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Abstract Dynamic update of information states is the dernier cri in logical semantics. And it
old hatin BayesianprobabilisticreasoningThis note brings the two perspectivesogether,and
proposes a mechanism for updating probabilities while changing the informational state spaces.

1 Tree diagrams for probability

Many textbooksuse a perspicuoustree format for simple probability spaces.
Branches are histories sficcessiveevents.Going down the tree, actionsgenerate
new probability spaceswith the currentspacebeingmoreor lessthe currenttree
level. Arrows downward from a node are labeled witbbabilities,summingto 1.
By way of illustration, take the perennialMonty Hall puzzle.First, Nature puts a
car behind one of three doors (the quizmastews which, you do not), thenyou
choose aloor, andfinally, the quizmastepensa door not chosenby you which
hasno car behindit. This involves a tree-diagramlike the following. Of course,
which actions you put ipreciselyis a matter of picking the right level of detail.

Nature acts

1/3
car hehind 3

car bhehind 1 car hehind 2

| choose 1 | choose 1

| chogse 1
/2 \Ni 1L i
opens2 Qopens3 Qopens3 Q opens 2

Let's say | chose dodr, Monty openeddoor 3. Shouldl switch or not? We must
find the right conditionaprobability for the car beingbehinddoor 1, given all that
has passed. If we conditionaline 'the car is not behind3', we find a probability
of 1/2. But, if we do the job well, we will pick up the more informative true
propositionA = 'Monty opened door 36 computeP('car behind 1'|Ax 1/3 — and
conclude that we should switch. Is luck neededicking theright A, or is therea
systematiqorinciple at work? In this note we will analyzethis process,which is
close to current dynamic update logics, with information flowing down the tree.



2 Update logic in a nutshell

Update logics are about changing information statgs@sositionsare announced,
or moregeneralactionsobservedln this note, information modelsfor groups of
agentsG are standardepistemicstructuresM with a universeof possibleworlds

and equivalenceelations~, betweenthesemodelingthe uncertaintyof agentie G.

Eachmodelhasan actual world s. Thesestructuresinterpretthe usual epistemic
language with operatorsK; for individual knowledge and C, of common
knowledge in the group. Formulas of thasiguagedescribethe static propertiesof

worldssin a given information mod@&l (Fagin, Halpern, Moses & Vardi 1995).

But epistemiactionschange such models! E.¢ruthful public announcementf a

propositiong removes all worlds from the current model whgdoes not hold:

from S ¢ - to S

This is the dynamic effect of answer'Yes to a question” ¢?". Successivestate

elimination is the simplest update procedure,yielding the familiar picture of
shrinking sets representing ever stronger group knowledge about the actual world.

Despite this March of Progress, updatepsmay changethe currenttruth value of
assertions. Before you answered my question, hdiknow if ¢. Now | do, and

so the ignorance statement has become false. The technical reason ishdnattove
re-evaluateformulas with epistemicoperatorsin the new smaller models, which
may affect their earlier truth values. The resulting patternof changingtruth and
falsity can make even public update sequencesurprising, witness puzzleslike
Muddy Childrenwhererepeateccommunicatiorof ignoranceleadsto knowledge.

In a more elaborate dynamic-epistemic logic, one records this in mixed assertions

[Al] ¢

saying that after public announcemenfpformula ¢ holds. This expresseshings

like [A!]C LA: after public announcement Af it has become common knowledge.
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More complex epistemic actions do not just eliminate statesptgyransformthe
worlds of the model. E.g., in the group{gbu, |, she} sheand| do not know if

¢ Is true, but you do. As a matter of fagtjs true. We can draw a model like this:
¢ I, she -

Now | ask in public ifg, but you answer just to me: whideseesyou answering.

There are two relevant actions: "you says YES", "you say NO". Each ofttheae
public precondition asit is commonknowledgein our story thatyou speaktruly.

The first actionrequiresthatyou know that ¢, the secondthat you know that - ¢.

