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Abstract

Algorithmic randomness draws on computability theory to offer rigorous formulations of

the notion of randomness for mathematical objects. In addition to having evolved into a

highly technical branch of mathematical logic, algorithmic randomness prompts numerous

methodological questions. This thesis aims at addressing some of these questions, together

with some of the technical challenges that they spawn. In the first part, we discuss the work

on randomness and the foundations of probability of the Austrian mathematician Richard

von Mises [1919], whose theory of collectives constitutes the first attempt at providing a

formal definition of randomness. Our main objective there is to ascertain the reasons that

led to the demise of von Mises’ approach in favour of algorithmic randomness. Then, we

turn to the myriad definitions of randomness that have been proposed within the algorithmic

paradigm, and we focus on the issue of whether any of these definitions can be said to be

more legitimate than the others. In particular, we consider some of the objections that have

been levelled against Martin-Löf randomness [1966] (arguably, the most popular notion of

algorithmic randomness in the literature), concentrating on the famous critique of Martin-Löf

randomness due to Schnorr [1971a] and on a more recent critique due Osherson and Weinstein

[2008], which relies on a learning-theoretic argument. We point out the inconclusiveness

of these criticisms, and we recommend a pluralistic approach to algorithmic randomness.

While appraising Osherson and Weinstein’s critique, we also allow ourselves a brief learning-

theoretic digression and further study the notion of Kurtz randomness in learning-theoretic

terms. In light of the increasing amount of attention being paid to Schnorr’s critique of

Martin-Löf randomness in the literature, in the second part of this thesis we consider some

of the technical implications of taking said critique seriously. In their paper on probabilistic

algorithmic randomness [2013], Buss and Minnes countenance Schnorr’s critique by offering a

characterisation of Martin-Löf randomness in terms of computable probabilistic martingales

(betting strategies). Buss and Minnes also ask whether there are any natural conditions

on the class of probabilistic martingales that can be used to characterise other common

algorithmic randomness notions. We answer their question in the affirmative both in the

monotonic and the non-monotonic setting, by providing probabilistic characterisations of

Martin-Löf randomness, Schnorr randomness, Kurtz randomness and Kolmogorov-Loveland

randomness.
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Chapter 1

Introduction

Why should we fear, when chance rules everything, And foresight of the
future there is none; ’Tis best to live at random, as one can.

—Sophocles, Oedipus Rex

Chance, too, which seems to rush along with slack reins, is bridled and
governed by law.

—Boëthius, The Consolation of Philosophy

1.1 Motivation

In everyday parlance, the adjective ‘random’ is typically regarded as being synony-
mous with ‘chancy’ or ‘unpredictable’, an intuition which likely stems from people’s
experience with games of chance such as coin tossing or roulette. Phenomena stan-
dardly categorised as random are encountered all the time in both science and daily
life: from the evolution of a bacterial population to the path of a particle in Brownian
motion, to the behaviour of the stock market, to the method used to generate the
encrypted password needed to access one’s Studielink account.

The presence of different conceptions of randomness prompts several fascinating
questions: are there any core properties that all such conceptions share? Is there a
common randomness notion underlying all of these separate accounts? One may even
wonder whether it is at all possible to render such a nebulous concept mathematically
precise: after all, is it not part of the elusive essence of randomness not to be
amenable to any formal treatment?

Puzzles pertaining to chance and randomness are traditionally taken to fall under
the jurisdiction of probability theory. Yet, probability theory does not deal with
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CHAPTER 1. INTRODUCTION

the notion of randomness per se: in no textbook on the probability calculus will
one find a formal definition of ‘random object’. Of course, one will encounter, for
instance, the notion of ‘random variable’, but random variables are simply measurable
functions and they need not be unpredictable or random in any way. So, given the
ubiquity of randomness (or, at least, of references to randomness) in science, a better
understanding of this concept appears to be of the essence—but also to be fraught
with challenges, both mathematical and methodological.

Like most questions at the basis of scientific inquiry, these questions are philo-
sophical in nature, and there is no incontrovertible way to answer them. Modern
attempts at formulating a rigorous definition of randomness do not try to provide
an all-encompassing theory of the ‘randomness’ we perceive as occurring in natural
phenomena; instead, they focus on the less ambitious, but more manageable task of
providing a reasonable characterisation of randomness for mathematical objects.

The mathematical model of randomness that will take centre stage in this thesis
is the theory of algorithmic randomness, which combines statistical intuitions with
tools from classical computability theory in order to give substance to the com-
mon impression that randomness amounts to ‘lawlessness’, ‘disorder’, ‘irregularity’,
‘patternlessness’ and ‘unpredictability’.

The algorithmic theory of randomness has been built upon the posit that the
concept of randomness, in spite of hinging on probability theory, cannot be exhausted
by it. The language of probability theory—the argument goes—is not expressive
enough, for, in the words of Li and Vitányi,

it can only express expectations of properties of outcomes of random
processes, that is, the expectations of properties of the total set of
sequences [of experiments] under some distribution [1993/1997/2008, p.
48].

Yet, when talking about randomness, a crucial issue is that of determining whether a
single sequence of experimental outcomes counts as being random or not. Probability
theory, however, is by itself unequipped to formalise the notion of randomness for
individual sequences of outcomes.

To see why this is taken to be the case, consider the following familiar example1.
Suppose that you observe the two binary strings below, both of which record the
results of fifty consecutive and independent tosses of a putative fair coin (where 1
stands for ‘heads’ and 0 for ‘tails’):

10010001001100111011001010100000110100001100011100,
01010101010101010101010101010101010101010101010101.

While the first sequence of outcomes is at least random-looking, it is safe to presume
that very few people would be willing to call the second one random, because of its

1See, for instance, [Li and Vitányi, 1993/1997/2008, § 1.8.1].
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CHAPTER 1. INTRODUCTION

perceivable regularity. In fact, observing the second sequence could easily prompt
one to question the fairness of the coin used in the experiment. This sequence seems
to be too easy to predict to have been generated by a random process: after seeing
its initial digits, one would likely feel rather confident in their ability to correctly
predict the value of the subsequent bits—a feeling that the first sequence does not so
readily afford. Yet, a simple probabilistic analysis does not allow one to discriminate
between these two sequences, because, under the fair coin assumption, both of them
are assigned the same probability: namely, 2−50.

Along a similar vein, suppose that you notice, among some scrabble pieces
scrambled on the table, some letters arranged to spell the word

supercalifragilisticexpialidocious2.

How likely is it that this arrangement is the result of a random process? It would
seem more plausible that someone deliberately placed the scrabble pieces in this
meaningful way. However, under the uniform distribution, all letter arrangements of
length 34 are equally likely. So, how can we account for the intuition that the word
supercalifragilisticexpialidocious was not randomly generated?

Problems of this sort were already troubling the early probabilists d’Alembert,
Condorcet and Laplace. Nowadays, as noted above, a conclusion often drawn is that
these considerations show that probability theory is simply not fine-grained enough to
characterise the notion of randomness for individual mathematical objects. Moreover,
algorithmic randomness is generally regarded as having provided a satisfactory
solution to this problem.

Over the past fifty years, algorithmic randomness has evolved into a mature
and very rich area of research in mathematical logic, revealing deep connections
with Turing degree theory, information theory, complexity theory and computable
mathematics in general. However, algorithmic randomness is not the only fish
in the sea when it comes to the issue of appropriately formalising the concept
of randomness. Notably, in the first half of the twentieth century, the Austrian
mathematician Richard von Mises vigorously argued that the notion of randomness,
rather than being somewhat subordinate to that of probability, is necessary to account
for the empirical meaning of the latter: that is, to explain how the mathematical
theory of probability comes to be applicable to real-life phenomena [1919].

Although von Mises’ approach has been by and large abandoned, it prompts
plentiful interesting questions regarding the connections between randomness and
the foundations of probability theory—and, as noted by van Lambalgen [1987a],
even the foundations of mathematics as a whole. For example, what exactly are the
shortcomings of von Mises’ paradigm, and what are the implications of embracing
the algorithmic theory of randomness for the debate over the various interpretations

2This is a slightly modified version of an example first illustrated by Pierre-Simon Laplace in
[1819/1952] (see, for instance, [Li and Vitányi, 1993/1997/2008, Chapter 4]).
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CHAPTER 1. INTRODUCTION

of probability? Which notions of algorithmic randomness, if any, render more justice
to von Mises’ intuitions?

In addition to these issues related to von Mises’ foundational project, algorithmic
randomness spurs a whole host of methodological questions by itself. For instance,
is there one ‘correct’ or ‘true’ definition of algorithmic randomness? Are there any
uncontroversial criteria that any satisfactory notion of randomness should satisfy? Is
it legitimate to appeal to epistemic considerations when trying to persuade someone
of the correctness of some algorithmic randomness concept?

Attempts to provide (at least partial) answers to the above questions will keep
us busy throughout this thesis.

1.2 Thesis outline

Broadly speaking, this thesis is concerned with further exploring some philosophical
and technical issues surrounding the problem of providing a satisfactory definition
of algorithmic randomness—with a special focus on epistemic characterisations of
randomness.

We begin in Chapter 2 by discussing in detail von Mises’ theory of collectives. We
consider the most common objections raised against von Mises’ definition of ran-
domness (now known under the label of stochasticity) in terms of the impossibility
of a gambling system, and we end up agreeing with van Lambalgen [1987a] that
these criticisms are cogent only if one already disagrees with von Mises’ frequentist
interpretation of probability. However, we also argue that there are some convincing
objections against von Mises’ frequentist approach, especially in view of his own
stated intention to reconnect probability theory with its empirical roots. We also
highlight a certain tension between the more epistemic aspects of von Mises’ theory
and its objectivistic core.

In Chapter 3, we review the most common definitions of randomness for finite binary
strings and infinite binary sequences from the algorithmic randomness literature.
First, we describe the incompressibility paradigm, according to which a string is
random if, roughly, it is hard to describe by a Turing machine, if it does not display
any pattern or regularity that a Turing machine can exploit. Then, we discuss the
measure-theoretic typicality paradigm, which is based on the intuition that random
sequences should satisfy all measure-one properties which can be ‘effectively tested’.
Lastly, we illustrate the unpredictability paradigm, which is closely connected to von
Mises’ identification of randomness with the impossibility of a successful gambling
system. In this setting, a sequence is said to be random if there is no effective betting
strategy which allows a gambler to win an infinite amount of money when playing
against that sequence. We then review the connections between these different
paradigms, and we provide a characterisation in terms of betting strategies of a
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CHAPTER 1. INTRODUCTION

stochasticity notion introduced by Vermeeren [2013] called weak Church stochasticity.
We also offer another proof of the fact that Schnorr randomness implies weak Church
stochasticity using a compactness-based argument. To nicely complete the picture of
the interrelations between randomness and stochasticity notions (see Figure 3.2), we
conclude by introducing the concept of weak Kolmogorov-Loveland stochasticity.

In Chapter 4, we consider the monism vs. pluralism debate in algorithmic randomness:
that is, the dispute over whether any single notion of algorithmic randomness may be
said to best capture our pre-theoretic intuitions about randomness (monism)—much
in the same way as Turing-machine computability is thought to capture the intuitive
notion of effective calculability—or whether there are instead several notions of
algorithmic randomness which fit the bill (pluralism). We consider three randomness
theses that have been proposed in the literature—the Martin-Löf Thesis [Delahaye,
1993], Schnorr’s Thesis [Schnorr, 1971b] and the Weak 2-Randomness Thesis [Osh-
erson and Weinstein, 2008]—each of which claims that the corresponding notion of
algorithmic randomness coincides with ‘true’ randomness. We argue that all three
theses, taken in isolation, are ultimately wanting and defend a pluralist perspective on
algorithmic randomness. However, we note that these theses—and, in particular, the
two critiques of Martin-Löf randomness that respectively lie at the heart of Schnorr’s
Thesis and the Weak 2-Randomness Thesis—raise some interesting questions about
the role of epistemic considerations in algorithmic randomness. In particular, in spite
of pushing for two very different randomness concepts, Schnorr’s and Osherson and
Weinstein’s objections against Martin-Löf randomness are, in the end, surprisingly
similar to each other in spirit. After considering Osherson and Weinstein’s critique,
we also have a brief detour on randomness and computational learning theory, and
we present a learning-theoretic characterisation of Kurtz randomness in addition to
Osherson and Weinstein’s own characterisation.

In Chapter 5, in light of the increasing appreciation given to Schnorr’s critique of
Martin-Löf’s definition, we focus on a mathematical framework, introduced by Buss
and Minnes in [2013], which takes said critique seriously and allows to provide a
characterisation of Martin-Löf randomness in computable terms by appealing to the
notion of a probabilistic betting strategy. We extend Buss and Minnes’ probabilistic
paradigm in a natural way both in the monotonic and the non-monotonic setting,
introducing the following randomness notions: (weak) KEx-randomness, (weak) KP1-
randomness, (weak) WEx-randomness, (weak) WP1-randomness, non-monotonic
P1-randomness and non-monotonic Ex-randomness. We then show that several of
the above concepts coincide with standard randomness notions (namely, with Martin-
Löf randomness, Schnorr randomness, Kurtz randomness or Kolmogorov-Loveland
randomness). This indicates that this probabilistic framework can be used to provide
a uniform characterisation of the most common algorithmic randomness notions. It
is also our hope that it may eventually lead to the identification of novel interesting
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CHAPTER 1. INTRODUCTION

randomness concepts, and that it might even shed some light on the long-standing
question of whether Kolmogorov-Loveland randomness coincides with Martin-Löf
randomness.

In Chapter 6, we conclude this thesis by identifying some open questions and potential
future research paths.

1.3 Contributions

To sum up, the main technical contributions of this thesis are the following:

(i) We provide characterisations of weak Church stochasticity and weak Kolmogorov-
Loveland stochasticity (Proposition 3.3.10 and Proposition 3.3.17, respectively)
based on the notion of a ‘simple martingale which always eventually bets’.

(ii) We give another proof of Theorem 3.3.11 (whose original proof can be found
in [Vermeeren, 2013]), which establishes that Schnorr randomness implies weak
Church stochasticity.

(iii) We extend the learning-theoretic framework proposed by Osherson and Wein-
stein in [2008] by defining the notion of sequence identification with no mind
changes (Definition 4.2.5), and we prove that Kurtz randomness can be given
a further learning-theoretic characterisation via this identification criterion
(Proposition 4.2.6).

(iv) We prove that Schnorr randomness is implied by weak KP1-randomness (Propo-
sition 5.3.6) and, a fortiori, by KP1-randomness; then, we show that Schnorr
randomness is equivalent to weak KEx-randomness (Theorem 5.3.7), and that
Martin-Löf randomness is equivalent to KEx-randomness (Theorem 5.3.8). We
also prove that Kurtz randomness is equivalent to both weak WEx-randomness
and weak WP1-randomness (Theorem 5.3.10 and Theorem 5.3.11, respectively).

(v) We establish that Kolmogorov-Loveland randomness is equivalent to non-
monotonic P1-randomness (Theorem 5.4.6), and that Martin-Löf randomness
is equivalent to non-monotonic Ex-randomness (Corollary 5.4.8).

1.4 Notation and background notions

We close this introductory chapter by fixing the notation that will be used throughout
the thesis and by defining a few preliminary notions.

As already mentioned, in what follows we will only be dealing with randomness
notions for finite and infinite binary sequences, as is customary within the field of
algorithmic randomness.
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CHAPTER 1. INTRODUCTION

We denote the set of finite binary sequences by {0, 1}∗. We refer to the elements
of this set as strings and use lowercase Greek letters towards the end of the alphabet
(e.g., σ or τ) to denote them—except for the empty string, which is denoted by ε.
For each n ∈ N, we let {0,1}n be the subset of {0,1}∗ consisting of all strings of
length n. Similarly, {0,1}≤n is the set of all strings of length at most n. The length
of a string σ, in turn, is denoted by ∣σ∣. We denote by σ(n) the n-th bit of σ (where
the enumeration is taken to start at 1), while σ ↾ n is the initial segment, or prefix, of
σ consisting of its first n bits (if n > ∣σ∣, then we set σ ↾ n = σ). For any string σ ≠ ε,
we let σ− denote the initial segment of σ consisting of all of its digits except for the
last one. By στ , we mean the concatenation of the two strings σ and τ . If σ is a
prefix of τ , we write σ ⊑ τ ; we write σ < τ if it is a proper prefix. A set S ⊆ {0,1}∗
is said to be prefix-free if and only if, for any strings σ, τ ∈ S, neither σ nor τ is a
prefix of the other string.

The set of infinite binary sequences is denoted by {0, 1}ω. We refer to the elements
of this set as sequences, and we use uppercase Roman letters towards the end of the
alphabet (e.g., X or Y ) to denote them. The terms ∣X ∣, X(n), X ↾ n, σX and the
relation σ <X are defined analogously to the previous paragraph.

Note that infinite binary sequences can be interpreted both as sets of natural
numbers and as real numbers in [0, 1]: any X ∈ {0, 1}ω naturally corresponds to the
set SX = {n ∈ N ∶ X(n) = 1} (i.e., X is the characteristic function of SX) and to the
real αX = ∑

n∈N
X(n) ⋅ 2−n ∈ [0,1].

It is important to note that—with the exception of von Mises’ definition of
randomness (which will be discussed in Chapter 2)—every notion of (algorithmic)
randomness that we will consider in this thesis is to be understood relative to an
a priori fixed probability measure. Without such a fixed measure, these notions of
randomness would not make sense: each measure determines a specific set of random
sequences, and a sequence which is random relative to a given measure may not
count as random relative to a different one.

Here, we restrict attention to the uniform or Lebesgue measure3 over Cantor
space4, the topological space consisting of {0, 1}ω together with the product topology5.
The product topology is generated by the collection of open cylinders: that is, all
sets of the form JσK = {X ∈ {0,1}ω ∶ σ <X}, for some σ ∈ {0,1}∗. The intersection
of a finite number of open cylinders is called a cylinder set. Cylinder sets are clopen:
i.e., they are both open and closed in the topology. Since they are elements of the
topology, cylinder sets are open by definition. Moreover, since the complement of

3The reader interested in notions of randomness relative to measures other than the Lebesgue
measure may consult, e.g., [Martin-Löf, 1966] or [Levin, 1973, 1976, 1984].

4Although the notions of algorithmic randomness discussed in this thesis will all be defined over
the Cantor space of infinite binary sequences, it is possible to characterise randomness for spaces
other than this. We will briefly return to these possible extensions in Section 4.3.

5The set {0,1}ω may be viewed as the product of countably many copies of {0,1}, where each
copy is equipped with the discrete topology.
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CHAPTER 1. INTRODUCTION

a cylinder set is a union of cylinders, cylinder sets are also closed. Hence, they are
clopen. By the definition of a topology base, every open set in the topology can
be written as a union of open cylinders. In particular, every open set is equal to

⋃{JσK ⊆ {0,1}ω ∶ σ ∈ S}, for some prefix-free set of strings S. For ease of notation,

we abbreviate ⋃{JσK ⊆ {0,1}ω ∶ σ ∈ S} as JSK.
Intuitively, for every X ⊆ {0,1}ω, the Lebesgue measure λ(X ) of X is the

probability that X ∈ X , when X is the result of infinitely many independent tosses
of a fair coin. Formally, for every cylinder JσK, we set λ(JσK) = 2−∣σ∣. A sequence of
cylinders {JσK ⊆ {0,1}ω ∶ σ ∈ S} is said to cover a set X ⊆ {0,1}ω if X ⊆ JSK. The
outer Lebesgue measure of X is defined as

λ∗(X ) = inf {∑
n∈N

2−∣σn∣ ∶ {JσnK ⊆ {0,1}ω ∶ n ∈ N} covers X}.

The inner Lebesgue measure of X is λ∗(X ) = 1 − λ∗(X ), where X is the complement
of X in {0,1}ω. If X is a measurable set, then λ∗(X ) = λ∗(X ). In this case, we
simply write λ(X ) and we refer to it as the Lebesgue measure of X . A set is said to
be a null set if it has Lebesgue measure 0. In turn, a set X ⊆ {0,1}ω has Lebesgue
measure 0 if and only if there is a collection (Un)n∈N of open subsets of {0,1}ω such
that lim

n→∞
λ(Un) = 0 and X ⊆ ⋂

n∈N
Un.

9



Chapter 2

Von Mises’ Axiomatisation of Random Sequences

At the second International Congress of Mathematicians held in Paris in 1900,
David Hilbert presented a list of twenty-three unsolved problems that he believed
mathematicians should focus on in the years to come. Among them, he proposed

To treat in the same manner [as geometry], by means of axioms, those
physical sciences, in which mathematics plays an important part; in the
first rank are the Theory of Probabilities and mechanics [Hilbert, 1902].

The idea that probability theory is a physical science just like mechanics—rather
common among nineteenth-century mathematicians—was adopted by Richard von
Mises, an applied mathematician with a penchant for constructivist mathematics,
and a declared logical positivist. Around the second decade of the twentieth century,
in an attempt to provide solid and empirically-motivated foundations for probability
theory and statistics, von Mises worked out a view of probability known as strict
frequentism6 based on the notion of random sequences of trials [1919]. In particular,
von Mises was the first one to provide a (more or less) formal definition of the
concept of randomness—a definition which, from the very beginning, sparked a lot
of discussion and, ultimately, gave rise to the field of algorithmic randomness (which
went on to become the orthodox approach to defining randomness in mathematics).

In this chapter, we will review von Mises’ seminal work on probability and
randomness, and we will appraise some of the objections that have been raised, or
can be raised, against his approach.

6This name was coined by van Lambalgen in [1987b].
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CHAPTER 2. VON MISES’ AXIOMATISATION OF RANDOM SEQUENCES

2.1 Von Mises’ strict frequentism

The frequency interpretation of probability has its origins in the work of Ellis and
Venn around the mid nineteenth century, and it may be viewed as a ‘British empiricist’
reaction contra Laplace’s ‘continental rationalism’ [Gillies, 2000]. Von Mises’ main
contribution was to enrich Ellis’ and Venn’s pre-existing frequentist theory by
integrating it with his account of randomness—which was aimed at restricting the
domain of applicability of probability theory to ‘truly’ random phenomena.

This first section will be devoted to presenting von Mises’ theory in some detail.
First, we will illustrate the empirical laws that von Mises singles out as forming
the appropriate basis for probability theory. Then, we will discuss von Mises’ own
axiomatisation of frequentist probability.

2.1.1 The empirical laws of probability

While mechanics is concerned with the behaviour of physical bodies when subjected
to forces or displacements, the subject matter of probability theory is, according to
von Mises, the study of random observable iterative events and mass phenomena:
i.e., of “problems in which either the same event repeats itself again and again or
a great number of uniform elements are involved at the same time” [von Mises,
1928/1961, p. 11]. In particular, von Mises mentions three types of phenomena to
which probabilities may be assigned:

(i) all games of chance (e.g., coin tossing or die rolling);

(ii) some branches of physics such as the kinetic theory of gases, Brownian motion,
radioactivity and Planck’s theory of blackbody radiation;

(iii) biological statistics.

A first thing to note is that von Mises’ approach is objectivistic, in that prob-
abilities are taken to be ascribable to ‘truly’ random phenomena only: they are
perceived as being a property of the random experiment (e.g. tossing a coin) under
consideration7. Moreover, in von Mises’ view, single-case probability ascriptions do
not make sense, as attested by the following quote:

Our probability theory has nothing to do with questions such as: “Is
there a probability of Germany being at some time in the future involved
in a war with Liberia?” [1928/1961, p. 9].

7This is in clear contrast with the subjectivist viewpoint endorsed by, e.g., Ramsey [1931], de
Finetti [1937; 1972] and Savage [1954], according to which probabilities are measures of a subject’s
uncertainty. From this perspective, probabilities can be assigned to anything that the subject
is uncertain about, so the question of whether there is an underlying random process becomes
irrelevant.

11



CHAPTER 2. VON MISES’ AXIOMATISATION OF RANDOM SEQUENCES

By restricting the scope of probability theory in this manner, von Mises hopes
to be able to reduce the concept of probability to an observable and measurable
quantity. Following Gillies [2000], we will call the processes singled out by von Mises
as the object of probability theory empirical collectives.

Being a radical logical positivist, von Mises believes that the hypothetico-deductive
method8 is applicable not only to the empirical sciences, but to mathematics, as well.
More precisely, von Mises advocates the view that mathematical concepts are obtained
by means of abstracting some aspects of our every-day experiences. He contends
that mathematicians extrapolate the empirical laws obeyed by the phenomena upon
which mathematical concepts rely on the basis of observation. From these empirical
laws, mathematicians can then derive the axioms of mathematical theories. In turn,
mathematical theories allow mathematicians to deduce consequences, which provide
predictions or explanations for further observable phenomena (see Figure 2.1).

Empirical phenomena Mathematical concepts

Empirical laws Mathematical laws
or axioms

Other observable
phenomena

Logical consequences
of the axioms

Abstraction
or idealisation

Abstraction
or idealisation

Explanation
or prediction

Deduction

Figure 2.1: Von Mises’ view of the formation of mathematical concepts/axioms
and their relation to phenomena which can be verified/falsified through observation
[Gillies, 2000, p. 91].

According to von Mises, this methodology is applicable to probability theory, as
well:

We take it as understood that probability theory, like theoretical me-
chanics or geometry, is a scientific theory of a certain domain of observed
phenomena. If we try to describe the known modes of scientific research
we may say: all exact science starts with observations, which, at the outset,
are formulated in ordinary language; these inexact formulations are made

8For a discussion of the hypothetico-deductive method see, for instance, [Crupi, 2014].
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more precise and are finally replaced by axiomatic assumptions, which, at
the same time, define the basic concepts. Tautological (= mathematical)
transformations are then used in order to derive from these assumptions
conclusions, which, after retranslation into common language, may be
tested by observations, according to operational prescriptions [1964, p.
43].

In particular, von Mises claims that there are two fundamental laws that empirical
collectives satisfy, and which can therefore serve as the basis of an empirically-
grounded probability calculus. The first one is the so-called law of stability of
statistical frequencies:

Law of stability of statistical frequencies9: in an empirical collective, the
relative frequency of an event becomes more and more stable as the
number of observations increases.

The validity of the law of stability of statistical frequencies, argues von Mises, is
corroborated by abounding observations in all games of chance. Such a conviction
appears to have been prevailing within the wider mathematical community, as well:

The fact that in a number of instances the relative frequency of random
events in a large number of trials is almost constant compels us to pre-
sume the existence of certain laws, independent of the experimenter, that
govern the course of these phenomena and that manifest themselves in
this near constancy of the relative frequency [Gnedenko, 1968, p. 55].

This observed regularity, that the frequency of appearance of any random
event oscillates about some fixed number when the number of experiments
is large, is the basis of the notion of probability [Fisz, 1963, p. 5].

In spite of the irregular behavior of individual results, the average results
of long sequences of random experiments show a striking regularity
[Cramér, 1957, p. 141].

