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ABSTRACT

We present a new scheme for quantum homomorphic encryption which is compact and allows
for efficient evaluation of arbitrary polynomial-sized quantum circuits. Building on the frame-
work of Broadbent and Jeffery [BJ15] and recent results in the area of instantaneous non-local
quantum computation [Spe15], we show how to construct quantum gadgets that allow perfect
correction of the errors which occur during the homomorphic evaluation of T gates on en-
crypted quantum data. Our scheme can be based on any classical (leveled) fully homomorphic
encryption (FHE) scheme and requires no computational assumptions besides those already
used by the classical scheme. The size of our quantum gadget depends on the space complexity
of the classical decryption function – which aligns well with the current efforts to minimize the
complexity of the decryption function.

Our scheme (or slight variants of it) offers a number of additional advantages such as ideal
compactness, the ability to supply gadgets “on demand”, circuit privacy for the evaluator
against passive adversaries, and a three-round scheme for blind delegated quantum computa-
tion which puts only very limited demands on the quantum abilities of the client.

Keywords: Homomorphic encryption, quantum cryptography, quantum teleportation, garden-
hose model, Barrington’s theorem, Clifford group
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1
INTRODUCTION

Homomorphic encryption enables the processing of data by operating directly on the encryption
of the data, without having to decrypt first. Rivest, Adleman and Dertouzous were the first to
observe the possibility of manipulating encrypted data in a meaningful way, rather than just
storing and retrieving it [RAD78]. A scheme that would allow the evaluation of any function
on the encrypted data was considered the holy grail of modern cryptography. After some
partial progress [GM84, Pai99, BGN05, IP07] over the years, a breakthrough was made in 2009
when Gentry presented the first fully homomorphic encryption (FHE) scheme [Gen09]. Since
then, FHE schemes have been simplified [VDGHV10] and based on fewer and more standard
assumptions [BV11]. The exciting developments around FHE have sparked a large amount of
research in other areas such as functional encryption [GKP+13b, GVW13, GKP+13a, SW14]
and obfuscation [GGH+13].

In the 1980s, a new research area emerged as the possibility of a computational model
based on quantum mechanics was proposed [Fey82, Ben82]. Developing quantum computers
is a formidable technical challenge, so it currently seems likely that quantum computing will
not immediately be available for everyone and that quantum computations will have to be
outsourced. Given the importance of classical1 FHE for “computing in the cloud” [NLV11], it
is natural to wonder about the existence of encryption schemes which can encrypt quantum data
in such a way that a server can carry out arbitrary quantum computations on the encrypted
data (without interacting with the encrypting party2). The best currently known schemes for
quantum homomorphic encryption only allow for efficient evaluation of a strict subset of all
possible quantum operations [RFG12, Lia13, TKO+14, OTF15, BJ15] and are therefore not
fully homomorphic. Generally, operations from the so-called Clifford group [Got98] tend to be
efficiently executable in a homomorphic setting, whereas the evaluation of operations that fall
outside of this group tends to be more demanding. In order to perform arbitrary quantum
operations, however, it is necessary to be able to evaluate at least one type of non-Clifford

1Here and throughout this thesis, “classical” stands for “non-quantum”.
2In contrast to blind or delegated quantum computation where some interaction between client and server is

usually required, see Chapter 6 for references.
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1.1. CONTRIBUTIONS

operation, for example the operation called the T gate. In this thesis, we are concerned with
the following question:

Is it possible to construct a computationally secure quantum homomorphic scheme that allows
for efficient evaluation of arbitrary polynomial-sized quantum circuits?

Building upon previous work by Broadbent and Jeffery [BJ15], we are able to answer the
above question in the affirmative.

1.1 Contributions
In this thesis, we present a new scheme TP (as abbreviation for teleportation) for quantum
fully homomorphic encryption which is efficient for circuits containing polynomially many T
gates. The scheme is leveled in the sense that an upper bound to the number of T gates needs
to be known beforehand. The scheme is secure against chosen plaintext attacks from quantum
adversaries, as formalized by the security notion q-IND-CPA security described by Broadbent
and Jeffery [BJ15].

Like the schemes proposed in [BJ15], our scheme extends a known scheme that is homo-
morphic only for Clifford operations. In this Clifford scheme, the input quantum state is
encrypted with a quantum one-time pad (see Section 2.2.1), and the keys to this pad are in
turn encrypted using a classical FHE scheme. Any computational assumptions required for
that classical scheme are inherited by the Clifford scheme.

We extend the Clifford scheme by supplying auxiliary quantum states to the evaluating
party which we call quantum gadgets and which aid in the evaluation of the T gates. The size
of a gadget in TP depends only on (a certain form of) the space complexity of the decryption
function of the classical FHE scheme. This relation turns out to be very convenient, as classical
FHE schemes are often optimized with respect to the complexity of the decryption operation.
As a concrete example, our scheme can be instantiated with the classical FHE scheme by
Brakerski and Vaikuntanathan [BV11], resulting in a quantum scheme where each evaluation
gadget consists of a number of quantum bits which is polynomial in the security parameter.
This is in sharp contrast to the scheme proposed by Broadbent and Jeffery [BJ15], which
requires auxiliary states that grow doubly exponentially in size with respect to the number of
layers of T gates in the circuit.

After a T gate is evaluated on a quantum state that is encrypted with a quantum one-
time pad, the result might contain an error, depending on the key with which the state was
encrypted. Since the evaluator is not allowed to know this key, he does not know whether an
error is present on the state and whether it needs to be corrected. Instead, he holds a classical
fully homomorphic encryption of the key, which he can use in combination with the gadget
in order to correct the error if it was present. In the process, the encrypted quantum state
is teleported “through the gadget” [GC99], and the quantum part of the gadget is consumed.
This quantum part consists of a number of entangled pairs of quantum bits that are prepared
in a way that depends on the secret key of the classical FHE scheme.

On a high level, the use of an evaluation gadget corresponds to an instantaneous non-
local quantum computation3 of the classical decryption function, where one party holds the

3This term is not related to the term ‘instantaneous quantum computation’ [SB08], and instead was first
used as a specific form of non-local quantum computation where all parties have to act simultaneously.
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1.2. ORGANIZATION OF THIS THESIS

secret key for the classical FHE scheme and the other party holds a classical encryption of
the key to the encrypted quantum state. Together, this information determines whether a
correcting operation needs to be performed on the quantum state or not. Recent results by
Speelman [Spe15] show how to perform such computation with a bounded amount of entan-
glement. These techniques are crucial ingredients for our construction and are the reason why
the garden-hose complexity [BFSS13] of the decryption procedure of the classical FHE scheme
is related to the size of our gadgets.

Apart from the definition of the scheme TP and the proof of its security against chosen
plaintext attacks, we describe two variations on TP. The first variation provides circuit privacy
to the evaluator in the semi-honest setting, allowing him to hide which circuit he evaluated
on the data. The second variation shows how the quantum gadgets can be prepared using
only very basic quantum operations, with the help of a (possibly malicious) third party. This
variation is useful in a setting where a computationally less powerful client wants to delegate
a quantum computation to a more powerful server.

The majority of the content of this thesis is based on a recent article by Dulek, Schaffner
and Speelman [DSS16]. Additionally, this thesis contains a more in-depth analysis of the
structure of the Clifford group, which plays a central role in the presented scheme because of
the way it interacts with the quantum one-time pad. This analysis can be seen as a separate
contribution that, although it does not contain any new results, may serve as an introductory
resource on the Clifford group.

1.2 Organization of this thesis
A very brief introduction to quantum computation is given in Chapter 2. The chapter also
provides a more thorough treatment of two important groups of quantum operations: the
Pauli group (and how it can be used for the encryption of quantum data), and the Clifford
group (and its relation to a universal set of quantum gates). Chapter 3 defines homomorphic
encryption in the classical and quantum setting, and discusses the Clifford scheme and the two
extensions presented in [BJ15]. Chapter 4 details the construction of the gadget needed for
our quantum homomorphic encryption scheme, laying out the results from complexity theory
and instantaneous non-local quantum computation on which this gadget is based. Our leveled
quantum fully homomorphic encryption scheme TP is defined and proven secure in Chapter 5.
This chapter also offers the adaptations needed to provide circuit privacy and to generate the
gadgets using limited quantum power. The thesis is concluded in Chapter 6 with a discussion
of the results, and some directions for future research are suggested.

3
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2
QUANTUM COMPUTATION

We start by defining the basic features of a quantum computer: the structure of the most
basic data building block, the qubit, and the types of operations that can be performed on
this data are introduced in Section 2.1. This section should not be regarded as a complete
introduction into quantum computation: for a more thorough treatment, the reader is referred
to, for example, [NC00]. In Sections 2.2 and 2.3, we will gradually build up the Clifford
group of quantum operations via the structurally simpler Pauli group, and explore some of
its properties. In particular, we will consider how the unitaries in the single-qubit Clifford
group rotate the Bloch sphere. This helps us to better understand in what way the Clifford
operations interact with the Paulis and each other. We will see that a non-Clifford gate (such
as the T gate) is needed to be able to perform all quantum operations with arbitrary precision.

