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Abstract

This thesis proposes a new requirement that probabilistic measures of coherence should

ideally satisfy. This requirement is called ‘coherence preservation’. Probabilistic measures of

coherence build on the idea that coherence is the mutual support between elements of a set.

Using the requirement of coherence preservation, one may reevaluate mainstream probabilistic

coherence measures, and draw the conclusion that all these measures fail to capture certain

aspects of our intuitive understanding of coherence.

We begin with a review of different probabilistic coherence measures. Next, we extend our

survey with a proof for the non-existence of a truth-conducive coherence measure, and we discuss

various follow-up attempts of saving coherence. By presenting the requirement of coherence

preservation, it can be shown that in some cases, the degree of coherence of a set decreases

when the set is extended with a proposition which confirms every element of the set. Based

on this observation, we can show that attempts of saving coherence leads to counterintuitive

results. One should therefore look for a different way of characterizing coherence, which better

captures the non-quantitative aspect of this notion.
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Chapter 1

Introduction

Coherence is one of the most, if not the most, important notions in contemporary epistemology.

With this notion, one can give accounts to a variety of issues in epistemology including epistemic

justification, reliability of information sources, and confirmation of theories. Because of the

numerous potential usages of coherence, philosophers have long been trying to gain a deep and

thorough understanding of this perplexing notion, so as to provide a solid ground for further

applications of it. The approach of characterizing coherence is to provide a probabilistic measure

which allows one to calculate the degree of coherence of a set. Every specific way of measuring

coherence formally represents a specific conception of coherence. If one can find a coherence

measure which generates results that are in perfect accordance to our intuition, it can be taken

as the proper probabilistic definition of coherence, which philosophers may develop applications

for. The primary concern of this thesis is to show that mainstream probabilistic measures

of coherence all violate a simple but crucial new requirement of coherence, and hence fail to

correctly represent our ordinary understanding of coherence.

Early attempts to define coherence are made by Blanshard (1939), A.C. Ewing (1934),

C.I. Lewis (1946) and Laurence BonJour (1985). By contemplating on the nature of coherence,

these authors provide fine-grained conceptual analyses of coherence in a non-formal fashion, and

apply this notion in different fields. The most prominent application of coherence is to explain

the notion of epistemic justification. Instead of taking the concept of belief (satisfying certain

properties) as the foundation of knowledge, some epistemologists suggest to give an account

of epistemic justification in terms of coherence. This view is called coherentism. A belief is

justified, as coherentists claim, if it is included in a coherent belief set, since every element in

such a set supports and is supported by some other elements. This claim sounds more plausible

than other views concerning epistemic justification, and hence was widely accepted.
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Several authors have investigated the criteria of truth-conduciveness of coherence. Here

we see different camps: Klein and Warfield (1994, 1996) argue that the notion of coherence,

understood in terms of probabilistic reasoning, is not a truth-conducive notion. This observation

poses a serious threat to supporters of Coherentism. Since truthfulness is often considered as

an essential ingredient of knowledge, if coherence is indeed not truth-conducive, it definitely

cannot be used as a proper explanation of epistemic justification.

On the other hand, there are also attempts to show that there are measures which are truth

conducive, epistemologists (Shogenji 1999, Olsson 2002, Fitelson 2003, Douven and Meijs 2007,

Roche 2013) provide a variety of ways to measure coherence in terms of probability. If it can be

shown by any of these measures that the more coherent a set is, the more likely the set is true,

the notion of coherence could be saved from Klein and Warfield’s criticism, and be accepted as

a plausible account of epistemic justification.

In order to survey the question whether it is possible to find a truth-conducive coherence

measure, Bovens and Hartmann (2003) construct a model of information gathering. By taking

the reliability of information sources as a parameter, they prove that there does not exist any

coherence measure which is truth-conducive. With the model, they derive the following result:

Suppose there are two sets with different degrees of coherence, one of them may be more likely

to be true given that the reliability of information sources is high, and less likely to be true

when the reliability of information sources is low. Hence, the degree of coherence of a set is not

positively correlated with its probability.

The above mentioned result of Bovens and Hartmann poses a serious threat to support-

ers of coherentism. Given that the primary function of coherence is to explain the nature

of epistemic justification, if coherence, as represented by probabilistic measures, can never be

truth-conducive, this notion becomes valueless. To save the notion of coherence and prove that

it has some other usages, epistemologists provide applications of this notion, and claim that

although coherence is not truth-conducive, it may still play an important role in contemporary

epistemology.

An attempt made by Olsson and Schubert (2007) is to show that coherence, as characterized

by Shogenji’s measure, is a reliability-conducive notion. In a specific scenario, the coherence

of a set of propositions is positively correlated with the reliability of sources providing these

propositions. If a set is highly coherent, we can infer that the information sources of this set

are highly reliable. Since the sources are reliable, this set of propositions is quite likely to be

true.

Another attempt Dietrich and Moretti (2005) proposed is that coherence can be proved as
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a confirmation-conducive notion. If a set is highly coherent, a piece of evidence confirming

an element of that set also confirms all other elements of that set. Moretti (2007) further

proves the reverse that if a set is highly coherent and involves an element which confirms a

proposition, other elements in the set also confirms that proposition. These attempts show that

although coherence is not truth-conducive, it can be indirectly truth-conducive. Hence, it may

still account for epistemic justification.

There are also some minor attempts of saving the notion of coherence. An important one

made by Glass (2007) is that coherence can be taken as a way of ranking scientific explanations.

Given a proposition, if one wants to compare the goodness of several competing explanations

for that proposition, one may measure the degree of coherence between the proposition and its

explanation, and rank the explanations according to their coherence with the proposition in

question. Apart from showing that coherence is indirectly truth-conducive, Glass proves that

coherence has pragmatic value in scientific practices,

Each attempt of saving the notion of coherence is based on a certain coherence measure,

which reflects a specific understanding of coherence. If these proofs are correct, the notion of

coherence can again account for epistemic justification and other related issues. However, all

these measures violate the intuitive requirement of coherence preservation which states that

for any set of propositions, when extended with a proposition confirming every element of it,

the set should become more coherent. Since all mainstream coherence measures violate this

requirement, they fail to capture our ordinary understanding of coherence. As a result, the

notion that is studied by all these approaches is not the notion people commonly understand

as coherence. Therefore, coherence may still be an valueless notion, and coherentism is again

in great danger.

In the following chapters, I will first introduce the mainstream probabilistic definitions of

coherence and briefly discuss if they correctly capture our ordinary understanding of coherence.

After reviewing these coherence measures, I will explain the way Bovens and Hartmann derive

the result that coherence in not truth-conducive, and go on to discuss various attempts of saving

coherence. In the end, I will present the requirement of coherence preservation, which shows

that most coherence measures fail to capture our intuitive understanding of coherence. This

discovery indicates that certain features are still missing in the current approach. Hence we raise

the question and ask epistemologists to reflect upon our coherence preservation requirement and

to take it into account when proposing new measures of coherence.
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Chapter 2

Measuring Coherence

2.1 The notion of coherence

Philosophers have been trying to clarify the intriguing nature of epistemic justification for ages.

Since justification is traditionally regarded as a necessary condition for knowledge,1 without

an explicit explanation of how beliefs are justified, people cannot tell whether a belief could

possibly be taken as knowledge. In order to characterize the nature of knowledge, a proper

account of justification is called for.

A natural explanation is to say that a belief b is justified if it can be inferred, either by

induction or deduction, from some other beliefs b1, ..., bn. With this explanation, we can further

derive a requirement that in order to justify a belief b, all its justifiers b1, ..., bn must be already

justified. Without this requirement, we would have to accept the claim that a belief could

sometimes be justified by a set of unjustified beliefs, which is intuitively unacceptable. Again,

for b1, ..., bn to be justified, there needs to be another set of beliefs b′1, ..., b
′
m which justifies each

b1, ..., bn. Following this line of thought, justification can be regarded as a tree-like structure.

Each member in the structure is justified by its successors, and justifies its predecessors.

A question immediately follows from this picture: at which point does the chain of jus-

tification come to an end? If, for every justifying belief, we need another justified belief to

justify it, the chain of justification would extend infinitely and become a vicious regress, which

1Recent study in knowledge first epistemology (Williamson 2000) suggests that the attempt to analyze knowl-

edge is mistakenly oriented. Nevertheless, it does not undermine the current project. The primary concern here

is to evaluate different formal definitions of coherence, and judge if any of them is appropriate. Although pursuit

of a formal definition of coherence originates from the debate on epistemic justification, the notion of coherence,

as epistemologists have shown, has its own value. Thus, the search of a proper formal definition of coherence can

be separated from the discourse of epistemic justification.
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is undesirable for epistemologists. If epistemic justification is a regress, it would be impossible

for one to ascertain whether a belief is justified, for the chain of justification of that belief has

not, and will not come to an end. That is, if this view is adopted, one can never eliminate the

possibility that the chain involves an unjustified belief. Therefore, infinite regress cannot be a

proper explanation of how the chain of epistemic justification ends.

There are two possible views concerning how justification could be done. One may either

claim that the chain of justification stops at a certain point, or claim that the chain circles back

to itself. To adopt the former claim, one will have to argue that the stopping points have certain

special property, and hence need not be justified inferentially because of that special property.

In other words, there needs to be certain kind of entities that can be taken as the foundation

which justifies other beliefs but need not be justified. Since this view emphasizes the existence

of a foundation of knowledge, it is called foundationalism.

Foundationalists have to answer two fundamental questions: What is the foundation of

knowledge? How does the foundation correlate to, and further justify other beliefs? Some

foundationalists suggest to take sensory experience as the foundation of epistemic justification,

for it does not need to be justified by inference, and thus satisfies the requirement for being the

foundation of knowledge. However, sensory experience is not propositional, which means that

it is categorically different from beliefs people have. In other words, there is a conceptual gap

between sensory experience and propositional beliefs. Without an explanation of how sensory

experience interacts with beliefs, it remains unclear how can it be taken as the foundation

of a belief system. To adopt foundationalism, one needs to either give a proper account of

how sensory experience is connected to beliefs, or take some other entities (other than sensory

experience) as the foundation of knowledge.

Apart from foundationalism, an alternative is to claim that the chain of justification circles

back to itself. That is, beliefs in the chain are justified by some other beliefs in the same

chain. All the beliefs form a system, where each member of the system ts supported by some

members, and also supporting some other members. Adopting such view, both justifying and

justified objects in the chain are beliefs. Thus, there is no conceptual gap between justifying

and justified beliefs. This view is called coherentism of epistemic justification. Roche (2013)

provides a sophisticated characterization of this view:

Definition 2.1.1. Circular Chain of Implication (CCI)

An agent’s belief in p is justified only if:

1. The agent’s belief in p is implied (deductively or inductively) by certain of her other

beliefs, which themselves are implied by certain of her other beliefs, and so on.
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2. The chain of evidential support circles back around at some point and does not continue

ad infinitum with new belief after new belief.

By claiming that the chain of justification circles back to itself, coherentists provide an expla-

nation of how the chain of justification ends. Compared with other possibilities, coherentism

seems quite reasonable.

With Roche’s explanation of coherentism, one might still ask: what is the nature of coher-

ence? Claiming that elements of a coherent set support other elements merely provides us with

a rough idea about what the notion of coherence really is. Without a thorough characterization

of coherence, we are unable to ascertain whether coherentism, compared with foundationalism,

is indeed a better explanation for epistemic justification.

An approach to gain a better understanding of the notion of coherence is to see how epis-

temologists measure the degree of coherence of a set. In the following sections, I will review

several accounts of coherence, and focus on a variety of probabilistic measures of coherence that

have been proposed. With a overview of these measures, one may have a clear idea of how

coherence is characterized in terms of probability.

2.2 Traditional accounts of coherence

In Idealism: A Critical Survey (1934), A. C. Ewing provides the following account of coherence:

A set is coherent if every belief in it logically follows2 from all other beliefs in the set taken

together, namely the conjunction of all other elements in the set. Consider the belief set

{b1, b2, b1 ∧ b2}. Since b1 ∧ b2 follows from {b1, b2}, b1 follows from {b2, b1 ∧ b2}, b2 follows from

{b1, b1 ∧ b2}, this set is coherent under Ewing’s definition.

Ewing’s definition of coherence is apparently too strong. We can have a coherent set of

logically unconnected3 beliefs.

Example 2.2.1. In F. Scott Fitzgerald’s novel The Great Gatsby, the narrator and main char-

acter Nick Carraway has the following set of beliefs:

(b1) Jay Gatsby has a mansion.

(b2) Jay Gatsby has an enormous garden.

(b3) Jay Gatsby has a gorgeous car.

2Although Ewing does not provide a clear definition of what ‘logically follows’ mean, we can infer from his

examples that what Ewing has in mind is actually the entailment relation.
3Here ‘logically unconnected’ means that one belief cannot be deduced from another.
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b1, b2 and b3 are not logically connected, hence, the set {b1, b2, b3} is incoherent if we follow

Ewing’s definition. Intuitively, using our everyday understanding of coherence, this set seems

to be coherent. All three beliefs indicate that Jay Gatsby is pretty wealthy. One can hence

conclude that Ewing’s definition of coherence violates our ordinary understanding of coherence

for being too strict.

C. I. Lewis (1946) provides a different definition for coherence4. He claims that if a set

S = {b1, ..., bn} is coherent, then for any bi which is an element of S, if all other elements in S

are assumed as true, the probability of bi raises. That is, the probability of bi conditional on

S\{bi} is greater than the unconditional probability of bi.
5 This definition of coherence has two

significant advantages. First, it is not as strict as Ewing’s definition, for the notion Lewis uses

is ’raising probability’, rather than the much stronger ‘logically follows’. Second, explain with

probability allows people to decide if a set of partial beliefs is coherent, while Ewing’s definition

can only judge whether a set of full beliefs is coherent.

Convincing as it seems, Lewis’ definition of coherence is still far from satisfactory. Lewis

takes raise of probability of a single belief as the criterion for coherence, but neglects the fact

that coherence can also be a relation between subsets of a set. Given a set S = {b1, ..., bn}, we

cannot tell if its subset {b1, ..., bk} coheres with another subset {bk, ..., bn}. Another deficiency

of Lewis’ definition is that although probability is involved in Lewis’ definition, the notion

of coherence so characterized is still a qualitative, rather than a quantitative one. With this

definition, we can only tell if a set is coherent, but cannot compare the coherence of different

set. Hence, Lewis’ definition is not good enough for coherentists.

BonJour (1985) proposes a set of ‘coherence criteria’ which characterizes the notion of co-

herence in a more subtle way:

1. A system of beliefs is coherent only if it is logically consistent.

2. A system of beliefs is coherent in proportion to its degree of probabilistic consistency.

3. The coherence of a system of beliefs is increased by the presence of inferential connections

between its component beliefs and increased in proportion to the number and strength of

such connections.

4In the original text, Lewis calls it congruence, which has been generally taken as identical to coherence.
5Chisholm (1977) provides a definition of coherence which is similar to the one Lewis proposed, which says

‘a set of propositions S is coherent just if S is a set of two or more propositions each of which is such that the

conjunction of all the others tends to confirm it and is logically independent of it.’ The disadvantages of this

definition is also similar to problems of Lewis’ definition.
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4. The coherence of a system of beliefs is diminished to the extent to which it is divided

into subsystems of beliefs which are relatively unconnected to each other by inferential

connections.

5. The coherence of a system of beliefs is decreased in proportion to the presence of unex-

plained anomalies in the believed content of the system.

These criteria emphasize that the essence of coherence is the inferential connection between

beliefs in a set. Also, they reflect the idea that coherence can be understood as a matter of

degree. However, since the way of measuring coherence is not mentioned in these criteria,

BonJour’s definition of coherence still does not provide people a way to compare the degree of

coherence between different sets.

2.3 Coherence and truth-conduciveness

Although traditional definitions of coherence are all too rough, some of them correctly point out

that coherence can be characterized in terms of probability. Based on the idea that probability

and coherence are correlated, Klein and Warfield (1994, 1996) derive a rather striking result

which undermines coherentism of epistemic justification.

Since all traditional analyses of knowledge takes truth as an essential ingredient, for coher-

ence to be taken as a correct explanation of epistemic justification, it has to be truth-conducive.

That is, given that a belief set S is more coherent than another belief set S′, S should more

likely to be true than S′. If coherence is not truth-conducive, supporters of coherentism will

have to admit that a justified belief is no more likely to be true than an unjustified one, which

is highly undesirable.

In order to disprove coherentism, Klein and Warfield claim that coherence is not truth-

conducive. A belief set with a high degree of coherence, compared with a less coherent set, is

less likely to be true. Their idea can be illustrated by two propositions:

1. Any set of beliefs S is more likely to be true than any other set of beliefs S ∪ {bi, ..., bj},

given that at least one element in {bi, ..., bj} is not entailed by S and does not have an

objective probability of 1.

2. To increase the coherence of a set of beliefs S, one may add a belief which is not entailed

by S and does not have an objective probability of 1.

Other things being equal, people tend to consider a larger belief set as more coherent than a

smaller one, i.e. a belief set can be made more coherent by adding beliefs to it. But on the other
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hand, adding beliefs to a set may make the set less likely to be true, given that the beliefs are

not absolutely true.6 Consider the example given in section 2.2. The set {b1, b2} is less coherent

than {b1, b2, b3}. But since it is possible that b3 is false, the probability that all elements of

{b1, b2, b3} are true is lower than the probability that both {b1, b2} are true.

The two propositions, taken as premises, allow Klein and Warfield to derive the result that

coherence is not truth-conducive. If higher degree of coherence does not guarantee greater

likelihood of truth, coherence cannot be a proper explanation for epistemic justification. They

thereby conclude that coherentists have two options: either give up the idea of explaining

justification in terms of coherence, or admit that epistemic justification is not truth-conducive.

2.4 Shogenji’s coherence measure

In order to argue against Klein and Warfield’s criticism of coherentism, Shogenji (1999) provides

a probabilistic coherence measure to show that coherence per se is truth-conducive. Given a

belief set S = {b1, ..., bn} and a probability function Pr(·) which follows Kolmogorov’s axioms:

(Non-negatvity) Pr(bi) ≥ 0 for all bi ∈ S

(Normalization) Given bi is a logical truth, Pr(bi) = 1.

(Finite Additivity) Pr(bi ∨ bj) = Pr(bi) + Pr(bj) given that bi and bj are pairwise independent.