Von Mises’ second law, on the other hand, states that empirical collectives,
although characterised by a certain global regularity which derives from the law
of stability of statistical frequencies, are, locally, extremely irregular or ‘random’.
Consider, as an illustration, the case of coin tossing with a fair coin: as amply
confirmed by experience, a gambler placing bets on, say, ‘heads’ cannot be better
off in the long run by wagering according to some strategy, instead of wagering in
accordance with the outcomes of a second fair coin’s flips. As colourfully put by von
Mises,

9This terminology was introduced by Keynes [1921/1963].
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This impossibility of affecting the chances of a game by a system of
selection, this uselessness of all systems of gambling, is the characteristic
and decisive property common to all sequences of observations or mass
phenomena which form the proper subject of the probability calculus. [...]
Everybody who has been to Monte Carlo, or who has read descriptions
of a gambling bank, knows how many ‘absolutely safe’ gambling systems,
sometimes of an enormously complicated character, have been invented
and tried out by gamblers; and new systems are still being suggested
every day. The authors of such systems have all, sooner or later, had
the sad experience of finding out that no system is able to improve their
chances of winning in the long run, i.e., to affect the relative frequencies
with which different colours or numbers appear in a sequence selected
from the total sequence of the game. This experience forms the total
basis of our definition of probability [1941, pp. 24-25].

Von Mises’ second law is thus known as the law of excluded gambling strategy, or
as the principle of the impossibility of a gambling system:

Law of excluded gambling strategy: if we select, according to some rule,
a subcollection of an empirical collective—while having at our disposal, at
each step, only the knowledge of the results of the previous trials—then
the relative frequency of an event in this subcollection is approximately
the same as its relative frequency in the original collective.

Having the law of stability of statistical frequencies and the law of excluded
gambling strategy at hand, the next step consists in formulating a mathematical
theory of empirical collectives.

2.1.2 The axioms of probability

According to von Mises, to arrive at a satisfactory probability calculus one must
abstract from the incidental properties of empirical collectives. For instance, when
dealing with coin tosses, the fact that the coin is being flipped on a Monday af-
ternoon while the birds are chirping is, arguably, inessential to the formulation of
a mathematically rigorous theory of probability. Another property which renders
empirical collectives mathematically less tractable is their intrinsic finiteness (which
is due to the fact that we can only ever carry out a finite number of experiments).
For instance, formally characterising the notion of having ‘approximately the same’
relative frequency of heads in the context of two finite series of coin tosses is a very
thorny issue.

To deal with problems of this sort, von Mises introduces what Gilles calls math-
ematical collectives [2000]: given a set of possible outcomes or sample space, a
mathematical collective is simply an infinite sequence of elements from the sample
space satisfying the mathematical counterparts of the law of stability of statistical
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frequencies and the law of excluded gambling strategy. Such mathematical counter-
parts are known as the axiom of convergence (or the limit axiom) and the axiom of
randomness, respectively.

To explain what von Mises’ axioms postulate, let us focus once again on a
paradigmatic game of chance: coin tossing10. In this context, our sample space is the
set {0,1}, corresponding to the two possible outcomes of a coin-tossing experiment:
heads, or 0, and tails, or 1. We wish to define the probability of each subset of
{0,1} (in modern parlance, we take our algebra of events to coincide with the
power-set algebra). Now, each sequence in {0,1}ω may be taken to represent the
consecutive outcomes of an infinite coin-tossing experiment11. In this setting, given
some X ∈ {0,1}ω, let #zeroes(X ↾ n) denote the number of 0’s in the first n bits of
X. Then, following Li and Vitányi [1993/1997/2008], the axiom of convergence can
be stated as follows:

Axiom of convergence: if X ∈ {0,1}ω is a collective, then, the limiting
relative frequency

lim
n→∞

#zeroes(X ↾ n)
n

= p

exists, for some 0 < p < 1.

The axiom of randomness is more difficult to formulate. To this end, von Mises
devises the notion of insensitivity to admissible place selections.

Let us begin by making more precise the notion of a place selection rule. A
selection rule is a (possibly partial) function12 s ∶ {0, 1}∗ → {select, scan} which may
be thought of as a gambling system: given the prefix of some infinite sequence as
input, it selects the next bit of that sequence to be bet on (without specifying how
much should be bet of whether the bet should be placed on 0 or on 1).

For all σ ∈ {0,1}∗ and selection rule s, s[σ] will denote the substring of σ
consisting of all bits progressively selected by s from σ. For example, if σ = 10010
and s selects the first, the third and the fifth bit of σ, while simply scanning the
two remaining bits, then s[σ] = 100. It then follows that, given X ∈ {0,1}ω, the
sequence (s[X ↾ n])n∈N is non-decreasing with respect to ⊑: that is, for any two initial
segments σ, τ of X, if σ ⊑ τ , then s[σ] ⊑ s[τ], as well. If s selects only finitely many

10For a characterisation of von Mises’ axioms in their full generality, see, for instance, [van Lam-
balgen, 1987a].

11It should be noted that this notation may be slightly misleading: according to van Lambalgen
[1987a], von Mises, being a constructivist, rejects the notion of a completed infinity ; hence, in his
work, sequences should be thought of as being on a par with Brouwer’s free choice sequences [1918]
rather than as elements of Cantor space.

12In his original paper on collectives [1919], von Mises does not specify that selection rules should
be functions, possibly due to his constructivist views. However, he later on settles for the definition
given above.

15



CHAPTER 2. VON MISES’ AXIOMATISATION OF RANDOM SEQUENCES

bits from X, then we let s[X] denote the finite string consisting of such selected bits.
Otherwise, s[X] will denote the infinite sequence of bits selected from X by s. If s
is a partial selection rule that is undefined for some bit of X, then s[X] is taken to
be undefined, too.

According to von Mises, a selection rule is admissible if the decision of whether
to select the n-th digit from the original sequence X depends on the number n and
on the outcomes X(1),X(2), ...,X(n − 1) of the (n − 1) preceding trials, but not on
the outcome of the n-th or any subsequent trial13. This notion allows us to state the
following axiom:

Axiom of randomness: let X ∈ {0,1}ω be a sequence satisfying the
axiom of convergence, as witnessed by the limiting relative frequency
p. If X is a collective, then, for any admissible place selection rule
s ∶ {0,1}∗ → {select, scan} such that s[X] is infinite, we have that

lim
n→∞

⎛
⎝
#zeroes(s[X] ↾ n)

n

⎞
⎠
= p.

So, according to von Mises, a sequence X is random if and only if no admissible
strategy for selecting bits from X can induce an infinite subsequence that allows
odds for gambling different from those allowed by a subsequence selected arbitrarily
(e.g., by making one’s decision on the basis of coin tosses).

Von Mises uses the term ‘chance’ to refer to the limiting relative frequency of
some event in a sequence that satisfies his axiom of convergence. The notion of
‘probability’, on the other hand, is earmarked for the limiting relative frequency of
events within mathematical collectives—i.e., those sequences which also satisfy the
axiom of randomness. In particular, the set of all limiting relative frequencies within
a collective is called its probability distribution.

It is then clear that von Mises’ goal is not to bridge the concept of frequency and
that of probability: he wants to explicitly define probabilities in terms of frequencies
within collectives. As von Mises pithily puts it: “First the collective, then the
probability”[1928/1961, p. 18]. Collectives, in turn, are taken as primitives—although
one may also say that the axiom of convergence and the axiom of randomness provide
an implicit definition of collectives, just like Kolmogorov’s axioms may be said to
offer an implicit definition of probability.

In von Mises’ view, “[a]ll problems of the theory of probability consist in deriving,
according to certain rules, new collectives from given ones and calculating the
distributions of these new collectives” [Li and Vitányi, 1993/1997/2008, p. 51].
Observations are in fact formalised in terms of probabilities, and these give rise
to predictions, which are themselves probabilities. Place selection rules induce a

13This definition of admissibility is rather vague. Unfortunately, von Mises never attempted to
make it more precise—a fact which, as we shall see in Section 2.2, has prompted much criticism.
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type of transformation on collectives. In addition, von Mises specifies three different
operations on collectives—mixing, partition, and combination14. These operations
are collective-preserving, a fact that can be derived from the axiom of convergence
and the axiom of randomness. Moreover, with these operations at hand, one can
derive (i) Kolmogorov’s axioms15, (ii) the multiplication rule and (iii) the formula for
conditional probability. So, in von Mises’ theory, the axiom of randomness guarantees
that certain laws of probability theory are satisfied by the limiting relative frequencies
in collectives [van Lambalgen, 1987a].

2.2 Objections to von Mises’ definition of randomness

There are two kinds of criticisms that may be levelled against von Mises’ theory: on
the one hand, one may be dissatisfied with von Mises’ definition of randomness; on
the other hand, one may have more general worries regarding von Mises’ commitment
to the frequency interpretation of probability. In what follows, we will consider both
sorts of objections.

On the randomness front, von Mises’ approach seems to be a bit of a sitting
duck: by and large, his account of randomness is regarded as being both flawed
and superfluous to the foundations of probability theory. However, many of its
alleged shortcomings have been extensively defended by van Lambalgen [1987a],
who claims that the downfall of von Mises’ definition of randomness may be traced
back to the triumph of intuitions concerning the nature of probability—and, more
in general, concerning the foundations of mathematics—antithetical to those of
von Mises. As maintained by van Lambalgen, the most popular objections to von
Mises’ characterisation of randomness are in fact concealed attacks at his views on
the interpretation of probability. In particular, van Lambalgen contends that von
Mises’ critics seem to favour some form or another of the propensity interpretation
of probability (additionally, such critics work within the framework of classical
mathematics, while von Mises leaned towards constructivism).

The goal of this section is to assess the tenability of von Mises’ definition of
randomness. Then, in Section 2.3, we will address some more general criticisms
against his frequentist interpretation of probability.

2.2.1 Do collectives exist?

An aspect of von Mises’ work which has been the object of much criticism is the
notion of admissibility of place selection rules. Von Mises deliberately leaves this
concept imprecise. Of course, it is possible to concoct several examples of admissible
selection rules: for instance, ‘select the n-th digit of a sequence if and only if n is a

14See [van Lambalgen, 1987a] for a rigorous characterisation of these operations and [Childers,
2013, § 1.2.4] for a humourous one.

15Up to finite additivity.
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prime number’ or ‘select the n-th digit of a sequence if and only if n is even’ or ‘select
a digit if and only if it is preceded by the block 001’, and so forth. However, a handful
of examples does not suffice to arrive at a general characterisation of admissibility.

Von Mises’ sole explicit pronouncement concerning admissibility consists in stating
that, while playing against a sequence, one is allowed to employ only selection rules
that decide whether to select a given bit independently of the value of that particular
bit. Unfortunately, this idea, although rather intuitive in the context of actual
betting scenarios, does not translate in any obvious way into a precise mathematical
definition.

This ambiguity is precisely what prompts Erich Kamke, a German mathematician,
to accuse von Mises’ notion of collective of being vacuous [1933]. Kamke’s argument
proceeds as follows: suppose that X ∈ {0,1}ω is a sequence satisfying von Mises’
axiom of convergence, so that both 0 and 1 occur infinitely often in it. Let p1 denote
the limiting relative frequency of 1 in X. Now, consider the collection of all increasing
infinite sequences of natural numbers. Such a collection exists independently of X.
Moreover, within this collection, one will find the sequence n1, n2, n3, ... corresponding
to all positions in X whose value is 1. Then, define the following place selection rule:
retain the n-th bit of X if and only if n is one of the numbers that appear in the
sequence n1, n2, n3, ... This function selects from X a subsequence that consists only
of 1’s. So, in this subsequence, the limiting relative frequency of 1 is different from
p1, which violates von Mises’ axiom of randomness. Since X was chosen arbitrarily,
this argument purports to show that there exist no collectives.

A first point worth mentioning is that it is not entirely clear whether Kamke’s
selection rule indeed chooses which bits of X to retain independently of their value
(in fact, it seems to fall short of this requirement, albeit in a rather roundabout way).
As remarked by van Lambalgen, it also appears that Kamke’s argument fails to take
into account von Mises’ constructivist views about mathematics. Place selection
rules which are not explicitly constructible cannot be deemed admissible by von
Mises:

Kamke speaks as a set theorist: the set of all infinite binary sequences
exists ‘out there’, together with all its elements, some of which are
[collectives]. Hence the set {n ∈ N ∶ X(n) = 1} is available for admissible
place selection in much the same sense as is the set of primes. Von Mises,
on the other hand, considers [collectives] to be new objects which, like
choice sequences, are not pre-existent; hence {n ∈ N ∶ X(n) = 1} is not
available. For him, n↦ X(n) is not a legitimate mathematical function;
functions are objects which have been constructed [van Lambalgen, 1987a,
pp. 28-29].

Of course, this observation alone does not suffice to exonerate von Mises’ theory
from the accusation of being vacuous: calling for a departure from classical mathe-
matics could hardly count as a watertight counter-argument. So, von Mises is still
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left in the tricky position of having to provide a proof of the existence of sequences
satisfying his axioms. In 1937, Abraham Wald comes to the rescue by proving that,
for any countable collection S of ‘constructive’16 place selection rules and for any
p ∈ (0,1), there is at least one17 sequence X ∈ {0,1}ω which satisfies von Mises’
axioms with respect to S and with limiting relative frequency p [1937].

Wald contends that restricting one’s attention to countably many selection rules is
a rather weak requirement. Being sympathetic towards von Mises’ constructivism, he
reasons that one should only allow functions which can be ‘given by a mathematical
law’. Mathematical laws are formulated within a system of formal logic, and logical
systems can only involve countably many symbols; in turn, these symbols can be
combined to construct at most countably many formulas. Hence, it does not make
sense to consider more than countably many place selection functions.

Wald’s result induces von Mises to abandon the project of singling out a specific
class of admissible place selections in favour of a more pragmatic approach: for each
problem in the probability calculus that one may have to solve, one should choose the
countable collection of place selections which ensures that the calculations necessary
to solve that problem can indeed be carried out. Of course, this solution is rather
dubious, for it is not clear that pinpointing the countable family of place selections
that are appropriate for one’s experiment is always such a self-evident task. Yet, von
Mises seems to think that this predicament simply does not pertain to probability
theory: assessing the correctness of a given choice of selection functions falls within
the business of a theory of inductive inference; probability theory, however, is not
concerned with inductive reasoning, but with mass phenomena and repetitive events.
We will return to this issue in Section 2.3, where we will appraise von Mises’ strict
frequentism.

2.2.2 Stochasticity and Ville’s Theorem

Possibly the most notable attempt at demarcating the class of admissible selection
rules is due to Alonzo Church [1940], one of the fathers of computability theory.

Church criticises Wald’s appeal to formal systems due to the arbitrariness of any
choice of language:

[Wald’s interpretation of gambling systems] is unavoidably relative to the

16Wald’s concept of constructivity is a rather informal one: it is based on an unspecified notion of
procedure for successively determining the values of the digits of a sequence in a finite number of
steps.

17In fact, as noted by Shafer in the introduction to his translation of a passage from Jean Ville’s
Étude critique de la notion de collectif,

The set of sequences that do qualify [as collectives] have p-measure one. [...] This
means that this set has probability one with respect to the probability distribution for
X(1),X(2), ... obtained by assuming that the X(n) are independent random variables,
each equal to 1 with probability p and 0 with probability 1 − p [1939/2005, p. 3].
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choice of the particular system L and thus has an element of arbitrariness
which is artificial. If used within the system L, it requires the presence in
L of the semantical relation of denotation (known to be problematical on
account of the Richard paradox18). If it is used outside of L, it becomes
necessary to say more exactly what is meant by ‘definable in L’, and the
questions of consistency and completeness of L are likely to be raised in
a peculiarly uncomfortable way [1940, p. 135].

According to Church, an admissible selection rule should instead be defined in
terms of an effective algorithm, because a gambling system is nothing but a rule
telling us, at each step and in a finite amount of time, whether to bet or not.

To a player who would beat the wheel at roulette, a system is unusable
which corresponds to a mathematical function known to exist but not
given by explicit definition; and even the explicit definition is of no
use unless it provides a means of calculating the particular values of
the function. [...] Thus a [gambling system] should be represented
mathematically, not as a function, or even as a definition of a function,
but as an effective algorithm for the calculation of the values of a function
[1940, p. 133.].

So, the set of admissible selection rules is identified by Church with that of computable
selection rules. Since this latter collection is countable, Wald’s theorem ensures the
existence of collectives that are invariant under selection rules in this class.

The notion emerging from this restriction is known as Church stochasticity.

Definition 2.2.1 (Church stochasticity). Let X ∈ {0,1}ω. Then, X is said to be
Church stochastic if and only if

lim
n→∞

⎛
⎝
#zeroes(s[X] ↾ n)

n

⎞
⎠
= 1

2
(✠)

18Richard’s paradox, due to the French mathematician Jules Richard [1905], goes as follows.
We know that certain linguistic expressions (in, say, the English language) define real numbers
unambiguously, while other natural language expressions do not. For instance, the expression ‘The
real number whose integer part is 17 and whose n-th decimal place is 0 for even n’s and 1 for odd
n’s’ uniquely defines the real number 17.1010101... = 1693

99
. The expression ‘Lewis Carroll is Charles

Dodgson’, on the other hand, does not define any real number. Now, consider the infinite list of
English expressions of finite length which define real numbers unambiguously. Arrange this list
by length and then order it lexicographically, so that we obtain an infinite list r1, r2, r3, ... of real
numbers that are enumerated in a canonical way. We can then define a new real number r as follows:
let the integer part of r be 0, and its n-th decimal place be 1 if the n-th decimal place of rn is not
1, and 2 otherwise. This definition is clearly a natural language expression which unambiguously
defines r. Hence, r must be one of the rn’s on the list described above. However, r was constructed
in such a way as to differ from each of the rn’s, which leads to a contradiction. (This reasoning is
clearly reminiscent of Cantor’s famous diagonal argument.)
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for all total computable selection rules s such that s[X] is infinite19.

By requiring selection rules to be partial computable rather than computable
functions, one can obtain the stronger notion of von Mises-Wald-Church stochasticity;
moreover, a concept weaker than Church stochasticity may also be defined.

Definition 2.2.2 (von Mises-Wald-Church stochasticity). Let X ∈ {0,1}ω. Then,

(a) X is said to be von Mises-Wald-Church stochastic if and only if s[X] satisfies
Equation (✠) for all partial computable selection rules s such that s[X] is
infinite.

(b) X is said to be weakly Church stochastic if and only if s[X] satisfies Equation
(✠) for all total computable selection rules s such that s[Y ] is infinite for all
Y ∈ {0,1}ω.

While von Mises-Wald-Church stochasticity and Church stochasticity are well-
established concepts and have been extensively studied, weak Church stochasticity
was recently introduced by Stijn Vermeeren in his doctoral dissertation [2013]. The
significance of this notion will become apparent in § 3.3.3, where we will see that
weak Church stochasticity, as opposed to von Mises-Wald-Church stochasticity and
Church stochasticity, is implied by Schnorr randomness (a notion of algorithmic
randomness defined by Schnorr in [1971a]).

The reason why we use the term ‘Church stochasticity’ rather than ‘Church
randomness’ is a theorem due to the French mathematician Jean Ville known as
Ville’s Theorem, which is generally taken to show that von Mises’ theory of collectives
is too weak to give rise to proper randomness notions. In what follows, we will
illustrate Ville’s result (Theorem 2.2.3 below) and discuss to what extent it thwarts
von Mises’ enterprise.

Before we state Ville’s Theorem, it should be noted that Ville’s approach to
probability theory is rather different from that of von Mises: in line with the school
of French probabilists of which he is a member, Ville believes that the probability
calculus makes contact with the world only by making predictions with probability
near or equal to one. An example of such predictions is the law of large numbers,
which von Mises’ collectives indeed satisfy. However, do collectives also satisfy all
other probability-one predictions made by probability theory? Ville’s result provides
a negative answer to this question: no matter what countable collection of selection
rules one picks20, there exists a sequence which fails to satisfy the law of the iterated
logarithm—which, in the context of the uniform distribution, states that the relative
frequency of 0 in an infinite sequence should, with probability one, oscillate above
and below 1

2 while converging to 1
2 .

19Clearly, the selection rule s given by s(σ) = select for all σ ∈ {0,1}∗ is total computable and
such that s[X] =X. This is why, in Definition 2.2.1, one need not add a separate clause requiring
the existence of the limiting relative frequency of 0 and 1 in X. Also note that, in Definition 2.2.1,
the value 1

2
could be replaced by any other p ∈ (0,1).

20So, the collection of computable selection rules, as well.
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Theorem 2.2.3 (Ville [1939]). Let S be a countable collection of (possibly partial)
selection rules. Then, there exists a sequence X ∈ {0,1}ω such that

(a) lim
n→∞

(#zeroes(X ↾ n)
n

) = 1

2
;

(b) lim
n→∞

(#zeroes(s[X] ↾ n)
n

) = 1

2
for every s ∈ S such that s[X] is infinite;

(c)
#zeroes(X ↾ n)

n
≥ 1

2
for all n ∈ N.

Ville’s Theorem shows that there is a collective in which the relative frequency of
0 converges to 1

2 from above. Hence, frequency convergence from above constitutes
a kind of systematicity (i.e., a measure-zero property) that von Mises’ definition
of randomness is not capable of avoiding. So, Ville’s Theorem is usually employed
to argue that von Mises’ theory is too weak: collectives are vulnerable to Ville’s
counterexample because there are regularities which cannot be uncovered by merely
considering the convergence of the relative frequencies of zeroes and ones in a
sequence.

In view of Theorem 2.2.3, one may further speculate that, in order to prevent
potential analogous results involving some other measure-one statistical property, a
satisfactory notion of randomness should display all asymptotic regularities proved
by measure-theoretic methods—i.e., it should satisfy all measure-one statistical
properties, and not only the law of large numbers and the law of the iterated
logarithm21.

Ville’s own diagnosis is that von Mises’ characterisation of gambling systems is not
general enough. To solve this problem, he suggests an alternative based on the notion
of a betting strategy—that is, a finitely describable rule which specifies whether and
how much to bet at any turn in the game, given the outcomes of the previous turns.
More precisely, Ville introduces a type of functions which he calls martingales22.

21As we shall see, intuitions of this sort lie at the heart of the so-called measure-theoretic typicality
approach to algorithmic randomness (Section 3.2).

22The kind of martingales employed in algorithmic randomness are but a particular case of the
broader definition of martingales from probability theory. In probability theory, a martingale is
defined, in full generality, as a sequence X0,X1, ... of real-valued random variables (possibly taking
negative values) such that, for all n ∈ N, E[Xn+1∣X0,X1, ...,Xn] = Xn—i.e., the expectation of each
random variable conditional on the observed values of the previous ones equals the observed value
of the immediately preceding random variable. To avoid confusion, we shall call such a sequence a
martingale process (see, for instance, [Hitchcock and Lutz, 2006] or [Downey and Hirschfeldt, 2010,
§ 6.3.4] for a comparison of martingales and martingale processes). It should also be noted that, in
the context of games of chance, the word ‘martingale’ has been used for centuries to designate the
betting strategy that doubles one’s bet after every loss [Bienvenu et al., 2009; Mansuy, 2009]. Here,
however, in accordance with Ville’s definition, by ‘martingale’ we shall mean a more general notion
of betting strategy.
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Martingales formalise the capital processes emerging from betting strategies which
satisfy the following condition: at each stage of the game, the gambler may bet only
a fraction 0 ≤ ρ ≤ 1 of her current capital on the next bit of some sequence being a 0
(or a 1). This ensures that her capital will remain non-negative no matter how the
trial comes out.

Formally, a martingale function is defined as follows.

Definition 2.2.4 (Martingale). Let R≥0 denote the set of non-negative real numbers.

(1) A martingale is a function d ∶ {0,1}∗ → R≥0 which satisfies, for all σ ∈ {0,1}∗,
the averaging condition 2 ⋅ d(σ) = d(σ0) + d(σ1).

(2) A martingale d is said to be normed if the gambler’s starting capital d(ε) is 1.

(3) A supermartingale is a function d ∶ {0,1}∗ → R≥0 such that, for all σ ∈ {0,1}∗,
2 ⋅ d(σ) ≥ d(σ0) + d(σ1).

The value d(σ) of a martingale d stands for the capital attained by a gambler after
betting on the bits of σ ∈ {0,1}∗ according to the betting strategy underlying d.
The requirement that 2 ⋅ d(σ) = d(σ0) + d(σ1) is generally referred to as the fairness
condition, for it ensures that the amount of money gained from an outcome of 0 is
the same that would be lost from an outcome of 1. In the case of supermartingales,
the fairness condition is relaxed by allowing the gambler to waste some money along
the way.

It is then possible to formally specify what it means for a martingale—and, thus,
a betting strategy—to be successful.

Definition 2.2.5 (Martingale success). Let d be a martingale and X ∈ {0,1}ω. Then,
d is said to succeed on X if and only if lim sup

n→∞
d(X ↾ n) =∞. Similarly, d is said to

succeed on X ⊆ {0,1}ω if and only if it succeeds on each X ∈ X .

So, a martingale is successful if it can make a gambler unboundedly rich. Then,
according to Ville, randomness should still be equated with the impossibility of
a successful gambling system, but where the gambling system in question is a
martingale function rather than a selection rule. This is because, with the above
definitions at hand, Ville is able to show that, given a sequence X ∈ {0,1}ω which
satisfies conditions (a), (b) and (c) of Theorem 2.2.3, one can construct a martingale
that succeeds on X.

Let us consider a simple construction to illustrate Ville’s point. First, let δn =
#zeroes(X ↾ n) −#ones(X ↾ n). By condition (c) of Theorem 2.2.3, we have that
δn ≥ 0 for all n ∈ N. Thus, lim inf

n→∞
δn ≥ 0, which means that either lim inf

n→∞
δn = ∞

or lim inf
n→∞

δn = `, for some non-negative integer `. If lim inf
n→∞

δn =∞, then a gambler

playing against X can become infinitely rich by always betting a fixed amount, not
exceeding her starting capital, that the next bit will be 0. Since δn ≥ 0 for all n ∈ N,
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the gambler will never lose all of her capital. Moreover, the fact that lim inf
n→∞

δn =∞
ensures that, eventually, she will gain unbounded capital. If lim inf

n→∞
δn = `, on the other

hand, we have that δn < ` for finitely many n only. So, there is some N such that,
for all n ≥ N , δn ≥ ` and, for infinitely many n ≥ N , δn = `. In this case, a gambler
playing against X can become infinitely rich by waiting until stage N has passed and
δn = `: since X(n + 1) has to be a 0, the gambler can bet on it risk-free. It should
be noted that the martingale described for the case in which lim inf

n→∞
δn =∞ works

on any sequence Y with lim inf
n→∞

δ′n =∞ (where δ′n =#zeroes(Y ↾ n) −#ones(Y ↾ n)).
On the other hand, when the lim inf is finite, we have a countable collection of
martingales (dN,`)N,`∈N—one for each pair N, `. Even so, this countable collection
of martingales can be combined into one single martingale ∑

N,`

αN,` ⋅ dN,`, where the

αN,`’s are positive reals adding up to one, and ∑
N,`

αN,` ⋅ dN,` succeeds on a sequence

whenever one of the dN,`’s does.
By an argument analogous to the one above, Ville concludes that von Mises’

definition of randomness is too permissive: it counts as random sequences which
possess regularities that can be successfully exploited by a bettor. Hence, randomness
à la von Mises does not really coincide with the impossibility of a gambling system.