2.1 Preliminaries

2.1.1 Notation

We assume familiarity with basic notions in linear algebra and use this subsection to establish
some notation. Throughout this thesis, new concepts and their notation will be introduced:
for an overview, see the list of symbols and abbreviations at the beginning of this document.

If U is a complex matrix, let U † denote its complex transpose, and let Tr(U) denote the
trace of the matrix. ‖U‖1 := Tr

√
UU † denotes the trace norm of U . Write Id for the identity

matrix of dimension d, and 0n,m for the null matrix (or vector, if m = 1) of dimension n×m.
If the dimensions are clear from the context, we might write I or 0. U(d) denotes the set of
all unitary matrices of dimension d.

Let |c| denote the absolute value of a complex number c ∈ C. If v is a vector of complex
numbers, let ‖v‖ denote its norm, i.e. the square root of the sum of its squared entries.

Finally, if x ∈ {0, 1}n, let x[i] denote the ith bit of x, for 1 ≤ i ≤ n. We use this notation
instead of the more conventional xi in order avoid confusion with the notation for a list of bit
strings (xi)

m
i=1 where all xi ∈ {0, 1}n.

5



2.1. PRELIMINARIES

2.1.2 Quantum states

Quantum data consists of quantum bits, or qubits, that can be described by vectors

(
α
β

)
∈ C2

(or in any two-dimensional complex Hilbert space) which are unit vectors, i.e. |a|2 + |b|2 = 1.
Defining the computational basis states

|0〉 :=

(
1
0

)
, |1〉 :=

(
0
1

)
,

(written in Dirac notation) allows us to describe a qubit using the notation α|0〉 + β|1〉: this
reflects the idea that the basis states |0〉 and |1〉 can be thought of as analogues to the classical
bits 0 and 1, and the values α and β can be regarded as the 0-amplitude and 1-amplitude,
respectively. If both amplitudes are non-zero, then we say that the qubit is in a superposition
between |0〉 and |1〉. Two states that are in equal superposition are

|+〉 :=
1√
2
|0〉+

1√
2
|1〉 and |−〉 :=

1√
2
|0〉 − 1√

2
|1〉.

These two states form the Hadamard basis. In general, we write |ψ〉 or |ϕ〉 to denote a (pure)
quantum state of one or more qubits.

When measuring a qubit in the computational basis, only two outcomes are possible: |0〉
is observed with probability |α|2, and |1〉 with probability |β|2. For this reason it is important
that |α|2 + |β|2 = 1. After a measurement, the qubit collapses to the observed value. It is also
possible to measure a qubit in a different basis, for example in the Hadamard basis {|+〉, |−〉}.
Since any qubit can be written as a linear combination of |+〉 and |−〉, both of these basis state
can be assigned an amplitude, whose square equals the probability of observing that outcome.

When combining multiple (uncorrelated) qubits, their joint state is the tensor product of
the individual states. For example, the tensor product |ϕ〉1 ⊗ |ψ〉2 (or |ϕ〉1|ψ〉2, or |ϕψ〉12) of
two qubits |ϕ〉 = α1|0〉+ β1|1〉 in register 1 and |ψ〉 = α2|0〉+ β2|1〉 in register 2 is

(
α1

β1

)
⊗
(
α2

β2

)
=


α1α2

α1β2
β1α2

β1β2

 = α1α2|00〉12 + α1β2|01〉12 + β1α2|10〉12 + β1β2|11〉12.

The subscripts specify to which registers or wires the states belong. Whenever this is clear
from the context, we leave out those subscripts.

An n-qubit state thus has dimension 2n. Not all n-qubit states can be written as a tensor
product of their component qubits: states that cannot be separated into such a product are
called entangled (see Section 4.1).

2.1.3 Quantum operations
We have seen that quantum states can be described by vectors of complex numbers. It should
not come as a surprise that operations on quantum states are described by matrices applied to
those vectors. The result of a quantum operation should of course be a valid quantum state,
and for this reason we only allow norm-preserving matrices as representatives of quantum
operations: a matrix U is norm-preserving if for all v, ‖Uv‖ = ‖v‖. Equivalently, a quantum

6



2.1. PRELIMINARIES

operation should be a unitary matrix, meaning that its complex conjugate is also its inverse:
UU † = U †U = I. (Note that as a consequence, any such matrix must be square.) An additional
property of norm-preserving or unitary matrices that we will use in this work is that their rows
all have length 1 and are pairwise orthogonal [Wol01]. The same holds for the columns of the
matrix.

Similarly to the subscripts for quantum states, we use the notation Ui to denote a single-
qubit quantum operation that is applied to the state in the ith register out of a total of n
registers. That is, Ui is the n-qubit unitary I⊗(i−1) ⊗ U ⊗ I⊗(n−i), where I is the single-qubit
identity operation I2. Similarly, Uij denotes a two-qubit gate U applied to registers i and j
only.

In principle, any unitary matrix in C2n×2n is a valid quantum operation on an n-qubit
quantum state. However, just like classical operations are ultimately built up from AND, OR
and NOT gates, we prefer to think of quantum operations as circuits built up from some small
set of basic gates. This reflects the way an actual quantum computer could be constructed,
and introduces a measure for the complexity of an operation in terms of the size of the circuit
required to perform the operation. Note however that with a finite set of basic gates we can only
build countably many different quantum circuits, while the number of unitary matrices over
complex numbers is uncountable. The trick is to find a set of basic gates that can approximate
any unitary matrix arbitrarily well, i.e. up to some arbitrarily small error.

There are different possible choices for such a set of basic quantum gates [Wol01]. In this
thesis, we will work with the gates in the 2-qubit Clifford group (see Section 2.3) extended
with the single-qubit gate

T =

[
1 0

0 eπi/4

]
.

This set of basic gates can approximate any unitary operation using polylogarithmically many
gates in the desired error bound by the Solovay-Kitaev theorem [DN05].

2.1.4 Pure versus mixed states
When working with partial information, we cannot always describe a quantum state completely.
From the point of view of an observer, the state may be in a number of possible states |ψi〉,
each with probability pi. Such a mixed state may be described with the density operator

ρ :=
∑
i

pi|ψi〉〈ψi|

where 〈ψi| denotes the conjugate transpose of the vector |ψi〉. If |ψi〉 is a vector of length 2n, the
density operator will be a 2n × 2n matrix. In general, a density operator is a positive-definite
matrix ρ such that Tr(ρ) = 1. We will denote mixed states with ρ or σ. Note that this state
is not a vector, but a matrix: when a unitary transformation U is applied to a mixed state ρ,
the result is UρU †, obtained through matrix multiplication. The composition of several mixed
states can still be described by the tensor product of the individual states. When measuring a
mixed state ρ, the probability of observing basis element |b〉 is given by Tr(〈b|ρ|b〉).

It is important to note that a mixture of pure states is not the same as a superposition of
those states. Consider, for example, the pure quantum state |+〉 = 1√

2
(|0〉+|1〉) that is in equal

superposition between |0〉 and |1〉 on the one hand, and the mixed quantum state 1
2(|0〉〈0| +

|1〉〈1|) that is a full mixture of |0〉 and |1〉 on the other hand. Each of these states, when

7



2.2. THE PAULI GROUP

measured in the computational basis, yields |0〉 or |1〉 with equal probability. When measured
in the Hadamard basis, however, the pure states yields |+〉 with certainty, whereas the mixed
states yields |+〉 or |−〉 with equal probability, since 1

2(|0〉〈0|+ |1〉〈1|) = 1
2(|+〉〈+| + |−〉〈−|).

This example also shows that a single density operator (in this case I2/2, the completely mixed
state) can often be interpreted in multiple ways, as several different mixtures of pure states.
This observation lies at the heart of the quantum one-time pad (see Section 2.2.1).

Adopting the notation from [BJ15], we sometimes write ρ(X) to denote the mixed quantum
state

∑
x PrX(x) · |x〉〈x| for a classical random variable X.

2.1.5 Visualizing single qubits in the Bloch sphere
When trying to visualize a single-qubit pure state α|0〉+β|1〉 with complex amplitudes α = aeϕi

and β = beψi, we seem to run into the problem of having to visualize four degrees of freedom,
since a, b, ϕ, ψ are all real numbers. However, since the global phase of a qubit is unobservable
by measurement [NC00], we may choose not to let our visualization display it. By doing so,
we may always assume that ϕ = 0 since if not, we can multiply the state globally by e−ϕi to
get the state a|0〉+ be(ψ−ϕ)i|1〉 and treat ψ−ϕ as a single variable. Similarly, we may assume
that a ≥ 0. On top of these assumptions on the values of a and ϕ, the constraint |a|2 + |b|2 = 1
ensures the existence of some θ ∈ (−π

2 ,
π
2 ] such that a = cos θ and b = sin θ. Hence, we can

write any single-qubit pure state as cos θ|0〉 + sin θeψi|1〉, which can be visualized on a two-
dimensional space in three dimensions, specifically the surface of the Bloch sphere or Poincaré
sphere [NC00], as follows. Define the x, y, and z coordinates as follows:

x := sin 2θ cosψ

y := sin 2θ sinψ

z := cos 2θ.