Shogenji defines a way to measure coherence of binary sets:

Definition 2.4.1. Shogenji’s pairwise coherence measure

Given any two beliefs b1, b2 and a probability function Pr(·), the degree of coherence of

{b1, b2} is measured as:

CSh({b1, b2})
def
==

Pr(b1 ∧ b2)
Pr(b1)Pr(b2)

This definition represents our ordinary idea of coherence that the more likely two beliefs are

true or false together, the more coherent they are. If the denominator Pr(b1)Pr(b2) is held

fixed, the greater extent b1 and b2 overlap, the more coherent {b1, b2} is. To measure the degree

of coherence of more than two beliefs, this measure can be generalized as:

Definition 2.4.2. Shogenji’s coherence measure

CSh({b1, ..., bn})
def
==

Pr(b1 ∧ ... ∧ bn)

Pr(b1)...P r(bn)
6An absolutely true belief is tautologous which does not provide any non-trivial information, and thus cannot

lead to greater degree of coherence when added to a belief set.
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This generalized measure retains an important merit of the original measure: it is sensitive to

the size of the belief set being measured. A belief set with bigger size is more likely to be of high

degree of coherence. This captures our intuitive idea that, for any two belief sets, if the degree

of agreement between elements of the two sets are the same, the one which has more elements

should be considered as more coherent. It is natural to think this way, for if one compares two

belief sets which are of different size, it is less likely for elements of the bigger set to agree with

each other. Therefore, when comparing two belief sets with the same degree of agreement, the

one with greater size should be rendered with greater coherence. This feature of coherence is

captured by Shogenji’s measure, which can be illustrated by the following example:

Example 2.4.1. Given two belief sets A = {a1, ..., ai} and B = {b1, ..., bj}, suppose that i > j,

Pr(a1 ∧ ... ∧ ai) is equivalent to Pr(b1 ∧ ... ∧ bj) and for every an which is an element of A,

Pr(an) is smaller than 1. According to the given premises, the denominator of CSh({a1, ..., ai})

is smaller than the denominator of CSh({b1, ..., bj}). Hence, the degree of coherence of A is

greater than the degree of coherence of B under Shogenji’s measure, namely that

CSh({a1, ...ai}) =
Pr(a1 ∧ ... ∧ ai)
Pr(a1)...P r(ai)

>
Pr(b1 ∧ ... ∧ bj)
Pr(b1)...P r(bj)

= CSh({b1, ..., bj})

Another factor which needs to be considered in measuring coherence is the specificity of

elements of a belief set. Two highly specific beliefs, compared with two general ones, are less

likely to agree with each other. This point can be illustrated by the following example:

Example 2.4.2. Consider two pairs of beliefs concerning the same subject matter but with

different specificity:

(a1) Gatsby lives in New York.

(a2) Gatsby attended college.

(b1) Gatsby lives on Long Island in New York.

(b2) Gatsby attended Trinity College, Oxford.

In this example, b1 implies a1 and b2 implies a2, therefore, Pr(b1) < Pr(a1), Pr(b2) < Pr(a2).

It can thus be derived that Pr(a1)Pr(a2) is greater than Pr(b1)Pr(b2), which implies that the

denominator of CSh({a1, a2}) is greater than the denominator of CSh({b1, b2}). If Pr(a1 ∧ a2)

is equivalent to Pr(b1 ∧ b2), CSh({b1, b2}) would be greater than CSh({a1, a2}), which is in

accordance with our ordinary understanding of coherence.

Shogenji calls the size and specificity of a belief set its total individual strength, and points

out that given two belief sets with the same total individual strength, a coherent set, compared
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with a less coherent one, is more likely to be true. Suppose there are two belief sets I = {i1, i2}

and J = {j1, j2}. If Pr(i1)Pr(i2) = Pr(j1)Pr(j2) and Pr(i1 ∧ i2) > Pr(j1 ∧ j2), the degree of

coherence of I will be greater than the degree of coherence of J . Since the degree of agreement

between i1 and i2 is greater, I is more likely to be true than J . Arguing this way, Shogenji

defends the view that coherence is a truth-conducive notion.

In spite of its plausibility, many people propose serious challenges to the Shogenji measure.

Akiba (2000) points out that the Shogenji measure is vulnerable to the problem of falsity-

conduciveness and the problem of conjunction. Given two beliefs b1 and b2, if b1 entails b2, the

pairwise coherence between b1 and b2 is

CSh({b1, b2}) =
Pr(b1 ∧ b2)
Pr(b1)Pr(b2)

=
Pr(b1)

Pr(b1)Pr(b2)
=

1

Pr(b2)

In this case, Pr(b2) is negatively correlated with CSh({b1, b2}) such that when Pr(b2) de-

creases, CSh({b1, b2}) increases. Since being less probable leads to greater coherence according

to Shogenji’s measure, it does not follow that coherence is truth-conducive.

Another problem of Shogenji’s measure can be shown by the following example:

Example 2.4.3. When throwing a dice, one may have three different beliefs:

b1: The dice will come up two.

b2: The dice will come up an even number less than six.

b3: The dice will come up an even number.

Akiba claims that given b1 entails both b2 and b3, the degree of coherence of {b1, b2} should be

the same as {b1, b3}. For any arbitrary set of beliefs {p1, p2, p3}, if belief p1 entails two other

beliefs p2 and p3, the degree of coherence between p1 and p2 should be equivalent to the degree

of coherence between p1 and p3. But in this case, CSh({(b1, b2}) is 3, whereas CSh({b1, b3}) is

2. Hence, the outcome of Shogenji’s measure fails to capture our intuition of coherence in some

occasions.

Akiba further points out that if one measures the coherence of a singleton belief set with

Shogenji’s measure, the degree of coherence will always be 1, which is supposed to be a high

degree of coherence, for a belief (i.e. a singleton belief set) is perfectly coherent with itself. If

we take two independent beliefs b1, b2 and measure the coherence of the singleton set {b1 ∧ b2},

the degree of coherence of CSh({b1 ∧ b2}) would also be 1, which is another counterintuitive

result given the assumption that b1 and b2 are independent. For these reasons, Akiba concludes

that Shogenji’s measure is an inadequate measure for coherence.
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Shogenji (2001) denies all Akiba’s criticisms. The fact that lower probability leads to greater

coherence, according to Shogenji, does not really pose a threat to his measure. What Shogenji

intends to show with his measure is exactly that lower probability, which is equivalent to higher

specificity, leads to greater coherence, Akiba’s criticism does not show that Shogenji’s measure

is falsity-conducive, but instead reveals the fact that the degree of coherence raises when the

specificity of beliefs is greater. Hence, in debating whether coherence is truth-conducive, this

factor should be fixed. Akiba understands Shogenji’s measure in a straightforward way and

thus neglects the underlying motivation, which results in an incorrect criticism.

As for the dice case, Shogenji provides an example to show that pairs of beliefs with entail-

ment relation can differ in coherence.

Example 2.4.4. Consider the following beliefs:

p1 : The fossil was deposited 64-to-66 million years ago.

p2 : The fossil was deposited 63-to-67 million years ago.

p3 : The fossil was deposited more than 10 years ago.

p1 entails both p2 and p3, but intuitively, the set {p1, p2} is more coherent than {p1, p3}. Follow-

ing this line of thought, it should be acceptable that in Akiba’s example, the degree of coherence

of {b1, b2} differs from the degree of coherence of {b1, b3}.

The problem concerning the coherence of the conjunction of two individual beliefs does not

apply either. If coherence is taken as a relation between beliefs, rather than the property of

a single belief, claiming that a belief is of maximum coherence, in this sense, is nonsensical.

Therefore, Akiba’s example does not really show that Shogenji’s measure is incorrect.

Two more serious problems for Shogenji’s measure are the depth problem and problem of Ir-

relevant Addition. Fitelson (2003) points out that Shogenji’s measure does not take into account

the coherence of subsets of a belief set. Given a belief set with n elements, Shogenji’s measure

can only calculate its n-wise coherence, but not k-wise coherence for any k < n. However, it is

quite common for belief sets to be incoherent as a whole, but partially highly coherent. Failing

to capture the mixed nature of coherence is definitely a shortcoming of Shogenji’s measure.

Consider the following example Schupbach (2011) provides:

Example 2.4.5. Police investigators caught eight robbery suspects, each of them are equally

likely to have committed the crime. Three independent witnesses claimed that they have seen

the criminal. In the first case, the witnesses provide the set of testimonies:
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w1: The criminal was either suspect 1, 2 or 3.

w2: The criminal was either suspect 1, 3 or 4.

w3: The criminal was either suspect 1, 2 or 4.

In the second case, the witnesses provide:

w′1: The criminal was either suspect 1, 2 or 3.

w′2: The criminal was either suspect 1, 4 or 5.

w′3: The criminal was either suspect 1, 6 or 7.

Intuitively, the set of testimonies in the first case is more coherent than the testimonies in

the second case. But with Shogenji’s measure, the coherence of E is equivalent to the coherence

of E′:

CSh(E) =
Pr(w1 ∧ w2 ∧ w3)

Pr(w1)Pr(w2)Pr(w3)
=

Pr(w′1 ∧ w′2 ∧ w′3)
Pr(w′1)Pr(w

′
2)Pr(w

′
3)

= CSh(E′)

It can thus be seen that Shogenji fails to measure the ‘sub-coherence’ of belief sets, and hence

it leads to strange results. This is the so-called depth problem.

The problem of irrelevant addition states that if a belief which is totally irrelevant to a set

S is added to S, the degree of coherence of that set remains the same, which also violates our

ordinary understanding of coherence.

Example 2.4.6. In the robbery example, suppose a witness by accident provides another

testimony w4: ‘It is raining in Paris now’. If we add w4 to E, the degree of coherence of the

new set E ∪ {w4} is:

CSh(E ∪ {w4}) =
Pr(w1 ∧ w2 ∧ w3)Pr(w4)

Pr(w1)Pr(w2)Pr(w3)Pr(w4)
=

Pr(w1 ∧ w2 ∧ w3)

Pr(w1)Pr(w2)Pr(w3)

which is again equivalent to the degree of coherence of E.

With Shogenji’s measure, no matter how many irrelevant beliefs are added to a belief set,

as long as they are independent, the degree of coherence of the set will not change, which is

highly counterintuitive. When a set is extended with independent propositions, people normally

consider the new set as less coherent then the original set. Because of these two serious short-

comings, Shogenji’s measure cannot be adopted as an ideal coherence measure. Coherentists

need to propose a different measure to show that coherence is truth-conducive.
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2.5 Olsson’s coherence measure

Olsson (2002) criticized Shogenji’s measure for being specificity sensitive. If a coherence measure

is specificity sensitive, the degree of coherence of a set would be bounded by the specificity

of its elements, according to that measure. This deficiency can be illustrated by a simple

example. Suppose there are four beliefs b1, b2, b
′
1 and b′2 such that Pr(b1) = Pr(b2) = 0.5,

Pr(b′1) = Pr(b′2) = 0.3. The degree of coherence of {b1, b2}, according to Shogenji’s measure, is

CSh({b1, b2}) =
Pr(b1 ∧ b2)
Pr(b1)Pr(b2)

=
Pr(b1 ∧ b2)

0.25

Since Pr(b1) = Pr(b2) = 0.5, when b1 and b2 coincide perfectly, {b1, b2} has maximal degree

of coherence
0.5

0.25
= 2. On the other hand, the maximal degree of coherence of {b′1, b′2} is

10

3
,

which is greater than 2. If we suppose that both {b1, b2} and {b′1, b′2} are maximally coherent,

{b1, b2} will be rendered a degree of coherence lower than {b′1, b′2} simply because b1 and b2 are

more probable than b′1 and b′2. Such result is undesirable, for we can imagine cases in which the

set {b′1, b′2} is only of neutral coherence, yet still more coherent than a perfectly coherent but

more probable set {b1, b2}.

The underlying problem is that Shogenji’s measure does not have a maximal value. No

matter how coherent a belief set is, there exist some other sets that are more coherent. Hence,

a set of logically equivalent beliefs, which is supposedly the most coherent set that can possible

be perceived, is not judged as maximally coherent.

Aware of the shortcomings of Shogenji’s measure, Olsson provides another coherence mea-

sure which is free from these problems:

Definition 2.5.1. Olsson’s coherence measure

Given a set S = {b1, ..., bn}, the degree of coherence of S is:

CO(S)
def
==

Pr(b1 ∧ ... ∧ bn)

Pr(b1 ∨ ... ∨ bn)

With Olsson’s measure, the degree of coherence of a belief set is no longer bounded by the

probability of elements in the set, but takes [0, 1] as range. For a set of beliefs which do not

agree on anything, the set has minimal degree of coherence, while a belief set {b1, ..., bn} is

maximally coherent when Pr(b1 ∧ ... ∧ bn) equals to Pr(b1 ∨ ... ∨ bn).

Also, Olsson’s measure is free from the problem of irrelevant addition. Suppose there are

two belief sets S = {b1, b2} and S′ = {b1, b2, b3}. Given that b3 is irrelevant to {b1, b2}, the

denominator of CO(S′) is greater than the denominator of CO(S), and hence

CO(S) =
Pr(b1 ∧ b2)
Pr(b1 ∨ b2)

>
Pr(b1 ∧ b2 ∧ b3)
Pr(b1 ∨ b2)Pr(b3)

= CO(S′)
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With Olsson’s measure, adding irrelevant beliefs leads to a decrease in coherence. Thus, Olsson’s

measure is better than the Shogenji measure.

Siebel (2005) points out that under Olsson’s measure, adding necessary truths to a set makes

the set less coherent. A belief set {b1, b2} becomes less coherent if extended with a necessary

truth, say bt. That is,

CO({b1, b2}) =
Pr(b1 ∧ b2)
Pr(b1 ∨ b2)

>
Pr(b1 ∧ b2 ∧ bt)
Pr(b1 ∨ b2 ∨ bt)

=
Pr(b1 ∧ b2)

Pr(b1 ∨ b2 ∨ bt)
= CO({b1, b2, bt})

When extended with a necessary truth bt which is irrelevant to b1 and b2, Pr(b1 ∧ b2) remains

the same, while Pr(b1 ∨ b2 ∨ b3) increases. Therefore, adding bt lowers the degree of coherence

of the original set.

Siebel’s criticism is quite unconvincing. Given a belief set {b1, ..., bn}, if one adds a necessary

truth which is irrelevant to all elements of that set, it is intuitive to think that the new set is

less coherent than the original one. Take the robbery case in section 1.4 for example. Suppose

that a witness provides the testimony

w4 : Five plus seven equals twelve.

Since this testimony is totally irrelevant to the robbery, it should not be regarded as coherent

with the original set of testimonies. According to Olsson’s measure, the degree of coherence of

{w1, w2, w3, w4} is less than the degree of coherence of {w1, w2, w3}, which correctly captures

this idea. Hence, the point Siebel criticized should be taken as an advantage, rather than a

shortcoming.

The real problem of Olsson’s measure is its size-insensitiveness. Recall that by the term

total strength, Shogenji refers to both the specificity and size of a belief set. Consider two belief

sets B = {b1, b2} and B′ = {b′1, ..., b′100}. If Pr(b1 ∧ b2) = Pr(b′1 ∧ ... ∧ b′100) and Pr(b1 ∨ b2) =

Pr(b′1 ∨ ... ∨ b′100), according to Olsson’s measure, the degree of coherence of B is equivalent

to B′. This result is quite dubious. With other things being equal, people tend to take sets

with greater size as more coherent. We can illustrate this with a revised version of the robbery

example:

Example 2.5.1. Police investigators caught eight suspects for a robbery, each of them are

equally likely to have committed the crime. In the first scenario, there are two independent

witnesses who claimed that they have seen the suspect and provided the following set of testi-

monies:

w1: The criminal was either suspect 1, 2 or 3.
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w2: The criminal was either suspect 1, 3 or 4.

In the second scenario, there are one hundred witnesses who claimed that they have seen

the suspect and provided the following set of testimonies:

w1−50: The criminal was either suspect 1, 2 or 3.

w51−100: The criminal was either suspect 1, 3 or 4.

Intuitively, the set of testimonies in the second scenario is more coherent than in the first

scenario, for the size of the set of testimonies is much larger than the set of testimonies in the

first scenario. But according to Olsson’s measure, they are equally coherent.

In measuring coherence, Shogenji involves the total strength of a set, while Olsson does not.

If we accept the requirement that a coherence measure should be insensitive to the specificity

of beliefs but sensitive to the size of belief set, both Shogenji and Olsson’s measure fail to be

proper. Coherentists need to provide other ways of measuring coherence.

2.6 Fitelson’s coherence measure

Being aware of the deficiencies of Shogenji’s measure, Fitelson (2003, 2004) propose a coherence

measure based on the notion of mutual confirmation. It is generally accepted that coherence

is the mutual support between the elements of a set. With this idea, it is intuitive to take the

degree of coherence of a set as the average degree of confirmation between all elements in that

set.

To construct a measure which captures the notion of coherence as confirmation, Fitelson

first introduces a two-place function F (X,Y )7 which measures the degree a belief Y 8 confirms

another belief X, defined as:

Definition 2.6.1. Measure for support

Given any two beliefs9 X and Y and a probability function Pr(·), the degree that Y confirms

X, denoted by F (X,Y ), is defined as:

7This function is a modification of the measure of factual support which Kemeny and Oppenheim (1952)

propose.
8Here X and Y can also be sets. We Can just take the conjunction of all elements of a set as a single belief,

and measure it in the way suggested.
9As noted, they can also be belief sets.
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F (X,Y )
def
==


Pr(Y |X)− Pr(Y |¬X)

Pr(Y |X) + Pr(Y |¬X)
if Y does not entail X and Y does not entail X

1 if X entail Y and X is not inconsistent

−1 if Y entails ¬X

With this function, Fitelson defines his coherence measure as follows:

Definition 2.6.2. Fitelson’s coherence measure

Suppose S is a belief set {b1, ..., bn}. The degree of coherence of S is defined as:

CF (S)
def
==

1

JMK
∑
〈X,Y 〉∈M F (

∧
X,
∧
Y )

where M is the set of all pairs of non-overlapping subsets of S defined as {〈X,Y 〉|X,Y ∈ (℘(S)/

∅) ∧X ∩ Y = ∅} and JMK is the cardinality of M .

In a belief set S, every X ∈ ℘(S\∅) is confirmed or disconfirmed by another subset Y ∈ ℘(S\∅).

By averaging the degree each X ∈ ℘(S) is confirmed or disconfirmed by every other non-empty

element of ℘(S), one may measure the strength of mutual confirmation among all the subsets

in S, and take this value as the degree of coherence of S. With a simple example, we can see

how this measure works. Take a belief set S = {b1, b2, b3}. According to the definition given,

M equals to:

{〈b1, b2〉, 〈b1, b3〉, 〈b1, b2 ∧ b3〉, 〈b2, b1〉, 〈b2, b3〉, 〈b2, b1 ∧ b3〉, 〈b3, b1〉, 〈b3, b2〉, 〈b3, b1 ∧ b2〉,

〈b1 ∧ b2, b3〉, 〈b1 ∧ b3, b2〉, 〈b2 ∧ b3, b1〉}

We measure the degree of coherence of S by averaging the degree of confirmation of every pair

in M .

This measure is free from the depth problem. Given any set, the degrees of coherence of all

subsets of it are taken into account with Fitelson’s measure. Take the robbery case in section

1.4 for example. Recall that E = {w1, w2, w3}. The degree of coherence is the average of

the set {F (w1, w2), F (w1, w3), F (w2, w1), F (w2, w3), F (w3, w1), F (w3, w2), F (w1, w2 ∧ w3),

F (w2, w1 ∧ w3), F (w3, w1 ∧ w2), F (w1 ∧ w2, w3), F (w1 ∧ w3, w2), F (w2 ∧ w3, w1)}. With the

function F (X,Y ) defined above, we can derive that

F (w1, w2) = F (w1, w3) = F (w2, w1) = F (w2, w3) = F (w3, w1) = F (w3, w2) =
7

13

F (w1, w2 ∧ w3) = F (w2, w3 ∧ w1) = F (w1, w3 ∧ w2) =
7

13

F (w1 ∧ w2, w3) = F (w2 ∧ w3, w!) = F (w1 ∧ w3, w2) = 1
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Hence, CF (E) is
17

26
. On the other hand, for E = {w′1, w′2, w′3},

F (w′1, w
′
2) = F (w′1, w

′
3) = F (w′2, w

′
1) = F (w′2, w

′
3) = F (w′3, w

′
1) = F (w′3, w

′
2) =

−1

11

F (w1, w2 ∧ w3) = F (w2, w3 ∧ w1) = F (w1, w3 ∧ w2) = 1

F (w1 ∧ w2, w3) = F (w2 ∧ w3, w!) = F (w1 ∧ w3, w2) =
5

9

We may derive that CF (E′) is
34

99
, which is lower than CF (E). Fitelson’s measure correctly

reflects our intuition that E is more coherent than E′.

