
Investigations into Linear Logic with Fixed-Point
Operators

MSc Thesis (Afstudeerscriptie)
written by

Francesco Gavazzo

(born July 4th, 1989 in Vicenza, Italy)

under the supervision of Dr Giuseppe Greco and Prof Dr Dick de

Jongh, and submitted to the Board of Examiners in partial fulfillment of
the requirements for the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:

September 30, 2015 Prof Dr Johan van Benthem
Dr Nick Bezhanishvili
Dr Giuseppe Greco
Prof Dr Dick de Jongh
Dr Floris Roelofsen (chair)

2

Abstract

Linear logic [56] is a substructural logic [86, 87] that refines both classical and
intuitionistic logic. In fact, linear logic is characterized by several dualities (which
derive from the presence of a de Morgan negation), but at the same time has a
strong constructive flavor. From a proof-theoretical perspective, classical (resp.
intuitionistic) linear logic is obtained from classical (risp. intuitionistic) sequent
calculus [55, 106] by dropping the structural rules of weakening and contraction
[55, 106]. This makes the use of hypothesis in a proof linear, in the sense that each
hypothesis must be used exactly once. Linear logic has two modalities, ! and ?,
called exponential modalities, that allow to restore weakening and contraction in
a controlled form. Having these modalities, both intuitionistic and classical logic
can be encoded into linear logic.

Despite being interested per se, linear logic has several applications. In fact,
linearity of hypothesis allows to look at formulas as resources or pieces of informa-
tion, that cannot be neither freely duplicated nor deleted. Moreover, the absence
of weakening and contraction leads to a finer distinction between classical (risp.
intuitionistic) connectives, thus obtaining a new stock of connectives which capture
in a natural way several operations between computational processes [7, 79].

Categorical Quantum Mechanics [6, 39] studies quantum processes as special
computational processes. The underlying mathematical framework is given by
(enrichments of) monoidal categories [72]. One of the main feature of monoidal
categories is that the notion of categorical product [10, 11, 16, 72] is replaced with
the weaker notion of tensor product. Tensor products allow to describe a rudimen-
tary form of parallel composition and thus make monoidal categories suitable for
an abstract description of physical and computational processes. It is well known
[8, 15, 30, 77] that the underlying logic of monoidal categories is the multiplicative
tensorial fragment of intuitionistic linear logic, so that the latter can be thought of
as the logic describing the abstract structure of quantum processes.

For these reasons, it is useful to have a framework that allows to study and de-
fine processes (both physical and computational) that are characterized by infinite
and iterative behaviors. This thesis deals with extensions of (specific enrichments
of) monoidal categories with initial algebras and final coalgebras for a class of func-
tors generalizing polynomial functors [68] over the monoidal signature, as well as
their underlying logics. The latter are nothing but (fragments of) linear logic ex-
tended with least and greatest fixed point operators. Categories are mostly defined
and studied equationally, according to Lambek’s methodology [71]. This allows to
easily design syntactical systems for such categories, which can then be made into

logical systems. We provide sequent calculi for all the logics investigated, and a
deep inference [63] system for the extension of classical linear logic with least and
greatest fixed point operators. We define exponential, relevant and affine modali-
ties [86, 87, 109] as least and greatest fixed point of specific functors. This leads
to a finer analysis of such modalities and their proof-theoretical properties, as well
as their relationship.

Finally, some possible applications of the logics investigated are sketched, in
particular in the direction of modal (especially epistemic) logics over a linear base.

2

Contents

Introduction 3

Contributions and Summary of the Work 5
Informal Introduction to the Subject 8

Categorical Quantum Mechanics and Linear Logic 9
Why (Monoidal) Categories 11
Linear Logic . 15

1 Preliminaries 20

1.1 Categories, Algebras and Coalgebras 22
1.2 Cartesian Categories . 28
1.3 Monoidal Categories . 36

2 Linear Logic and Fixed Points 46

2.1 SMCC with Fixed Points . 47
2.2 Examples . 51
2.3 Logic . 55

3 Sequent Calculus and Weaker Modalities 76

3.1 Sequent Calculus . 78
3.2 Structural Modalities and Decompositions 89

4 Classical Linear Logic 104

4.1 Classical Linear Logic . 104
4.2 A Deep Inference Calculus . 112

Applications, Further Works and Conclusions 122

Towards Epistemic Linear Logic . 123
Further Works . 128

1

Conclusions . 130

References 132

2

Introduction

The aim of this thesis is to investigate extensions of (propositional) linear
logic with fixed point operators, moving from basics reflections concerning
its relationship with Category Theory [10, 11, 16, 72, 77]. The subject is
vast and can, at least in principle, be approached from different perspec-
tives (proof theory, type theory, category theory, game semantics and many
others). The approach followed in this thesis is halfway between category
theory and proof theory, and follows Lambek’s methodology of categorical
proof theory [71]. Nevertheless, the motivation that led the author to inves-
tigate this subject comes from Quantum Information Theory [83], and more
exactly from the interplay between logic and the field of Categorical Quan-
tum Mechanics [6, 39]. Categorical quantum mechanics employs monoidal
categories [72] to describe the structure and the dynamics of quantum in-
formation, trough the concepts of computational and physical processes (see
next section for informal details). Following the so-called Curry-Howard-

3

Lambek correspondence1 we recognize linear logic2 as the logic describing the
abstract structure of quantum information. Adding structure to quantum in-
formation leads to enrichments of the monoidal framework, with consequent
extensions of linear logic. In this thesis we investigate extensions of the basic
categorical framework used in categorical quantum mechanics in order to be
able to deal with processes (computational or physical) with controlled forms
of infinite and iterative behavior, and their corresponding logics. Category
theory provides a rich formal apparatus to study iterative and infinite com-
putational phenomena, via the notions of algebra and coalgebra [68, 88]. As
a consequence, we extend monoidal categories (and their variants) with ini-
tial algebras and final coalgebras for a specific class of endofunctors (which
are de facto polynomial functors [68]). The resulting classes of categories are
simple yet powerful, and allow to describe interesting systems and processes.
Following Lambek’s methodology, categories are viewed as deductive graphs
(see next chapter) equipped with an equational theory for arrows. This ap-
proach provides syntax-oriented and equational definitions of categories, and
leads to easily design logical systems for such categories. We will then obtain
extensions of (fragments of) propositional linear logics with least and great-

1There is no agreement among researchers concerning the name of such correspondence.
The original name was Curry-Howard isomorphism, since the correspondence between the
natural deduction system for the implicational fragment of intuitionistic logic (defined
as in e.g. [53, 55, 56, 84, 106]) and the simply typed �-calculus (typed à la Church)
[35, 56, 65, 96, 106] was observed by Howard [66] and was first recognized by Curry [41] in
terms of Hilbert’s systems and combinatory logic. Indeed, for these systems it is possible
to define an isomorphism in a formal way. Moving to e.g. simply typed �-calculus with
Curry’s typing [65, 96] breaks the isomorphism (although it can be recovered taking suit-
able equivalence classes of proofs and �-terms). Nevertheless, there is a moral isomorphism
between the two systems. For this reason researchers began to use the more informal term
‘correspondence’ in place of ‘isomorphism’. Several people worked on such correspondence
(for example, Martin-Löf introduced his intuitionistic type theory [75]), and the corre-
spondence became de facto a paradigm: logical proofs carry out a computational content,
viceversa programs are nothing but encodings of logical proofs. This led to call the Curry-
Howard correspondence Propositions-as-Types, Proofs-as-Programs correspondence. In the
same years Lambek [71] showed that the correspondence between intuitionistic proofs and
�-terms could be extended to arrows in cartesian closed categories [10, 11, 30, 71, 84, 106],
so that people started to speak of the Curry-Howard-Lambek correspondence. Some re-
searchers use the terminology Propositions-as-Types-as-Objects, Proofs-as-Programs-as-
Arrows correspondence, but in general no agreement has been reached concerning such
terminology. The reader can consult [19, 34, 65] for an historical account of this subject.

2Multiplicative tensorial linear logic [77, 78, 105] (i.e. the ⌦-fragment of linear logic),
to be precise.

4

est fixed point operators. These logics are simple but extremely powerful. As
we will see in Chapter 3, using fixed point operators we can recover (full) ex-
ponential modalities as well as relevant and affine ones [67, 76, 78, 109]. The
analysis of exponential modalities as fixed points of specific functors reveals
new aspects of their nature, concerning e.g. non-canonicity and some con-
troversial aspects of their proof theory. Moreover, the algebraic-coalgebraic
framework allows to recover a simple decomposition theorem in the spirit of
[67] relating (full) exponential, affine and relevant modalities.

The analysis of these extensions of propositional linear logic raises several
questions and at the same time opens the doors to new applications. In the
last chapter some possible applications are sketched, in particular concerning
non-categorical semantics and modal (especially epistemic) extensions of such
logics.

Contributions and Summary of the Work

Contributions of this work are:

• The explicit design of a categorical framework, according to Lambek’s
methodology, of monoidal (and their extensions) categories extended
with specific classes of initial algebras and final coalgebras. Although
extensions of linear logic with fixed point operators seem to be folk-
lore in the type theory community (via the notion of recursive and
co-recursive linear types), the author was not able to find a formal
exposition of the subject. The paper [14] investigates a higher-order
linear logic (requiring typed variables, �-abstractions and quantifiers)
with fixed point operators. The approach is entirely syntactical and
no semantics for the logic is proposed. Moreover, such syntactical
and higher order approach hides several results concerning exponen-
tial modalities (which are in fact missing in that paper). Introducing
the logic moving from its categorical counterpart seems to be much
easier and more informative than other syntactical approaches and,
to the best of the author’s knowledge, entirely new. Moreover, such
‘categorical’ approach allows to deal with both intuitionistic and clas-
sical versions of linear logic, simply by changing the underlying base
category.

• A finer proof-theoretical analysis of exponential modalities. Combining

5

the proof-theoretical and categorical approach to exponential modal-
ities we recover exponential, relevant and affine modalities as fixed
points of specific functors. As a consequence, the extension of propo-
sitional linear logic (without exponentials) with fixed point operators
subsumes full (propositional) linear logic, relevant linear logic and affine
linear logic. This new categorical analysis of exponential modalities as
fixed points of specific functors allows to see some correspondences be-
tween solutions to equations induced by such functors, and formulas
satisfying specific sequent calculus rules. These correspondences shed
new light on the nature of some sequent calculus modal rules and give
semantics to possibly new exponential modalities. Finally, it is possible
to formulate a decomposition theorem in the spirit of [67] that recovers
functors associated with exponential modalities as sorts of compositions
of functors associated with relevant and affine modalities.

• A coherent exposition of proof systems both in sequent calculus and
deep inference style is given. These systems can be obtained in a
straightforward way from the categorical formulation of the logic via
the notion of deductive graph.

• In the last chapter a semantics for modal (especially epistemic) exten-
sion of linear logic (both with and without fixed point operators) is
sketched. Epistemic linear logic has recently received attention due to
its applicability to security problems [18, 42]. However, so far the treat-
ment of such logic has been completely syntactical (moreover, although
called ‘epistemic linear logic’ the modalities employed are essentially S4
modalities [28, 43], due to problems concerning well behaved sequent
calculi for S5 modal logics [82, 97]). We sketch a possible semantics
for such logic (and other modal extensions of propositional linear logic,
both with and without fixed point operators) based on the notion of
pretopology [89, 90]. Such semantics is introduced as a possible gener-
alization of Aumann’s structures (and that can be easily modified to
give semantics to distributive epistemic linear logics). Finally, an ex-
plicit formulation of a deep inference system for epistemic linear logic
is given.

The work is divided in four chapters starting from preliminaries about
category theory and their relationship with (linear) logic (proof theory, actu-
ally), proceeding to the design of categories and categorical proof systems for

6

dealing with fixed point operators, and ending with the study of syntactical
systems for the logic obtained. More precisely, the work is divided as follows:

Introduction The rest of the introduction introduces monoidal categories
and linear logic on an intuitive and informal level, focusing on moti-
vations and applications. A brief section on categorical quantum me-
chanics gives a concrete example motivating the study of linear logic
and monoidal categories.

Chapter 1. Chapter 1 gives the reader all the necessary background to read
this thesis. Basic categorical notions are covered, recalling in particular
the definitions of algebra and coalgebra. The approach followed is based
on Lambek’s notion of deductive graphs (see Chapter 1), and allows to
give equational definitions of several categorical notions. Cartesian
and monoidal categories are introduced, as well as their corresponding
logics.

Chapter 2. In Chapter 2 we introduce ⌫-symmetric monoidal cartesian cat-
egories (⌫SMCCs for shorts). These are symmetric monoidal cartesian
categories which have initial algebras and final coalgebras for the so-
called polynomial functors. The latter are de facto functors built over
the monoidal-cartesian signature. The underlying logic (called ⌫LL)
is a fragment of propositional liner logic (the (⌦, &)-fragment) en-
riched with least and greatest fixed point operators. Proof systems
in Lambek’s style are defined, and the equational theory associated
with ⌫SMCCs provides a notion of equality for proofs.

Chapter 3. In Chapter 3 a sequent calculus for ⌫LL is defined. This system
is equivalent to Lambek’s style calculi given in Chapter 2, so that it is
sound and complete with respect to the class of of ⌫SMCCs. The logic
⌫LL is enough powerful to encode the exponential modality !. In fact,
!A can be recovered as

⌫X.1 & A& (X ⌦X).

Other weaker structural modalites can be recovered, namely relevant
and affine modalities (see Chapter 3 for references and definitions). As
a consequence, ⌫LL constitutes a powerful framework subsuming full
linear, relevant linear and affine linear logic. These logics can then be
studied and compared in a unique setting.

7

Finally, a categorical-proof theoretical analysis of exponential modali-
ties is given. A correspondence between specific proof-theoretical prop-
erties of the exponential modality ! and properties of its associated
defining functors is proved. These results generalize to weaker modali-
ties and shed light on some specific unsatisfactory aspects of the ‘stan-
dard’ exponential !. The relationship between exponential, relevant
and affine modalities is made formal via a decomposition theorem.

Chapter 4. Chapter 4 extends the calculus designed in Chapter 3 to full
classical linear logic. This allows to exploit the duality between least
and greatest fixed point operators. A sequent calculus (both one- and
two-sided) for classical linear logic with fixed point operators is given.
This easily leads to the design of a deep inference calculus.

Applications, Further Works and Conclusions. This chapter sketches
some possible applications of the framework defined in previous chap-
ters. These focus on the task of finding natural non-algebraic/categorical
semantics for the logic investigated. These semantics should then be
used to study epistemic and doxastic extension of linear logic, both
with and without fixed point operators. In particular, a semantics
based on the notion of pretopology (see the chapter for definitions and
references) is proposed, arguing how pretopologies can be viewed as a
possible generalization of Aumann’s structures.
Finally, a list of open problems and enrichments that the author is
aimed to investigate in future works is given.

Informal Introduction to the Subject

In this section we briefly (and informally) introduce monoidal categories and
linear logic. First we recall some basic aspects concerning categorical quan-
tum mechanics, especially regarding its methodology and goals. This justifies
the choice of monoidal categories as basic mathematical framework, and of
linear logic as basic logical system. We focus on informal ideas and intuitions,
rather than on formal definitions and results (for which references are given).

8

Categorical Quantum Mechanics and Linear Logic

Categorical Quantum Mechanics (CQM) [6, 39] is a subfield of Quantum
Information Theory and Quantum Computing (see [83] for a comprehensive
introduction) that studies the abstract structure of quantum information.
Primitive objects of CQM are physical systems and their transformations,
physical processes. These are computational in nature, since they manipulate
(quantum) information. A central notion is the one of interaction between
systems, which produces non-local correlations (see [39]). Such interaction
is described via compounds systems, and in order to formalize this latter
notion, CQM takes definitions and ideas from computer science, specifically
from concurrency theory [7, 79].

The standard formalism used in quantum mechanics is the one of Hilbert
spaces (see [83]), although already in [27] Birkhoff and von Neumann intro-
duced quantum logic as a more general foundation for quantum physics. Such
formalism (and its variants) was not able to replace Hilbert spaces, since it
does not take into account phenomena like quantum entanglement, which, as
quantum information theory shows, can be explained as a form of interaction
in compound systems [39].

The primary importance of compound systems and their interaction sug-
gests to look at physical systems and processes as special computational
systems and processes. Compound systems can then be described by means
of the notion of parallel composition [7, 79, 91]. As already mentioned,
computational phenomena are deeply connected to logical (and categorical)
phenomena through the Curry-Howard correspondence. It is then natural to
look at the underlying logic of physical systems and processes. Such logic
turns out to be linear logic [56] (see next section for an informal introduc-
tion). A central feature of linear logic is the absence of the structural rules
of weakening and contraction. The absence of these structural rules corre-
sponds to the so-called no-deleting and no-cloning theorems [83], so that
linear logic is a better candidate logic to describe the structure of quantum
information than Birkhoof’s and von Neumann’s quantum logic.

From a mathematical perspective, linear logic can roughly be said to be
the underlying logic of monoidal categories3 [10, 72], so that the latter can

3Linear logic has a richer structure than the one given by monoidal categories (which,
technically, correspond to the tensorial fragment of linear logic). Nevertheless, the ten-
sorial fragment of linear logic (which gives a logical counterpart to the notion of parallel
composition) is fundamental to linear logic, much in the same way as the implicational

9

be recognized as the basic framework to describe physical/computational
systems and processes.

The above description can be ‘reversed’, in the following sense. As the
next sections show, monoidal categories can be recognized to be a simple and
powerful framework capable of describing physical systems and processes, as
well as their interactions, according to the following desiderata:

1. The framework has to deal with the abstract notions of system and
process in a resource-sensitive way. This means that we can think of
systems as resources, and of processes as actions (or production rules)
consuming resources to produce new ones. Thinking of systems as
resources implies that systems cannot be neither duplicated nor deleted
(see next section for intuitive examples). This is in line with the no-
deleting and no-cloning theorems.

2. The framework has to provide an implicit notion of time, defined by
means of sequential composition of processes.

3. The framework has to provide a notion of interaction, obtained via
the possibility of forming compound systems/resources. We want to
be able to run processes on compound systems as well as on specific
components of compound systems. That is, we want a notion of parallel
composition for processes (for a description of the informal desiderata
that a good notion of parallel composition should satisfy, the reader
can consult [7, 79, 91]).

As argued in next section, monoidal categories are a simple and elegant
mathematical framework satisfying all these desiderata. Since the underlying
logic of monoidal categories is essentially linear logic, it is then possible to
recognize linear logic as the logic describing the structure of physical systems
and processes.

The reader can consult [6, 39] for an overview of CQM, [37, 38] for an
introduction to the categorical apparatus used in such discipline, and [36, 44]
for a more logical-type theoretical overview of the subject. An excellent
introduction to the interplay between physics, logic, topology and computer
science is [15].

fragment of intuitionistic (propositional) logic is a fundamental component of the logic (in
fact, one usually refers to the connection between cartesian closed categories [10, 11, 16, 71]
and intuitionistic (propositional logic), although the latter carries out a richer categorical
structure). See below for details.

10

Why (Monoidal) Categories

Although usually regarded as a branch of abstract mathematics, (basic) cat-
egory theory [10, 11, 16, 72] has a natural and useful ‘operational’ reading,
providing a simple yet powerful formalism to deal with notions like systems,
resources, formulas . . . and their interaction (such as processes, measure-
ments, transformations, proofs . . .) on an abstract level. For example, let
A,B,C be either physical systems or resources and suppose that system A
evolves in system B by means of f , e.g. the measurement f makes A evolv-
ing into B, or the process f modifies the system from configuration A to
configuration B, or the action (or production rule) f consumes the resource
A to produce the resource B. In all these cases, we simply say that f is an
arrow from A to B, notation f : A ! B, or, pictorially

A
f // B

According to the system-processes analogy, we see that given another
process g : B ! C, a natural requirement is to be able to run f and g
sequentially. Such process exists, and is given by the arrow g � f . Similarly,
it is natural to require the existence of a process that does nothing, and leave
the system unchanged. This process is given by the identity arrow

idA : A ! A

Most importantly, we should have a notion of equality for processes. For
example, it is a legitimate requirement that running a process f : A ! B
(on A), after having run the ‘null’ process idA is essentially the same as just
running f . This is captured by the equation

f � idA = f

(similarly we should require idB � f = f). Another desiderata is that sequen-
tial composition is associative, i.e. that for f : A ! B, g : B ! C and
h : C ! D

h � (g � f) = (h � g) � f
holds. All these intuitive readings can be abstracted into the general notions
of objects and arrows. Requiring identity arrows and the above equations
then gives the notion of category.

11

Adding structure to categories we can then define new objects and new
arrows, according to our intuition and the above informal reading. For ex-
ample, the product of two objects A and B is an object4 A & B together
with two arrows (called projections) p : A&B ! A and q : A&B ! B that
satisfy the following universal mapping property (UMP for shorts):

For any object C and pair of arrows f : C ! A, g : C ! B, there
exists a unique arrow hf , gi : C ! A&B such that the following
equations hold

p � hf , gi = f

p � hf , gi = g

The above properties can be expressed via the following commutative dia-
gram [10, 11, 16, 72]

C

f

}}

g

!!

hf , gi

✏✏
A A&Bp
oo

q
// B

where a dotted line denotes uniqueness of the arrow. Universal mapping
properties define objects up to isomorphism (see next chapter) so that we
can regard the product of two objects to be essentially unique. We can
already observe how the notion of product is inadequate to capture some
forms of interaction. First of all, note that we can construct an arrow

�A : A ! A& A

called duplicator, simply by defining �A = hidA, idAi. As a consequence, if
we think of objects as physical or computational resources, we cannot think
of A & B as the resource obtained combing A and B. In fact, if that would
be the case, then resources would be duplicable, which is not realistic as the
following example shows.

4The standard notation for product is ⇥. However, in order to avoid notational con-
fusion, we use from the very beginning of this thesis the notation used in linear logic
literature e.g. [54, 56, 61, 77].

12

Example (Beverage machine). Consider a rudimentary beverage machine
with the following actions (production rules):

get_co↵ee : 1$! co↵ee

get_tea : 1$! tea

that allows to obtain a coffee, paying one dollar, or a tea, again paying one
dollar. The universal mapping property of product then gives the action

hget_co↵ee, get_teai : 1$! co↵ee& tea

which is clearly unsatisfactory.

Even thinking of A&B as a proper interaction between A and B is prob-
lematic. If we think of objects as systems and to arrows as processes, it is
natural to ask whether we can think of A&B as a parallel composition of A
and B. The answer is negative, since projections always allow to ‘separate’
A and B from A&B. This means that there is no proper interaction between
A and B, which makes the product inadequate for modeling parallel compo-
sition (see e.g. [7, 79, 91] for some desiderata a model of parallel composition
should satisfy).

A more satisfactory formalization of operations like parallel compositions
is given through the notion of monoidal category [10, 16, 72]. Roughly, a
monoidal category comes with a bifunctor ⌦ (see next chapter for formal
definitions) that captures, among others, the informal idea of parallel com-
position. Given two objects A,B and two arrows f , g we have a new object
A⌦B and a new arrow f ⌦ g, which can be pictorially described as follows:

A

f
✏✏

B

g

✏✏

A⌦ B

f ⌦ g
✏✏

⌦ =

C D C ⌦D

An intuitive reading in terms of resources can be given as follows: given an
action f that consumes the resource A to produce C, and an action g that
consumes B to produce D, we have an action f ⌦ g that consumes both the
resource A and B and produces both the resources C and D. Bifunctoriality
gives specific equations for ⌦, notably

idA ⌦ idB = idA⌦B

(f ⌦ g) � (f 0 ⌦ g0) = (f � f 0)⌦ (g � g0)

13

for f , f , g, g0 of the right type. The second equation expresses some kind
of sequentialization property. Let us clarify this idea reviewing previous
example.

Example (Beverage Machine, continued). Let us consider the beverage ma-
chine again, and let us assume the user has one pound (1£) and one euro
(1§). Suppose, for the sake of the example, that the currency exchange
pounds-dollars and euros-dollars are both 1-1, and that the machine can ac-
cept both pounds and euros, but the user has to convert them into dollars in
order to be able to get a beverage. We thus have the following actions (conv
abbreviates convert):

conv£ : 1£ ! 1$

conv§ : 1§! 1$

get_co↵ee : 1$! co↵ee

get_tea : 1$! tea

Bifunctoriality then gives

(get_co↵ee⌦ get_tea) � (conv£ ⌦ conv§)

=

(get_co↵ee � conv£)⌦ (get_tea � conv§)
which can be pictorially summarized as follows

1£

conv£

✏✏

1§

conv§

✏✏

1£⌦ 1§

conv£ ⌦ conv§

✏✏
1$

get_co↵ee

✏✏

⌦ 1$

get_tea

✏✏

= 1$⌦ 1$

get_co↵ee⌦ get_tea

✏✏
co↵ee tea 1co↵ee⌦ 1tea

Previous examples show that monoidal categories provide a simple frame-
work for studying systems and processes, and resources and actions. These

14

categories provide operations to run processes in parallel and sequentially.
The logical structure of monoidal categories is based on a tensor conjunc-
tion (tensor product), rather than on a standard conjunction (categorical
product). This directly leads into the realm of linear logic.

Linear Logic

Linear Logic was introduced by J.Y. Girard in his seminal paper [56], moving
from results and ideas obtained in the context of domain theory [3]. Linear
logic can be introduced in several ways, moving from both mathematical con-
siderations and informal intuitions. Here we ‘justify’ linear logic moving from
simple intuitions and operational considerations, thus arriving to its ‘proof-
theoretical introduction’. Other approaches moving from more sophisticated
mathematical theories can be found in e.g. [6, 15, 57, 81].

From a very intuitive and almost philosophical perspective, one can view
classical logic as a system dealing with the notion of mathematical truth.
Classical logic is concerned with those inference rules that preserve truth.
This point of view leads to justify the validity of formulas like A _ ¬A (ex-
cluded middle). Intuitionistic logic deals with the concept of mathematical
provability: given a proposition A, one is interested in establishing when A
is provable. Therefore, in order to prove the validity of A _ B, one has to
produce either a proof of A or a proof of B. As a consequence, the validity of
the excluded middle is rejected, since there are mathematical statements for
which neither a proof nor a refutation can be produced. Both classical and
intuitionistic logic manipulate mathematical entities, namely propositions
(we work with propositional logics), and therefore have limitations concern-
ing more concrete applications. Linear logic can be thought of a logic of
resources. Rather than manipulating mathematical propositions, linear logic
deals with resources and their manipulation. This gives rise to the informal
reading of an implication A ! B summarized in Figure 1.