Since |x|2 + |y|2 + |z|2 = 1, these points all lie on the surface of the unit sphere. Figure 2.1
shows examples of pure states visualized in the Bloch sphere.

The Bloch-sphere representation nicely extends to mixed states as well. Let ρ be some state∑
i pi|ψi〉〈ψi|, where each of the pure states |ψi〉 is represented on the Bloch sphere by some

vector ~ri of length 1. Then ρ is represented in the open interior of the Bloch sphere, the Bloch
ball, by the average vector

∑
i pi~ri [OM08]. The completely mixed state I2/2 is represented by

the vector of length 0, exactly at the point of origin of the Bloch ball. This can be seen by (for
example) considering a uniform mixture of the pure states |0〉 and |1〉, whose vectors (along
the positive and the negative z axis, respectively) cancel each other out when averaged.

2.2 The Pauli group
Apart from the identity gate I, some of the most basic operations one can perform on a single
qubit are the bit flip X, the phase flip Z, and a complex combination Y of both flips:

X =

[
0 1
1 0

]
Z =

[
1 0
0 −1

]
Y =

[
0 −i
i 0

]
.

X flips a bit in the computational basis by mapping |0〉 to |1〉 and vice versa. Z flips the phase
of a qubit by assigning a negative amplitude only to the |1〉 part of the qubit: Z|0〉 = |0〉, while
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z

y

x

−z

−y

−x

•

ψ

θ

•
|0〉

•
|1〉

• |0〉+i|1〉√
2

•|0〉−i|1〉√
2

•
|−〉

•
|+〉

Figure 2.1: Left: the Bloch sphere plus the construction for the vector of an arbitrary single-
qubit pure state cos θ|0〉 + sin θeψi|1〉. Right: six examples of common pure states as plotted
on the Bloch sphere. Their positions can be verified by checking their individual (θ, ψ) values:
(0, 0) for |0〉; (π2 , 0) for |1〉; (π4 , 0) for |+〉; (π4 , π) for |−〉; (π4 ,

π
2 ) for 1√

2
(|0〉+ i|1〉); and (π4 ,

3π
2 )

for 1√
2
(|0〉 − i|1〉).

Z|1〉 = −|1〉. While this phase flip does not seem to make an observable difference because a
global phase is not observed in a measurement, it does when working with superpositions of
states, for example Z|+〉 = |−〉 and vice versa. One can verify the following useful identities:

Y = iXZ

X2 = Y2 = Z2 = I (self-inverse)

XZ = −ZX (X and Z anti-commute)

The four operations I, X, Z, and Y are known as the Pauli matrices. Together with multiplica-
tive factors ±1 and ±i, they form a group under multiplication:

Definition 2.1. The single-qubit Pauli group P1 is the matrix multiplication group over the
set

{±I,±iI,±X,±iX,±Z,±iZ,±Y,±iY}.

The n-qubit Pauli group Pn is the matrix multiplication group over the set1

{Q(1) ⊗ · · · ⊗Q(n) | Q(i) ∈ P1}

The Pauli group plays a key role in the stabilizer formalism [NC00] and can be used for
basic encryption of quantum states (see Section 2.2.1). We establish some properties of the
Pauli group that provide insight into its structure. These properties will mainly be useful for
analyzing the Clifford group in the next section.

Lemma 2.2. The Pauli group Pn is generated by {Xi,Zi,Yi | 1 ≤ i ≤ n}.
1The subscript in Q(i) is simply an index. We use this notation instead of Qi to in order to distinguish from

the application of an operation Q to the ith register.

9



2.2. THE PAULI GROUP

Proof. For the single-qubit Pauli group P1, we need to show that it is generated by X, Z
and Y. By matrix multiplication, one can check that I = XX, iI = XYZ, −I = XYXY, and
−iI = XZY. All other elements of P1 are easily generated by combining one of these four
identity-like operators with the appropriate generator. For example, −iX = (−iI)X.

For the general n-qubit Pauli group Pn, clearly it is enough to generate all elements of
the set {Qi | Q ∈ P1, 1 ≤ i ≤ n}; any other element Q(1) ⊗ · · · ⊗ Q(n) is simply the product
of (Q(1))1 through (Q(n))n. However, by the same arguments used for the single-qubit Pauli
group, any operator Qi can be generated using only Xi, Zi and Yi.

We now consider how each single-qubit Pauli operation manipulates the points on the Bloch
sphere. It turns out that the generators X, Y and Z represent exactly 180◦ rotations around the
x, y and z axes respectively [Gle05]. For example, applying X to some state cos θ|0〉+sin θedi|1〉
results in the state cos(π2 − θ)|0〉+ sin(π2 − θ)e

−di|1〉 (up to a global phase): a reflection in the
z and y axes, or equivalently a 180◦ rotation around the x axis. Indeed, the elements that are
exactly on the x axis (|+〉 and |−〉) are left invariant under the X operation.

Note that using only these 180◦ rotations, a qubit |0〉 or |1〉 can never leave the computa-
tional basis, and similarly |+〉 and |−〉 will never leave the Hadamard basis. Note furthermore
that since the global phase is not visible in the Bloch sphere representation, the rotation around
the y axis can be generated by subsequent rotations around the z and x axes, since Y = iXZ.
So if we are not interested in the global phase, we can drop Y as one of the generators of the
Pauli group.

The following lemma shows that the only gate that commutes individually with all elements
of the Pauli group is the identity gate (up to a global phase).

Lemma 2.3. The centralizer of the n-qubit Pauli group with respect to the group of all complex-
valued unitary 2n × 2n matrices U(2n), defined as

{U ∈ U(2n) | ∀A ∈ Pn : UA = AU},

is equal to the set {cI⊗n | c ∈ C, |c| = 1}.

Proof. Trivially, for all |c| = 1, cI⊗n is a centralizer element. To show that all centralizer
elements are of this form, we proceed by induction on n.

For n = 1, suppose that U ∈ U(2) is an element of the centralizer of P1. Then in particular,
UZ = ZU, and therefore (writing uij for the entry in row i and column j of U)[

u11 −u12
u21 −u22

]
= UZ = ZU =

[
u11 u12
−u21 −u22

]
.

We observe that u12 = −u12 and conclude that u12 = 0. Similarly, u21 = 0. Using the same
technique on the equation UX = XU, we can deduce that u11 = u22. Since U is a unitary, and
so all its columns must have length 1, U can only be of the form cI with |c| = 1.

For n > 1, a similar technique is used. Suppose that U ∈ U(2n) is a centralizer element of
Pn. Then for all Q ∈ Pn−1, U(Z ⊗ Q) = (Z ⊗ Q)U. We shall consider U as a block matrix of
four (not necessarily unitary) matrices, namely:

U =

[
A B
C D

]
.

10
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Then we can deduce, like in the case for n = 1, that[
AQ −BQ
CQ −DQ

]
= U(Z⊗Q) = (Z⊗Q)U =

[
QA QB
−QC −QD

]
From the above, we see that for all Q ∈ Pn−1, it must be that −BQ = QB. In particular, this
holds for Q = I⊗(n−1), and so we have that B = −B = 0. Similarly, we can deduce that C = 0.
Because U is unitary, its rows and columns must all have norm 1. Since B = C = 0, these
blocks do not contribute to the norms of the rows and the columns, and so it must be that A
and D themselves are unitary. Combining this information with the fact that QA = AQ for all
Q ∈ Pn−1, we can conclude that A is a centralizer element of Pn−1 with respect to U(2n−1),
and so (by induction hypothesis) it must be that A = cI⊗(n−1) for some c ∈ C with |c| = 1.
Similarly, D = c′I⊗(n−1) for some c′ ∈ C with |c′| = 1. Now we know that U is of the form[

cI⊗(n−1) 0

0 c′I⊗(n−1)

]
It remains to show that c = c′. We do so by observing that because (X ⊗ I⊗(n−1))U = U(X ⊗
I⊗(n−1)), [

0 c′I⊗(n−1)

cI⊗(n−1) 0

]
=

[
0 cI⊗(n−1)

c′I⊗(n−1) 0

]
.

Hence, U = cI⊗n for some |c| = 1, which is what we set out to show.

So, the identity operator is the only unitary that commutes with all Pauli elements. How-
ever, the other Paulis themselves also show interesting commutating behavior with respect to
the Pauli group:

Lemma 2.4. Let Q ∈ Pn be such that Q 6∈ {±I⊗n,±iI⊗n}. Then Q commutes with exactly half
of the elements of Pn, and anti-commutes with the other half.

