing. She cannot reasonably com-
mit to both of them going dancing, as she cannot control what Bob chooses to
do. Hence, the action of her committing to exactly the event where they both
go dancing is not available to her. Instead, we require that she, and every other
agent, commits to an action or a set of actions she can in fact choose to perform.

Furthermore, we leave the existing relations from the old action model intact,
and add indistinguishability relations such that all committing actions are always
public and control relations such that (a) every agent has full control over her
own committing actions, and (b) every agent can force another agent to commit
to something, without being able to force that agent to commit to a specific set of
events.

Example 5.5 (Alice and Bob going dancing, continued). The augmented action
model in the example of Alice and Bob going dancing or to the boxing is depicted
in Figure 26. As one can see, the old actions now have a precondition, and there
are committing actions for both Alice and Bob for either of their possibilities.

70

BaDb

pre=¬commita(Da)∧¬commitb(Bb)
post=Ba∧Db

DaDb

pre=¬commita(Ba)∧¬commitb(Bb)
post=Da∧Db

BaBb

pre=¬commita(Da)∧¬commitb(Db)
post=Ba∧Bb

DaBb

pre=¬commita(Ba)∧¬commitb(Db)
post=Da∧Bb

!Baa

post = commita(Ba)

!Daa

post = commita(Da)

!Bbb

post = commitb(Bb)

!Dbb

post = commitb(Db)

≈a

≈b

≈b

≈a

≈b

≈a

Figure 26: The action model

We stipulated that Alice committed to go dancing. Hence, the event !Daa took
place, and the resulting model is depicted in Figure 25. Hence, everyone knows
that Alice is committed to going dancing, and hence that the events where she
goes to see the boxing cannot happen anymore, ensuring that Bob can make an
informed decision about what to do.

The attentive reader might have noticed that it is possible for an agent to commit in
such a way that all events are excluded: if Alice had previously committed to seeing
the boxing with Charlie, her committing to dancing ensured that Commita = ∅,
as the action where she goes to the boxing does not overlap with the action of her
going dancing. In case this happens, and an agent commits in such a way that there
is no action left possible, as all states will falsify the second part of the precondition
of every action, we assume the responsible agent can, from then on, no longer
perform actions. In some way, she will then have lost her right to participate in
the planning. Her commitments are no longer part of the preconditions of events
and she will not be able to make choices. We believe that this is a reasonable
assumption, as in properly stated situations an agent will never be forced to commit
in such a way, and as they all want to cooperate to reach a common goal, they
will not deliberately exclude themselves from participating.

5.1.3 Semantics of DECL-CC

Definition 5.6 (Satisfaction). Satisfaction of the new atomic sentences and the
added committing actions on augmented static models is as follows:

� M,s ⊧ [σ]ϕ iff M ⊗Σ+, (s, σ) ⊧ ϕ

71

� M,s ⊧ commiti(Γ) if and only if s ∈ V (commiti(Γ))

� M,s ⊧ [!Γi]ϕ iff M ⊗Σ+, (s, !Γi) ⊧ ϕ

Where i ∈ A and Γ ⊆ Σ.

5.2 Group Epistemic PDL with Commitments

As also DECL-CC uses the common knowledge operator, we have to augment the
group epistemic PDL we introduced in the previous chapter with commitments in
order to obtain a completeness result. In this section we therefore present Group
Epistemic PDL with commitments, GE-PDLc. It has the same base as GE-PDL,
but as DECL-CC it has an additional type of atomic sentence and additional type
actions.

Definition 5.7 (Language LGE−PDLc). The language LGE−PDLc is formed as fol-
lows:

ϕ ∶∶= p ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣Kπϕ ∣ [J]ϕ ∣ [σ]ϕ ∣ commiti(Γ) ∣ [!Γi]ϕ

π ∶∶= I ∣ π + π′ ∣ π;π′ ∣ π∗ ∣?ϕ

where I ⊆ A, i ∈ A∪ {0} and J ⊆ A∪ {0} are coalitions, [σ] is an event in Σ, and ρ
is of the form Γ for some Γ ⊆ Σ.