As a consequence, given the linear implication A ! B (which is usually
written as A (B) and the resource A, A is consumed to produce B. How-
ever, to do so he has to consume A, so that A is not available anymore. This
phenomenon made the use of hypothesis (partially) linear, in the sense that
an hypothesis in a proof cannot be used more than once. More elementary, a
resource cannot be freely duplicated. It is customary in first introductions to
linear logic to start with examples like the following: consider the proposition
having 1$ meaning that a (fixed) user has one dollar. Then clearly having

15

Logic Informal reading of A ! B

Classical Whenever A is true, so is B.
Intuitionistic Whenever a proof of A is given, it is possible to

construct a proof of B.
Linear The resource A can be consumed to produce B

Figure 1: Informal interpretation of implication.

one dollar does not imply having two dollars. Nevertheless, the following
derivation is (classically and intuitionistically) correct

having 1$ ` having 1$ having 1$ ` having 1$
having 1$ ` having 1$ ^ having 1$

This shows that we cannot think of the conjunction ^ as a realistic way to put
resources together. To fix such a problem a new conjunction is introduced,
called tensor and denoted by ⌦. The informal meaning of A ⌦ B is that
the resources A and B are both available. It is then natural to reject the
implication A (A⌦ A.

Having clarified the intuitions behind linear logic one has to face the
problem of making these intuitions formal. Girard realized that to do so it
is necessary to act on the so-called structural rules. A logic usually consists
of a syntax and a semantics. The former specifies the objects the logic deals
with (in our case propositions) and a formal calculus for such objects. There
are several formalisms for formal calculi. Traditionally, the main three are
the so-called Hilbert systems, natural deduction systems and sequent calculi
(see e.g. [84, 96, 106] for an introduction). The latter were introduced by
Gentzen [55] to provide a formal meta-theory for natural deduction proofs.
Roughly, a sequent is an expression of the form � ` �, where � and � are
lists of formulas5, usually called structures or contexts. Rules are divided
into operational and structural. The former manipulates logical connectives,
whereas the latter manipulates structures. Among structural rules, three are
of major importance. These are given in Figure 2.

The first rule is called cut, the rules in second row are called left and right
weakening, and the rules in the third line are called left and right contraction.
If we think of formulas as resources, then contraction essentially states that

5Although one can consider other structures, like sets, multisets or trees, see [87, 106].

16

� ` A,� A,�0 ` �0

�,�0 ` �,�0

� ` �
�,A ` �

� ` �
� ` A,�

�,A,A ` �
�,A ` �

� ` �,A,A
� ` �,A

Figure 2: Structural rules.

resources are duplicable, whereas weakening states that resources can be
deleted. These rules allow each hypothesis to be used any number of times.
In linear logic none of these rules is allowed, so that one can obtain more
control on resources. This leads to a specialization of logical connectives
for conjunction and disjunction, as well as of the logical constants true and
false6. Consider for example the following standard sequent calculus rule for
introducing intuitionistic conjunction on the right:

� ` A � ` B R^
� ` A ^ B

According to the formulas-as-resources point of view, the rule says that if we
can produce A consuming � and we can produce B consuming �, then we
can produce A ^ B consuming �. This goes against our intuition, since we
would need two copies of � in order to produce both A and B. We can then
modify the rule as follows.

� ` A � ` B R^0
�,� ` A ^B

The first rule is said to be additive, since the context � is copied from premises
to conclusion. The second rule is said to be multiplicative since the contexts
� and � are joined in the conclusion (or, equivalently, split from conclusion

6Usually, linear logic consider only one implication (and a negation (_)?, although
these can be specialized too. See e.g. [105].

17

to premises). The two rules are equivalent in presence of weakening and
contraction, as witnessed by the following derivations7:

� ` A
weak�,� ` A

� ` B
weak�,� ` B
R^

�,� ` A ^ B

� ` A � ` B R^0
�,� ` A ^ B

ctr

� ` A ^ B

The above rules become different if we drop weakening and contraction,
and they give two distinct forms of conjunction: an additive one, denoted
by & (read ‘with’), and a multiplicative one, denoted by ⌦ (read ‘tensor’).
Rules governing these connectives are given in Figure 3.

�,A,B ` �
�,A⌦ B ` �

� ` A,� �0 ` B,�0

�,� ` A⌦ B,�,�0

�,Ai ` �
�,A0 & A1 ` B

� ` A,� � ` B,�
� ` A&B,�

Figure 3: Sequent calculus for additive and multiplicative conjunction.

Similarly, the conjunction _ is specialized in an additive one, denoted by
� (read ‘choice’ or ‘plus’), and a multiplicative one, denoted by ` (read ‘par’
or ‘co-tensor’). A standard sequent calculus system for classical linear logic
will be studied in Chapter 4, and is given in Figure 4.1. A sequent calculus
for intuitionistic linear logic can be obtained from the classical system simply
by restricting structures in the right-hand-side of ` to single formulas.

The new connectives have a natural informal interpretation, according to
the formulas-as-resources perspective. This is given in Figure 4.

Structural rules can be recovered in a controlled manner, by means of the
so-called exponential modalities ! and ?. For example, the intuitive meaning
of !A is that the resource A is available ad libitum. That is, the user can use
A once, twice, . . . or even zero times (i.e. the user can delete A). Therefore,

7We use a generalized version of weakening and contraction that acts on structures
rather than on formulas: these generalized versions can be easily proved to be admissible
by induction on the length of the structures involved.

18

Proposition Informal Interpretation

A⌦ B Resources A and B are both available.
A&B Resources A and B are both potentially given, but

we can use only one of them. We can choose which
resource use.

A� B Either the resource A or the resource B is avail-
able. The choice of which one is external and non-
deterministic.

A`B Both A and B are available, but these cannot be
used together.

Figure 4: Informal interpretation of connectives.

the intuitive meaning of !A is approximated by the infinitary formula

1 & A& (A⌦ A) & · · ·& (A⌦ · · ·⌦ A| {z }
n

) & · · ·

As we will see, having fixed point operators allows to make this intuition
formal.

Exponential modalities allow to encode both classical and intuitionistic
logic inside linear logic (see [57, 105] for details). Notably, the intuitionistic
implication A ! B is recovered as

!A (B

From a categorical perspective, moving from e.g. intuitionistic logic to
linear logic corresponds to moving from cartesian to monoidal categories. As
we will see in Chapter 3, having weakening and contraction amounts to hav-
ing an erasing arrow eA : A ! > and a duplicator arrow �A : A ! A ^ A,
which are nothing but arrows that erase and duplicate the resource A, re-
spectively (cf. previous section). Having clarified the basic intuitions and
ideas behind linear logic, we can now start a formal treatment of linear logic
and its categorical counterpart.

19

Chapter 1

Preliminaries

In this chapter we introduce the basic categorical machinery used in this
thesis, which roughly amounts to basic categorical notions (up to natural
transformations), algebras and coalgebras1.

The approach followed will be proof-theoretical oriented, looking at cate-
gories as abstract semantical structures interpreting both formulas and proofs.
Such an approach was introduced in [104] and later systematized by Lambek
(the reader can consult [71] for a complete exposition of the results achieved,
and [47, 48] for a more recent introduction to the subject).

From a (basic) semantical perspective, a logic can be abstractly though
as a poset with the order given by the consequence relation. From a proof
theoretical perspective such approach is rather unsatisfactory, since all proofs
from say a formula A to a formula B are identified. It is then more perspic-
uous to think of a logic as a graph, whose (directed) arrows are proofs. Re-
quiring the existence of identity arrows and of arrows’ composition amounts
to require the logic to be closed under the identity axiom and the cut rule,
here simplified as

A ` A
A ` B B ` C

A ` C

The resulting structure is called a deductive system (or deductive graph) [71].
A deductive system can be presented as a graph, from which we obtain the

1I try to make this work self contained, although the reader probably needs some (really
basic) background in Category Theory. Nevertheless, I explicitly introduce all definitions
used (even those of categories and functor), so that (hopefully) nothing will be left implicit.
The reader can consult [72] as standard reference. More accessible introductions are [10,
11, 16].

20

associated deductive system by closing the collection of arrows by rules giving
identity arrows and compositions.

Informally, a category is nothing but a deductive graph with the usual
equations for associativity and identity, which turned out to be closely related
to so-called cut-transformations (see [10, 77]).

As a consequence, the notion of category is essentially equational over
deductive systems (and hence graphs), much in the same way the notion of
monoid is equational over sets (i.e. we can define a monoid as a set with extra
structure plus equations). We can then give a more ‘logical’ presentation of
categories as graphs with a collection of ‘inference rules’ for arrows (i.e. those
rules under which the collection of arrows has to be closed) and an equational
system for such arrows2. One of the advantages of such approach is that by
defining a category in this way we exploit its underlying logical structure,
which is given by its underlying deductive system. For example, given a
cartesian category C presented as a deductive system, we can easily prove
that such a deductive system is equivalent to a standard sequent calculus for
the conjunctive fragment of intuitionistic propositional logic (IPL) (see e.g.
[30, 71, 84]). This shows that we could regard the conjunctive fragment of
IPL as a logic built over cartesian cateogories. In general, we refer to the logic
defined by the underlying deductive system of a category as the underlying
logic of the category.

Another major advantage of Lambek’s approach is that we come up with
equational definitions of some classes of categories and categorical construc-
tions. Such definitions provide nice equational laws which are the base of an
‘algebra of arrows’. This equational approach was very fruitful in the field of
programming algebra [26], where one needs a point-free algebra of programs
governed by simple equational laws.

One last remark. We are not interested in foundational questions. There-
fore, to avoid size problems we assume we work inside the von Neumann-
Bernays-Gödel set theory (NBG) and abstractly speak of collections of ob-
jects. For example, we define graphs consisting of collections of objects and
arrows. Requiring these to be proper sets creates problems since there is no
immediate way to consider the underlying graphs of a large category. For the
relationship between category theory and set theory the reader can consult

2Actually, we should give an equational system for objects too. However, such
task is usually trivial and based on ‘syntactic-like’ notions of equality. For exam-
ple, let A & B denote the product of A and B, then we have the equality rule
A = C,B = D) A&B = C &D.

21

[19, 62].

1.1 Categories, Algebras and Coalgebras

In this section we review basic notions concerning categories, algebras and
coalgebras. We introduce categories as special equational deductive graphs.
The reader can think of the latter as a collection of formulas A,B,C . . . to-
gether with a collection of proofs connecting them. The notation f : A ! B
is used for ‘f is a proof of B from the assumption A’. Another useful informal
reading is to think of objects A,B,C . . . as systems or resources, and to an
arrow f : A ! B as a process that makes system A evolving into system B,
or as an action that consumes resource A to produce resource B.

The main reference for an introduction to category theory is [72]. Other
more accessible introductions are [10, 11, 16].

Let us start by defining the notion of a graph and then specializes it to
the notion of deductive graph (deductive system).

Definition 1 (Graph). A (directed) graph consists of a collection A of arrows
and a collection O of objects together with two mappings src, tgt : A ! O,
called source and target, respectively. Diagrammatically,

A
tgt

//
src // O

We write f : A ! B or A
f�! B meaning that f is an arrow, A and B are

objects and src(f) = A and tgt(f) = B.

Definition 2 (Deductive System). A deductive system is a graph such that
for any object A there is an associated arrow idA : A ! A and for any pair of
arrows f : A ! B and g : B ! C, there is an associated arrow g�f : A ! C.
Equivalently, we say that the collection of arrows is closed under the rules

idA : A ! A

f : A ! B g : B ! C
g � f : A ! C

22

Note that we can present a deductive system as a graph, and then close
its collection of arrows under the above inference rules. From a logical per-
spective we can view the objects of a graph as formulas, and its arrows
as (extra-logical) axioms. The deductive system obtained from that graph
gives the logic obtained from the (extra-logical) axioms via the inference rules
identity and cut.

We can now equip deductive graphs with an equational theory, and thus
obtain the notion of category.

Definition 3 (Category). A category is a deductive system in which the
following equations3 holds for any f : A ! B, g : B ! C and h : C ! D

f � (g � h) = (f � g) � h
f � idA = f

idB � f = f

Remark. From a logical perspective we can think of a category as a deduc-
tive system together with a notion of equality for proofs. Such an equality
is closely related to the so-called cut-transformations [77]. Associativity of
composition gives associativiy of cut:

f : A ! B g : B ! C
g � f : A ! C h : C ! D

h � (g � f) : A ! D

=

f : A ! B
g : B ! C h : C ! D

h � g : B ! D
(h � g) � f : A ! D

Identity equations give basic cut-elimination steps (see [57, 106] for details):

idA : A ! A f : A ! B
f � idA : A ! B

= f : A ! B

and
3We are implicitly assuming = to be an equality, i.e. a reflexive, symmetric and tran-

sitive relation on arrows, which is a congruence with respect to composition.

23

f : A ! B idB : B ! B
idB � f� : A ! B

= f : A ! B

As already remarked, categories provide a notion of equality for proofs.
Using such notion of equality, we can define new notions of equality for
objects (which are weaker than syntactical equality). Among these notions,
two deserve special attention for our purposes.

Definition 4. Given two objects A and B in a category C, we say that A and
B are equi-provable if there are arrows f : A ! B and g : B ! A. Moreover,
we say that A and B are isomorphic, and write A ⇠= B, if f � g = idB and
g � f = idA. In that case we say that f and g are each other inverses.

Having defined categories, it is then natural to define structure-preserving
maps between them, which are known as functors.

Definition 5 (Functor). A functor F : C ! D between categories C and D
is a mapping from objects to objects and arrows to arrows such that

1. If f : A ! B in C, then F (f) : F (A) ! F (B) in D;

2. The following equalities hold:

F (g � f) = F (g) � F (f)

F (idA) = idF (A)

Sometimes, the notation FA and Ff for F (A) and F (f) will be used.
Strongly connected with the notion of functor, there is the notion of

natural transformation. Roughly, natural transformation can be though as
maps between functors.

Definition 6. Given functors F and G from a category C to a category D,
a natural transformation is a family of arrows ✓A parametrized by objects in
C, such that

G(f) � ✓A = ✓B � F (f)

24

for any arrow f : A ! B. This means that the following diagram commutes.

F (A)
✓A //

F (f)

✏✏

G(A)

G(f)

✏✏
F (B)

✓B
// G(B)

Functors and natural transformations organize themselves as a category.
That is, given categories C and D, one can define the functor category DC

whose objects are functors from C to D and whose arrows are natural trans-
formations. The identity functor 1 : C ! C is defined by

1(A) = A

1(f) = f

whereas the composition G � F of functors F : C ! D and G : D ! E is
defined by

(G � F)(A) = G(F (A))

(G � F)(f) = G(F (f))

We now introduce the notions of algebra and coalgebra. Algebras and
coalgebras are well-known and deeply investigated notions, with applications
in several fields such as computer science, logic, artificial intelligence and
economics. Here I will recall only few basic definitions. The reader can
consult the introductory textbook [68] for informal intuitions, examples and
further results.

Definition 7 (F -Algebra/Coalgebra). Given an endofunctor4 F : C ! C,
an F -algebra is a pair (A, a) consisting of an object A in C together with an
arrow a : F (A) ! A. An F -coalgebra is a pair (C, c) consisting of an object
C of C together with an arrow c : C ! F (C).

We can define F -algebra/coalgebra homomorphisms as arrows in C that
preserve the F -structure.

4A functor from a category to itself is usually called an endofunctor.

25

Definition 8. An arrow h : A ! B (in C) is an F -algebra homomorphism
between F -algebras (A, a) and (B, b) if

h � a = b � F (h)

holds. An arrow h : C ! D (in C) is an F -coalgebra homomorphism between
F -coalgebras (C, c) and (D, d) if

F (h) � c = d � h
holds.

Among F -algebras special ones are the so-called initial F -algebras. These
are, in a way, the smallest F -algebras.
Definition 9 (Initial F -algebra). An F -algebra (µF , in) is initial if for any
F -algebra (A, a) there is an arrow JaK : µF ! A, i.e. the collection of arrows
is closed under the rule

a : F (A) ! A

JaK : µF ! A

and the following equational law holds.
f � in = a � F (f)

f = JaK
where the double line read as an ‘if and only if’.

The above definition shows that the notion of initial algebra is equational,
and thus fits our approach to categories via deductive systems.
Remark. The last rule states that for an algebra a : F (A) ! A, there is a
unique algebra homomorphism JaK : µF ! A such that

JaK � in = a � F (JaK)
that is, there is a unique arrow JaK that makes the following diagram com-
mutes

F (µF)
F (JaK)

//

in

✏✏

F (A)

a

✏✏
µF

JaK
// A

26

We say that this rule gives universality of JaK, since it gives part of a universal
mapping property (see Introduction). Giving uniqueness of JaK, the rule also
gives uniqueness up to isomorphism5 of initial F -algebras (see below). We
will refer to rules stating uniqueness of specific arrows as ‘universality rules’.

The notion of final coalgebra can be given in a similar fashion.

Definition 10 (Final F -colgebra). An F -coalgebra (⌫F , out) is final if for
any F -coalgebra (C, c) there is an arrow LcM : C ! ⌫F , i.e. the collection of
arrows is closed under the rule

c : C ! F (C)

LcM : C ! ⌫F

and the following equational law holds.

out � f = F (f) � c
f = LcM

Initial algebras and final coalgebras are unique up to isomorphism, which
means e.g. that given two final coalgebras (C, c) and (D, d) we have C ⇠= D.
As a consequence, we can regard final coalgebras and initial algebras to be
unique, and refer to the initial algebra/final coalgebra of a functor F .

A fundamental result on initial algebras and final coalgebras is the so-
called Lambek’s Lemma (see e.g. [68]).

Lemma 1 (Lambek). Let (µF , in) and (⌫F , out) be the initial algebra and
final coalgebra of an endofunctor F : C ! C. Then

F (µF) ⇠= µF

F (⌫F) ⇠= ⌫F

hold.

Proof. To prove F (µF) ⇠= µF it is sufficient to find a pair of arrows which
are each other inverses. These are given by in and JF (in)K. Similarly for
proving F (⌫F) ⇠= ⌫F we consider out and LF (out)M. ⌅

5The expression ‘up to isomorphism’ means that we are reasoning modulo ⇠=, that is
we are identifying isomorphic objects.

27

Lambek’s Lemma states that both µF and ⌫F are fixed point of F (under
the notion of equality given by ⇠=). Moreover, thinking of an arrow f : A ! B
as witnessing that B is ‘bigger’ than A (and thus defining a partial order on
the collection of objects), then we see that ⌫F is the greatest fixed point of
F , whereas µF is the least one. The reader is invited to consult [68, 88] for
more details.

We will say more about initial algebras and final coalgebras (especially
in terms of deductive systems) in next chapters.

1.2 Cartesian Categories

In this section we give a first example of the interplay between logic, cat-
egories and deductive systems. We equip deductive systems with binary
products and initial objects, thus obtaining the notion of cartesian category.
At the same time, such deductive systems give a rudimentary calculus for the
conjunctive fragment of intuitionistic propositional logic [96], thus exploiting
the underlying logical structure of cartesian categories. There are several
benefits from such correspondence: we can give to the conjunctive fragment
of intuitionistic propositional logic a categorical semantics, and viceversa we
have a syntactic calculus for cartesian categories. Moreover, categorical equa-
tions give a nice notion of equality between proofs, deeply linked to other
notions of equality such as those based on cut elimination and normalization
[10, 30, 57, 71, 106].

Let us start by defining the notion of binary product.

Definition 11. A deductive system D has binary products if for any two
objects A and B of D, there is an associated object A & B (read ‘A with
B’) which is an object of D too, and the collection of arrows is closed under
the following rules6 (the first two rules are axioms, so they state existence of
special arrows)

pA,B : A&B ! A

qA,B : A&B ! B

6To be precise we should say rule schemes. In fact, these rules are parametrized by
objects and arrows.

28

f : C ! A g : C ! B
hf , gi : C ! A&B

A category with binary product is a deductive systems D with binary product
which, in addition to equations for identity and composition, satisfies the
following equational law (which gives universality of hf , gi). For f : C ! A,
g : B ! C and h : C ! A & B (we write p and q for pA,B and qA,B

respectively)

p � h = f q � h = g

h = hf , gi
The above system allows us to prove simple equations between arrows, as

well as to construct new arrows.

Example 1. 1. We can construct the following arrows

sA,B : A&B ! B & A

aA,B,C : (A&B) & C ! A& (B & C)

�A : A ! A& A

called switching, associator and duplicator respectively, defining

sA,B = hqA,B, pA,Bi
aA,B,C = hpA,B � pA&B,C , hqA,B � pA&B,C , qA&B,Cii

�A = hidA, idAi

2. We can prove the equational law

hf , gi � h = hf � h, g � hi

For, it is sufficient to prove

p � (hf , gi � h) = f � h
q � (hf , gi � h) = g � h

These can be easily proved, once we know p�hf , gi = f and q�hf , gi = g.
The latter hold, since we can just instantiate h to be hf , gi itself in the
rule for universality of hf , gi.

29

3. We can prove that the following rule is admissible.

f = h g = k
hf , gi = hh, ki

For, it is sufficient to construct

f = h
p � hf , gi = h

g = k
q � hf , gi = k

hf , gi = hh, ki
Note also that equational laws allow us to prove that the product of two

objects is unique up to isomorphisms, hence we can correctly refer to it as
the product. A product we will use later is the product of categories.

Definition 12. Given categories C and D we can define the product category
C ⇥D (in this specific case we use the notation ⇥ in place of &) as follows:

1. Objects are pairs of the form (C,D) for C object of C and D object of
D.

2. Given arrows f : C ! C 0 in C and g : D ! D0 in D, we have an arrow

(f , g) : (C,D) ! (C 0,D0)

in C ⇥D.

The category Cat has (small) categories as objects (see [11]) and functors
as arrows. The above definition equips Cat with binary products.

We can now define the notion of bifunctor. Given categories A,B and C
a bifunctor is nothing but a functor

F : A⇥ B ! C
In particular, we have that the following equations hold

F (idA, idB) = idF (A,B)

F (g � f , g0 � f 0) = F (g, g0) � F (f , f 0)

A useful lemma we will implicitly use, is the so-called bifunctor lemma
[11].

30

Lemma 2 (Bifunctor). Given categories A,B and C, a map F : A⇥ B ! C
is a bifunctor if and only if

1. F is functorial in each argument. That is, for any A object in A and
B object in B

F (A,_) : B ! C
F (_,B) : A ! C

are functors7.

2. Given f : A ! A0 and g : B ! B0, the following holds

F (A0, g) � F (f ,B) = F (f ,B0) � F (A, g).

Proof. See [11]. ⌅

In particular, if we define for arrows f and g in a category C,

f & g = hf � p, g � qi
we obtain a bifunctor & : C ⇥ C ! C defined by

(A,B) 7! A&B

(f , g) 7! f & g

Simple calculations show that bifunctor equalities are indeed satisfied.
In order to define cartesian categories we need the notion of terminal

object.

Definition 13. A category with a terminal object is a deductive system D
with a distinguished object > and a family of arrows !A : A ! >, for each
object A of D. Moreover, in addition to equations for identity arrows and
composition we require the following equational law to hold:

7Where e.g. F (A,_) is defined on objects as

F (A,_)(B) = F (A,B)

and on arrows as
F (A, f) = F (idA, f).

31

f : A ! >
f = !A

Again, equational laws allow to prove that the terminal object is unique
up to isomorphism. Finally, we can define cartesian categories.

Definition 14. A category C is cartesian if it has binary products and ter-
minal objects.

We now summarize definitions given so far providing a definition of carte-
sian categories as deductive systems.

Definition 15. A cartesian deductive system is a deductive system D with
binary products and terminal object. In particular, inference rules for a
cartesian deductive system are given in Figure 1.1.

idA : A ! A

f : A ! B g : B ! C
g � f : A ! C

!A : A ! >

pA,B : A&B ! A

qA,B : A&B ! B

f : C ! A g : C ! B
hf , gi : C ! A&B

Figure 1.1: Inference rules for a cartesian deductive system.

Erasing arrows’ names, we obtain the system given in Figure 1.2
The system can be further simplified by taking a ‘single’ rule for product,

namely

C ! A C ! B
C ! A&B

32

A ! A
A ! B B ! C

A ! C

A ! >

A&B ! A A&B ! B

C ! A C ! B
C ! A&B

Figure 1.2: Arrow-free cartesian deductive system.

Projections are recovered from the axiom A&B ! A&B.
We now exploit the link between cartesian deductive systems and the

(&,>)-fragment of intuitionistic propositional logic ((&,>)-IPL, for short).
Given a set Prop of atomic propositions, the set of formulas of (&,>)-IPL is
defined by the following grammar

A ::= a | > | A& A

where a 2 Prop. A sequent is an expression of the form � ` A, where A
is a formula and � a multiset of formulas. A sequent calculus for (&,>)-
IPL is given in Figure 1.3, where the rules in the second line are called left
weakening and left contraction (see [57, 106] for details).

Given a multiset � = A1, . . . ,An we can define its ‘logical’ counterpart to
be A1 & · · · & An, if n > 0, and > otherwise. An easy induction on deriva-
tions shows that if A1, . . . ,An ` A is provable in the sequent calculus, then
A1 & · · · & An ! A is provable in the system of Figure 1.2. Viceversa, if
A ! B is provable in such system, then the sequent A ` B is provable too.
This shows that we can give a presentation of (&,>)-IPL as a cartesian de-
ductive system, whose objects are formulas. Arrows in the deductive system
then give a formalism for derivations, and the equational theory given by the
cartesian category induced by the deductive system gives a notion of equality
between proofs. The translation between sequent calculus proofs to arrows
in the deductive system is summarized in Figure 1.4.

Notice the presence of the duplicator arrow �A : A ! A&A for translat-
ing the contraction rule, and the presence of projections for translating the
weakening rule.