Proof. We show this by induction on n. For n = 1, this can be checked by hand (either by
matrix multiplication or by composing rotations of the Bloch sphere): X commutes with I and
X, but anti-commutes with Z and Y. Similarly, Z commutes with {I,Z} but anti-commutes
with {X,Y}, and Y commutes with {I,Y} but anti-commutes with {X,Z}. If some or all of
these operators are modified by scalars from {±1,±i}, commutation is not affected.

For n > 1, write Q = Q′⊗S for some Q′ ∈ Pn−1 and S ∈ P1. By the induction hypothesis,
exactly half of the elements of Pn−1 commute with Q′: call this set Q′. Similarly, by the
argument above, exactly half of P1 commutes with S: call this set S . Then all elements of

Q := {R′ ⊗R | R′ ∈ Q′, R ∈ S } ∪ {R′ ⊗R | R′ ∈ Pn−1 −Q′, R ∈ P1 −S }

commute with Q, since (Q′ ⊗ S)(R′ ⊗ R) = Q′R′ ⊗ SR, and the pairs Q′, R′ and S,R either
both commute or both anti-commute. Q makes up exactly half of the elements of Pn.

Note that the proof of Lemma 2.4 also shows that any n-qubit Pauli operator Q 6∈
{±I⊗n,±iI⊗n} commutes with exactly half of the Paulis in the set P±n := {Q(1) ⊗ · · · ⊗Q(n) |
Q(i) ∈ {±I,±X,±Y,±Z}}.
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2.2.1 Quantum one-time pad
Using only Pauli operators, we can build a simple yet effective encryption scheme known as the
quantum one-time pad [AMTW00]: if a uniformly random Pauli operator is applied to some
qubit, the resulting state is fully mixed to anyone that does not have knowledge of which Pauli
is applied.

Analogous to the classical one-time pad, where a plaintext bit b is hidden by choosing some
b′ ∈R {0, 1} and computing b ⊕ b′ for the ciphertext, the quantum one-time pad is applied to
some single-qubit mixed state ρ by picking two random bits a, b ∈R {0, 1} uniformly at random
and computing the state (XaZb)ρ(XaZb)† to be the ciphertext. As long as a, b remain secret,

this random Pauli operator completely hides the content of any ρ =

[
α β
γ δ

]
, since

∑
a,b∈0,1

1

4
(XaZb)ρ(XaZb)† =

1

4

(
ρ+ XρX† + ZρZ† + (XZ)ρ(XZ)†

)
=

1

4

([
α β
γ δ

]
+

[
δ γ
β α

]
+

[
α −β
−γ δ

]
+

[
δ −γ
−β α

])
=

1

2

[
α+ δ 0

0 α+ δ

]
which, because α+ δ = Tr(ρ) = 1, equals Id/2, the completely mixed state.

We can also see that the quantum one-time pad results in the completely mixed state by
considering what it does to a (pure or mixed) state represented in the Bloch ball by coordinates
(x, y, z). Then X represents a rotation around the x axis, effectively mapping the state to
(x,−y,−z). Similarly, Z maps the state to (−x,−y, z), and XZ (which is equal to Y up to
a global phase) maps the state to (−x, y,−z). Averaging over these four vectors results in a
vector with entries (0,0,0), which represents the completely mixed state.

2.3 The Clifford group
In this section we consider a somewhat larger group of operations known as the Clifford group.
It is defined as the set of operations that commute with the Pauli group as a whole:

Definition 2.5. The n-qubit Clifford group Cn is the normalizer of Pn with respect to U(2n).
That is,

Cn := {U ∈ U(2n) | PnU = UPn}.
Clifford operators commute with the entire Pauli group in the sense that left multiplication

of the Pauli group results in the same set of operators as right multiplication. This is a more
relaxed notion than the centralizer of the Pauli group, since the Clifford operators do not need
to commute individually with every Pauli operator. For U to be a Clifford operation, we only
require that for every Q ∈ Pn, there exists some Q′ ∈ Pn such that QU = UQ′.

What does the set Cn look like? One can verify by hand that at least the following operations
are included in the single- and two-qubit Clifford groups:

H =
1√
2

[
1 1
1 −1

]
P =

[
1 0
0 i

]
CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .
12
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The size of Cn grows quickly with n, but as we will see, the set always remains finite (up to a
global phase). We can associate the Clifford elements with permutations on the Paulis in the
following way:

Lemma 2.6. For any A ∈ Cn, let πA : Pn → Pn be the function defined by πA(Q) := AQA†.
πA is a permutation on Pn. Furthermore, πA is a linear map that preserves the group structure
of Pn.

Proof. We need to show that πA is a bijection on Pn. To see that πA is injective, suppose for
Q,Q′ ∈ Pn that AQA† = AQ′A†. It follows that Q = A†AQA†A = A†AQ′A†A = Q′. Since
the domain and codomain of πA are finite and of equal size, injectivity immediately implies
bijectivity. Hence, πA is a permutation on Pn.

To verify that πA preserves addition, simply observe that A(Q+Q′)A† = AQA† +AQ′A†.
Similarly for scalar multiplication: AcQA† = cAQA†, so πA is a linear map. πA preserves the
Pauli group structure since AQQ′A† = AQA†AQ′A†.

Because πA is a permutation for any A ∈ Cn, we can view every element of the Clifford
group as a permutation of the Paulis. It is natural to ask whether (1) different Clifford
operations represent different permutations on Pn, and (2) whether all permutations on Pn
are represented by at least one Clifford operation. In the rest of this section, we will first show
that all Cliffords do represent unique permutations by showing that two Cliffords that induce
the same permutation cannot differ by more than a global phase. Then we will see that only a
specific set of permutations is represented by the Clifford group, and that for the single-qubit
case this set corresponds to the rotational symmetries of a cube.

Lemma 2.7. Let A,B ∈ Cn. If πA = πB, then A = cB for some c ∈ C with modulus 1.

Proof. Suppose that for all P ∈ Pn, APA† = BPB†. Then for all P ∈ Pn, B†APA†B = P ,
and so B†A is in the centralizer of the n-qubit Pauli group. From Lemma 2.3, it follows that
B†A = cI⊗n for some c ∈ C with |c| = 1, and so A = cB.

Next, we consider the second question: which permutations on Pn are represented by the
Cliffords? First, note that because πA preserves the group structure of Cn (see Lemma 2.6),
the way πA acts on the generators of Pn completely determines the values of πA on the rest of
the group. For example for a single-qubit Clifford A, πA(Y) = iπA(X)πA(Z), because Y = iXZ.
The following lemma helps us to reduce the number of permutations we need to consider.

Lemma 2.8. Let A ∈ Cn. Then the following restrictions on the values of πA(Xn) and πA(Zn)
hold:

(i) πA(Xn), πA(Zn) ∈ P±n \{±I⊗n}.

(ii) πA(Xn) and πA(Zn) anti-commute.

Proof.

(i) We prove that πA(Xn) ∈ P±n \{±I⊗n} – the argument for πA(Zn) is identical. First, note
that for all c ∈ {1,−1, i,−i}, πA(cI⊗n) = cI⊗n, so all identity-like matrices are mapped
to themselves. Therefore, Xn cannot be mapped to any of them by the permutation πA.

13
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Next, suppose toward a contradiction that πA(Xn) = ±iQ for some Q ∈ P±n . This would
result in

I⊗n = πA(I⊗n) = πA(XnXn) = πA(Xn)2 = (±iQ)2 = (±i)2I⊗n = −I⊗n,

a contradiction. Hence, the only possible images for Xn under πA are the elements from
P±n \{±I⊗n}.

(ii) This holds because Xn and Zn anti-commute, and πA preserves the group structure (see
Lemma 2.6):

πA(Xn)πA(Zn) = πA(XnZn) = πA(−ZnXn) = −πA(ZnXn) = −πA(Zn)πA(Xn).

It can even be verified that any permutation that satisfies the restrictions in Lemma 2.8
determines a (unique) Clifford operator A ∈ Cn [Ozo08]. We do so in Section 2.3.2.

2.3.1 The single-qubit Clifford group C1

We first focus on the single-qubit Clifford group C1: it is relatively small and we can therefore
study its structure explicitly. Combining Lemmas 2.7 and 2.8, we see that the single-qubit
Clifford group C1 contains (at most) 6 × 4 = 24 unique elements, up to scalar multiplication.
This is because there are six possible values for πA(X) (namely, the elements of {±X,±Y,±Z}),
and four remaining possibilities for πA(Z) (the half of P±1 that anti-commutes with πA(X)).
We will show that the Clifford group does indeed contain all the operators that induce these
24 possible permutations.

Lemma 2.9. Suppose for some A ∈ C1 that πA(X) = Q, and πA(Z) = Q′. Then

(i) πAX(X) = Q and πAX(Z) = −Q′.