You and| candistinguishthe two, but shecannot.The resultis a new epistemic
model whose worldare old worlds with an action attachedvhosepreconditionis
satisfied — with the new uncertainties computed by the following rule of

Product Update Lets, tbe worlds in the current model, aadbactions

ats, t, resp., whose preconditions are satisfied there. Ordered paa)s
encode the result of performing actm states. Uncertainty among new
states can only come from existing uncertainty via indistinguishable actions:

(s,a) ~(t,b) iff boths~t anda~Db

In our example, this gives a new model where you and | know, whildagsnot,
though she knows that we know (that we know is even common knowledge):

(¢, say YES) —shie— (—¢, say NO)

Productupdate can also blow up the size of an epistemicmodel. This would
happen, e.g., when she is not sure whether you answered my question or not.

The general updaterocesshastwo drivers: (a) an epistemicinformation modelof
all relevantpossibleworlds with agents'uncertaintyrelations,and (b) an action
modelof all relevant actions, again with agents' uncertainty relations between them.

Product update takes successive prodotcthesetwo models.Again, truth values

of propositionscanchangedrasticallyin suchtransformationsDynamic-epistemic
logics record this explicitly. In a more refined version of the mauted,might even

impose global constraints on the possitlies of the updateprocesswhich record

higher information like "sooner or later, she will tell me all she knows".
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3 Stage setting: epistemic action update in Monty Hall

There is pure epistemics in setting 8tagefor the quiz puzzle.We startwith this,
adding probabilities only later. Let's compute the uncertainties of agents as we go:

Nature acts

car behind 1 I carbehind2 | C ehind 3

Nature has three actions, indistinguishable for Ilpdogt not for the quizmasterQ.
The result is the three-world epistemic model at the second tree level. lmose
adoor. This is a public transparengction, but it would be tediousto representll
options. Let's just say that | publicly chose dbofhe product update rule yields

Nature acts

car behind 1 I carbehind2 | C ehind 3

| chLose 1 | I chLose 1 | I chLose 1

Next, we havethree possibleactionsof Q's publicly openingsome door, with
preconditionga) | did not choosethatdoor, and (b) Q knows that the car is not
behind it. Product update takes only those faira) wheres satisfiedthe relevant
preconditionPRE, and computes uncertainties. The result is the usual Monty tree:

Nature acts

car bmmwmd 3
l CLOOSG . Ichoosel 1. | ChLose 1
Q opens/Z\prens 3 Q opens 3 Q oJens 2

X y z u

----------
......
..................

Let the car be behind doiywhile Q opened doo8: The actual world iy, reached
via the bold-facebranch.In the epistemicmodel at the bottom level, | know the
world is eithery or z. Through the tree, Quizmaster always knows exactly where
is. In otherscenariospoth agentsmight havegenuineuncertaintiesresultingin a
much more complex pattern of linked equivalence relations. So much for logic!
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4 Conditional probability and update

Now for aquick review of Bayesianupdate.An agent'sprobability modelis a set

of worlds with a probability measufe on events,definedby propositionghat can
be true or false at worlds. And conditiomaibbabilitiesP(¢ |A) give the probability

for ¢ given thatA is the case, using rescaled to the set of worlds satisfyiug
P@l|A) = P@AA)/P(A)

Bayes' Rule then helps compute such probabilities in forms like
P@IA) = P(Alg)xP(A) /PG)

and more elaborate versions of the same inversion idea.

Conditionalprobability looks like eliminative update.lt zoomsin on thoseworlds
where the new informatioA holds, andhenrecomputegrobabilities.This is like
eliminatingall —=A-worlds, and re-evaluatingepistemicformulas. And the binary

formatP(g|A) storing all possible updates is like the above dynamic nof&tipag.

But the epistemicperspectivehastwo further features.First, it considersmany
agentstogether,with their mutual information. This would be like having my
probability about your probabilities, etc. But even more importantly, pragdte
does not just select subzones of the currdotmationspace put it transformsthe
latter much more drastically as requiredby relevantinformation-carryingactions.
Probabilistictheory speaksabout eventsA on which we conditionalize,which
seemsa similar ambition. One wantsto combine conditional probability with an
accountof how actionschangethe current probability model. Let's seehow this
works out by continuing with the earlier example of probability tree diagrams.