33

A ` A
� ` A A,� ` C

�,� ` C

� ` B
�,A ` B

�,A,A ` B
�,A ` B

` >
�,Ai ` B

i 2 {0, 1}
�,A0 & A1 ` B

� ` A � ` B
� ` A&B

Figure 1.3: Sequent calculus for (&,>)-IPL.

A ` A idA : A ! A

� ` A �,A ` C
�,� ` C

f : � ! A g : A&� ! B
g � (f & id�) : �&� ! B

� ` B
�,A ` B

f : � ! B
f � p�,A : �& A ! B

�,A,A ` B
�,A ` B

f : �& A& A ! B
f � (id� &�A) : �& A ! B

` > !> : > ! >
�,A ` C

�,A&B ` C
�& A ! C

f � (id� & pA,B) : �& A&B ! C

�,B ` C
�,A&B ` C

�& B ! C
f � (id� & qA,B) : �& A&B ! C

� ` A � ` B
� ` A&B

f : � ! A g : � ! B
hf , gi : � ! A&B

Figure 1.4: Translation of sequent calculus proofs into arrows.

34

Remark. We worked with products modulo associativity and commutativ-
ity. This relies on the fact that the associator arrow

aA,B,C : A& (B & C) ! (A&B) & C

and the switching arrow

sA,B : A&B ! B & A

actually give isomorphisms, and thus we can work with products modulo
associativity and commutativity.

Equational theories derived from categories are usually interesting ones,
since they often provide a simpler and more elegant presentation of notion of
equality coming from proof transformations like those of cut elimination and
normalization (see [10, 71, 84, 106, 105]). Consider for instance the following
(simplified) cut reduction:

� ` A � ` B
� ` A&B

A ` D
A&B ` D

� ` D
= � ` A A ` D

� ` D

This corresponds to

f : � ! A g : � ! B
hf , gi : � ! A&B

h : A ! D
h � p : A&B ! D

h � p � hf , gi : � ! D

=

f : � ! A h : A ! D
h � f : � ! D

which indeed holds since

h � p � hf , gi = h � f
For a complete exposition of the correspondence between cut reductions,
normalization steps and equations in cartesian categories the reader can con-
sult [10, 11, 84, 106], where such correspondence is extended to cartesian
closed categories (see e.g. [10, 11, 16, 30, 71]), the (&,>,!)-fragment of
intuitionistic propositional logic and the simply typed �-calculus (with unit,
arrow and product types) [65, 66, 96, 106]. Such correspondence is known as
Proposition-as-Types Correspondence (see [57, 96]) or Curry-Howard-Lambek
Correspondence [15, 71, 84, 106] (see footnote 1 in the introduction).

35

1.3 Monoidal Categories

In previous section we reviwed cartesian categories and observed that their
underlying logic is essentially the conjunctive fragment of intuitionistic propo-
sitional logic. Such categories, although mathematically attractive, do not
provide the right structure for our purposes (see Introduction). Given two
objects A and B, we want an operation for putting these objects together
(e.g. in a parallel composition). If C is cartesian, with binary product & and
terminal object >, a natural candidate for the previous operation is A& B.
As we already argued in the intorduction, this choice is rather unsatisfactory.
If we think of A and B as resources, and to A& B as the resource obtained
by joining A and B, then the presence of the duplicator �A : A ! A & A
simply states that resources are duplicable. Terminality of > gives an eras-
ing arrow !A : A ! >, which allows to delete resources. Finally, having
projections can be interpreted as having a too weak interaction between A
and B in A & B, since it is always possible to ‘separate’ them. To fix these
problems we temporary abandon cartesian categories, and consider different
structures, namely monoidal categories. These categories were introduced in
[72], and since then were deeply investigated (see e.g. [10, 16, 77]).

Monoidal categories can be though as a generalization of the concept of
monoid, and are characterized by the presence of a bifunctor ⌦ with unit 1.
The former gives a way to make objects A and B interact as A ⌦ B. More
importantly, it gives a form of interaction between arrows. Given arrows f
and g (recall that these are though as processes or actions), we can think of
f⌦g as a parallel composition of f and g. Together with composition (which
can be thought as a sequential composition), we have a simple framework for
studying both parallel and sequential interactions.

Let us start by formally defining monoidal deductive systems and monoidal
categories.

Definition 16 (Monoidal Deductive System). A monoidal deductive system
is a deductive system D with the addition of the following distinguished

36

arrows (to be thought as zero-ary inference rules)

aA,B,C : A⌦ (B ⌦ C) ! (A⌦ B)⌦ C

a�1
A,B,C : (A⌦ B)⌦ C ! A⌦ (B ⌦ C)

lA : 1⌦ A ! A

l�1
A : A ! 1⌦ A

rA : A⌦ 1 ! A

r�1
A : A ! A⌦ 1

and the following two-premises rule

f : A ! C g : B ! D
f ⌦ g : A⌦ B ! C ⌦D

Roughly, a monoidal category is a monoidal deductive system D in which
the arrows a, l and r are natural isomorphisms, ⌦ is a bifunctor and the so-
called coherence conditions [72] are satisfied. These coherence conditions can
be summarized via the following commutative diagrams (called the pentagon
and triangle identities).

(A⌦ B)⌦ (C ⌦D)

a�1
A,B,C⌦D

))
((A⌦ B)⌦ C)⌦D

aA⌦B,C,D

66

aA,B,C⌦idD

✏✏

A⌦ (B ⌦ (C ⌦D))

(A⌦ (B ⌦ C))⌦D aA,B⌦C,D
// A⌦ ((B ⌦ C)⌦D)

idA⌦aB,C,D

OO

(A⌦ 1)⌦ B
aA,1,B //

rA⌦idB

%%

A⌦ (1⌦ B)

idA⌦lB

yy
A⌦ B

37

Definition 17 (Monoidal Category). A monoidal category is a monoidal
deductive system D equipped with categorical equations plus the following
equations (in order to keep a light notation I considered arrows without
objects subscripts; these can be understood from the context, or otherwise
the reader can refer to the above commutative diagrams)8

a � a�1 = id l � l�1 = id r � r�1 = id

a�1 � a = id l�1 � l = id r�1 � r = id

(f � h)⌦ (g � k) = (f ⌦ g) � (h⌦ k)

idA ⌦ idB = idA⌦B

(f ⌦ (g ⌦ h)) � aA,B,C = aA0,B0,C0 � (f ⌦ g)⌦ h

f � lA = lA0 � (1⌦ f)

f � rA = rA0 � (f ⌦ 1)

(a⌦ id) � a � (id⌦ a) = a � a
(r ⌦ id1) � a = l

plus the following equational law

f = f 0 g = g0

f ⌦ g = f 0 ⌦ g0

The first group of equations states that a, a�1, l, l�1 and r, r�1 are indeed iso-
morphisms. The third group of equations gives naturality for them, where in
virtue of equations in the first group we wrote e.g. a both for a and a�1. The
fourth group gives coherence conditions for the natural isomorphisms. The
second group of equations gives bifunctoriality of ⌦. Finally, the equational
law for ⌦ states that ⌦ is indeed a mapping (which is part of the definition
of functor).

8In the third group of equations we assume f : A ! A0, g : B ! B0 and h : C ! C 0.

38

Remark (Coherence Conditions). The tensor ⌦ in a monoidal category does
not need to be unique, in contrast with the cartesian product. Moreover, in
general, (A ⌦ B) ⌦ C and A ⌦ (B ⌦ C) are different objects. Suppose we
want to form the length 3 tensor product A ⌦ B ⌦ C. Both A ⌦ (B ⌦ C)
and (A⌦B)⌦C are natural candidates. The natural isomorphism a allows
to identify them, reasoning up to isomorphism. As a consequence, we may
write A⌦B ⌦C, forgetting parenthesis. The question is whether we can do
the same for longer tensor products, that is if we can define an object likeO

i

Ai

ignoring parenthesis in it. We have, for example, that

A⌦ (B ⌦ (C ⌦D)) ⇠= ((A⌦ B)⌦ C)⌦D.

Unfortunately, there is more than one isomorphism between them. The pen-
tagon diagram states that such isomorphisms are all equals, i.e. that all
possible ways to form A⌦B⌦C⌦D are the same. Mac Lane’s theorem [72]
generalizes this result proving that in any monoidal category, any two (nat-
ural) isomorphisms built out of a, l, r and id, by using ⌦ and composition,
actually coincide9. For example,

A⌦ (B ⌦ C)⌦ (A0 ⌦ B0)

and
(A⌦ B)⌦ (C ⌦ A0 ⌦ B0)

are isomorphic in just one way. For more details see [72], or [105] for a
logic-oriented proof of MacLane’s theorem.

We are interested in categories in which the tensor product is commuta-
tive. This leads to symmetric monoidal categories (SMCs).

Definition 18. A symmetric monoidal deductive system is a deductive sys-
tem D with the addition of the following distinguished arrows (to be thought
as zero-ary inference rules)

sA,B : A⌦ B ! B ⌦ A

s�1
A,B : B ⌦ A ! A⌦ B

9Theorems like this one are usually called coherence theorems.

39

A symmetric monoidal category is a symmetric monoidal deductive sys-
tem equipped with the following additional equations,

s � s�1 = id

s�1 � s = id

equations to make s a natural isomorphism (see equations in previous defi-
nition), and the following equations (where we use previous notational con-
ventions).

lA � sA,1 = rA
(s⌦ id) � a � (id⌦ s) = a � s � a

The above equations are summarized by the following commutative dia-
grams.

A⌦ 1
sA,1 //

rA

""

1⌦ A

lA

✏✏
A

A⌦ (B ⌦ C)
idA⌦sB,C //

aA,B,C

✏✏

A⌦ (C ⌦ B)
aA,B,C // (A⌦ C)⌦ B

sA,C⌦idB

✏✏
(A⌦ B)⌦ C sA⌦B,C

// C ⌦ (A⌦ B) aA,B,C
// (C ⌦ A)⌦ B

As already stressed, monoidal categories provide mathematical structures
that allow to run processes in parallel, by means of ⌦, and sequentially, by
means of �. Moreover, it is in general not possible to construct arrows

�A : A ! A⌦ A

eA : A ! 1

40

as one can observe that in general ⌦ is not a categorical product (whereas
every product is a tensor).

We now examine more closely the underlying logic of SMCs. First of
all let us summarize inference rules for generating arrows in symmetrical
monoidal deductive system. These are given by zero-ary inference rules (we
write them without the over bar denoting the absence of premises) in Figure
1.5 plus inference rules in Figure 1.6.

aA,B,C : A⌦ (B ⌦ C) ! (A⌦ B)⌦ C a�1
A,B,C : (A⌦ B)⌦ C ! A⌦ (B ⌦ C)

lA : 1⌦ A ! A l0A : A ! 1⌦ A

rA : A⌦ 1 ! A r�1
A : A ! A⌦ 1

sA,B : A⌦ B ! B ⌦ A s�1
A,B : B ⌦ A ! A⌦ B

Figure 1.5: Arrows-generating rules for SMCs.

idA : A ! A
f : A ! C g : B ! D
f ⌦ g : A⌦ B ! C ⌦D

f : A ! B g : B ! C
g � f : A ! C

Figure 1.6: Arrows-generating rules for SMCs.

Erasing names for arrows in the above system we obtain a first ‘logi-
cal calculus’. We can reduce the number of axioms by regrouping them as
inference rules. For example, we can replace axioms

A ! 1⌦ A

1⌦ A ! A

stating the equi-provability of A and 1 ⌦ A with the following bidirectional
rule

A ! 1⌦ B
A ! B

41

Note that the rule

1⌦ A ! B
A ! B

works as well. The system obtained is given in Figure 1.7

A ! A
A ! B B ! C

A ! C

A ! C B ! D
A⌦ B ! C ⌦D

D ! (A⌦ B)⌦ C

D ! A⌦ (B ⌦ C)

A ! 1⌦ B
A ! B

A ! B ⌦ 1
A ! B

A ! B ⌦ C
A ! C ⌦ B

Figure 1.7: Logical system for SMCs.

It is now easy to recognize that the logic we obtain is the (⌦, 1)-fragment
of (commutative) intuitionistic linear logic (also known as tensorial logic
[105]). Formulas of this fragment are defined from a set Prop of atomic
propositions by means of the following grammar

A ::= a | 1 | A⌦ A

where a 2 Prop. A sequent calculus for such fragment is given in Figure 1.8.
Sequents are expressions of the form � ` A, where � is a multiset of formulas
and A is a formula.

As for cartesian categories, the logical counterpart of a multiset � = A1, . . . ,An

is defined as A1 ⌦ · · ·⌦An, if n > 0, and 1 otherwise. An easy induction on
derivations shows that if A1, . . . ,An ` A is provable in the sequent calculus,
then A1⌦ · · ·⌦An ! A is provable in the system of Figure 1.7. Viceversa, if
A ! B is provable in such system, then the sequent A ` B is provable too.
This shows that we can give a presentation of tensorial logic as a symmetric
monoidal deductive system, whose objects are formulas. Arrows in the de-
ductive system give a formalism for derivations, and the equational theory

42

A ` A
� ` A A,� ` B

�,� ` B

�,A,B,� ` C
�,B,A,� ` C

` 1
� ` A
�, 1 ` A

�,A,B ` C
�,A⌦ B ` C

� ` A � ` B
�,� ` A⌦ B

Figure 1.8: Sequent calculus for tensorial intuitionistic logic.

given by the SMC induced by the deductive system gives a notion of equality
between proofs. In Figure 1.9 we summarize how to associate to a provable
sequent

A1, . . . ,An ` A

an arrow
f : A1 ⌦ · · ·⌦ An ! A

(if n > 0, f : 1 ! A otherwise).
As for cartesian categories, the equational theory associated to a sym-

metric monoidal deductive system gives a nice equational theory for proofs.
For example, consider the bifunctoriality equation for ⌦, now written in
proof-tree notation.

f : A ! A0 g : B ! B0

f ⌦ g : A⌦ B ! A0 ⌦ B0
f 0 : A0 ! C g0 : B0 ! D
f 0 ⌦ g0 : A0 ⌦ B0 ! C ⌦D

(f 0 ⌦ g0) � (f ⌦ g) : A⌦ B ! C ⌦D

=

f : A ! A0 f 0 : A0 ! C
f 0 � f : A ! C

g : B ! B0 g0 : B0 ! C
g0 � g : B ! C

(f 0 � f)⌦ (g0 � g) : A⌦ B ! C ⌦D

43

A ` A idA : A ! A

� ` A A,� ` B
�,� ` B

f : � ! A g : A⌦� ! B
g � (f ⌦ id�) : �⌦� ! B

` 1 id1 : 1 ! 1

� ` A
�, 1 ` A

f : � ! A
f � r� : �⌦ 1 ! A

� ` A � ` B
�,� ` A⌦ B

f : � ! A g : � ! B
f ⌦ g : �⌦� ! A⌦ B

�,A,B ⌦ C
�,A⌦ B ` C

f : (�⌦ A)⌦ B ! C

f � a�,A,B : �⌦ (A⌦ B) ! C

�,A,B,� ` C
�,B,A,� ` C

f : �⌦ A⌦ B ⌦� ! C
f � (id� ⌦ sB,A ⌦ id�) : �⌦ B ⌦ A⌦� ! C

Figure 1.9: Equivalence between the sequent and combinatorial calculus for
SMCs.

44

It is easy (although a bit heavy) to prove that the equations obtained by
the usual cut elimination transformations hold in the equational theory asso-
ciated to symmetric monoidal deductive systems (see [77]). Moreover, such
equational theory give other interesting notion of equality between proofs,
namely those associated to the so-called identity expansions. Identity ex-
pansions are proofs’ transformations between identity axioms for compound
formulas, and specific derivations proving those very identities using only
identity axioms for atomic formulas (see [57, 106, 105]). Here is an example

A⌦ B ! A⌦ B = A ! A B ! B
A⌦ B ! A⌦ B

The above equality is nothing but the equation

idA⌦B = idA ⌦ idB

given by bifunctoriality of ⌦.
We can endow SMCs with a cartesian structure, thus recovering the con-

junctive fragment of intuitionistic linear logic (i.e. the one based on the
connectives ⌦ and &, multiplicative and additive conjunction, and constants
1 and >, which are units for ⌦ and > respectively).

Definition 19. A SMC which is also cartesian is called a symmetric monoidal
cartesian category (SMCC). It has tensor ⌦ with its unit 1, and binary
product & with its unit (the terminal object) >. The underlying logic is the
(⌦, &)-fragment of linear logic.

Although basic, the (⌦, &)-fragment of intuitionistic linear logic is enough
expressive to be enriched with fixed point operators in a non-trivial way. In
fact, we can recover the exponential modality ! as a greatest fixed point of a
specific functor. The mathematical structure needed for such an analysis is
obtained by equipping SMCCs with initial algebras and final coalgebras for a
specific class of functors. The categories thus obtained and their associated
logic will be studied in the next chapter.

45

Chapter 2

Linear Logic and Fixed Points

In this chapter we introduce a first extension of propositional linear logic with
least and greatest fixed point operators, moving from categorical consider-
ations. We already remarked that monoidal categories allow to study both
parallel and sequential composition of processes (formalized as arrows). It is
then natural to be interested in infinite and iterative behaviors. For example
one can be interested in studying a self-replicable resource A!, which gives
an infinite amount of resources A. Its behavior can be easily described by
the recursive equation

X ⇠= A⌦X

and A! can be defined as the greatest fixed point of this equation, denoted
by ⌫X.A ⌦ X. Studying processes emanated from A! (i.e. arrows of the
form f : A! ! B) or to A! (i.e. arrows of the form f : B ! A!) requires to
have precise mathematical notions to work with. Category theory provides
such notions via the concepts of algebras and coalgebras [68, 88]. In partic-
ular, the latter has several applications in the study of systems with infinite
behaviors ([68, 88]). We extend SMCCs with initial algebras and final coal-
gebras for a natural class of functors, namely the one of polynomial functors.
The resulting categories, called ⌫SMCCs are simple yet powerful systems for
studying processes, systems, resources etc...equipped with infinite and itera-
tive behaviors. Among notions definable in such categories there is the one
of exponential storage modality !. The informal intuition behind !A is that
the resource A is available ad libitum. The framework of ⌫SMCCs allows
to make this intuition formal and, more importantly, it reveals important
features of the operator !.

46

2.1 SMCC with Fixed Points

Here we introduce SMCCs with initial algebras and final coalgebras for the
class of polynomial functors1. Roughly, given a SMCC C polynomial functors
over C are endofunctors (i.e. functors from C into C) inductively built from
the constant and identity functors, using product and tensor operations (see
Defintion 20).

We obtain an interesting class of categories with a powerful underly-
ing logic that allows to introduce recursion and corecursion in the (⌦, &)-
fragment of linear logic.

We start by briefly introducing the class of polynomial functors. Given a
SMCC C with tensor ⌦, unit 1, product & and terminal object >, we define
some specific endofunctors over C.

Definition 20. 1. Let C be an object of C. Define the constant functor
C : C ! C as follows.

C(A) = C

C(f) = idC

2. Given two functors F ,G : C ! C, define the functor F &G : C ! C as
follows.

(F &G)(A) = FA&GA

(F &G)(f) = Ff &Gf

(recall that f & g = hf � p, g � qi, so that we have a bifunctor &).

3. Given two functors F ,G : C ! C, define the functor F ⌦G : C ! C as
follows.

(F ⌦G)(A) = FA⌦GA

(F ⌦G)(f) = Ff ⌦Gf

1Usually polynomial functors are defined differently from the definition given here, see
e.g. [68]. The reason is that, especially in the ‘coalgebraic literature’, one is concerned
with endofunctors over Set, the category of sets and functions. The category Set being
cartesian closed, induces functor operations via products and exponentials. The same
happens for coproducts. This essentially defines the class of polynomial functors, which
can be extended with the addition of the powerset functor, giving the class of polynomial
Kripke functors. Again, see [68].

47

These are indeed functors. For the constant functor this is trivial to see,
for the tensor and product functors the result follows from bifunctoriality of
⌦ and &. E.g.

(F ⌦G)(g � f) = F (g � f)⌦G(g � f)
= (Fg � Ff)⌦ (Gg �Gf)

= (Fg ⌦Gg) � (Ff ⌦Gf)

= (F ⌦G)(g) � (F ⌦G)(f)

Definition 21. The collection of polynomial functors is the least class of
functors from C to C satisfying the following clauses.

1. The identity functor 1 : C ! C is a polynomial functor.

2. For each object C, the constant functor C : C ! C is a polynomial
functor.

3. If F and G are polynomial functors, then so are F ⌦G and F &G.

Polynomial functors, although quite specific, are sufficient for several ap-
plications. Moreover, they allow inductive reasoning on their structure. This
feature allows us to prove several results about them. Note that we did not
close the class of polynomial functors under composition. That would be
redundant.

Lemma 3. If F and G are polynomial functors, then so is G � F .

Proof. Since G is polynomial we can prove the lemma by induction on G.

Case 1. Suppose G is 1. Then 1�F = F , which is polynomial by hypothesis.

Case 2. Suppose G is C, for an object C. Then we have that G � F = C.
In fact,

(G � F)(A) = (C � F)(A) (G � F)(f) = (C � F)(f)

= CFA = CF (f)

= C = idC

= C(A) = C(f)

Since C is polynomial we are done.

48

Case 3. Suppose G is H ⌦K. Then we prove

(H ⌦K) � F = (H � F)⌦ (K � F).

By induction hypothesis both K �F and H �F are polynomials, hence
G � F is polynomial too.

(G � F)(A) = ((H ⌦K) � F)(A)

= (H ⌦K)(FA)

= HFA⌦KFA

= (H � F)(A)⌦ (K � F)(A)

= ((H � F)⌦ (K � F))(A)

(G � F)(f) = ((H ⌦K) � F)(f)

= (H ⌦K)(Ff)

= HFf ⌦KFf

= (H � F)(f)⌦ (K � F)(f)

= ((H � F)⌦ (K � F))(f)

Case 4. Suppose G is H &K. Then we prove

(H &K) � F = (H � F) & (K � F).

By induction hypothesis both K �F and H �F are polynomials, hence
G � F is polynomial too.

(G � F)(A) = ((H &K) � F)(A)

= (H &K)(FA)

= HFA&KFA

= (H � F)(A) & (K � F)(A)

= ((H � F) & (K � F))(A)

(G � F)(f) = ((H &K) � F)(f)

= (H &K)(Ff)

= HFf &KFf

= (H � F)(f) & (K � F)(f)

= ((H � F) & (K � F))(f)

49

⌅

Given a SMCC (C,⌦ 1,&,>) as above, the class of polynomial functors
over C organizes itself as a category C[X]. Moreover, C[X] inherits the sym-
metric monoidal and cartesian structure.

Proposition 1. Let C be a symmetric cartesian monoidal category, with
unit 1, tensor ⌦, product & and terminal object >. Then we have a category
C[X] whose objects are polynomial functors over C and whose morphisms
are natural transformations between them. Moreover, C[X] is a SMCC, with
tensor and product defined pointwise, and unit and terminal object defined
by their respective constant functor.

The proof of this proposition is a long but straightforward, and thus it is
omitted.

We can now define the notion of ⌫SMCC.

Definition 22. A ⌫SMCC is a SMCC C that has initial algebras and final
coalgebras for the class of polynomial (endo)functors C[X] over C.

⌫SMCCs provide a natural operational framework for studying and defin-
ing new processes (and operations). Indeed, all equations of the form

X ⇠= F (X)

for F polynomial can be solved in ⌫SMCCs, and it is possible to distinguish
between minimal and maximal solutions. As a consequence, we can define
systems and processes via equations describing their behavior.

Example 2. We come back to the example of a self-replicating system.
Recall that we looked at a self-replicating system

A! ⇠= A⌦ A⌦ · · ·⌦ A⌦ · · ·
meaning that we have an infinite amounts of resources A. A! can be described
via the equation

X ⇠= A⌦X

We thus obtain A! as the maximal fixed point of the functor2 F (X) ⇠= A⌦X.
Now, given a resource B, what do we need in order to be able to consume

2F (X) is indeed polynomial, since it is nothing but the functor A⌦ 1.

50

B for producing A!? Clearly we have to be able to produce A from B, i.e.
B ! A. Moreover, we have to be able to do so infinitely often. Since from B
we can produce A, it is sufficient that from B we can also produce B itself.
That is, we need a process f : B ! A ⌦ B. This means that (B, f) is an
A⌦X-coalgebra. Finality of A! then gives LfM : B ! A!.

2.2 Examples

⌫SMCCs are very rich structures in which all equations expressible via poly-
nomial functors have both minimal and maximal solutions. One could won-
der whether there exist ‘concrete’ examples of such categories, that is if there
are examples of well-known and used categories, which are ⌫SMC. This is
indeed the case. We give two examples (in the final chapter the notion of
pretopology is introduced: the collection of saturated sets of a pretopology
is a further example of a ⌫SMCC). The first one is a trivial one, given by
the category of sets and functions, whereas the second one is given by the
category of games and strategies.

Sets

The category Set has sets as objects and (set-theoretic) functions as arrows.
It is well known that Set is cartesian, with binary product given by the carte-
sian product and terminal object given by the one element set (we used the
word ‘the’ because all one element sets are isomorphic). Moreover, one can
prove that Set is trivially monoidal, with tensor and unit given by the carte-
sian product and terminal object. Actually, Set has much more structure; it
has binary coporducts, given by disjoint union and initial object, given by
the empty set, as well as exponentials, given by function spaces (see e.g. [11]
for details).

In [68] it is proved that polynomial functors on Sets preserve both !
limits and colimits (see [10, 11, 16, 68] for definitions), and that they are
continuous in a sense similar to continuity in CPOs [3]. In particular, such
continuity allows to prove that all such functors have both initial algebras
and final coalgebras, which can be constructed with an adaptation of Kleene’s
Approximation Theorem [3, 46, 91]. As a consequence, Set is a ⌫SMCC.