(ii) πAZ(X) = −Q and πAZ(Z) = Q′.

(iii) πAY(X) = −Q and πAY(Z) = −Q′.

Proof. These identities can be verified by straightforward computation. For example, πAX(Z) =
AXZXA† = πA(XZX) = −πA(XXZ) = −πA(Z).

Table 2.2 explicitly lists the six Clifford operators that represent the permutations πA(X) ∈
{X,Y,Z} and πA(Z) ∈ {X,Y,Z}\{πA(X)}. We can find all 24 permutations by right-multiplying
these operators with the Paulis as described in Lemma 2.9.

Like Pauli operators, each of the resulting 24 elements of the single-qubit Clifford group
corresponds to a rotation of the Bloch sphere. These rotations are determined by the permuta-
tions listed in Table 2.2. For example, the P operator maps the x axis onto the y axis, maps the
y axis onto the −x axis (i.e. the mirrored x axis), and leaves the z axis fixed. This corresponds
to the values πP(X) = Y, πP(Y) = −X, and πP(Z) = Z from Table 2.2, and effectively rotates
the Bloch sphere by 45◦ around the z axis. We can check that the permutations of the axes
that arise from the Clifford group elements are exactly those that are orientation-preserving
on the Bloch sphere, i.e. realizable when physically rotating the sphere in three dimensions.
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A πA(X) πA(Z)

PHP X Y

I X Z

HPZ Y X

P Y Z

H Z X

PH Z Y

Figure 2.2: Six single-qubit Clifford operations and the permutations they induce on the Pauli
group, as fixed by the permutations of the generators X and Z. From these six Cliffords, the
entire group C1 can be generated by right-multiplying with Paulis.

z
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x

−z

−y

−x •

•

90◦

•

•

180◦

(a) (b) (c)

Figure 2.3: (a): the isometry between the Bloch sphere under Clifford rotations and the
orientation-preserving rotation group of the cube. (b) and (c): the generators of the Clifford
group (P and H, respectively) as corresponding to the generators of the cube rotation group.

In order to establish the generators of C1, we note that the single-qubit Clifford group also
corresponds to the (orientation-preserving) symmetry group of the cube in the following way.
Draw the smallest possible cube around the Bloch sphere so that the axes of the sphere run
through the centers of the six cube faces (see Figure 2.3(a)). Then every order-preserving
rotation of the cube corresponds to a Clifford operation, and vice versa (see Table 2.2). Specif-
ically, Figures 2.3(b) and 2.3(c) show the rotations induced by P and H, respectively. These
two rotations are known generate the entire orientation-preserving symmetry group of the
cube [Arm88], so P and H together generate the entire single-qubit Clifford group (up to global
phase). This isometry also helps to see why there are 24 elements in C1: the cube face corre-
sponding to the (positive) x-axis can be moved to any of the six cube faces, and then rotated
around its center in four possible ways, representing the remaining possible permutations of
the z-axis.
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2.3.2 The multi-qubit Clifford group Cn
The general n-qubit Clifford group becomes very large very fast. The goal of this subsection
is to establish the size of Cn, and along the way we will see that Cn is generated by just H,P
and CNOT. We start by verifying that any permutation on the Pauli group that preserves its
structure as in Lemma 2.8 can be associated with a Clifford operator:

Lemma 2.10. Let f : Pn → Pn be a permutation such that f(Xn), f(Zn) ∈ P±n \{±I}, and
f(Xn) anti-commutes with f(Zn). Then there exists an A ∈ Cn such that f = πA. Moreover,
A is a product of only H, P and CNOT operations.

Proof. This is again a proof by induction on n. For n = 1, the statement was verified by hand
in Section 2.3.1.

For n > 1, we will build up the Clifford operation A† in several steps, and show that πA† ◦f
is the identity permutation. It then immediately follows that f = πA.

First, let R ∈ Pn be the result of f(Xn). Then R = R(1)⊗· · ·⊗R(n−1)⊗R(n) for R(i) ∈ P1.
As we have seen in Section 2.3.1, there exists a single-qubit Clifford B such that πB(R(n)) = X,
and hence, πI⊗(n−1)B(R) = R(1)⊗· · ·⊗R(n−1)⊗X. This B can be constructed from just H and
P, like all single-qubit Cliffords.

For any single-qubit Pauli Q, define C(Q)ij to be the controlled version of Q with control
bit i and target bit j. One can verify that for any Pauli Q,

πC(Q)ij (Xi ⊗ Ij) = (Xi ⊗Qj) and πC(Q)ij (Zi ⊗ Ij) = (Zi ⊗ Ij).

Moreover, such controlled-Q gates are Cliffords and can be easily built using only CNOT, H
and single-qubit Pauli operations (which, in turn, can be built from H and P) [NC00]. Let
CX :=

∏n−1
i=1 C(R(i))ni. Then clearly, πC(R(i))ni

(Xn) = πI⊗(n−1)B(f(Xn)). Thus, π(C(R(i))ni)−1 ◦
πI⊗(n−1)B ◦ f leaves Xn fixed.

Using roughly the same technique, we can find a Clifford that also inverts the effect
of f on Zn, while leaving Xn fixed: let S(1) ⊗ · · · ⊗ S(n−1) ⊗ S(n) ∈ Pn be the result of
π(C(R(i))ni)−1(πI⊗(n−1)B(f(Zn))). Again, there exists a single-qubit Clifford B′ such that πB′

(leaves X fixed and) maps S(n) 7→ Z. Then, defining CZ :=
∏n−1
i=1 C(S(i))ni, we can check that

HCZH maps Zn 7→ S(1) ⊗ · · · ⊗ S(n−1) ⊗ Z, while leaving Xn fixed.

From the above, we conclude that the permutation induced by

A′ := H(CZ)−1H(I⊗(n−1) ⊗B′)(CX)−1(I⊗(n−1) ⊗B),

which can be built entirely from H, P and CNOT, inverts the permutation f simultaneously
on the Paulis Xn and Zn. All other Pauli generators may still be arbitrarily permuted by this
permutation, but at least the group structure is respected by the permutation πA′ ◦ f because
of Lemma 2.6. Hence, by the induction hypothesis, there exists some Clifford D ∈ Cn−1, a
product of H, P and CNOT gates, such that πD⊗I ◦πA′ ◦f is the identity permutation. Defining
A := (A′)†(D ⊗ I)† completes the proof.

As a corollary of Lemmas 2.6, 2.7 and 2.10, all Cliffords can be generated by H, P and
CNOT. Lemma 2.6 states that all Clifford operations A give rise to a permutation πA on the
Paulis that is group-structure preserving. From Lemma 2.6 we know that all such permutations
can be induced by a unitary that is constructed from the set {H,P,CNOT}. By Lemma 2.7,
this unitary that induces the same permutation as A is equal to A (up to a global phase).
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We now construct a recursive formula for the size of the n-qubit Clifford group. To do this,
we show that a certain subgroup of Cn is isomorphic to Cn−1, and then count the number of
cosets of this subgroup in Cn.

Lemma 2.11. Let C?n := {A ∈ Cn | πA(Xn) = Xn, πA(Zn) = Zn} be the set of n-qubit Cliffords
that leave the generators Xn and Zn fixed. Then C?n is isomorphic to Cn−1.

Proof. Define f : Cn−1 → C?n by f(A) := A ⊗ I. Clearly, this is a homomorphism because
f(AB) = AB ⊗ I = (A⊗ I)(B ⊗ I) = f(A)f(B). To see that it is an isomorphism, we need to
show that it is a bijection as well.

Injectivity of f follows immediately from the observation that if f(A) = f(B), then A⊗ I =
B ⊗ I, and hence A = B.

For surjectivity, let A ∈ C?n. Then by definition of C?n, AXn = XnA and AZn = XnA. Like
in the proof of Lemma 2.3, we can deduce from these equations that A must be of the form
A′ ⊗ I for some A′ ∈ U(2n−1). Because A ∈ Cn, it must be the case that A′ ∈ Cn−1. Hence,
there exists an A′ ∈ Cn−1 such that f(A′) = A.

Lemma 2.12. The size of the n-qubit Clifford group is |Cn| = 2(4n − 1)4n|Cn−1|.

Proof. For every A ∈ Cn, AC?n is a (left) coset of C?n in Cn. We argue that if two n-qubit
Cliffords A and B give rise to permutations that act identically on {Xn,Zn}, then AC?n = BC?n.
Because πA(Xn) = πB(Xn), we have that πB†A(Xn) = Xn, and similarly that πB†A(Zn) = Zn.
By the same argument as in the surjectivity proof of Lemma 2.11, it follows that there exists
a C ∈ Cn−1 such that B†A = I ⊗ C. For this C, we have that B(I ⊗ C) = B(B†A) = A =
A(I ⊗ I⊗(n−1)), and hence BC?n ∩ AC?n 6= ∅. Because the (left) cosets of a group always form a
partition of that group, this means that BC?n = AC?n.