Another famous result by Ville shows that the notion of martingale success is
tightly connected with the property of being a measure zero set.

Theorem 2.2.6 (Ville [1939]). For any class N ⊆ {0,1}ω, N has Lebesgue measure
zero if and only if there exists a martingale which succeeds on N .

Theorem 2.2.6 vindicates the intuition that satisfying all measure-one statistical
properties (such as the strong law of large numbers or the law of the iterated
logarithm) does correspond to the impossibility of devising a successful gambling
strategy.

Ville’s claim that von Mises’ gambling systems should be replaced by martingales
may be countered as follows. First of all, as argued by van Lambalgen, one should
realise that von Mises’ objective never was to model infinite sequences for which no
successful gambling strategy exists per se. Although von Mises might have mistakenly
regarded his requirement of invariance under admissible place selection functions
as being sufficient to single out all and only those sequences whose sole regularity
is their limiting relative frequency, his ultimate objective was merely to formalise
strict frequentism, while also being able to recover Kolmogorov’s axiomatisation of
probability. In other words, von Mises was after a minimal notion of ‘randomness’
which would suffice to formally validate the frequency interpretation of probability.

Von Mises’ rules are set up so that they preserve the frequency inter-
pretation; this no longer holds for the limiting operations of measure
theory. [T]he theorem [of the iterated logarithm] does not have a fre-
quency interpretation (in the space of infinite binary sequences). To be
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more precise: von Mises distinguishes between measure theoretic and
probabilistic derivations. [The law of the iterated logarithm], as a state-
ment about infinite sequences of trials, is not (probabilistically) derivable
using operations such as place selections, although it is of course measure
theoretically derivable using properties of the infinite product measure
(essentially the Borel-Cantelli lemmas) [van Lambalgen, 1996, p. 16].

So, in view of von Mises’ goal, one should ask: in spite of Ville’s Theorem, are
von Mises’ axioms indeed adequate as a theory of frequentist probability? In his
doctoral dissertation [1987a], van Lambalgen convincingly argues that, modulo being
able to characterise the notion of admissibility for place selections in a satisfactory
manner, von Mises’ theory is indeed successful23. We will not repeat those arguments
here, for they are not central to the more general point we wish to stress: namely,
that Ville’s argument, which is often depicted as having dealt a deathblow to von
Mises’ theory, only succeeds in showing that von Mises’ notion of randomness is
not an adequate formalisation of the concept of unpredictability for infinite binary
sequences, which is not a concept von Mises was after in the first place.

Of course, this is not to say that Ville’s result is of no significance. For one,
as we shall see in Section 3.3, Ville’s martingale functions and the concept of
unpredictability (understood as the failure of a martingale to accrue unbounded
capital) play a fundamental role in the field of algorithmic randomness. Yet, in
passing from von Mises’ characterisation of randomness to the algorithmic approach
discussed in Chapter 3, the connections between randomness and probability theory
become much murkier. The goal ceases to be finding an empirically sound basis for
probability theory, and the focus shifts towards an approach to randomness that
takes probability (in its measure-theoretic formulation) for granted.

The upshot of this discussion appears to be that, provided that one agrees that
von Mises’ notion of randomness (or stochasticity) indeed yields a satisfactory bridge
between frequentism and Kolmogorov’s probability calculus, the debate over the
tenability and usefulness of von Mises’ theory of collectives should instead focus on
putting under a microscope von Mises’ frequentist interpretation of probability.

23Van Lambalgen also claims that a frequentist interpretation of probability in fact forces collective-
like properties:

[A]nybody who believes in the frequency interpretation and in the validity of the usual
rules for probability is bound to believe in [collectives]. That is, not necessarily in the
idealised, infinite [collectives] as they occur in von Mises’ axioms, but rather as finite
approximations to these. In other words, [collectives] are a necessary consequence of
the frequency interpretation [1987a, p. 31].

By means of an example, van Lambalgen argues that if probability is taken to mean limiting relative
frequency, and if one endorses Kolmogorov’s axiom together with the product rule and the rule
for conditional probability, then an infinite sequence of experiments will be invariant under place
selection rules. For a detailed discussion of this argument, see [van Lambalgen, 1987a, § 2.4.1 and §
2.4.2].
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Since von Mises tries to reduce the concept of probability to that of limiting
relative frequency, in what follows we will address some objections against his
reductionist approach. In presenting these arguments, we do not aspire to conclusively
refute von Mises’ account: after all, the debate over the foundations of probability is
still raging among both philosophers and statisticians. Our more modest goal is to
remark that subjectivism seems to often lurk behind the objectivist edifice of von
Mises’ theory.

2.3 Objections to von Mises’ frequentist approach

A common objection against strict frequentism (voiced, among others, by Kolmogorov)
concerns von Mises’ appeal to limits. The problem is that von Mises’ limiting relative
frequency approach appears to be unsuitable for real-life applications: in every-day
life, we only ever deal with finitely many trials, so we can never be sure what the
limiting relative frequency of an event is or whether such limiting relative frequency
exists at all. As noted by von Mises himself, we never have

sufficient reasons to believe that the relative frequency of the observed
attribute [event] would tend to a fixed limit if the observations were
indefinitely continued [1928/1961, p. 15].

Hence, generalising from the law of stability of statistical frequencies to the axiom of
convergence may be an unwarranted step altogether.

One may even start to wonder if von Mises’ theory of collectives has any empirical
significance: in particular, whether it has any bearing on the question of how to
ascertain the probability of a given event from finite experimental data, or on the
question of how to forecast the outcomes of an experiment given a certain probability
assignment.

A standard reply to this objection is that it reflects a failure to understand the
purpose of von Mises’ (and any other) limiting relative frequency theory. After all,
von Mises remarks in several occasions that his foundational project does not have
anything to do with inductive or statistical reasoning. His work focuses on formulating
a definition of probability which can serve as the basis for the applicability of the
probability calculus to real-life random phenomena, independently of any epistemic
concerns about how to assign probabilities to events from finite observations. In
other words, von Mises’ project is a purely definitional enterprise, aimed at providing
a “coherent idealization which knits together all [the] principles [used by statisticians]”
[Hacking, 1965, p. 7]. So, limiting relative frequencies should be understood as a
useful idealisation.

In light of this response, let us compare for a moment von Mises’ limiting
relative frequency interpretation and the subjective interpretation, which views
probability theory as the language of inductive reasoning. The difference between
these two views, it seems, is not unlike the philosophical disagreement between the
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correspondence theory of truth and epistemic theories of truth24. Correspondence
theorists attempt to define truth as a relational property involving a special connection
(correspondence, conformity, congruence, agreement, etc.) to certain aspects of reality
(facts, states of affairs, conditions, situations, etc.). Truth so understood has no
bearing on the epistemological question of how we can know whether something is
true: understanding the notion of truth is taken to be a purely analytical enterprise.
Epistemic theories of truth, on the other hand, tend to associate the concept of
truth with that of justification or rational acceptability or perhaps instrumental
success. The type of definition sought after in this setting is one which would allow
inferring from the available evidence that one has good support for the claim that a
given proposition is true—and, so, good support for accepting and asserting that
proposition. Epistemic truth, then, is roughly equivalent to warranted assertibility.

From the perspective of someone with an epistemic penchant (or, perhaps, from
the perspective of a probability theorist or statistician), this comparison may be
seen as highlighting the fact that both the correspondence theory of truth and the
limiting relative frequency interpretation of probability are guilty of committing the
same mistake: they extrapolate from experience idealisations which are excessively
abstract and even, perhaps, metaphysically dubious. In the context of truth, one may
question the soundness of chasing after a definition of absolute truth, considering that
all we can ever conclusively establish is to what extent our theories about the world
are predictively or instrumentally successful. In the context of probability theory, on
the other hand, one may puzzle over the value of focusing on an abstract definition
of probability which does not get us any closer to answering the question of how
to ascertain the probability of an event. Especially in view of von Mises’ concerns
about reducing probability to an observable and measurable quantity, postulating
the existence of limiting relative frequencies when all we have at our disposal are
finite relative frequencies, which do not warrant any particular choice of limit value,
appears to be a rather unavailing (if not wrong) idealisation. A similar point is made
by Hacking:

It is sometimes said that the Euclidean plane or spherical geometry used
in surveying involves an idealization. Perhaps this means that surveyors
take a measurement, make simplifying assumptions, use Euclid for com-
puting their consequences, and finally assume that these consequences
are also, approximately, properties of the world from which the original
measurements were taken.

It is true that some of the laws of von Mises’ collective apply to frequency
in the long run, and that these laws are used in computing new frequencies
from old. But it is the laws, and not the infinite collective, which are
of use here. Never, in the journals, will one find a statistician using the

24For an introduction to the philosophical debate over theories of truth, see, for instance, [Glanzberg,
2014]. For an overview of the correspondence theory of truth, see, for example, [David, 2015].

27



CHAPTER 2. VON MISES’ AXIOMATISATION OF RANDOM SEQUENCES

peculiar characteristics of a collective in making a statistical inference,
whereas surveyors really do use some of the attributes peculiar to the
Euclidean plane or spherical geometry. So whatever its interest in its
own right, the theory of collectives seems redundant as an idealization in
the study of frequency in the long run [1965, pp. 6-7].

These observations raise the question of whether it might be possible to recover
Kolmogorov’s axiomatisation from finite frequentism, in lieu of the limiting relative
frequency interpretation of probability advocated by von Mises. As a matter of fact,
considerations of this kind constitute the prime motive behind Kolmogorov’s own
attempt at providing a finitary version of von Mises’ collectives, where probability
assignments reflect finite relative frequencies, as they are recorded after sufficiently
long sequences of trials. In particular, in [1963], Kolmogorov offers an alternative
definition of randomness25 which is clearly inspired by Church’s introduction of
computable place selection rules: a binary string counts as being random if the
relative frequencies of 0 and 1 are roughly invariant under admissible selection
algorithms26. In turn, admissible selection algorithms are essentially non-monotonic
place selection functions: instead of proceeding linearly along a string, they can
extract a substring in any computably specified order, as long as no position is ever
considered more than once27.

In spite of being ontologically more parsimonious, finite frequentism, as a reduc-
tionist project, has many problems of its own. For instance, how can we determine
whether a sequence of trials is long enough to exhibit the required frequency stability?
Moreover, how close to one another should the observed relative frequencies be in
order for us to be able to infer the correct probability assignment?

A possible escape route that addresses the objection from empirical significance
and some of the issues raised above would consist in adopting the view that probabil-
ities are nothing more than a ‘rational’ agent’s degree of belief in the occurrence of a
given event, and the relative frequencies observed in actual trials constitute evidence
that can and should be employed (together with all other data that the agent has
at her disposal) to calibrate her credences. Embracing such a viewpoint, however,
would amount to radically departing from von Mises’ reductionist and objectivist
approach in favour of a form of constrained subjectivism, to use Hájek’s terminology
[2007], where rational subjective probability assignments are required to track as
much as possible the observed relative frequencies. This position is encapsulated

25This definition of randomness predates Kolmogorov’s work on algorithmic complexity [1965],
which we will discuss in § 3.1. The algorithmic approach will allow Kolmogorov to connect the
notion of randomness more directly to applications, without any detour through relative frequencies.

26See [Li and Vitányi, 1993/1997/2008, Chapter 1].
27Kolmogorov’s definition of randomness based on non-monotonic selection functions is the

precursor of Kolmogorov-Loveland randomness and Kolmogorov-Loveland stochasticity, which we
will discuss in § 3.3.2 and § 3.3.3, respectively.
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by the following principle, due to Hacking28 [1965], where Pr denotes a probability
function meant to represent an agent’s subjective credences:

Principle of Direct Probability Let relfreq(E) denote the observed relative
frequency of some event E. Then, Pr(E ∣ relfreq(E) = x) ≈ x, for all events
E such that Pr(relfreq(E) = x) > 0.

Such a change of perspective would allow one to remain within a finitistic setting,
while also being able to dodge some of the criticisms that finite frequentism is
liable to29. Yet, taking on a subjectivist viewpoint would also render von Mises’
attempt at confining the range of applicability of probability theory to truly random
phenomena superfluous, for subjective probabilities can be assigned to any event,
random or non-random, as long as such probabilities measure a rational agent’s
uncertainty. Hence, a subjectivist account of randomness would by its very own
nature be disconnected from the question of how probabilities are to be defined.
As we shall see, a subjectivist interpretation of probability appears to be more
compatible with the algorithmic approach to randomness that we will discuss in
Chapter 3.

On a separate note, it appears that such an epistemic and subjectivistic approach
may be more consonant with Church’s identification of the class of admissible
selection functions with the collection of computable selection functions: in this
setting, computability is taken to mark the boundaries of our cognitive and epistemic
limitations, and a sequence is deemed random if no computable selection rule can find
any evidence for the presence of some underlying pattern which could be exploited
to select a biased subsequence.

Another issue facing von Mises’ account is what Hájek calls the reference sequence
problem [2009]. According to von Mises, probabilities are always dependent on a
specific collective. This means, in particular, that probabilities hinge on the order in
which sampling or experiments are performed. To elucidate this dependency, consider
once again the case of coin flipping. When computing the limiting relative frequencies
in a collective corresponding to a coin-tossing experiment, one usually takes the
temporal ordering to be the most salient one: one simply records the outcomes of the
experiments, as those experiments are successively carried out. However, this choice
is ultimately arbitrary. For example, imagine performing a coin-tossing experiment
in an elevator that constantly moves up and down: one could legitimately choose
the up-down spatial dimension to determine the ordering in the collective. But
then, how can one ensure that the resulting limiting relative frequencies will be
the same, no matter what ordering one picks? From an objectivist viewpoint, this

28Hacking’s Principle of Direct Probability is analogous to Lewis’ Principal Principle [1980],
according to which subjective probability assignments should track objective chances.

29Of course, this is not to say that the subjective interpretation of probability does not face
objections of its own. A conclusive appraisal of this debate, however, is beyond the scope of this
thesis.
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seems to be a serious problem, unless one were able to show that invariance under
admissible place selection rules also ensures that permuting a collective never changes
the limiting relative frequencies. This issue is even more poignant in the context
of random sampling in statistics, where there does not seem to be any obviously
‘natural’ ordering one can impose. If, for instance, we wanted to test the hypothesis
that a given party will win the next elections, how could we make sure that the
ordering in the collective corresponding to the sample from the population being
tested will not affect the resulting limiting relative frequencies? Of course, von
Mises could simply bite the bullet and reiterate that (i) probabilities do depend
on collectives (and, consequently, on the given collective’s ordering) and that (ii)
choosing the relevant collective is a purely pragmatic issue. This is a viable reply,
but it seems to render von Mises’ approach more agent-relative and subjectivistic
than he might have been happy to concede.

These are only a couple of objections that one may raise against von Mises’
strict frequentism. There are many more arguments that one could consider against
the limiting relative frequency interpretation of probability—and against its finite
counterpart, as well. Hájek, for example, famously discusses fifteen arguments against
each type of frequentism [1997; 2009] (although not every argument from [2009] is
applicable to von Mises’ theory).

The moral of our story so far seems to be that some of the criticisms that von
Mises’ frequentist approach faces may be resolved by abandoning his reductionist
approach in favour of a subjectivistic view of probability that takes the observed
relative frequencies seriously. However, when passing from an objectivist position to a
full-on subjectivist one, the need for a notion of randomness à la von Mises fades away.
Hence, the tenability and usefulness of von Mises’ definition of randomness ultimately
rests on the correctness of strict frequentism, which is not short of problems.
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Chapter 3

The Many Faces of Algorithmic Randomness

This chapter will be devoted to providing an overview of algorithmic randomness.
Although inspired by von Mises’ views, the algorithmic approach to defining ran-
domness has considerably distanced itself from the theory of collectives. First of all,
the account of probability upon which it is based is very different from that of von
Mises and more in line with that of Ville and the French probabilists (§ 2.2.2): as we
will see, in algorithmic randomness, the focus tends to be on those special statistical
properties which occur ‘with measure one’. Moreover, one of the main features of
this approach, inherited from Church, is a deep connection with computability theory
(hence the name algorithmic randomness).

In what follows, we will review the three main existing approaches to algorithmic
randomness:

(i) the incompressibility paradigm, built on the notion of Kolmogorov complexity
and pioneered by Solomonoff [1960; 1964], Kolmogorov [1965] and Chaitin
[1969];

(ii) the measure-theoretic typicality paradigm, launched by Martin-Löf [1966] (and
Demuth [1975]) and based on the notion of effective statistical test ;

(iii) the unpredictability paradigm, inaugurated by Ville’s work on martingale func-
tions [1939], and then developed by Schnorr [1971a; 1971b] and Levin [1970;
1973] in a computability-theoretic setting.

Unless otherwise specified, our presentation will follow Li and Vitányi’s monograph
[1993/1997/2008].

In § 3.3.3, we will also provide a martingale-based characterisation of a stochas-
ticity notion called weak Church stochasticity, which was introduced by Vermeeren
in [2013]. Then, we will present an alternative proof of the fact that weak Church
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stochasticity is implied by Schnorr randomness, as opposed to the orthodox stochas-
ticity notions defined in § 2.2.2. To further ‘symmetrise’ the multitude of implications
that obtain between randomness and stochasticity notions, we will also introduce
the non-monotonic variant of weak Church stochasticity (weak Kolmogorov-Loveland
stochasticity), which can be easily seen to be implied by Kolmogorov-Loveland
stochasticity and to entail weak Church stochasticity.

3.1 Randomness as incompressibility

In the 1960’s, Kolmogorov [1965] proposes a definition of randomness for finite strings
inspired by Shannon’s work on information theory30. The basic idea behind this
definition is that randomness amounts to irregularity; in other words, randomness is
identified with a certain lack of recognisable patterns31.

In spite of being very intuitive, this identification also prompts the following
question: who should be entrusted with deciding what counts as random, given that
pattern-detecting skills vary wildly across people? For instance, although (as already
remarked in Chapter 1) hardly anybody would judge the string

0101010101010101010101010101010101010101

to be random, the string

111211211111221312211131122211113213211

does not exhibit any immediately recognisable patterns. Yet, upon further reflection,
one may notice that this second string (known as the Conway sequence [1986]) is
describable by means of a relatively simple rule, too: begin by partitioning it as

1, 11, 21, 1211, 111221, 312211, 13112221, 1113213211;

each block except for the first is generated on the basis of the previous one by reading
off the digits of the previous block and counting the number of digits in groups of the
same digit. More concretely: the first block, 1, generates the block ‘one 1’ or 11; the
second block, in turn, generates the block ‘two 1s’ or 21; the third block generates
the block ‘one 2, then one 1’ or 1211; and so forth.

To characterise the notion of ‘lack of recognisable patterns’ as objectively as
possible, Kolmogorov appeals to computability theory and to the Church-Turing
Thesis [1936], which postulates that the intuitive notion of ‘effective procedure’
coincides with that of Turing machine32. In particular, in Kolmogorov’s framework,

30See, for instance, [Shannon, 1948].
31Around the same time, Solomonoff [1960; 1964] and Chaitin [1969] independently arrived at the

same notion of randomness.
32It should be noted that the Church-Turing Thesis cannot be proven. This is because it hinges

on intuitions that have no mathematical counterpart, it cannot be formulated as a theorem. Yet, so
far, all attempts to disprove it have failed (see [Vitányi, 2009]).
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randomness is equated with patternlessness in the eyes of a Turing machine. More
specifically, Kolmogorov’s great insight is that, if a string is regular, then it should
be possible to provide a Turing machine with a simple set of instructions to obtain
that string as an output. Conversely, if a string is irregular or random, then all of its
descriptions (equivalently, all programmes that generate it) should be very complex.

To make these intuitions precise, what Kolmogorov needs is a way to measure the
complexity of strings. From among all possible descriptions of a string, Kolmogorov
suggests that the length of a shortest description be taken as a measure of the string’s
complexity. Then, he defines a string to be random if it is highly incompressible:
that is, if all of its descriptions are roughly as long as the string itself33. On the
other hand, he defines a string to be non-random if it is compressible: i.e., if it has
one description shorter than itself.

In what follows, we present Kolmogorov’s definition of randomness for finite
strings, which is based on the notion of Kolmogorov complexity sketched above,
and which has given rise to a field known as algorithmic information theory. In
Section 3.2, we shall explain how this framework can be extended to provide a
characterisation of randomness for infinite sequences, as well.

Definition 3.1.1 (Plain Kolmogorov complexity). Let f ∶ {0,1}∗ → {0,1}∗ be a
partial computable function and M a Turing machine that computes f . The plain
Kolmogorov complexity of a string σ with respect to M is given by

CM(σ) = min{∣τ ∣ ∈ N ∶ τ ∈ {0,1}∗ ∧M(τ) ↓= σ}.

If there is no τ ∈ dom(f) such that M(τ) ↓= σ, then CM(σ) =∞.

Put in (plain) English: the plain Kolmogorov complexity of a string σ with respect to
a Turing machine M is the minimal length of a programme which makes M compute
output σ without any additional input.

A string σ is then said to be random with respect to a Turing machine M if and
only if CM(σ) ≥ ∣σ∣.

Clearly, this complexity measure crucially rests on the particular choice of Turing
machine. Is it possible to get rid of this dependency? Recall that a universal Turing
machine is one which can simulate the behaviour of any other Turing machine.
Moreover, given a class C of Turing machines, we have that a Turing machine M is
additively optimal for C if

(i) M ∈ C, and

(ii) for every N ∈ C, there is a constant cM,N such that, for all σ ∈ {0,1}∗,

CM(σ) ≤ CN(σ) + cM,N .

33Programmes, or descriptions, may be viewed as decompression algorithms.
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The following theorem, known as Kolmogorov’s Invariance Theorem, establishes that
there is a proper subset of the collection of universal Turing machines—namely, the
one consisting of all additively optimal universal Turing machines—which allows for
a general definition of Kolmogorov complexity34.

Theorem 3.1.2 (Kolmogorov [1965]). There exists an additively optimal universal
Turing machine.

Fix some universal additively optimal Turing machine U : then, CU is a universal
complexity measure. In particular, Theorem 3.1.2 entails that altering one’s choice of
universal additively optimal Turing machine can only make the complexity measure
vary by an additive constant. Thus, we can define the plain Kolmogorov complexity
of a string σ as

C(σ) = CU(σ).

It should be pointed out, however, that Theorem 3.1.2, although striking, does
not render the notion of plain Kolmogorov complexity fully independent from one’s
choice of compression scheme. It is in fact possible, given two strings σ, τ and
two additively optimal universal Turing machines U,V , to have that CU(σ) = 0,
CV (τ) = 0, and yet σ is random with respect to V and τ is random with respect to
U : then, CV (σ) ≥ ∣σ∣ and CU(τ) ≥ ∣τ ∣.

One may then wonder: is there any (objective) quantity measured via Kolmogorov
complexity whose value is not underdetermined by the specific choice of compres-
sion scheme? It turns out that Kolmogorov complexity does not hold invariant
any property that applies to only finitely many objects; however, it provides a
machine-independent characterisation of asymptotic complexity: i.e., all Kolmogorov
complexity measures agree on the asymptotic complexity of infinite sequences.

An immediate corollary of Kolmogorov’s celebrated Invariance Theorem is that
there exists a constant c such that, for all σ ∈ {0,1}∗, C(σ) ≤ ∣σ∣ + c. To prove this,
one can simply take the Turing machine which computes the identity function.

It is also possible to provide a bound for the complexity of pairs of strings. At
first, one may think that, for all σ, τ ∈ {0,1}∗, the following should hold for some
constant c:

C(στ) ≤ C(σ) +C(τ) + c.

This is however not the case. The problem is that, by concatenating the descriptions
of σ and τ , one loses the information of where a description ends and the next one
begins. For a machine to be able to correctly parse σ and τ , one has to feed it the
extra information ∣σ∣ and ∣τ ∣. Then, the following result holds: for all σ, τ ∈ {0,1}∗,

C(στ) ≤ C(σ) +C(τ) + 2 ⋅ log (min(C(σ),C(τ))).

34For a proof of the Invariance Theorem, see [Li and Vitányi, 1993/1997/2008, Lemma 2.1.1, p.
104 and Theorem 2.1.1, p. 105].
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Crucially, the logarithmic term in the above inequality cannot be done away with35.
Now, for k ∈ N, we have that σ ∈ {0,1}∗ is said to be k-randomC (or k-

incompressibleC) if and only if C(σ) ≥ ∣σ∣ − k. Note that this definition does not
allow us to partition the set of finite strings into the random and the non-random
ones: C is not a measure of absolute randomness, it is a measure of the degree of
randomness of a string.

The following important result hinges on intuitions similar to those underlying
Berry’s paradox 36.

Proposition 3.1.3 (Kolmogorov [1965]). The plain Kolmogorov complexity function
σ ↦ C(σ) is uncomputable.

The good news, however, is that C can be computably approximated.

Proposition 3.1.4 (Kolmogorov [1965]). The function C is upper semi-computable:
i.e., there is a total computable function f ∶ {0,1}∗ × N → N such that, for all
σ ∈ {0,1}∗, the sequence f(σ,0), f(σ,1), f(σ,2), ... is monotonically decreasing and
converges to C(σ).

As already noted, the plain Kolmogorov complexity of a pair of strings—i.e., when
two strings are concatenated—is bounded by the sum of the complexities of the two
individual strings plus a logarithmic factor. One may then ask: is it possible to come
up with another complexity measure that allows to dispense with this logarithmic
factor (i.e., which is subadditive)? As it turns out, this is indeed feasible via the
notion of prefix-free Kolmogorov complexity.

Recall from Section 1.4 that a set S ⊆ {0, 1}∗ is prefix-free if and only if, if σ, τ ∈ S,
then neither σ < τ nor τ < σ. A function is then said to be prefix-free if it has a
prefix-free domain: for any two strings σ, τ ∈ {0,1}∗, if σ < τ , then the function is
defined for at most one of these two strings.