51

Games

The category of games and strategies was introduced by Abramsky [4] as a
refinement of Blass’ framework [29], in order to provide a sound and complete
semantics to linear logic [1]. The basic idea is that propositions are games
played by two players, abstractly called proponent and opponents (but also
prover and refuter, or system and environment are used). A proposition is
provable if proponent has a winning strategy for the game associated with
that proposition. We briefly recall basic definitions and define the category G
of games and strategies (the reader can consult [4] for details). Such category
is symmetric monoidal and cartesian. Moreover, as shown in [2, 73] a fixed
point theorem with respect to a class of continuous functors for such category
can be proved. In particular, polynomial functors are continuous in G, so that
we recognize G to be a ⌫SMCC.

A game has two participants, P and O, called proponent and opponent
respectively. A play of the game consists of a finite or infinite sequence of
moves alternately by O and P . In the games we consider O always moves
first. Given a set A we will use letters s, t, u . . . to range over finite sequences
of elements of A (i.e. A⇤), and reserve the symbol " to denote the empty
sequence. Given a 2 A and s 2 A⇤, as 2 A⇤ denotes the concatenation of a
to s. Similarly for s, t 2 A⇤, we write st for their concatenation. As usual,
|s| denotes the length of s, and si is the i-th element of s. Given a set A, we
write s � A for the restriction of s to elements in A.

A game G = (MG,�G,PG) consists of a set of moves MG, a labeling
function �G : MG ! {P ,O} telling which player performed the last move,
and a set PG giving valid plays in G. In particular, G is a subset MAlt

G ,the
set of all s 2 M⇤

G such that 81 i |s|, �G(si) = P , if i is even, �G(si) = O,
if i is odd.

A strategy for a game G is a sequence � ✓ P even
G (i.e. � ✓ PG and for

any s 2 �, |s| is even) such that:

1. " 2 �;

2. If sab 2 �, then s 2 � (i.e. � is prefix closed);

3. If sab 2 � and sac 2 �, then b = c (i.e. � is deterministic).

Given games A = (MA,�A,PA) and B = (MB,�B,PB) we can construct
several new games:

52

1. The game A⌦ B is defined as

MA⌦B = MA+B

�A⌦B = [�A,�B]

PA⌦B = {s 2 MAlt
A⌦B | s � MA 2 PA, s � MB 2 PB}

2. The game A (B is defined as

MA(B = MA+B

�A(B = [�A,�B]

PA(B = {s 2 MAlt
A(B | s � MA 2 PA, s � MB 2 PB}

where �A is defined by �A(m) = P if �A(m) = O and �A(m) = O is
�A(m) = P .

3. The game 1 is defined as

M1 = ;
�1 = ;
P1 = {"}

4. The game A&B is defined as

MA&B = MA+B

�A&B = [�A,�B]

PA&B = {il(s) | s 2 PA} [{ir(t) | t 2 PB}

where il and ir are the standard inclusion maps.

Games and strategies constitute a category, the category G of games and
strategies. Objects are games, whereas an arrow � : A ! B is a strategy �
for A (B. Given strategies/arrows � : A ! B and ⌧ : B ! C, we define
⌧ � � : A ! C by

⌧ � � = {s � A,C | s 2 � | ⌧}
� | ⌧ = {s 2 (MA +MB +MC)

⇤ | s � A,B 2 �, s � B,C 2 ⌧}

53

The identity arrow idA : A ! A is given by the so-called copy-cat strategy
(A1 and A2 denote the different occurrences of A in A (A)

idA = {s 2 P even
A1(A2

| 8t even length prefix of s, t � A1 = t � A2}
The category G has more structure. In fact, it is monoidal with tensor

product of A and B given by A ⌦ B. Given strategies � : A ! B and
⌧ : A0 ! B0 one has the tensor strategy � ⌦ ⌧ : A⌦A0 ! B ⌦B0 defined by

� ⌦ ⌧ = {s 2 P even
A⌦A0(B⌦B0 | s � A,B 2 �, s � A0,B0 2 ⌧}

The tensor unit is given by the empty-game 1. It is also possible to prove
that A&B gives the cartesian product of A and B, that 1 is also the terminal
object of G and that A (B is an exponential with respect to ⌦.

Remark. A more interesting category than G, is the category of games
and winning strategies. These are defined by specifying which valid plays
in PG are winning for player P in the game G. All definitions given so
far can be transposed to the category of games and winning strategies (see
[4]). In [1] it is proved that games provide a sound and complete semantics
for multiplicative linear logic, where formulas are interpreted as games, and
proofs as winning strategies.

In [2] an order on games is defined by means of the full subgame
relation. That is, given games A and B we say that A is smaller than B,
written A B, if

MA ✓ MB

�A = �B � MA

PA = PB \MAlt
A

The order is then extended to strategies. Moreover, is a complete partial
order (CPO) on games, with least element 1. By the fixed point theorem on
CPOs [3], every equations of the form

X ⇠= G(X)

has a least solution, for G continuos. In particular, polynomial functors are
continuos, so that we have games µX.F (X) for any polynomial functor F .

Proving that G has maximal solutions to the above equations requires a
bit more work, but the reader can consult [73] for a deeper analysis of the
subject.

54

2.3 Logic

Having an equational theory for initial algebras, final coalgebras and the
monoidal and cartesian constructors, it is easy to define ⌫SMCCs as deductive
systems. More interesting at this point, is to extract a syntactic calculus for
⌫SMCCs, much in the same way as one can extract the (⌦, 1)-fragment of
linear logic from monoidal categories. In the remaining part of this section
we will define such logic and a calculus with arrow terms for that. The design
is simply based on providing a fully syntactic counterpart of ⌫SMCCs. The
resulting logic is simple, yet powerful and it can be studied independently
from its categorical counterpart, in the sense that it is an interesting logic per
se (as linear logic can be studied independently from monoidal categories).
The calculus we give is clearly category theory-based, but it will be the
base for an independent equivalent sequent calculus. This gives a standard
syntactical presentation of the logic. Finally, the equational system for arrows
provide a nice notion of equality between proofs.
Definition 23. Let us fixed a collection Prop whose elements are called
propositional variables. Let X be a special symbol (the idea is that we
have just one variable). Closed and open formulas (denoted by A and F
respectively) are simultaneously generated by the following grammars

A ::= p | 1 | > | A⌦ A | A& A | ⌫X.F | µX.F

F ::= X | A | F ⌦ F | F & F

where p is in Prop.
Roughly, a closed formula represents an object, whereas an open formula

and endofunctor.
Open formulas are open in just one variable X, which is a syntactic device

for the identity functor. The reason is that their intuitive meaning is that
of an endofunctor F : C ! C. We could have considered formulas with
arbitrary many free variables. The choice of working with a ‘single-variable’
grammar makes proofs and definitions much easier and natural then their
more general counterpart. Moreover, the single variable fragment is already
quite expressive. In any case, we will sketch the case for multiple variables
at the end of this chapter. Although we have a single variable, in order to
avoid syntactic problems we assume to have more variables so to be able to
use renaming of bound variables. For example, we regard the formula

µX.X & (A⌦ ⌫X.X ⌦ B)

55

to be
µX.X & (A⌦ ⌫Y .Y ⌦ B).

That is, we rename one of the bound variables X as Y . Indeed, each open
subformula contains at most one free variable, and it does not really matter
how we call it. This will be implicitly assumed from now on. We will also
assume several forms of variable conventions, thus assuming that in a formula
each operator µ and ⌫ bounds exactly one variable, and that all variables
bounded by different operators have different names.

Sometimes the notation µF and ⌫F will be used in place of µX.F and
⌫X.F , provided this does not create confusion.

Since open formulas contain at most one free variable, we can define
an operation that substitutes all occurrences of that variable with a given
(closed) formula.

Definition 24. Given an open formula F and a closed formula A, we define
F (A) (abbreviation of F [X := A]) by recursion on F as follows:

X(A) = A

C(A) = C

(F ⌦G)(A) = F (A)⌦G(A)

(F &G)(A) = F (A) &G(A)

As usual, we will often write FA for F (A). Indeed, F (A) is a closed formula.
We now give inference rules for the calculus. Such rules generate arrows

(or combinators) i.e. expressions of the form f : A ! B, for (closed) formulas
A and B. Rules are distinguished between axioms, i.e. zero-ary rules, and
proper rules. Axioms are given in Figure 2.1 whereas proper inference rules
are given in Figure 2.2.

Given an open formula F and an arrow f : A ! B, we can define a new
arrow F (f) : F (A) ! F (B). As for formulas, we will often write Ff for
F (f).

Definition 25. Let F be an open formula and f : A ! B. Define the arrow
F (f) : F (A) ! F (B) by recursion on F as follows:

X(f) = f

C(f) = idC

(F ⌦G)(f) = Ff ⌦Gf

(F &G)(f) = Ff &Gf

56

idA : A ! A !A : A ! >

pA,B : A&B ! A qA,B : A&B ! B

aA,B,C : A⌦ (B ⌦ C) ! (A⌦ B)⌦ C a�1
A,B,C : (A⌦ B)⌦ C ! A⌦ (B ⌦ C)

lA : 1⌦ A ! A l�1
A : A ! 1⌦ A

rA : A⌦ 1 ! A r�1
A : A ! A⌦ 1

sA,B : A⌦ B ! B ⌦ A s�1
A,B : B ⌦ A ! A⌦ B

out : ⌫F ! F (⌫F) in : F (µF) ! µF

Figure 2.1: Basic arrows for ⌫SMCCs.

f : C ! A g : C ! B
hf , gi : C ! A&B

f : A ! C g : B ! D
f ⌦ g : A⌦ B ! C ⌦D

f : A ! B g : B ! C
g � f : A ! C

f : A ! F (A)

LfM : A ! ⌫F

f : F (A) ! A

JfK : µF ! A

Figure 2.2: Arrows-generating rules for ⌫SMCCs.

57

The above definition allows us to prove the admissibility of the following
rule.

Proposition 2. The rule

f : A ! B
Ff : FA ! FB

is admissible.

Proof. The proof is by induction on F . If F is X, then the thesis trivially
follows. If F is the constant functor C, then Cf is idC : C ! C which is an
axiom. If F is G⌦H, then we have

(G⌦H)(A) = GA⌦HA

(G⌦H)(f) = Gf ⌦ Ff

From f : A ! B, by induction hypothesis on G and H we obtain

Gf : GA ! GB

Hf : HA ! HB

And thus, by the bifunctoriality rule for ⌦,

Gf ⌦Hf : GA⌦HA ! GB ⌦HB.

If F is G&H we proceed as above. ⌅

We can now define an equational theory for arrows3. This is defined
by means of equations for SMCCs (defined as deductive systems) with in
addition equational laws in Figure 2.3.

We now state and prove some useful syntactic lemmas. These will give
functoriality of open formulas.

Lemma 4. The following rule is admissible.

f = g
F (f) = F (g)

3There is an overloading in the notation. The equality symbol = is used to denote both
standard syntactic/definitional equality, as e.g. in statements like ‘consider the functor
F (X) = A⌦X’, and the notion of equality for arrows defined in Figure 2.3. The context
should avoid confusion between these two usage of =.

58

p � h = f g � h
h = hf , gi

f : A ! >
f = !A

f = f 0 g = g0

f ⌦ f 0 = g ⌦ g0
F (g) � f = out � g

g = LfM
F (g) � in = f � g

g = JfK

Figure 2.3: Equational laws for ⌫SMCCs.

Proof. The proof is an easy induction on F . For F = X we are done by
hypothesis. For F constant functor C we have that both Cf and Cg are
equal idC . Suppose F = G⌦H. Then we have

(G⌦H)(f) = Gf ⌦Hf

= Gg ⌦Hg

= (G⌦H)(g)

where in the second line we used the induction hypothesis. The case for
F = G&H is similar. ⌅
Remark. An examination of rules for deriving arrows/combinators in the
above system, shows that we are essentially dealing with four constructors:
⌦, h_,_i, L_M and J_K. Clearly, we would like our notion of equality = for
arrows to be a congruence with respect to these constructors. This amounts
to require the admissibility of the following rules

f = f 0 g = g0

hf , gi = hf 0, g0i
f = f 0 g = g0

f ⌦ g = f 0 ⌦ g0
f = g

LfM = LgM
f = g

JfK = JgK
We already proved the first one, whereas the second is explicitly given in

the calculus. The remaining two rules can be easily proved, using the fact the
L_M and J_K give universal arrows. As an example, we prove that if f = g,
then LfM = LgM. Applying the universality rule and the hypothesis f = g we
obtain

F LgM � g = out � LgM
F LgM � f = out � LgM

LfM = LgM

59

The equation F LgM � g = out � LgM then follows from the universality rule
for L_M, with the axiom LgM = LgM.

Lemma 5. Given arrows f : A ! C and g : B ! D, define

f & g = hf � pA,B, g � qA,Bi : A&B ! C &D

Then, the following rule is admissible

f : A ! C g : B ! D
f & g : A&B ! C &D

Moreover, we have the following equations

(f & g) � (f 0 � g0) = (f � f 0) & (g & g0)

idA & idB = idA&B

Proof. Admissibility of the rule is straightforward. Equations can easily
proved by iterated application of the rule for universality of hf , gi. ⌅

We now define a notion of composition for open formulas.

Definition 26. Given open formulas F and G we define the open formula
F �G by recursion on F as follows:

X �G = G

C �G = C

(H ⌦K) �G = (H �G)⌦ (K �G)

(H &K) �G = (H �G) & (K �G)

It is easy to see that F � G is indeed an open formula and that for any
formula A and arrow f we have

(F �G)(A) = F (G(A))

(F �G)(f) = F (G(f))

As a consequence, we see that � is indeed a composition4.
4In the sense that

F � (G �H) = (F �G) �H
and

F �X = F = X � F
.

60

Proposition 3. Open formulas are functorial. That is, let F be an open
formula, A and object and f : A ! B and g : B ! A arrows. Then we have
the following equations

F (idA) = idFA

F (g � f) = Fg � Ff

Proof. The proof is by induction on F .

1. Suppose F = X. Then we have

X(idA) = idA

= idX(A)

X(g � f) = g � f
= Xg �Xf

2. Suppose F = C. Then we have

C(idA) = idC

= idC(A)

C(g � f) = idC

= idC � idC
= Cg � Cf

3. Suppose F = G⌦H. Then we have

(G⌦H)(idA) = G(idA)⌦H(idA)

= idGA ⌦ idHA

= idGA⌦HA

= id(G⌦H)(A)

(G⌦H)(g � f) = G(g � f)⌦H(g � f)
= (Gg �Gf)⌦ (Hg �Hf)

= (Gg ⌦Hg) � (Gf ⌦Hf)

= (G⌦H)(g) � (G⌦H)(f)

61

where we used bifunctoriality equations.

4. If F = G & H we proceed as above, since we proved bifunctoriality
equations for &.

⌅

The system given in Figure 2.1 and Figure 2.2 has few rules and several
axioms (i.e. basic arrows). We can design an arrow-free system in which
axioms are converted into proper inference rules. Such system gives an al-
ternative presentation of the logic, and it will be the base of the sequent
calculus we will study. The system is given in Figure 2.4.

A ! A
A ! B B ! C

A ! C

A ! C B ! D
A⌦ B ! C ⌦D

A ! B ⌦ C
A ! C ⌦ B

D ! (A⌦ B)⌦ C

D ! A⌦ (B ⌦ C)

A ! 1⌦ B
A ! B

A ! B ⌦ 1
A ! B

A ! > C ! A C ! B
C ! A&B

F (⌫F) ! A
⌫F ! A

A ! FA
A ! ⌫F

F (A) ! A
µF ! A

A ! F (µF)
A ! µF

Figure 2.4: Logical system for ⌫SMCCs.

In the rest of this chapter we refer to the proof system given in Figure
2.1 and Figure 2.2 as the ‘combinatorial system’, and to the proof system
given in Figure 2.4 as the ‘logical system’. The logical system is ‘arrow-free’:

62

however, we can recover arrows for it via suitable translations between the
two systems. In fact, we have the following

Proposition 4. The logical and combinatorial systems are equivalent in the
following sense. If f : A ! B is provable in the combinatorial system, then
A ! B is provable in the logical system. Viceversa, if A ! B is provable
in the logical system, then there exists an arrow f such that f : A ! B is
provable in the combinatorial system.

Proof. We already discussed the equivalence of the two systems for the
non-algebra/coalgebra part. Note that the two systems share two alge-
bra/coalgebra rules, namely

f : A ! F (A)

LfM : A ! ⌫F
A ! F (A)
A ! ⌫F

f : F (A) ! A

JfK : µF ! A
F (A) ! A
µF ! A

It remains to prove that the other two algebra/coalgebra rules of the logi-
cal system are admissible in the combinatorial system, and that the axioms
⌫F ! F (⌫F) and F (µF) ! µF are derivable in the logical system. The
former is schematically proved as follows.

F (⌫F) ! A
⌫F ! A

out : ⌫F ! F (⌫F) f : F (⌫F) ! A
f � out : ⌫F ! A

A ! F (µF)
A ! µF

f : A ! F (µF) in : F (µF) ! µF
in � f : A ! µF

For the latter, consider the following derivation.

F (⌫F) ! F (⌫F)

⌫F ! F (⌫F)

F (µF) ! F (µF)

F (µF) ! µF

⌅

The above proof gives also a way to introduce new arrows, for example
we could consider the rules

63

f : F (⌫F) ! A

unfold(f) : ⌫F ! A

f : A ! F (µF)

fold(f) : A ! µF

with

unfold(f) = f � out
fold(f) = in � f

Moreover, the equational theory associated with the combinatorial system
gives an equational theory for proofs in the logical system. Consider, e.g. a
principal cut for the new rules, i.e. a situation of the form (we look only at
the ‘⌫ case’, the µ one is dual)

A ! F (A)
A ! ⌫F

F (⌫F) ! B
⌫F ! B

A ! B

It is natural to transform the above derivation as follows

A ! F (A)

...
F (A) ! F (⌫F) F (⌫F) ! B

F (A) ! B
A ! B

Clearly, a cut elimination procedure based on the above transformation in
general will not terminate. The problem of finding normalizing cut elimina-
tion procedure for fixed point logics is an hard one, and most of the proposed
solutions require to leave standard (i.e. finite) proof trees in favor of cyclic
or infinite structures, see e.g. [80, 92, 102, 103]. Nevertheless, categorical
equations give a natural notion of equality, although it does not seem to
have nice algorithmic properties.

Assigning arrows to the above proofs we obtain

f : A ! F (A)

LfM : A ! ⌫F

g : F (⌫F) ! B

unfold(g) : ⌫F ! B

unfold(g) � LfM : A ! B

64

and

f : A ! F (A)

F LfM : F (A) ! F (⌫F) g : F (⌫F) ! B

g � F LfM : F (A) ! B

g � F LfM � f : A ! B

Therefore, we would like the equation

unfold(f) � LfM = g � F LfM � f

to be provable in the categorical equational system. By definition of unfold(_)
the above equations becomes

g � out � LfM = g � F LfM � f

which holds by very definition of final coalgebra.
Another interesting equality can be proved for the so-called identity ex-

pansion (which in general does not hold for fixed point logics [80]). In log-
ical terms, identity expansions are proofs transformations expanding every
instance of the identity axioms for compound formulas in a proof of the
same sequent having only atomic instances of the identity axioms. Under
the Curry-Howard correspondence identity expansions correspond to the so-
called ⌘-expansion rules [53, 57, 96, 106]. In the logical system above, for
example we have the following transformation

A&B ! A&B 7! A ! A B ! B
A&B ! A&B

where we use bifunctoriality of product. Categorical equations identify the
two above derivations. Indeed, such identification corresponds to the equa-
tion

idA&B = idA & idB

which is trivially given by bifunctoriality of &. In fixed point logics, such
transformations are quite problematic, since in general identity axioms like
⌫F ! ⌫F do not reduce to derivations with identity axiom on simpler for-
mulas. For example, we have the expansion

⌫F ! ⌫F 7!
F (⌫F) ! F (⌫F)

⌫F ! F (⌫F)
⌫F ! ⌫F

65

Still, we would like to identify the two above proofs. This is equivalent to
prove the arrow equality

id⌫F = Lunfold(idF (⌫F))M

Such equality is provable according the categorical equations as follows

Lunfold(idF (⌫F))M = LidF (⌫F) � outM
= LoutM
= id⌫F

where LoutM = id⌫F holds by the universality rule for L_M. Note that another
possible expansion of ⌫F ! ⌫F is

F (⌫F) ! F (⌫F)

⌫F ! F (⌫F)

F (⌫F) ! F 2(⌫F)

F (⌫F) ! ⌫F
⌫F ! ⌫F

This gives the arrow

unfold(LF (unfold(idF (⌫F)))M)

which can be rewritten as

unfold(LF (unfold(idF (⌫F)))M) = LF (unfold(idF (⌫F)))M � out
= LF (idF (⌫F) � out)M � out
= LF (idF (⌫F)) � F (out)M � out
= LidF 2(⌫F) � F (out)M � out
= LF (out)M � out

We now ask whether or not the two expansions of ⌫F ! ⌫F are equal. This
amounts to prove the equation

id⌫F = LF (out)M � out
This can be proved using the fact that id⌫F = LoutM, and thus we can use
universality of L_M. This requires to prove

out � LF (out)M � out = F (LF (out)M � out) � out

66

i.e.
out � LF (out)M � out = F LF (out)M � F (out) � out

which holds since universality of LF (out)M gives

F LF (out)M � F (out) = out � LF (out)M.

Finally, we observe that our calculus is trivially complete with respect to
the obvious categorical semantics. In fact, we have the following

Proposition 5. Let Comb the category of closed formulas and combinators.
That is closed formulas are objects and arrows are equivalence classes of
combinators f : A ! B modulo = (defined by the equational theory of
combinators). Then Comb is a ⌫SMCC.

Proof. Standard calculations show that Comb is a SMCC, with tensor ⌦,
unit 1, product & and terminal object >. Moreover, it is easy to prove that
polynomial functors over Comb are open formulas (we already proved their
functoriality), and for a polynomial functor F , µX.F and ⌫X.F give the
initial algebra of F and the final coalgebra of F respectively. ⌅

Clearly, the combinatorial calculus can be interpreted in ⌫SMCC, with
open formulas interpreted as polynomial functors.

The framework defined in this chapter allows to give new explanations
and results concerning exponential modalities. These will be formulated in
the poset category5 given by the logical system, which provides a proof-
theoretical framework expressed in categorical terms. In the next chapter we
introduce a sequent calculus equivalent to the logical system defined above.
We use the former to introduce exponentials and to prove that we can recover
exponential modalities as specific fixed points. The relationship between
these fixed points will be then studied further, using ideas from category
theory.

We conclude this chapter with a brief digression concerning open formulas
with arbitrary many free variables.

5Given a category C, the poset category associated to C is the category whose objects
are those of C and, given two objects A and B, there is at most one arrow from A to B,
depending whether there exists an arrow f : A ! B in C.

67

Digression: Non-Restricted Fixed Point Calcu-

lus

We defined open formulas with the goal of obtaining a syntactic definition
of polynomial functors. These are, in particular, endofunctors, i.e. functors
from a category C in itself. As a consequence, we had to require open formulas
to contain at most one free variable. However, from a syntactical perspective
it seems more natural to consider a countable set Var of variables, and to
define open formulas via the grammar

F ::= A | X | F ⌦ F | F & F | µX.F | ⌫X.F

where A is a closed formula, and X 2 Var. Therefore, expressions like

µX.(X & (⌫Y .X ⌦ Y))

are well-formed formulas.
Allowing open formulas to contain arbitrary many free variables general-

izes the class of polynomial functors to the class of n-ary polynomial functors.
These are functors F : Cn ! C, for arbitrary n � 0, which are polynomial in
each component (much in the same way as a bifunctor is functorial in each
component6. That is, given F (X1, . . . ,Xn) : Cn ! C we have that for any
i n and C1, . . . ,Ci�1,Ci+1, . . . ,Cn objects of C,

F (C1, . . . ,Ci�1,X,Ci+1, . . . ,Cn) : C ! C

is a polynomial functor.
However, it is not clear whether, given a functor F (X,X1, . . . ,Xn) : Cn+1 ! C,

both

µX.F (X,X1, . . . ,Xn) : Cn ! C
⌫X.F (X,X1, . . . ,Xn) : Cn ! C

are indeed functors. Actually, it is not even clear how to define their action
on arrows. This is problematic, since we introduced formulas of the form
⌘X.F (X,X1, . . . ,Xn) (for ⌘ 2 {µ, ⌫}) but we do not have a semantics for

6In fact, taking n = 1 we obtain polynomial functors, taking n = 2 we have polynomial
bifunctros etc...).

68

them. We now sketch those results and definitions necessary to prove that
we indeed have the above functors.

Recall that given categories C and D, we can define the functor category
DC whose objects are functors from C to D, and whose arrows are natu-
ral transformations between such functors. The functor category DC is the
exponential object of C and D (see e.g. [11] for definitions) in the cate-
gory Cat of (small) categories and functors. This makes Cat cartesian closed
[10, 11, 16, 71], with binary products given by the product ⇥ of categories
(see Definition 12), terminal object given by the one-object category7, and
exponentials given by functor categories. As a consequence, we can currying
a functor, i.e. we can uniquely associate to a functor

F : C1 ⇥ · · ·⇥ Cn ⇥ C ! D
its transpose

�(F) : C1 ⇥ · · ·⇥ Cn ! DC

In particular, given a functor

F (X1, . . . ,Xn,X) : C1 ⇥ · · ·⇥ Cn ⇥ C ! D
we can transpose F to (we write F for �(F))

F (X1, . . . ,Xn,X) : C1 ⇥ · · ·⇥ Cn ! DC

Given objects Ci in Ci and arrows fi : Ci ! C 0
i in Ci (for i n), we have

functors

F (C1, . . . ,Cn,X) : C ! D
F (C 0

1, . . . ,C
0
n,X) : C ! D

defined by parametrization, that is e.g.

F (C1, . . . ,Cn,X)(C) = F (C1, . . . ,Cn,C)

F (C1, . . . ,Cn,X)(f) = F (idC1 , . . . , idCn , f)

Moreover, we have a natural transformation

F (f1, . . . , fn,X) : F (C1, . . . ,Cn,X)) F (C 0
1, . . . ,C

0
n,X)

7The one-object category 1 has only one object, say ⇤, and a unique arrow id : ⇤ ! ⇤.