Fitelson’s measure is also immune to the problem of irrelevant additions. Since irrelevant

beliefs do not confirm any belief in a set, adding them would reduce the degree of confirmation

between subsets, and further reduce the degree of coherence of the whole set. Moreover, Fitel-

son’s measure has a maximal value for perfectly coherent belief sets, while Shogenji’s measure

does not. That is, for two different but both perfectly coherent belief sets, Fitelson’s measure

renders them with equal coherence.

Fitelson’s measure is quite plausible, since it is based on the idea that the coherence of a

belief set is the confirmation between the elements of that set. However, Bovens and Hartmann

(2003) provide an example to cast doubt on Fitelson’s coherence measure:

Example 2.6.1. Imagine two criminal scenarios: in the first one, there are 100 suspects, 6 of

them play chess, 6 of them are from the Trobriand island, only one of the suspects is a Trobriand

chess player. The coherence of the belief set S = {The culprit is a chess player, The culprit

is a Trobriand}, according to Fitelson’s measure, is approximately 0.5210. In the second case,

among 100 suspects, there are 85 rugby players, 85 people from Uganda and 80 rugby players

are from Uganda. The coherence of the set S′ = { The culprit is a rugby player, The culprit

is from Uganda} is 0.4811. The overlapping part between elements of S′ is greater than the

overlapping part between elements of S, but the coherence of S is greater than S′.

This result again violates our intuitive idea of coherence, for we normally consider the first case

as more coherent. As a result, we need to search for some other coherence measures which

better captures our intuitive idea of coherence.

10Given that C =‘the culprit is a chess player’, T =‘the culprit is a Trobriand’.

F (C, T ) = F (T,C) =

1

6
− 5

94
1

6
+

5

94

=
16

31
. CF ({T,C}) =

16

31
× 2÷ 2 =

16

31
≈ 0.52.

11Given that R =‘The culprit is a rugby player’, U =‘The culprit is from Uganda’.

F (U,R) = F (R,U) =

80

85
− 1

3
80

85
+

1

3

=
31

65
, CF ({U,R}) =

31

65
× 2÷ 2 ≈ 0.48.
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2.7 Douven and Meijs’ measure

Douven and Meijs (2007) provide a scheme for confirmation-based coherence measures which,

similar to Fitelson’s measure, takes the degree of coherence of a set S as the average degree

of mutual confirmation between all subsets of S. With their scheme, it is possible to generate

many different measures simply by plugging in different confirmation measures.

They first introduce three major types of confirmation measures: the difference measure,

ratio measure and likelihood measure.

Definition 2.7.1. Confirmation measures

Given a probability function Pr(·), the degree of a belief Y ’s confirmation to X can be

measured in the following ways:

Difference measure: d(X,Y )
def
== Pr(X|Y )− Pr(X)

Ratio measure: r(X,Y )
def
==

Pr(X|Y )

Pr(X)

Likelihood measure: l(X,Y )
def
==

Pr(X|Y )

Pr(X|¬Y )

These confirmation measures can be generalized to measure the degree of confirmation between

sets:

Definition 2.7.2. Confirmation between sets

The degree a set S′ confirms another set S can be measured as:

Difference measure: d(S, S′)
def
== Pr(

∧
S|
∧
S′)− Pr(

∧
S)

Ratio measure: r(S, S′)
def
==

Pr(
∧
S|
∧
S′)

Pr(
∧
S)

Likelihood measure: l(S, S′)
def
==

Pr(
∧
S|
∧
S′)

Pr(
∧
S|
∧
S′)

Let d, r, l stand respectively for these three measures, and let m be the variable for measures.

Define [S] as {〈S′, S′′〉|S′, S′′ ⊂ S\{∅} ∧ S′ ∩ S′′ = ∅}, namely the set of pairs of non-empty,

non-overlapping subsets of S, we can establish the following scheme of coherence measures:

Definition 2.7.3. Scheme for coherence measure

Given a set S = {b1, ..., bn}. With an ordering 〈Ŝ1, ..., ŜJSK〉 of members of [S], the degree of

coherence of S is given by the function

Cm(S)
def
==

∑JSK
i=1m(Ŝi)

JSK
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for m ∈ {d, r, l}.

For example, given a set S∗ = {P1, P2}, the degree of coherence of S under the difference

measure is

Cd(S∗) =
d(P1, P2) + d(P2, P1)

JSK
=
Pr(P1|P2)− Pr(P1) + Pr(P2|P1)− Pr(P2)

2

Douven and Meijs (2007: p.417) claim that Cd is the least problematic coherence measure.

To show this, they provide several test cases:

Example 2.7.1. Consider the following scenarios:

Case 1. A murder happened in a city with 10,000,000 inhabitants. 1,059 among them are

Japanese, 1059 among them own Samurai swords while only 9 of them are Japanese owning

Samurai swords.

Case 2. A murder happened on a street with 100 inhabitants. 10 of them are Japanese, 10 of

them own Samurai swords, and 9 of them are Japanese who own Samurai swords.

Let J stand for the belief ‘The murderer is Japanese’ and O for the belief ‘The murderer

owns a Samurai sword.’ Degrees of coherence of S = {J,O} under different coherence measures

in two cases are as follows:

Case 1. Case 2.

CSh 80.3 9

CO 0.0043 0.818

CF 0.97559 0.97561

Cd 0.0084 0.8

Cr 80.3 9

Cl 80.9 81

The intuition is that coherence of S in case 1 should be much greater than the coherence of

S in case 1. CSh, CF , Cr, Cl all fail to capture this intuition. CF and Cl renders S with similar

degree of coherence in both cases. Cr and CSh renders S with greater coherence in case 1 than

in case 2. Only Cd and CO correctly represent the great difference between coherence of S in

case 1 and case 2.

Another example, originally provided by Bovens and Hartmann (2003), shows that Olsson’s

measure leads to an unacceptable result:

Example 2.7.2. Consider two sets S = {B,G} and S′ = {B,G, P} such that
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B : Our pet is a bird.

G : Our pet is a ground dweller.

P : Our pet is a penguin.

Given the probability distribution represented in the following diagram:

B

P

G0 0.49

0.49

0

0 0

0.01

0.01

Intuitively, S′ is more coherent than S. However, under CO, the degree of coherence of S is
0.01

0.99
which is equivalent to the degree of coherence of S′, while Cd(S) reflects a difference between the

coherence of S and S′, and therefore correctly captures the intuition that S′ is more coherent

than S.

With these examples, Duoven and Meijs (2007) show that Cd is the only coherence measure

which does not generate unacceptable outcomes, and hence should be taken as the correct

coherence measure.

Roche (2013) provides a variant to Douven and Meijs’ coherence measure. He criticized

that although Cd is free from problems of other coherence measures, it generates unacceptable

results for other cases. Consider the following scenario:

Example 2.7.3. Supose there are 10 suspects of committing a murder. Each of the suspects has

equal probability of 0.1 of being the murderer. 6 of them have committed both pickpocketing

and robbery, 2 of them have only committed pickpocketing and another 2 committed only

robbery. Let S∗ = {r, p} and

r : The murderer has committed robbery.
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p : The murderer has committed pickpocketing.

The coherence of S∗ is
d(r, p) + d(p, r)

2
= −0.05. That is, Cd indicates that S∗ is incoherent,

which violates our intuition that S∗ is pretty coherent.

To avoid this problem, Roche suggests to measure coherence with a confirmation measure

which differs from d, r, l:

R(X,Y )
def
==


Pr(X|Y ) if X does not entail Y and X does not entail ¬Y .

1 if X entails Y and X is consistent.

0 if X entails ¬Y .

By plugging R in Douven and Meijs’ scheme, we may obtain Roche’s coherence measure CR

which is:

CR(S)
def
==

∑JSK
i=1 a(Ŝi)

JSK

It is easy to check that this measure is invulnerable to all the problematic cases for other

confirmation-based coherence measures. Hence, Roche claims that CR is an ideal way for

measuring coherence.

2.8 Revisiting the agreement measures of coherence

Shogenji and Olsson’s measures are quite different from measures generated with Douvan and

Meijs’ scheme. The former type of measures focus on the agreement between beliefs in a set.

The latter type of measures, on the other hand, take the confirmation between beliefs in a set as

the primary factor. We may thus call Shogenji and Olsson’s measures the agreement measures,

and others the confirmation measures of coherence.

Agreement measures, compared with confirmation based measures, have a huge disadvantage

for being insensitive to the coherence of subsets of the set being measured. That is, in measuring

the coherence of a set S, agreement measures do not take into account the degree of coherence

of any Si ⊆ S. Recall the problems that threat Shogenji’s measure, the most important ones are

the depth problem and the problem of irrelevant addition. The first reveals the fact that for a

set S with cardinality i, Shogenji’s measure fails to show any k-wise coherence for any k < i. As

a result, Shogenji’s measure may fail to correctly represent our intuitive ranking of coherence in

certain occasions. The second problem, namely the problem of irrelevant additions, shows that

when a set is extended with irrelevant beliefs, the degree of coherence of that very set remains
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the same under Shogenji’s measure. Olsson’s measure is free from the problem of irrelevant

additions, but still suffers from the depth problem.

It can be observed that both problems stem from the subset-insensitivity of agreement

measures. If, when measuring the coherence of a set S, agreement measures are sensitive to

the coherence of subsets of S, the depth problem can be solved. Similarly, since the degree of

coherence between a single belief and a totaly irrelevant belief is low, being subset sensitive can

also solve the problem of irrelevant addition.

With this underlying thought, Schupbach (2011) provides a refined version of Shogenji’s

measure which is sensitive to the coherence of subsets. He first defines the k-wise coherence of

a set under Shogenji’s measure as the following:

Definition 2.8.1. k-wise coherence with Shogenji’s measure

For a set S = {b1, ..., bn}, [S]k represents the set of all subsets of S with k elements. Given

an ordering 〈S̃1, ..., S̃m〉 of the members of [S]k, the degree of k-wise coherence of S is measured

as:

Ck(S)
def
==

∑m
i=1 s(S̃i)

m

in which m is the number of elements in [S]k and s(S) is the logarithm12 of Shogenji’s generalized

coherence measure, namely:

s(S)
def
== log

(
Pr(b1 ∧ ... ∧ bn)

Pr(b1)...P r(bn)

)
With k-wise coherence, we can define the coherence of a set by giving a weigh vector to each k

and obtain a coherence measure, namely

Definition 2.8.2. Generalized Shogenji’s measure

Given a set S = {b1, ..., bn} and a weight vector 〈w1, ..., wn−1〉 which assigns weights to

k-wise coherence for every k such that
∑n−1

i=1 wi = 1, the degree of coherence is measured as

C(S)
def
==

∑n−1
i=1 wiC

i+1(S)

With this scheme, we can define different coherence measures by changing the value of the

weight vectors. The simplest one is generated by assigning equal weight to all k-wise coherence:

Definition 2.8.3. Straight Average

12Schupbach takes the logarithm of Shogenji’s measure for sake of simplicity.
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CSA(S)
def
==

∑n
k=2C

k(S)

n− 1

We can define another measure which assigns greater weight to k-wise coherence when k is

distant from n.

Definition 2.8.4. Deeper Decreasing

Let the scheme assign decreasing weights to decreasing k as:

wi =
i

(n− 1) + (n− 2) + ...+ 1
=

2i

n(n− 1)

The degree of coherence of S = {b1, ..., bn} is

CDD(S)
def
==

∑n−1
i=1

2i

n(n− 1)
Ci+1(S) =

∑n−1
i=1 iC

i+1(S)

n(n− 1)/2

On the other hand, we can also define a measure which assigns greater weight to k-wise

coherence when k is close to n:

Definition 2.8.5. Deeper Increasing

Let the scheme assign increasing weights to decreasing k as:

wi =
n− i

(n− 1) + (n− 2) + ...+ 1
=

2(n− 1)

n(n− 1)

The degree of coherence is thus measured as

CDI(S)
def
==

∑n−1
i=1

2(n− 1)

n(n− 1)
Ci+1(S) =

∑n−1
i=1 (n− i)Ci+1(S)

n(n− 1)
/2

All three different measures are free from the depth problem, for they all take the coherence of

subsets of a set into account while measuring coherence. CSA and CDI are also free from the

problem of irrelevant addition.13 Revising this way, Schupbach saves Shogenji’s measure.

Olsson’s measure can also be refined to be subset-sensitive similarly. Meijs (2006) provides a

refined version of Olsson’s measure with the scheme for coherence measures proposed by Douven

and Meijs:

Definition 2.8.6. Generalized Olsson’s measure

Let [S]1 be the set of all subsets of S with cardinality greater than 1, and JSK1 denote the

cardinality of [S]1. Given a set S = {b1, ..., bi}. With an ordering 〈Ŝ1, ..., ŜJSK1〉 of members of

[S]1, the degree of coherence of S is given by the function:

CO∗(S)
def
==

∑JSK1
i=1 o(Ŝi)

JSK
13CDD is similar to the original CSh that it assigns less wight to smaller subsets that are small, hence, CDD is

still vulnerable to the problem of irrelevant addition.
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in which o(S) =
Pr(

∧
S)

Pr(
∨
S)

This measure is slightly different from the measures generated with Douven and Meijs’

original scheme in the respect that it does not measure the confirmation between subsets, but

measures coherence by averaging the coherence of each subset. Hence, the order of elements

of [S]1 does not really matter. We can, of course, also generalize Olsson’s measure in the way

Schupbach generalized Shogenji’s measure, and assign different weights to subsets of different

cardinality.

With Schupbach and Meijs’ revision, agreement measures are made subset sensitive, and

hence could again be candidates for a suitable coherence measure.

2.9 Summary of chapter two

Each of the coherence measures surveyed in this chapter has its own special advantage, and

stands for a specific conception of coherence. By checking if a coherence measure generates

counterintuitive results, one can see if certain conceptions of coherence is fallacious, and grad-

ually approach an ideal coherence measure which leads to the least amount of unacceptable

results. However, according to the information gathering model established by Bovens and

Hartmann (2003), there is no truth-conducive coherence measure, which means that even if we

can find a perfect coherence measure which does not generate any counterintuitive consequence,

the attempt to explain epistemic justification in terms of coherence is doomed to fail.
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Chapter 3

New Ideals for Coherence

3.1 Impossibility results and the pursuit of new epistemic ideal

Bovens and Hartmann (2003, pp.10-22) prove the significant impossibility results which show

that there is no truth-conducive coherence measure. Given that the primary function of coher-

ence is to account for epistemic justification, if coherence is not truth-conducive, knowing that a

set is more coherent than another does not provide us with any epistemically useful information.

Hence, the impossibility results motivate epistemologists to search for another epistemic ideal

which coherence may be conducive of. If this ideal does exist, coherence may still be regarded

as an important notion in epistemology, that is, knowing that a set is coherent allows us to infer

that the set conforms to an epistemic ideal.

The primary concern of this chapter is to demonstrate how Bovens and Hartmann prove the

impossibility results, and introduce the follow-up attempts to search for a new epistemic ideal.

3.2 The impossibility results

Recall that the original purpose of finding a proper probabilistic coherence measure is to show

that coherence is a truth-conducive notion in a quantitative manner, which is the central tenet

of Bayesian Coherentism. Assume that an information set1 S = {R1, ..., Rn} is given by n

independent and partially reliable sources. Let S be the set of all such information sets, Bayesian

Coherentism can be defined by the following two claims:

1Traditionally, philosophers tend to take coherence as a property of belief sets, since the primary function of

coherence is to account for epistemic justification. In Bayesian Epistemology (Bovens and Hartmann 2003), the

authors use the term information instead of beliefs. Here I follow this usage to avoid unnecessary misunderstand-

ing of Bovens and Hartmann’s framework.
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Definition 3.2.1. Bayesian Coherentism

(BC1) For all information sets S, S′ ∈ S, if S is no less coherent than S′, then our degree

of confidence that the content of S is true is no less than our degree of confidence that the

content of S′ is true, ceteris paribus.

(BC2) A coherence ordering over S is fully determined by the probabilistic features of the

information sets contained in S.

If Bayesian Coherentism is correct, a highly coherent set is more likely to be true than a

less coherent set. Hence, by proving Bayesian Coherentism, the attempt to explain epistemic

justification with the notion of coherence can be formally supported.

One way to check if Bayesian Coherentism holds is to find counterexamples to it. If there

exists an information set which, in comparison with another set, is more coherent but less likely

to be true, Bayesian Coherentism can be falsified. To find this desired counterexample, Bovens

and Hartmann (2003, pp.14-19) construct an information gathering model which allows us to

calculate the change of probability of an information set after receiving new information from

a group of partially reliable sources. With this model, they prove the existence of pairs of

information sets (k, k′) such that k has greater probability when the reliability of information

sources is within a certain interval, while k′ has greater probability in other occasions. From

(BC2), we know that given any ideal coherence measure, either the coherence of k is greater than

k′ or the other way round. Bovens and Hartmann hence conclude that there is no coherence

measure which guarantees that a set with greater coherence, compared with a less coherent one,

is always more likely to be true. In this section, I will introduce their information gathering

model, and explain how they derive the so-called impossibility results with this model (Bovens

and Hartmann 2003: pp.10-22).

The first step for constructing this information gathering model is to measure the reliability

of information sources. Suppose there are n independent and partially reliable sources. Each

source i provides a piece of information Ri. The information set in question is thus {R1, ..., Rn}.

Let Ri be a fact variable, and REPRi a report variable which can take either REPRi or

¬REPRi as value. REPRi stands for the proposition that after consulting the proper source,

there is a report that Ri is the case, while ¬REPRi stands for the contrary that, after consulting

a proper source, there is no report saying that Ri is the case.

An intuitive way to model the reliability of sources is to compare the number of true re-

ports with the number of false reports. Given a probability distribution Pr(·) over the set

{R1, ..., Rn, REPRi, ..., REPRn} which satisfies the constraint that information sources are
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mutually independent and partially reliable, we can define two parameters pi and qi as:

pi
def
== Pr(REPRi|Ri) ; qi

def
== Pr(REPRi|¬Ri)

pi is the probability that source i makes a positive report for a obtaining fact, which is the

probability that pi reports correctly, while qi is the probability that i reports incorrectly. We

call pi the true-positive rate, and qi the false-positive rate of i. Being fully reliable, a witness

would not make any false report. Therefore, the false-positive rate of that witness is 0. On

the other hand, a fully unreliable witness would have pi = qi, which means that the witness

reports randomly. Since we have assumed that all the sources in question are partially reliable,

we stipulate that pi > qi > 0. For sake of simplicity, we further assume that pi = p and qi = q,

namely all sources have equal reliability. We can then define the parameter of reliability of

information sources r in terms of q and p:

r = 1− q

p

We further define the weight vector for an information set:

Definition 3.2.2. Weight vector

Let ai stands for the sum of joint probabilities of all combinations of i negative and n − i

positive occurrences of R1, ..., Rn. The weight vector of an information set is 〈a1, ..., an〉.

For instance, given an information set {R1, R2, R3}, a2 is the sum of probabilities of {¬R1,¬R2, R3},

{R1,¬R2,¬R3} and {¬R1, R2,¬R3}.