Definition 3.1.5 (Prefix-free Kolmogorov complexity). Let g ∶ {0,1}∗ → {0,1}∗ be a
prefix-free partial computable function and N a prefix-free Turing machine which
computes g. The prefix-free Kolmogorov complexity of a string σ with respect to N
is given by

KN(σ) = min{∣τ ∣ ∈ N ∶ τ ∈ {0,1}∗ ∧N(τ) ↓= σ}.
35See [Li and Vitányi, 1993/1997/2008, Example 2.1.5, p. 109 and Example 2.2.3, p. 118].
36Berry’s paradox is discussed by Russell and Whitehead in their celebrated Principia Mathematica

[1910/1912/1913], where the authors credit G. G. Berry, a librarian at the Bodleian Library in
Oxford. As explained by Li and Vitányi [1993/1997/2008], the paradox goes as follows. Let σ be
the lexicographically least binary string which cannot be univocally described in less than twenty
words. If such a σ exists, then we have just managed to describe it using only eighteen words,
which contradicts its definition. If such a σ does not exist, then all binary strings can be univocally
described in less than twenty words, which is of course false.
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Just as in the case of the plain Kolmogorov complexity C from Definition 3.1.1,
we then have that σ is random with respect to a prefix-free Turing machine N if and
only if KN(σ) ≥ ∣σ∣.

An analogue of Theorem 3.1.2 holds for prefix-free Kolmogorov complexity, as
well: there exists an additively optimal universal prefix-free Turing machine. The
prefix-free Kolmogorov complexity of a string σ can then be defined as

K(σ) =KV (σ),

where V is some fixed additively optimal universal prefix-free Turing machine.
With this definition at hand, one can show that there is a constant c such that,

for all σ ∈ {0,1}∗,

K(σ) ≤ C(σ) + 2 ⋅ logC(σ) + c.

The above definition also gives rise to a new randomness notion: for k ∈ N,
σ ∈ {0, 1}∗ is said to be k-randomK (or k-incompressibleK) if and only if K(σ) ≥ ∣σ∣−k.

Just like σ ↦ C(σ), the function σ ↦ K(σ) is uncomputable. However, K
is subadditive. For consider some prefix-free partial computable function g such
that σ, τ ∈ dom(g) and a Turing machine N which computes g. Then, the string ξ
corresponding to the concatenated pair στ can be decoded without extra information:
one only need consider all possible splittings of ξ into two adjacent substrings σ′ and
τ ′, and then compute N(σ′) and N(τ ′). Since it is prefix-free, N halts only when
σ′ = σ and τ ′ = τ .

Now that we have at our disposal two notions of randomness for finite strings
(k-randomnessC and k-randomnessK), can we employ similar ideas to provide a
definition of randomness for infinite sequences? Kolmogorov’s initial suggestion was
to say that a sequence X ∈ {0,1}ω is random if and only if there is a constant c
such that C(X ↾ n) ≥ n − c for all n ∈ N. Yet, as shown by Martin-Löf, no sequence
satisfies this condition.

Theorem 3.1.6 (Martin-Löf [1966]). Let X ∈ {0,1}ω. There exist infinitely many
n ∈ N such that C(X ↾ n) ≤ n − logn.

Theorem 3.1.6 is known as Martin-Löf’s oscillation theorem, and it shows that, for
any infinite sequence, it is always possible to find an initial segment of low complexity,
which renders Kolmogorov’s original proposal vacuous.

However, as we will see in § 3.2.1, a satisfactory definition of randomness for
infinite sequences which is not affected by Theorem 3.1.6 can be given in terms of
prefix-free Kolmogorov complexity37.

This concludes our review of the incompressibility paradigm. Next, we discuss
Martin-Löf’s approach to randomness, which is based on the notion of effective
statistical tests.

37Recently, Miller and Yu managed to prove that randomness for infinite sequences is actually
characterisable in terms of plain Kolmogorov complexity, as well [2008].
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3.2 Randomness as measure-theoretic typicality

The measure-theoretic typicality paradigm was introduced by Martin-Löf [1966] in an
attempt to extend Kolmogorov’s definition of randomness to infinite binary sequences
(at the time, Martin-Löf was Kolmogorov’s student).

In this setting, a sequence is random if it does not possess any rare properties.
More precisely, the basic intuitions behind this approach are that (i) randomness
amounts to lawlessness or patternlessness, and (ii) order is an exceptional feature:
almost all infinite sequences are random and only a few of them exhibit some orderly
pattern that makes them easily characterisable. Hence, the set of non-random
sequences should have measure zero, while the set of random sequences should have
measure one.

The problem is: how can we choose a measure one subset of Cantor space
corresponding to the set of all random sequences in a non-arbitrary manner? At
first, one may think that the most obvious way to characterise random sequences
is by taking the intersection of all measure one subsets of {0,1}ω. This intuitively
appealing idea, however, does not work. Under any reasonable probability measure
on Cantor space, the singleton {X} of each sequence X ∈ {0, 1}ω is in fact a measure
zero set; hence, given each infinite sequence, the complement of its singleton will
have measure one. This means that the intersection of all measure one sets is the
empty set.

One must therefore restrict one’s attention to measure one subsets of Cantor
space which satisfy certain desirable properties. For instance, in line with Ville’s
reasoning (§ 2.2.2), it seems reasonable to require of random sequences that they
obey the strong law of large numbers and the law of the iterated logarithm. Yet,
within this setting, it is unclear how many and exactly which measure one stochastic
properties one should expect random sequences to satisfy.

In accordance with Kolmogorov’s line of research, Martin-Löf’s own proposal
relies on computability theory: a sequence is said to be random if it satisfies all
measure one stochastic properties which can be effectively specified. Equivalently,
a sequence is deemed random if and only if it cannot be effectively determined to
violate a measure one stochastic property. As we will see, this restriction ensures
that the set of random sequences has (effective) measure one.

Effectively determining whether a measure one stochastic property has been
violated can be thought of as performing a statistical test for randomness—where,
given some sequence X ∈ {0,1}ω, the conjecture (or null hypothesis) is that X is
a typical outcome. Then, X is categorised as a random sequence if and only if it
passes all such performable statistical tests (or randomness tests).

Over the years, Martin-Löf’s original definition has inspired a whole variety of
algorithmic randomness notions based on the concept of a randomness test. Here, we
will consider three distinct types of such tests. The first is Martin-Löf’s own concept,
which gives rise to Martin-Löf randomness; the second is due to Schnorr and it gives
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rise to Schnorr randomness [1971a; 1971b]; the third and last one is due to Kurtz,
and it gives rise to Kurtz randomness [1981]. As proven by Schnorr, Martin-Löf
randomness is strictly stronger than Schnorr randomness which, in turn, is strictly
stronger than Kurtz randomness.

3.2.1 Martin-Löf randomness

Part of the rationale behind Martin-Löf’s definition of randomness comes from
statistical hypothesis testing, which prescribes that a hypothesis be discarded if,
upon supposing that the hypothesis is true, one observes a statistically significant
outcome according to some pre-specified significance level. As we will see, Martin-Löf
focuses on significance levels of the form 2−n. A sequence X ∈ {0,1}ω is rejected at
level 2−n if and only if there is m ∈ N such that we would reject X ↾m at level 2−n.
On the other hand, a sequence X is rejected if, for every significance level, there is
an initial segment of X that we would discard at that level. A Martin-Löf random
sequence, then, is one which is not rejected at every significance level.

Before we can make these ideas mathematically precise, we need a couple of
preliminary definitions.

Definition 3.2.1 (C.e. open set). An open set U ⊆ {0,1}ω is said to be an effectively
open set or a computably enumerable open set (c.e. open set) if and only if there
exists a computably enumerable prefix-free sequence (σn)n∈N of strings such that
U =⋃{JσnK ⊆ {0,1}ω ∶ n ∈ N}.

Definition 3.2.2 (Computable sequence of c.e. open sets). A sequence (Un)n∈N of
open subsets of {0,1}ω is said to be a computable sequence of c.e. open sets if and
only if there exists a sequence (Sn)n∈N of subsets of {0,1}∗ that are computably
enumerable uniformly in n—i.e., for each n ∈ N, Sn = (σn,i)i∈N—and such that, for
all n ∈ N, Un = JSnK =⋃{Jσn,iK ⊆ {0,1}ω ∶ i ∈ N}.

Martin-Löf randomness is then defined as follows.

Definition 3.2.3 (Martin-Löf randomness). (a) Let (Un)n∈N be a computable se-
quence of c.e. open sets satisfying, for all n ∈ N, λ(Un) ≤ 2−n. Such a sequence
is called a Martin-Löf test.

(b) For every Martin-Löf test (Un)n∈N, a set N ∈ ℘(⋂
n∈N
Un) is called a Martin-Löf

null set.

(c) A sequence X ∈ {0,1}ω is said to be Martin-Löf random if and only if there is
no Martin-Löf null set N such that X ∈ N .

Note that Definition 3.2.3(a) does not require that a Martin-Löf test be composed
of nested sets. Given any Martin-Löf test, it is however possible to construct another,
nested test as follows. Take a Martin-Löf test (Vn)n∈N. Set Un = ⋃

m>n
Vm. Then,
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Figure 3.1: Graphical representation of the first three levels of a (nested) Martin-Löf
test (Un)n∈N, where each level corresponds to a c.e. open set Un. From [Porter, 2014].

(Un)n∈N is a Martin-Löf test, U0 ⊇ U1 ⊇ U2 ⊇ ⋯, and ⋂
n∈N
Vn = ⋂

n∈N
Un. Moreover, the

value 2−n in Definition 3.2.3(a) is arbitrary: it can be shown that replacing it with
the value of any other computable function which approaches 0 in the limit still gives
rise to Martin-Löf randomness.

One of the most salient features of Martin-Löf randomness is the existence of a
universal Martin-Löf test: namely, a Martin-Löf test (Vn)n∈N such that, for every
Martin-Löf test (Un)n∈N, ⋂

n∈N
Un ⊆ ⋂

n∈N
Vn. This means that there is a single effective

statistical test which allows for a definition of randomness for individual sequences.
As proven by Schnorr (while he was serving as a referee for a paper by Chaitin

[1975]), Martin-Löf randomness has an equivalent characterisation in terms of prefix-
free Kolmogorov complexity.

Theorem 3.2.4 (Schnorr). Let X ∈ {0,1}ω. Then, X is Martin-Löf random if and
only if there is a constant c such that K(X ↾ n) ≥ n − c for all n ∈ N.

This striking result—known as Schnorr’s Theorem—has been taken to show that
Martin-Löf randomness is indeed a reasonable notion of algorithmic randomness38.
We will see in Section 3.3 that Martin-Löf randomness has a natural characterisation
within the unpredictability paradigm, as well.

Note that Martin-Löf randomness is also referred to as 1-randomness in the
algorithmic randomness literature, because Definition 3.2.3 can be generalised so as

38As we will see in Section 4.1, Schnorr’s Theorem has even been taken as an indication that
Martin-Löf randomness truly captures our ‘pre-theoretic concept of randomness’.
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to obtain a whole hierarchy of n-randomness concepts (n ∈ N), which are all strictly
stronger than Martin-Löf’s original definition (we will expand on this in Chapter 4).

3.2.2 Schnorr randomness

Although Martin-Löf randomness is often described in the literature as the central
notion of algorithmic randomness—due to its mathematical elegance and to its
robustness (as witnessed by Theorem 3.2.4)—Martin-Löf’s definition does not enjoy
universal consensus. According to Schnorr, for instance, the concept of a Martin-Löf
test is not effective enough. This is because knowing that an infinite sequence belongs
to a c.e. open set of small measure is not enough, given Martin-Löf’s definition, to
effectively predict the bits of that sequence.

We will get a better handle on Schnorr’s critique of Martin-Löf randomness in
Section 4.1. For the time being, we simply illustrate the alternative notion of Schnorr
randomness, introduced by Schnorr in [1971a], in terms of statistical tests.

Definition 3.2.5 (Schnorr randomness). (a) Let (Un)n∈N be a Martin-Löf test such
that the measures λ(Un) are uniformly computable. Then, (Un)n∈N is a Schnorr
test.

(b) For every Schnorr test (Un)n∈N, a set N ∈ ℘(⋂
n∈N
Un) is called a Schnorr null

set.

(c) A sequence X ∈ {0,1}ω is said to be Schnorr random if and only if there is no
Schnorr null set N such that X ∈ N .

A Schnorr test may be equivalently defined as a computable sequence of c.e. open
sets (Un)n∈N such that, for all n ∈ N, λ(Un) = 2−n. Just as in the case of Martin-Löf
randomness, the value 2−n is arbitrary.

As opposed to Martin-Löf randomness, Schnorr randomness lacks a universal
element, a fact which is often regarded as being a major flaw of Schnorr’s definition.

3.2.3 Kurtz randomness

We conclude this section on the measure-theoretic typicality paradigm by discussing
Kurtz’ definition of randomness, which he proposed in his doctoral dissertation [1981].
As opposed to Martin-Löf and Schnorr randomness, which both hinge on the idea
that a random sequence should avoid all effective measure zero sets, Kurtz defines
random sequences as those which belong to all effective measure one sets.

Definition 3.2.6 (Kurtz randomness). A sequence X ∈ {0, 1}ω is Kurtz random if and
only if it belongs to all c.e. open subsets of {0,1}ω of measure one.

As shown by Wang [1996], Kurtz randomness can also be defined in terms of
statistical tests.
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Definition 3.2.7 (Kurtz null test). Let (Un)n∈N be a Martin-Löf test. Then, (Un)n∈N
is a Kurtz null test if and only if there is a sequence (Sn)n∈N of finite, uniformly
computable subsets of {0,1}∗ such that, for each n ∈ N, Un = JSnK.

It follows from Definition 3.2.7 that if (Un)n∈N is a Kurtz null test, then both (Un)n∈N
and its complement (Un)n∈N are computable sequences of c.e. open sets.

Theorem 3.2.8 (Wang [1996]). Let X ∈ {0,1}ω. Then, X is Kurtz random if and
only if, for any Kurtz null test (Un)n∈N, there is no N ⊆ ⋂

n∈N
Un such that X ∈ N .

3.3 Randomness as unpredictability

According to the unpredictability paradigm, the essence of a random experiment is
that it is not possible to make any reasonable predictions on the experiment’s future
outcomes. Of course, unpredictability was already an important ingredient of von
Mises’ project; in the context of algorithmic randomness, however, this game-theoretic
perspective is taken much more seriously, and a sequence is defined as being random
if and only if it is impossible for a gambler to predict the bits of that sequence and
gain infinite wealth by successively wagering on them. Unsurprisingly, the betting
strategies employed to define randomness in this setting are the martingale functions
that we discussed in § 2.2.2 (and which were first introduced by Jean Ville in an
attempt at improving on von Mises’ definition of randomness). As we will see, this
approach—championed by Schnorr—combines Ville’s martingales with computability
theory, so that randomness is defined in terms of effective betting strategies.

We will begin by presenting the notions of computable randomness and partial
computable randomness introduced by Schnorr in [1971a], and that of Kolmogorov-
Loveland randomness due to Muchnik et al. [1998]. Then, we will see that the
randomness concepts defined within the measure-theoretic typicality paradigm have
equivalent formulations in terms of martingales with varying computational power.
In light of Theorem 2.2.6, these results should come as no big surprise: after all, the
unpredictability and the measure-theoretic typicality paradigm hinge on analogous
intuitions.

3.3.1 Computable and partial computable randomness

Recall from Definition 2.2.5 that a martingale d ∶ {0,1}∗ → R≥0 (where R≥0 denotes
the set of non-negative real numbers) is said to succeed on a sequence X if and only
if it accrues unbounded capital when run against X: that is, lim sup

n→∞
d(X ↾ n) =∞.

Computable randomness is then defined as follows, in terms of computable martingales
(i.e., those martingales that are total computable functions).

Definition 3.3.1 (Computable randomness). Let X ∈ {0, 1}ω. Then, X is computably
random if and only if there is no computable martingale that succeeds on it.
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With this definition at hand, one can effectivise Theorem 2.2.6: a classN ⊆ {0, 1}ω
is said to have computable (Lebesgue) measure zero if and only if there is a computable
martingale which succeeds on N .

It is possible to strengthen Definition 3.3.1 by considering partial computable
martingales instead of computable ones—where a partial computable martingale is a
partial computable function d ∶ {0,1}∗ → R≥0 such that

(1) for ι ∈ {0, 1} and σ ∈ {0, 1}∗, if d(σι) is defined, then so are d(σ) and d(σ(1−ι));

(2) d, where defined, satisfies the fairness condition from Definition 2.2.4(1).

Then, one may provide a stronger variant of Definition 3.3.1 by saying that a sequence
is partial computably random if and only if there is no partial computable martingale
which succeeds on it. Clearly, for a partial computable martingale d to succeed on a
sequence X, d must be defined on each initial segment of X.

It should be noted that, for any (computable or partial computable) super-
martingale d (Definition 2.2.4(3)), there exists a (computable or partial computable)
martingale d′ that succeeds on the same, and possibly more, sequences: d′ behaves
exactly like d, except that it saves all the money that d fritters away. Intuitively,
one may view d′ as having its capital split between a checking account and a savings
account. All of the martingale’s initial capital is stored in the checking account, ready
to be used. However, as soon as supermartingale d squanders some money, d′ places
that same amount in its savings account and does not use it for any further betting:
it simply leaves it there to ensure that, at each step, the fairness condition from
Definition 2.2.4(1) is met. To see how this works, consider the following example.
Let d be a supermartingale whose capital evolves as follows:

d(00) = 3
2 ⋯

d(0) = 1

d(01) = 0 ⋯

d(ε) = 1

d(10) = 1
2 ⋯

d(1) = 1
2

d(11) = 1
3 ⋯

Then, we can define a martingale d′ in such a way that, for each σ ∈ {0,1}∗,
d′(σ) = C(σ) + S(ε) + ⋯ + S(σ−) + S(σ), where C ∶ {0,1}∗ → R≥0 is the ‘checking
account’ function, while S ∶ {0, 1}∗ → R≥0 is the ‘savings account’ function. Begin by
setting C(ε) = d(ε) = 1 and S(ε) = 0, so that d′(ε) = C(ε) + S(ε) = 1 = d(ε). Then,
set C(0) = d(0) = 1 and S(0) = 1

2 , so that d′(0) = C(0) + S(ε) + S(0) = 3
2 ; moreover,
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set C(1) = d(1) = 1
2 and S(1) = 0, so that d′(1) = C(1)+S(ε)+S(1) = 1

2 . This ensures
that 2⋅d′(ε) = d′(0)+d′(1). Then, let C(00) = d(00) = 3

2 , S(00) = 0, C(01) = d(01) = 0
and S(01) = 1

2 . This gives us that d′(00) = C(00) + S(ε) + S(0) + S(00) = 2, while
d′(01) = C(01)+S(ε)+S(0)+S(01) = 1, which guarantees that 2⋅d′(0) = d′(00)+d′(01).
This reasoning can of course be carried on so as to define d′(σ) for all σ ∈ {0, 1}∗, and
it illustrates why both computable randomness and partial computable randomness
could have been equivalently defined in terms of supermartingales (of course, one
direction trivially holds because any martingale is also a supermartingale).

As observed by Vermeeren [2013, p. 67], in the definition of martingale success

We formalised infinite profits by requiring that the limsup of the capital is
infinity. One might call this jokingly the American concept for success: it
does not matter if you lose almost all of your money repeatedly, because
in the land of opportunity you will always have the possibility to grow
rich again. A more European condition for success would be to require a
more steady growth of capital, without repeated bankruptcies, i.e., the
limit (and not just the limsup) of the capital should be infinity.

However, it is known that adopting the more ‘European condition’ for success in terms
of limits does not make any difference for the notions of computable randomness and
partial computable randomness. This is because, given any (super)martingale d, one
can effectively define a (super)martingale d′ such that (i) d and d′ succeed on the
very same sequences, and (ii) for all X ∈ {0,1}ω, lim sup

n→∞
d(X ↾ n) =∞ if and only if

lim
n→∞

d′(X ↾ n) =∞39.

Without loss of generality, we can also restrict Definition 3.3.1 to (super)martingales
with values in the rational numbers. As proved by Schnorr [1971a], for each com-
putable real-valued martingale d, there exists a computable rational-valued martin-
gale f that succeeds on exactly the same sequences as d. In fact, f is such that
d(σ) < f(σ) < d(σ) + 1. This result will turn out to be particularly useful in Chapter
5, where we will discuss several notions of algorithmic randomness and stochasticity
in terms of rational-valued probabilistic martingales.

3.3.2 Kolmogorov-Loveland randomness

Kolmogorov-Loveland randomness is built on the notion of ‘non-monotonic betting
strategy’. Non-monotonic betting strategies were first defined by Muchnik, Semenov
and Uspensky [1998] as a generalisation of Kolmogorov’s [1963] and Loveland’s
[1966] non-monotonic selection functions (which will be formally defined in § 3.3.3).
These strategies were introduced in order to rebut Schnorr’s critique of Martin-Löf
randomness by means of considering computable betting strategies more powerful
than those used to define computable randomness, and which could potentially be

39The proof of this familiar result is based on the so-called savings trick (see, for instance, [Downey
and Hirschfeldt, 2010, Proposition 6.3.8, p. 237]).
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employed to find a more natural (martingale-based) characterisation of Martin-Löf
randomness.

A non-monotonic betting strategy differs from a monotonic one in that the
gambler is allowed to bet in whatever order she might prefer (that is, the gambler
can choose which position in the sequence to bet against next), provided that she
does not place more than one bet on any one digit of a given sequence. The gambler
does not have to bet on all the bits of a sequence; moreover, her choice of whether to
bet, and on which position, has to be based on the string of bits that have already
been revealed (which is of course not necessarily going to be an initial segment of
the infinite sequence that the gambler is playing against) and not on digits yet to be
observed.

In the following definition, let π1 denote the left projection of a pair (later on, π2

will also be used to denote the right projection of a pair).

Definition 3.3.2 (Non-monotonic betting strategy). A non-monotonic betting strategy
(non-monotonic strategy, for short) is a function b ∶ {0,1}∗ → N × ({scan} ∪ [−1,1])
such that, when run against a sequence, no position in that sequence is ever visited
more than once. That is, if π1(b(σ)) = n, then, for all τ with σ < τ , π1(b(τ)) ≠ n.

Intuitively, given some σ ∈ {0,1}m, if b(σ) = (n, ρ) (with ρ ∈ [−1,1]), then it
means that, after having read the bits σ(1), ..., σ(m), strategy b has decided to bet a
fraction ρ of its current capital on the fact that the n-th bit of the infinite sequence
being played against is 0—as before, if ρ is negative, then the strategy is betting
a fraction −ρ of its current capital on the fact that the n-th bit of the sequence
is 1. On the other hand, if b(σ) = (n, scan), then strategy b has decided to read
the n-th bit of the sequence against which it is playing without betting anything.
Now, some useful notation. Suppose that we are running strategy b against some
sequence X ∈ {0,1}ω. Let χ(n) ∈ {0,1}n denote the string consisting of all bits
from X that have been observed up to the n-th move (so, χ(0) = ε). For instance,
if X = 10101010..., n = 2, and b is such that π1(b(ε)) = 3 and π1(b(1)) = 6, then
χ(2) = 10. Let seen(n) ⊆ N denote the set of positions that have been visited by
b after n moves (so, seen(0) = ∅). In the previous example, we then have that
seen(2) = {3,6}. Similarly, let #bets(n) ∈ N be the number of bets that have been
placed after n moves (clearly, #bets(n) ≤ n for all n). Finally, let C(χ(n)) ∈ R≥0

denote the capital accrued by strategy b after having observed χ(n), where C(χ(0)) = 1.
At step n + 1, we then have that

(i) If b(χ(n)) = (k, scan) (and k ∉ seen(n)), then

– χ(n+1) = χ(n)X(k);
– seen(n + 1) = seen(n) ∪ {k};

– #bets(n + 1) = #bets(n);
– C(χ(n+1)) = C(χ(n)).
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(ii) If b(χ(n)) = (k, ρ), with ρ ∈ [−1,1] (and k ∉ seen(n)), then

– χ(n+1) = χ(n)X(k);
– seen(n + 1) = seen(n) ∪ {k};

– #bets(n + 1) = #bets(n) + 1;

– C(χ(n+1)) =
⎧⎪⎪⎨⎪⎪⎩

(1 + ρ) ⋅C(χ(n)) if X(k) = 0;

(1 − ρ) ⋅C(χ(n)) if X(k) = 1.

Clearly, the capital function C is a martingale. To make the dependence on strategy b
and on the sequence being played against more explicit, we write CXb (χ(n)) to denote
the capital gained by strategy b after n moves when running against X ∈ {0,1}ω.
Then, we say that a non-monotonic betting strategy b succeeds on X if and only if
lim sup
n→∞

CXb (χ(n)) =∞.
This allows us to define the notion of Kolmogorov-Loveland randomness:

Definition 3.3.3 (Kolmogorov-Loveland randomness). Let X ∈ {0,1}ω. Then, X is
Kolmogorov-Loveland random if and only if there is no computable non-monotonic
strategy which succeeds on it.

As shown by Merkle et al. [2006], the concept of Kolmogorov-Loveland random-
ness is left unchanged if, in Definition 3.3.3, one replaces ‘computable’ by ‘partial
computable’.

The following theorem establishes that Kolmogorov-Loveland randomness is
implied by Martin-Löf randomness.

Theorem 3.3.4 (Muchnik et al. [1998]). Let X ∈ {0, 1}ω. If X is Martin-Löf random,
then it is Kolmogorov-Loveland random.

Whether the converse of Theorem 3.3.4 holds as well is still an open question40.

3.3.3 Typicality and stochasticity via martingales

The notion of martingale function can be used to give a uniform characterisation of
many of the algorithmic randomness concepts found in the literature.

First of all, note that a martingale d ∶ {0,1}∗ → R≥0 is said to be c.e. if there
exists a computable function h ∶ {0,1}∗ ×N → Q such that, for all σ ∈ {0,1}∗, the
sequence (h(σ,n))n∈N is non-decreasing and converges to d(σ). With this definition
at hand, one can obtain a novel, martingale-based characterisation of Martin-Löf
randomness.

Theorem 3.3.5 (Schnorr [1971a]). Let X ∈ {0, 1}ω. Then, X is Martin-Löf random if
and only if no c.e. (super)martingale succeeds on it.

40For a compact discussion of some partial results on this issue involving the notions of permutation
and injective randomness, see [Downey and Hirschfeldt, 2010, Section 7.9].
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Schnorr and Kurtz randomness are also characterisable in terms of martingales.

Theorem 3.3.6 (Schnorr [1971a]). Let X ∈ {0,1}ω. Then, X is Schnorr random
if and only if there are no computable martingale d and computable unbounded
non-decreasing function h ∶ N → N such that d(X ↾ n) ≥ h(n) for infinitely many
n ∈ N.

Theorem 3.3.7 (Kurtz [1981]). Let X ∈ {0, 1}ω. Then, X is Kurtz random if and only
if there are no computable martingale d and computable unbounded non-decreasing
function h ∶ N→ N such that d(X ↾ n) ≥ h(n) for all n ∈ N.

The notions of Church stochasticity and von Mises-Wald-Church stochasticity
from Definition 2.2.1 and Definition 2.2.2(a), on the other hand, may be elegantly
characterised in terms of a special type of martingales (first defined by Ambos-Spies
et al. [1996]) which always bet a fixed fraction of their current capital on the next
bit being 0.