From the above argument, we see that every structure-preserving permutation on the Pauli
group can be associated with exactly one coset of Cn−1 ∼= C?n in Cn. From Lemmas 2.4 and 2.8,
it follows that the number of possible images for Xn and Zn under such a permutation is

|P±n − {±I⊗n}| ·
1

2
|P±n | = (2 · 4n − 2) 4n = 2(4n − 1)4n.

The result of the lemma now follows from Lagrange’s Theorem.

From Lemma 2.12, we can derive the closed formula |Cn| = 2n
2+2n

∏n
j=1(4

j − 1). The size
of Cn thus grows exponentially in n, but always remains finite if we ignore the global phase.

2.4 Universal quantum computation
For universal quantum computation, we want to be able to perform arbitrary quantum opera-
tions, or at least approximate them up to some arbitrarily small error. In the single-qubit case,
this means approximating arbitrary rotations of the Bloch sphere, or equivalently mapping the
|0〉 state to any point on the Bloch sphere. From the analysis in Section 2.3, it is clear that
the Clifford group is not sufficient for this task.

For universal quantum computation, it suffices to add a single-qubit non-Clifford gate, for
example the T gate [NC00]. The T gate represents a 45◦ rotation around the z axis of the
Bloch sphere. Any rotation of the Bloch sphere can be approximated by a finite product of
this T rotation and the H rotation [BMP+99]. The P gate becomes redundant since it can
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be constructed with two consecutive T gates. The Solovay-Kitaev theorem even states that
the number of operators needed for this approximation is quite small: polylogarithmic in the
desired error bound [NC00]. If we want to do universal quantum computation on n qubits,
the operations H, T and CNOT are enough. This set of basic gates is often referred to as the
standard set or the Clifford+T set, because the Cliffords can be generated using only T2,H,
and CNOT (see Section 2.3.2).

We conclude this chapter by stating a number of useful gate equalities (up to a global
phase), which can be verified by hand, either by matrix multiplication or by composing the
rotations on the Bloch sphere:

T2 = P

P2 = Z

HXH = Z

PZ = ZP

PX = XZP

TX = PXT

TZ = ZT

and some equalties that cannot be visualized in three dimensions:

CNOT(I⊗ X) = (I⊗ X)CNOT

CNOT(X⊗ I) = (X⊗ X)CNOT

CNOT(I⊗ Z) = (Z⊗ Z)CNOT

CNOT(Z⊗ I) = (Z⊗ I)CNOT
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3
HOMOMORPHIC ENCRYPTION

Usually, encrypted data can only be stored and later retrieved, and in order to manipulate
the data one would have to decrypt it first. Homomorphic encryption allows the evaluation
of a function on the plaintext by manipulating the ciphertext in some related way, using an
evaluation key. By definition, this means that the encryption is malleable by anyone who knows
the evaluation key, which can be an undesirable property in some contexts. The homomorphic
property is an advantage in other contexts, for example when outsourcing computations to an
untrusted party. This advantage is especially evident in a quantum setting, where a possible
future scenario is the existence of a limited number of powerful quantum computers that carry
out quantum computational tasks on data from clients.

This chapter provides formal definitions of (classical and quantum) homomorphic encryp-
tion schemes and the security conditions for such schemes. In the current work, we only
consider homomorphic encryption in a public-key setting. For a more thorough treatment of
these concepts, and how they can be transferred to the symmetric-key setting, see [BJ15].

3.1 Classical homomorphic encryption
A classical homomorphic encryption scheme HE consists of four algorithms: key generation,
encryption, evaluation, and decryption. The key generator produces three keys: a public key
and evaluation key, both of which are publicly available to everyone, and a secret key which is
only revealed to the decrypting party. Anyone in possession of the public key can encrypt the
inputs x1, . . . , x`, and send the resulting ciphertexts c1, . . . , c` to an evaluator who evaluates
some circuit C on them using the evaluation key. The evaluator sends the result to a party
that possesses the secret key, who should be able to decrypt it to C(x1, . . . , x`).

More formally, HE consists of the following four algorithms which run in probabilistic
polynomial time in terms of their input and parameters [BV11]:

(pk , evk , sk)← HE.KeyGen(1κ) where κ is the security parameter. Three keys are generated:
a public key pk , which can be used for the encryption of messages; a secret key sk used
for decryption; and an evaluation key evk that may aid in evaluating the circuit on the
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encrypted state. The keys pk and evk are announced publicly, while sk is kept secret.
The length of the keys is a fixed polynomial in κ. Longer keys generally increase the
input size of the computationally hard problem that a potential attacker needs to solve,
essentially making the encryption more secure.

c← HE.Encpk (x) for some message x from a message space Mκ (in this thesis, we will work
with message space Mκ = {0, 1}). This probabilistic procedure outputs a ciphertext c,
using the public key pk .

c′ ← HE.EvalCevk (c1, . . . , c`) uses the evaluation key to output some ciphertext c′ which should
decrypt to the evaluation of circuit C on the decryptions of c1, . . . , c`. We will often think
of Eval as an evaluation of a function f instead of some canonical circuit for f , and write
HE.Evalfevk (c1, . . . , c`) in this case.

x′ ← HE.Decsk (c′) outputs a message x′ ∈ Mκ, using the secret key sk when presented with
the output of the evaluation function.

In principle, HE.Encpk can only encrypt single bits. When encrypting an n-bit message x ∈
{0, 1}n, we encrypt the message bit-by-bit, applying the encryption procedure n times. We
sometimes abuse the notation HE.Encpk (x) to denote this bitwise encryption of the string x.

For HE to be a homomorphic encryption scheme, we require correctness in the following
sense:

Definition 3.1. A scheme is correct for a set of circuits S if for any circuit C ∈ S, there exists
a negligible1 function η such that, for any input x,

Pr[HE.Decsk (HE.EvalCevk (HE.Encpk (x))) 6= C(x)] ≤ η(κ) .

Strictly speaking, the definition of a homomorphic encryption scheme allows part of the
evaluation work to be deferred to the decryption phase, resulting in a trivial scheme where
the evaluator only appends instructions for the circuit C, and the decrypting party applies the
described circuit to x directly after decrypting it. To discourage the design of such schemes, it
is often required that the scheme is compact, meaning that the complexity of the decryption
function should not depend on the size of the circuit:

Definition 3.2. A scheme is compact if there exists a polynomial p(κ) such that for any circuit
C and any ciphertext c, the complexity of applying HE.Dec to the result of HE.EvalC(c) is at
most p(κ).

In practice, all proposed FHE schemes aim to make the decryption function as simple
as possible, and usually provide decryption in NC1, the class of logarithmic-depth Boolean
circuits of fan-in 2. This class is contained in the class of log-space computable functions.

A scheme that is both correct for all circuits and compact, is called fully homomorphic.
If it is only correct for a subset of all possible circuits (e.g. all circuits with no multiplication
gates) or if it is not compact, it is considered to be a somewhat homomorphic scheme. Finally,
a leveled fully homomorphic scheme is (compact and) homomorphic for all circuits up to a
variable depth L, which is supplied as an argument to the key generation function [Vai11].

Early homomorphic encryption schemes were only somewhat homomorphic: they usu-
ally only implemented a single operation (addition or multiplication) [RSA78, GM84, Pai99].

1A negligible function η is a function such that for every positive integer d, η(n) < 1/nd for big enough n.
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Later on it became possible to combine multiple types of operations in a limited way [BGN05,
GHV10, SYY99]. Gentry’s first fully homomorphic encryption scheme [Gen09] relied on several
non-standard computational assumptions, among which assumptions about quantum compu-
tational power, needed even for security against classical attackers. Subsequent work [BGV12,
BV11] has relaxed these assumptions or replaced them with more conventional assumptions
such as the hardness of learning with errors (LWE), which is also believed to be computa-
tionally hard for quantum attackers. It is impossible to completely get rid of computational
assumptions for a classical FHE scheme, since the existence of such a scheme would imply
the existence of an information-theoretically secure protocol for private information retrieval
(PIR) [KO97] that breaks the lower bound on the amount of communication required for that
task [CKGS98, Fil12].

In this thesis, we assume for clarity of exposition that for all classical homomorphic schemes,
it is possible to immediately decrypt after encrypting (without doing any evaluation), even
though this is not guaranteed by definition. However, it suffices to evaluate the identity
operation before decrypting, so any scheme that is homomorphic for a set containing the
identity operation can be safely assumed to have this property.

We will use the notation x̃ to denote the result of running HE.Encpk (x): that is, Decsk (x̃) =
x with overwhelming probability. In our construction, we will often deal with multiple classical
key sets (pk i, sk i, evk i)i∈I indexed by some set I. In that case, we use the notation x̃[i] to denote
the result of HE.Encpk i

(x), in order to avoid confusion. Recall from Section 2.1.1 that (e.g.)
pk i does not refer to the ith bit of the public key: for this, we use the notation s[i].