Let the function Pr∗(·) represent the posterior probability after receiving the reports from

sources, that is:

Pr∗(R1, ..., Rn) = Pr(R1, ..., Rn|REPR1, ..., REPRn)

We can calculate posterior probability with the parameters defined:

Definition 3.2.3. Posterior probability

Pr∗(R1, ..., Rn) =
ao∑n

i=0 ai(1− r)i

This formula calculates the posterior probability of an information set after updated with the

report of a group of sources. The denominator represents the probability of all cases in which i

sources are reporting incorrectly. For example, a1(1− r)1 of the information set {R1, R2, R3} is

the sum of probability of {¬R1, R2, R3}, {R1,¬R2, R3} and {R1, R2,¬R3} times the probability
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that one of the sources reports incorrectly, which is (1 − r)1. By summing up ai(1 − r)i, all

possible cases are taken into consideration. We can thus calculate the posterior probability of

the information set after updated with the reliability of sources.

If we can find a pair of information sets (k, k′) for which the posterior probability of k is

greater than k′ when r is below a certain threshold, while the posterior probability of k′ is

greater than k when r is above that threshold, then it can be shown that Bayesian Coherentism

is false, for greater coherence does not guarantee greater probability.

Proposition 3.2.1. Counterexample to Bayesian Coherentism

Consider information sets k with the weight vector 〈a0, a1, a2, a3〉 = 〈0.05, 0.3, 0.1, 0.55〉 and

k′ with 〈a′0, a′1, a′2, a′3〉 = 〈0.05, 0.2, 0.7, 0.05〉. Suppose the coherence of k is greater than k′,

given r ∈ (0.8, 1), the posterior probability of k′ is greater than the posterior probability of k.

Suppose otherwise that the coherence of k′ is greater than k, given r ∈ (0, 0.8), the posterior

probability of k is greater than the posterior probability of k′. For instance, take r = 0.9,

Pr∗(k) =
0.05

0.05 + 0.3(1− 0.9) + 0.1(1− r)2 + 0.55(1− 0.9)3
=

0.05

0.08065
≈ 0.62

Pr∗(k′) =
0.05

0.05 + 0.2(1− 0.9) + 0.7(1− 0.9)2 + 0.05(1− 0.9)3
=

0.05

0.07705
≈ 0.65

In this case, Pr∗(k′) > Pr∗(k). But assuming r = 0.5, the posterior probability is:

Pr∗(k) =
0.05

0.05 + 0.3(1− 0.5) + 0.1(1− 0.5)2 + 0.55(1− 0.5)3
=

0.05

0.29375
≈ 0.17

Pr∗(k′) =
0.05

0.05 + 0.2(1− 0.5) + 0.7(1− 0.5)2 + 0.05(1− 0.5)3
=

0.05

0.33125
≈ 0.15

In this case, Pr∗(k) > Pr∗(k′). Thus, the pair (k, k′) can be taken as an example which falsifies

the claim that an information set with greater coherence also have greater likelihood of truth.

This is what Bovens and Hartmann call the impossibility results. It immediately follows that

the search for a truth-conducive coherence measure can never be accomplished in this setting.

3.3 The Bovens-Hartmann measure

The impossibility results pose serious threat to Bayesian Coherentism. To solve this problem,

Bovens and Hartmann suggest (2003, p.22) to revise (BC2) and adopt a weaker version of

Bayesian Coherentism. According to (BC2), a coherence ordering is fully determined by the

probabilistic features of the sets in S. It can be divided into two parts:

(BC2a) The binary relation of ‘...being no less coherent than’ over S is fully determined by

the probabilistic features of the information sets contained in S.
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(BC2b) The binary relation of ‘...being no less coherent than’ is a total ordering.

Instead of a total ordering, as (BC2b) states, we can claim that there exists a quasi-ordering

of coherence of information sets in S. That is, to evade the problem, we have to abandon the

idea that every pair of information sets in S are comparable. Formally speaking, let � stand

for the binary relation of ‘being no less coherent than’, the following condition should be met

for a proper coherence measure:

For all S, S′ ∈ S, if S = {R1, ..., Rn}, S′ = {R′1, ..., R′n} and Pr(R1, ..., Rn) = a0 = a′0 =

Pr(R′1, ..., R
′
n), then S � S′ iff Pr∗(R1, ..., Rn) ≥ Pr∗(R′1, ..., R

′
n) for all values of the

reliability parameter r ∈ (0, 1).

With this condition, cases violating the original (BC2) can be excluded, which validates weak

Bayesian Coherentism.

Although excluding problematic cases may save Bayesian Coherentism, this solution has

an obvious deficiency. With this condition, one can only compare information sets of equal

size. For an ideal coherence measure, we expect it to be more flexible, which would allow us to

compare between information sets of unequal size. Therefore, a more general coherence measure

is called for.

Instead of measuring coherence of a set with agreement or confirmation between its elements,

Bovens and Hartmann take a different approach. Their idea is that coherence should be defined

in terms of its primary function, which is boost of confidence (Bovens and Hartmann 2003,

pp.28-39 Ch.2). Given two information sets, people tend to have greater confidence in the one

which is more coherent. Thus, boost of confidenceis one the defining features of coherence, and

should be taken as the core factor in measuring the degree of coherence of an information set.

To formally define boost of confidence, we can take it as the ratio between prior and posterior

probability of an information set, namely:

Definition 3.3.1. Boost of confidence

b({R1, ..., Rn})
def
==

Pr∗(R1, ..., Rn)

Pr(R1, ..., Rn)

That is, if a set is more coherent than another, the probability of it raises significantly when

updated with reports that are equally reliable.

However, boost of confidence alone is insufficient to be taken as a degree of coherence, for it

is still determined by the reliability of information sources, which is a factor that should be ruled

out while measuring the coherence of an information set. If the coherence of an information
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set depends on the reliability of sources, we may have two information sets which are identical

in content, but different in coherence, and that is intuitively unacceptable. To eliminate the

influence of reliability, the boost of an information set should be compared with a fixed reference

point. An ideal reference point to compare with, as Bovens and Hartmann (2003, p.35) suggest,

is the maximal boost of confidence, namely the boost of confidence upon receiving the same set

of information in a maximally coherent form. This idea can be better illustrated with a more

concrete example. Consider a specific information set S which has certain degree of coherence

and thus leads to certain degree of boost of confidence. Suppose that S is maximally coherent,

it leads to the maximal boost of confidence. The ratio between the maximal degree of boost

and actual degree of boost shows originally how coherent S is. If we want to compare the

degree of coherence of two different information sets S1 and S2, we can keep the reliability of

sources fixed, and calculate the ratio of actual boost to maximal boost of both S1 and S2. By

comparing the ratios, one can compare the degree of coherence of two information sets.

To compare the coherence of two different sets, one needs to define the maximal coherence of

an information set, which leads to maximal boost of confidence. For a maximally coherent set of

information with n elements, the weight vector is 〈a0, 0, ..., 0, an〉, that is, elements {R1, ..., Rn}

of the information set are either true altogether or false altogether. The probability of cases like

{R1,¬R2, ...,¬Rn} or {¬R1, R2, ..., Rn} is 0. Maximal posterior probability can thus be defined

as:

Definition 3.3.2. Maximal posterior probability

Prmax∗(R1, ..., Rn) =
ao

a0 + an(1− r)n

Given Prmax∗(·), the maximal possible boost of a set {R1, ..., Rn} is:

Definition 3.3.3. Maximal boost of confidence

bmax({R1, ..., Rn})
def
==

Prmax∗(R1, ...Rn)

Pr(R1, ..., Rn)

With bmax(·), we can further define a measure comparing the actual and maximal boost of a

belief set.

cr({R1, ..., Rn})
def
==

b({R1, ..., Rn})
bmax({R1, ..., Rn})

=
Pr∗(R1, ..., Rn)

Prmax∗(R1, ..., Rn)
=
a0 + (1− a0)(1− r)n∑n

i=0 ai(1− r)i
.

cr measures the ratio of the actual boost to the maximal boost. However, cr still involves

the reliability parameter r which has to be separated from the degree of coherence. To get this

around, we need to further define a difference function
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fr(S, S
′) = cr(S)− cr(S′)

Given the same reliability of sources, the difference function compares the boost of two different

information sets. That is, given a fixed r, S is more coherent than S′ implies that cr(S) is

greater than cr(S
′). The binary relation no less coherent than, namely the relation represented

by �, is thus defined as

Definition 3.3.4. Comparing coherence

For two information sets S, S′ ∈ S, S � S′ iff fr(S, S
′) ≥ 0 for all values of r ∈ (0, 1).

With this definition, we can compare the coherence of different sets with the difference function

fr(·, ·). It is to be noticed that, first, since cases that lead to the impossibility results are ruled

out by the condition fr(S, S
′) > 0, the no less coherent than relation is just a quasi-ordering,

rather than a total ordering. Second, Bovens and Hartmann do not provide an absolute measure

for the precise degree of coherence which assigns a specific degree to every information set, but

only a way to compare the coherence of different sets. This measure excludes the problematic

cases, and is compatible with weak Bayesian Coherentism.

3.4 Douven and Meijs’ revision

Although the Bovens-Hartmann measure is invulnerable to the impossibility results and thus

should be taken as an ideal way of comparing coherence, Douven and Meijs (2005) find pairs of

information sets that are excluded by the constraint specified in Bovens and Hartmann’s work

(2003, p.36).

Example 3.4.1. Consider the following case: Kate is taking a flight which has 0.04 probability

of flying to the North Pole, 0.49 of flying to the South Pole and 0.47 of flying to New Zealand.

The probability of Kate seeing a penguin in the South Pole is
10

49
, while the probability of the

same event is
1

47
in New Zealand and 0 in the North Pole. When Kate arrives at the destination,

she does see an animal, but cannot make sure if it is a penguin. Short after that, she receives

two sets of information:

S1 = {The animal you saw is a penguin, You are in the South pole}

S2 = {The animal you saw is a penguin, You are in the North pole}

By the Bovens-Hartmann measure, we can compare the coherence of S1 and S2 as:

fr(S1, S2) =
0.1 + 0.9(1− r)2

0.1 + 0.4(1− r) + 0.5(1− r)2
− (1− r)2

0.15(1− r) + 0.85(1− r)2
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Assume that r = 0.5, we may derive:

f0.5(S1, S2) =
0.1 + 0.9(0.25)

0.1 + 0.4(0.5) + 0.5(0.25)
− 0.25

0.15(0.5) + 0.85(0.25)
< 0

With the Bovens-Hartmann measure, f0.5 < 1, which implies that S1 and S2 are incompara-

ble and should be excluded from our coherence quasi-ordering. This result is pretty counter-

intuitive. With the assumption that the probability of seeing a penguin in the North Pole is 0,

we know that S2 is far less coherent than S1.

Meijs (2007) provides other cases that are intuitively comparable in coherence but excluded

by Bovens and Hartmann’s constraint.

Example 3.4.2. Consider the following two sets:

SI = {{p1 :That dog is brown}, {p2 :It is raining outside}, {p3 :Tokyo is the capital of Japan}}

SP = {{p4 :This bird is black}, {p5 :This bird is a crow}, {p6 :This bird has a life-long mate}}

Elements in SI are mutually independent, while elements in SP support each other. Therefore,

SP is obviously more coherent than SI . Suppose the probability of elements in SI is distributed

as shown in figure 1:

p1

p2

p30.081 0.081

0.081

0.009

0.009 0.009

0.001

0.729

Figure 1: probabilities of set SI

Further assume that the probability of elements in SP is distributed as:
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p4

p5

p60 0

0

0.042

0.042 0.042

0.016

0.858

Figure 2: probabilities of set SP

The difference function fr(S
P , SI), given the two probability distributions, is as follows:

0.016 + 0.984(1− r)3

0.016 + 0.126(1− r) + 0.858(1− r)3
− 0.001 + 0.999(1− r)3

0.001 + 0.027(1− r) + 0.243(1− r)2 + 0.729(1− r)3

Assuming r = 0.5, f0.5(S
P , SI) < 0. This case is also excluded by the Bovens-Hartmann

measure, which is again counter-intuitive.

The problem of Bovens and Hartmann’s framework, as Meijs (2007, p.3) sees, is the claim

that a set is maximally coherent when all its elements are equivalent. If we adopt this re-

quirement, adding any proposition to a maximally coherent set does not raise its coherence.

This result may lead to an unacceptable consequence. Consider a maximally coherent set

S = {p1, p2, p3}. If, from an independent and partially reliable source, one receives a proposi-

tion p4 which is equivalent to p1 ∧ p2 ∧ p3. Adding p4 to S does raise one’s confidence in the set

S. But according to Bovens and Hartmann, adding p4 does not raise the coherence of S, for

it is already maximally coherent. Therefore, there is some factor other than coherence which

leads to boost of confidence. If we want to keep the core idea of the Bovens-Hartmann measure

that coherence is to be measured in terms of boost of confidence, the maximality requirement

should be abandoned, that is, there should not exist a maximal value of coherence.

Instead of comparing the actual boost of a set with its maximal possible boost, Meijs (2007,

pp.9-13) suggests to compare the actual boost with the minimal boost, which is the boost

of confidence of an independent set. The boost of confidence of an independent set is solely

determined by the reliability of sources and the unconditional probabilities of information, and

can be used as a reference point representing neutral coherence. Put it formally, given an
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information set R = {R1, ..., Rn}, we can construct another set RI = {RI
1, ..., R

I
n}, and assume

that ∀RI
i , R

I
j ∈ RI , RI

i ∩RI
j = ∅.

Let bind(R) be the boost of confidence of RI , the coherence of R can be measured as:

cIr(R)
def
==

b(R1 ∧ ... ∧Rn)

bind(R1 ∧ ... ∧Rn)

We can then define the difference function in a similar way:

f Ir (R,R′) = cIr(R)− cIr(R′)

Meijs (2007, pp.11-13) shows that this revised measure keeps the core idea of the Bovens-

Hartmann measure, but is free from its counter-intuitive outcomes. Hence, the revised Bovens-

Hartmann measure should be used as an appropriate measure for us to compare the coherence

between different sets.

3.5 Saving coherence

With Meijs’ revision of the Bovens-Hartmann measure, we do have a measure which allows

us to compare degrees of coherence between different information sets without counterintuitive

outcomes. However, having an acceptable way of measuring coherence does not undermine the

impossibility results any bit. The fact that coherence is not a truth-conducive notion remains

intact, which means that knowing a set S is more coherent than another set S′ does not imply

that S is more likely to be a proper justification of knowledge than S′. Since the primary function

of coherence is to account for epistemic justification, As long as the impossibility results hold,

people do not have any good reason to make comparison of coherence between different sets.

To save the notion of coherence, one needs to provide new epistemic ideals other than truth.

If it could be shown that coherence is conducive to these new ideals, it may still be regarded

as an important notion in epistemology. Some epistemologists (Olsson and Schubert 2007,

Schubert 2012a) claim that coherence is reliability-conducive, namely that when an agent finds

an information set highly coherent, that agent would consider the information sources of this set

highly reliable. This idea is intuitively persuasive. Imagine that a group of witnesses is making

reports about a certain fact. If the witnesses are unreliable, they would make testimonies

which differ from what they observe. Since there are many non-factual reports one could

make concerning a single fact, it is quite likely that a set of testimonies provided by unreliable

witnesses is incoherent. One can hence infer that when a group of witnesses provide a set of

highly coherent information, these witnesses are more likely to be reliable.
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Some other philosophers (Dietrich and Moretti 2005, Moretti 2007) claim that coherence

is confirmation-conducive. That is, if a piece of evidence confirms a single proposition in a

set which is sufficiently coherent, this piece of evidence also confirms other propositions in the

set. In other words, confirmation of certain proposition in a sufficiently coherent set ‘transmits’

to other propositions in that set. The idea that coherence is confirmation-conducive is also

plausible. A coherent information set indicates certain fact in reality. As a result, a piece of

evidence confirming an element of that set must be related to that very fact the information set

is concerned with, and therefore confirms other elements in the set.

The attempts of proving that coherence is reliability an confirmation-conducive show that

although coherence is not truth-conducive, it can be conducive to other epistemic ideals, and

hence be indirectly truth-conducive. A higher degree of reliability of sources, as well as a higher

degree of confirmation, implies greater likelihood of being true. If coherence is indeed reliabil-

ity or confirmation-conducive, this notion may regain its place in contemporary epistemology.

There are also some minor attempt to save coherence, such as taking coherence as characterizing

best explanation (Glass 2007).

3.6 Coherence as a reliability-conducive notion

The idea that coherence is reliability-conducive can be traced back to C. I. Lewis (1946), where

he states:

For any one of these reports, taken singly, the extent to which it confirms what is

reported may be slight. And antecedently, the probability of what is reported may

also be small. But congruence of the reports establishes a high probability of what

they agree upon, by principles of probability determination which are familiar: on

any other hypothesis than that of truth-telling, this agreement is highly unlikely;

the story any one false witness might tell being one out of so very large a number

of equally possible choices. (p.246)

If a set of testimonies provided by a group of witnesses is coherent, we may infer that all

the witnesses are highly reliable, reporting correctly of what they observe. This idea can be

illustrated by considering the opposite situation in which the witnesses are unreliable. Sup-

pose that a group of independent unreliable witnesses are making reports concerning a specific

event. Being unreliable, the witnesses make incorrect reports which deviate from the fact they

observe. Since non-factual testimonies largely outnumbers factual testimonies, the chance of
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the testimonies being incoherent would be much greater than the chance of testimonies being

coherent.

Olsson and Schubert (2007) prove that although there does not exist any coherence measure

which is truth-conducive, there are coherence measures that are reliability-conducive in a specific

scenario, such that for any pair of information sets S, S′, if the degree of coherence of S is greater

than S′, the information sources of S are more reliable than S′.

To justify this claim, we must first define the notion of reliability-conduciveness. As prelim-

inary, we need to introduce the basic Lewis scenario which involves two equivalent evidence2.

Let H stand for the hypothesis in question, Ei be the evidence that source i asserts that H is

true, Ri be the proposition that source i is reliable and Ui stands for the proposition that i is

unreliable. A basic Lewis scenario is defined as follows:

Definition 3.6.1. A basic Lewis scenario is a pair (S,P) where S = {〈E1, H〉, 〈E2, H〉}

and P is a class of probability distributions defined on the algebra generated by propositions

E1, E2, R1, R2, U1, U2 and H such that Pr ∈ P if and only if:

(i) Pr(Ri) + Pr(Ui) = 1

(ii) 0 < Pr(H) < 1

(iii) Pr(E1|H,R1) = 1 = Pr(E2|H,R2)

(iv) Pr(E1|¬H,R1) = 0 = Pr(E2|¬H,R2)

(v) Pr(E1|H,U1) = Pr(H) = Pr(E2|H,U2)

(vi) Pr(E1|¬H,U1) = Pr(H) = Pr(E2|¬H,U2)

(vii) Pr(Ri|H) = Pr(Ri) = Pr(Ri|¬H)

(viii) Pr(Ui|H) = Pr(Ui) = Pr(Ui|¬H)

(ix) 0 < Pr(R1) = Pr(R2) < 1

(i) states that for any information source, its reliability profile involves only reliability and

unreliability. (ii) states that the hypothesis is neither certainly true, nor certainly false. By (iii)

and (iv), the probability of a reliable source making correct report is 1, while the probability

of a reliable source reporting incorrectly is 0. On the other hand, (v) and (vi) state that the

probability of H is not affected by the proposition provided by an unreliable source. That is,

the probability of the source reporting that H is true, given that the source is unreliable and H

is indeed true, it the same as the probability of H. (vii) and (viii) indicates that the reliability

or unreliability of a source is not affected by the hypothesis. By (ix), the truth of sources being

reliable is neither certainly true nor certainly false.