Definition 3.3.8 (Simple martingale). Let d be a martingale. Then, d is simple if and
only if there is a rational ρ ∈ Q ∩ (0,1) such that, for all σ ∈ {0,1}∗ and ι ∈ {0,1},

d(σι) ∈ {d(σ), (1 + ρ) ⋅ d(σ), (1 − ρ) ⋅ d(σ)}.

Theorem 3.3.9 (Ambos-Spies et al. [1996]). Let X ∈ {0,1}ω. Then,

(a) X is Church stochastic if and only if there is no total computable simple
martingale which succeeds on it;

(b) X is von Mises-Wald-Church stochastic if and only if there is no partial
computable simple martingale which succeeds on it.

Now, we say that a martingale d always eventually bets if there is no Y ∈ {0, 1}ω
for which there is some N ∈ N such that, for all n ≥ N , d(Y ↾ n) = d(Y ↾ n − 1).
With this notion at our disposal, Theorem 3.3.9 may be extended to provide a
characterisation of weak Church stochasticity (Definition 2.2.2(b)) in terms of simple
martingales which always eventually bet41.

Proposition 3.3.10. Let X ∈ {0, 1}ω. Then, X is weakly Church stochastic if and only
if there is no total computable simple martingale which always eventually bets that
succeeds on it.

Proof. (⇒) Suppose that there is a total computable simple martingale d which
always eventually bets that succeeds on X. Since d is a simple martingale, by

41Note that Ambos-Spies et al.’s proof of Theorem 3.3.9 relies on the notion of prediction function
(see Definition 13 in [1996]), while, in our proof of Proposition 3.3.10, we avoid this detour.
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definition, whenever it bets, it wagers a positive fraction ρ of its current capital on
the next bit being 0. Since d succeeds on X by assumption, we have that

lim sup
n→∞

∣{y < n ∶ d(X ↾ y) = (1 + ρ) ⋅ d(X ↾ y − 1)}∣
∣{y < n ∶ d(X ↾ y) = (1 − ρ) ⋅ d(X ↾ y − 1)}∣ > 1.

We can then define a total computable selection function sd ∶ {0, 1}∗ → {select, scan}
by letting

sd(Y ↾ n) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

select if d(Y ↾ n + 1) = (1 + ρ) ⋅ d(Y ↾ n)
or d(Y ↾ n + 1) = (1 − ρ) ⋅ d(Y ↾ n)

scan if d(Y ↾ n + 1) = d(Y ↾ n)

for all Y ∈ {0,1}ω. Then, the limsup of the proportion of the bits of X selected by
sd that are 0 is greater than 1

2 , which means that sd[X] does not satisfy Equation
(✠) from the definition of Church stochasticity. Moreover, since, by assumption,
d always eventually bets, sd[Y ] is infinite for all Y ∈ {0,1}ω. Therefore, X is not
weakly Church stochastic.

(⇐) Suppose that X is not weakly Church stochastic. Then, there is a total com-
putable selection function s such that s[Y ] is infinite for all Y ∈ {0,1}ω, but such
that s[X] does not satisfy Equation (✠) from Definition 2.2.1. Recall that, for any
Y ∈ {0,1}ω, #zeroes(Y ↾ n) denotes the number of 0’s among the first n bits of Y .
Then, w.l.o.g., there is some ε > 0 such that there are infinitely many n ∈ N with

#zeroes(s[X] ↾ n)
n

> 1

2
+ ε.

Employing a well-known technique, we will now turn the selection rule s into a
countable collection of martingales. For all k ∈ N, define dk ∶ {0, 1}∗ → R≥0 recursively
as follows:

(i) dk(ε) = 1;

(ii) given dk(σ), let dk(σ0) =
⎧⎪⎪⎨⎪⎪⎩

dk(σ) if s(σ) = scan

(1 + 2−k) ⋅ dk(σ) if s(σ) = select
, and let

dk(σ1) =
⎧⎪⎪⎨⎪⎪⎩

dk(σ) if s(σ) = scan

(1 − 2−k) ⋅ dk(σ) if s(σ) = select.

Clearly, for each k ∈ N, dk is a total computable simple martingale. Moreover, since
s[Y ] is infinite for all Y ∈ {0,1}ω, each dk always eventually bets. Now, given that
there are infinitely many n ∈ N such that #zeroes(s[X] ↾ n) > (1

2 + ε) ⋅ n, for each
such n, consider the bit s[X](n). This digit will occur in X at some position, say,
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m; in other words, m is the n-th integer such that s(X ↾m) = select. Then, for any
k ∈ N, we have that

dk(X ↾m + 1) = (1 + 2−k)#zeroes(s[X]↾n) ⋅ (1 − 2−k)#ones(s[X]↾n)

≥ (1 + 2−k)(
1
2
+ε)⋅n ⋅ (1 − 2−k)(

1
2
−ε)⋅n.

Hence, log dk(X ↾ m + 1) ≥ n ⋅ ((1
2 + ε) ⋅ log(1 + 2−k) + (1

2 − ε) ⋅ log(1 − 2−k)). We

estimate this expression as follows. Let h ∶ R→ R be given by h(r) = (1
2 + ε) ⋅ log(1 +

r) + (1
2 − ε) ⋅ (1 − r) for all r ∈ R. Then, h(0) = 0. Moreover, since the derivative of h

is h′(r) =
1
2 + ε
1 + r −

1
2 − ε
1 − r , h′(0) = 2ε > 0. Hence, if r is sufficiently small, we have that

h(r) > 0. By choosing k large enough, we thus have that log dk(X ↾m+ 1) ≥ δ ⋅n, for
some δ > 0 that is independent of n. Since n can be chosen arbitrarily large, we have
that, for this k, lim sup

m→∞
dk(X ↾m) =∞.

Von Mises-Wald-Church stochasticity is implied by both Martin-Löf random-
ness and partial computable randomness, while Church stochasticity is implied by
computable randomness (and, a fortiori, by Martin-Löf randomness and partial com-
putable randomness). Interestingly, as shown by Wang [1996], Schnorr randomness
is too weak to imply von Mises-Wald-Church stochasticity and Church stochasticity.
However, as proven by Vermeeren, Schnorr randomness does imply weak Church
stochasticity.

Theorem 3.3.11 (Vermeeren [2013]). Let X ∈ {0,1}ω. If X is Schnorr random, then
X is weakly Church stochastic.

So, weak Church stochasticity nicely fits in the picture, adding to the symmetry un-
derlying the interconnections between measure-theoretic typicality and stochasticity
notions (see Figure 3.2).

Since Vermeeren’s proof of Theorem 3.3.11 is rather succinct, we present here a
more detailed argument. While Vermeeren’s original proof relies on König’s Lemma,
our proof will exploit the compactness of Cantor space.

Proof of Theorem 3.3.11.
Suppose that X is not weakly Church stochastic. Then, there is a total computable
selection rule s such that

(i) s[Y ] is infinite for all Y ∈ {0,1}ω, and

(ii) s[X] does not satisfy Equation (✠). Then, w.l.o.g., there is some ε > 0 such
that there are infinitely many n ∈ N with

#zeroes(s[X] ↾ n)
n

> 1

2
+ ε.
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Define the function g ∶ N → N as g(m) = min
σ∈{0,1}m

∣s[σ]∣, for all m ∈ N. Since s is

total computable, so is g. Moreover, g is non-decreasing. For suppose that there
are σ ∈ {0,1}k and τ ∈ {0,1}k+1 such that (i) g(k) = ∣s[σ]∣ and g(k + 1) = ∣s[τ]∣ for
some k ∈ N (i.e., σ and τ minimise the number of bits selected by s at step k and
step k + 1, respectively), and such that (ii) g(k + 1) < g(k). Then, ∣s[τ]∣ < ∣s[σ]∣,
which implies that ∣s[τ−]∣ < ∣s[σ]∣, contradicting the minimality of σ. Finally, we
have that g is unbounded. To see that this is indeed the case, suppose towards a
contradiction that g is bounded. We then have that g has a maximum N ∈ N. Take
m0 such that g(m0) = N . Then, for all m ≥m0, g(m) = N because, as shown earlier,
g is non-decreasing. For each n ∈ N, let Mn denote the set of s-minimal strings of
length n. Then, for each m ≥m0, define the set

Sm = {Y ∈ {0,1}ω ∶ Y ↾m ∈Mm}.

Then, Sm = ⋃{JσK ⊆ {0,1}ω ∶ σ ∈ Mm}. Since each JσK is clopen and Mm is
finite, we then have that Sm is itself a clopen subset of Cantor space. For all
m ≥m0, we also have that Sm ⊇ Sm+1. To see why this is the case, take an arbitrary
m′ ≥m0 and suppose that there is Y ∈ Sm′+1 which is not in Sm′ . Since m′ + 1 >m0,
∣s[Y ↾ (m′ + 1)]∣ = N . But ∣s[Y ↾ (m′)]∣ > g(m′) = N—because Y ∉ Sm′—which is a
contradiction. This allows us to conclude that, for all m > m0, Sm0 ∩ ... ∩ Sm ≠ ∅.
Since Cantor space is compact, we then have that ⋂

m≥m0

Sm ≠ ∅. Hence, there is

Y ′ ∈ {0,1}ω such that g(m) = N = ∣s[Y ′ ↾m]∣ for all m ≥m0. But this means that,
past m0, s does not select any more bits from Y ′, which contradicts our assumption
that s[Y ] is infinite for every Y ∈ {0,1}ω. Hence, g must be unbounded.
Now, let g′ ∶ N → N be any computable unbounded non-decreasing function that
grows more slowly than exp(g). We know from our initial assumptions that there
are infinitely many n ∈ N such that #zeroes(s[X] ↾ n) > (1

2 + ε) ⋅ n. Just like in the
proof of Proposition 3.3.10, for any such n, consider s[X](n): this digit will occur in
X at some position, say, m. So, m is the n-th integer such that s(X ↾m) = select.
Then, for infinitely many values of n, we have that

log (dk(X ↾m + 1)) > n ⋅ h(k) ≥ g(m) ⋅ h(k),

where dk and h are defined as in the proof of Theorem 3.3.10. Then,

lim sup
m→∞

dk(X ↾m)
g′(m) =∞,

which establishes that X is not Schnorr random.

In Section 2.3, we mentioned that Kolmogorov’s own attempt at fixing von Mises’
theory of collectives and at providing a frequentist basis for the applicability of
probability theory relied on the notion of ‘non-monotonic selection function’. In the
context of infinite sequences, a non-monotonic selection function is defined as follows:

49



CHAPTER 3. THE MANY FACES OF ALGORITHMIC RANDOMNESS

Definition 3.3.12 (Non-monotonic selection function). A non-monotonic selection
function is a function s ∶ {0,1}∗ → N × {select, scan} such that if π1(s(σ)) = n, then,
for all τ with σ < τ , π1(s(τ)) ≠ n.

Intuitively, given some σ ∈ {0,1}m, s(σ) = (n, select) means that, after having
read the bits σ(1), ..., σ(m), s has decided to include the n-th bit of the infinite
sequence being played against in the selected subsequence. If, on the other hand,
s(σ) = (n, scan), then s has decided to simply view (or scan) the n-th bit of the
sequence being played against, without including it in the selected subsequence.
More formally, suppose that X ∈ {0, 1}ω is the sequence being played against. Then,
let χ(n) ∈ {0,1}n denote the string of bits from X seen by s after n moves (i.e.,
all the bits seen, independently of whether they were selected or simply scanned)
and β(n) ∈ {0,1}∗ denote the string of bits selected by s from X after n moves (so,
χ(0) = β(0) = ε). Moreover, let seen(n) ⊆ N denote the set of positions in X visited
by s up to the n-th move (so, seen(0) = ∅). Then, the n + 1-st move is given by

(i) If s(χ(n)) = (k, scan), then

– χ(n+1) = χ(n)X(k);
– β(n+1) = β(n);

– seen(n + 1) = seen(n) ∪ {k}.

(ii) If s(χ(n)) = (k, select), then

– χ(n+1) = χ(n)X(k);
– β(n+1) = β(n)X(k);
– seen(n + 1) = seen(n) ∪ {k}.

If s non-monotonically selects from X an infinite subsequence (β(n))n∈N, we denote
such sequence by s[X].

Kolmogorov-Loveland stochasticity is then defined as follows.

Definition 3.3.13 (Kolmogorov-Loveland stochasticity). A sequence X ∈ {0,1}ω is
Kolmogorov-Loveland stochastic if and only if

lim
n→∞

⎛
⎝
#zeroes(s[X] ↾ n)

n

⎞
⎠
= 1

2

for all computable non-monotonic selection functions such that s[X] is infinite.

Given Definition 3.3.13, the following result is immediate (as any computable
monotonic selection rule for which Equation (✠) fails is also a computable non-
monotonic selection rule for which Equation (✠) fails).

Proposition 3.3.14 (Folklore). Let X ∈ {0, 1}ω. If X is Kolmogorov-Loveland stochas-
tic, then it is Church stochastic.
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To nicely complete the picture in light of Vermeeren’s inclusion of weak Church
stochasticity, we then add the following notion.

Definition 3.3.15 (Weak Kolmogorov-Loveland stochasticity). A sequence X ∈ {0, 1}ω
is weakly Kolmogorov-Loveland stochastic if and only if

lim
n→∞

⎛
⎝
#zeroes(s[X] ↾ n)

n

⎞
⎠
= 1

2

for all computable non-monotonic selection functions s such that s[Y ] is infinite for
all Y ∈ {0,1}ω.

One can immediately see that weak Kolmogorov-Loveland stochasticity implies
weak Church stochasticity, just like Kolmogorov-Loveland stochasticity implies
Church stochasticity.

Proposition 3.3.16. Let X ∈ {0,1}ω. If X is weakly Kolmogorov-Loveland stochastic,
then it is weakly Church stochastic.

Moreover, the proof of Proposition 3.3.10 can be easily adapted to provide
a characterisation of weak Kolmogorov-Loveland stochasticity in terms of non-
monotonic betting strategies.

Proposition 3.3.17. Let X ∈ {0, 1}ω. Then, X is weakly Kolmogorov-Loveland stochas-
tic if and only if there is no computable simple non-monotonic betting strategy which
always eventually bets that succeeds on X.

51



CHAPTER 3. THE MANY FACES OF ALGORITHMIC RANDOMNESS

Martin-Löf randomness

Kolmogorov-Loveland
randomness

Kolmogorov-Loveland
stochasticity

weak Kolmogorov-Loveland
stochasticity

Partial computable
randomness

von Mises-Wald-Church
stochasticity

Computable randomness Church stochasticity

Schnorr randomness weak Church stochasticity

Kurtz randomness

Figure 3.2: Known implications between randomness and stochasticity notions.
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Chapter 4

Curbing the Algorithmic Randomness Zoo

The randomness notions illustrated in Chapter 3 are but a fraction of the myriad
‘beasts’ inhabiting the randomness zoo42. Recall that the measure-theoretic definition
of Martin-Löf randomness presented in § 3.2.1 involves c.e. open subsets of {0,1}ω:
these are also known as Σ0

1 classes. The notion of a Σ0
1 class can be generalised to

any n ∈ N, which gives rise to a hierarchy of Σ0
n (and their complements Π0

n) classes
analogous to the arithmetical hierarchy of sets. So, one can obtain randomness
concepts stronger than Martin-Löf randomness by simply replacing Σ0

1 classes by
(open) Σ0

n classes (n > 1) in Martin-Löf’s original definition. Each level of the
hierarchy of Σ0

n classes then corresponds to a notion of n-randomness. The study of
n-randomness can be further extended by increasing the logical complexity of the
sets of real numbers under consideration: for instance, one can consider algorithmic
randomness in the context of second-order arithmetic. In this setting, one investigates
the properties of higher randomness notions such as Π1

1 randomness, Π1
1 Martin-Löf

randomness, ∆1
1 randomness and ∆1

1 Martin-Löf randomness [Martin-Löf, 1970;
Chong et al., 2008]. Naturally, the randomness zoo also extends below Martin-Löf
randomness, Schnorr randomness and Kurtz randomness. Schnorr, for example, paved
the way for the study of randomness concepts defined in terms of resource-bounded
martingales (in the sense of computational complexity), which resulted in notions
such as polynomial-time randomness and polynomial-time Schnorr randomness43.

Given the humongous variety of specimens in the randomness zoo, it is only natural
to wonder whether all of these notions are legitimate and useful. Perhaps, there is
only one correct definition of algorithmic randomness and all other concepts are just
outlandish mathematical abstractions. In light of these considerations, this chapter
will be centred around the debate between algorithmic randomness monism—i.e., the

42See [Taveneaux, 2012] for a nice graphical representation of the randomness zoo.
43See [Wang, 1996].
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view that there is only on true (algorithmic) randomness notion—and algorithmic
randomness pluralism—namely, the position according to which there are several
definitions of randomness that are correct, in the sense that they possess most of
the properties mathematicians have taken to be crucial for randomness. We will
begin by outlining three randomness theses that have been defended in the literature,
each of which purports that a particular randomness notion is the only correct one.
Then, we will appraise the arguments respectively used to support each of these
theses and to refute the competitors. First, we will address Osherson and Weinstein’s
criticism of Martin-Löf randomness [2008]; then, we will discuss Schnorr’s famous
critique of Martin-Löf randomness [1971b]. As we will see, in spite of seemingly
going in opposite directions, both criticisms actually rest on similarly epistemic
interpretations of the concept of randomness. We will conclude by arguing that,
given the available evidence, a pluralist viewpoint is the most reasonable position to
adopt: many (though not all) randomness concepts on the market meet the criteria
that mathematicians seem to (more or less) agree a natural notion of randomness
should satisfy, so all of these notions are worthy of investigation.

4.1 Three randomness theses

Every introductory course in computability theory starts with the Church-Turing
Thesis, according to which the intuitive concept of a function being ‘effectively
calculable in a finite number of steps by a human being following a finite set of rules’
is captured by the notion of Turing-machine computability. The Church-Turing
Thesis is not a mathematical result, so it cannot be proved; yet, it puts forward a
very convincing identification, which derives most of its strength from the fact that
every known formal specification of the class of calculable number-theoretic functions
has the same extension. In particular, a function is Turing-machine computable if
and only if it is general recursive if and only if it is λ-computable.

In the literature on algorithmic randomness, it is not uncommon to find theses
that purport to be analogues of the Church-Turing Thesis for our pre-theoretic
notion of randomness44. The most famous of these theses is the Martin-Löf Thesis45,
championed, among others, by Delahaye46 [1993; 2011] and Dasgupta [2010]:

The Martin-Löf Thesis. A sequence is intuitively random if and only if
it is Martin-Löf random.

It should be immediately noted that the Martin-Löf Thesis is not meant as an
explication of physical chance (it is generally agreed that algorithmic randomness

44We will clarify soon what this pre-theoretic notion might amount to.
45In the literature, this thesis is sometimes referred to as the Martin-Löf-Chaitin Thesis (see, for

instance, [Delahaye, 2011]).
46Delahaye [2011, p. 132] also claims that the Martin-Löf Thesis is supported by Chaitin [1987],

Kolmogorov and Uspenskii [1987], Gács [1986] and Levin [1973].
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on the whole is not the right framework for modelling the kind of randomness we
encounter in the physical world). It instead aims at capturing a purely mathematical
notion: roughly, it proposes to identify everything that mathematicians have been
taking to be significant about randomness with Martin-Löf’s celebrated definition.
Now, this claim of course raises the question of what it is that mathematicians have
been taking to be significant about randomness. Is there a unique such list, or at least
a collection of properties that everybody seems to agree upon? We will see that it is
precisely by trying to make this idea more concrete by considering specific properties
which are generally deemed desirable for a randomness notion that we will come
to the conclusion that monism about algorithmic randomness is an unwarranted
position.

The most common argument used to defend the Martin-Löf Thesis consists in
claiming that Schnorr’s characterisation results (Theorem 3.2.4 and Theorem 3.3.5)
evince that Martin-Löf’s definition is not only mathematically elegant, but also very
robust, just like the definition of Turing-machine computability. The convergence
of the measure-theoretic, incompressibility and martingale-based definitions must
surely be an indication of the fact that we have managed to single out a truly
significant notion—in fact, that we have managed to capture the one true concept of
mathematical randomness.

The main problem with this reasoning is that, in the context of algorithmic
randomness, the robustness argument is not nearly as strong as in the case of the
Church-Turing Thesis. This is because, as we have seen, there are countless notions
of algorithmic randomness in the literature, and most of them are similarly robust, in
that they have formulations in all three different paradigms by now47. So, although
Theorem 3.2.4 and Theorem 3.3.5 are altogether rather striking, so are their analogues
for other randomness notions.

Ultimately, it seems that the main reason why this robustness argument has
been deemed to provide strong evidence in favour of the Martin-Löf Thesis is that
Martin-Löf randomness, originally defined in terms of statistical tests, was the first
algorithmic randomness notion to be characterised in terms of martingales and
Kolmogorov complexity, as well. Arguably, it was this historical advantage that
made the analogy between the Martin-Löf Thesis and the Church-Turing Thesis
appear so plausible at first.

This is not to say that the Martin-Löf Thesis enjoys no credibility whatsoever.
As we will see, there are many reasons why Martin-Löf’s definition can be said
to correspond to a natural notion of randomness. For the time being, we only
wish to point out that the robustness argument does not establish that Martin-
Löf randomness is the only notion that can be said to capture mathematicians’

47For instance, we saw in § 3.2.2, § 3.2.3 and § 3.3.3 that Schnorr randomness and Kurtz randomness
can be defined both in terms of statistical tests à la Martin-Löf and in terms of martingales. Both
notions have also been given an equivalent machine characterisation via computable measure machines
[Downey et al., 2004; Downey and Griffiths, 2004] and via decidable machines [Bienvenu and Merkle].
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pre-theoretic intuitions about randomness.
In addition to the Martin-Löf Thesis, there are two other competing theses that

have enjoyed some success in the literature, both of which were formulated as a
reaction to the perceived inadequacies of Martin-Löf randomness. The first one is
Schnorr’s Thesis, advocated (unsurprisingly) by Schnorr [1971b]:

Schnorr’s Thesis. A sequence is intuitively random if and only if it is
Schnorr random.

The second one is more recent and is due to Osherson and Weinstein [2008]:

The Weak 2-Randomness Thesis. A sequence is intuitively random if
and only if it is weakly 2-random.

The Weak 2-Randomness Thesis is based on a notion of randomness that is
strictly stronger than Martin-Löf randomness48:

Definition 4.1.1 (Weak 2-randomness). (a) Let (Un)n∈N be a computable sequence
of c.e. open sets such that lim

n→∞
λ(Un) = 0. Then, (Un)n∈N is said to be a

generalised Martin-Löf test.

(b) For every generalised Martin-Löf test (Un)n∈N, a set N ∈ ℘(⋂
n∈N
Un) is called a

generalised Martin-Löf null set.

(c) A sequence X ∈ {0, 1}ω is said to be weakly 2-random if and only if there is no
generalised Martin-Löf null set N such that X ∈ N .

Weak 2-randomness is a generalisation of Kurtz randomness: it can be equivalently
characterised in terms of Σ0

2 classes of measure one (in fact, Kurtz randomness can
be generalised to higher levels as well, just like Martin-Löf randomness).

4.2 Critiques of Martin-Löf randomness

In what follows, we will discuss the rationale behind the Weak 2-Randomness Thesis
and Schnorr’s Thesis, respectively. Interestingly, these two alternatives to the Martin-
Löf Thesis hinge on criticisms of Martin-Löf randomness which are, in one sense,
diametrically opposed, but, in another respect, based on very similar intuitions.

48The first occurrence of the notion of weak 2-randomness in print dates back to [Gaifman and
Snir, 1982]. However, weak 2-randomness is already discussed in Solovay’s notes [1975]. It also
appears in Kurtz’ doctoral dissertation [1981].
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4.2.1 Osherson and Weinstein’s critique

Let us begin with a definition. A sequence X ∈ {0,1}ω is said to be ∆0
2 if there is a

computable function f ∶ N ×N→ N such that, for each n,

(i) X(n) = lim
m→∞

f(n,m), and

(ii) f(n, i) ≠ f(n, j) for only finitely many i, j.

So, a sequence is ∆0
2 if it is decidable in the limit.

The Weak 2-Randomness Thesis is mostly motivated by the following observation:
there exist some Martin-Löf random sequences which are ∆0

2. However, being
decidable in the limit is a property that, according to Osherson and Weinstein, is
not “congruent with the intuition that random sequences lack structure” [2008, p. 2].
Hence, they argue, the collection of ‘truly random’ sequences cannot be identified
with the set of Martin-Löf randoms. Moreover, as proven by Martin49, there is no
∆0

2 weakly 2-random sequence50. So, weakly 2-random sequences display ‘typical’
random behaviour (in the sense of Martin-Löf) and, at the same time, they are
not decidable in the limit (so, they are not ‘close to being computable’). Thus,
according to Osherson and Weinstein, weak 2-randomness, as opposed to Martin-Löf
randomness, is the correct mathematical formalisation of the intuitive concept of
randomness.

Although being decidable in the limit is a property that indeed appears to be
somewhat at odds with randomness, there are other methods to gauge the extent
to which a sequence is ‘close to being computable’. The notion of lowness from
computability theory, for example, can be viewed as addressing this question. First,
note that several notions of algorithmic randomness can be relativised to an oracle.
For instance, in the context of randomness concepts defined in terms of effective
statistical tests, one could appeal to an oracle containing non-computable information
so as to extend the class of available tests and allow for the identification of patterns
which could not have been found with merely effective means. An example: given
an oracle A, an A-Martin-Löf test is a nested sequence (Un)n∈N of sets which are
A-effectively open (i.e., their basic open subsets can be enumerated with oracle A),
and whose measure is bounded by an A-computable sequence of rational numbers
which goes to 0. Now, given a randomness concept R that is relativisable in this sense,
we have that a sequence X ∈ {0,1}ω is low for R-randomness if every R-random
sequence is R-random relative to X. Hence, X is low for R-randomness if it has no
de-randomisation power with respect to it51.

49See [Solovay, 1975].
50Note that this pattern actually persists throughout the algorithmic randomness hierarchy: for

each n ∈ N, there are ∆0
n+1 sequences which are n-random. However, no ∆0

n+1 sequence can be
(n + 1)-random [Downey and Hirschfeldt, 2010, Section 6.8].

51See [Downey and Hirschfeldt, 2010, Definition 11.2.1].
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In [2013], Bienvenu et al. employ an altogether different method to measure ‘how
close a sequence X is to being computable’: they consider the size of the domain
of any partial computable function that X extends—where X is said to extend a
partial computable function ϕ if, for all n ∈ dom(ϕ), X(n) = ϕ(n). Intuitively, the
larger the domain of ϕ is, the closer X is to being computable. Interestingly, in this
context, it turns out that bi-immune sequences (i.e., sequences which do not contain
any computable subsequences) are ‘as far as possible from being computable’, in
the sense that a sequence is bi-immune if and only if it does not extend any partial
computable function with infinite domain. Bi-immunity, however, is possibly the
weakest randomness notion found in the literature: it is even implied by Kurtz
randomness.