69

defined for an object C in C by the arrow

F (f1, . . . , fn, idC) : F (C1, . . . ,Cn,C) ! F (C 0
1, . . . ,C

0
n,C)

In what follows it is useful to have a parametrized version of Lambek’s
Lemma (Lemma 1)

Lemma 6. Let F : Cn+1 ! C be a functor. Currying we have F : Cn ! CC.
Thus, given C̄ = (C1, . . . ,Cn) object in Cn, we have a functor FC̄ : C ! C.
Let µFC̄ and ⌫FC̄ the initial algebra and final coalgebra for that functor,
respectively (assume it exists). Then

FC̄(µFC̄) ⇠= µFC̄

FC̄(⌫FC̄) ⇠= ⌫FC̄ .

We can now prove the main lemma needed in this section, which essen-
tially proves semantics to open formulas of the form µX.F (X,X1, . . . ,Xn)
and ⌫X.F (X,X1, . . . ,Xn).

Lemma 7. Let F : Cn+1 ! C be a functor. Then, currying, we obtain
F : Cn ! CC, so that for any tuples C̄ = (C1, . . . ,Cn), D̄ = (D1, . . . ,Dn) and
f̄ = (C1

f1�! D1, . . . ,Cn
fn�! Dn) in Cn, we have functors FC̄ ,FD̄ : C ! C

and a natural transformation Ff̄ : FC̄) FD̄ defined as above (i.e. by
parametrization).
Moreover, suppose C has initial algebras for FC̄ and FD̄. Then, f̄ induces a
unique arrow µf̄ : µFC̄ ! µFD̄ such that we can define a functor µX.F : Cn ! C
such that

µX.F (C̄) = µFC̄

µX.F (f̄) = µf̄

Proof. Consider the initial algebras

c : FC̄(µFC̄) ! µFC̄

d : FD̄(µFD̄) ! µFD̄

given by hypothesis. Look at the natural transformation Ff̄ : FC̄) FD̄ and
consider

Ff̄ (µFD̄) : FC̄(µFD̄) ! FD̄(µFD̄).

70

Post-composing with d we obtain an FC̄ algebra

d � Ff̄ (µFD̄) : FC̄(µFD̄) ! µFD̄.

Using initiality we obtain a (unique) arrow µf̄ such that the above diagram
commutes

FC̄(µFC̄)
FC̄(µf̄) //

c

✏✏

FC̄(µFD̄)

d�Ff̄ (µFD̄)

✏✏
µFC̄

µf̄
// µFD̄

We have now to prove that we indeed have a functor. Suppose C̄ f̄�! D̄
ḡ�! Ē.

We prove µ(ḡ � f̄) = µḡ � µf̄ . The following are their ‘defining’ diagrams:

FC̄(µFC̄)
FC̄(µf̄) //

c

✏✏

FC̄(µFD̄)

d�Ff̄ (µFD̄)

✏✏
µFC̄

µf̄
// µFD̄

FD̄(µFD̄)
FD̄(µḡ) //

d

✏✏

FD̄(µFĒ)

e�Fḡ(µFĒ)

✏✏
µFD̄ µḡ

// µFĒ

FC̄(µFC̄)
FC̄(µ(ḡ�f̄)) //

c

✏✏

FC̄(µFĒ)

e�Fḡ�f̄ (µFĒ)

✏✏
µFC̄

µ(ḡ�f̄)
// µFĒ

We prove that µḡ�µf̄ makes the latter diagram commute. By uniqueness
of µ(ḡ � f̄) we will have the thesis. We have to prove

e � Fḡ�f̄ (µFĒ) � FC̄(µḡ � µf̄) = µḡ � µf̄ � c.

71

Now, Fḡ�f̄ : FC̄) FĒ is a natural transformation. Moreover, its very defini-
tion is

Fḡ�f̄ = F (ḡ � f̄).
Since F : Cn ! CC is a functor, we have functoriality in each arguments.
This gives

Fḡ�f̄ = Fḡ � Ff̄

which is the composition of two natural transformations. The latter is defined
componentwise8 so that we have

Fḡ�f̄ (µFĒ) = Fḡ(µFĒ) � Ff̄ (µFĒ).

Similarly, FC̄ : C ! C is a functor, hence

FC̄(µḡ � µf̄) = FC̄(µḡ) � FC̄(µf̄).

Putting these equalities together we see that to prove the thesis it is sufficient
to prove

e � Fḡ(µFĒ) � Ff̄ (µFĒ) � FC̄(µḡ) � FC̄(µf̄) = µḡ � µf̄ � c.
which follows by chasing the following diagram:

FC̄(µFC̄)
FC̄(µf̄) //

c

✏✏

FC̄(µFD̄)

Ff̄ (µFD̄)

✏✏

FC̄(µḡ) // FC̄(µFĒ)

Ff̄ (µFĒ)

✏✏
FD̄(µFD̄)

FD̄(µḡ) //

d

✏✏

FD̄(µFĒ)

e�Fḡ(µFĒ)

✏✏
µFC̄

µf̄
// µFD̄ µḡ

// µFĒ

8Recall that for ↵ : F) G, ⌘ : G ! H natural transformations, their composite ⌘ � ↵
is defined for any object C by

(⌘ � ↵)(C) = ⌘(C) � ↵(C).

72

We now prove that
µidC̄ = idµFC̄

Again, µidC̄ is the unique arrow that makes the following diagram commute

FC̄(µFC̄)
FC̄(µidC̄) //

c

✏✏

FC̄(µFC̄)

c�FidC̄
(µFC̄)

✏✏
µFC̄ µidC̄

// µFC̄

so it is enough to prove that idµFC̄
makes the diagram commute as well.

Recall that F : Cn ! CC. Thus, FidC̄ = 1FC̄
, where 1F : F) F is the

identity natural transformation defined by 1F (X) = idF (X). This gives

FidC̄ (µFC̄) = idFC̄(µFC̄).

Similarly, by functoriality

FC̄(idµFC̄
) = idFC̄(µFC̄).

We thus obtain

c � FidC̄ (µFC̄) � FC̄(idµFC̄
) = c � idFC̄(µFC̄) � idFC̄(µFC̄)

= c

= idµFC̄
� c

i.e. the desired result.
⌅

A similar result can be proved for ⌫X.F .
We can now interpret a formula F with FV (F) = {X1, . . . ,Xn} as a

functor JF K : Cn ! C. We do that by recursion on F .

1. JXK : C ! C is the identity functor.

2. JCK is the constant unit functor.

73

3. JF ⌦GK is defined as follows. Let

FV (F) = {X1, . . . ,Xn}
FV (G) = {Y1, . . . ,Ym}

so that
FV (F ⌦G) = {X1, . . . ,Xn,Y1, . . . ,Ym}

(this is the most general cases; cases for Xi = Yj for some i, j are special
cases of the above one). Then JF ⌦GK : Cn+m ! C is defined as follows
(in order to have a lighter exposition, we overload the notation and
write F ⌦G for JF ⌦GK):

• On objects (C1, . . . ,Cn,D1, . . . ,Dm) we have

(F⌦G)(C1, . . . ,Cn,D1, . . . ,Dm) = F (C1, . . . ,Cn)⌦G(D1, . . . ,Dm).

• On arrows fi : Ci ! C 0
i and gj : Dj ! D0

j, for i n, j m, we
have

(F ⌦G)(fi, . . . , fn, gi, . . . , gn) = F (f1, . . . , fn)⌦G(g1, . . . , gn).

It is not hard to see that F ⌦G is a functor. We prove that

(F ⌦G)(f 0
1 � f1, . . . , f 0

n � fn, g01 � g1, . . . , g0m � gm)

=

(F ⌦G)(f 0
1, . . . , f

0
n, g

0
1, . . . , g

0
m) � (F ⌦G)(f1, . . . , fn, g1, . . . , gm)

for suitable arrows fi, f 0
i and gj, g0j.

Let us write f̄ and ḡ for f1, . . . , fn and g1, . . . , gm. Similarly, write f̄ 0

and ḡ0 for f 0
1, . . . , f

0
n and g01, . . . , g

0
m. Finally write, f 0 � f and g0 � g for

f 0
1 � f1, . . . , f 0

n � fn and g01 � g1, . . . , g0m � gm.
We then have to prove

(F ⌦G)(f 0 � f , g0 � g) = (F ⌦G)(f̄ 0, ḡ0) � (F ⌦G)(f̄ , ḡ)

Indeed we have

74

(F ⌦G)(f 0 � f , g0 � g) = F (f 0 � f)⌦G(g0 � g)
= (F f̄ 0 � F f̄)⌦ (Gḡ0 �Gḡ)

= (F f̄ 0 ⌦Gḡ0) � (F f̄ ⌦Gḡ)

= (F ⌦G)(f̄ 0, ḡ0) � (F ⌦G)(f̄ , ḡ)

4. The case for F &G is essentially the same as F ⌦G.

5. Consider µX.F . Suppose FV (F) = {X1, . . . ,Xn,X} so that, by in-
duction hypothesis JF K : Cn+1 ! C functor. Then define

JµX.F K = µX.JF K

according to Lemma 7.

6. The case for ⌫X.F is as the one for µX.F , with the corresponding
lemma formulated for final coalgebras instead of initial algebras.

This shows that we can generalize open formulas to have more than a
single free variable. The corresponding categorical structure is not concep-
tually harder than ⌫SMCCs, but proofs are longer and more technical. For
this reason we keep working with a single-variable fragment of the logic or,
semantically, with polynomial functors. As already stressed, this fragment
is simple, has a natural semantical interpretation and it is quite expressive.
In particular, it is enough expressive to encode exponential modalities, as we
will see in the next chapter.

75

Chapter 3

Sequent Calculus and Weaker

Modalities

In previous chapter we defined ⌫SMCCs and designed a syntactic calculus
and a logical system for them. We call the resulting logic ⌫LL (for ⌫-linear
logic). We gave a sound and complete calculus for ⌫LL in Lambek’s style,
which we refer to as the ‘logical calculus’. In the first part of this chapter we
define a sequent calculus equivalent to the logical calculus given in previous
chapter. As a consequence, the sequent calculus is sound and complete with
respect to the class of ⌫SMCCs. We then give a syntactic analysis of the
exponential modality !. An exponential formula !A is encoded in the system
as

⌫X.1 & A& (X ⌦X)

This observation allows to recognize how exponential(s)1 over A are linked
with solutions to the equation

X ⇠= 1 & A& (X ⌦X)

which can be obtained in a surprisingly natural and intuitive way. With the
same naturality one obtains two other equations, namely

X ⇠= 1 & A

X ⇠= A& (X ⌦X)

1The exponential ! is in fact non-canonical. This will be investigated in the second part
of this chapter.

76

These are clearly related to the exponential equation, and we will show that
they are the defining equations for relevant and affine modalities [86, 87, 109].
Roughly, relevant modalities are weaker forms of exponentials that allow to
restore weakening in a controlled form, but not contraction. Contraction
can be explicitly added to the system, and the resulting logic is the so-
called non-distributive relevance logic [86, 87]. Adding distributivity gives
usual systems of relevance logic [9, 74, 87]. Non-distributive relevant systems
without contraction are also known as relevant linear logics [109]. The same
can be done with contraction. Affine linear logic [8, 69] is nothing but linear
logic with an exponential modality (called affine modality) that allows to
restore contraction, but not weakening2. To avoid terminological confusion,
we speak of weakening modality for the modality !W that restores weakening
in a controlled form (i.e. relevant modality), of contraction modality for
the modality !C that restores contraction in a controlled form (i.e. affine
modality) and of exponential modality for the usual (linear logic) exponential
modality ! (in this chapter we deal only with the modality !, and not with its
dual ?, so that referring to ! as the‘exponential modality’ should not create
any confusion).

The link between exponential, weakening and contraction modalities should
be evident at this point: the former can be though has a kind of composi-
tion of the latter two. It is then natural to ask whether this intuition can
be made formal. In [67] exponential, weakening and contraction modali-
ties are deeply investigated from a categorical perspective. These modali-
ties are studied via the notion of comonad (see e.g. [10, 11]), and trough
the requirement of specific conditions, a decomposition theorem stating that
the exponential modality can the obtained as composition of weakening and
contraction modality is proved. Moreover, such composition commutes. Al-
though mathematically elegant, the framework used is quite technical and
seems to be too far from intuitions (some conditions required are justified
only from a technical perspective). The analysis we propose in this thesis
seems to be simpler but still informative. In fact, as already said, we can
recover exponential, weakening and contraction modalities as final coalgebras
of specific functors. More importantly, we prove a decomposition theorem
stating that the functor associated to the exponential modality is the result

2The reader can consult [86, 87] for an introduction to substrucutural logics, covering
specifically linear and relevant logic. In [109] these logics are studied and compared by
means of their associated type systems.

77

of a composition-like operation between functors associated to the weaken-
ing and contraction modalities. Moreover, such result continues to hold for
weaker versions of these modalities. These results cannot be observed in a
comonadic approach, since this has essentially no modularity. The functor
associated with the exponential modality can be divided in three parts: one
for weakening, one for contraction and one for dereliction (see below). Such
modularity allows us to ‘decompose’ it, so that we can have a finer analy-
sis of its properties. In particular, one can observe that apparently there is
no link between the functor associated to the exponential modality and the
promotion rule3

!� ` A
!� ` !A

This rule imposes the strong restriction that the context � has to be ex-
ponentially bound (i.e. any formula in � has to be under the scope of the
exponential !). Promotion, together with dereliction

�,A ` B
�, !A ` B

make the exponential modality an S4 modality [28].
As already said, dereliction can be recognized as a part of the functor

associated to the exponential modality. Promotion turns out to be satisfied
if one takes the final coalgebra for that functor, but the author was not able to
recognize any structural link between such rule and the functor associated to
the exponential modality. This observation suggests that one could consider
non-S4 modalities for recovering weakening and contraction, and still have
a natural mathematical interpretation for them. All these results will be
proved in the second part of the chapter.

3.1 Sequent Calculus

We now introduce a sequent system for ⌫LL, and encode exponential, weaken-
ing and contraction modalities in the system, thus showing how exponential,
relevant and affine (⌦, &)-fragment of linear logic are subsumed by ⌫LL.

3The same holds for weakening and contraction modalities, and their associated
functors.

78

Sequents are defined as usual as expressions of the form � ` A. We assume
the context � to be a list, that is we assume its constructor comma ‘,’ to be
associative. We can in fact consider rules in the calculus giving associativity.
This assumption will make proofs lighter, and it is in line with Mac Lane’s
Theorem (see Chapter 1). De facto, although we will explicitly state an
exchange rule (which gives commutativity of the comma constructor) we will
use it implicitly, regarding contexts to be multisets of formulas. Again, this
is in line with Mac Lane’s Theorem.

The proof system is given in Figure 3.1, and we refer to it as the ‘sequent
calculus’ (so that we have a combinatorial, logical and sequent calculus). A
long but easy proof by induction on the structure of the derivations gives the
following

Proposition 6. The sequent and logical calculi are equivalent.

As a consequence, the sequent and combinatorial calculi are equivalent
too. Therefore, the sequent calculus is sound and complete with respect to
the class of ⌫SMCCs.

We now introduce the standard exponential modality !. To do so we first
enrich the (⌦, &)-fragment of linear logic with an S4 modality 2. The S4
rules are known in the linear logic literature as dereliction and promotion.

Formulas of the (⌦, &,2)-linear logic are constructed by adding the con-
struction 2A to the grammar of (⌦, &)-linear logic. That is, formulas are
generated by the following grammar:

A ::= a | 1 | > | A⌦ A | A& A | 2A

where a 2 Prop, for a given set Prop of atomic propositions.
Moreover, we enrich the sequent calculus with the rules given in Figure

3.2. These rules are called promoition and dereliction, respectively. In this
case we say that 2 is an S4 modality.

The exponential modality ! is introduced to recover weakening and con-
traction in a controlled manner. Rules governing ! are obtained by adding to
promotion and dereliction the rules given in Figure 4.2, which we call modal
weakening and modal contraction respectively.

Adding to promotion and dereliction only the modal weakening rule gives
rise to a weakening (i.e. relevant) modality, whereas adding only the modal
contraction rule defines a contraction (i.e. affine) modality. As we will see
both these modalities can be encoded in ⌫LL. Moreover, as it should be clear

79

Structural Rules

�,A,B ` C
�,B,A ` C

A ` A
� ` A A,� ` B

�,� ` B

Multiplicative Rules

� ` A
�, 1 ` A ` 1

�,A,B ` C
�,A⌦ B ` C

� ` A � ` B
�,� ` A⌦ B

Additive Rules

Ai,� ` B
A1 & A2,� ` B

� ` A � ` B
� ` A&B

� ` >
Fixed Point Rules

F (A) ` A
µX.F ` A

� ` F (µX.F)
� ` µX.F

�,F (⌫X.F) ` A
�, ⌫X.F ` A

A ` F (A)
A ` ⌫X.F

Figure 3.1: Sequent calculus for ⌫LL.

80

2� ` A
2� ` 2A

�,A ` B
�,2A ` B

Figure 3.2: Sequent calculus for ⌫SMCCs.

� ` B
�, !A ` B

�, !A, !A ` B
�, !A ` B

Figure 3.3: Modal weakening and modal contraction.

now, exponential, weakening and contraction modalities (which we refer to
as structural modalities) are strongly related, since the former, in a way, sub-
sumes the latter two. From a proof-theoretical perspective, their relationship
can be pictorially summarized as follows

2

!W

>>

!C

``

!

`` ??

where 2 stands for an S4 modality, and an arrow X ! Y means that X
satisfies the rules governing Y .

We first show that we can recover the exponential modality !A as ⌫X.1&A&(X⌦X).
We then recover both weakening and contraction modalities.

Lemma 8. Define !A by

⌫X.1 & A& (X ⌦X).

Then we have that weakening, dereliction and contraction

� ` B
�, !A ` B

�,A ` B
�, !A ` B

�, !A, !A ` B
�, !A ` B

81

are admissible

Proof. We show admissibility of the above three rules.

1. Suppose we have � ` B. Construct

� ` B
�, 1 ` B

�, 1 & A ` B
�, 1 & A& (!A⌦ !A) ` B

�, ⌫X.1 & A& (X ⌦X) ` B

2. Suppose we have �,A ` B. Construct

�,A ` B
�, 1 & A ` B

�, 1 & A& (!A⌦ !A) ` B

�, ⌫X.1 & A& (X ⌦X) ` B

3. Suppose to have �, !A, !A ` B. Construct

�, !A, !A ` B
�, !A⌦ !A ` B

�,A& (!A⌦ !A) ` B

�, 1 & A& (!A⌦ !A) ` B

�, ⌫X.1 & A& (X ⌦X) ` B

⌅

Remark. Note that in the above derivations we just used the fact that ⌫X.F
is a fixed point of F , and not that ⌫X.F is the greatest fixed point of F .
This means that to recover weakening, contraction and dereliction, any fixed
point of 1 & A & (X ⌦ X) is sufficient. The fact that ⌫X.F is the greatest
fixed point is needed to recover promotion. We will make this point more
precise in the next section.

Lemma 9. The sequents !A⌦ !B ` !(A&B) is provable

Proof. First construct

82

!A⌦ !B ` 1 !A⌦ !B ` A&B !A⌦ !B ` ((!A⌦ !B)⌦ (!A⌦ !B))

!A⌦ !B ` 1 & (A&B) & ((!A⌦ !B)⌦ (!A⌦ !B))

!A⌦ !B ` ⌫X.1 & (A&B) & (X ⌦X)

We prove the leaf sequents.

1. Construct

` 1
!A ` 1

!A, !B ` 1
!A⌦ !B ` 1

where we used previous lemma (weakening).

2. Construct

!A ` A
!A, !B ` A
!A⌦ !B ` A

!B ` B
!A, !B ` B
!A⌦ !B ` B

!A⌦ !B ` A&B

where, again, we used previous lemma (weakening). The sequent !A ` A
is provable too:

A ` A
A& (!A⌦ !A) ` A

1 & A& (!A⌦ !A) ` A

⌫X.1 & A& (X ⌦X) ` A

3. Construct

!A ` !A !B ` !B
!A, !B ` !A⌦ !B

!A ` !A !B ` !B
!A, !B ` !A⌦ !B

!A, !A, !B, !B ` (!A⌦ !B)⌦ (!A⌦ !B)

!A, !A, !B ` (!A⌦ !B)⌦ (!A⌦ !B)

!A, !B ` (!A⌦ !B)⌦ (!A⌦ !B)

!A⌦ !B ` (!A⌦ !B)⌦ (!A⌦ !B)

83

where we used previous lemma (contraction).

⌅
Lemma 10. The sequent !(A&B) ` !A⌦ !B is provable.

Proof. First of all we show that the sequent

!A ` !A⌦ !A

is provable. This is an important sequent since from a categorical perspective
it witnesses the existence of the duplicator arrow

�A : !A ! !A⌦ !A

which, in general, does not exist in monoidal categories. Construct

!A ` !A !A ` !A
!A, !A ` !A⌦ !A
!A ` !A⌦ !A

where, again, we used previous lemma (contraction).
Now for the main proof. Construct

!(A&B) ` !A !(A&B) ` !B

!(A&B), !(A&B) ` !A⌦ !B

!(A&B)⌦ !(A&B) ` !A⌦ !B

A&B, !(A&B)⌦ !(A&B) ` !A⌦ !B

(A&B) & (!(A&B)⌦ !(A&B)) ` !A⌦ !B

1 & (A&B) & (!(A&B)⌦ !(A&B)) ` !A⌦ !B

⌫X.1 & (A&B) & (X ⌦X) ` !A⌦ !B

We show that !(A&B) ` !A is provable. Consider

!(A&B) ` 1 !(A&B) ` A !(A&B) ` !(A&B)⌦ !(A&B)

!(A&B) ` 1 & A& (!(A&B)⌦ !(A&B))

!(A&B) ` ⌫X.1 & A& (X ⌦X)

It is easy to see that the leaf sequents are all provable (the first two starting
from the left are essentially of the same form of other sequents we already
showed to be provable, whereas the third one is an instance of the duplicator
arrow, and we observed that the corresponding sequent is provable).

⌅

84

One final

Lemma 11. The rule of promotion

!� ` A
!� ` !A

is admissible.

Proof. First we prove that the following rule is admissible:

!A ` B
!A ` !B

Indeed we have

` 1
!A ` 1 !A ` B !A ` !A⌦ !A

!A ` 1 & B & (!A⌦ !A)

!A ` ⌫X.1 &B & (X ⌦X)

Using this rule we first construct

!(A1 & · · ·& An) ` !A1 ⌦ · · ·⌦ !An

!A1, . . . , !An ` B
...

!A1 ⌦ · · ·⌦ !An ` B

!(A1 & · · ·& An) ` B

!(A1 & · · ·& An) ` !B

and then

!A1, . . . , !An ` !A1 ⌦ · · ·⌦ !An

!A1 ⌦ · · ·⌦ !An ` !(A1 & · · ·& An) !(A1 & · · ·& An) ` !B
!A1 ⌦ · · ·⌦ !An ` B

!A1, . . . , !An ` !B

thus concluding the proof.
⌅

Putting all these lemmas together we obtain the following

85

Proposition 7. Define !A by

⌫X.1 & A& (X ⌦X)

Then !A behaves like the usual exponential modality, in the sense that it
satisfies the rules of weakening, dereliction, contraction and promotion:

� ` B
�, !A ` B

�,A ` B
�, !A ` B

�, !A, !A ` B
�, !A ` B

!� ` A
!� ` !A

The above analysis shows that the exponential !A, usually taken as prim-
itive in linear logic, is actually the result of a non-trivial interaction between
additive and multiplicative connectives. In [67, 76, 78] it is observed that
!A is the result of the interaction between the weakening and contraction
modalities !W and !C . Figure 3.4 gives rules for these modalities.

Contraction Modality

�, !CA, !CA ` B
�, !CA ` B

�,A ` B
�, !CA ` B

!C� ` A
!C� ` !CA

Weakening Modality

� ` B
�, !WA ` B

�,A ` B
�, !WA ` B

!W� ` A
!W� ` !WA

Figure 3.4: Rules for weakening and contraction modalities.

Our analysis of !A as

⌫X.1 & A& (X ⌦X)

allows us to have a better understanding of structural modalities. In fact,
dropping the unit 1 in the definition of !A we obtain a new formula

2A = ⌫X.A& (X ⌦X)

which we claim to behave like a contraction modality. In the next section we
will see how to achieve this definition of contraction modality in a natural
way. Moreover, as we will see, our analysis of structural modalities can
be done independently from the promotion rule, thus producing canonical
structural modalities for weaker logics.

86

Proposition 8. Define 2A as

⌫X.A& (X ⌦X)

Then the rules of dereliction, contraction and promotion

�,A ` B
�,2A ` B

�,2A,2A ` B
�,2A ` B

2� ` A
2� ` 2A

are admissible.

Proof. We immediately note that the first two rules (starting from the left)
are indeed admissible, as the following show

�,A ` B
�,A& (2A⌦2A) ` B

�, ⌫X.A& (X ⌦X) ` B

�,2A,2A ` B
�,2A⌦2A ` B

�,A& (2A⌦2A) ` B

�, ⌫X.A& (X ⌦X) ` B

We also note that we can prove the ‘duplicator’ sequent 2A ` 2A⌦ 2A as
follows

2A⌦2A ` 2A⌦2A
A& (2A⌦2A) ` 2A⌦2A

⌫X.A& (X ⌦X) ` 2A⌦2A

We finally prove the admissibility of the last rule.

2A1 ⌦ · · ·⌦2An ` A

2A1 ` 2A1 ⌦2A1 · · · 2An ` 2An ⌦2An

.
.

2A1, . . . ,2An ` (2A1 ⌦2A1)⌦ · · ·⌦ (2An ⌦2An)

...
2A1 ⌦ · · ·⌦2An ` (2A1 ⌦2A1)⌦ · · ·⌦ (2An ⌦2An)

...
2A1 ⌦ · · ·⌦2An ` (2A1 ⌦ · · ·⌦2An)⌦ (2A1 ⌦ · · ·⌦2An)

2A1 ⌦ · · ·⌦2An ` A& ((2A1 ⌦ · · ·⌦2An)⌦ (2A1 ⌦ · · ·⌦2An))

2A1 ⌦ · · ·⌦2An ` ⌫X.A& (X ⌦X)

87

The above derivation allows us to conclude with an instance of the cut rule
with

2A1 ` 2A1 · · · 2An ` 2An

.
.