2Here the term evidence simply refers to the proposition provided by certain witness. The terms belief,

information and proposition, in the current context, are used interchangeably. In the following sections, I take

proposition as the standard term for this kind of linguistic entity.
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We can further define informativeness and reliability-conduciveness of a coherence measure:

Definition 3.6.2. Informativeness

A coherence measure C is informative in a basic Lewis scenario (S,P) if and only if there

are Pr, Pr′ ∈ P such that CPr(S) 6= CPr′(S).

Definition 3.6.3. Reliability-conduciveness

A coherence measure C is reliability-conducive ceteris paribus in a basic Lewis scenario (S,P)

if and only if: if CPr(S) > CPr′(S), then Pr(Ri|E1, E2) > Pr′(Ri|E1, E2) for all Pr, Pr′ ∈ P

such that Pr(Ri) = Pr′(Ri).

To judge if a coherence measure is reliability-conducive, we need a way to compute the

change of reliability after receiving evidence from multiple sources. Bovens and Hartmann

(2003) suggest to calculate change of reliability in the following way: in a single source case,

let E be the propositional variable which takes either the presence or absence of evidence as

value, R be the variable that the source is reliable or unreliable and H the truth or falsity of

an hypothesis. Knowing that a source is unreliable, the evidence provided by that source does

not influence the probability of the hypothesis in question. Therefore, we can first assume:

Pr(H|¬R) = Pr(H|E,¬R)

With this assumption, Bovens and Hartmann (2003, p.57) derive the randomization parameter

a:

Pr(E|H,¬R) = Pr(E|¬H,¬R) = a

If the source is unreliable, it provides positive report of the hypothesis randomly. a stands for

the probability of an unreliable source making positive report. Next, we assume that:

Pr(E|H,R) = 1 and Pr(E|¬H,R) = 0

A reliable source always makes positive report when the hypothesis is true, and always makes

negative report when the hypothesis is false. We assume that H and R are independent, namely

the reliability of a source does not vary with the probability of hypothesis.

Let ρ be the reliability parameter of sources Pr(R), and h the probability of hypothesis

Pr(H), we can compute the posterior reliability Pr∗(R) as

Pr∗(R) = Pr(R|E) =
Pr(R,E)

Pr(E)

By expansion, it is equivalent to
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ΣHPr(H,R,E)

ΣH,RPr(H,R,E)

which, by the chain rule, is

ΣHPr(E|H,R)Pr(H|R)Pr(R)

ΣH,RPr(E|H,R)Pr(H|R)Pr(R)

Given the assumption that R and H are independent variables, we can derive that

ΣHPr(E|H,R)Pr(H)Pr(R)

ΣH,RPr(E|H,R)Pr(H)Pr(R)

Hence, the posterior reliability is

Pr∗(R) =
hρ+ 0 · ρ(1− h)

hρ+ 0 · ρ(1− h) + ah(1− ρ) + a(1− ρ)(1− h)
=

hρ

hρ+ a(1− ρ)

The difference between prior and posterior reliability ∆REL, then, is:

Pr∗(R)− Pr(R) =
hρ

hρ+ a(1− ρ)
− ρ = (h− a)

ρ(1− ρ)

hρ+ a(1− ρ)

This formula computes the posterior reliability in a case where a single piece of evidence is

given.

We can generalize it for cases with multiple sources. Suppose there are n sources, we want

to know the value of:

Pr∗n(Ri) = Pr(Ri|E1, ..., En)

As in single source cases, we need several assumptions concerning the independence of sources.

First, the value of the report source i provides depends only on the reliability of i and the

truth-value of hypothesis. That is, Ei is independent of all other reports and the reliability of

all other sources. Second, the reliability of a source i is independent of the reliability of other

sources and the truth-value of hypothesis.

We can define the characteristic of sources in the same way as in the single source case:

Pr(Ei|H,¬Ri) = Pr(Ei|¬H,¬Ri) = a

Pr(Ei|H,Ri) = 1 and Pr(Ei|¬H,Ri) = 0

Pr(Ri) = ρ

and introduce another parameter x which represents the likelihood of a single report:

x =
Pr(Ei|¬H)

Pr(Ei|H)
=

a(1− ρ)

ρ+ a(1− ρ)
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The numerator of x is the probability that the source is unreliable, and the denominator is the

probability that the source gives the correct report, which is the sum of the probability that

the source is reliable and the probability that the source is unreliable but by chance gives the

correct report.

Given these parameters, the posterior reliability can be defined as:

Pr∗n(Ri) = Pr(Ri|E1, ..., En) =
h(1− x)

h+ xn(1− h)

We can observe that Pr∗n(Ri) is a strictly decreasing function of the prior probability of the

hypothesis,3 namely the prior probability of hypothesis decreases when the reliability of source

raises. Hence, for a coherence measure C to be reliability-conducive, C has to be a strictly

decreasing function of the prior probability of the hypothesis. In other words, if C is reliability-

conducive, when the degree of coherence raises and every other factors are fixed, the prior

probability of hypothesis decreases.

With this observation, we may check which coherence measure is reliability-conducive in a

basic Lewis scenario. Recall that given a set of propositions S = {P1, ..., Pn}, Shogenji measures

its coherence as:

CSh({P1, ..., Pn}) =
Pr(P1 ∧ ... ∧ Pn)

Pr(P1)...P r(Pn)

Given a basic Lewis scenario, if we measure the coherence of two equivalent propositions E1

and E2, the result is:

CSh({E1, E2}) =
Pr(E1 ∧ E2)

Pr(E1)Pr(E2)
=

1

Pr(E1)

Measured with CSh, the lower the prior probability of E1 is, the greater degree of coherence

{E1, E2} is and vice versa. Since Shogenji’s measure is a strictly increasing function of the

number of propositions, and a strictly decreasing function of the prior probability of hypothesis,

it is indeed reliability-conducive. On the other hand, if we measure two equivalent propositions

E1 and E2 with Olsson’s measure, the result would be:

CO({E1, E2}) =
Pr(E1 ∧ E2)

Pr(E1 ∨ E2)
= 1

In this scenario, the result of Olsson’s measure is a constant. The degree of coherence does not

raise when the prior probability decreases. Hence, Olsson’s measure is not reliability-conducive

in this scenario.
3This result can be easily observed in a case with two information sources. Given that n = 2, ρ∗ =

(ρ− ρ2)(ρ2 + h− hρ2)− (ρ2 + ρh− hρ2)(1− ρ2)

(ρ2 + h− hρ2)2
. The numerator ρ2(ρ− 1) is strictly decreasing function when

1 > ρ > 0. Since the denominator is always positive, ρ∗ is a strictly decreasing function.
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Schubert (2012a) further proved that Shogenji’s measure is the only reliability-conducive

coherence measure in a more general scenario with more than two equivalent evidence.

Definition 3.6.4. A scenario with equivalent evidence is a pair (S,P) where S = {Sn|Sn =

{〈E1, H〉, ..., 〈En, H〉} and n ≥ 2} and P is a class of probability distributions such that Sn ∈ S,

Pr ∈ P if and only if:

(i) Pr(H|Ei, Ri) = 1 for i = 1, ..., n.

(ii) Pr(H|Ei,¬Ri) = Pr(H|¬Ri) for i=1,...,n.

(iii) 0 < Pr(H) < 1

(iv) 0 < Pr(Ri|Ei) < 1 for i = 1, ..., n.

(v) Ei ⊥⊥ E1, R1, ..., Ei−1, Ri−1, Ei+1, Ri+1, ..., En, Rn|Ri, H for i = 1, ..., n.

(vi) Ri ⊥⊥ R1, ..., Ri−1, Ri+1, ..., Rn, H for i = 1, ..., n.

(vii) Pr(Ri|Ei) = Pr(Rj |Ej) for i, j = 1, ..., n.

Since the number of evidence is no longer fixed, this scenario is more general than the basic

Lewis scenario. These conditions are similar to the conditions in a basic Lewis scenario. (i)

states that the probability of hypothesis, conditional on the fact that the information source i is

reliable and the fact that evidence i provides supports H, is 1. (ii) states that evidence provided

by an unreliable source does not affect the probability of the hypothesis. (iii) is the condition

that the hypothesis is neither absolutely true nor absolutely false, while (iv) is the condition that

given the evidence i provided, a source i is neither absolutely reliable nor absolutely unreliable.

(v) is an independence assumption concerning Ei, which states that the evidence from source i

is independent from other evidence and the reliability of other sources. Similarly, (vi) says that

the reliability of i is independent from the reliability of other sources. The last condition (vii)

says that the reliability of a source i, given the evidence provided by it, equals to the reliability

of any other source j given the evidence j provided.

Given this scenario, we can define reliability-conduciveness in a more subtle way.

Definition 3.6.5. Specificity informativeness

A coherence measure C is specificity informative in a scenario (S,P) with a fixed number

of equivalent evidence if and only if for all Sn ∈ S there are Pr, Pr′ ∈ P such that CPr(Sn) 6=

CPr′(Sn).

Definition 3.6.6. Reliability-conduciveness with fixed number of evidence

A coherence measure C is reliability-conducive ceteris paribus in a scenario (S,P) with a

fixed number of equivalent evidence if and only if: if CPr(Sj) > CPr′(Sk) and j 6= k, then

Pr(Ri|E1, ..., Ej) > Pr′(Ri|E1, ..., Ek) for all Pr, Pr′ ∈ P such that Pr(Ri|Ei) = Pr′(Ri|Ei).
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Definition 3.6.7. Size informativeness

A coherence measure C is size informative in a scenario with equivalent evidence (S,P) if

and only if for all Pr, Pr′ ∈ P such that Pr(H) = Pr′(H) there are Sj , Sk ∈ S where j 6= k

such that CPr(Sj) 6= CPr′(Sk).

Definition 3.6.8. Reliability-conduciveness with fixed specificity

A coherence measure C is reliability-conducive ceteris paribus in a scenario with equivalent

evidence (S,P) where the prior probability of the hypothesis is held fixed if and only if: if

CPr(Sj) > CPr′(Sk) and j 6= k, then Pr(Ri|E1, ..., En) > Pr′(Ri|E1, ..., Em) for all Pr, Pr′ ∈ P

such that Pr(Ri|Ei) = Pr′(Ri|Ei) and Pr(H) = Pr′(H).

Similar to the case in a basic Lewis scenario, a coherence measure C is specifically informative

and reliability-conducive ceteris paribus in this scenario if and only if C is a decreasing function

of the prior probability of hypothesis. On the other hand, for C to be size informative and

reliability-conducive, C needs to be an increasing function of the number of evidence.

It can be seen that Shogenji’s measure satisfies both conditions. Given a set of evidence

{E1, ..., En}, the coherence of the set, according to Shogenji’s measure, is:

CSh({E1, ..., En}) =
Pr(E1 ∧ ... ∧ En)

Pr(E1)...P r(En)
=

Pr(En)

Pr(E1)...P r(En)
= Pr(E1)

1−n

which is an increasing function of n. Also, given the number of evidence fixed, the less probable

En is, the greater CSh({E1, ..., En}) is. We can hence claim that Shogenji’s measure is reliability-

conducive in the scenario.

Shogenji’s measure is actually the only reliability-conducive coherence measure in this sce-

nario. To prove this claim, we need to show that every other coherence measure fails to satisfy

the conditions proposed. It can be easily shown that Olsson’s measure is not a strictly in-

creasing function of the number of evidence, in the scenario with equivalent evidence, for a set

E = {E1, ..., En} such that all Ei ∈ E are equivalent, its degree of coherence, as measured in the

way Olsson suggests, does not differ from any other set E∗ = {E1, ..., Em} such that all Ej ∈ E∗

are equivalent and n 6= m. Olsson’s measure is not an increasing function of the number of

evidence, and hence is not reliability-conducive.

All other coherence measures besides Olsson’s can be generated with Douvens and Meijs’

scheme. As described in section 1.7, this scheme is defined as follows:

Definition 3.6.9. Douven and Meijs’ scheme of coherence measure

Cm(S)
def
==

∑JSK
i=1m(Ŝi)

JSK
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in which [S] is the set of pairs of non-overlapping subsets of S, 〈Ŝ1, ..., ŜJSK〉 is an ordering of

elements of [S], and JSK is the cardinality of S. In a scenario of equivalent evidence, since

S = {b1, ..., bn} = {b1}, there does not exist any pair of non-overlapping subsets of S, which

means that [S] is empty and cannot be measured with this scheme. Hence, we need to make a

slight modification by taking S as an ordered set 〈b1, ..., bn〉.

With this scheme, we can generate many coherence measures by plugging in different con-

firmation measures for m(·). In the scenario given, suppose that A is the proposition the agents

agree on and provide as evidence. Since all the evidence in the scenario are equivalent, every

subset of S is equivalent to A. Hence, Cm(S) is equivalent to m(〈A,A〉), namely in this scenario,

all results generated from these coherence measures are just the confirmation between A and

itself. Suppose we add one additional evidence A∗ to the set S, since A∗ = A by assumption,

the degree of coherence would be equivalent to m(〈A,A〉). We can thus conclude that all the

measures generated from this scheme are not size-informative, for adding new pieces of evidence

does not raise the coherence of this set. With this simple proof, it can be inferred that all the

measures generated with this scheme are not reliability-conducive. Hence, Shogenji’s measure

is the only reliability-conducive coherence measure.

Schubert (2011) also examines if any other coherence measure is reliability-conducive in a

scenario with two non-equivalent evidence. The scenario he considers is slightly different from

the scenario with equivalent evidence. In the new scenario (S,P), the number of evidence is

fixed, namely S = {〈E1, H1〉, 〈E2, H2〉}. Given such scenario, Schubert proves that the posterior

probability of reliability Pr(Ri|E1, E2) is a strictly increasing function of
Pr(E1, E2)

Pr(E1)Pr(E2)
. As

an immediate result, for a coherence measure to be reliability-conducive, it also has to be an

strictly increasing function of this formula.

Schubert introduces three different coherence measures:

Definition 3.6.10. Confirmation-based coherence measures

Ratio measure: Sr(E1, E2)
def
==

Pr(E1|E2)

Pr(E1)

Log-ratio measure: Slr(E1, E2)
def
== log

Pr(E1|E2)

Pr(E1)

Fnch’s measure: SFi(E1, E2)
def
==

Pr(E2|E1)− Pr(E2)

Pr(E2)

If we plug these confirmation measures in Douven and Meijs’ scheme of coherence measure, we

may obtain three coherence measures Cr, Clr and CFi:

Ratio-based coherence measure: Cr(E1, E2)
def
==

Pr(E1, E2)

Pr(E1)Pr(E2)
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Log-ratio-based coherence measure: Clr(E1, E2)
def
== log

Pr(E1, E2)

Pr(E1)Pr(E2)

Finch-based coherence measure: CFi(E1, E2)
def
==

Pr(E!, E2)

Pr(E1)Pr(E2)
− 1

All three measures satisfy the condition of reliability-conduciveness. With simple obser-

vation, one may see that all three coherence measures are ordinally equivalent to Shogenji’s

measure. This result is not surprising at all, since the formula
Pr(E1 ∧ E2)

Pr(E1)Pr(E2)
is equivalent to

the way Shogenji measures the coherence of {E1, E2}.

We have examined whether coherence is reliability-conducive in three different scenarios,

including scenario with two equivalent evidence, scenario with n equivalent evidence and sce-

nario with two different pieces of evidence. In all these scenarios, Shogenji’s measure correctly

represents coherence as a reliability-conducive measure. Thus, it seems that Shogenji’s measure

does indeed secures the importance of coherence by showing that coherence is indeed reliability-

conducive.

However, Schubert (2012b) proves that no coherence measure is reliability-conducive in a

more general scenario. In a scenario with different evidence (S,P) such that S = {Sn|Sn =

{〈E1, H1, R1〉, ..., 〈En, Hn, Rn〉} and n = 2 ∨ n = 3}, it can be shown that there are cases in

which a set S is more coherent than another set S′, but the sources of S are less reliable than

S′.

Schubert first proves two equations concerning the relation between reliability of sources

Pr(Ri|Ei, ..., En) and probability of hypothesis in question Pr(Hi):

Pr(R1|E1, E2) =
CSh({H1, H2}) + x

CSh({H1, H2}) + 2x+ x2

Pr(R1|E1, E2, E3) =

CSh({H1, H2, H3}) + x(CSh({H1, H2}) + CSh({H1, H3})) + x2

CSh({H1, H2, H3}) + x(CSh({H1, H2}) + CSh({H1, H3}) + CSh({H2.H3})) + 3x2 + x3

in which

m = Pr(Ri|Ei); x =
1−m
m

; CSh({H1, ...,Hn}) =
Pr(H1 ∧ ... ∧Hn)

Pr(H1)...P r(Hn)

With these two equations, it can be shown that there are two sets of equivalent evidence

{H1, H2} and {H ′1, H ′2, H ′3} such that for some Pr ∈ P, Pr(Ri|E1, E2) > Pr(Ri|E′1, E′2, E′3) and

for some other Pr′ ∈ P, Pr(Ri|E′1, E′2, E′3) > Pr(Ri|E1, E2). That is, there are cases which

demonstrates that Shogenji’s measure is not reliability-conducive in the scenario.

Proposition 3.6.1. Shogenji’s measure is not reliability-conducive

Given the probability distribution:

46



Pr(H1) = Pr(H2) = 0.4

Pr(H ′1) = Pr(H ′2) = Pr(H ′3) = 0.5

We can derive that

CSh({H1, H2}) =
0.4

0.4× 0.4
=

5

2
; CSh({H ′1, H ′2, H ′3}) =

0.5

0.25
= 2

The probability of R1 given E1, E2 and the probability of R′1 given E′1, E
′
2, E

′
3 will then be

Pr(R1|E1, E2) =

5

2
+ x

5

2
+ 2x+ x2

Pr(R′1|E′1, E′2, E′3) =
4 + 4x+ x2

4 + 6x+ 3x2 + x3

When m =
1

2
,

Pr(R′1|E′1, E′2, E′3) ≈ 0.643 > Pr(R1|E1, E2) ≈ 0.636

but when m =
1

4
,

Pr(R1|E1, E2) ≈ 0.44 > Pr(R′1|E′1, E′2, E′3) ≈ 0.329.

Although CSh({H1, H2}) > CSh({H ′1, H ′2, H ′3}), the reliability of sources of the set {H ′1, H ′2, H ′3}

is greater than the reliability of courses for {H1, H2} under certain occasions. We can therefore

conclude that CSh is not reliability-conducive in this scenario.

Schubert proves in a similar way that there are two sets with the same number of evidence

{H1, H2, H3} and {H ′1, H ′2, H ′3} such that, given a probability distribution Pr∗ ∈ P, P r∗(Ri|Ei) =

Pr∗(Ri|E′i) for all i and Pr∗(Ri|E1, E2, E3) > Pr∗(R′i|E′1, E′2, E′3) and for some other Pr∗∗ ∈ P,

Pr∗∗(Ri|E′1, E′2) > Pr∗∗(Ri|E1, E2, E3). Thus, it can be proved that Shogenji’s measure is

reliability-conducive only in a really restricted scenario. The claim that coherence is a reliability-

conducive notion, regretfully, is not a general result.

3.7 Coherence as a confirmation-conducive notion

Another approach of saving coherence is to argue that it is confirmation-conducive (Dietrich

and Moretti 2005, Moretti 2007). They prove that a coherent set, compared with a relatively

incoherent one, is more likely to be confirmed. This idea comes from the intuition that when a

set is coherent, its elements ‘hang together’ well, namely that elements in the set have similar
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contents. Therefore, if there is a piece of evidence confirming an element of a highly coherent

set, this piece of evidence should also confirms other elements of that set. Following this line

of thought, a piece of evidence confirming an element of a coherent set is supposed to confirm

other elements of the set, and also the conjunction of them. In other words, the confirmation

of an element can be transmitted to other elements of the set.