5 Computing updates on probabilities with public actions

The Monty Hall example isaboutpublic action,wherewe updateprobabilitiesin a
transparent setting. The earlgpistemicupdatecreatednformation modelsat each
treelevel, and we expectthat probabilitiesfor an agentwill give weightsto her
indistinguishablevorlds in suchmodels,giving fine-structureto her information.
But, thereis also a secondsenseof probability involved, working in the other
driver of the story. Action diagramsmay have indistinguishabilities between
actions, and agents might also fine-structure their action alternatives numerically.



6

The latter, too, happensn textbooktree representationsyhich assignprobability
valuesto movesfrom tree nodesto their daughtersin the simplestcaseof public
action, these move probabilities are the same from the viewpoint of every agent.

Digression:a subtletyof interpretation Action probabilitiesso far do not record
uncertainties abowthat action has taken placmcewe observethat somethinghas
happenedThey provide estimatedor the likelihood that an actionwill be takenat
the appropriate stage. But the two aspects can interfere in update, witness:

O O

1/2 /\i 1/2 1/2‘/ \i 1/2

O O Q ........ [reeee O

Suppose actioa wasin fact taken.If a, b aredistinguishable€or me, in the black
dot on the left-hand side, | know exactijrerel amthroughobservation- though
thereis some'ancienthistory' thatwith probability 1/2, b might havebeentaken.
But if a, bare indistinguishable for me, on the right, | do not kwavat happened,
and the earlier probability induces a live option that | am in the white world below.

Here is another point which we can see in the Monty tree. Bitstactiontype can
have different probabilities at different nodes of the current tree level. E.g.,
‘opening door 2has probabilityl/2 whenthe caris behinddoor 1, but probability
1 with the car behinddoor 3. Of course,by makingdescriptionsof action tokens
disjoint, we can make probabilities unique — but this seems less natural in practice.

Now for the productupdaterule along a branch. The usualtextbook explanation
makes probability of a branch a product of the probabilities of its actions.
Recursively, this amounts to repeating the following step:

Look at the current probabilities, and compute those for the next
state by taking a suitable product with weighted available actions.

But the epistemiccontextmatters.Probabilitiesneednot sumto 1 at singlenodes,
or a whole horizontaltree level, but only on one ‘information set': a maximal
component of theincertaintyrelation. Suchcomponentsare the naturalprobability
spacesfrom a given node at the current stage of the overall process.And in

epistemicmodels,suchcomponentsnay be different for different agents.So we
need probability functions relative to agenésd nodes:

P defined on the probability spabg ;={t|t ~ s}

i,s
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Then, the preceding considerations lead to the following update principle:

Product Rule For public actions, and public local probabilitie3, .:
(1) FsOxR (@)
P s2((ta)) =
e z P,.(U) X P, @)

(u,a)e DI, (s, @)

To keep complex notations in line, we will also write the denominator as follows:

2 {P,(u)xP (a)l|(u aeDi, (s, a}

where{} refers to anultisetcounting occurrences of numbers.
A word of explanationmay help. The rule computesprobabilitiesper world. Its
notation(t, a) presupposethatt satisfiesthe preconditionfor executingaction a.
Thus, the probability spacefrom (s, a)'s perspectivemay have shrunk from the

previouslevel s. The numeratoris the obvious total product. The denominator
renormalizes values to sumlan the relevant space.