2A1, . . . ,2An ` 2A1 ⌦ · · ·⌦2An

⌅

Remark. We observed that, on an intuitive level, having a contraction
modality is enough to guarantee the existence of the duplicator arrow

�A : !CA ! !CA⌦ !CA.

Such arrow is clearly strongly linked with the admissibility of contraction,
since it duplicates the information !CA
In the proof of the next proposition, we observe that a weakening modality
is enough to guarantee the existence of the erasing arrow

eA : !WA ! 1

which is strongly connected with weakening, since it erases the information
!WA. In the next section we will see that having duplicator and erasing
arrows is equivalent to having weakening and contraction.

Proposition 9. Define 2A as

⌫X.1 & A

which is nothing but 1 & A. Then 2A behaves like a weakening modality.

Proof. The proof is close to the one for the relevant modality. First we
observe that the ‘erasing’ sequent 2A ` 1 is provable:

1 ` 1
1 & A ` 1
2A ` 1

Proving the lemma is straightforward (follows the pattern of previous proofs).
The only real difference is that proving the admissibility of dereliction re-
quires us to prove

2A1 ⌦ · · ·⌦2An ` 1.

88

This is done by observing that for all i n

2Ai ` 1

is provable (it is an instance of the ‘erasing’ sequent), so that we can prove

2A1 ⌦ · · ·⌦2An ` 1⌦ · · ·⌦ 1| {z }
n

But
1⌦ · · ·⌦ 1| {z }

n

` 1

is provable too, and thus, by cut, we can conclude the proof.
⌅

We showed how to encode exponential !, weakening !W and contraction
!C modalities in ⌫LL, thus proving that the exponential, relevant and affine
fragment of (⌦, &)-linear logic are subsumed by ⌫LL.

The next step is to analyze the relationship between the proposed encod-
ings and the rules they are supposed to satisfy. The results proved establish
interesting and (to the best of the author’s knowledge) new links between
structural modalities, their underlying equations and their associated infer-
ence rules. The analysis also pointed out several problems related to the rule
of promotion.

3.2 Structural Modalities and Decompositions

In this section we analyze the above encodings of structural modalities and
their relationship. Let us first remark the fact that we proposed encodings of
structural modalities. In fact, what is meant is that e.g. ⌫X.1&A&(X⌦X)
(which we abbreviate as ⌫A in this brief discussion) behaves, from a proof-
theoretical perspective, like the ‘original’ !A. This means that ⌫A satisfies
the same rules governing !A, namely weakening, contraction, dereliction and
promotion. From that we cannot conclude that !A and ⌫A are ‘the same’
formula. We cannot even prove their equi-provability, i.e. the provability of
the sequents !A ` ⌫A and ⌫A ` !A. This is because !A is non-canonical. This
means that if we introduce another formula, say !0A, and add to the sequent
calculus weakening, contraction, promotion and dereliction for !0A, there is

89

no way to prove that !A and !0A are equi-provable. However, our encoding
of !A as ⌫A has a form of canonicity, since it is the ‘biggest’ exponential
over A. As we will see if !0A satisfies weakening, contraction and dereliction
(we do not even need promotion), then !0A is a coalgebra of the functor
E(X) = 1 &A& (X ⌦X), and thus it is smaller than the final coalgebra for
E(X), which is ⌫A.

As a consequence, it is not entirely correct to say that we are encoding !A,
since the proposed encoding ⌫A, is something ‘stronger’ than !A. What we
did was actually to define a canonical exponential in ⌫LL. Using canonicity
and modularity of ⌫A we can now propose a finer analysis of structural
modalities.

We use ideas and terminology from category theory (as typically done in
categorical proof theory), although a large part of our analysis is essentially
done in poset categories.

In fact, our interests do not concern proofs of/from exponentials, but
rather exponentials themselves. For this reason we work in the poset category
Comb given by the logical calculus in Figure 2.4. As we know, the latter is an
⌫SMCC. This framework allows us to work on a proof-theoretic level using
ideas and tools from category theory. Isomorphic objects/formulas in Comb

are equi-prorvable formulas. That is if A ⇠= B, then both A ! B and B ! A
are provable.

It is also worth mentioning that our definitions of (canonical) structural
modalities are close to informal intuition and operationally justified. As far
as the author knows, no analysis of structural modalities like the one we
give here has ever been proposed. Moreover, this analysis allows us to state
and prove a new decomposition theorem for the exponential modality, and
thus gives canonical affine (i.e. contraction) and relevant (i.e. weakening)
modalities, as well as a formal analysis of their canonicity.

Let us start with a brief analysis of the combinatorial counterpart of the
structural rules of weakening and contraction. These are

A ! B
A⌦ C ! B

C ⌦ (A⌦ A) ! B
C ⌦ A ! B

Weakening can also be rewritten as

A⌦ 1 ! B
A⌦ C ! B

90

The connection with duplicator and erasing arrows

�A : A ! A⌦ A

eA : A ! 1

is evident. The connection is even stronger if expressed on a formal level.

Lemma 12. Let C be a SMC. Then the rule

C ⌦ (A⌦ A) ! B
C ⌦ A ! B

is admissible if and only if for any object A there is a duplicator

�A : A ! A⌦ A.

Similarly, The rule

C ⌦ 1 ! B
C ⌦ A ! B

is admissible if and only if for any object A there exists an erasing arrow
eA : A ! 1.

Proof. Given f : C ⌦ (A ⌦ A) ! B, we take f � (idC ⌦ �A) : C ⌦ A ! B.
Viceversa, we take I = C, and use the natural isomorphisms l and r.

⌅

As a consequence, we see that weakening and contraction essentially
amount to the presence of arrows �A and eA (which can be abstracted to nat-
ural transformations � and e). Having clarified this aspect, we can recover
!A in a easy operational way. What we want is a formula X (unknown for
now) such that it allows to perform weakening on it (erase it), or to perform
contraction on it (duplicate it), or just do/use A (which corresponds to use
A once). Moreover, we can choose between these alternatives. So, we can do
weakening on X, thus we have an arrow

X ! 1

We can do contraction on X, thus we have an arrow

X ! X ⌦X

91

We can use A, thus we have an arrow

X ! A

We have all these arrows, and we can choose which one. It is then natural
to use the choice operator &. Thus, from the three above arrows we obtain

X ! 1 X ! A X ! X ⌦X
X ! 1 & A& (X ⌦X)

As a consequence, we are looking for a coalgebra of the functor

E(X) = 1 & A& (X ⌦X)

In previous chapter we took the maximal solution to this equation, which
seems the natural one since, intuitively, greatest fixed points capture the
idea of performing infinitely many iterations (recall that our informal goal
is to be able to duplicate !A infinitely many times). We thus obtained the
formula

⌫X.1 & A& (X ⌦X).

More formally, we can define the functor

E : C ⇥ C ! C

by

E(A,Y) = 1 & A& (Y ⌦ Y)

E(f , y) = id1 & f & (y ⌦ y)

Let also denote by EA : C ! C the functor defined by

EA(Y) = E(A,Y)

EA(y) = E(idA, y)

Indeed E is a functor, and for any A we have the polynomial functor EA,
called the exponential functor over A. Let us fixed a formula A and write
E(X) for EA(X). The functor E(X) can be divided in three parts:

E(X) = 1|{z}
weakening

& A|{z}
dereliction on A

&(X ⌦X)| {z }
contraction

92

We want to make formal the relationship between coalgebras C ! E(C) and
formulas satisfying weakening, contraction and dereliction on A.

First we observe an important property of the functor E(X), namely that
any for any coalgebra C ! E(C), C is a solution to the equation (which we
refer to as the ‘exponential equation’)

X ⇠= E(X)

(recall that we are working in the poset category Comb, and thus X ⇠= E(X)
amounts to prove both X ! E(X) and E(X) ! X).

Lemma 13. If C ! E(C), then C ⇠= E(C).

Proof. We have to prove E(C) ! C, i.e.

1 & A& (C ⌦ C) ! C

We reduce the proof to proving C⌦C ! C, which follows from C⌦C ! C⌦1.
This requires to prove C ! C, on one hand, and C ! 1 on the other. The
former clearly holds. For the latter we use C ! E(C) and prove E(C) ! 1,
i.e.

1 & A& (C ⌦ C) ! 1

This follows from 1 ! 1. ⌅
Remark. From a sequent calculus perspective, the above lemma states the
admissibility of the rule

�,C ` E(C)

�,E(C) ` C

This is proved as follows:

�,C ` 1 & A& (C ⌦ C)

1 ` 1
1 & A ` 1

1 & A& (C ⌦ C) ` 1
�,C ` 1 C ` C

�,C,C ` 1⌦ C
�,C ⌦ C ` 1⌦ C

C ` C
1⌦ C ` C

�,C ⌦ C ` C
�,A& (C ⌦ C) ` C

�, 1 & A& (C ⌦ C) ` C

93

As a consequence, in order to prove that C is a solution to X ⇠= E(X) it
is actually sufficient to prove C ! E(C). We can now prove the following

Proposition 10. Let C be a formula. Then C satisfies the following rules
(dereliction on A, weakening and contraction)

A ! B
C ! B

D ⌦ 1 ! B
D ⌦ C ! B

C ⌦ C ! B
C ! B

iff
C ⇠= E(C).

Proof. We first prove that if C satisfies the above rules, then C is a solution
to X ⇠= E(X). By previous lemma, it is sufficient to prove that C is an
E-coalgebra, i.e. C ! E(C). For, we have to prove C ! 1, C ! A and
C ! C ⌦ C. The following summarizes the necessary derivations.

1 ! 1
1⌦ 1 ! 1
1⌦ C ! 1
C ! 1

A ! A
C ! A

C ⌦ C ! C ⌦ C
C ! C ⌦ C

Suppose now C is a solution to X ⇠= E(X), so that we can freely replace
1⌦ A⌦ (C ⌦ C) for C. Note that we can prove C ! 1, since

1 ! 1
1 & A ! 1

1 & A& (C ⌦ C) ! 1

We can then prove dereliction on A and weakening as follows:

A ! B
1 & A ! B

1 & A& (C ⌦ C) ! B

D ⌦ 1 ! B
D ! B C ! 1
D ⌦ C ! B ⌦ 1

B ! B
B ⌦ 1 ! B

D ⌦ C ! B

Finally, we prove contraction

C ⌦ C ! C
A& (C ⌦ C) ! C

1 & A& (C ⌦ C) ! A

⌅

94

The above proposition shows that formulas defined via the three above
rules are nothing but solutions to the exponential equations, and that so-
lutions to the exponential equation satisfy the three above rules. It clearly
follows that the connective 2 defined by ‘2A ⇠= E(2A)’ i.e.‘2A satisfies the
three above rules’ do not define a canonical connective. Indeed, the equa-
tion X ⇠= E(X) in general admits more than one solution. This raises the
question of the role of the rule promotion. Such rule is often associated to
functoriality (although the equivalence between the two rules does not hold).
Functoriality is given by the rule

A ! B
2A ! 2B

and we can reformulate it by requiring a form of monotonicity for solutions.
That is, we require that if C ⇠= EA(C), D ⇠= EB(D) and A ! B, then
C ! D. Such rule however has huge consequences. For example, it iden-
tifies all solutions of an exponential equation. Indeed, let C ⇠= EA(C) and
D ⇠= EA(D). Then, since A ! A holds, we have both C ! D and D ! C,
and thus C ⇠= D.

This discussions shows that looking at !A as a solution to the equation
X ⇠= E(X) is not as straightforward as it looks like. The correspondence be-
tween solutions to X ⇠= E(X) and formulas satisfying weakening, contraction
and dereliction seems to be lost in presence of promotion.

Nonetheless, our intuition behind !A is essentially correct, since !A gives
solutions to X ⇠= E(X) that satisfy promotion. Non-canonicity can be seen
as the fact that !A does not give a canonical solution to X ⇠= E(X). More
interesting is the observation that if we just look at solutions to X ⇠= E(X)
we have two canonical solutions, namely the greatest and least solutions, i.e.

µX.E(X) and ⌫X.E(X).

Moreover, these canonical solutions satisfy a weak promotion rule, as the
following proposition shows.

Proposition 11. For both µX.E(X) and ⌫X.E(X) the weak promotion
rules

µX.EA(X) ! B

µX.EA(X) ! µX.EB(X)

⌫X.EA(X) ! B

⌫X.EA(X) ! ⌫X.EB(X)

hold.

95

Proof. We already proved the promotion rule for the ⌫-case. Let us write
2A and 2B for µX.EA and µX.EB respectively, and assume 2A ! B. We
prove 2A ! 2B. First construct

1 ! 1
...

1 & A& (1⌦ 1) ! 1
2A ! 1 2A ! B 2A ! 2B ⌦2B

2A ! 1 & B & (2B ⌦2B)
2A ! 2B

To conclude we have to prove 2A ! 2B ⌦ 2B, which follows from
1&A&((2B⌦2B)⌦ (2B⌦2B)) ! 2B⌦2B. To prove this it is sufficient
to prove

((2B ⌦2B)⌦ (2B ⌦2B)) ! 2B ⌦2B

This amounts to prove 2B ⌦2B ! 2B. This requires to prove

2B ⌦2B ! 1

2B ⌦2B ! B

2B ⌦2B ! 2B ⌦2B

The first holds, since we can just prove 2B⌦2B ! 1⌦1, and thus 2B ! 1,
which we know to hold. The third one clearly holds. We prove the second.

B ! B
...

1 & B & (B ⌦ B) ! B
2B ! B

1 ! 1
...

1 & B & (1⌦ 1) ! 1
2B ! 1

2B ⌦2B ! B ⌦ 1

which gives the desired result since, B ⌦ 1 and B are equivalent.
⌅

Remark. Recall the the promotion rule for !A (in a sequent calculus formal-
ism) is

!� ` A
!� ` !A

96

The weak promotion rule considered above, i.e.

!A ! B
!A ! !B

corresponds to the sequent calculus rule

!A ` B
!A ` !B

which is much weaker than its general counterpart. This can be better ob-
served in a categorical setting. The weak promotion rule is essentially given
by the notion of comonad [10, 11, 77], which can be thought (specifically for
this setting4) as a triple (!, ", �) consisting of an endofunctor ! : C ! C and
natural transformations " : ! ! 1 (here 1 denotes the identity functor) and
� : ! ! !2. Using � and functoriality of ! it is possible to recover the weak
promotion rule as follows

�A : !A ! !!A
f : !A ! B
!f : !!A ! B

!f � �A : !A ! !B

Full promotion, categorically written as

!A1 ⌦ · · ·⌦ !An ! B
!A1 ⌦ · · ·⌦ !An ! !B

demands more than simple comonadicity. In fact, it requires the comonad
to be linear [10, 30, 94]. In particular it requires the existence of a natural
transformation

�A,B : !A⌦ !B ! !(A⌦ B).

4The definition of comonad is more general than the one given here, since it requires
some specific equations to hold (it has specific coherence conditions). The reader can
consult [10, 11].

97

Full promotion can be then schematically recovered as follows5, given f : !A1⌦· · ·⌦!An ! B

!A1 ⌦ · · ·⌦ !An

�A1⌦···⌦�An

✏✏
!!A1 ⌦ · · ·⌦ !!An

�A1,...,An

✏✏
!(!A1 ⌦ · · ·⌦ !An)

!f

✏✏
!B

What we achieved is that the exponential functor over A,

E(X) = 1 & A& (X ⌦X)

captures weakening, dereliction and contraction. Any coalgebra for this func-
tor is a solution to the equation

X ⇠= E(X)

so that one is led to think of !A simply as a solution to the above equation
(and thus to explain non-canonicity of !A as the fact that !A is just a solution
to the equation, rather than a canonical one). This intuition is not completely
correct, since, in general, solutions to X ⇠= E(X) do not satisfy promotion.
This turned out to be the case for the (canonical) greatest solution, namely
⌫X.E(X). The least solution µX.E(X) satisfies a weaker form of promotion,
which is considerably different than its general counterpart. The link between
properties of solutions to X ⇠= E(X) and formulas satisfying promotion is not
evident. Nevertheless, it is possible to consider exponential modalities that do
not satisfy promotion (thus non-S4 modalities). These, from a mathematical
perspective, are as natural as the standard exponential !.

We observed that the the exponential functor E(X) is (informally) di-
vided in three parts, one for weakening, one for promotion and one for dere-
liction. We now make such division formal, and thus prove a decomposition
theorem for the exponential functor.

5We write �A1,··· ,An for the generalization of � to n-ary tensor products.

98

Let us first modify the informal argument we used to design the expo-
nential functor to formulate analogous weakening and contraction functors.

For the weakening modality !WA, we look for a formula X such that we
can do/use A, hence

X ! A

or do weakening on it, i.e.
X ! 1

and we can choose which of the two alternatives follows. This leads to coal-
gebras

X ! 1 & A

and thus to the (constant) functor

W (X) = 1 & A.

For the contraction modality !CA we look for a formula X such that we
can do/use A, hence

X ! A

or do contraction on it, i.e.
X ! X ⌦X

and we can choose which of the two alternatives follows. This leads to coal-
gebras

X ! A& (X ⌦X)

and thus to the functor

C(X) = A& (X ⌦X)

Again, we have canonical modalities, namely ⌫X.W (X) (which is trivially
1 & A) and ⌫X.C(X). Formally, we designed three functors

E,C : C ⇥ C ! C
W : C ! C

99

defined by

E(A,Y) = 1 & A& (Y ⌦ Y)

E(f , y) = id1 & f & (y ⌦ y)

C(A,Y) = A& (Y ⌦ Y)

C(f , y) = f & (y ⌦ y)

W (A) = 1 & A

W (f) = id1 & f

In particular, for each object/formula A, there are the associated functors
E(A), C(A) and W (A) called the exponential, contraction and weakening
functors over A, respectively. We can then define the formulas !A, !CA and
!WA as the final coalgebra of E(A), C(A) and W (A):

!CA = ⌫X.C(A)

!A = ⌫X.E(A)

!WA = ⌫X.W (A) = W (A)

Note that W (A) is a constant functor, thus taking its final coalgebra is
a trivial operation (but we do that for uniformity with other cases). This
means that the above modalities are essentially given by their corresponding
functors.

The exponential modality recovers both weakening and contraction, the
weakening modality only weakening and the contraction modality only con-
traction. Moreover, all of them allow to recover A, which amounts to have
dereliction (over A). It seems then natural to see the exponential modality
as a combination of the weakening and the contraction modality. This can
be made completely formal at the level of functors.
Lemma 14. Given a bifunctor C : C ⇥ C ! C and a functor W : C ! C
define the mappings C(W),W (C) : C ⇥ C ! C as follows:

C(W)(A,Y) = C(W (A),Y)

C(W)(f , y) = C(W (f), y)

W (C) = W � C

100

Then C(W) and W (C) are bifunctors.

Proof. The result follows from bifunctoriality of C and functoriality of W .
Let us prove

C(W)(g � g0, f � f 0) = C(W)(g, f) � C(W)(g0, f 0)

W (C)(g � g0, f � f 0) = W (C)(g, f) �W (C)(g0, f 0)

For the first one, we have

C(W)(g � g0, f � f 0) = C(W (g � g0), f � f 0)

= C(W (g) �W (g0), f � f 0)

= C(W (g), f) � C(W (g0), f 0)

= C(W)(g, f) � C(W)(g0, f 0)

W (C)(g � g0, f � f 0) = (W � C)(g � g0, f � f 0)

= W (C(g � g0, f � f 0))

= W (C(g, f) � C(g0, f 0))

= W (C(g, f)) �W (C(g0, f 0))

= (W � C)(g, f) � (W � C)(g0, f 0)

= W (C)(g, f) �W (C)(g0, f 0)

Cases for identities are proved similarly. We show

C(W)(idA, idB) = idC(W)(A,B)

as an example. We have

C(W)(idA, idB) = C(W (idA), idB)

= C(idW (A), idB)

= idC(W (A),B)

= idC(W)(A,B)

⌅

101

We want to use the above lemma to decompose the exponential functor
via the weakening and contraction functor. We know that the weakening
functor is indeed a functor (is polynomial). Therefore, in order to apply the
above lemma we need to prove that the contraction functor is a bifunctor.
This is indeed the case.

Lemma 15. The contraction functor C : C ⇥ C ! C is a bifunctor.

Proof. This follows from bifunctoriality of & and ⌦. Let us prove

C(g � g0, f � f 0) = C(g, f) � C(g0, f 0)

C(idA, idB) = idC(A,B)

We have

C(g � g0, f � f 0) = (g � g0) & ((f � f 0)⌦ (f � f 0))

= (g � g0) & ((f ⌦ f) � (f 0 ⌦ f 0))

= (g & (f ⌦ f)) � (g0 & (f 0 ⌦ f 0))

= C(g, f) � C(g0, f 0)

C(idA, idB) = idA & (idB ⌦ idB)

= idA & idB⌦B

= idA&(B⌦B)

= idC(A,B)

⌅

We can finally prove a decomposition theorem.

Proposition 12. We have the following decomposition:

E ⇠= W (C) ⇠= C(W)

Proof. Formally, we should give natural isomorphisms between these func-
tors. However, since we have

102

W (C)(A,Z) = W (C(A,Z))

= 1 & C(A,Z)

= 1 & (A& (Z ⌦ Z))
⇠= (1 & A) & (Z ⌦ Z)

= W (A) & (Z ⌦ Z)

= C(W (A),Z)

= C(W)(A,Z)

we see that the only step in which we need an isomorphisms rather than
definitional equality is for associativity of product &. We already know that
we have a natural isomorphism for that (moreover, recall that any binary
product is also a tensor product), so that we can conclude that the above
functors are indeed isomorphic. ⌅

This result completes our analysis of the exponential modality, its weaker
variants and, in light of the above proposition, its components, namely the
weakening and contraction modalities.

In the next chapter we extend ⌫LL to full classical linear logic. Working
on a linear classical base allows to exploit the duality between the fixed point
operators µ and ⌫ and to introduce interesting new formalisms, such as the
Calculus of Structures [63, 64]. The duality between µ and ⌫, formalized as

(µX.F)? = ⌫X.F?

(but see how we define negation on variables), allows to recover the modality
?B (read ‘why not B’) as

µX.?� B � (X `X)

which gives that ? is indeed dual to our encoding of !.

103

Chapter 4

Classical Linear Logic

In this chapter we introduce calculi for full classical propositional linear logic
[54, 56, 57, 105] and its extension with fixed point operators. Classical linear
logic is characterized by the presence of an involution (_)?, called linear
negation, which satisfies the so-called de Morgan’s duality (see below). This
gives to linear logic a classical flavor since each formula is equivalent to its
double negation (that is, for any formula A, A and A?? are equivalent).

In this chapter we look at classical linear logic from a proof-theoretical
perspective, focusing on calculi rather than on semantics. In fact, from a
categorical perspective, everything works as in previous chapters, but with
a ⇤-autonomous, rather than monoidal, base (see [10, 15, 30, 77, 95]). ⇤-
autonomous categories allow to model linear negation (_)? as a contravariant
endofunctor (_)? that induces a natural isomorphism between A and A??,
for any object A, thus making (_)? an involution.

Working on a classical base allows us to design deep inference calculi
in the Calculus of Structures formalism [63, 64] in a straightforward way.
These calculi are based on simple algebraic-like manipulations of formulas,
thus providing an usable machinery for making calculations.

4.1 Classical Linear Logic

We start introducing a sequent calculus for classical (propositional) linear
logic.

Definition 27. Given a collection of atomic propositions Prop, formulas of
classical propositional linear logic (CLL) are defined by the following gram-

104

mar

A ::= a | > | ? | 1 | 0 | A? | A⌦ A | A& A | A` A | A� A | !A | ?A
We immediately reduce the syntax using de Morgan dualities:

Definition 28. Given a set Prop as above we equip it with a bijection
(_)? : Prop ! Prop, such that for every a 2 Prop, we have a?? = a and
a? 6= a. Moreover, we require Prop to contain four special elements, called
constants, which are denoted by ?, 1, 0 and > (called bottom, one, zero, and
top, respectively). The function (_)? is defined on them as follows:

1? = ?
?? = 1

>? = 0

0? = >
Atomic propositions are elements of Prop [Prop

?, i.e. if a 2 Prop, then
both a and a? are atomic propositions. Formulas are then built from atomic
propositions as above, by means of the connectives ⌦, &,�,`, ! and ?. Linear
negation is the extension of the function (_)? to all formulas by de Morgan
equations:

(A⌦ B)? = A? `B?

(A`B)? = A? ⌦ B?

(A&B)? = A? � B?

(A� B)? = A? &B?

(!A)? = ?A?

(?A)? = !A?

Linear implication (is defined by

A (B = A? `B

It directly follows from this definition (with an easy induction of formulas)
that

A?? = A

holds for any formula A.

105

Figure 4.1 gives a sequent calculus for CLL. Sequents are expressions of
the form � ` �, where � and � are multisets of formulas. As for classical
logic, a sequent

A1, . . . ,An ` B1, . . . ,Bm

has its operational counterpart as the formula

A1 ⌦ · · ·⌦ An (B1 ` · · ·`Bm.

Rules for the exponential modalities ! and ? are given in Figure 4.2
We can use properties of linear negation to come with a one-sided calculus.

In fact, it is easy to prove that a sequent � ` � is equivalent to ` �?,�,
where for � = A1, . . . ,An, �? is A?

1 , . . . ,A
?
n . Using this fact, we come up

with a calculus in which sequents are expressions of the form ` � (hence the
name ‘one-sided’). Such system is given in Figure 4.3.

An easy induction on the structure of derivations gives the following

Proposition 13. The system given in Figure 4.1 and Figure 4.2, is equivalent
to the system in Figure 4.3.

We now add fixed point operators to the above logic. Again, we work
with the one-variable fragment, although all syntactic results given here gen-
eralize to the case of arbitrary many variables. We extend the syntax of
open formulas with constructors ` and �. Note that we do not define the
negation F? of an open formula F as primitive. In fact, we can define F?

inductively as follows:

X? = X

A? = A?