The correlation between coherence and confirmation transmission can be illustrated by a

concrete example. It sounds pretty natural to say that if a piece of evidence confirms two

elements of a set, it should also confirm the conjunction of them. Unfortunately, it is not

always the case. A piece of evidence e confirming two hypotheses may fail to confirm their

conjunction. This fact can be shown by the following example:

Example 3.7.1. Non-transmitting confirmation

(H1) Alex is a football fan living in Manchester.

(H2) Alex is a supporter of Manchester United F.C..

(H3) Alex is a supporter of Manchester City F.C..

Suppose there is a piece of evidence E:

(E) Alex has a mansion in Manchester with a football field.

E confirms H1, H2 and H3 respectively, that is, for all Hi such that i = 1, 2, 3, Pr(Hi|E) is

greater than Pr(Hi). However, the probability of H1 ∧H2 ∧H3 conditional on E is much lower

than its prior probability, for it is highly improbable that both H2 and H3 are true.

The reason E does not support H1 ∧ H2 ∧ H3 is that H2 and H3 do not cohere well with

each other. As a result, the probability for them to be true together is rather low. That is

to say, whether the conjunction of a set of elements can be confirmed with the same piece of

evidence depends on how coherent they are. The notion of coherence, understood this way,

can be taken as representing the relevance between propositions. With this underlying idea,

Dietrich and Moretti (2005) define confirmation transmission and confirmation transmission to

the conjunction as the following:

Definition 3.7.1. Confirmation transmission (CT)

For any formulae E,H such that E confirms H, there exists a non-trivial4 coherence thresh-

old cE,H ∈ R such that for any set S ∈ S containing H with coherence C(S) ≥ cE,H , E confirms

each member of S.
4Non-triviality here means that the threshold is strictly less than the maximal degree of coherence of the

measure.

48



Definition 3.7.2. Confirmation transmission to the Conjunction (CTC)

For any formulae E,H such that E confirms H, there exists a coherence threshold cE,H ∈ R

such that for any set S ∈ S containing H with coherence C(S) ≥ cE,H , E confirms
∧

H∗∈S H
∗.

If there exists a coherence measure which satisfies both (CT) and (CTC), it can be derived that

the notion of coherence, as characterized by the measure, is a confirmation-conducive notion

such that greater degree of coherence leads to stronger confirmation.

With the idea that coherence provides a different way to characterize relevance between

propositions, we can further define a weaker notion of confirmation transmission by restricting

to binary sets:

Definition 3.7.3. Weak confirmation transmission (CT∗)

For any formulae E,H such that E confirms H, there exists a coherence threshold cE,H ∈ R

such that for any formula H∗ with Pr(H∗) > 0 and C({H,H∗}) > cE,H , E confirms H∗.

(CT∗) is weaker than (CT) and (CTC) since the number of elements in the set being confirmed

is fixed. That is, when the number of elements of a set is greater than two, a coherence measure

satisfying only (CT∗) may fail to show that coherence is confirmation-conducive.

It is to be noted that the relevance so construed is a non-deductive relation. Suppose that a

coherence measure C satisfies both (CT) and (CTC), given a set H : {H1, ...,Hn} and a piece of

evidence E which confirms H1. If the degree of coherence of H is higher than certain threshold

cE,H1 , although
∧

Hi∈H Hi is not a logical consequence of H1, E still confirms
∧

Hi∈H Hi. With

the notion of coherence, it can be shown that there is an indirect, non-deductive relation between

Hi and
∧

Hi∈H Hi.

Based on the idea of confirmation transmission, Moretti (2007) further defines two properties

evidence gathering and conjunctive evidence gathering :

Definition 3.7.4. Evidence gathering (EG)

For any formulae E and H such that E confirms H, there exists a coherence threshold

cE,H ∈ R such that for any set S ∈ S containing E with coherence C(S) ≥ cE,H , each member

of S confirms H.

Definition 3.7.5. Conjunctive evidence gathering (CEG)

For any formulae E and H such that E confirms H, there exists a coherence threshold

cE,H ∈ R such that for any set S ∈ S containing E with degree of coherence C(S) ≥ cE,H , the

conjunction
∧

E∗∈S E
∗ confirms H.

It is easy to see that (EG) and (CEG) are converses of (CT) and (CTC). (EG) states that given

E confirms H, if the set S containing E is sufficiently coherent, other elements of S also confirm
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H, while (CEG) states that given the same premise, the conjunction of elements of S confirms

H. Moretti further show that a coherence measure satisfies (EG) if and only if it satisfies (CT),

and satisfies (CEG) if and only if it satisfies (CTC).

Dietrich and Moretti prove that Olsson’s coherence measure satisfies (CT), (CTC), (EG)

and (CEG) with the threshold
1

1 + Pr(E|H)− Pr(E)
, while Shogenji’s measure does not satisfy

any of them.5 The interesting case is Fitelson’s measure CF which satisfies (CT∗) with the

threshold
1

1 + Pr(E ∧H)− Pr(E)Pr(H)
, but fails to satisfy (CT) and (CTC). Dietrich and

Moretti provide a sketchy proof which illustrates the reason. When the number of equivalent

hypotheses of a set tends to infinity, the coherence of a set, under Fitelson’s measures CF , tends

to 1. Given this fact, suppose n > m, a set with n equivalent propositions is more coherent

than a set with m equivalent propositions under CF . Assume there is a set of hypotheses

S = {H1, ...Hn} and a piece of evidence E which confirms only H1. If CF (S) < cE,H1 , it will

turn out that E does not confirm any other Hi in S apart from H1. However, one may raise

CF (S) simply by adding another set of hypotheses S∗ = {H∗1 , ...,H∗m} to S such that every

element H∗i in S∗ is equivalent to Hn. When m tends to infinity, CF (S ∪ S∗) tends to 1, and

thus will be greater than cE,H1 at some point. Since every element in S∗ is equivalent to Hn

which is not confirmed by E, it is not the case that every element of the new set S ∪ S∗ is

confirmed by E. Hence, Fitelson’s measure violates (CT) and (CTC). As for (CT∗), since the

size of the set being measured is fixed, this problem does not occur.

The proof which shows that Fttelson’s measure is not confirmation-conducive provides an

important insight concerning confirmation and reliability-conduciveness. With the fact that CF

does not satisfy (CT) and (CTC), we may infer that any size-informative coherence measure is

not confirmation-conducive. For any set of proposition S and a coherence measure C, if adding

propositions that are equivalent to some elements in S makes S more coherent under C, C is

not confirmation-conducive, The reason is pretty straightforward. Given a set {H1, H2}, if a

piece of evidence E confirms H1 but not H2, adding other hypotheses which are equivalent to

H1 would not make E confirm H2. But if C is size-informative, adding hypotheses equivalent

to Hi does raise the coherence of {H1, H2}. Hence, size-informativeness is incompatible with

confirmation-conduciveness. On the other hand, for a coherence measure C to be reliability-

conducive in any scenario, C has to be size-informative. The idea of reliability-conduciveness

is that when a group of information sources provide a set of highly coherent evidence, these

sources are considered to be highly reliable. Thus, when the number of sources providing the

same piece of evidence increases, the degree of coherence should raise, which indicates that the

5For a detailed proof, see Dietrich and Moretti (2005)
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information sources are more reliable.

In sum, confirmation transmission and evidence gathering provide us with a different way

to check if a piece of evidence confirms certain hypotheses. Therefore, we may conclude that

the notion of coherence has practical importance for scientists.

3.8 Inference to the most coherent explanation

An important issue in philosophy of science is the study of abduction, which is also called

inference to the best (IBE). The primary purpose of scientific practice is to provide a correct

explanation for a phenomena. In search of a correct explanation, scientists often encounter a

situation where multiple explanations are possible. To find the correct explanation, a natural

solution is to choose the best explanation among all possibilities as the correct one.

A question immediately follows: How do we judge the goodness of an explanation? We

need a method to tell which explanation should be taken as the best one. There are three

quantitative approaches to characterize the goodness of an explanation. The simplest one is to

take the hypothesis with maximal likelihood (ML) as the best, namely that for a given piece

of evidence E, the hypothesis which leads to the greatest posterior probability of E should be

taken as the best explanation. That is, suppose there are n competing hypotheses {H1, ...,Hn}

and a piece of evidence E, we should compare the probability of E conditional on every Hi, and

take Hj as the best explanation if Pr(E|Hj) = max(Pr(E|H1), ..., P r(E|Hn)). This approach

seems to be convincing at first glance. Given that E is a fact, the best explanation is the one

which overlaps with E to the greatest extent among all competing hypotheses.

Intuitive as it seems, the maximal likelihood approach is regarded as incorrect because

of the base rate fallacy. The base rate fallacy states that when provided with general and

specific information of a single fact, people tend to ignore the former, and reason with the more

specific information. For example, with the information that Alex eats curry everyday, one

would naturally consider Ales as more likely to be an Indian than an non-Indian. But since the

number of non-Indian people is greater than the number of Indian people, conditional on the

information that Alex eats curry everyday, the actual probability of Alex being an non-Indian

is greater than the probability of Alex being an Indian. This type of reasoning neglects the

influence of prior probability of propositions. Similarly, adopting the explanation which leads to

greatest posterior probability of E may also be fallacious. Suppose that two hypotheses H1, H2

leads to different posterior probability of E such that Pr(E|H1) > Pr(E|H2), the hypothesis

with greater posterior probability, according to ML, should be taken as the better explanation.

But if Pr(H2) > Pr(H1), the better explanation may actually be H2. Hence, ML is fallacious.
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Another approach is to take the most probable explanation (MPE) as the best explanation,

namely that when presented with a set of hypotheses {H1, ...,Hn}, pick the hypothesis Hi such

that Pr(H1|E) = max(Pr(H1|E), ..., P r(Hn|E)). According to MPE, the prior probability

of hypotheses does influences the evaluation of explanations. Hence, MPE is free from the

problem of ML. However, because of exactly the same reason, MPE is fallacious. This approach

put too much emphasis on the prior probability of hypotheses. Suppose there are two competing

hypotheses H1, H2 and a piece of evidence E such that Pr(H1) > Pr(H1|E) > Pr(H2|E) >

Pr(H2). Since the probability of H1 given E is lower than its prior probability, while the

probability of H2 raises when given E, people tend to take H2 as a better explanation of

E. But MPE generates the opposite result that H1 is the best explanation, which is quite

implausible.

An alternative to ML and MPE is the conservative Bayesian (CB) approach, which takes

an explanation H1 as better than H2 with regard to E if and only if Pr(E|H1) > Pr(E|H2)

and Pr(H1) > Pr(H2). Judging this way, the best explanation need to has both greatest prior

probability and also be the most probable. This approach can be regarded as a revised version

of MPE which rules out problematic cases in which the prior probability is too low. Since it does

not provide us a total ordering over explanations, it is a conservative approach. Unfortunately,

this approach is still far from satisfactory. We may think of cases which is the best according

to ML and MPE, but excluded by CB.6 As a compromise between ML and MPE, this kind of

cases should not occur.

Due to the failure of all three approaches, Glass (2007) proposes to characterize the notion

of best explanation in terms of coherence, namely to take the best explanation as the one

which coheres with evidence to the greatest extent. He finds out that Olsson’s measure can be

transformed into a combination of ML and MPE, namely that

Definition 3.8.1. Olsson’s coherence measure (CO)

CO({Hi, E}) =
Pr(Hi ∧ E)

Pr(Hi ∨ E)
= (

1

Pr(E|Hi)
+

1

Pr(Hi|E)
− 1)−1

Glass shows that this approach, like CB, retains both the merits of ML and MPE, and is free

from the deficiency of CB. It generates the same result as ML and MPE when ML and MPE

6We can show this by considering a simple instance. Given two hypotheses H1 and H2. and a piece of

evidence E such that Pr(H1) = 0.5, Pr(H2) = 0.6, Pr(E ∧ H1) = 0.3 and Pr(E ∧ H2) = 0.2. In this case,

Pr(H1|E) > Pr(H2|E) and Pr(E|H1) > Pr(E|H1), hence, both ML and MPE rank H1 as better than H2.

But since Pr(H2) > Pr(H1), this case is excluded by CB. Hence, CB disagrees with ML and MPE. Since the

motivation of proposing CB is to make a compromise between ML and MBP, the result that CB disagrees with

both in certain circumstance is pretty strange.
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agrees with each other. The advantage of this approach can be illustrated by the following

example:

Example 3.8.1. Different accounts of best explanation

A farmer finds out that some of his sheep died (E) and wants to figure out why. There

are two possible explanations: either some of the sheep have hoof-and-mouth disease (H1), or

the living conditions are too bad for them (H2). Suppose that P (E) = 0.1, we may have the

following four cases.

Case 1. Pr(H1) = 0.05, Pr(H2) = 0.1, Pr(E|H1) = 0.5, Pr(E|H2) = 1

Case 2. Pr(H1) = 0.1, Pr(H2) = 0.05, Pr(E|H1) = 0.25, Pr(E|H2) = 1

Case 3. Pr(H1) = 0.36, Pr(H2) = 0.02, Pr(E|H1) = 0.15, Pr(E|H2) = 1

Case 4. Pr(H1) = 0.1, Pr(H2) = 0.01, Pr(E|H1) = 0.75, Pr(E|H2) = 1

Case 1: The probability of sheep having hoof-and-mouth disease is 5%, the probability that

they live in a bad environment is 10%. The probability that the sheep died because of the

disease is 50%, while sheep living in bad environment leads to a 100% death rate. Suppose

there are two hundred sheep, since Pr(E) is 0.1, the total deaths is twenty. Intuitively, we

would accept H2 as the best explanation, for all twenty dead sheep lived in a bad environment,

all four approaches suggests that H2 is the real cause, which is in accordance with the intuition.

Case 2: The probability of the sheep having hoof-and-mouth disease is 10%, the probability

that they live in a bad environment is 5%. The probability that the sheep died because of the

disease is 25%, while sheep living in a bad environment are all definitely going to die. In this

case, Pr(H1|E) = 0.25, Pr(H2|E) = 0.5, CO(H1, E) =
1

7
, CO(H2, E) =

1

5
. We may infer that

ML, MPE and CO all indicate that H2 is the best explanation, while CB excludes this case.

Case 3: The probability of the sheep having hoof-and-mouth disease is 36%, while the

probability that they live in a bad environment is 2%. The probability that the sheep died

because of the disease is 15%, while the sheep living in a bad environment are all definitely

going to die. In this case,

Pr(E|H1) = 0.15 < Pr(E|H2) = 1

Pr(H1|E) = 0.54 > Pr(H2|E) = 0.2

CO(H1, E) =
27

203
< CO(H2, E) =

1

5
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ML and CO both take H2 as better, while MPE ranks H1 higher than H2. In this case, the

reason for Pr(H2|E) to be greater than Pr(H1|E) is that the prior probability of H2 is much

greater than H1, which does not imply that H2 is a better explanation for E. Hence, ML and

CO is more convincing.

Case 4: 10% of the sheep have hoof-and-mouth disease, 1% of them live in a bad environment.

75% among the sheep with a disease died, and all those sheep living in a bad environment died.

We can derive that

Pr(E|H1) = 0.75 < Pr(E|H2) = 1

Pr(H1|E) = 0.75 > Pr(H2|E) = 0.1

CO(H1, E) =
3

5
> CO(H2, E) =

1

10

In this case, CO agrees with MPE that H1 is a better explanation than H2. Since Pr(H1|E) is

much greater than Pr(H2|E) not simply because of having prior probability, H1 is intuitively

a better explanation.

With this illustrating case, Glass claims that CO has the advantage of both ML and MPE,

and generates results that fit better with our intuition concerning best explanation. There-

fore, coherence, as characterized with Olsson’s measure CO, provides a goodness ranking of

explanations.

3.9 Summary of chapter three

In this chapter, we have seen how Bovens and Hartmann prove that the search of a truth-

conducive probabilistic coherence measure is doomed to fail. To save the notion of coherence,

philosophers provide several applications of this notion other than explaining epistemic justifi-

cation. If it is true that the notion of coherence is useful to deal with these aspects, it may still

be regarded as an important notion is epistemology.

Although some of the attempts are successful, there are still hidden problems of the general

approach of saving coherence. The fact that is revealed by these attempts is not that coherence

is useful, but rather that coherence, as characterized by specific probabilistic measures, is useful.

If one can prove that a coherence measure is conducive to an epistemic ideal but violates some of

our intuitive understanding of coherence, it would be doubtful whether the notion, as represented

by the measure, should be accepted as identical to coherence. That is to say, if a coherence

measure is intuitively incorrect but conducive to an epistemic ideal, then either our intuition is
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wrong, or the notion represented by this measure is not coherence. The primary purpose of next

chapter, therefore, is to review this approach with a new requirement for coherence measures.
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Chapter 4

Coherence and Confirmation

4.1 A new requirement

As introduced in the previous chapters, there are many probabilistic coherence measures, each

has different features and can be used for a variety of purposes. For instance, if one wants

to ascertain whether a piece of evidence E confirming a proposition P1 also confirms another

proposition P2, one may calculate the degree of coherence between P1 and P2 with Olsson’s

measure. If the degree of coherence between them turns out to be above a certain threshold,

one can draw the conclusion that E also confirms P2. Also, to judge if a scientific explanation

is better than another according to some pieces of evidence, one may calculate the coherence

between the evidence and each explanation, and pick the explanation which coheres with the

evidence to the greatest extent. In spite of being non-truth-conducive, coherence can still be a

valuable notion in contemporary epistemology and philosophy of science.

However, having practical merits does not guarantee that the coherence measures proposed

so far are correct. They may still violate intuitive requirements of coherence, and hence result

in counterintuitive consequences. Coherence preservation is a requirement of this kind which

poses a serious threat to these probabilistic coherence measures.

It is generally accepted that coherence is the mutual support between the elements of a set.

If every element in a set supports some other elements in the set, the set should be regarded as

highly coherent. It is then natural to think that for any set of propositions, if extended with

a proposition which confirms every element of that set, the degree of coherence of the new set

should be greater than, or at least equal to the coherence of the original set. In other words,

the degree of coherence of a set should be preserved when the set is confirmed. We call this

requirement coherence preservation.
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The requirement of coherence preservation is baaed on the same idea as BonJour’s (1985)

third coherence criteria which states that ‘The coherence of a system of beliefs is increased by the

presence of inferential connections between its component beliefs and increased in proportion

to the number and strength of such connections.’ If we interpret what BonJour means by

inferential connection as confirmation relation, it is then pretty natural to accept the idea that

the coherence of a set should be preserved when every element of it is confirmed.

To provide a formal definition of coherence preservation, we must first clarify the notion

of confirmation. A widely accepted probabilistic definition of confirmation is: a proposition H

is confirmed by another proposition E if and only if the probability of H conditional on E is

greater than the prior probability of H, namely:

Definition 4.1.1. Confirmation

Given a probability distribution Pr(·), a proposition E confirms another proposition H if

and only if Pr(H|E) > Pr(H).

With this formal definition of confirmation, we can derive the following requirement for a

coherence measure:

Definition 4.1.2. Coherence preservation (CP)

Given a set of propositions S = {P1, ..., Pn} and a proposition E such that for all Pi ∈ S,

Pr(Pi|E) > Pr(Pi). A coherence measure C is coherence preserving if and only if C(S∪{E}) ≥

C(S).

That is, if a coherence measure satisfies (CP), the degree of coherence it assigns to S ∪ {E}

would be greater than the degree it assigns to S.