Definition 5.8 (Satisfaction). The satisfaction of these formulas on static epis-
temic models, denoted M,s ⊧ ϕ is defined as follows:

� M,s ⊧ p iff s ∈ V (p)

� M,s ⊧ ¬ϕ iff M,s ⊭ ϕ

� M,s ⊧ ϕ ∨ ψ iff M,s ⊧ ϕ or M,s ⊧ ψ

� M,s ⊧Kπϕ iff ∀s′ ∼π s ∶M,s′ ⊧ ϕ

� M,s ⊧ [I]ϕ iff ∀s′ ≈I s ∶M,s′ ⊧ ϕ

� M,s ⊧ [σ]ϕ iff (s, σ) ∈M ⊗Σ+ implies M ⊗Σ+, (s, σ) ⊧ ϕ

� M,s ⊧ commiti(Γ) if and only if s ∈ V (commiti(Γ))

� M,s ⊧ [!Γ]ϕ iff M ⊗Σ+, (s, !Γ) ⊧ ϕ

Where Γ ⊆ Σ and ∼π is defined inductively as follows:

� ∼I ∶= ⋂
i∈I

∼i

� ∼π1;π2 ∶=∼π1 ;∼π2

� ∼π1+π2 ∶=∼π1 ∪ ∼π2

� ∼π∗ ∶= (∼π)∗

� s ∼?θ t iff s = t and M,s ⊧ θ

72

5.2.1 Proof System of GE-PDLc

The axioms for GE-PDLc are the same as for GE-PDL in the previous chapter, but
now they apply to the new atomic sentences and the committing events as well.
Also, all preconditions, postconditions and indistinguishability relations come from
the augmented action model Σ+. For the reader’s convenience, all axioms are listed
again below.

Inference rules

� All axioms and rules of classical propositional logic

� Necessitation rules for all modalities

Axioms for DECL

� S5 for [I] for all I ⊆ A ∪ {0}

� S5 for KI for all basic programs I

� Knowledge of (Individual) Control
[I]ϕ→KIϕ for I ⊆ A

� Monotonicity of control
[I]ϕ→ [J]ϕ for I ⊆ J ⊆ A ∪ {0}

� Monotonicity of distributed knowledge
KIϕ→KJϕ for I ⊆ J ⊆ A

� Determinism of grand coalition
ϕ→ [A ∪ {0}]ϕ

For ϕ ∈ LGE−PDLc

Axioms for programs

� Kπ(ϕ→ ψ)→ (Kπϕ→Kπψ)

� Kπ1;π2ϕ↔Kπ1Kπ2ϕ

� Kπ1+π2ϕ↔Kπ1ϕ ∧Kπ2ϕ

� Kπ∗ϕ↔ ϕ ∧KπKπ∗ϕ

� Kπ∗(ϕ→Kπϕ)→ (ϕ→Kπ∗ϕ)

� K?θψ↔ (θ → ψ)

For ϕ ∈ LGE−PDLc

73

Reduction Axioms

Let N be the number of events in Σ, and suppose σ1, . . . , σN is an enumeration
of all events without repetitions, and let σ = σn be any of these events (for some
arbitrary n ≤ N). Then we have the following reduction axioms.

� [σ]p↔ (pre(σ)→ post(σ)(p))

� [σ]¬ϕ↔ (pre(σ)→ ¬[σ]ϕ)

� [σ](ϕ ∧ ψ)↔ [σ]ϕ ∧ [σ]ψ

� [σ]Kπϕ↔ (
N−1

⋀
m=0

[Tnm(π)][σm]ϕ)

� [σ][I]ϕ↔ (pre(σ)→ ⋀σ≈Iσ′[I][σ
′]ϕ)

Where p is any atomic sentence in the language LGE−PDLc, σ ∈ Σ+, the precondi-
tions, postconditions, epistemic relations ∼i and control relations ≈i are taken from
the augmented model Σ+ and Tnm is a program transformer, which is defined as
follows:

Definition 5.9 (Tnm program transformers).

Tnm(I) = {
?pre(σn); I if σn ∼I σm
?� otherwise

Tnm(π1;π2) =
N−1

⋃
k=0

(Tnk(π1);Tkm(π2))

Tnm(π1 + π2) = Tnm(π1) ∪ Tnm(π2)

Tnm(?θ) = {
?pre(σn) ∧ [σn]θ if n =m
?� otherwise

Tnm(π∗) =KnmN(π)

Where KnmN(π) is given by Definition 5.10:

Definition 5.10. Knmk(π) is defined by recursion on k as follows:

Knm0(π) =

⎧⎪⎪
⎨
⎪⎪⎩

?(p ∨ ¬p) ∪ Tnm(π) if n =m

Tnm otherwise

Knm(k+1)(π) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(Kkkk(π))∗ if n = k =m