This variety of ‘measures’ that one may use to calibrate the ‘distance’ of a
sequence from computability suggests that, in order to establish that the Weak
2-Randomness Thesis is correct, one would have to offer some further arguments to
explain why avoiding ∆0

2 sequences indeed captures in the most convincing way the
idea that a random sequence should be as uncomputable as possible.

To provide such an argument, Osherson and Weinstein offer a learning-theoretic
characterisation of weak 2-randomness, creating an interesting bridge between al-
gorithmic randomness and computational learning theory52. Their suggestion is
that ‘true’ randomness should be equated with anonymity : in a nutshell, a random
sequence should not be identifiable or recognisable by any computable process (or
human mind, as Osherson and Weinstein more provocatively put it).

Osherson and Weinstein’s learning-theoretic approach to randomness may be
thought of as an infinite game played by a computable process, the learner, against
Nature. The game begins with Nature showing the learner some infinite sequence
X ∈ {0, 1}ω, in its entire length. After the learner has had a chance to briefly observe
X and memorise as much of it as possible, the sequence is hidden from view. Then,
Nature starts revealing to the learner some sequence Y which may or may not
coincide with X, this time one bit at a time, ad infinitum. The learner’s goal is
to determine whether Y =X. Whenever the learner believes to be confronted with
an initial segment of the target sequence X, she has to answer “Yes!”; whenever
she believes to be playing against a sequence different from X, she has to answer
“No!”. Now, suppose that Y indeed coincides with the target sequence X. The basic
intuition behind this game is that if X is a random sequence, then a computable
learner should not be able to figure out that Y = X, even after having had the
opportunity to observe X for a while. If X is non-random, on the other hand, a
clever learner might be able to exploit some of X’s identifying patterns to guess
correctly.

During a run of the game, the learner has to make infinitely many yes/no guesses.
In order to determine whether the learner is successful in identifying X (that is,
in recognising that Y = X), one first has to fix a success criterion against which

52For an overview of computational learning theory, see, for instance, [Jain et al., 1999].
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to evaluate the learner’s performance. The first such criterion that Osherson and
Weinstein consider, called sequence identification, allows them to provide a learning-
theoretic characterisation of weak 2-randomness, which they then use as an argument
in favour of the Weak 2-Randomness Thesis.

First, note that a learner can be modelled as a function ` ∶ {0,1}∗ → {yes, no},
which takes as input finite binary strings and outputs either yes or no, depending on
whether the input string is conjectured to be an initial segment of the target sequence
or not. We will refer to ` as a learning function. Then, sequence identification is
defined as follows.

Definition 4.2.1 (Sequence identification). Let X ∈ {0,1}ω. A learning function
` ∶ {0,1}∗ → {yes, no} is said to identify X if and only if the set

V` = {Y ∈ {0,1}ω ∶ `(Y ↾ n) = yes for infinitely many n ∈ N}

is such that (i) X ∈ V`, and (ii) λ(V`) = 0—where λ denotes the Lebesgue measure.

Intuitively, V` (`’s ‘success’ set) contains all those sequences that the learner believes
to coincide with the target sequence X. In order for ` to successfully identify X,
X has to be in the success set associated with `, and there cannot be too many
sequences that ` mistakes for X—hence, the requirement that λ(V`) = 0. So, the
learner is allowed to make mistakes, but only measure-zero many of them.

With Definition 4.2.1 at hand, Osherson and Weinstein are able to prove the
following.

Proposition 4.2.2 (Osherson and Weinstein [2008]). Let X ∈ {0,1}ω. Then, X is
weakly 2-random if and only if no computable learning function identifies it.

Note that, as a learning criterion, sequence identification is very permissive. Upon
sequentially observing some sequence X, the learner may change her mind about
whether she is indeed being fed bits from X infinitely many times (i.e., `(X ↾ n) = no
may occur for infinitely many n ∈ N) and yet count as having successfully identified
X, so long as ` outputs yes infinitely often. Hence, if X is weak 2-random—and
so, by Proposition 4.2.2, no computable learner identifies X—then any computable
learning function can output yes on at most finitely many initial segments of X.

In interpreting Proposition 4.2.2, Osherson and Weinstein adopt an epistemic
perspective: weak 2-randomness, they argue, perfectly captures the intuition that a
random sequence is one which no computable agent should be able to memorise, and
which should not include any patterns discernible by computable agents that could
set it apart from other random sequences. In this light, the authors conclude, weak
2-randomness can be seen to be more natural a notion than Martin-Löf randomness.

This line of reasoning—“at the confluence of measure-theoretic and epistemic
perspectives on reals” [Osherson and Weinstein, 2008, p. 7]—is somewhat surprising
because, as we will see in § 4.2.2, Schnorr’s ultimate justification for his randomness
thesis relies on a similarly epistemic, evidence-based approach. This is rather
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unexpected, given that the Weak 2-Randomness Thesis and Schnorr’s Thesis advocate
the adoption of two completely different randomness concepts, on the opposite sides
of the spectrum with respect to Martin-Löf randomness.

The ‘agent-centred’ argument delineated above might partially lose its bite in
view of another characterisation result proven in the same paper. Osherson and
Weinstein in fact consider a second learning criterion besides sequence identification:
namely, strong sequence identification.

Definition 4.2.3 (Strong sequence identification). Let X ∈ {0, 1}ω. A learning function
` is said to strongly identify X if and only if the set

W` = {Y ∈ {0,1}ω ∶ `(Y ↾ n) = yes for cofinitely many n ∈ N}

is such that (i) X ∈W`, and (ii) λ(W`) = 0.

Interestingly, strong sequence identification can be used to characterise another
familiar randomness concept:

Proposition 4.2.4 (Osherson and Weinstein [2008]). Let X ∈ {0,1}ω. Then, X is
Kurtz random if and only if no computable learning function strongly identifies it.

Strong sequence identification is a much more demanding (and, perhaps, more
natural) learning criterion than mere sequence identification: in order for her guesses
to count as learning, a learner is allowed to change her mind at most a finite (although
arbitrarily large) number of times. This means that, when a sequence X is Kurtz
random—and so, by Proposition 4.2.4, there is no computable learning function
that strongly identifies X—there might still be a computable learner that, upon
observing X, outputs yes infinitely often. So, weak 2-random sequences are indeed
more difficult to recognise than Kurtz random sequences.

However, Proposition 4.2.4 may be taken to indicate that equating weak 2-
randomness with the impossibility of successful learning by a computable agent is
rather misleading. This is because both weak 2-randomness and Kurtz randomness
can be characterised in terms of computable learning functions: the difference between
the two characterisation results lies in the choice of identification criterion, not in the
computational power of the underlying learner. Moreover, the fact that, when fed a
Kurtz random sequence, a computable learner might still answer yes infinitely often
is not necessarily problematic: after all, one might argue, answering yes infinitely
often hardly counts as learning.

The problem is that, as explained in Chapter 3, Kurtz randomness is strictly
weaker than Martin-Löf randomness (in fact, it is strictly weaker than Schnorr
randomness, as well). Hence, there are Kurtz random sequences which are decidable
in the limit (i.e., which are ∆0

2). So, it would hardly be a welcome conclusion if the
notion of randomness that seems to best capture the learning-theoretic intuitions
underlying Osherson and Weinstein’s framework turned out to be Kurtz randomness.
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Our goal here is not to countenance an argument of this sort. We believe,
however, that for the Weak 2-Randomness Thesis to be vindicated, one would have
to conclusively show that the above line of reasoning is amiss, and that sequence
identification as per Definition 4.2.1 is the only learning criterion that makes intuitive
sense in the context of algorithmic randomness. Moreover, any argument to this effect
would have to appeal to independent evidence and not rely on the fact that there
are Kurtz random sequences which are decidable in the limit. A cogent justification
for a claim of this kind, however, does not seem to be readily available.

Setting aside this debate for a moment, it is worth pointing out that Osherson
and Weinstein’s learning-theoretic framework offers a very nice epistemic perspective
on algorithmic randomness. As already noted, its underlying motivation seems to be
akin to the rationale behind Schnorr’s critique of Martin-Löf randomness (§ 4.2.2),
and also to the ‘behaviouristic’ approach to pseudorandomness often adopted in
cryptography. In this latter context, where one is mostly interested in defining the
concept of a pseudorandom generator, a string is said to be pseudorandom if no
efficient observer (where efficiency is cashed out in terms of feasible computation)
can distinguish it from a uniformly chosen string of the same length [Wang, 2000].

Moreover, Osherson and Weinstein’s work prompts the interesting question of
whether other randomness notions may be amenable to a natural learning-theoretic
characterisation, as well. For instance, is it possible to obtain Martin-Löf randomness
or computable randomness or Schnorr randomness by modifying the amount of
admissible mind changes in the definition of sequence identification? How could
the requirement that, given a Martin-Löf test (Un)n∈N, the measures of the test
sets Un should converge to zero at a computable rate be captured in learning-
theoretic terms? Osherson and Weinstein’s results rely on the definition of weak
2-randomness and Kurtz randomness in terms of effective statistical tests. It would
also be interesting to compare Osherson and Weinstein’s learning-theoretic paradigm
with the martingale-based approach to algorithmic randomness discussed in Section
3.3. What is the connection between identifiability and martingale success? Is there
a natural correspondence between the sets V` and W` from Definition 4.2.1 and
Definition 4.2.3 and the set of sequences against which a martingale gains unbounded
capital?

A brief learning-theoretic digression

In view of the above considerations, in what follows we will have a first pass at
further exploring Osherson and Weinstein’s learning-theoretic framework (with an
eye on the unpredictability paradigm).

Let us begin by introducing a new identification criterion.

Definition 4.2.5 (Sequence identification with no mind changes). Let X ∈ {0,1}ω. A
learning function ` ∶ {0,1}∗ → {yes, no} is said to identify X with no mind changes
if and only if the set
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Z` = {Y ∈ {0,1}ω ∶ `(Y ↾ n) = yes for all n ∈ N}
is such that (i) X ∈ Z`, and (ii) λ(Z`) = 0.

Definition 4.2.5 allows us to obtain the following, alternative characterisation
result for Kurtz randomness.

Proposition 4.2.6. Let X ∈ {0,1}ω. Then, X is Kurtz random if and only if no
computable learning function identifies X with no mind changes.

Proof. (⇒) Suppose that there is a computable learning function ` ∶ {0,1}∗ →
{yes, no} which identifies X with no mind changes. Then, by Definition 4.2.5, the set
Z` = {Y ∈ {0,1}ω ∶ `(Y ↾ n) = yes for all n ∈ N} is such that X ∈ Z` and λ(Z`) = 0.
The characterisation of Z` in terms of `, which is by assumption computable, imme-
diately allows us to conclude that Z` is a Π0

1 class. Hence, its complement Z` is a
Σ0

1 class (i.e., a c.e. open subset of {0,1}ω). Moreover, since λ(Z`) = 0, λ(Z`) = 1.
This means that there is a c.e. open subset of {0,1}ω of measure one, Z`, to which
X does not belong. Hence, by Definition 3.2.3, X is not Kurtz random.

(⇐) Suppose that X is not Kurtz random. Then, by Theorem 3.3.7, there is a
computable martingale d ∶ {0,1}∗ → R≥0 and a computable, non-decreasing and
unbounded function h ∶ N→ N such that d(X ↾ n) ≥ h(n) for all n. Then, we define
a learning function ` ∶ {0,1}∗ → {yes, no} as follows: for all σ ∈ {0,1}∗, set

`(σ) =
⎧⎪⎪⎨⎪⎪⎩

yes if d(σ) ≥ h(∣σ∣);
no otherwise.

Since d and h are by assumption computable, so is `. Now, consider the set

Zd = {Y ∈ {0,1}ω ∶ d(Y ↾ n) ≥ h(n) for all n ∈ N}.

Clearly, X ∈ Zd. Moreover, Zd is a subset of the collection of sequences on which
d manages to accrue unbounded capital. Recall that, by Theorem 2.2.6, a subset
of {0,1}ω has Lebesgue measure zero if and only if there exists a martingale which
succeeds on it. By the effective version of Theorem 2.2.6 discussed in § 3.3.1, the set
of sequences on which d succeeds has effective Lebesgue measure 0; a fortiori, so does
Zd. Finally, for any Y ∈ {0,1}ω, Y ∈ Zd if and only if `(Y ↾ n) = yes for all n ∈ N, by
our definition of `. Hence, ` is a computable learning function which identifies X
with no mind changes.

Corollary 4.2.7. Sequence identification with no mind changes is equivalent to strong
sequence identification.

An argument analogous to the right-to-left direction of the proof of Proposition
4.2.6 can be employed to show that, given some sequence X, if there is no computable
learner which identifies X (in the sense of Definition 4.2.1), then X is Schnorr random.

Having indulged in this brief learning-theoretic detour, we now turn to Schnorr’s
Thesis and Schnorr’s critique of Martin-Löf randomness.
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4.2.2 Schnorr’s critique

The rationale for Schnorr’s Thesis is a well-known critique, advanced by Schnorr,
of the notion of effective null sets introduced by Martin-Löf. Schnorr notes that,
although we can know how fast a Martin-Löf test converges to zero, no such test is
effectively given: the measures of the test sets Un are not computable, they are only
left-c.e.; hence, in general, we cannot computably decide whether a given cylinder
belongs to the n-th level of some Martin-Löf test or not. However, according to
Schnorr, the only statistical properties of randomness which have a ‘physical meaning’
are those properties the failure of which can be established by statistical experience
using computable methods. Moreover, he argues, ‘true’ randomness should only
include those properties of randomness that have a physical meaning. Hence, although
Martin-Löf’s definition captures all relevant statistical properties of randomness, it
gives rise to a notion of algorithmic randomness which is too strong and devoid of
physical significance.

Schnorr’s reasoning can be illustrated from within the unpredictability paradigm,
as well. His critique of Martin-Löf randomness consists in claiming that a satisfactory
notion of randomness should be concerned with defeating computable betting strate-
gies rather than computably enumerable ones, which are fundamentally asymmetric
(why should we allow approximations from below, but not from above?). The concept
of computable randomness, based on computable martingales, is expressly introduced
to remedy this perceived problem. Yet, Schnorr considers computable randomness
unsatisfactory, as well:

Computability and the martingale property [i.e., the fairness condition]
suffice to characterize effective tests. But which sequences are refused
by an effective test? [...] One would define that a sequence X does not
withstand the test d if and only if lim sup

n→∞
d(X ↾ n) =∞. However, if the

sequence d(X ↾ n) increases so slowly that no one working with effective
methods only would observe its growth, then the sequence X behaves
as if it withstands the test d. The definition of [the set of sequences
on which d succeeds] has to reflect this fact. That is, we have to make
constructive53 the notion lim sup

n→∞
d(X ↾ n) =∞ [1971b, p. 256].

To avoid counting as non-random sequences along which the capital of a computable
martingale grows very slowly, Schnorr then proposes the notion of Schnorr randomness
(as an alternative to computable randomness), where the corresponding martingales
are required not only to be computable, but also to succeed in accruing unbounded
capital at a computable rate.

The explication of Schnorr’s critique from the perspective of betting strategies
highlights the fact that Schnorr’s conception of randomness is akin to that behind

53Emphasis added.
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the definition of Church stochasticity (and, even more surprisingly, to that behind
Osherson and Weinstein’s critique): that is, Schnorr takes randomness to be an
evidence-based notion. More precisely, in Schnorr’s view, a sequence fails to be
random if and only if there is a computable process in which this failure becomes
apparent. If no such computable process exists, then the sequence behaves like
a random sequence. A correct definition of randomness should thus ensure that
sequences of this sort are classified as being random.

Such an epistemic perspective, although intriguing, raises the question of whether
Schnorr’s identification of the class of ‘statistical properties with a physical meaning’
with the collection of properties whose failure can be detected by a computable
process is indeed legitimate. As already noted, Schnorr himself was dissatisfied with
the notion of computable randomness and, in defining Schnorr randomness, added
the requirement of ‘convergence at a computable rate’. One may then take this line
of reasoning one step further and argue as follows: even a computable martingale
which accumulates unbounded capital at a computable rate may not correspond to
a randomness test that is performable in any physically meaningful way (perhaps,
because in order to become infinitely rich, a gambler is required to wait for too much
time). So, from an epistemic viewpoint, one could very well contend that the only
statistical tests that can be said to really have physical meaning are those which
are feasibly given (in the sense of computational complexity), rather than those
which are only effectively given (in the sense of computability theory). Perhaps,
true (epistemic) randomness can only be captured in terms of, say, polynomial-time
martingales.

This objection seems to indicate that Schnorr’s case for the primacy of computable
methods in the definition of randomness is not entirely convincing. If Schnorr’s
epistemic concerns are supposed to be taken very seriously, one may end up having
to focus on pseudo-randomness notions from complexity theory instead of Schnorr
randomness. On the other hand, if Schnorr’s critique is not meant to be taken too
literally, then one may wonder whether there are indeed enough grounds to dismiss
computably enumerable martingales à la Martin-Löf as a useful idealisation.

This is not to say, however, that epistemic concerns should play no role when
trying to evaluate the usefulness and legitimacy of a randomness notion. As seen in
§ 4.2.1, epistemic considerations can not only provide new insights, but even give rise
to new paradigms within which to study the algorithmic randomness zoo. However,
epistemic considerations should not be granted any priority and should be weighted
against other possible types of considerations. For instance, we know that Schnorr
randomness possesses some rather undesirable properties (such as lacking a universal
test, as we already noted in § 3.2.2). So, these drawbacks should be taken into
account when evaluating Schnorr’s Thesis. This point, we believe, is also poignant
in the context of randomness concepts that are weaker than Schnorr randomness
(for instance, sub-computable randomness notions), which, although possibly more
reasonable from an epistemic point of view, not only inherit the problems that
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Schnorr randomness has, but also face other issues of their own.

4.3 From a pluralist point of view

In view of our earlier discussion, there does not seem to be any argument offered in
favour of the Martin-Löf Thesis or Schnorr’s Thesis or the Weak 2-Randomness Thesis
which successfully establishes the correctness of the corresponding randomness notion
and the inadequacy of all other randomness concepts. However, this could perhaps
be the case because the arguments put forward by the proponents of these three
randomness theses are not exhaustive enough: they do not consider all properties
that a satisfactory randomness concept should possess and weight them against one
another. Perhaps, if such a list were available, then it could be conclusively shown
that there is only one algorithmic randomness notion which satisfies all of these
properties and is therefore the correct formalisation of our intuitive conception of
randomness. In what follows, we will see that, by explicitly considering a possible
(non-exhaustive) list of desiderata for algorithmic randomness, pluralism, rather than
monism, emerges as the most reasonable position to adopt.

In [2013; 2015], Rute discusses the following list of features that are generally
acknowledged in the literature as being desirable for a randomness concept, and
whose investigation has been fuelling much of the most recent work in algorithmic
randomness (in particular, in the context of the interplay of algorithmic randomness
with computable analysis and computable measure-theory):

(1) A natural randomness notion should be generalisable to other probability
spaces (as opposed to being definable only on Cantor space equipped with the
Lebesgue measure) and, ideally, to all computable probability spaces.

(2) It should be invariant under isomorphisms between probability spaces: that is,
given two computable probability spaces (X , µ) and (Y, ν) and isomorphism
T ∶ (X , µ)→ (Y, ν), we should have that if X ∈ X is random, so is T (X) ∈ Y.

(3) Randomness should also be conserved under any computable measure-preserving
map: that is, for any computable measure-preserving map T ∶ {0, 1}ω → {0, 1}ω
and X ∈ {0,1}ω, we should have that if X is random, then so is T (X). This
criterion is known as randomness preservation.

(4) Measures that have the same null sets should count the same sequences as
being random. When two measures (defined on the same space, of course) have
the same null sets, they are in fact equivalent.

(5) The dual property of randomness preservation should hold as well: that is, for
any effective measure-preserving map T ∶ {0,1}ω → {0,1}ω and any random
sequence Y ∈ {0, 1}ω, there should be a random X ∈ {0, 1}ω such that T (X) = Y .
This criterion is known as no-randomness-from-nothing.
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(6) Finally, a natural randomness notion should satisfy van Lambalgen’s Theorem54

(or some appropriate variant thereof).

Now, how do the notions of randomness discussed in this dissertation—and, in
particular, those furthered by the randomness theses discussed in § 4.1—fare with
respect to the above criteria? Property (1) is satisfied, among others, by weak 2-
randomness, Martin-Löf randomness, computable randomness, Schnorr randomness,
and Kurtz randomness. It is not clear whether partial computable randomness
satisfies it, as well. Property (2) obtains for all of the above notions, except for partial
computable randomness. Randomness preservation (property (3)) holds for weak
2-randomness, Martin-Löf randomness, Schnorr randomness, and Kurtz randomness,
but not for computable randomness. Weak 2-randomness, Martin-Löf randomness,
computable randomness, Schnorr randomness, and Kurtz randomness all satisfy
property (4). No-randomness-from-nothing (property (5)), on the other hand, holds
for weak 2-randomness, Martin-Löf randomness and computable randomness, but
not for Schnorr randomness55. Finally, Martin-Löf randomness satisfies the original
formulation of van Lambalgen’s Theorem, while neither Schnorr nor computable nor
weak 2-randomness do. However, if the usual notion of relativised Schnorr randomness
is replaced with the weaker notion of uniformly relative Schnorr randomness (see
[Miyabe and Rute, 2013]), then van Lambalgen’s Theorem can be shown to hold for
Schnorr randomness, too. In the case of computable randomness, only one direction
of van Lambalgen’s Theorem for uniform relativisation holds.

Although Martin-Löf randomness still seems to have the upper hand with respect
to Rute’s list of desiderata (which is by no means exhaustive), there are many other
notions of randomness which turn out to satisfy most of the above criteria. In
particular, Schnorr randomness does nearly as well as Martin-Löf randomness. In
view of these positive results, the moral of the controversy over monism vs. pluralism
in the context of algorithmic randomness seems to be that adopting a pluralist
perspective may indeed the most reasonable approach. By taking seriously and
making precise the very criterion that Delahaye uses to argue for the Martin-Löf
Thesis—namely, that a natural notion of randomness should satisfy as many of the
properties mathematicians deem desirable for a randomness concept as possible—one

54In its most basic form, van Lambalgen’s Theorem is the following result:

Theorem (van Lambalgen [1990]). The following are equivalent:

(a) X � Y is n-random (where X � Y is the join of X and Y );

(b) X is n-random and Y is n-random relative to X;

(c) Y is n-random and X is n-random relative to X;

(d) X and Y are relatively n-random.

Intuitively, van Lambalgen’s Theorem states that a random sequence should have the property that
no information about its ‘left part’ should be obtainable from its ‘right part’ and vice versa.

55In fact, Martin-Löf randomness is the weakest algorithmic randomness notion which satisfies
both no-randomness-from-nothing and randomness preservation.

66



CHAPTER 4. CURBING THE ALGORITHMIC RANDOMNESS ZOO

can see that several randomness notions are, in a sense, correct and provide valuable
insights into the workings of computable mathematics. So, this discussion suggests
that there is not always a single answer to the question“is this sequence/set random?”,
and, rather than trying to dismantle the randomness zoo in order to single out one
true randomness notion, the task ahead is more adequately seen as a taxonomic
one: the randomness zoo can be organised in different ways, each of which could
potentially reveal some new interesting connections between algorithmic randomness
and other branches of mathematics. Our conclusion is thus consonant with Porter’s:

[W]e cannot justifiably say of any of these three randomness thesis
candidates what Gödel said of the definition of computability, that we
have an “absolute definition of an interesting epistemological notion, i.e.,
one not depending on the formalism chosen” [1946, p. 150]. None of these
definitions of randomness captures everything that mathematicians have
taken to be significant concerning the concept of randomness. Rather,
we have a family of definitions of an interesting epistemological notion,
many of which provide insight into certain mathematically significant
notions of typicality [2015, p. 4].

To summarise our discussion: ultimately, the main issue with the randomness
theses proposed in the literature is not that it does not make sense to ask the
question of whether a given randomness notion is natural, or whether it satisfies the
pre-theoretic intuitions about randomness held by the mathematical community. The
problem is that, once these pre-theoretic intuitions are made precise and concrete,
it turns out that various notions of randomness can be legitimately said to satisfy
them, not just one.
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Chapter 5

Randomness via Probabilistic Martingales

Most of the literature on Kolmogorov-Loveland randomness is motivated by the
desire to obtain stronger notions of algorithmic randomness, closer to Martin-Löf’s
definition, while also complying with Schnorr’s more stringent adequacy criteria. The
very introduction of non-monotonic betting strategies was an attempt at extending
Ville’s definition of martingale functions in order to obtain more powerful, albeit still
computable strategies [Merkle et al., 2006]. So, even though Schnorr’s critique of
Martin-Löf randomness is not entirely convincing, it has begun to be taken more
seriously in the literature, and it does raise the interesting question of whether
Martin-Löf randomness can be given an alternative characterisation in computable
terms.

In trying to improve the performance of a betting strategy, it is natural to consider
strategies where the gambler is allowed to randomise her bets. After all, probabilistic
strategies or algorithms play a pivotal role in many fields (for instance, game theory
and computational complexity), and probabilistic computation is known to be more
powerful than its deterministic counterpart in several computational settings. Build-
ing on these intuitions, Buss and Minnes [2013] extend the unpredictability paradigm
discussed in Section 3.3 precisely by allowing betting strategies to be probabilistic.
This, as we will see, enables them to answer our latter question affirmatively: Martin-
Löf randomness can indeed be characterised in terms of computable (probabilistic)
martingales56.

In this chapter, we will further explore the probabilistic framework introduced by
Buss and Minnes. We will show that some natural modifications of their definitions
give rise to notions of randomness that are in fact equivalent to Martin-Löf random-

56Hitchcock and Lutz [2006] independently proved that Martin-Löf randomness can be defined
via computable martingale processes, as well. See [Downey and Hirschfeldt, 2010, § 6.3.4] for an
overview of martingale processes.
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ness, Schnorr randomness, Kurtz randomness and Kolmogorov-Loveland randomness,
respectively. These results indicate that Buss and Minnes’ framework can be success-
fully employed to provide a uniform characterisation of many randomness notions
commonly found in the literature, as well as to explore non-standard randomness
concepts. Moreover, this probabilistic setting offers a different, and hopefully fruitful,
perspective from which to investigate the long-standing open question of whether
Martin-Löf randomness and Kolmogorov-Loveland randomness coincide or not.