Based on (CP), we can further derive another requirement called coherence preservation to

the conjunction:

Definition 4.1.3. Coherence preservation to the conjunction (CPC)

Given a set of propositions S = {P1, ..., Pn} and a proposition E such that for every Pi ∈ S,

Pr(Pi|E) > Pr(Pi) and Pr(P1 ∧ ... ∧ Pn|E) > Pr(P1 ∧ ... ∧ Pn). A coherence measure C is

coherence preserving to the conjunction if and only if C(S ∪ {E}) ≥ C(S).

We can easily see that violating (CPC) implies violating (CP), but not the other way round.

Given the ordinary understanding of coherence, it is natural to consider (CP) and as an

appropriate requirement for coherence measures. If a coherence measure C fails to satisfy

(CP), C fails to capture the intuition that coherence is the mutual support between a set of

elements. Surprisingly, most mainstream coherence measures do not conform to (CP). The
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primary concern of this chapter is to reevaluate different coherence measures with this new

requirement, and further discuss the results of this observation.

4.2 Agreement measures for coherence are not coherence preserving

As introduced in chapter two, two of the most prominent agreement measures of coherence are

Shogenji and Olsson’s measures. Unfortunately, both measures fail to satisfy (CP). To show

that a coherence measure C violates (CP), it suffices to provide a simple counterexample in

which a proposition E confirms every element of a set S but C(S) > C(S ∪ {E}).

Proposition 4.2.1. Shogneji’s measure does not satisfy (CP)

Assume there is a set of propositions {H1.H2} and a proposition E confirming both H1 and

H2, i.e. Pr(H1|E) > Pr(H1), Pr(H2|E) > Pr(H2). Suppose that the probability of H1, H2

and E are distributed as follows:

H1

H2

E0.11 0.05

0.11 0.45

0.09

0.09 0.09

0.01

Figure 1.

In this case,

Pr(H1) = Pr(H2) = 0.3

Pr(E) = 0.24

Pr(H1|E) = Pr(H2|E) =
5

12
≈ 0.41

Since Pr(H1|E) > Pr(H1) and Pr(H2|E) > Pr(H2), E confirms both H1 and H2.

The coherence of {H1, H2} and {H1, H2, E} are measured as:
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CSh({H1, H2}) =
Pr(H1 ∧H2)

Pr(H1)Pr(H2)
=

10

9

CSh({H1, H2, E}) =
Pr(H1 ∧H2 ∧ E)

Pr(H1)Pr(H2)Pr(E)
=

25

54

Given this probability distribution, although E confirms both H1 and H2, the degree of

coherence of {H1, H2} is greater than the coherence of {H1, H2, E}. We may hence conclude

that Shogenji’s measure violates (CP).

The revised Shogenji’s measure proposed by Schupbach (2011) also fails to satisfy this

requirement.

Proposition 4.2.2. The revised Shogenji measures do not satisfy (CP)

Schupbach provides three revised Shogenji measures: Straight Average CSA, Deeper In-

creasing CDI and Deeper Decreasing CDD. With the probability distribution in Figure 1, we

can show that all three measures violate (CP). To derive the result, we need first calculate the

pairwise and three-wise coherence of {H1, H2, E}.

C2({H1, H2, E}) =
1

3
(log(

Pr(H1 ∧H2)

Pr(H1)Pr(H2)
) + log(

Pr(H1 ∧ E)

Pr(H1)Pr(E)
) + log(

Pr(H2 ∧ E)

Pr(H2)Pr(E)
)) ≈ 0.11

C3({H1, H2, E}) = log(
25

54
) = −0.334

Measured with CSA, the degree of coherence of {H1, H2, E} is:

CSA({H1, H2, E}) =
1

2
(C2({H1, H2, E}) + C3({H1, H2, E})) =

0.11− 0.334

2
≈ −0.11

With CDD, the coherence of {H1, H2, E} is

CDD({H1, H2, E}) =
2

6
C2({H1, H2, E}) +

4

6
C3({H1, H2, E}) = −0.186

with CDI , the degree of coherence of {H1, H2, E} is

CDI =
4

6
C2({H1, H2, E}) +

2

6
C3({H1, H2, E}) = −0.038

The coherence of {H1, H2} under these revised measures is just the logarithm of its degree

of coherence with the original measure:

C2({H1, H2}) = log(
Pr(H1 ∧H2)

Pr(H1)Pr(H2)
) = 0.045

Since C2({H1, H2}) is greater than CSA({H1, H2, E}), CDD({H1, H2, E}) and CDI({H1, H2, E}),

we can conclude that the revised Shogenji measures also violate (CP).

Similarly, Olsson’s measure fails to meet this requirement.
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Proposition 4.2.3. Olsson’s measure does not satisfy (CP) and (CPC)

Consider the following probability distribution:

H1

H2

E0.1 0.05

0.1

0.05

0.05 0.05

0.1

Figure 2.

Given this probability distribution, we can derive that

Pr(H1|E) = 0.6 > 0.3 = Pr(H1)

Pr(H2|E) = 0.6 > 0.3 = Pr(H2)

Pr(H1 ∧H2|E) = 0.4 > 0.15 = Pr(H1 ∧H2)

CO({H1, H2}) =
1

3
>

1

5
= CO({H1, H2, E})

Hence, although E confirms both H1 and H2, the degree of coherence of {H1, H2} is greater

than {H1, H2, E}. Since Pr(H1∧H2|E) > Pr(E), namely that E also confirms the conjunction

of H1 and H2, Olsson’s measure also violates (CPC).

The revised Olsson measure, proposed by Meijs (2006), also violates (CP), which can be

shown with the probability distribution in Figure 2.

Proposition 4.2.4. The revised Olsson’s measure violates (CP)

Given three propositions H1, H2 and E and the probability distribution in Figure 2, the

degree of coherence of {H1, H2}, according to the revised Olsson’s measure CO∗ , is:

CO∗({H1, H2}) =
Pr(H1,∧H2)

Pr(H1 ∨H2)
=

15

45
=

1

3

The coherence of {H1, H2, E}, measured with CO∗ , is
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o(H1, H2) + o(H1, E) + o(H2, E) + o(H1, H2, E)

4
=

(
1

3
+

3

8
+

3

8
+

1

5
)

4
≈ 0.321

CO∗({H1, H2, E}) is lower than CO∗({H1, H2}), therefore, the revised Olsson measure violates

(CP).

4.3 Confirmation based measures of coherence are not coherence preserv-

ing

Similar to agreement measures, confirmation based measures of coherence fail to satisfy (CP).

To prove this, we first list the measures that should be considered. With Douven and Meijs’

scheme, we can generate many different coherence measures by plugging in different confirmation

measures. Recall that the scheme is written as follows:

Cm(S)
def
==

∑JSK
i=1m(Ŝi)

JSK

The degree of coherence of a set is the average degree of confirmation between every subset of

the set being measured. There are many confirmation measures that can be plugged in this

scheme:

Definition 4.3.1. Confirmation measures

(Carnap 1962) D(E,H) = Pr(H | E)− Pr(H)

(Christensen 1999) S(E,H) = Pr(H | E)− Pr(H | ¬E)

(Mortimer 1988) M(E,H) = Pr(E | H)− Pr(E)

(Nozick 1981) N(E,H) = Pr(E | H)− Pr(E | ¬H)

(Carnap 1962) C(E,H) = Pr(E ∧H)− Pr(E)Pr(H)

(Finch 1960) Fi(E,H) =
Pr(H | E)

Pr(H)
− 1

(Rips 2001) Ri(E,H) = 1− Pr(¬H | E)

Pr(¬H)

(Kemeny&Oppenheim 1952) L(E,H) =
Pr(E | H)− Pr(E | ¬H)

Pr(E | H) + Pr(E | ¬H)

(Keynes 1921) K(E,H) = log(
Pr(H | E)

Pr(H)
)

(Good 1984) G(E,H) = log(
Pr(E | H)

Pr(E | ¬H)
)

To show that the measures generated with Douven and Meijs’ scheme violates (CP), it suffices

to provide a counterexample for each Cm in which m ∈ {D,S,M,N,C, Fi, Ri, L,K,G}.

Proposition 4.3.1. Cm violates (CP)
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Given a set {H1, H2} and a piece of evidence E such that Pr(H1|E) > Pr(H1) and

Pr(H2|E) > Pr(H2). The degree of coherence of {H1, H2}, according to Cm, is

Cm({H1, H2}) =
m(H1, H2) +m(H2, H1)

2

while the degree of coherence of {H1, H2, E} is

Cm({H1, H2, E}) =
1

12

( m(H1, H2) +m(H1, E) +m(H1, H2 ∧ E)

+m(H2, H1) +m(H2, E) +m(H2, H1 ∧ E)

+m(E,H1) +m(E,H2) +m(E,H1 ∧H2)

+m(H1 ∧H2, E) +m(H1 ∧ E,H2) +m(H2 ∧ E,H1)

)

With these two formulas, we may begin to check if the coherence measures generated from

Douven and Meijs’ scheme satisfy (CP).

Case 1: m(E,H) = D(E,H) = Pr(H | E)− Pr(H)

Given the same probability distribution as in Figure 1, we may derive the following results:

D(H1, H2) = D(H2, H1) = Pr(H1|H2)− Pr(H1) =
1

3
− 3

10
=

1

30

D(H1, E) = D(H2, E) = Pr(E|H1)− Pr(E) = Pr(E|H2)− Pr(E) =
6

75

D(H1, H2 ∧ E) = D(H2, H1 ∧ E) = Pr(H2 ∧ E|H1)− Pr(H2 ∧ E) = − 1

15

D(E,H1) = D(E,H2) = Pr(H1|E)− Pr(H1) = Pr(H2|E)− Pr(H2) =
7

60

D(E,H1 ∧H2) = Pr(H1 ∧H2|E)− Pr(H1 ∧H2) = − 7

120

D(H1 ∧H2, E) = Pr(E|H1 ∧H2)− Pr(E) = − 7

50

D(H1 ∧ E,H2) = D(H2 ∧ E,H1) = Pr(H1|H2 ∧ E)− Pr(H1) = −1

5

Hence,

CD({H1, H2}) =
1

2
(D(H1, H2) +D(H2, H1)) ≈ 0.03

CD({H1, H2, E}) ≈ −0.02

The degree of coherence of {H1, H2, E} is lower than the coherence of {H1, H2}

Case 2: m(E,H) = S(E,H) = Pr(H | E)− Pr(H | ¬E)

S(H1, H2) = S(H2, H1) = Pr(H2|H1)− Pr(H2|¬H1) =
1

3
− 2

7
=

1

21
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S(H1, E) = S(H2, E) = Pr(E|H1)− Pr(E|¬H1) =
15

2

S(H1, H2 ∧ E) = S(H2, H1 ∧ E) = Pr(H2 ∧ E|H1)− Pr(H2 ∧ E|¬H1) = − 2

21

S(E,H1) = S(E,H2) = Pr(H1|E)− Pr(H1|¬E) =
35

228

S(E,H1 ∧H2) = Pr(H1 ∧H2|E)− Pr(H1 ∧H2|¬E) = − 35

456

S(H1 ∧H2, E) = Pr(E|H1 ∧H2)− Pr(E|¬(H1 ∧H2)) =
2

45

S(H1 ∧ E,H2) = S(H2 ∧ E,H1) = Pr(H2|H1 ∧ E) = −101

90

We can hence derive that CS({H1, H2}) =
1

2
(S(H1, H2) + S(H2, H1)) ≈ 0.05. On the other

hand, CS({H1, H2, E}) ≈ −0.15. Again, CS({H1, H2}) is greater than CS({H1, H2, E}).

Case 3: m(E,H) = M(E,H) = Pr(E | H)− Pr(E)

Similar to Case 1.

Case 4: m(E,H) = N(E,H) = Pr(E | H)− Pr(E | ¬H)

Similar to Case 2.

Case 5: m(E,H) = C(E,H) = Pr(E ∧H)− Pr(E)Pr(H)

C(H1, H2) = C(H2, H1) = Pr(H1 ∧H2)− Pr(H1)Pr(H2) = 0.01

C(H1, E) = C(H2, E) = C(E,H1) = C(E,H2) = 0.1− 0.072 = 0.028

C(H1, H2 ∧ E) = C(H2 ∧ E,H1) = C(H2, H1 ∧ E) = C(H1 ∧ E,H2) = −0.02

C(H1 ∧H2, E) = C(E,H1 ∧H2) = −0.062

Given this probability distribution, CC({H1, H2}) = 0.01, CC({H1, H2, E}) = −0.006.

Case 6: m(E,H) = Fi(E,H) =
Pr(H | E)

Pr(H)
− 1

Fi(H1, H2) = Fi(H2, H1) =
Pr(H1|H2)

Pr(H1)
− 1 =

10

9
− 1 =

1

9

Fi(H1, E) = Fi(H2, E) =
Pr(E|H1)

Pr(E)
− 1 =

25

18
− 1 =

7

18

Fi(H1, H2 ∧ E) = Fi(H2, H1 ∧ E) =
Pr(H2 ∧ E|H1)

Pr(H2 ∧ E)
− 1 = −2

3
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Fi(E,H1) = F (E,H2) =
Pr(H1|E)

Pr(H1)
− 1 =

7

18

Fi(E,H1 ∧H2) =
Pr(H1 ∧H2|E)

Pr(H1 ∧H2)
− 1 = − 7

12

Fi(H1 ∧H2, E) =
Pr(E|H1 ∧H2)

Pr(E)
− 1 = − 7

12

Fi(H1 ∧ E,H2) = Fi(H2 ∧ E,H1) =
Pr(H1|H2 ∧ E)

Pr(H1)
− 1 = −1

2

CFi({H1, H2}) ≈ 0.111, CFi({H1, H2, E}) ≈ −0.143

Case 7: m(E,H) = Ri(E,H) = 1− Pr(¬H | E)

Pr(¬H)

Ri(H1, H2) = Ri(H2, H1) = 1− Pr(¬H1|H2)

Pr(¬H1)
=

1

21

Ri(H1, E) = Ri(H2, E) = 1− Pr(¬E|H1)

Pr(¬E)
=

7

57

Ri(H1, H2 ∧ E) = Ri(H2, H1 ∧ E) = 1− Pr(¬(H1 ∧ E)|H2)

Pr(¬(H1 ∧ E))
=
−2

27

Ri(E,H1) = Ri(E,H2) = 1− Pr(¬H1|E)

Pr(¬H1)
=

1

6

Ri(E,H1 ∧H2) = 1− Pr(¬(H1 ∧H2|E))

Pr(¬(H1 ∧H2))
=
−7

108

Ri(H1 ∧H2, E) =
Pr(¬E|H1 ∧H2)

Pr(¬E)
= − 7

38

Ri(H1 ∧ E,H2) = R(H2 ∧ E,H1) =
Pr(¬H1|H2 ∧ E)

Pr(¬H1)
= −2

7

CR({H1, H2}) ≈ 0.05; CR({H1, H2, E} ≈ −0.024

Case 8: m(E,H) = L(E,H) =
Pr(E | H)− Pr(E | ¬H)

Pr(E | H) + Pr(E | ¬H)

L(H1, H2) = L(H2, H1) =
Pr(H2|H1)− Pr(H2|¬H1)

Pr(H2|H1) + Pr(H2|¬H1)
=

1

13

L(H1, E) = L(H2, E) =
Pr(H1|E)− Pr(H1|¬E)

Pr(H1|E) + Pr(H1|¬E)
=

7

31

L(H1, H2 ∧ E) = L(H2, H1 ∧ E) =
Pr(H1|H2 ∧ E)− Pr(H1|¬(H2 ∧ E))

Pr(H1|H2 ∧ E) + Pr(H1|¬(H2 ∧ E)
= −101

119

L(E,H1) = L(E,H2) =
Pr(E|H1)− Pr(E|¬H1)

Pr(E|H1) + Pr(E|¬H1)
=

1

4

L(E,H1 ∧H2) =
Pr(E|H1 ∧H2)− Pr(E|¬(H1 ∧H2))

Pr(E|H1 ∧H2) + Pr(E|¬(H1 ∧H2))
=

2

7
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L(H1 ∧H2, E) =
Pr(H1 ∧H2|E)− Pr(H1 ∧H2|¬E)

Pr(H1 ∧H2|E) + Pr(H1 ∧H2|¬E)
= −1

7

L(H1 ∧ E,H2) = L(H2 ∧ E,H1) =
Pr(H1 ∧ E|H2)− Pr(H1 ∧ E|¬H2)

Pr(H1 ∧ E|H2) + Pr(H1 ∧ E|¬H2)
= − 2

21

CL({H1, H2}) ≈ 0.076; CL({H1, H2, E}) ≈ −0.053.

Case 9: m(E, h) = K(E,H) = log(
Pr(h | E)

Pr(h)
)

K(H1, H2) = K(H2, H1) = log(
Pr(H1|H2)

Pr(H1)
) = log

10

9

K(H1, E) = K(H2, E) = log
Pr(E|H2)

Pr(E)
= log

25

18

K(H1, H2 ∧ E) = K(H2, H1 ∧ E) = log
Pr(H2 ∧ E|H1)

Pr(H2 ∧ E)
= log

10

3

K(E,H1) = K(E,H2) = log
Pr(H1|E)

Pr(H1)
= log

25

18

K(E,H1 ∧H2) = log
Pr(H1 ∧H2|E)

Pr(H1 ∧H2)
= log

5

12

K(H1 ∧H2, E) = log
Pr(E|H1 ∧H2)

Pr(E)
= log

5

12

K(H1 ∧ E,H2) = K(H2 ∧ E,H1) = log
Pr(H1|H2 ∧ E)

Pr(H1)
= log

1

3

CK({H1, H2}) ≈ 0.0457 CK({H1, H2, E}) ≈ −0.0067

Case 10: m(E, h) = G(E, h) = log(
Pr(E | H)

Pr(E | ¬H)
)

G(H1, H2) = G(H2, H1) = log(
Pr(H1|H2)

Pr(H1|¬H1)
) = log

7

6

G(H1, E) = G(H2, E) = log
Pr(H1|E)

Pr(H1|¬E)
= log

19

12

G(H1, H2 ∧ E) = G(H2, H1 ∧ E) = log
Pr(H1|H2 ∧ E)

Pr(H1|¬(H2 ∧ E))
= log

9

110

G(E,H1) = G(E,H2) = log
Pr(E|H2)

Pr(E|¬H2)
= log

5

3

G(E,H1 ∧H2) = log
Pr(E|H1 ∧H2)

Pr(E|¬(H1 ∧H2))
= log

9

5

G(H1 ∧H2, E) = log
Pr(H1 ∧H2|E)

Pr(H1 ∧H2|¬E)
= log

95

27

K(H1 ∧ E,H2) = K(H2 ∧ E,H1) = log
Pr(H1|H2 ∧ E)

Pr(H1|¬(H2 ∧ E))
= log

9

110
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CF ({H1, H2}) = 0.066; CG({H1, H2, E}) ≈ −0.214

The coherence measure Roche (2013) proposed also violates (CP). Roche suggests to plug

in the function

R(X,Y )
def
==


Pr(X|Y ) if e 6|= h and e 6|= ¬h

1 if e |= h and e 6|=⊥

0 if e |= ¬h

Given the same probability distribution,

R(H1, H2) = R(H2, H1) = Pr(H1|H2) =
1

3

R(H1, E) = R(H2, E) = Pr(H1|E) =
5

12

R(H1, H2 ∧ E) = R(H2, H1 ∧ E) = Pr(H1|H2 ∧ E) =
1

10

R(E,H1) = R(E,H2) = Pr(E|H1) =
1

3

R(E,H1 ∧H2) = Pr(E|H1 ∧H2) =
1

10

R(H1 ∧H2, E) = Pr(H1 ∧H2|E) =
1

24

R(H1 ∧ E,H2) = R(H2 ∧ E,H1) = Pr(H2 ∧ E|H1) =
1

30

The coherence of {H1, H2} is
1

3
, while the coherence of {H1, H2, E} is is approximately

0.216. Again, the coherence of {H1, H2, E} is lower than the degree of coherence of {H1, H2}

With the probability distribution in Figure 1, it can be shown that all these confirmation based

measures of coherence fail to satisfy (CP). Although not exhaustive, the instance shows that

most mainstream coherence measures fail to satisfy (CP).