(Kkkk(π))∗;Kkmk(π) if n = k ≠m

Knkk(π); (Kkkk(π))∗ if n ≠ k =m

Knmk(π) ∪ (Knkk(π); (Kkkk(π))∗;Kkmk(π)) otherwise

74

5.2.2 Soundness, Completeness and Decidability of GE-PDLc

Since the proof system is the same as in the previous chapter, with merely an
extended language and different action models, the proof of the previous chapter
carries over without any additional work.
Clearly, for the soundness, completeness and decidability of the static language,
it is enough to ensure that the valuation of all types of models includes the new
atomic sentences. As these are just atomic sentences, without any special proper-
ties, all valuations are easily extended.
To see that the result carries over to the dynamic language as well, note that
GE-PDL does not have any constrictions on the type of actions within the action
model. This means that the proof that GE-PDL can be reduced to GE-PDL−

carries over immediately to GE-PDLc and its static component.
Hence, GE-PDLc is sound, complete and decidable with respect to augmented
static models.

5.3 Responsibility

Before introducing commitments, we could express that agents had a way to de-
liberately force something. We could say that they commonly knew that if all of
them chose to do their part of some action, this action would have a certain result.
What we could not talk about was whether they were planning to perform this
action or not. For example, suppose that Alice and Bob commonly know that Al-
ice buying food and Bob cooking is the only way for them to have dinner together
today. This knowledge does not, in any way, imply that they are planning to have
dinner together. Similarly, even though the European leaders might commonly
know that removing Greece from the Euro zone will lead to economic distress,
this does not mean that they are planning to perform this action. To say exactly
that, we need commitments. Together with deliberate forcing, commitments form
responsibility.

respI(ϕ) ∶∶= ⋁
σ∈Σ

CI(⋀
i∈I
commiti(σi) ∧ [σI]ϕ ∧ ⋁

σ′∉σI
[σ′I]¬ϕ)

This formula says that a coalition I is responsible for ϕ if it is common knowl-
edge between them that each of them is committed to do their part of an action
of which they know that it results in ϕ, whereas they could also have chosen a
different joint action that would have resulted in ¬ϕ.

We believe that this is a reasonable way to formalize responsibility, as it not only
involves agents knowing the result of their joint action, but in addition, while
there is another joint action that would have had a different result, the coalition is
committed to doing the former. They are knowingly and deliberately committed
to forcing ϕ.

75

5.4 Committing strategically

With DECL-CC we cannot only express common knowledge, which greatly im-
proves the possibilities for planning, we can let agents commit to actions. By
doing so, we limit the events that are possible in a certain state, as all events now
have a precondition that they cannot be excluded by the current commitments of
any agent. This allows for coordination between agents, since they can communi-
cate what they are planning to do, which means that a coalition has more means
to ensure they are all on the same track. Say, for example, that in the big action
model there are two joint actions for which it is common knowledge that they will
achieve the goal. Then if one of the agents commits in such a way that one of the
joint actions is no longer an option, the other agents will know to choose the other
one. This advantage is most interesting when looking at multi-step planning, as
the agents can then include committing in the planning, but this is not a necessity,
because the commitments can already be encoded in the initial model.

The planning problems and solutions for DECL-CC can be formulated in exactly
the same way as those for DECL-C, but the added value of being able to commit
to actions is that the agents now have more means to arrive at a situation where
they can reach a solution. Thus, rather than redefining what makes a sequence of
actions a solution, it is interesting to think about strategic commitments to make
in order to make the planning run as smoothly as possible. A number of examples
of ways in which agents can commit in a strategic way is listed below.

1. Commit to an action only if it is common knowledge that this specific action
reaches the goal.
This seems like a good thing to do if there are multiple joint actions for which
it is common knowledge that they achieve the goal, since it will immediately
make clear which one the agent wants to do. This will ensure that the
agents will not perform actions that do not match up to reach the goal, but
cooperate and perform a joint action that reaches the goal, just like Bob will
know to go dancing after Alice announces that she is.
If there is no joint action for which it is common knowledge that it will
achieve the goal, this of course only prohibits the agents to come to some
sort of understanding in another way. Hence, using this constraint as a
conditional strategy is a reasonable idea: if there are multiple actions for
which it is common knowledge that they achieve the goal, commit to one
of them. Otherwise a more conservative committing strategy might be in
order.

2. Exclude only one action at a time.
This suggestion for strategic committing means that every agent is fairly
conservative in committing, and always commits to a set of actions in such
a way that they only not commit to one of them. This would prevent that

76

one agent reduces the options so much that perhaps a solution is excluded
as well. Of course, after one agent committed, another agent can commit,
so that they iteratively narrow down their options more and more. This
might lead to a situation where the possible joint actions are limited so much
that eventually there is one joint action left for which it is either common
knowledge that it will lead to the goal, or for which it is common knowledge
that it might lead to the goal.