5.1 Probabilistic martingales

As in the classical martingale scenario illustrated in § 2.2.2 and Section 3.3, within
Buss and Minnes’ framework, a probabilistic betting strategy provides a gambler
with a recipe for betting on the bits of an infinite binary sequence. The gambler is
assumed to have a starting capital of 1—that is, the capital function is taken to be a
normed martingale. Then, at each step, the strategy computes deterministically a
rational probability value between 0 and 1 and a rational stake value. If the bet is
placed and is correct, then the stake is added to the gambler’s previous capital. If
the bet is placed but is incorrect, then the stake is subtracted from the gambler’s
previous capital. Finally, if the gambler does not bet, the corresponding bit is not
revealed and the capital stays the same57. In the next step, the gambler will again
employ the same strategy to probabilistically determine (i) whether or not to bet
on the same bit that was not revealed during the previous step, and (ii) with what
stake to bet.

More formally: take a sequence X ∈ {0,1}ω and let {b,w}∗ denote the binary
computation tree consisting of all possible deterministic betting strategies that a
gambler could adopt against X. That is, each finite path π ∈ {b,w}∗ will represent
a gambler’s possible sequence of decisions of whether to bet (b) or to refrain from
betting (‘wait’ or w) on some initial segment of X. More precisely, each such π will
coincide with a possible sequence of moves against X ↾#bets(π), where #bets(π)
denotes the number of bets among the choices encoded by π (similarly, we will let
#waits(π) denote the number of wait moves among the choices encoded by π). We
consider X ↾ #bets(π) rather than X ↾ ∣π∣ because, as already mentioned, if the
gambler does not bet, then the next bit of X is not revealed.

We can now formally characterise the notion of a probabilistic betting strategy
or martingale (since, as we shall see in Definition 5.1.3, the capital accumulated by a
probabilistic betting strategy is a martingale, the terms ‘probabilistic strategy’ and
‘probabilistic martingale’ will be used interchangeably).

Definition 5.1.1 (Probabilistic strategy). A probabilistic strategy A is a pair ⟨pA, qA⟩,
where pA ∶ {b,w}∗ × {0,1}∗ → Q ∩ [0,1] and qA ∶ {b,w}∗ × {0,1}∗ → Q are two

57The reason behind this condition will be clarified once the framework has been formally
illustrated.
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computable rational-valued functions.

Suppose that the gambler is playing against some sequence X ∈ {0, 1}ω. Intuitively,
given (i) some σ < X that the gambler has observed up to now and (ii) the gambler’s
moves so far, as encoded by some string π ∈ {b,w}∗, the value pA(π,σ) corresponds
to the probability that the gambler will place a bet on the next bit of X—namely,
X ↾ (∣σ∣+ 1). The value qA(π, σ), on the other hand, is the stake associated with this
bet, if the bet is placed. If qA(π, σ) > 0, then the gambler is betting that X(∣σ∣+1) = 0;
if qA(π,σ) < 0, on the other hand, the gambler is betting that X(∣σ∣ + 1) = 1. It is
also possible for qA(π,σ) to be equal to 0, in which case the gambler’s move is still
counted as a bet, albeit with a null stake. To discriminate between this situation and
the one in which the gambler opts for a wait move upon seeing σ, the former case
is set to prompt the uncovering of the next bit of X, while the latter is not. This
distinction may at first seem redundant; however, it allows one to consider strategies
with a capital which grows at a given rate in the number of bets, but not necessarily
in the number of moves.

From now on, we will use π both to denote a finite path in {b,w}∗ and as a
label for the node in the computation tree that can be reached from the root ε by
following path π. The probability that strategy A reaches any particular node in the
computation tree will of course depend on the values of pA, which, in turn, hinge on
the so-far revealed bits of the infinite sequence being played against.

Definition 5.1.2 (Cumulative probability). Given π ∈ {b,w}∗ and σ ∈ {0,1}∗, the
cumulative probability PA(π,σ) of π relative to σ is the probability that strategy A
reaches node π in the computation tree when playing against a sequence X of which
σ is an initial segment. More precisely, PA(ε, ε) = 1, while, for any other pair (π, σ),
we have that

PA(π,σ) =
⎧⎪⎪⎨⎪⎪⎩

PA(π−, σ−) ⋅ pA(π−, σ−) if π = (π−)b;

PA(π−, σ) ⋅ (1 − pA(π−, σ)) if π = (π−)w.

Intuitively, if the gambler’s latest move was a bet move—i.e., if π = (π−)b—then,
during the previous stage of the game corresponding to node π−, the gambler had
only seen string σ−. Hence, PA(π, σ) is simply the cumulative probability PA(π−, σ−)
of reaching node π−, multiplied by the probability pA(π−, σ−) of betting, given that
the gambler’s previous moves are encoded by π− and the string observed so far
is σ−. If, on the other hand, the gambler’s latest move was a wait move—i.e., if
π = (π−)w—then the gambler had already observed string σ during the round of
the game corresponding to node π−. Hence, PA(π,σ) is the cumulative probability
PA(π−, σ) of reaching node π−, multiplied by the probability (1 − pA(π−, σ)) of not
betting when confronted with π− and σ.

We can then define the capital process induced by the probabilistic strategy A.

Definition 5.1.3 (Capital). Given π ∈ {b,w}∗ and σ ∈ {0,1}∗, the capital CA(π, σ) at
π relative to σ is the amount of money available at node π after having played against

70



CHAPTER 5. RANDOMNESS VIA PROBABILISTIC MARTINGALES

the initial segment σ of some sequence X ∈ {0,1}ω. More precisely, the starting
capital CA(ε, ε) is 1, while, for any other pair (π, σ), the value CA(π, σ) depends on
whether π = (π−)b or π = (π−)w. If π = (π−)w, then CA(π,σ) = CA(π−, σ), because,
when no bet is placed, no money is gained or lost, and no new bit is revealed. If, on
the other hand, π = (π−)b, then

CA(π,σ) =
⎧⎪⎪⎨⎪⎪⎩

CA(π−, σ−) + qA(π−, σ−) if σ = (σ−)0
CA(π−, σ−) − qA(π−, σ−) if σ = (σ−)1,

where
qA(π−, σ−)
CA(π−, σ−)

is required to be in [−1, 1] to ensure that, at each step, the stake

does not exceed the available capital.

Definition 5.1.3 entails that, for each j ∈ N, 2 ⋅ CA(π,σ) = CA(πwjb, σ0) +
CA(πwjb, σ1): i.e., CA satisfies the fairness condition illustrated in Definition 2.2.4(a).
Hence, CA is a normed rational-valued martingale.

For ease of notation, from now on we shall adopt the following abbreviations:
given X ∈ {0,1}ω, let

— pXA (π) denote pA(π,X ↾#bets(π)),

— qXA (π) denote qA(π,X ↾#bets(π)),

— PXA (π) denote PA(π,X ↾#bets(π)), and

— CXA (π) denote CA(π,X ↾#bets(π)).
Now, the set of all infinite sequences of bet/wait moves {b,w}ω, together with the

product topology, is homeomorphic to Cantor space. The base which generates the
product topology is given by all sets of the form JπK = {Π ∈ {b,w}ω ∶ π < Π}, which
will be referred to as cylinders. Let C denote the collection of all such cylinders. Since
C ⊆ ℘({b,w}ω), take the sigma-algebra σ(C) generated by C (namely, the smallest
sigma-algebra containing C). Then, ({b,w}ω, σ(C)) is a measurable space. Given a
probabilistic strategy A and a sequence X ∈ {0, 1}ω, one can then define a probability
measure µXA ∶ σ(C)→ [0,1] over ({b,w}ω, σ(C)) by setting µXA (∅) = 0 and, for every
π ∈ {b,w}∗, by setting µXA (JπK) = PXA (π).

A probabilistic strategy is said to be successful against an infinite sequence
X ∈ {0,1}ω along a fixed infinite path Π ∈ {b,w}ω if it allows a gambler to become
infinitely rich by betting against X in accordance with the moves encoded by Π:
that is, if lim

n→∞
CX
A (Π ↾ n) =∞. With the notion of a probability measure at hand,

we can also talk about the probability with which a probabilistic strategy succeeds,
when played against some sequence.

Definition 5.1.4 (Probability of success). The probability of success of a probabilistic
strategy A when playing against X ∈ {0,1}ω is given by

µXA ({Π ∈ {b,w}ω ∶ lim
n→∞

CXA (Π ↾ n) =∞}) .
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5.2 P1-randomness and Ex-randomness

The first algorithmic randomness concept introduced by Buss and Minnes is P1-
randomness, according to which an infinite sequence X is random if and only if no
probabilistic betting strategy, when played against X, succeeds on it with probability
one.

Definition 5.2.1 (P1-randomness). Let X ∈ {0,1}ω.

(a) A probabilistic strategy A is said to be a P1-strategy for X if and only if

µXA ({Π ∈ {b,w}ω ∶ lim
n→∞

CXA (Π ↾ n) =∞}) = 1;

(b) X is said to be P1-random if and only if no probabilistic strategy is a P1-strategy
for X.

The second notion of randomness proposed by Buss and Minnes, Ex-randomness,
instead relies on the concept of ‘infinite capital in expectation’. For each n ∈ N, we
first define the set of computation nodes in {b,w}∗ that are reachable with n bets,
and such that the last move consisted in betting58. We do so by induction:

(i) R(0) = {ε};

(ii) R(n + 1) = ⋃
π∈R(n)

{πwjb ∈ {b,w}∗ ∶ j ∈ N}.
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Figure 5.1: Partial representation of the set of computation nodes (red nodes)
reachable with one bet, and such that the last move consisted in placing a bet.

58See [Buss and Minnes, 2013, § 7] for a thorough explanation of why a more general way of
defining Ex-randomness fails.
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Definition 5.2.2 (Expected capital). Let A be a probabilistic strategy and X ∈ {0, 1}ω.
The expected capital of A over X after n bets is defined as

ExXA (n) = ∑
π∈R(n)

PXA (π) ⋅CXA (π).

For ease of notation, the expected capital ExXA (∣σ∣) after seeing σ ∈ {0, 1}∗, where
X is any infinite sequence extending σ, will be denoted by ExσA.

We are now ready to formally characterise the notion of Ex-randomness introduced
by Buss and Minnes.

Definition 5.2.3 (Ex-randomness). Let X ∈ {0,1}ω.

(a) A probabilistic strategy A is an Ex-strategy for X if and only if

lim
n→∞

ExXA (n) =∞;

(b) X is said to be Ex-random if and only if no probabilistic strategy is an Ex-
strategy for X.

The average capital accumulated by a probabilistic strategy can be shown to
be a supermartingale59: i.e., given a probabilistic strategy A and any σ ∈ {0,1}∗,
2 ⋅ExσA ≥ Exσ0

A +Exσ1
A . The reason why it is a supermartingale rather than a martingale

is that the underlying probabilistic strategy, A, may refrain from placing any further
bets from some point onwards.

As proven by Buss and Minnes, Ex-randomness implies P1-randomness. In fact,
it is sufficient to have a positive-measure fraction of the computation paths with
capital tending to infinity to ensure that the expected capital does so, as well60.

A simple argument shows that the collection of Ex-random sequences and that of
P1-random sequences both have measure one. Take some N ⊆ {0,1}ω and suppose
that A is a probabilistic strategy such that lim

n→∞
ExXA (n) =∞ for all X ∈ N . We can

then construct a Martin-Löf test (Un)n∈N that each X ∈ N fails, which suffices to
establish that N is a Martin-Löf null set (see Definition 3.2.3). For each n ∈ N, define
Sn = {σ ∈ {0,1}∗ ∶ ExσA > 2n}. Then, set Un = ⋃{JσK ⊆ {0,1}ω ∶ σ ∈ Sn}. Clearly,
N ⊆ ⋂

n∈N
Un. Moreover, (Un)n∈N is a computable sequence of c.e. open sets, for the

values of ExσA are uniformly computably approximable from below. Now take, for
each n ∈ N, a prefix-free subset Tn of Sn such that the cylinders generated by its
elements cover Un. Then,

λ(Un) = ∑
σ∈Tn

2−∣σ∣ < ∑
σ∈Tn

2−∣σ∣ ⋅ ExσA ≤ 2−n ⋅ ExεA,

59For a proof of this result, see [Buss and Minnes, 2013, Lemma 4.6, p. 12].
60For a proof, see [Buss and Minnes, 2013, Lemma 2.20, pp. 8-9].
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where the last inequality holds because of a classical theorem by Ville [1939] (known
as Kolmogorov’s Inequality), which states that, for any (super)martingale d, any
string σ and any prefix-free set S ⊆ {0,1}∗ of extensions of σ,

∑
τ∈S

2−∣τ ∣ ⋅ d(τ) ≤ 2−∣σ∣ ⋅ d(σ).

This shows that no X ∈ N is Martin-Löf random. Hence, Martin-Löf randomness
implies Ex-randomness, which entails that the collection of non-Ex-random sequences
has (effective) measure zero, while the collection of Ex-random sequences has (effec-
tive) measure one. Since every P1-strategy can be converted into an Ex-strategy, the
same holds for P1-random sequences.

As observed earlier, both Definition 5.2.1 and Definition 5.2.3 admit of proba-
bilistic strategies that might reach a stage after which no more bets are made or,
more generally, after which the probability of never placing another bet is positive.
This can be disallowed by only considering probabilistic strategies which always
eventually bet with probability one: i.e., strategies A such that, for all π ∈ {b,w}∗ and
σ ∈ {0,1}#bets(π),

PA(π,σ) ⋅∏
j∈N

(1 − pA(πwj , σ)) = 0.

Such a restriction gives rise to weaker versions of P1-randomness and Ex-randomness.

Definition 5.2.4 (Weak P1-randomness and Ex-randomness). Let X ∈ {0,1}ω. Then,

(a) X is said to be weakly P1-random if and only if no probabilistic strategy which
always eventually bets with probability one is a P1-strategy for X;

(b) X is said to be weakly Ex-random if and only if no probabilistic strategy which
always eventually bets with probability one is an Ex-strategy for X.

We can then state the following characterisation results for Martin-Löf random-
ness, partial computable randomness and computable randomness (which constitute
the core of Buss and Minnes’ paper on probabilistic algorithmic randomness).

Theorem 5.2.5 (Buss and Minnes [2013]). Let X ∈ {0,1}ω. Then,

(a) X is Ex-random if and only if it is Martin-Löf random;

(b) X is P1-random if and only if it is partial computably random;

(c) X is weakly P1-random if and only if it is weakly Ex-random if and only if it
is computably random.

Theorem 5.2.5 provides the sought-after characterisation of Martin-Löf ran-
domness in terms of computable betting strategies, thus offering a viable response
to Schnorr’s critique. However, the usefulness of Buss and Minnes’ probabilistic
framework does not end here, as we will see in the remainder of this chapter.
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5.3 KP1-randomness and KEx-randomness

In this section, we will introduce some variants of the notions of probabilistic
algorithmic randomness proposed by Buss and Minnes by appealing to Schnorr’s
concept of success at a computable rate (§ 3.3.3). We will then prove that these
‘more effective’ versions of (weak) P1-randomness and (weak) Ex-randomness each fit
into the standard hierarchy of randomness concepts.

Definition 5.3.1 (Success at a computable rate). Let X ∈ {0,1}ω and Π ∈ {b,w}ω. A
probabilistic strategy A is said to succeed against X along Π at a computable rate if
and only if there is a computable unbounded non-decreasing function h ∶ N→ N such
that

∃∞n ∈ N ∶ CXA (Π ↾ n) ≥ h(n).

We can now formalise the notion of a strategy which allows a gambler to become
infinitely rich at a computable rate with probability one.

Definition 5.3.2 (KP1-strategy). Let X ∈ {0, 1}ω. A probabilistic strategy A is said to
be a KP1-strategy for X if and only if there is a computable unbounded non-decreasing
function h ∶ N→ N such that

µXA ({Π ∈ {b,w}ω ∶ ∃∞n ∈ N with CXA (Π ↾ n) ≥ h(n)}) = 1.

With these definitions at hand, we can characterise the following randomness
notions.

Definition 5.3.3 (KP1-randomness). Let X ∈ {0,1}ω. Then,

(a) X is said to be KP1-random if and only if there is no probabilistic strategy A
such that A is a KP1-strategy for X;

(b) X is said to be weakly KP1-random if and only if there is no probabilistic
strategy A which always eventually bets with probability one such that A is a
KP1-strategy for X.

Clearly, P1-randomness, as defined in Section 5.2, implies KP1-randomness, which,
in turn, implies weak KP1-randomness. Since the set of P1-random sequences was
shown to have (effective) measure one, so do the collections of KP1-random sequences
and of weakly KP1-random sequences.

Next, we formalise the notion of a strategy gaining unbounded expected capital
at a computable rate.

Definition 5.3.4 (KEx-strategy). Let X ∈ {0, 1}ω. A probabilistic strategy A is said to
be a KEx-strategy for X if and only if there is a computable unbounded non-decreasing
function h ∶ N→ N such that

∃∞n ∈ N ∶ ExXA (n) ≥ h(n).
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This allows to define two more randomness concepts, akin to Ex-randomness and
weak Ex-randomness, respectively.

Definition 5.3.5 (KEx-randomness). Let X ∈ {0,1}ω. Then,

(a) X is said to be KEx-random if and only if there is no probabilistic strategy A
such that A is a KEx-strategy for X;

(b) X is said to be weakly KEx-random if and only if there is no probabilistic
strategy A which always eventually bets with probability one such that A is a
KEx-strategy for X.

Again, we have that Ex-randomness, as defined in Section 5.2, implies KEx-
randomness, which, in turn, implies weak KEx-randomness. As the set of Ex-random
sequences was shown to have (effective) measure one, so do the collections of KEx-
random sequences and of weakly KEx-random sequences.

We now show that weak KP1-randomness (and, a fortiori, KP1-randomness)
implies Schnorr randomness61.

Proposition 5.3.6. Let X ∈ {0,1}ω. If X is weakly KP1-random, then it is Schnorr
random.

Proof. Suppose that X is not Schnorr random. Then, by Theorem 3.3.6, there are a
computable rational-valued martingale d and a computable unbounded non-decreasing
function h ∶ N→ N such that d(X ↾ n) ≥ h(n) for infinitely many n ∈ N. W.l.o.g., we
can assume that d is normed. Martingale d can then be readily employed to construct
a probabilistic strategy Ad. For all π ∈ {b,w}∗ and σ ∈ {0, 1}#bets(π), set pAd(π, σ) = 1;
moreover, for each n ∈ N and σ ∈ {0,1}n, set qAd(bn, σ) = d(σ0) − d(σ). All other
values of pAd and qAd can be set arbitrarily. Then, there is exactly one path Π
through the computation tree {b,w}ω with non-zero probability: namely, Π = εbbbb...
In particular, µXAd({Π}) = 1. Moreover, along Π, the capital accumulated by Ad
equals the capital accrued by martingale d. This can be seen via a simple argument
by induction. First of all, we have that CAd(ε, ε) = 1 = d(ε) by the definition of a
probabilistic strategy and because d is a normed martingale. Now, for the inductive
step, suppose that CX

Ad
(Π ↾ n) = d(X ↾ #bets(Π ↾ n)). For each σ ∈ {0,1}∗, let

stake(d, σ) denote the quantity d(σ0) − d(σ). Then, if X(#bets(Π ↾ n + 1)) = 0,

d(X ↾#bets(Π ↾ n + 1)) = d(X ↾#bets(Π ↾ n)) + stake(d,X ↾#bets(Π ↾ n)),

while if X(#bets(Π ↾ n + 1)) = 1,

d(X ↾#bets(Π ↾ n + 1)) = d(X ↾#bets(Π ↾ n)) − stake(d,X ↾#bets(Π ↾ n)).

Moreover, since Ad always bets, we have that if X(#bets(Π ↾ n + 1)) = 0, then

61The argument used in this proof is analogous to the left-to-right direction of the proof of
Theorem 5.1 from [Buss and Minnes, 2013].
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CXAd(Π ↾ n + 1) = CXAd(Π ↾ n) + stake(d,X ↾#bets(Π ↾ n))

because of the definition of qAd ; on the other hand, if X(#bets(Π ↾ n + 1)) = 1, then

CXAd(Π ↾ n + 1) = CXAd(Π ↾ n) − stake(d,X ↾#bets(Π ↾ n)),

again because of the definition of qAd . Since, by the induction hypothesis, CXAd(Π ↾
n) = d(X ↾ #bets(Π ↾ n)), we can conclude that the values of CAd and d always
coincide along Π. This implies that there are infinitely many n ∈ N such that
CXAd(Π ↾ n) ≥ h(n). Thus, Ad is a KP1-strategy for X which always eventually bets
with probability one: hence, X is not weakly KP1-random.

Next, we show that Schnorr randomness is equivalent to weak KEx-randomness.

Theorem 5.3.7. Let X ∈ {0,1}ω. Then, X is weakly KEx-random if and only if it is
Schnorr random.

Proof. (⇒) Suppose that X is not Schnorr random. Then, there are a computable
rational-valued martingale d and a computable unbounded non-decreasing function
h ∶ N→ N such that d(X ↾ n) ≥ h(n) for infinitely many n ∈ N. From d, construct the
same probabilistic strategy Ad described in the proof of Proposition 5.3.6. Since d is
a total function and all bets are placed with probability one, Ad always eventually
bets with probability one. Moreover, for all n ∈ N, we have that

ExXAd(n) = ∑
π∈R(n)

PXAd(π) ⋅C
X
Ad

(π) = CXAd(b
n) = d(X ↾ n).

Hence, there are infinitely many n ∈ N such that ExXAd(n) ≥ h(n), which means that
Ad is a KEx-strategy for X. Thus, X is not weakly KEx-random.

(⇐) Suppose that X is not weakly KEx-random. Then, there is a probabilistic
strategy A which always eventually bets with probability one that is a KEx-strategy
for X. Define dA ∶ {0,1}∗ → R≥0 as dA(σ) = ExσA for all σ ∈ {0,1}∗. Then, we get
that dA(X ↾ n) ≥ h(n) for infinitely many n ∈ N. Lemma 4.6 from [Buss and Minnes,
2013] gives us that dA is a supermartingale. Since A always eventually bets with
probability one, however, dA is in fact a martingale, as shown by Lemma 5.4 from
[Buss and Minnes, 2013]. Now, all that is left to do is showing that dA is computable.
This can be done by employing the same argument used in the proof of Theorem 5.2
in [Buss and Minnes, 2013]. Since dA is a normed martingale, it can be easily shown
by induction that, for all n ∈ N,

∑
τ∈{0,1}n

dA(τ) = 2n. (q)

Then, define the approximation to dA at level M > 0 to be

dMA (τ) = ∑
π∈R(∣τ ∣)∶#waits(π)<M

PA(π, τ) ⋅CA(π, τ).
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We have that dMA (τ) is a finite sum of computable terms which approaches the value
dA(τ) from below. For dA to be computable, we must be able to compute dA(σ)
to within ε of the true value, for each σ ∈ {0,1}∗ and ε > 0. To this end, compute

∑
τ∈{0,1}∣σ∣

dMA (τ) for increasingly large values of M , until an M ′ is found which renders

the previous sum greater than 2∣σ∣ − ε. By (q), we then have that M ′ puts dM
′

A (σ)
within ε of dA(σ). Hence, dA is indeed computable and X is not Schnorr random.

So, we now know that KEx-randomness is at most as strong as Martin-Löf
randomness and at least as strong as Schnorr randomness. Next, we will show that
KEx-randomness is in fact equivalent to Martin-Löf randomness62.

Theorem 5.3.8. Let X ∈ {0, 1}ω. If X is KEx-random, then it is Martin-Löf random.

Proof. Suppose that X is not Martin-Löf random. Then, w.l.o.g., there is a nested
Martin-Löf test (Un)n∈N such that X ∈ ⋂

n∈N
Un. For simplicity, we consider only

the Un’s with n ≥ 1. Then, there exists a sequence (Sn)n∈N>0 of infinite prefix-free
subsets of {0, 1}∗ such that, for each n > 0, Sn = (σn,i)i∈N and Un =⋃{Jσn,iK ∶ i ∈ N}.
Now, consider the following probabilistic strategy A. We run the algorithm that
computably enumerates the σn,i’s. Suppose that we have already observed some
prefix X ↾ ` of X (` ∈ N), and that we are now enumerating the σ`+1,i’s (i ∈ N). When

σ`+1,i′ is enumerated, strategy A bets all-or-nothing with probability 2`+1−∣σ`+1,i′ ∣ that
X(k) = σ`+1,i′(k) for ` < k ≤ ∣σ`+1,i′ ∣. More precisely, suppose that π is a minimal node
for which pA(π, σ) and qA(π, σ) have not been defined yet and such that #bets(π) = `.
Let pA(π,σ) = 2`+1−∣σ`+1,0∣. Since ∣σ`+1,0∣ ≥ ` + 1, pA(π,σ) ≤ 1. For i ≥ 1, on the other
hand, let

pA(πwi, σ) = 2`+1−∣σ`+1,i∣
i−1

∏
k=0

(1 − pA(πwk, σ))
≤ 1.

Then, for all i ∈ N and 1 ≤ k ≤ ∣σ`+1,i∣ − `, let pA(πwibk, σ) = 1. Moreover, for i ∈ N
and 0 ≤ k ≤ ∣σ`+1,i∣ − `, set

qA(πwibk, σ) =
⎧⎪⎪⎨⎪⎪⎩

CA(πwibk, σ) if σ`+1,i(` + k) = 0;

−CA(πwibk, σ) if σ`+1,i(` + k) = 1.

Clearly, both pA and qA are computable, so A is indeed a computable probabilistic
strategy. Since X ∈ ⋂

n∈N
Un, there is a unique c.e. sequence (σn,in)n∈N such that

σn,in < X for each n ∈ N. Given an arbitrary n, we do not necessarily have
that ∣σn,in ∣ < ∣σn+1,in+1 ∣. So, we extract from (σn,in)n∈N an infinite subsequence
σn1,i1 , σn2,i2 , ... with this property in the following way: set n1 = 1 and, for each j ≥ 1,

62The first part of the proof of Theorem 5.3.8 is analogous to the proof of Theorem 4.2 from [Buss
and Minnes, 2013].
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set nj+1 = ∣σnj ,ij ∣ + 1. Then, σ1,i1 < σ2,i2 < σ3,i3 < ... < X. Now, define `0 = 0 and
`j = ∣σnj ,ij ∣; then, nj+1 = `j +1 and `j ≥ nj . Consider the following computation paths
πk, for each k ≥ 1,

πk = wi1b`1wi2b`2−`1 ...wikb`k−`k−1 .

When playing against X, each computation path πk is such that every bet placed is
successful. Since each πk involves `k bets, we then have that CXA (πk) = 2`k . So,

ExXA (`k) = ∑
π∈R(`k)

PXA (π) ⋅CXA (π) by Definition 5.2.2

≥ PXA (πk) ⋅CXA (πk)

= 2`k ⋅
k

∏
j=1

2nj−`j by the definition of pA

= 2`n1 ⋅
k−1

∏
j=1

2nj+1−`j

= 2k because n1 = 1 and nj+1 = `j + 1.