(F ⌦G)? = F? `G?

(F `G)? = F? ⌦G?

(F &G)? = F? �G?

(F �G)? = F? &G?

Again, we can prove F?? = F for any open formula F . The fact that
X? = X can be justified as follows: the variable X is a syntactic device for
the identity functor, which is self-dual. Moreover, in standard mathematics,
if one consider a function f(X) in the variable X, then its dual does not
modify the place-holder X.

106

Identity Group

A ` A
� ` A,� �0,A ` �0

�,�0 ` �,�0

Negation

� ` A,�

�,A? ` �

�,A ` �

� ` A?,�

Multiplicative Rules

� ` A
�, 1 ` A ` 1

�,A,B ` �
�,A⌦ B ` �

� ` A,� �0 ` B,�0

�,�0 ` A⌦ B,�,�0

? ` � ` �
� ` ?,�

�,A ` � �0,B ` �0

�,�0,A`B ` �,�0
� ` A,B,�
� ` A`B,�

Additive Rules

� ` >
Ai,� ` �

A1 & A2,� ` �
� ` A,� � ` B,�

� ` A&B,�

�, 0 ` �

�,A ` � �,B ` �
�,A� B ` �

� ` Ai,�
� ` A1 � A2,�

Figure 4.1: Sequent Calculus for classical linear logic.

107

� ` �
�, !A ` �

�,A ` �
�, !A ` �

�, !A, !A ` �
�, !A ` �

!� ` A, ?�
!� ` !A, ?�

� ` �
� ` ?A,�

� ` A,�
� ` ?A,�

� ` ?A, ?A,�
� ` ?A,�

!�,A ` ?�
!�, ?A ` ?�

Figure 4.2: Sequent calculus rules for exponentials.

We can now extend negation to fixed point formulas as follows

(µX.F)? = ⌫X.F?

(⌫X.F)? = µX.F?

which makes (_)? an involution.

Remark. If one takes X? as primitive (like a?, for a 2 Prop), then we have
to modify negation of fixed point formulas as in e.g.

(µX.F)? = ⌫X.F?[X? := X].

Rules for fixed points are as usual. The main difference is that we can
now use duality to give a one-side presentation of these rules. One-sided rules
are given in Figure 4.4.

Again, we can recover !A as ⌫X.1 & A & (X ⌦ X). Dually, it is easy to
prove (dualizing proofs given for !A) that we can recover ?A as

µX.?� A� (X `X)

Moreover, these encodings give the desired duality between ! and ?. Indeed
we have

(!A)? = (⌫X.1 & A& (X ⌦X))?

= µX.?� A? � (X `X)

= ?A?

Similarly we can recover the weaker structural modalities ?C and ?W as

?WA = ?� A

?CA = µX.A� (X `X)

108

Identity Group

` A,A? ` A,� ` A?,�
` �,�

Multiplicative Rules

` A,� ` B,�
` A⌦ B,�,�

` A,B,�
` A`B,�

` 1
` �

` ?,�

Additive Rules

` A,� ` B,�
` A&B,�

` Ai,�
` A1 � A2,�

` >,�

Exponentials

` �
` �, ?A

` �, ?A, ?A
` �, ?A

` ?�,A
` ?�, !A

` �,A
` �, !A

Figure 4.3: One-sided sequent calculus for classical linear logic.

` �,F (µX.F)
` �,µX.F

` A?,F (A)

` A?, ⌫X.F

Figure 4.4: One-sided sequent calculus rules for fixed point operators.

109

having the desired dualities

(!WA)? = ?WA?

(!CA)
? = ?CA

?

Unfortunately, the rule for introducing ⌫X.F has a bad feature: it im-
poses a strong restriction on its context, namely that there has to be no con-
text at all. The reason is simple: the rule states nothing but finality of ⌫X.F ,
and thus states that if A is an F -coalgebra (which means A ` F (A), and thus
` A?,F (A)), then it is ‘smaller’ than the final F -coalgebra ⌫X.F (that is
A ` ⌫X.F , and thus ` A?, ⌫X.F). If we have a premise like ` B?,A?,F (A)
we cannot know whether A is an F -coalgebra or simply F (A) is related to
B.

That rule can be replaced with the equivalent

` �,A ` A?,F (A)
` �, ⌫X.F

which unfortunately does not solve the problem.
A promising way to deal with such problems seems to move to richer cal-

culi, like display calculi [20] or deep sequents [33], that have enough structure
to ‘package’ assumptions together. For example, suppose we allow sequents
like �[�] with the informal meaning that � has no dependency from �. Then
we could consider the rule

�[A?,F (A)]

�[A, ⌫X.F]

These kinds of proposals were extensively studied in the context of deep
sequents [33], with the goal of designing usable proof systems for several
modal logics. Another interesting solution was introduced in [45] dealing
with a deep inference formulation of a higher-order coinduction axiom. Such
a solution is based on the introduction of a semantically null modality, which
gives a syntactic device for grouping assumptions together. We will adopt
that idea for the deep inference calculus given in the next section.

110

Digression: Cut Elimination

Proving that the above sequent calculi for classical linear logic with fixed
point operators (overloading terminology, we refer to such logic as ⌫LL) en-
joys cut-elimination is not easy and, as far as the author knows, there is no
direct proof of such theorem. In [14] an indirect cut elimination theorem for
an higher-order linear logic with fixed point operators is proved. Although
the logic studied in that paper is different from those considered in this thesis
(it requires typed variables, quantifiers and � abstractions), the proof of the
cut elimination theorem can be slightly modified to work for the above cal-
culi. The proof is in fact based of an encoding of the logic in the second-order
propositional linear logic with exponentials [58, 70], for which a cut elimi-
nation theorem holds. We do not give details here and address the reader
to the original paper [14]. The intuition behind the encoding comes from
Knaster-Tarski Theorem [3, 46, 91]

Proposition 14 (Knaster-Tarski). Let hL,i be a complete lattice and
f : L ! L be a monotene map. Then f has both least and greatest fixed
points, denoted by µf and ⌫f respectively, which are given as follows:

µf =
^

{x 2 L | f(x) x}
⌫f =

_
{x 2 L | x f(x)}

As a consequence, in a lattice-based logic with connectives capturing ar-
bitrary joints and meets, and the order relation, we can use the Knaster-
Tarski Theorem to define least and greatest fixed points of specific functions.
Usually, second order universal and existential quantifiers are interpreted as
arbitrary joints and meets, whereas implication is interpreted as the order
relation. For example, in second order linear logic we can encode µX.F as

8↵.!(F↵ (↵) (↵

where we assume we have already encoded F (the presence of ! is due, to the
best of the author’s knowledge, to technical motivations rather than to some
specific intuitions).

Finding a direct proof of the cut-elimination theorem is still an open
problem, and a promising approach to such problem seems to move to calculi
based on richer formalisms and better structural properties, such as display
calculi [20]. In [21] a display-like calculus for full propositional linear logic

111

is proposed. Such calculus is subject to specific technical constraints due
to the restrictions imposed by rules for exponential modalities. In [50, 51,
52] the display-calculus formalism is extended to the so-called multi-type
calculi. Such calculi allow to deal with objects living in different domains,
and seems to be the appropriate formalism for giving a well-behaved proof
theory both for exponential modalities (for example introducing a type for
additive formulas and connectives, and a type for multiplicative formulas and
connectives) and fixed point operators.

4.2 A Deep Inference Calculus

We now introduce deep inference calculi for the above logics, following the
Calculus of Structures formalism [63, 64, 99]. The main feature of this formal-
ism is that rules can be applied deep inside formulas (hence the name ‘deep
inference’). In fact, the calculus of structures drops the usual distinction
between the object-level and meta-level (which is one of the main features
of sequent calculi1). This leads to the introduction of new syntactic objects,
called structures. These define contexts, structures with a hole ⇠{_}, which
can be made into a proper structures simply by filling the hole, like in ⇠{A}.
Rules are figure of the form

⇠{A}
⇠{B}

The methodology is in line with functoriality requirements: given a proof
⇡ for A to B (written ⇡ : A ! B), a context ⇠{_} is functorial, in the sense we
automatically have a proof ⇠{⇡} of ⇠{B} from ⇠{A} (i.e. ⇠{⇡} : ⇠{A} ! ⇠{B}).

Let us now give a deep system for classical linear logic (without fixed point
operators). Structures are defined as formulas, and are considered modulo
the equational theory generated by equations in Figure 4.5, the De Morgan

1E.g. Consider the rule

` A,� ` B,�

` A⌦B,�,�

The formula A⌦B is introduced at the object-level, whereas the context �,� is introduce
at the meta-level of sequents.

112

equations and the following two equations:

1 & 1 = 1

?�? = ?

Associativity Commutativity Units

A⌦ (B ⌦ C) = (A⌦ B)⌦ C A⌦ B = B ⌦ A 1⌦ A = A
A` (B ` C) = (A`B)` C A`B = B ` A ?` A = A
A� (B � C) = (A� B)� C A� B = B � A 0� A = A
A& (B & C) = (A&B) & C A&B = B & A >& A = A

Figure 4.5: Equations for structures.

Definition 29. An inference rule is a scheme of the kind
A
B

for structures A and B. As usual A is called the premise and B the conclusion.
An inference rule is called an axiom if its premise is empty.

Actually, a typical rule has shape

⇠{A}
⇠{B}

and specifies a step of rewriting, by the implication2 A) B, inside a generic
context ⇠{_}. Rules with empty contexts correspond to the case of the
sequent calculus.

Definition 30. A (formal) system S is given by a set of inference rules.
A derivation � in S is a finite chain of instances of inference rules in S.
A derivation can consist of just one structure. The topmost structure in a
derivation, if present, is called the premise of the derivation, and the bot-
tommost structure is called its conclusion. A proof ⇡ is a finite derivation
whose topmost inference rule is an axiom.

2With) we refer to the notion of implication modelled by the system (we are in fact
assuming to deal with logics with a notion of consequence and implication). For linear
logic we take) to be linear implication (.

113

Usually, in the calculus of structures rules come in pairs, a down-version

⇠{A}
⇠{B}

and an up-version

⇠{B?}
⇠{A?}

This duality derives from the duality between A) B and B?) A?, where
) is the implication modelled in the system, and (_)? is the negation mod-
elled in the system (which we usually require to be an involution3). In our
case the latter are linear implication and negation.

The core rules of systems we will consider are the interaction and co-
interaction rules, which correspond to identity and cut, respectively. These
are

⇠{1}
id

⇠{A` A?}
⇠{A⌦ A?}

cut

⇠{?}
Note how the calculus allows to exploit the duality between identity and cut.
The other fundamental rule is the switching rule

⇠{(A`B)⌦ C}
s

⇠{(A⌦ C)`B}
That the rule is sound is essentially witnessed by the following derivation

A ` A B ` B
A`B ` A,B C ` C

A`B,C ` A⌦ C,B
(A`B)⌦ C ` A⌦ C,B

(A`B)⌦ S ` (A⌦ C)`B

Having interaction, co-interaction and switching, we can prove an important
duality result.

Proposition 15. Let S be a system with identity id, cut cut and switch s.
Then, for every rule ⇢

3Being interested in linear logic only, we do not care too much about these generalities.

114

⇠{A}
⇠{B}

its dual ⇢?

⇠{B?}
⇠{A?}

is admissible.

Proof. Construct

⇠{B?}
=

⇠{1⌦ B?}
id

⇠{(A` A?)⌦ B?}
s

⇠{(A⌦ B?)` A?}
�������������
⇢

⇠{(B ⌦ B?)` A?}
cut

⇠{?` A?}
=

⇠{A?}
⌅

The notation
⇠{A}

⇡

�������������

⇠{B}
means that we have a derivation ⇡ for ⇠{B} from ⇠{A}.
Remark. Note that the above result strongly relies on the de Morgan duality.
If the latter is dropped, the above proposition would not hold anymore.

The deep inference calculus for classical linear logic is given in Figure
4.6, where we also give for each rule ⇢ its dual ⇢? (although, according to
previous proposition, that is redundant, except for the pair (id, cut)). Note
also that the switch rule s is self-dual.

This system gives a deduction theorem, in the following sense:

115

⇠{1}
id

⇠{A` A?}
⇠{A⌦ A?}

cut

⇠{?}

⇠{(A`B)⌦ C}
s

⇠{(A⌦ C)`B}

⇠{(A`B) & (C `D)}
d

⇠{(A& C)` (B � C)}
⇠{(A� B)⌦ (C &D)}

d

?
⇠{(A⌦ C)� (B ⌦D)}

⇠{0}
⇠{A}

⇠{A}
⇠{>}

⇠{A� A}
⇠{A}

⇠{A}
⇠{A& A}

Figure 4.6: Deep system for classical linear logic.

Proposition 16. There is a derivation
A

�

�������

B

if and only if there is a derivation

1

�0

���������

A? `B

.

Proof. Consider the following derivations, where we use the equation A = 1⌦A.

1
id ���������
A` A?

�

����������

B ` A?

1⌦ A

�0

����������

(A? `B)⌦ A
s

(A? ⌦ A)`B
cut

[(T , T̄),R]
?`B =
B

116

⌅

The system in Figure 4.6 does not have axioms, since we think of a
provable formula A as provable from 1. Nonetheless, we can add the axiom-
rule

1

which states that the unit 1 is provable. Note that this rule breaks the
symmetry of the calculus.

It is possible to restrict the identity rule to its atomic version

⇠{1}
⇠{a` a?}

as it is often done in sequent calculi. A specific feature of deep systems,
which is usually not available in sequent calculi, is that we can restrict the
cut rule to its atomic version as well.

Proposition 17. If we modify the system in Figure 4.6 by substituting the
rule cut with

⇠{a⌦ a?}
⇠{?}

then the resulting system is equivalent to the original one. That is, the rule
cut is admissible in the new system.

Proof. We proceed by induction on A. The basic case is given by hypothesis.
We essentially have two further cases to consider.

1. Consider the case for A&B. We have

⇠{(A&B)⌦ (A? � B?)}
=

⇠{(A? � B?)⌦ (A&B)}
d

?
⇠{(A? ⌦ A)� (B? ⌦ B)}

�������������
i.h.

⇠{?�?}

117

which gives the result since ? � ? = ?. Note that the case for the
structure A� B essentially reduces to this case.

2. Consider the case for A⌦ B. We have

⇠{(A⌦ B)⌦ (A? `B?)}
=

⇠{(A? `B?)⌦ A⌦ B}
s

⇠{((A? ⌦ A)`B?)⌦ B}
�������������
i.h.

⇠{(?`B?)⌦ B}
=

⇠{B? ⌦ B}
�������������
i.h.

⇠{?}

Note that the case for the structure A ` B essentially reduces to this
case.

⌅

The calculus obtained is simple and easy to use. It is indeed meant to be
a calculus to be used on an operational level, where one needs to use linear
logic, rather than to study linear logic (and thus to formulate and prove
meta-theoretic properties, for which the sequent calculus formalism seems to
be better). This is more or less the same difference one can observe between
natural deduction systems and sequent calculi.

It is possible to prove that the deep system in Figure 4.6 is equivalent
to the sequent calculus given in Figure 4.3 (see e.g. [100, 101] for details).
The result is proved by means of translations from deep inference proofs to
sequent calculus proofs. Moreover, such translations send cut-free proofs (in
one system) to cut-free proofs (in the other system), so that we have an
indirect proof of cut-elimination for the deep inference calculus: given a deep
inference derivation �, we map it to a sequent calculus derivation �0. We
run the cut-elimination process on �0, thus obtaining �0

0, and then map it
back to a cut-free deep inference derivation �0. It is also possible to give a

118

direct proof of the cut elimination theorem (as done in [99]). This requires
a technique called splitting [63, 64]. The proof is rather technical and long,
and the reader is invited to consult [99] for details.

Having one-sided sequent calculus rules for exponentials allows to extend
the deep inference calculus to full linear logic in a straightforward way. How-
ever, the resulting system is not very satisfactory (see [101]), and a better
system can be obtained by considering rules given in Figure 4.7.

⇠{!(A`B)}
⇠{!A` ?B}

⇠{!A}
⇠{1}

⇠{!A}
⇠{!A⌦ A}

⇠{?A⌦ !B}
⇠{?(A⌦ B)}

⇠{?}
⇠{?A}

⇠{?A` A}
⇠{?A}

Figure 4.7: Deep inference rules for exponentials.

Contrary to our analysis of exponential modalities, these rules are not
modular and make exponentials something hard to deal with.

We can extend the deep system with rules for fixed point operators. It
seems natural to add the rules

⇠{F (µX.F)}
⇠{µX.F}

⇠{F (⌫X.F)}
⇠{⌫X.F}

Translating the rule

A ` F (A)
A ` ⌫X.F

is more problematic, since it cannot be simply wrapped with contexts, as in

⇠{A? ` F (A)}
⇠{A? ` ⌫X.F}

In fact, this rule is not sound. We adopt the solution used in [45], where it
was faced the problem of finding a deep inference rule corresponding to a first
order coinduction axiom. The solution consists in introducing a semantically
empty modality †, so to be able to deal with ‘fixed contexts’. Intuitively, in
a structure ⇠{†A}, we can only operate either on A, or on ⇠{_}, but there
cannnot be any interaction between these two. The only rule governing † is

119

⇠{1}
i

⇠{†1}
Proceeding bottom-up, the rule states e.g. that in order to prove ⇠{†A},
we have to be able to prove A in isolation. In fact, this means that A
can be derived from 1, so that we obtain ⇠{†1}. We can now eliminate
†. In particular, †A and A are equi-provable, so that, semantically, †A is
interpreted simply as A. This makes the syntactic device of † sound.

We can now formulate the rule for finality of ⌫X.F as

⇠{†(A? ` F (A))}
⇠{A? ` ⌫X.F}

Having A? ` F (A) in isolation indeed requires A to be an F -coalgebra, and
thus makes the rule sound.

Remark. The modality † does not have a de Morgan dual, so that the above
rule does not have a dual version. In fact, the dual of that rule (even without
dagger and contexts) is unsound.

We thus come up with a stock of (deep inference) rules for fixed point
operators, as summarized in Figure 4.8.

⇠{F (µX.F)}
µ

⇠{µX.F}
⇠{1}

i

⇠{†1}
⇠{†(A? ` FA)}

⌫
⇠{A? ` ⌫X.F}

Figure 4.8: Deep inference rules for fixed point operators.

Note that we left out the rule

⇠{F (⌫X.F)}
⇠{⌫X.F}

In fact, we can recover this rule as the axiom (F (⌫X.F))?`⌫X.F , as shown
by the following derivation

120

⇠{1}
i

⇠{†1}
id

⇠{†((F (F (⌫X.F)))? ` F (F (⌫X.F)))}
=

⇠{†(F?(F?(µX.F?))` F (F (⌫X.F)))}
µ

⇠{†(F?(µX.F?)` F (F (⌫X.F)))}
=

⇠{†((F (⌫X.F))? ` F (F (⌫X.F)))}
⌫

⇠{†((F (⌫X.F))? ` ⌫X.F)}
We designed a sequent calculus (both two- and one-sided) and a deep

inference calculus for classical linear logic enriched with least and greatest
fixed point operators ⌫LL. The study of the meta-theoretical properties of
these calculi is at a preliminary stage, and the author believes that a better
proof-theoretical account to ⌫LL can be achieved by moving to calculi based
on richer formalisms, like e.g. display calculi [20] or deep sequents [33] (see
next chapter for more details).

We conclude this work sketching some possible applications of the frame-
work designed so far.

121

Applications, Further Works and

Conclusions

In this chapter we briefly outline some possible applications of the framework
studied so far, which will be investigated in future works. As a consequence,
the treatment will not be completely formal, focused more on ideas than
concrete results. Here we focus on some specific applications, thus leaving out
some other interesting ones. Among these, it is worth mentioning possible
applications in type theory [109] (inductive and coinductive linear types),
game semantics [4] (for example concerning infinite and iterative games)
and, clearly, those fields mentioned in the introduction, notably categorical
quantum mechanics (e.g. infinite and iterative protocols).

Epistemic and doxastic logics built over a linear base have been recently
investigated, due to their applications in computer science [18, 42]. Results
are mostly syntactical and, although claimed to be ‘epistemic’, only S4-like
modal linear logics were considered. The reason is the lack of well-behaved
sequent calculi for S5-modal logics [82, 97]. This problem can be fixed simply
moving to richer formalisms, like display calculi (see [111] for an introduction
to display calculi for several modal logics) or deep inference calculi [98]. In
the previous chapter we studied a deep inference proof system for classical
linear logic with fixed point operators. Adding to that system rules for an
S5 modality, gives a proof system for a standard epistemic logic built over
a linear base. Finally, adding fixed point operators allows to recover both
common knowledge and exponential modalities. The same can be done with
other modalities.

A more interesting yet hard question regards semantics for combinations
of modal and linear logics. In fact, the linear base of the logic makes Kripke
models less intuitive than their ‘classical counterpart’ (see [87] for a general
introduction to relational semantics for substructural logics). It is possible

122

to give sound and complete algebraic semantics to several modal linear logic
(via e.g. CL algebras [54, 105]), but these are rather syntactical-oriented and
ad hoc. A survey of relational and algebraic semantics for linear logic is given
in [108].

Here we sketch possible modifications of Aumann structures [49, 85] in
order to be able to deal with non-classical bases. Aumann structures provide
intuitive set-theoretic models for epistemic logics, and are usually equivalent
to Kripke models (see [49] for details). However, their set-theoretic nature
makes them suitable for extensions, preserving at the same time their intu-
itive character. We propose some possible extensions that make such models
closer to the notion of pretopology [89, 90, 17], a notion which was success-
fully employed to give sound and complete semantics to several fragments
of linear logic. These models have the major advantage of being simple and
intuitive, and thus seem to constitute a good starting point for building new
semantics for modal logics built over a linear base.

Towards Epistemic Linear Logic

Let us start by reviewing basic ideas behind Aumann structures (the reader
can consult [85] for details, and [49] for a more logic-oriented introduction).
Given a collection ⌦ of states (which can be thought as complete descriptions
of the world), an Aumann structure is obtained by equipping ⌦ with an
information function P : ⌦ ! 2⌦ that associates with every state ! 2 ⌦ a
nonempty subset P (!) of ⌦. The intended (informal) meaning is that when
the state is ! the agent knows only that the state is in the set P (!). That is,
the agent considers possible that the true state could be any state in P (!).
Information function can be used to model several concepts, like knowledge
and belief, depending on which conditions we impose on P . In order to model
knowledge we require an information function P to satisfy the following two
conditions:

1. ! 2 P (!) for every ! 2 ⌦.

2. If !0 2 P (!), then P (!) = P (!0).

These two conditions make P partitional, that is we require the existence of
a partition of ⌦ such that for any ! 2 ⌦ the set P (!) is the element of the
partition that contains !.

123

An event is a subset of ⌦, which means that we are taking 2⌦ to be the
event space. This set has a boolean algebra structure, so that we have the
classical operations of conjunction, disjunction and negation for events, given
by intersection, union and complementation, respectively. Given an event
E 2 2⌦ and a state ! 2 ⌦, we say that the agent knows E if P (!) ✓ E. This
induces a knowledge operator K : 2⌦ ! 2⌦ as

K(E) = {! 2 ⌦ | P (!) ✓ E}
This knowledge operator satisfies the following properties, which make it an
S5-operator (see [49] for details).

1. K(⌦) = ⌦.

2. If E ✓ F , then K(E) ✓ K(F).

3. K(E) \K(F) ✓ K(E \ F).

4. K(E) ✓ E.

5. K(E) ✓ K(K(E)).

6. ⌦ \K(E) ✓ K(⌦ \K(E)).

A specific feature of Aumann structures is that the event space is simply
2⌦, and thus has a classical nature. This makes the framework suitable for
extensions and improvements. For example, it is possible to equip ⌦ with a
topology and consider events to be open sets, thus moving from a classical to
an intuitionistic base. In [12, 13] topological extensions of Aumann structures
were considered, in order to formalize a notion of distance between events
and to define the notion of limit knowledge.

Another possible way to extend Aumann structure is to consider struc-
tured sets of states. In the specific case of linear logic, we could take as
basic states an ordered monoid of partial descriptions of the world. More
formally, we consider a monoid (⌦, ·, 1,) where (⌦, ·, 1) is a monoid (either
commutative or not), and is a partial order on ⌦. Intuitively, elements of
⌦ are partial descriptions of the world. Given two such descriptions !,!0 we
read ! !0 as the fact that the description !0 is more informative than !.
Moreover, we have the binary operation · to join descriptions together. The
result is a new description/observation, say ! · !0, which is in general differ-
ent from just having both the description ! and the description !0. Taking ·

124

non-commutativity we could think ok ! · !0 as the fact that the observation
!0 is made after observing ! (thus introducing some form of causality). For
example if we let ! stand for the observation “Alice sees a lighting” and !0 for
“Alice hears a thunder”, then the observation ! · !0 relates the observations
! and !0 temporally, in the sense that whenever Alice sees a lighting, then
she also hears a thunder. Taking the event space to be the whole 2⌦ we can
define, together with classical operations, a tensor products ⌦ over events as
follows:

E ⌦ F = {! · !0 | ! 2 E, !0 2 F}
Taking a monoid of partial observations, rather than a set of complete de-
scriptions of the world gives an interesting structure.Unfortunately, such
structure carries out a distributive base, since e.g. \ distributes over [,
and thus we cannot use them to model the additive connectives & and �4.
To obtain a model for propositional linear logic (both classical and intuition-
istic), we have to add structure to the state space, and at the same time to
restrict the event space.

For what concern the state space we consider a commutative monoid
(⌦, ·, 1) together with a cover relation � between states and sets of states,
and a special set ? ✓ ⌦. The intuition behind ⌦ is as above. Given a state
! and a set of states E 2 2⌦, we read ! � E as “the information/observation
! is subsumed by the collection of observations E”. Finally, the set ? is the
set of absurd observations. For example we could have two observations !
and !0 which are incompatible. This means that we have ! · !0 2 ?. We
require ? to be �-closed (i.e. if ! � ?, then ! 2 ?). The cover relation is
required to satisfy the following properties:

! 2 E
! � E

! � E E � F
! � F

! � E !0 � E 0

! · !0 � E · E 0

4In linear logic neither additives nor multiplicatives distributes over each other, in the
sense that none of these equivalences is provable:

A& (B � C) a` (A&B)� (A& C)

A� (B & C) a` (A�B) & (A� C)

A⌦ (B ` C) a` (A⌦B)` (A⌦ C)

A` (B ⌦ C) a` (A`B)⌦ (A` C)

Nevertheless, we have distribution of additives over multiplicatives. That is, ⌦ dis-
tributes over � (and viceversa), and ` over & (and viceversa). These distributive prop-
erties justify the notation used for connectives.