These ways of committing in a strategic way could be listed in ’rules’ that agents
should adhere to, thereby providing a more limited search space, making any al-
gorithm based on it faster and more efficient.

In conclusion, allowing agents to commit to actions makes it easier for them to
reach a point where it is common knowledge between all agents what the best
course of action for them is. It gives agents an opportunity to exclude one possi-
bility, in order to make another the salient solution. This greatly strengthens the
notion of planning problem and solution as presented in the previous chapter, as
it increases the probability of the agents finding a solution that works for all them,
without running the risk of one half of the agents doing one action, and the other
half doing another, or no agent knowing anything.

77

6 Conclusion

In this thesis we introduced a way to incorporate coalitions of agents in existing
frameworks for epistemic planning. We introduced new Kripke models that, be-
sides the usual indistinguishability relation, consisted of a control relation that
shows what agents are able to control by choosing particular actions to perform.

We defined three versions of a sound, complete and decidable logic for these new
models, and showed how these logics can be used to formalize the creation of plans
for coalitions. They formalize what is needed for a coalition to be able to reach
their goal, and what is needed for them to actually decide on a plan, rather than all
agents doing what is best for them individually. While doing this we maintained
the property of DEL that it works with specific actions, and the property of stit
that it can deal with coalition power, making it suitable to formalize planning in
a multi-agent, cooperative system.

Of course, the work done in this thesis does not provide a full, all-encompassing
solution to every problem encountered in epistemic planning. We do hope, how-
ever, that it will spark new research and that it will inspire others to consider
cooperative, multi-agent automated planning in this light, as we believe that this
framework captures some of the most important aspects of that planning.

Unfortunately, time is limited, and we did not have a chance to fully develop every
interesting idea we had while writing this thesis. Hence, we will give some ideas
about ways in which the framework can be enhanced, or how one might be able
to take it into a different direction.

First of all, the framework as it stands now is, in principle, able to deal with k-step
planning: given a natural number k, we can look k steps ahead and check whether
any sequence of k or less actions is a solution. What it cannot do yet is to check
whether there is any sequence of actions that is a solution, independent of a natu-
ral number k. It would be interesting to look into defining a new modality ◇∗

Iϕg,
which would exactly say that there is some sequence of joint actions for I such
that after this sequence of actions, ϕg holds, and incorporate this in the planning.
This would require that we look a bit more into the construction of the search
tree, as we cannot check an infinite number of sequences. One can find ideas on
how to restrict this tree in [3].

Another thing that would be interesting to look at in the future is plausibility
relations. In this thesis we only used purely epistemic relations - either an agent
knows something or they don’t. It would in fact be very interesting to see how the
framework can be extended when we add beliefs to the mix. Knowledge is very
straightforward: if an agent knows a certain joint action will reach the goal, he

78

can announce it, making it common knowledge that it will. If an agent believes a
joint action will reach the goal, the process of convincing the other agents becomes
a lot more involved. Agents might have different believes, making it more difficult
for them to agree to a certain joint action, because neither of them knows that the
action reaches the goal. Hence adding belief probably implies that we also need a
way to formalize the process leading up to the agents making a decision on what
plan to perform.

79

References

[1] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time tem-
poral logic. Journal of the ACM, 2002.

[2] Mikkel Birkegaard Andersen. Towards theory-of-mind agents using automated plan-
ning and dynamic epistemic logic, 2014.

[3] Mikkel Birkegaard Andersen, Thomas Bolander, and Martin Holm Jensen. Con-
ditional epistemic planning. In Lecture Notes in Artificial Intelligence 7519, pages
94–106, 2012.

[4] Philippe Balbiani, Andreas Herzig, and Nicolas Troquard. Alternative axiomatics
and complexity for deliberative stit theories. Journal of Philosophical Logic, 54:387–
406, 2008.

[5] Alexandru Baltag, Lawrence S. Moss, and Slawomir Solecki. The logic of public
announcements, common knowledge and private suspicions. In TARK proceedings,
pages 43–56, 1998.

[6] Alexandru Baltag, Hans van Ditmarsch, and Lawrence Moss. Epistemic logic and
information update. In Handbook of the Philosophy of Information. Elsevier Science
Publishers, 2008.

[7] Nuel Belnap and Michael Perloff. Seeing to it that: a canonical form for agentives.
Theoria, 54:175–199, 1988.

[8] Nuel Belnap, Michael Perloff, and Ming Xu. Facing the future: Agents and choice
in our indeterminist world. Oxford University Press, 2001.