4.4 Undesirable results of violating (CP)

If we agree that (CP) is an intuitive requirement of coherence, the fact that most probabilistic

coherence measures violate (CP) implies that these measures fail to represent our intuitive idea

of coherence correctly. Therefore, various applications of coherence which are derived from these

coherence measures may lead to problematic results.

An example can be found with the attempt of showing that coherence is confirmation-

conducive. As introduced in chapter three, Moretti (2007) proves that Olsson’s measure is one
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and the only measure which satisfies confirmation transmission (CT) and evidence gathering

(EG). Under Olsson’s measure, given that a proposition E1 confirms P , if a set of propositions

E which contains E1 is sufficiently coherent, all other elements in that set also confirm P .

Unfortunately, since Olsson’s measure violates (CP), it may happen that adding propositions

confirming every element of E makes the set less coherent, and this further leads to the con-

sequence that E no longer confirms P . In other words, the set may lose an important feature

when extended with confirming propositions. This problem can be illustrated with the following

example.

Suppose that symptom E1 is a sign for disease D. When a medical laboratory scientist

finds out that a patient has symptom E1, it is quite likely that the patient has D. That is, the

probability of patient having disease D conditional on the presence of E1 is greater than the

probability of a patient having D. Assume there is another symptom E2 which usually comes

with E1, the claim that the patient has E1 is highly coherent with the claim that the patient

has E2. By further assuming that the degree of coherence between E1 and E2, according to the

Olsson measure, is above the threshold for evidence gathering, given the fact that E1 confirms

D, it can be inferred that E2 also confirms D. However, since Olsson’s measure violates (CP),

it is possible that there exists another symptom E3 which confirms both E1 and E2, but the

set of symptoms {E1, E2, E3} does not confirm that the patient has disease D. That is, it may

happen that a symptom E3 indicates that the patient does have symptom E1 and symptom E2,

but the collection of all three symptoms does not indicate that the patient has disease D.

The attempt to rank scientific explanations in terms of coherence has the same problem.

Suppose there are several competing theories T1, ..., Tn which explain a certain phenomenon

P . One way of evaluating competing theories is to measure the extent each Ti coheres with

P , and rank them accordingly. That is to say, the goodness of an explanation is measured as

the degree of coherence between the explanation with the explanandum. It has been proved

that Olsson’s measure captures the idea of mainstream probabilistic accounts of goodness of

explanation, and hence can be adopted as the proper measure for ranking different explana-

tions. Nonetheless, since Olsson’s measure does not satisfy (CPC), it may happen that the

best explanation fails to be the best when it is further confirmed. Suppose that among a set of

competing theories T1, ..., Tn, Tk coheres with a phenomenon P to the greatest extent, namely

that max(CO(T1, P ), ..., CO(Tn, P )) = CO(Tk, P ). With the idea that the best explanation is

the most coherent explanation, Tk is the best explanation. Assume that scientists discover a

new piece of evidence E which confirms both Tk and P , namely that Pr(Tk|E) > Pr(Tk),

Pr(P |E) > Pr(P ) and Pr(Tk ∧P |E) > Pr(Tk ∧P ). Since Olsson’s measure violates (CPC), it
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is possible that adding E to Tk ∪ {P} makes Tk ∪ {P} less coherent. Thus, Tk might no longer

be the theory which best coheres with P when extended with E. That is, a piece of evidence E

makes Tk and the explanandum P more probable, but makes Tk less good as an explanation of

P . Taking coherence as a way of evaluating explanations leads to the unacceptable consequence

that, in some cases, goodness of an explanation is negatively correlated with the truthfulness

of that explanation.

With these two examples, we can see that violating (CP) leads to undesirable results. The

reason for these counterintuitive results here is that the notion of coherence, as formally char-

acterized by these measures, is not truth-conducive. When a set evidence for a certain claim

is confirmed, we take these evidence as more likely to justify that claim. Also, when an expla-

nation of a hypothesis is confirmed, we take that explanation as more likely to be the correct

explanation. However, since coherence is non-truth-conducive. These approaches of proving

that coherence is valuable result in counterintuitive consequences.

We can now locate (CP) in the debate concerning whether coherence is a truth-conducive

notion. Klein and Warfiled (1994, 1996) first claim that adding a proposition to a set may

make the set more coherent, but may also make it less likely to be true. Thus, coherence is

not truth-conducive. Bovens and Hartmann (2003, pp.19-22) prove a more specific result that

there is no truth-conducive coherence measure. What is shown by (CP) is that, when a set is

extended with a confirming proposition and hence made more likely to be true, the degree of

coherence of that set may be lower than the original set according to most probabilistic measures

of coherence. Examining coherence measures with (CP) can thus be regarded as a more direct

way of showing that these coherence measures are not truth-conducive. One no longer needs to

accept Bovens and Hartmann’s complicated model to see this point.

Because of the above mentioned reasons, attempts of saving coherence do not seem success-

ful. Although it may be true that the notion of coherence, as characterized by these probabilistic

measures, is correlated to other notions in epistemology, it is not yet in accordance with our

intuitive understanding of coherence, and leads to unacceptable results. To solve this prob-

lem, one has to either give up the attempt to show that coherence is a useful notion with these

probabilistic measures, or revise the probabilistic measures, so as to avoid the violation of (CP).

4.5 Avoiding violation of (CP)

To see whether it is possible to solve this problem, one must first find the reason why these

measures violate (CP). For agreement measures of coherence, the answer is quite simple. Agree-

ment measures take the degree of coherence of a set as the agreement of all elements of that
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set. Therefore, if a proposition confirms every element of a set, but agrees with all elements to

a lesser extent than the agreement between elements in the original set, the degree of coherence

of the new set would be lower than the original set. Consider the simplest case with three

propositions H1, H2, E and an agreement measure of coherence C. If the agreement between

H1 and H2 is greater than the degree of agreement between H1, H2 and E, C({H1, H2}) would

be greater than C({H1, H2, E}), which is an example showing that C violates (CP). The fact

that E confirms both H1 and H2 does not imply that E agrees with H1 and H2 to a greater

extent than the agreement between H1 and H2. Hence, adding propositions which confirms

every element does not necessarily lead to greater coherence, according to agreement measures

of coherence..

For confirmation based measures of coherence, the reason is similar. Since confirmation

based measures take coherence as the average degree of confirmation between every pair of

elements of a set, when extended with a proposition which confirms every element to an extent

less than the mutual confirmation between elements of the original set, the coherence of the

new set decreases. Consider again the simple case with three propositions H1, H2 and E. If the

average degree of mutual confirmation between H1 and H2 is greater than the average degree of

mutual confirmation between H1, H2 and E, the coherence of {H1, H2, E} would be lower than

the coherence of {H1, H2}, as measured with confirmation based measures.

We can thus see why probabilistic coherence measures violate (CP). (CP) concerns whether

a proposition which confirms a set makes that set more coherent, but does not take how strong

that confirmation is into account. Whether a proposition confirms another is not a matter

of degree, but simply a yes or no question. Probabilistic measures cannot capture the non-

quantitative aspect of our intuitive understanding of coherence, hence fail to satisfy (CP) and

are deemed counterintuitive.

With the cause of this problem clarified, the next step is to think of ways to save these

coherence measures. It can be seen that it is impossible to save Olsson’s measure from (CP).

Recall that Olsson measures the coherence of a set as the ratio of the probability of the conjunc-

tion of all elements to the probability of the disjunction of all elements of that set. Measuring

coherence this way, adding any other propositions that are not entailed by elements of the set

either leads to an increase of the denominator, or a decrease of the nominator. That is to say,

adding any proposition that is not entailed by a set always leads to a decrease in its coherence,

no matter if the added proposition confirms the elements or not. Hence, Olsson’s measure can

never be saved from the threat of (CP).

For Shogenji’s measure, the situation is better. Since Shogenji’s measure is size-informative,
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a set can be made more coherent when extended with new propositions. It is thus possible to

find a condition which rules out cases violating (CP). A natural solution is to set a threshold

for incoming propositions. For a set S, if a proposition P confirms every element of S to a

sufficiently high degree, adding P would not lead to a decrease in the coherence of S, and

hence would not be a case violating (CP). We can consider a simple case with two propositions

S = {P1, P2}:

Example 4.5.1. Suppose there is a set S = {P1, P2} and a proposition P ∗ such that P ∗ confirms

both P1 and P2, i.e. Pr(P1|P ∗) > Pr(P1) and Pr(P2|P ∗) > Pr(P2). With Shogenji’s measure,

the coherence of S is
Pr(P1 ∧ P2)

Pr(P1)Pr(P2)
, while the coherence of S ∪{P ∗} is

Pr(P1 ∧ P2 ∧ P ∗)
Pr(P1)Pr(P2)Pr(P ∗)

.

To guarantee that cases violating (CP) do not occur, it suffices to set a condition such that

Pr(P1 ∧ P2 ∧ P ∗)
Pr(P1)Pr(P2)Pr(P ∗)

>
Pr(P1 ∧ P2)

Pr(P1)Pr(P2)

which allows us to derive that

Pr(P1 ∧ P2 ∧ P ∗)
Pr(P ∗)

= Pr(P1 ∧ P2|P ∗) > Pr(P1 ∧ P2)

That is, for a case with two propositions, if the incoming proposition confirms the conjunction

of both propositions, the result would not violate (CP).

We can further generalize the result to find a condition for Shogenji’s measure to satisfy

(CP). Given a set S = {P1, ..., Pn} and a proposition P ∗ confirming every Pi ∈ S, we can derive

that

CSh(S) =
Pr(P1 ∧ ... ∧ Pn)

Pr(P1)...P r(Pn)
; CSh(S ∪ {P 8}) =

Pr(P1 ∧ ... ∧ Pn ∧ P ∗)
Pr(P1)...P r(Pn)Pr(P ∗)

To guarantee that CSh(S ∪ {P ∗}) > CSh(S), the following condition must be satisfied:

Pr(P1 ∧ ... ∧ Pn ∧ P ∗)
Pr(P1)...P r(Pn)Pr(P ∗)

>
Pr(P1 ∧ ... ∧ Pn)

Pr(P1)...P r(Pn)

This condition is equivalent to

Pr(P1 ∧ ... ∧ Pn ∧ P ∗)
Pr(P ∗)

= Pr(P1 ∧ ... ∧ Pn|P ∗) > Pr(P1 ∧ ... ∧ Pn)

That is, if P ∗ confirms the conjunction of all elements in S, the coherence of S ∪ {P ∗} would

be greater than the coherence of S. We can hence drive the following condition:

Proposition 4.5.1. Given a set S = {P1, ..., Pn} and a proposition P ∗ which confirms every

element of S, i.e. Pr(Pi|P ∗) > Pr(Pi) for all Pi ∈ S. if P ∗ confirms
∧
S, the degree of coherence

of S ∪ {P ∗} would be greater than the degree of coherence of S, as measured with Shogenji’s

measure.
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With this condition, Shogenji’s measure would not generate problematic cases violating (CP).

Saving confirmation measures of coherence from (CP) is a more complicated task. A possible

solution is to give up the idea of averaging the degree of confirmation, and take the sum of

degrees of mutual confirmation in a set as its coherence. If coherence is measured in this way,

it is guaranteed that adding a proposition which confirms every element of a set leads to a

greater degree of coherence. However, this solution has a significant shortcoming. If coherence

is just the sum of all degrees of mutual confirmation of a set, it may happen that a large set of

weakly correlated propositions is more coherent than a small but perfectly coherent, which is

unacceptable. That is, the idea of averaging the degree of mutual confirmation between every

pair of elements cannot be abandoned.

Another possible solution is to find a threshold for incoming propositions so as to rule out

cases violating (CP). For example, given a set {P1.P2}, one may simply set a restriction that

any incoming proposition should confirm both P1 and P2 to a extent greater than the mutual

confirmation between P1 and P2. However, the threshold for each measure is highly dependent

on the specific probability distribution of each set. It is therefore very hard to derive a systematic

way to find the desired threshold for incoming confirming propositions.

Nevertheless, the strongest one can easily be found. For any set of propositions S =

{P1, ..., Pn}, the degree of coherence of S is the average degree of confirmation between ev-

ery element. If one adds a proposition P ∗ such that, for every element S′ of the power set of S,

the degree P ∗ confirms S′ is greater than the average degree of confirmation between elements

of S, then the coherence of S ∪ {P ∗} would definitely not be lower than the coherence of S.

Proposition 4.5.2. The strongest threshold to rule out cases violating (CP)

Given a confirmation based measure of coherence Cm(·) and a set of propositions S =

{P1, ..., Pn} and a proposition P ∗ such that Pr(Pi|P ∗) > Pr(Pi) for every Pi ∈ S. If for every

S′ ∈ ℘(S), m(P ∗, S′) > Cm(S), then Cm(S ∪ {P ∗}) > Cm(S).

Although proposition 4.5.2 does rule out cases violating (CP), it is way too strong. One

can find cases in which the added proposition violates this condition, yet still conforms to

(CP). Moreover, it can be considered ad hoc to solve this problem by setting up thresholds, for

both confirmation and agreement measures. Indeed, it is possible to find a threshold for each

coherence measure in every case, and claim that for a set S, only propositions that confirm

element of S to a certain degree are allowed to be added to S. With this threshold, we can

guarantee that (CP) would not be violated. The problem of this solution is that there is

no reason for people to set up such a threshold. In measuring coherence, one simply picks

several propositions, and apply coherence measures to the arbitrary set of propositions. There
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is no reason for us to set up a restriction and claim that certain ways of picking elements to

measure are not allowed. Without a convincing reason, it would be rather strange to claim

that certain kind of sets, namely those violate (CP), are illegitimate and cannot be measured.

Putting it in another way. For an arbitrary set S and a coherence measure C, we can set

a threshold such that for any proposition P which confirms every element of S above this

threshold, C(S ∪{P}) > C(S). But since one can still measure the coherence of the union of S

and another proposition P ∗ which confirms elements of S to a degree lower than this threshold,

it makes no sense to set up a threshold. A more promising way of saving coherence measures

is to define a more sophisticated measure of coherence which takes the number of confirmation

relations as a factor.
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Chapter 5

Conclusion and Future Work

The primary purpose of this thesis is to show that all mainstream coherence measures vio-

late a natural requirement, and hence fail to correctly capture our intuitive understanding of

coherence. We first introduced the traditional accounts of coherence to illustrate the ordi-

nary understanding of coherence, and further surveyed different probabilistic measures which

capture the notion of coherence with formal tools. After making a complete investigation of

the mainstream probabilistic measures, we demonstrated Bovens and Hartmann’s proof for the

impossibility results. On the basis of a model of information gathering, they show that it is

impossible to find a truth-conducive probabilistic coherence measure. The probability of a set

depends on the reliability of sources, rather than the coherence of that set. Given the fact

that there does not exist any truth-conducive coherence measure, one needs to find other epis-

temic ideals to show that the notion of coherence is important. However, although coherence

measures are conducive to some other measures, they may still generate unacceptable results

because of violating a new intuitive requirement coherence preservation. We examined a number

of coherence measures taking into account the requirement of coherence preservation, we have

shown that most measures fail to capture an important non-quantitative aspect of coherence,

and hence cannot correctly represent our intuitive understanding of coherence.

There are several significant conclusions that can be drawn from this discovery. First,

cases showing that coherence measures violate the condition of coherence preservation (CP)

provide reassurance of the claim that these probabilistic coherence measures are not truth-

conducive. It is Klein and Warfield (1994, 1996) who first propose an argument against the

truth-conduciveness of coherence, and ignite the whole search for an ideal coherence measure.

Bovens and Hartmann’s (2003) work, as a follow-up attempt, shows in a complicated way that

a truth-conducive coherence measure does not exist. On the basis of the requirement (CP),
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the fact that coherence measures are not truth-conducive can be proved in a simpler way. One

does not need to accept Bovens and Hartmann’s perplexing assumptions, but can still derive

similar results indicating that most coherence measures are not truth-conducive. In other words,

although not as exhaustive as Bovens and Hartmann’s work, (CP) is a more straightforward

way to prove that most coherence measures are not truth-conducive. Besides, (CP) is a problem

for most current coherence measures,

Second, the result that probabilistic measures fail to correctly represent coherence again

casts doubt on the claim that coherence is a useful notion in epistemology. After Bovens and

Hartmann’s striking proof that there does not exist any truth-conducive coherence measure,

philosophers have been trying to save the notion of coherence by showing that it is conducive

to other epistemic ideals. Unfortunately, although it has been proven that coherence is a notion

which can be applied to a wide range of issues, there is a strong reason to believe that these

attempts are not successful. The notion of coherence that is proved useful is characterized by

problematic measures, hence it may not be what we generally want to accept as coherence. The

validity of arguments showing the practical value of coherence, therefore, should be reevaluated.

Third, since the hope of finding a coherence measure which satisfies (CP) looks pretty frail,

epistemologists might need to reconsider if the approach of measuring coherence in terms of

probability is mistakenly oriented. Perhaps the notion of coherence should better be understood

in a different fashion. It would be interesting to combine the probabilistic approach with other

qualitative approaches, and derive a definition which is in better accordance with our intuitive

idea of coherence.

There are several interesting directions that one can explore further. One may keep trying to

prove more positive results with these measures, and further show that the notion of coherence,

as characterized by these measures, is pragmatically valuable. If it is indeed highly beneficial

to adopt this notion as coherence, violating (CP) might be an acceptable shortcoming.

Another possible approach is to combine probabilistic coherence measures with other ap-

proaches of characterizing coherence. A recent study1 suggests to define coherence in terms

of epistemic utility, which says that a belief set is coherent if the epistemic utility one obtains

with that belief set would never be weakly dominated. If one can prove that the notion of

coherence, as characterized by certain probabilistic measures, is conducive to epistemic utility

such as accuracy, probabilistic measures can again be used as an important approach of defining

coherence.

1A group of formal epistemologists including Branden Fitelson, Kenny Easwaran, David McCarthy, James

Joyce characterize coherence in terms of decision theory. This approach provides us a different perspective to

understand the notion of coherence. See Joyce (2009).
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One can also keep working on the idea of measuring coherence in terms of confirmation,

and propose a coherence measure which is free from violating (CP). In order to get rid of the

problems caused by (CP), one might need to take the number of confirmation relations in a set

into account. That is, if the non-quantitative aspect could be taken as a factor while measuring

coherence, it would be possible to construct a coherence measure which is free from violating

(CP).

In sum, the requirement of coherence preservation indicates that the non-quantitative aspect

of our normal understanding of coherence is not represented by probabilistic coherence measures.

As a result, the approach of characterizing coherence only in terms of probability is not optimal

and leads to the mentioned problems. To solve this problem, we would ask epistemologists to

either propose a new probabilistic measure which better captures the notion of coherence, or to

combine the probabilistic approach with other formal approaches, including logic designed to

reason about the belief dynamics of agents.
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