Finally, here is the general product rule for an arbitrary formrula

(2 Peale) = Z{P (xR @] (uaeD,&(u,a)l=¢}

Z{ Pi,s(u) X I:>u (a) | (U, a)E Di, (s,a}

This rule computesnew probabilitiesafter the actionhastaken place. But we can
alsodescribeit in termsof the old situation before the update! The index in the
numerator ranges over all tuples a)in D,  ,, But this amounts to looking at all
in D, , satisfying the action preconditi®RE,. Thus, formula (2) is equivalent to

3 Z{P,.(U)xP (@] ueD, &ul=PRE&ul=[a] ¢}

2 Pi,s(u) xP (@] ue D, &u |= PRE}
This format may be viewed as a sorgeheralizectonditional probability

P* ([al¢ | PRE)

Essentially,we computea standardconditionalprobability, but over a new space
whose worlds argairs (u, a) of old worlds and executablanstancesf the action
a. This is precisely the combination of two mechanisms that we wanted.



6 A check on two examples
Monty Hall revisited Consider the earlier tree, now with probabilities indicated.

Nature acts

1/3 1/3 1/3
car betfnd 1.1 carbehind 2 I... carbehind 3
I cLoose 1ol Ichoosel 1. | chLose 1
1/2 1/2 1 1
Qopens2 Q dpens 3 Q opens 3 Q oJens 2
X y z u

----------
......
..................

It is easy to check that the probabilities in my finasey} work out to

1/3
2/3

fory: (1/32/2) 1 (1/3+1/2+1/3+1)
for z (1/31) / (1/31/2+1/3<1)

In this picture,we seeour productrule at work, including its non-trivial features.
E.g., we are now in worlyg, where we knowQ hasopeneddoor 3. Nevertheless,
in computing the probability for being yrather tharz, we take the old probability
1/2 into accountfor openingdoor 2 in the stateprecedingy. Why: now that we
knowthis action was not taken? My intuitive response would be as follows:

"Counterfactual chances are still relevant. We observe an openitogicd®. Whatis the chanceit
lies on the left-handbranch,and not the middle one?Well, on the left-handbranch, there was a
chance of 1/2 that the other door was opened, whita®middle branch,it wasthe only option.

So, seeing door 3 opened provides more evidence for our being on the middle branch.”

But to critics of the receivedview on Monty Hall, this line may soundcircular...
Thus, an update rule is not a neutral mathematical fact justiflyingmic-epistemic-
probabilistic laws. It builds in such laws, as also shows in the axioms of Section 8.

Public announcement Productrules(1), (2) also specializeto the stipulationfor
public announcemen! of an assertionA in Kooij 2001. His settingis simpler
than the Monty Hall treegs the action probabilitiesfor truly assertingoropositions
cannot vary per location: they either equal the action cannot be performaihll.
Here is the stipulation, slightly adapted to our setting:



(4) Pooa(®) = Z{P . (u)| ue D, &u|=A&[A] ¢}

Z{P, (W] ueD, &ul=A)

This is a specialcaseof the generalproductrule (2). This showsalso in that this
rule for public announcement really computetamdardconditional probability

P (All¢ |A)

Kooij 2001 formulatesthe valuesin the updaterule by referring to the 'old’
situation straightaway — but (4) is more in the spirit of general epistemic updates.

7 General probabilistic product update

The productrule so far builds in specialepistemicfeaturesE.g., probabilitiesfor
worlds haveuniform valuesacrossa whole information set, as seenfrom every
vantage point. In terms of epistemic logic, this means the following:

If agents know their probabilities of all propositions at some stage,
product update will always lead to new probabilities which they know.

In the Monty Halltree, probabilitiesare evencommonknowledgeamongl and Q.
One might prove aharacterizationof productupdatevia nice epistemicproperties,
on the lines of that given for the pure epistemic version in van Benthem 2001.

Here are somericher options, more in the spirit of the recentupdate literature
(Baltag-Moss-Solecki 1999, van Ditmarsch 2001). Some requirbgusgfingsome
subscripts in the above product rule at the right places, others involve new ideas.