[9] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic. Cambridge
University Press, 2001.

[10] Thomas Bolander and Mikkel Birkegaard Andersen. Epistemic planning for single-
and multi-agent systems. Journal of Applied Non-Classical Logics, 21(1):9–34, 2011.

[11] Jan Broersen, Andreas Herzig, and Nicolas Troquard. From coalition logic to stit.
Electronic Notes in Theoretical Computer Science, 157, 2006.

[12] Roberto Ciuni and John Horty. Stit logics, games, knowledge and freedom. In Johan
van Benthem on Logic and Information Dynamics, Outstanding Contributions to
Logic 5. 2014.

[13] Roberto Ciuni and Alberto Zanardo. Completeness of a branching-time logic with
possible choices. Studia Logica, 96:393–420, 2010.

[14] Edmund Clark and Ernest Emerson. Using branching-time temporal logic to syn-
thesize synchronisation skeletons. Science of Computer Programming, 2:241–266,
1982.

80

[15] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. Reasoning
about Knowledge. The MIT Press, 1995.

[16] Ronald Fagin, Joseph Y. Halpern, and Moshe Y. Vardi. What can machines know?
on the properties of knowledge in distributed systems. Journal of the ACM, 39,
1992.

[17] Jelle Gerbrandy. Bisimulations on planet kripke, 1999A.

[18] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning: theory and
practice. Morgan Kaufmann, 2004.

[19] Andreas Herzig and Francois Schwarzentruber. Properties of logics of individual
and group agency. In Advances in Modal Logic, volume 7, pages 133–149, 2008.

[20] John F. Horty. Agency and Deontic Logic. Oxford University Press, 2001.

[21] John F. Horty and Nuel Belnap. The deliberative stit: A study of action, omission,
ability and obligation. Journal of Philosophical Logic, 24:583–644, 1995.

[22] Wojciech Jamroga and Wiebe van der Hoek. Agents that know how to play. Fun-
damenta Informaticae, 63:185–219, 2004.

[23] Barteld Kooi and Allard Tamminga. Moral conflicts between groups of agents.
Journal of Philosophical Logic, 37:1–21, 2007.

[24] Marc Pauly. A modal logic for coalitional power in games. Journal of Logic and
Computation, 12:149–166, 2002.

[25] Arthur Prior. Past, present and future. Clarendon University Press, 1967.

[26] Johan van Benthem. Logical Dynamics of Information. Cambridge University Press,
2010.

[27] Johan van Benthem, Jelle Gerbrandy, Tomohiro Hoshi, and Eric Pacuit. Merging
frameworks for interaction. Journal of Philosophical Logic, 38, 2009.

[28] Johan van Benthem and Stefan Minica. Toward a dynamic logic of questions. The
journal of Philosophical Logic, 2012.

[29] Johan van Benthem and Eric Pacuit. Connecting logics of choice and change. In
Nuel Belnap on Indeterminism and Free Action. Springer, 2014.

[30] Johan van Benthem, Jan van Eijck, and Barteld Kooi. Logics of communication
and change. Information and Computation, 204, 2006.

[31] Wiebe van der Hoek and Michael Wooldridge. Tractable multiagent planning for
epistemic goals. In Proceedings of AAMAS, 2002.

81

	Introduction
	Preliminaries
	Dynamic Epistemic Logic
	Static models
	Action Models
	Product Update

	Seeing to it that
	Planning
	Epistemic Planning

	Power of Coalitions
	Dynamic Epistemic Coalition Logic
	Syntax of DECL
	Models and Product Update
	Semantics and Examples
	Proof System of DECL

	Soundness, Completeness and Decidability of DECL
	Preliminaries
	Plan of the Proof
	The Proof

	Planning with DECL

	Common Knowledge in Epistemic Planning
	Dynamic Epistemic Coalition Logic with Common Knowledge
	Syntax and Semantics of DECL-C

	Group Epistemic PDL
	Syntax and Semantics of GE-PDL
	Proof System of GE-PDL

	Soundness, Completeness and Decidability of GE-PDL
	Preliminaries
	Plan of the Proof
	The Proof

	Planning with DECL-C

	Committing to actions
	DECL with Common Knowledge and Commitments
	Syntax and Semantics of DECL-CC
	Committing Actions
	Semantics of DECL-CC

	Group Epistemic PDL with Commitments
	Proof System of GE-PDLc
	Soundness, Completeness and Decidability of GE-PDLc

	Responsibility
	Committing strategically

	Conclusion