So, ExXA (`k) ≥ 2k for infinitely many `k ∈ N. We then define the following function
h ∶ N→ N:

h(0) = 0

h(m) =
⎧⎪⎪⎨⎪⎪⎩

2k if there is some k such that m = `k;
h(m − 1) otherwise.

We argue that h is computable. Take m ≥ 1. There are 2m strings of length m. For
each such string σm, we know that we can only have that σm = σnj ,ij for nj ≤m. So,
for each of them, we check whether σm = σnj ,ij starting with nj = 1 and up to nj =m.
If, during any of these comparisons, we find that one of the σm’s is in fact a σnj ,ij ,
we set h(m) = 2j . Else, we set h(m) = h(m − 1). Since we only ever have to check
finitely many strings, this procedure can be carried out computably. We also have
that h is non-decreasing and unbounded. Hence, A is a KEx-strategy for X, which
means that X is not KEx-random.

Since Ex-randomness implies KEx-randomness, we then get the following corollary.

Corollary 5.3.9. Let X ∈ {0,1}ω. Then, X is Martin-Löf random if and only if it is
Ex-random if and only if it is KEx-random.

We can modify Definition 5.3.1 by imposing the stronger requirement that
CX
A (Π ↾ n) ≥ h(n) for all n ∈ N. Then, Definition 5.3.3 and Definition 5.3.5

can be modified accordingly. We call the resulting notions of randomness (weak)
WP1-randomness and (weak) WEx-randomness. We can then characterise Kurtz
randomness in terms of probabilistic strategies.

79



CHAPTER 5. RANDOMNESS VIA PROBABILISTIC MARTINGALES

Theorem 5.3.10. Let X ∈ {0,1}ω. Then, X is weakly WEx-random if and only if it
is Kurtz random.

The proof of this result is essentially the same as that of Theorem 5.3.7: the only
difference is that, in this case, we exploit the martingale-based characterisation of
Kurtz randomness provided by Theorem 3.3.7.

We can also show that Kurtz randomness coincides with weak WP1-randomness.

Theorem 5.3.11. Let X ∈ {0,1}ω. Then, X is weakly WP1-random if and only if it
is Kurtz random.

Proof. (⇒) The proof of this direction is analogous to that of Proposition 5.3.6.

(⇐) Suppose that X is not weakly WP1-random. Then, there is a probabilistic
strategy A which always eventually bets that is a WP1-strategy for X: i.e., there is
a computable unbounded non-decreasing function h ∶ N→ N such that

µXA ({Π ∈ {b,w}ω ∶ CXA (Π ↾ n) ≥ h(n) for all n ∈ N}) = 1.

For ease of notation, we will denote the set

{Π ∈ {b,w}ω ∶ CXA (Π ↾ n) ≥ h(n) for all n ∈ N}

as SXA . Now, fix some arbitrary m ∈ N. We then have that

SXA ⊆⋃{JπK ⊆ {b,w}ω ∶ π ∈ R(m) and there is some Π ∈ SXA with π < Π}
⊆⋃{JπK ⊆ {b,w}ω ∶ π ∈ R(m)}
= JR(m)K,

where R(m) ⊆ {b,w}∗ is the set of all finite computation paths that involve exactly
m bets and such that the last move was a bet. Now, we have that

ExXA (m) = ∑
π∈R(m)

PXA (π) ⋅CXA (π)

= ∑
π∈R(m)

µXA (JπK) ⋅CXA (π) by the def. of µXA

≥ ∑
π∈R(m)∶
∃Π ∈SXA

with π<Π

µXA (JπK) ⋅CXA (π)

≥ ∑
π∈R(m)∶
∃Π ∈SXA

with π<Π

µXA (JπK) ⋅ h(m) by the def. of SXA and because h is non-decreasing
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≥ h(m) ⋅ ∑
π∈R(m)∶
∃Π ∈SXA

with π<Π

µXA (JπK) because h(m) does not depend on π

≥ h(m) ⋅ µXA (SXA )
= h(m) because µXA (SXA ) = 1 by assumption

Since m was chosen arbitrarily, we can conclude that ExXA (n) ≥ h(n) for all n ∈ N.
So, by the right-to-left direction of Theorem 5.3.10, we have that X is not Kurtz
random.

Corollary 5.3.12. Let X ∈ {0,1}ω. Then, X is Kurtz random if and only if it is
weakly WEx-random if and only if it is weakly WP1-random.

5.4 Non-monotonic P1-randomness and Ex-randomness

In this section, we further extend Buss and Minnes’ framework by studying prob-
abilistic non-monotonic betting strategies. We propose non-monotonic variants
of P1-randomness and Ex-randomness, and we show that they are equivalent to
Kolmogorov-Loveland randomness and Martin-Löf randomness, respectively.

Recall that, in Definition 3.3.2, we are confronted with a ‘multitasking’ betting
strategy. In the probabilistic setting, we split the work between three different
functions.

Definition 5.4.1 (Probabilistic non-monotonic strategy). A probabilistic non-monotonic
strategy A is a triple ⟨nA, pA, qA⟩, where (i) nA ∶ {b,w}∗×{0, 1}ω → N is a computable
position-selection function, (ii) pA ∶ {b,w}∗ × {0,1}ω → Q ∩ [0,1] a computable
probability function, and (iii) qA ∶ {b,w}∗ × {0, 1}∗ → Q a computable stake function.

We require that function nA be to some extent oblivious, in the sense that its
decision of what position to bet on next should depend solely on the bits previously
observed and not on the particular series of bet/wait moves chosen so far. Formally,
for any σ ∈ {0, 1}∗ and π, π′ ∈ {b,w}∗ such that #bets(π) = #bets(π′) = ∣σ∣, nA(π, σ) =
nA(π′, σ). This restriction ensures that, given some sequence X ∈ {0,1}ω, strategy
A induces a unique transformation of X along all computation paths which include
infinitely many bet moves: that is, the infinite sequence corresponding to all of the
bits from X sequentially selected by nA is the same for all computation paths in
which a bet is always eventually placed. We denote as XA the sequence resulting
from applying nA to X, whenever such sequence is defined.

One can see that the definitions of cumulative probability (Definition 5.1.2)
and capital (Definition 5.1.3) from Section 5.1 carry over to this probabilistic non-
monotonic context.
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Then, the probability of success of a probabilistic non-monotonic strategy A
when playing against a sequence X is given by

µXAA ({Π ∈ {b,w}ω ∶ lim
n→∞

CXAA (Π ↾ n) =∞}) .

We can then define the non-monotonic counterpart of P1-randomness.

Definition 5.4.2 (Non-monotonic P1-randomness). Let X ∈ {0,1}ω.

(a) A probabilistic non-monotonic strategy A is said to be a P1-strategy for X if
and only if

µXAA ({Π ∈ {b,w}ω ∶ lim
n→∞

CXAA (Π ↾ n) =∞}) = 1.

(b) X is said to be non-monotonically P1-random if and only if no probabilistic
non-monotonic strategy is a P1-strategy for X.

Since non-monotonic betting strategies are a generalisation of monotonic betting
strategies, we have that non-monotonic P1-randomness implies P1-randomness.

Proposition 5.4.3. Let X ∈ {0, 1}ω. If X is non-monotonically P1-random, then it is
P1-random.

Given our definition of probabilistic non-monotonic betting strategies—where the
values of function nA are independent of the particular computation path followed
so far—the non-monotonic variant of Ex-randomness can be characterised as follows.

Definition 5.4.4 (Non-monotonic Ex-randomness). Let X ∈ {0,1}ω.

(a) A probabilistic non-monotonic strategy A is an Ex-strategy for X if and only if

lim
n→∞

ExXAA (n) =∞;

(b) X is said to be non-monotonically Ex-random if and only if no probabilistic
non-monotonic strategy is an Ex-strategy for X.

Once again, this definition immediately gives us that non-monotonic Ex-randomness
implies Ex-randomness.

Proposition 5.4.5. Let X ∈ {0, 1}ω. If X is non-monotonically Ex-random, then it is
Ex-random.

We now show that non-monotonic P1-randomness coincides with Kolmogorov-
Loveland randomness.

Theorem 5.4.6. Let X ∈ {0,1}ω. Then, X is non-monotonically P1-random if and
only if it is Kolmogorov-Loveland random.
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Proof. (⇒) Suppose that X is not Kolmogorov-Loveland random. By Definition 3.3.3,
there is a computable non-monotonic betting strategy b such that lim

n→∞
CXb (χ(n)) =∞.

This holds even though Definition 3.3.3 is technically given in terms of the limsup,
rather than the limit of CXb (χ(n)): this is because, as already mentioned in § 3.3.1,
any martingale for which the limsup equals infinity can be transformed into another
martingale which succeeds on exactly the same sequences, but whose limit equals
infinity. Now, strategy b provides us with a probabilistic non-monotonic strategy B.
For each σ ∈ {0,1}∗ and π ∈ {b,w}∗ with #bets(π) = ∣σ∣, we proceed as follows:

(i) if b(σ) = (k, scan), then we set nB(π,σ) = k, pB(π,σ) = 1 and qB(π,σ) = 0;

(ii) if b(σ) = (k, ρ) (with ρ ∈ [−1,1]), then we set nB(π,σ) = k, pB(π,σ) = 1 and
qB(π,σ) = ρ ⋅Cb(σ).

Then, there is exactly one path Π′ through the computation tree {b,w}ω that gets
assigned non-zero probability: namely, Π′ = εbbbb... In particular, µXBB ({Π′}) =
1. Moreover, along Π′, the capital hoarded by B is equal to the capital accu-
mulated by martingale Cb. So, we have that lim

n→∞
CXB
B (Π′ ↾ n) = ∞. Hence,

µXBB ({Π ∈ {b,w}ω ∶ lim
n→∞

CXBB (Π ↾ n) =∞}) = 1. Thus, B is a non-monotonic P1-

strategy for X, which means that X is not non-monotonically P1-random.

(⇐) Suppose that X is not non-monotonically P1-random. Then, there is a proba-
bilistic non-monotonic strategy A = ⟨nA, pA, qA⟩ that is a P1-strategy for X: i.e.,

µXAA ({Π ∈ {b,w}ω ∶ lim
n→∞

CXAA (Π ↾ n) =∞}) = 1.

We then have that lim
n→∞

ExXAA (n) =∞ and that A eventually bets on sequence XA

with probability one. We also know that, for any σ ∈ {0,1}∗ and π,π′ ∈ {b,w}∗
with #bets(π) = #bets(π′) = ∣σ∣, nA(π,σ) = nA(π′, σ). So, the argument used in
the proof of Theorem 6.2 from [Buss and Minnes, 2013] can be adapted to our
case to construct a partial computable deterministic non-monotonic betting strategy
a ∶ {0, 1}∗ → N× ({scan}∪ [−1, 1]) which is defined for all initial segments of XA, and

which also succeeds on XA—in the sense that lim
n→∞

CXa (χ(n)) =∞. For each σ ∈ {0, 1}∗,

simply set a(σ) = (nA(b∣σ∣, σ),
Ca(σ0) −Ca(σ)

Ca(σ)
), where Ca is defined as in the proof

Theorem 6.2 (equation (17)). Then, Ca is a partial computable supermartingale
which non-monotonically succeeds on X, and which can be converted into a partial
computable martingale which non-monotonically succeeds on X. This can be done
via the savings trick discussed in § 3.3.1. Since the notion of Kolmogorov-Loveland
randomness is left unaltered if one replaces computable non-monotonic betting
strategies with partial computable non-monotonic betting strategies in Definition
3.3.3, we can then conclude that X is not Kolmogorov-Loveland random.
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It is also worth noting that the proof of Theorem 4.1 from [Buss and Minnes,
2013] can be adapted to show that Martin-Löf randomness implies non-monotonic
Ex-randomness.

Proposition 5.4.7. Let X ∈ {0,1}ω. If X is Martin-Löf random, then it is non-
monotonically Ex-random.

The proof of Proposition 5.4.7 is again by contraposition: a probabilistic non-
monotonic strategy whose expected capital is unbounded can be exploited to construct
a Martin-Löf test.

Corollary 5.4.8. Let X ∈ {0,1}ω. The following are equivalent:

(1) X is Martin-Löf random;

(2) X is Ex-random;

(3) X is non-monotonically Ex-random;

(4) X is KEx-random.

The equivalence of Martin-Löf randomness and non-monotonic Ex-randomness is
reminiscent of the fact that when one replaces computable non-monotonic betting
strategies by merely computably enumerable non-monotonic betting strategies in the
definition of Kolmogorov-Loveland randomness, the resulting notion is once again
Martin-Löf randomness.

We conclude this section with some remarks on our definitions of non-monotonic
P1-randomness and Ex-randomness, and on possible variations thereof. An interesting
question, for example, is what happens if we lift the restriction that the values of
the position-selection function nA depend uniquely on the binary strings previously
observed and allow nA to make decisions on the basis of previous bet/wait moves,
too.

Relaxing Definition 5.4.1 clearly gives rise to a more general notion of probabilistic
non-monotonic betting strategies. However, a probabilistic non-monotonic strategy
A defined in this way does not play against one unique sequence XA or string χXA
(depending on whether the number of bets along a given computation path is infinite
or finite), determined by the positions selected by nA from someX ∈ {0, 1}ω, no matter
what computation path ends up being chosen during a run of the strategy. Now,
each computation path Π ∈ {b,w}ω determines a potentially different transformation
of X into either an infinite sequence XA(Π) or a finite string σXA (Π). This is because,
for pairs of the form (π,σ) and (π′, σ), with π ≠ π′, #bets(π) = #bets(π′) = ∣σ∣ and
σ <X, the function nA may decide to bet on the on the k-th bit of X upon seeing
(π, σ) and on the k′-th bit of X after observing (π′, σ), where k ≠ k′. So, each run of
the strategy induces a transformation of X into a different sequence/string.

In this scenario, it is not immediately clear how to define the probability of
success of a probabilistic non-monotonic strategy A. The measure µA is defined

84



CHAPTER 5. RANDOMNESS VIA PROBABILISTIC MARTINGALES

with respect to a fixed sequence in {0,1}ω, whereas here we are facing a potentially
uncountable number of sequences induced by the various computation paths along
which the capital values tend to infinity. So, providing a meaningful definition of
non-monotonic P1-randomness in this more general setting is not as straightforward
as before.

The situation appears to be somewhat simpler when one considers the notion
of expected capital. Let A be a probabilistic non-monotonic strategy in the more
general sense discussed above, and let X ∈ {0,1}ω. Then, let σ(π) denote the string
of bits sequentially selected by A from X along the finite sequence of moves encoded
by π ∈ {b,w}∗. The expected capital of A over X after n bets may be defined as

ExXA (n) = ∑
π∈R(n)

PA(π,σ(π)) ⋅CA(π,σ(π)).

We can then define a more general analogue of non-monotonic Ex-randomness.

Definition 5.4.9 (Non-monotonic GEx-randomness). Let X ∈ {0,1}ω.

(a) A non-monotonic probabilistic strategy A is a generalised Ex-strategy for X if
and only if

lim
n→∞

ExXA (n) =∞;

(b) X is said to be non-monotonically GEx-random if and only if no generalised
non-monotonic probabilistic strategy is an Ex-strategy for X.

Now, is GEx-randomness a meaningful randomness notion? Does the class of
sequences which are random in the sense of Definition 5.4.9 form a measure-one subset
of {0,1}ω? How does GEx-randomness compare with non-monotonic Ex-randomness
and (monotonic) Ex-randomness? These questions remain to be answered.
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Conclusion

Writing a thesis is a bit like playing the hydra game [Kirby and Paris, 1982]: for
any question that one feels to have (at least partially) managed to answer, there are
myriad new questions that suddenly pop up. If this analogy is indeed appropriate,
though, we should be optimistic, for we are guaranteed to be able to address all
these new questions in a finite amount of time! Embracing this hopeful attitude, we
conclude this thesis by briefly summarising our results and by discussing some issues
that we would like to further explore in the future, arranged in accordance with the
chapter that they would be the natural continuation of.

6.1 Summary

The first part of this thesis centred around the following methodological question:
what counts as a ‘good’ formalisation of our intuitive notion of randomness? First,
we considered von Mises’ pioneering work on randomness [1919], which constitutes
the first attempt at providing a rigorous definition of randomness for infinite binary
sequences. We discussed several arguments aimed at establishing the inadequacy of
von Mises’ theory, and we concluded, in agreement with van Lambalgen [1987a], that
the demise of von Mises’ approach is best understood in the context of a more general
rejection of strict frequentism. We also noted that the tenability and usefulness of
the theory of collectives crucially rests on the correctness of von Mises’ objectivist
interpretation of probability, for adopting a subjectivist interpretation renders his
definition of randomness superfluous.

Having introduced the alternative (and, by now, orthodox) algorithmic approach
to randomness, we then addressed the question of whether any of the definitions of
randomness offered within this paradigm can be said to be more legitimate than the
others. In particular, we focused on the notion of Martin-Löf randomness—arguably,
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the most popular concept of algorithmic randomness in the literature—and we
considered two main objections that have been levelled against it. First, we dis-
cussed a recent criticism due to Osherson and Weinstein [2008], which relies on a
learning-theoretic argument. Then, we examined a well-known critique of Martin-
Löf randomness due to Schnorr [1971a]. We pointed out the inconclusiveness of
these criticisms and advocated a pluralistic approach to algorithmic randomness.
While appraising Osherson and Weinstein’s critique, we also allowed ourselves a
brief learning-theoretic digression and proved a characterisation result for Kurtz
randomness in learning-theoretic terms.

In the second part of this thesis, we considered some of the technical implications
of taking Schnorr’s critique of Martin-Löf randomness seriously, by investigating a
probabilistic framework for algorithmic randomness introduced by Buss and Minnes
[2013]. First, we reviewed Buss and Minnes’ paper, where the authors countenance
Schnorr’s critique by offering a characterisation of Martin-Löf randomness in terms of
computable probabilistic martingales. Then, we addressed a question that Buss and
Minnes ask at the end of their paper: are there any natural conditions on the class of
probabilistic martingales that can be used to characterise other common algorithmic
randomness notions? We answered Buss and Minnes’ question in the affirmative
both in the monotonic and the non-monotonic setting by providing probabilistic char-
acterisations of Martin-Löf randomness, Schnorr randomness, Kurtz randomness and
Kolmogorov-Loveland randomness in terms of computable probabilistic martingales.

6.2 Future research

Chapter 2

All definitions of randomness found in the algorithmic randomness literature are
explicit or operational: a sequence is categorised as being random if and only if it
satisfies a series of well-defined properties. However, other approaches are possible, as
well. Van Lambalgen [1990], for instance, in trying to vindicate von Mises’ frequentist
theory, advances an axiomatic approach to randomness. He expands the language of
set theory by adding a new primitive independence relation R(X,Y ), which expresses
that X ∈ {0,1}ω is uniformly random relative to some known data Y—where Y is a
finite tuple of sets. He then provides axioms for this relation and investigates various
models of the proposed axioms. Interestingly, his analysis shows that randomness à
la von Mises is at odds with both the axiom of choice and the extensionality axiom.

In [2014], Simpson provides an alternative realisation of van Lambalgen’s pro-
gramme, where randomness is defined via a series of axioms aimed at capturing the
notion of information independence. Just like van Lambalgen, Simpson adds a new
primitive independence relation to the language of set theory—more precisely, to ZF
together with the axiom of dependent choice. The axioms for Simpson’s independence
relation (and the randomness axioms which hinge on this independence relation),
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however, are based on ideas from independence logic (see, for instance, [Grädel and
Väänänen, 2013]). Simpson is then able to show that his framework can be used to
characterise randomness for general probability spaces.

Finally, in a recent talk [2015], Rute has also put forward a series of tentative
axioms for algorithmic randomness. It is then natural to ask how these different
axiomatisations relate to each other, and what their main differences are. Pursuing
these questions could also provide a deeper understanding of the differences between
von Mises’ theory of collectives and algorithmic randomness.

Chapter 3

The rejection of von Mises’ foundational project in favour of the algorithmic paradigm
inspired by Ville’s measure-theoretic approach raises the fascinating question of
whether there are any meaningful connections between algorithmic randomness and
the foundations/interpretations of probability.

In their book “Probability and Finance. It’s Only a Game!” [2001], Shafer and
Vovk propose a new foundation for probability theory based on ‘game theory’ instead
of measure theory—where the games in question involve the martingale functions
that we discussed in Section 3.3.

Shafer and Vovk’s work relies on a betting interpretation of probability which
generalises Cournot’s Principle [1843] (namely, the principle according to which an
event of small or zero probability singled out in advance will not happen), which
the authors take to be the only bridge between probability theory and the empirical
world63 [Shafer, 2015]. In view of Theorem 2.2.6 (proved by Ville), Shafer and Vovk
reinterpret Cournot’s Principle as saying that an event of small or zero probability
is one for which a betting strategy whose capital never becomes negative will not
multiply the gambler’s capital by a large or infinite factor. They call this Ville’s
Principle and use it to advance an interpretation of probability based on forecasting.

In a series of papers, the authors (either individually or jointly) prove game-
theoretic versions of classical measure-theoretic results: for instance, the strong
law of large numbers, Lévy’s zero-one law, and the law of calibration [Shafer et al.,
2010]. Interestingly, they also provide game-theoretic variants of several results on
‘merging of opinions’ obtained within measure-theoretic probability (see, for instance,
[Blackwell and Dubins, 1962]) and algorithmic randomness (see [Dawid, 1985]).

It would be interesting to further investigate Shafer and Vovk’s betting interpre-
tation of probability from both a philosophical and a technical point of view. For
instance, to what extent is Shafer and Vovk’s framework related to the subjective in-
terpretation of probability of, say, de Finetti, which also hinges on betting intuitions?
Can it itself be interpreted from a subjectivist viewpoint?

63Vovk also argues that Kolmogorov’s finite frequentism is a combination of Cournot’s Principle
and a modified version of von Mises’ theory of collectives [2001].
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Chapter 4

As already mentioned at the end of Chapter 4, we would like to further probe the
connections between algorithmic randomness and computational learning theory.

The two notions of identification proposed by Osherson and Weinstein [2008]
allow infinitely many (Definition 4.2.1) and finitely many (Definition 4.2.3) mind
changes, respectively. So, a natural question is whether there are any reasonable
identification criteria which

(i) are intermediate between strong sequence identification and sequence identifica-
tion, in the sense that the corresponding success set is defined by a clause that
is weaker than requiring cofinitely many yes’s, but stronger than only requiring
infinitely many yes’s;

(ii) could be used to characterise learning-theoretically any of the randomness
notions in between weak 2-randomness and Kurtz randomness.

To this end, one possible idea would be to use the notion of asymptotic den-
sity—where, given a set D ⊆ N, its asymptotic density is the quantity

ρ(D) = lim
n→∞

∣D ∩ {0, ..., n − 1}∣
n

.

Then, we could perhaps define the success set of a learning function ` as follows:

U` = {Y ∈ {0,1}ω ∶ {n ∈ N ∶ `(Y ↾ n) = yes} has positive asymptotic density},

while still requiring that λ(U`) = 0. Now, if a sequence is such that no computable
learning function identifies it in the sense of the above density-based criterion, is
this sequence also random, as per some standard algorithmic randomness notion? If
not, what is the relationship between this new randomness concept and the other
randomness notions living within the algorithmic randomness hierarchy?

Another interesting question is what would happen if we modified the notion of
‘allowable mistakes’ in the definition of the success set of a learning function. For
example, we could require the success set not only to have Lebesgue measure zero,
but also to contain only sequences which lie within a small distance of the target
sequence. For this purpose, we could perhaps employ the asymptotic Hamming
distance, or some other natural measure of distance for infinite binary sequences. If a
restriction along these lines were added to Definition 4.2.1 and Definition 4.2.3, would
the concepts of sequence identification and strong sequence identification change or
remain the same?
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Chapter 5

The first questions that we would like to answer are (i) whether KP1-randomness
coincides with any standard randomness notion, and (ii) whether Schnorr randomness
implies weak KP1-randomness (if this were indeed the case, then we would have
that Schnorr randomness is equivalent to both weak KEx-randomness and weak
KP1-randomness).

Now, Definition 5.3.5 from Section 5.3 could be extended by adding the interme-
diate notion of locally weak KEx-randomness:

Let X ∈ {0, 1}ω. Then, X is said to be locally weakly KEx-random if and
only if there is no probabilistic strategy A which always eventually bets
on X with probability one such that A is a KEx-strategy for X.

Then, is this new notion strictly weaker than Martin-Löf randomness (which coincides
with KEx-randomness)? Is it strictly stronger than Schnorr randomness (which
coincides with weak KEx-randomness)? Does it correspond to any well-studied
randomness notion in between Martin-Löf randomness and Schnorr randomness?

We concluded Section 5.3 by defining the concepts of (weak) WP1-randomness
and (weak) WEx-randomness, and by showing that Kurtz randomness is equivalent
to both weak WEx-randomness and weak WP1-randomness. We did not further
investigate the notion of WEx-randomness and WP1-randomness. Do they also
correspond to well-known randomness concepts? Are they strictly stronger than
their weak counterparts?

As already mentioned at the end of Section 5.4, it would also be interesting to
determine whether there are meaningful analogues of the notions of non-monotonic P1-
randomness and non-monotonic Ex-randomness once the position selection function
nA is allowed to make its decisions not only on the basis of the binary string observed
so far, but also according to the previously made bet/wait moves.

Finally, we would like to investigate notions of probabilistic randomness in
the context of resource bounded probabilistic martingales. Schnorr’s critique of
Martin-Löf randomness has in fact prompted a number of researchers (including
Schnorr himself) to study notions of resource bounded (pseudo)randomness in an
attempt to further a more evidence-based approach to algorithmic randomness
[Wang, 2000]. For instance, Schnorr [1971a] and Ko [1986] introduced resource
bounded versions of Martin-Löf, computable and Schnorr randomness, while Lutz
[1990; 1992] developed a resource bounded measure theory based on the notion of
resource bounded martingales. In the future, we would like to generalise the notions
of P1-randomness, Ex-randomness, KP1-randomness and KEx-randomness to this
resource bounded setting. A natural question, then, would be whether Buss and
Minnes’ and our results extend to this framework, as well. For instance, does weak
polynomial-time P1-randomness still coincide with polynomial-time randomness? Is
weak polynomial-time KEx-randomness again equivalent to polynomial-time Schnorr
randomness? What about notions of probabilistic randomness based on primitive

90



CHAPTER 6. CONCLUSION

recursive betting strategies [Cenzer and Remmel, 2013; Buss et al., 2014], rather than
computable ones? Lastly, it would be interesting to check to what extent Buss and
Minnes’ framework differs from Regan and Sivakumar’s definition of probabilistic
martingales based on randomised approximation schemes [1998], which is explicitly
inspired by Lutz’ paradigm [1990; 1992].
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A. Hájek. ‘Mises Redux’-Redux: Fifteen arguments against finite frequentism.
Erkenntnis, 45: 209–227, 1997. (page 30)

A. Hájek. The reference class problem is your problem too. Synthese, 156(3): 563–585,
2007. (page 28)
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