First, action probabilities calpe agent-dependent.o allow this, just replaceterms
P,(a) in formulas (1), (2) by, [(a). We might also leagents’probability functions
vary within their uncertaintysets.Both might happenin Monty Hall: 'Q doesnot
know where the car isl, think thatQ prefers opening doomsith lower numbers’,
etc. So, let's probabilizepistemicproductupdatewith generalactiondiagramsA.
Here is a matching generalization (for further options, cf. van Benthem 2002):

(5) I:)i, (s, a) (‘:’) =
Z{P, ) xP ,(b)| uss&b~a inA & u |= PRE, & (u, b)|= ¢}

S{P, (W) x P, (b)| (u b)e D, ,&b~ainA}

i, (s, a)
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8 Probabilistic epistemic update logic

Updaterulesvalidatea logic for reasoningwith knowledgeand probability. This
will be a combinedlanguagewith modal operatorsof various sorts. With pure
epistemic update, key axioms interchange update actions and our knowledge:

[ATK; ¢ < (A=K (A [A]9)

With general action diagrands and product update, we get
[al K, ¢ & PRE, = & {K, (PRE, — [b]¢)) |b~ainA}

This time, we get similar valid principles for public announcement with probability:
(AP (9)=k ¢ P ([A¢|A)=k

Generalpublic actionsa asin Section5 validate a similar principle, but with a
superscript referring to the product conditional probability introduced there:

[a]P,(#)=k ¢ P7([al¢|PRE)=kK

With generalepistemicactiondiagramsA, we needa generalizatiorto a suitable
version of conditional probability involving the whole diagram, in the format:

@IP(¢)=k & PV bl¢ | v,PRE}=kK
with index b ranging over { bain A}

Slightly neater formulations arise when a&d notationto standarddynamiclogic,
such as explicit world-dependent function symiols |, for probabilities.

Given theseobservationsit becomesa routine exerciseto generalizeéhe complete
axiom system for probabilistic public update in Ka@@01 to the generalsettingof
epistemic actions with product update of Baltag, Moss & Solecki 1999.

9 Comparison with Bayesian update

What becomesof the usual Bayesiancalculusin this setting? The probabilistic
notationP, (¢ | A) looks updatish as it is, areh updatelogic is nothing but a more
systematiacalculusfor making this dynamicsmore explicit. Of course,there are

also some differences.For a start, take the syntax. For us, ¢ was a static
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proposition while A wasmore properly viewed as a dynamicaction"A". But that
is just the point of a dynamic language, which handles diverse expressions like:

P @)=k, P(['AT9=k, [ATP (#)=k

Our system relates these, by stating how to commesgéeriorprobabilitiesin terms
of prior probabilities before the action took place, using rules like

[a]P($)=k < P*([a]¢|PRE) =k

Next, let us look at the way conditional probability works in practice.As an
illustration, take againMonty Hall. Hereis what most peoplewould considerthe
canonical solution, by a simple appeal tostemdardBayes Rule:

P (B |A) = P (A|B)+P(A) /P(B)
Set A ="The car is behind door 1B = "The quizmaster opened door 3".

Then P(A)=1/3,P (A |B) = 1/2, P(B) = 1/2:
et voila; P (B]A)=1/3!

But to analyzewhat theselines mean,one needsto specify the probability space,
and justify thepostulatedP-values.Two of theseare simple: P(A) is a given prior
probability, and P(B) refersto the given probabilitiesof all possibleactions.But
what justifies the statedvalue 1/2 for P(A|B) ? The relevant probability space
which most people seem to have in mind here (as iaaHiertree)is not a simple
subspace of the initial one with car states. Its worlds are rather ordered pairs of

<car state; action taken>
But if so, our product update model is close to practice, since that is what it says!

More generally,the ProductRule of Section5 is like computinga probabilistic
updateusing a prior and a likelihood function over possibleevents(cf. Good
1965, Hirshleifer & Riley 1992). Thus, it convergeswith a powerful theoretical
paradigmin probability theory. Against this background the aboveanalysisthen
adds a systematidew of dynamic-epistemienodeltransformation$n probability
spaces, with a well-understood logical mechanism for reasoning about it.