When working with multiple key sets, it will often be necessary to transform an already
encrypted message x̃[i] into an encryption x̃[j] using a different key set j 6= i. To achieve this
transformation, we define the procedure HE.Reci→j that can always be used for this recryption

task as long as we have access to an encrypted version s̃k i
[j]

of the old secret key sk i. Effectively,
HE.Reci→j homomorphically evaluates the decryption of x̃[i]:

HE.Reci→j(x̃
[i]) := HE.EvalHE.Dec

evkj

(
s̃k i

[j]
,HE.Encpkj

(x̃[i])
)
.

Some homomorphic encryption schemes define a different, more efficient recryption proce-
dure [Gen09], but the above definition shows that recryption is possible for any classical ho-
momorphic encryption scheme.

3.2 Quantum homomorphic encryption
A quantum homomorphic encryption scheme QHE, as defined in [BJ15], is a natural extension
classical definition, and differs from it in only a few aspects. The secret and public keys are
still classical, but the evaluation key is allowed to be a quantum state. This means that
the evaluation key is not necessarily reusable, and can be consumed during the evaluation
procedure. The messages to be encrypted are qubits instead of bits, and the evaluator should
be able to evaluate quantum circuits on them.

All definitions from Section 3.1 carry over quite naturally to the quantum setting (see
also [BJ15]):

(pk , ρevk , sk)← QHE.KeyGen(1κ) where κ is the security parameter. In contrast to the classical
case, the evaluation key is a quantum state.
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σ ← QHE.Encpk (ρ) produces, for every valid public key pk and input state ρ from some message
space, a quantum cipherstate σ in some cipherspace.

σ′ ← QHE.EvalCρevk (σ) represents the evaluation of a circuit C. If C requires n input qubits,
then σ should be a product of n cipherstates. The evaluation function maps it to a
product of n′ states in some output space, where n′ is the number of qubits that C would
output. The evaluation key ρevk is consumed in the process.

ρ′ ← QHE.Decsk (σ′) maps a single state σ′ from the output space to a quantum state ρ′ in the
message space. Note that if the evaluation procedure QHE.Eval outputs a product of n′

states, then QHE.Dec needs to be run n′ times.

The decryption procedure differs from the classical definition in that we require the decryption
to happen subsystem-by-subsystem. This is fundamentally different from the more relaxed
notion of indivisible schemes [BJ15] where an auxiliary quantum register may be built up for
the entire state, and the state can only be decrypted as a whole. In this work, we only consider
divisible schemes, where decryption happens qubit-by-qubit.

Yu, Pérez-Delgado and Fitzsimons [YPDF14] showed that perfectly information-theoreti-
cally secure quantum fully homomorphic encryption (QFHE) is not possible, unless the size
of the encryption grows exponentially in the input size. Thus, any scheme that attempts to
achieve information-theoretically secure QFHE has to leak some proportion of the input to the
server [AS06, RFG12] or can only be used to evaluate a subset of all unitary transformations on
the input [RFG12, Lia13, TKO+14]. Like the multiplication operation is hard in the classical
case, the hurdle in the quantum case seems to be the evaluation of non-Clifford gates. A recent
result by Ouyang, Tan and Fitzsimons provides information-theoretic security for circuits with
at most a constant number of non-Clifford operations [OTF15].

Schemes that are based on computational assumptions have only recently been thoroughly
investigated by Broadbent and Jeffery. In [BJ15], they give formal definitions of QFHE and its
computational security, and they propose two schemes that achieve homomorphic encryption
for nontrivial sets of quantum circuits, which we discuss in Section 3.4. Instead of trying
to achieve information-theoretic security, they build their schemes based on a classical FHE
scheme and hence any computational assumptions on the classical scheme are also required
for the quantum schemes. Such computational assumptions allow bypassing the impossibility
result from [YPDF14], and help to work toward a (quantum) fully homomorphic encryption
scheme.

3.3 Security
The notion of security that we aim for is that of indistinguishability under chosen-plaintext at-
tacks, where the attacker may have quantum computational powers (q-IND-CPA). This security
notion was introduced in [BJ15, Definition 3.3] (see [GHS15] for a similar notion of the security
of classical schemes against quantum attackers) and ensures semantic security [ABF+16]. We
restate it here for completeness.

Definition 3.3. [BJ15] The quantum CPA indistinguishability experiment with respect to a
scheme QHE and a quantum polynomial-time adversary A = (A1,A2), denoted by PubKcpa

A ,QHE(κ),
is defined by the following procedure:
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1. KeyGen(1κ) is run to obtain keys (pk, sk, ρevk).

2. Adversary A1 is given (pk, ρevk) and outputs a quantum state on M⊗E.

3. For r ∈ {0, 1}, let Ξcpa,r
QHE : D(M) → D(C) be: Ξcpa,0

QHE (ρ) = QHE.Encpk(|0〉〈0|) and

Ξcpa,1
QHE (ρ) = QHE.Encpk(ρ). A random bit r ∈ {0, 1} is chosen and Ξcpa,r

QHE is applied
to the state in M (the output being a state in C).

4. Adversary A2 obtains the system in C ⊗ E and outputs a bit r′.

5. The output of the experiment is defined to be 1 if r′ = r and 0 otherwise. In case r = r′,
we say that A wins the experiment.

K
ey
G
en

(1
κ
) pk

Revk

pk
A1

M

E

Ξcpa,r
QHE C

A2 r′

Ξcpa,0
QHE : |0〉M Encpk

CM

Ξcpa,1
QHE : Encpk

M C

Figure 3.1: [BJ15, Figure 1, reproduced with permission of the authors] The quantum CPA
indistinguishability experiment PubKcpa

A ,QHE(κ). Double lines represent classical information
flow, and single lines represent quantum information flow. The adversary A is split up into
two separate algorithms A1 and A2, which share a working memory represented by the quantum
state in register E .

The game PubKcpa
A ,QHE(κ) is depicted in Figure 3.1. Informally, the challenger randomly

chooses whether to encrypt some message, chosen by the adversary, or instead to encrypt
the state |0〉〈0|. The adversary has to guess which of the two happened. This quantum
indistinguishability experiment can also straightforwardly be defined for a classical HE scheme:
in this case, all wires are classical, and the functionality Ξcpa,r

HE determines whether or not the
chosen message is replaced by a (classical) zero. The adversary still has quantum power.

If an adversary cannot win the indistinguishability game with more than negligible advan-
tage, the encryption procedure is considered to be q-IND-CPA secure:

Definition 3.4. [BJ15, Definition 3.3] A (classical or quantum) homomorphic encryption
scheme S is q-IND-CPA secure if for any quantum polynomial-time adversary A = (A1,A2)
there exists a negligible function η such that:

Pr[PubKcpa
A ,S(κ) = 1] ≤ 1

2
+ η(κ).

Analogously to PubKcpa
A ,S(κ), in the game PubKcpa−mult

A ,S (κ), the adversary can give multiple
messages to the challenger, which are either all encrypted, or all replaced by zeros. Broadbent
and Jeffery [BJ15] show that these notions of security are equivalent.

3.4 QHE for Clifford circuits
In this section, we describe a fairly basic quantum encryption scheme that is homomorphic for
all Clifford operations. The idea for this Clifford scheme has been around for quite some time,
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but in [BJ15] it was first written down and proven q-IND-CPA secure. Because our scheme
TP will be defined as an extension of this scheme, we give an informal overview here. A more
formal definition can be found in [BJ15], or extracted as a special case of TP (see Chapter 5)
for zero T gates.

The Clifford scheme (CL) is built upon some classical FHE scheme HE. A message qubit
is encrypted with a quantum one-time pad (see Section 2.2.1), and the classical keys to this
pad are sent along as classical information, encrypted using HE.Enc. Arbitrary Clifford circuits
can now be evaluated gate-by-gate by applying each gate to the encrypted quantum state and,
using the commutation rules for the Clifford group with the Pauli group, update the keys via
homomorphic evaluation. For example, to evaluate a phase gate P on the (encrypted) state
XaZb|ψ〉, perform the gate to get the resulting state

PXaZb|ψ〉 = XaZa⊕bP|ψ〉,

which is an encryption of P|ψ〉, but with different keys. The evaluator can use HE.Eval to
(homomorphically) compute encryptions of these new keys a and a ⊕ b from the encryptions
of a and b. For the update rules for all nontrivial Clifford gates, see Appendix A.1. After all
gates have been evaluated, decryption is performed by first decrypting the (updated) keys to
the quantum one-time pad, and then removing this pad from the output state.