125

where E � F abbreviates 8! 2 E.! � F and E·E 0 = {!·!0 | ! 2 E, !0 2 E 0}.
The event-space is the set of saturated sets. A set E 2 2⌦ is saturated

if it is closed under �. That is, if ! � E implies ! 2 E. This means that
events (i.e. saturated sets) are some kind of logically complete collections of
observations.

The cover relation � induces a closure operator C : 2⌦ ! 2⌦ given by

C(E) = {! 2 ⌦ | ! � E}

satisfying the so-called stability properties, i.e.

C(E) · C(F) ✓ C(E · F).

Viceversa, a closure operator C : 2⌦ ! 2⌦ satisfying stability induces a cover
relation � defined by

! � E iff ! 2 C(E)

(see [90] for details). As a consequence, we can define pretopologies as struc-
tures (⌦, ·, 1,?) as above, together with a closure operator C satisfying sta-
bility, instead of a cover relation �. Saturated sets are nothing but fixed
points of C. We write C(⌦) for the collection of saturated sets over ⌦.

The collection C(⌦) carries out a complete lattice structure (with respect
to the inclusion order ✓), given by the following operations (see [89, 90] for
proofs):

^
i2I

Ei =
\
i2I

Ei_
i2I

Ei = C(
[
i2I

Ei)

Moreover, we can define a tensorial product over C(⌦) as

E ⌦ F = C({! · !0 | ! 2 E, !0 2 F})

with unit C({1}). This gives to C(⌦) a quantale structure.
Finally, we can define a linear implication as

E (F = {! 2 ⌦ | ! · E � F}

126

This allows to define negation as

E? = E (?

We thus have a sound and complete model for intuitionistic propositional
linear logic (see [89] for details). We can even obtain a model for classical
linear logic by taking the closure operator C(_) defined by

C(E) = (E (?) (?

To obtain a model for epistemic or doxastic linear logic it is sufficient to
consider an operator K : C(⌦) ! C(⌦) satisfying the desired conditions (like
e.g. those for the knowledge operator above).

Proof systems for modal linear logics can be obtained as combinations of
the proof systems for modal and linear logics. For example, we obtain a deep
inference proof system for an S5 linear logic (which we could call epistemic
linear logic) by enriching the deep inference system for propositional linear
logic in Section 4.2 with formulas of the form 2A and 3A, for a formula A,
equations

(2A)? = 3A?

(3A)? = 2A?

21 = 1

3? = ?

and rules in Figure 4.9 (together with their duals)

⇠{2(A`B)}
k

⇠{2A`3B}
⇠{2A}

t

⇠{A}
⇠{33A}

4
⇠{3A}

⇠{32A}
5

⇠{2A}

Figure 4.9: Deep inference rules for S5 modalities.

We can finally add fixed point operators to the above language to obtain
modal linear logics with fixed point operators. We can give semantics to
the logics thus obtained using pretopologies. Let us consider the classical
case. We have a closure operator C(_) given by (_)??, where E? is defined
as above, that satisfy stability. We also have an interpretation for additive

127

conjunction and disjunction (via the lattice operator), and thus for additive
units (in fact, we have a complete lattice). We can interpret multiplicative
connectives too. We have already defined the tensor product over saturated
sets. We can define the cotensor ` by

E ` F = (E? · F?)?

so that we indeed have (E ⌦F)? = E? `F?. Multiplicative units are given
as {1}?? and ;??. The interpretation of linear negation is defined as above,
whereas modalities are interpreted as suitable operators over C(⌦).

Each operation used to interpret connectives is monotone with respect
to the inclusion order ✓ in all its arguments (with the obvious exception of
linear negation, which is antitone: however, recall that the grammars we used
to define extensions of linear logic with fixed point operators do not allow
variables to occur under the scope of a linear negation). Operators used to
interpret modalities are monotone, provided the modalities are normal. As a
consequence, an open formulas F (X) is interpreted in a monotone function
JF K : C(⌦) ! C(⌦). Since hC(⌦),✓i forms a complete lattice, Knaster-Tarski
Thorem (Proposition 14 in previous chapter) gives the existence of both least
and greatest fixed points of JF K. We use them to interpret µX.F (X) and
⌫X.F (X), respectively.

Further Works

Here we list some further research directions and open problems that the
author wants to investigate in future works.

Better Proof Systems. We designed several proof systems, either in the
sequent calculus formalism or in the Calculus of Structures formalism.
The latter are easy to use, closer to algebraic calculations than to ‘stan-
dard’ proof theory. However, investigating meta-theoretic properties of
such calculi is in general harder than investigating the meta-theory of
sequent calculi. These, unfortunately, are known to be inadequate for
some families of modal logics (like S5, see [82, 97]). An interesting re-
search direction is the design of proof systems for linear logics, enriched
with both fixed point operators and modalities, in new formalisms suit-
able for meta-theoretic investigations. In particular, display calculi [20]
were successfully employed to design well-behaved proof systems for

128

several modal logics [111], and were recently extended [50, 51, 52] to
the so-called multi-type display calculi in order to deal with dynamic
logics. The strength of such calculi is a finer distinction between the
object level of formulas and the meta-level of the so-called structures.
Such distinction allows to formulate eight conditions concerning the
shape of the rules that, together, guarantees a cut-elimination theo-
rem.
As already mentioned, display calculi for full propositional linear logic
already exist [21]. However, such calculi are rather ad hoc and do
not provide a satisfactory treatment of exponential modalities. Some
preliminary work has already been done to employ the multi-type for-
malism in order to come up with better proof systems for full linear
logic.

Completeness Results. We mostly focused on categorical semantics, just
sketching a possible ‘non-algebraic’ semantics in this last chapter. Such
semantics is based on the notion of pretopology, and a soundness the-
orem can be proved. Working out proofs in [90], it is also possible to
prove completeness theorems for several modal linear logics without
fixed point operators. Proving a completeness theorem for e.g. linear
logic with fixed point operators is not easy, and the author was not able
to come up with such a proof so far. The main strategy adopted was to
use techniques from duality theory. For example, a standard proof via
the Lindenbaum algebra construction allows to prove a completeness
theorem for ⌫LL with respect to an extension of CL-algebras [40, 105]
obtained as poset ⌫SMCCs. However, moving from CL-algebras to
pretopologies requires to perform a completion procedure (like e.g.
Dedeking-MacNeille completion [54, 46]), which unfortunately does not
preserve least and greatest fixed points (in fact, the completion, in gen-
eral, creates new pre- and post-fixed points). This problem is studied
in [93] and the author hopes that some of the results proved there can
help in finding completeness’ proofs for the ‘pretopological semantics’.

More Intuitive Semantics. We sketched a semantics for several logics stud-
ied in this thesis based on the notion of pretopology, with the informal
motivation of having more intuitive semantics than categorical and al-
gebraic ones5. The author believes that pretopologies are, at least in

5Relational semantics for substructural logics exist, and were deeply investigated (see

129

principle, quite intuitive structures that could help to achieve an in-
tuitive comprehension of linear logic’s connectives, maintaining at the
same time mathematical rigor. This is especially true for what concern
the intuitionistic propositional fragment of linear logic. Intuition is par-
tially lost when moving to classical linear logic. For this reason finding
new and more intuitive semantics seems to be particularly relevant.

Conclusions

In this thesis we introduced and studied some extensions of propositional lin-
ear logic with least and greatest fixed point operators. We started by adding
structure to symmetric cartesian monoidal categories. Namely, we equipped
such categories with initial algebras and final coalgebras for the so-called
polynomial functors, thus obtaining a new class of categories. We defined
these categories equationally, following Lambek’s methodology [71]. Such
approach allowed to easily recognize the underlying logic of such categories,
which is an extension of the (⌦, &)-fragment of (propositional) intuitionistic
logic with (least and greatest) fixed point operators. This logic is power-
ful, and allows to recover the exponential modality ! as well as its relevant
and affine versions. Looking at the exponential !A as final coalgebra of the
exponential functor

E(X) = 1 & A& (X ⌦X)

allowed to achieve a finer analysis of the proof-theoretical properties of !. In
particular, we recognized such functor to be decomposable in the so-called
relevant and affine functors, which are nothing but the defining functors of
relevant and affine modalities. Such decomposition was made formal via a
new decomposition theorem in the spirit of [67].

Studying the properties of the exponential functor, it was possible to
recognize some correspondences between its structure and specific proof-
theoretical properties of the exponential modality !. This analysis gives new
information regarding non-canonicity of the exponential modality as well as

e.g. [86, 87] for a comprehensive introduction to the subject). These are essentially
based on the notion of information frame [110], which provides an intuitive (informal)
interpretation of several substructural distributive logics. Moving to non-distributive logics
usually require to equip the information frame with some closure operators, thus loosing
part of its intuitive character. For this reason, relational semantics for linear logic do not
seem to add any intuition compared to pretopologies.

130

its relationship with specific sequent calculus rules it has to satisfy, notably
the promotion rule.

These results can be extended to relevant and affine modalities, as well as
!’s dual modality, ?, and its relevant and affine variants. We gave a sequent
calculus for classical (propositional) linear logic enriched with fixed point
operators, as well as a deep inference calculus.

Finally, some possible applications of the logics investigated were sketched,
as well as a non-categorical/algebraic semantics, based on the notion of pre-
topology [89].

131

Bibliography

[1] S. Abramsky and R. Jagadeesan. Games and full completeness for mul-
tiplicative linear logic. J. Symb. Log., 59(2), 1994.

[2] S. Abramsky, G. McCusker. Games for Recursive Types. Theory and For-
mal Methods, 1994.

[3] S. Abramsky, S. Jung. Domain theory. In S. Abramsky, D. M. Gabbay,
T. S. E. Maibaum, editors. Handbook of Logic in Computer Science III.
Oxford University Press, 1994.

[4] S. Abramsky. Semantics of interaction: an introduction to game seman-
tics. Semantics and Logics of Computation, 1996.

[5] S. Abramsky, R. Jagadeesan, and P. Malacaria. Full Abstraction for PCF.
Info. & Comp, 2000.

[6] S. Abramsky, B. Coecke. A categorical semantics of quantum protocols.
Proceedings of the 19th IEEE conference on Logic in Computer Science
(LiCS’04). IEEE Computer Science Press, 2004.

[7] L. Aceto, A. Ingólfsdóttir, K. Guldstrand Larsen and J. Srba. Reactive
Systems: Modelling, Specification and Verification. Cambridge University
Press, 2007.

[8] S. Ambler. First order logic in symmetric monoidal closed categories.
Ph.D. thesis, U. of Edinburgh, 1991.

[9] A.R. Anderson, N.D. Belnap, Jr. Entailment: The Logic of Relevance and
Necessity. Princeton, Princeton University Press, Volume I, 1995.

[10] A. Asperti, G. Longo. Categories, Types and Structures. Category The-
ory for the working computer scientist. M.I.T. Press, 1991.

132

[11] S. Awodey. Category Theory. Oxford Logic Guides 49, Oxford University
Press, 2006.

[12] C.W. Bach, J. Cabessa. Limit knowledge of rationality. In Proceedings
of the 12th Conference on Theoretical Aspects of Rationality and Knowl-
edge, TARK 2009, ACM, New York, 2009.

[13] C.W. Bach, J. Cabessa. Agreeing to Disagree with Limit Knowledge.
Logic, Rationality, and Interaction, Third International Workshop, LORI
2011, Guangzhou, China, 2011.

[14] D. Baelde and D. Miller. Least and greatest fixed points in linear logic.
In LPAR, 2007.

[15] J. Baez, M. Stay. Physics, topology, logic and computation: a rosetta
stone In: B Coecke (ed.), New Structures for Physics, Lecture Notes in
Physics 813, Springer, Berlin, pp. 95-174, 2011.

[16] M. Barr, C. Wells. Category Theory for Computing Science. Reprints in
Theory and Applications of Categories 22 (3rd ed.), 2012.

[17] G. Battilotti, G. Sambin. Pretopologies and a uniform presentation of
sup-lattices, quantales and frames. Annals of Pure and Applied Logic,
2005.

[18] L. Bauer, D. Garg, K. Bowers, F. Pfenning, M. Reiter. A linear logic of
affirmation and knowledge. In Proceedings of the 11th European Sympo-
sium on Research in Computer Security, 2006.

[19] J.L. Bell. Types, Sets and Categories. In Akihiro Kanamory Handbook
of the History of Logic. Volume 6: Sets and Extensions in the Twentieth
Century, Amsterdam: North Holland, 2012.

[20] N.D. Belnap. Display logic. Journal of Philosophical Logic, 11, 1982.

[21] N. D. Belnap. Linear logic displayed. Notre Dame Journal of Formal
Logic, 31, 1990.

[22] N. Benton, G. Bierman, V. de Paiva, M. Hyland. Term assignments for
intuitionistic linear logic. Technical report 262, Cambridge, 1992.

133

[23] N. Benton. A mixed linear and non-linear logic: Proofs, terms and mod-
els. In Proceedings of Computer Science Logic ’94, number 933 in Lecture
Notes in Computer Science. Springer Verlag, 1995.

[24] G.M. Bierman. On intuitionistic linear logic. Technical Report 346, Uni-
versity of Cambridge Computer Laboratory, August 1994.

[25] G. M. Bierman. What is a categorical model of intuitionistic linear logic?
In Proceedings of the Second International Conference on Typed Lambda
Calculus, volume 902 of Lecture Notes in Computer Science, pages 73-93,
1995.

[26] R. Bird, O. de Moor. Algebra of Programming. Prentice Hall, 1997.

[27] G. Birkhoff, J. von Neumann. The logic of quantum mechanics. Ann.
Math. 37, 1936.

[28] P. Blackburn, M. de Rijke, Y. Venema. Modal Logic. Cambridge Uni-
versity Press, 2001.

[29] A. Blass. A game semantics for linear logic. Annals of Pure and Applied
Logic 56, 1992.

[30] R. Blute and P. Scott. Category theory for linear logicians. Unpublished
manuscript.

[31] T. Braüner. Introduction to linear logic. Technical Report BRICS-LS-
96-6, Department of Computer Science, University of Aarhus, 1996.

[32] T. Brauner, V. de Paiva. Cut-elimination for full intuitionistic linear
logic. Technical Report 395, Computer Laboratory, University of Cam-
bridge, 1996.

[33] K. Brünnler. Deep Sequent Systems for Modal Logic. Advances in Modal
Logic, 2006.

[34] F. Cardone, J. R. Hindley. History of �-calculus and combinatory logic.
In D. M. Gabbay and J. Woods (eds.), Logic from Russell to Church
(Handbook of the History of Logic, Vol. 5), Amsterdam: Elsevier, 2006.

[35] A. Church. The Calculi of Lambda-conversion. Princeton University
Press, Princeton, NJ, 1941.

134

[36] B. Coecke, D. J. Moore, A. Wilce. Operational quantum logic: an
overview. In Current Research in Operational Quantum Logic: Algebras,
Categories and Languages, Springer, 2000.

[37] B. Coecke. Introducing categories to the practicing physicist. In What
is Category Theory? Advanced Studies in Mathematics and Logic 30,
Polimetrica Publishing, 2006.

[38] B. Coecke, E. O. Paquette. Categories for the practising physicist. In
New Structures for Physics, B. Coecke (ed.), Springer Lecture Notes in
Physics, 2009.

[39] B. Coecke. Quantum picturalism. Contemporary Physics 51, 2010.

[40] D. Coumans, M. Gehrke, L. van Rooijen. Relational semantics for full
linear logic. Journal of Applied Logic 12(1), 2014.

[41] H.B. Curry, R. Feys. Combinatory Logic (Studies in Logic and the Foun-
dations of Mathematics, Vol. I). Amsterdam, North-Holland, 1958.

[42] H. DeYoung, F. Pfenning. Reasoning about the consequences of autho-
rization policies in a linear epistemic logic. Technical Report CMU-CS-
09-140, Carnegie Mellon University, July 2009.

[43] H. van Ditmarsch, W. van der Hoek, and B. Kooi. Dynamic Epistemic
Logic. Synthese Library Series, Springer, 2007.

[44] R.W. Duncan. Types for Quantum Computing. D.Phil. thesis, University
of Oxford, 2006.

[45] K. Chaudhuri, N. Guenot. Equality and Fixpoints in the Calculus of
Structures. CSL-LICS’14, 2014.

[46] B.A. Davey, H.A. Priestley. Introduction to Lattices and Order. Cam-
bridge University Press (2nd ed), 2002.

[47] K. Dosen. Cut Elimination in Categories. Trends in Logic 6, Kluwer,
Dordrecht, 1999.

[48] K. Dosen, Z. Petric. Proof-Theoretical Coherence. Studies in Logic 1,
King’s College Publications (College Publications), London, 2004.

135

[49] R. Fagin, J. Halpern, Y. Moses, M.Y. Vardi Reasoning About Knowledge.
MIT Press, 1995.

[50] S. Frittella, G. Greco, A. Kurz, A. Palmigiano. Multi-type Display Cal-
culus for Propositional Dynamic Logic. Special issue on Substructural
logic and information dynamics, 2014.

[51] S. Frittella, G. Greco, A. Kurz, A. Palmigiano, V. Sikimić. Multi-type
Display Calculus for Dynamic Epistemic Logic. Journal of Logic and
Computation, Special issue on Substructural logic and information dy-
namics, 2014.

[52] S. Frittella, G. Greco, A. Kurz, A. Palmigiano, V. Sikimić. A Proof-
Theoretic Semantic Analysis of Dynamic Epistemic Logic. Journal of
Logic and Computation, Special issue on Substructural logic and infor-
mation dynamics, 2014.

[53] J. Gallier. Constructive Logics. Part I: A Tutorial on Proof Systems and
Typed lambda-Calculi. Theoretical Computer Science, 110(2), 1993.

[54] J. Gallier. Constructive Logics. Part II: Linear Logic and Proof Nets.
Technical Report, CIS Department, University of Pennsylvania, 1991.

[55] The Collected Papers of Gerhard Gentzen. NothHolland Publ. Co., Am-
sterdam. Edited and introduced by M.E. Szabo, 1969.

[56] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1-102,
1987.

[57] J.-Y. Girard, Y. Lafont, P. Taylor. Proof and Types. Cambridge Univer-
sity Press, 1989.

[58] J.-Y. Girard. Quantifiers in linear logic II. In G. Corsi, G. Sambin
(Eds.), Nuovi problemi della logica e della filosofia della scienza, CLUEB,
Bologna, 1991.

[59] J.-Y. Girard. Linear logic: its syntax and semantics. In Girard et al.[60]

[60] J.-Y. Girard, Y. Lafont, and L. Regnier, editors. Advances in Linear
Logic. Volume 222 of London Mathematical Society Lecture Note Series.
Cambridge University Press, 1995.

136

[61] J-Y. Girard. The Blind Spot: Lectures on Logic. European Mathematical
Society, 2011.

[62] R. Goldblatt. Topoi: The Categorial Analysis of Logic. Studies in logic
and the foundations of mathematics, North-Holland, Amsterdam, New
York, Oxford, 1984.

[63] A. Guglielmi A system of interaction and structure. ACM Transactions
on Computational Logic, 8(1), 2007.

[64] A. Guglielmi A Calculus of Order and Interaction. Technical Report
WV-99-04, Technische Universität Dresden, 1999.

[65] J.R. Hindley. Basic Simple Type Theory, Cambridge Tracts in Theoret-
ical Computer Science. Cambridge University Press, 1997.

[66] W. A. Howard. The formulae-as-types notion of construction. In To H.
B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formal-
ism, Academic Press, 1980.

[67] B. Jacobs. Semantics of Weakening and Contraction. Annals of Pure
and Applied Logic 69, 1994.

[68] B. Jacobs. Introduction to coalgebra. Towards mathematics of states and
observations. Book Draft.

[69] A.P. Kopylov. Decidability of Linear Affine Logic. Information and Com-
putation, Vol. 164, No. 1, Jan 2001.

[70] Y. Lafont, A. Scedrov. The Undecidability of Second Order Multiplicative
Linear Logic. Inf. Comput. 125(1),1996.

[71] J. Lambek. P.J. Scott. Introduction to higher order categorical logic.
Cambridge University Press, 1986.

[72] S. MacLane. Categories for the Working Mathematician. Springer-
Verlag, 1971.

[73] G. McCusker. Games and Full Abstraction for FPC. Inf. Comput.,
160(1-2), 2000.

137

[74] E.D. Mares, R.K. Meyer. Relevant Logics. in L. Goble editor, The Black-
well Guide to Philosophical Logic, Oxford, Blackwell, 2001.

[75] P. Martin-Löf. Intuitionistic Type Theory. Notes by Giovanni Sambin of
a series of lectures given in Padua, June 1980, Bibliopolis, Napoli, 1984.

[76] P.A. Melliès, N. Tabareau. Resource modalities in game semantics. Pro-
ceedings of the 22nd Annual IEEE Symposium on Logic in Computer
Science, IEEE Computer Society Washington, DC, USA, 2007.

[77] P.A. Melliès. Categorial semantics of linear logic. In Interactive Models
of Computation and Program Behaviour, Panoramas et Synthèses 27,
2009.

[78] P.A. Melliès, N. Tabareau. Resource modalities in tensor logic. Annals
of Pure and Applied Logic Volume 161, Issue 5, 2010.

[79] R. Milner. Communication and Concurrency. PrenticeHall,1989.

[80] G. Mints, T. Studer Cut-elimination for the µ-calculus with one variable.
In Fixed Points in Computer Science 2012, volume 77 of EPTCS, Open
Publishing Association, 2012.

[81] D. Murfet. Logic and linear algebra: an introduction. CoRR
abs/1407.2650, 2014.

[82] S. Negri. Recent Advances in Proof Systems for Modal Logic. Advances
in Modal Logic, 2014.

[83] M.A. Nielsen, L. Chuang. Quantum Computation and Quantum Infor-
mation. Cambridge University Press, 2000.

[84] P. Odifreddi. The Four Noble Truths of Logic. Unpublished manuscript.

[85] M.J. Osborne, A. Rubinstein. A course in game theory. MIT press, 1994.

[86] F. Paoli. Substructural Logics: A Primer. Dordrecht, Kluwer, 2002.

[87] G. Restall. An Introduction to Substructural Logics. Routledge, London,
1999.

[88] J.J.M.M. Rutten. Universal coalgebra: a theory of systems. Theor. Com-
put. Sci. 249(1): 3-80, 2000.

138

[89] G. Sambin. Intuitionistic Formal Spaces and their Neighbourhood. Logic
Colloquium ’88, R. Ferro et al. (eds.), North Holland, 1989.

[90] G. Sambin. Pretopologies and Completeness Proofs. Journal of Symbolic
Logic 60, 1995.

[91] D. Sangiorgi. An Introduction to Bisimulation and Coinduction. Cam-
bridge University Press, 2012.

[92] L. Santocanale. A calculus of circular proofs and its categorical seman-
tics. In FoSSaCS ’02: Proceedings of the 5th International Conference on
Foundations of Software Science and Computation Structures, Springer,
2002.

[93] L. Santocanale. Completions of µ-algebras,. Annals of Pure and Applied
Logic 154 (1), 2008.

[94] A. Schalk. What is a categorical model for linear logic? Manuscript,
available from http://www.cs.man.ac.uk/?schalk/work.html

[95] R. Seely. Linear logic, ⇤-autonomous categories and cofree coalgebras.
AMS Contemporary Mathematics, 92:371-382, 1989.

[96] M.H. Sørensen, P. Urzyczyn. Lectures on the Curry-Howard isomor-
phism. Studies in Logic and the Foundations of Mathematics 149, Elsevier
Science, 2006.

[97] C. Stewart, P. Stouppa. A Systematic Proof Theory for Several Modal
Logics. Advances in Modal Logic, 2004

[98] P. Stouppa. A Deep Inference System for the Modal Logic S5. Studia
Logica 85 (2), 2007.

[99] L. Straßburger. Linear Logic and Noncommutativity in the Calculus of
Structures. PhD thesis, Technische Universität Dresden, 2003.

[100] L. Straßburger. MELL in the Calculus of Structures. Theoretical Com-
puter Science 309, 2003.

[101] L. Straßburger. A Local System for Linear Logic. LPAR 2002, LNCS
2514, 2002.

139

[102] T. Studer, K. Brünnler. Syntactic cut-elimination for a fragment of the
modal mu-calculus., Annals of Pure and Applied Logic, 163(12), 2012.

[103] T. Studer. On the proof theory of the modal mu-calculus. Studia Logica,
89, 2008.

[104] M.E. Szabo Algebra of Proofs. Studies in Logic and the Foundations of
Mathematics vol. 88, North-Holland Publishing Company, Amsterdam,
New York, and Oxford, 1978.

[105] A.S. Troelstra. Lectures on Linear Logic. CSLI (Center for the Study
of Language and Information) Lecture Notes No. 29. Stanford, 1992.

[106] A. S. Troelstra and H. Schwichtenberg. Basic proof theory. Cambridge
Tracts in Theoretical Computer Science, Cambridge University Press,
2nd edition, 2000.

[107] A. Urquhart. Semantics for Relevant Logics. The Journal of Symbolic
Logic, 37, 1972.

[108] A. Ursini. Semantical Investigations of Linear Logic. Report no. 291,
University of Siena, 1995.

[109] D. Walker. Substructural Type Systems. In B.C. Pierce. Advanced Top-
ics in Types and Programming Languages, MIT Press, 2002.

[110] H. Wansing. The Logic of Information Structures. Springer Lecture
Notes in AI 681, Springer-Verlag, Berlin, 1993.

[111] H. Wansing. Displaying Modal Logic. Kluwer Academic Publishers,
Dordrecht, 1998.

140