But what about Bayes' Law? Let us analyze some working prin@plesnditional
probability in our update logic. First, here is the basic definition:

P@lA)+PA) = P@&A)
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This hasthe following counterpartin dynamic-probabilistidogic — assumingfor
simplicity that the propositioA is a precondition foaction"A":

(AP (@)=k & P (A)=1 — P ([A]p&A) =k

But Bayes' Rule itself, the main engine of probabilistic update, is proldematic,
as itinvertsthe order of action:

P@IA) = PAR)-P@ /RA

In a dynamic setting like update logic, public announcements of evempigtemic
statements can have different effects witiey are madein different orders.Thus,
order inversions stating when the announcerAgstrue after announcing ieffect

¢ violate the spirit of updating!In fact, for generalepistemicassertionsBayes'

Law fails. Here is an illustration, with a familiar formula from the literature:

Example Epistemic failure of Bayes' Law
Consider the following epistemic model with two agents:

PP 9 —— b, 7q
you
me
7P, q

The actual world hag, gboth true. Now consider the assertions

A 'you do not know ip is the case’,

which is true in the two uppermost worlds, but not at the bottom. Next, take

& 'l know if p is the case'

which is only true in thevorld to the right. Thus, in this modelP(A) = 2/3, while
P(¢) = 1/3. A public update with the assertidrtakes this model to the new

P, 4 —— P, ~q
you

where¢ holds everywhere:

P@lA) =1
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An update withp takes the initial model to the one-world model
—p, 79

whereA is false everywhere:
P(Al¢)=0

Substituting, we see that Bayes' Law fails:

P@|A) =1#(0+1/3)/2/3 “

The update-logicalstatusof Bayes' Rule seemsto be this. Order inversionsare
invalid in general,but they are admissiblewhenthe relevantassertionsare simple
enough- like non-epistemicannouncementsf atomic facts. Despite this slight
snub, the Rule is widely useful, and it has lived happily for centurieswithout
logical underpinning. Our analysis has put it in perspective, not called into doubt.

10 Conclusion: reasoning with probability

This note is about a dynamic take on probabilistic reasogwigg one stepfurther
in an existing line of researchWhat it proposesin a nutshell is that marrying
epistemic product updatewith probabilistic conditionalization producesa more
principled joint account of both model change and probability adjustment.

More generally, this analysis touchas two problemspeoplehavein probabilistic
reasoning. The first hasften beenobservedUsually, peopledo not miscalculate,
but they misidentify the relevant model. E.g., in Monty Halgny peoplecompute
the conditional probability with respect to tfaet that the car is not behinddoor 3,
which yields probabilityl/2 for its beingbehinddoor 1, and switchingis useless.
There is nothing wrong with this reasoning per se, asiitdeedthe correctupdate
for a public announcemendr observationthat the car is not behinddoor 3. The
problemis rather the choice of the model. Keeping track of the right ambient
models is made easiby updatemechanismsBut thereis alwaysa non-automatic
feature. This now becomes finding the relevant actwtis their preconditionsand
probabilities. Some training with the pet examples of update logic might help here.

But good frameworks should not just moralize: they should also peattietxplain
reasoningfailures. Here is an illustration, which also suggestsa separationof
concernslf probabilisticupdateinvolves epistemicdynamics,one would expect
that people'sproblemswith it area mixture of known purely dynamic difficulties
and genuine probabilistic ones. Again in Monty Hall, intuitivelg tendto look at
postconditionsof observedactions:what holds once they have been performed.



14

Opening door 3 certainlgevealsthe car's not beingthere.But our updateanalysis
(1), (2), (4) saysit is ratherthe preconditionsof the relevantactionswhich count:
what hasto hold beforehandor themto be executableat all. This may be a hard
distinctionfor humanagents.Difficulties in probabilistic reasoningmight depend
on our faint grasp of 'timing' and dynamics, rather than of probability per se.

Finally, a sweeping statement behind our propasalconceptualevel. Eventsare
a key termin probability theory, but their static modeling as setsof outcomesis
wrong They should be taken seriouslydymamicactions that change states!

Acknowledgment This note was written in June 2002, after a Stanford
classroomdiscussionof Barteld Kooij's 2001 paper on probabilistic update for
public announcement. | thank Robert van Rooy for useful critical comments.
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