The evaluation procedure of CL works perfectly for all Clifford gates, because these gates
commute with the Pauli group. The CL scheme can be regarded as analogous to additively
homomorphic encryption schemes in the classical setting. The challenge, like multiplication in
the classical case, is to perform non-Clifford gates such as the T gate. If we try to evaluate a
T gate in this way on a state XaZb|ψ〉, we end up with the state

TXaZb|ψ〉 = PaXaZbT|ψ〉

which is not a quantum one-time pad encryption of T|ψ〉. After the application of the T
gate, an error Pa has appeared on the encrypted state. If a is known, this error can easily
be corrected by applying P† whenever a = 1. However, the evaluating party only has access
to some encrypted version ã of the key a, and hence is not able to decide whether or not to
apply a correction. The value of a is also not known in advance to the key generating party
or encrypting party (because it depends on which quantum operations have been evaluated on
the input state so far), and so it cannot be supplied to the evaluator in an encrypted form.

In an effort to deal with the evaluation of a T gate, Broadbent and Jeffery [BJ15] have
presented two schemes that extend CL, accomplishing homomorphic encryption for circuits
with a limited number of T gates. In the EPR scheme, some entanglement is accumulated in a
special register during every evaluation of a T gate, and stored there until it can be resolved in
the decryption phase, effectively removing all accumulated errors on the state at once. Because
of this accumulation, the complexity of the decryption function scales (quadratically) with the
number of T gates in the evaluated circuit, thereby violating the compactness requirement of
QFHE. The scheme AUX also extends CL, but handles T gates in a different manner. The
evaluator is supplied with auxiliary quantum states, stored in the evaluation key, that allow
him to evaluate T gates and immediately remove any error that may have occurred. In this way,
the decryption procedure remains very efficient and the scheme is compact. Unfortunately, the
required auxiliary states grow doubly exponentially in size with respect to the T depth of the
circuit, rendering AUX useful only for circuits with constant T depth.
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In Chapter 5, we will present a scheme that also extends CL by supplying auxiliary quantum
states (gadgets) in the evaluation key. Using the construction from Theorem 4.5 in the next
chapter, it will be possible to create a small gadget that combines the knowledge of the key
generating and evaluating parties, and applies an error correction whenever necessary.
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4
COMPUTATION THROUGH TELEPORTATION

Quantum teleportation [NC00] is a powerful tool in quantum computation. At the expense of
a Pauli error, we can use pairs of entangled qubits to instantaneously transfer a quantum state
to a location that may be very far away. If we so wish, we can set up the entangled resource
to perform quantum operations to the state that is teleported ‘through’ it [GC99]. However,
no information about the teleported state is revealed until the Pauli error is removed.

The goal of this chapter is to construct a quantum state, essentially a collection of entangled
pairs of qubits, which serves as a conditional computation gadget : it can be used to apply a
fixed (Clifford) gate on a single-qubit input state, but only if some fixed boolean function
evaluates to 1 on an input that is only partially known to the party that is using the gadget.
In the construction of our quantum homomorphic encryption scheme, this gadget will be used
by the evaluator to correct errors that may be present after the evaluation of a T gate on the
encrypted data, even though he does not possess all the information about whether such an
error is present.

In Section 4.1, the theory behind quantum teleportation is explained. The other ingredient
for our gadget construction, Barrington’s Theorem, is briefly discussed in Section 4.2. Using
the binary OR function as a running example, we show how to combine Barrington’s Theorem
and quantum teleportation first into a two-party process in Section 4.3, and then into the
desired gadget structure in Section 4.4.

4.1 Quantum teleportation
Consider the following two-qubit states:∣∣Φ+

〉
=

1√
2

(|00〉+ |11〉)
∣∣Φ−〉 =

1√
2

(|00〉 − |11〉)∣∣Ψ+
〉

=
1√
2

(|01〉+ |10〉)
∣∣Ψ−〉 =

1√
2

(|01〉 − |10〉)
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•

•

•

|ψ〉

|Φ+〉

• H a

b

XaZb|ψ〉

Bell measurement

Figure 4.1: A quantum circuit representing the teleportation protocol. The EPR pair |Φ+〉 is
represented with a snaky line, and is used up as a resource during the process. Within the Bell
measurement subprocedure, the symbols for first a CNOT gate, then an H gate, and finally
two computational basis measurements are shown.

These states are called EPR pairs or Bell pairs, and play an important role in quantum
teleportation. Consider what happens if we measure (only) the first qubit of the two-qubit
state |Φ+〉. With equal probability, a 0 or a 1 is observed, which makes the entire state
collapse to |00〉 or |11〉 respectively. The second qubit, which used to be in a superposition of
0 and 1, can be considered to instantly collapse to the same value that was observed in the
measurement of the first qubit. This entanglement of the two qubits is a crucial ingredient for
quantum teleportation.

To see how quantum teleportation works, consider the quantum circuit depicted in Fig-
ure 4.1. An arbitrary qubit |ψ〉 = α|0〉+ β|1〉 is connected to the upper qubit of an EPR pair
through a Bell measurement, a measurement in the basis consisting of the four Bell states. It
can be implemented by a CNOT,H and two computational basis measurements. By calculating
the effects of the CNOT and H gates, one can verify that the three-qubit state, right before the
computational basis measurements, is of the form

1

2
(α|000〉+ β|001〉+ β|010〉+ α|011〉+ α|100〉 − β|101〉 − β|110〉+ α|111〉).

When we measure the top two qubits, we will get one of four outcomes ab ∈ {00, 01, 10, 11}
with equal probability. Immediately, the bottom qubit of the EPR pair collapses to the state
XaZb|ψ〉. For example, if the measurement results in 01, the entire state collapses into β|010〉+
α|011〉 = |01〉 ⊗X1Z0|ψ〉. This happens instantaneously, even when the two halves of the EPR
pair are very far apart. Note, however, that the Pauli error XaZb completely hides the content
of the qubit to anyone who does not know a and b (see Section 2.2.1), and cannot be removed
until the party that has performed the Bell measurement has communicated the measurement
outcomes through some classical channel. Thus, quantum teleportation cannot be used to
transport information instantaneously, thereby not contradicting special relativity.

4.1.1 Entanglement swapping
Apart from teleporting a pure state through an EPR pair, it is also possible to teleport a mixed
state. As an example, let us teleport half of another EPR pair |Φ+〉: a Bell measurement is
performed on the second and third qubit of the state |Φ+〉12 ⊗ |Φ+〉34, with measurement
outcomes a and b. Using similar calculations as before, we can verify that this results in the
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entanglement of qubits 1 and 4, which will have become one of the four possible EPR pairs
(more specifically, they will be in the state (XaZb)4|Φ+〉14. This effect is called entanglement
swapping [ZZHE93], since after the H and CNOT operations, the second and third qubit are
also entangled.

Teleporting a qubit through this new entangled state has the same effect as teleporting it
through |Φ+〉12 first and then through |Φ+〉34: in both cases, two independent random Paulis
are applied to the state. Therefore, when teleporting a qubit through multiple EPR pairs, the
order of measurement is irrelevant.

4.2 Barrington’s theorem
A surprising result in classical complexity theory is Barrington’s theorem [Bar89]. It states
that all functions in NC1 (i.e. functions computable by a log-depth Boolean circuit of fan-in 2)
share a certain structure in terms of so-called permutation branching programs. We will start
by giving a brief introduction to these types of programs.

In this thesis, we will be concerned with permutations on sets [k] := {1, ..., k}, for some
k ∈ N+. These permutations on finite sets can be described in a natural way using cycle
notation: for example, the notation (142)(35) denotes a permutation on the set [5] that consists
of a 3-cycle (mapping 1 7→ 4, 4 7→ 2, and 2 7→ 1) and a 2-cycle (mapping 3 7→ 5 and vice versa).

Definition 4.1. A k-permutation branching program (k-PBP) of length L on an input x =
x1x2 · · ·xn is a list of L instructions of the form 〈i`, π`, σ`〉 (for 1 ≤ ` ≤ L) such that: i` ∈ [n],
and π` and σ` are permutations on the set [k]. The program is executed by composing the
permutations given by the instructions 1 through L, selecting1 π` if xi` = 1, or σ` if xi` = 0.

The result of executing a k-permutation branching program is thus a permutation on [k].
We say that a k-permutation branching program computes a Boolean function f on input x
if it returns the identity permutation e whenever f(x) = 0, and returns some fixed k-cycle µ
otherwise.

Example 4.2. The OR function on two bits can be computed using a 5-permutation branching
program of length 4. It is defined by the following list of instructions:

1. 〈2, e, (12345)〉

2. 〈1, e, (12453)〉

3. 〈2, e, (54321)〉

4. 〈1, (14235), (15243)〉

This program results in the permutation (14235) if OR(x1, x2) = 1, and in the identity per-
mutation e otherwise. See Figure 4.2 for an example run on input (0,1).

Constant-width permutation branching programs turn out to be powerful enough to capture
NC1 circuits efficiently, as formalized in the following theorem [Bar89]:

Theorem 4.3 (Barrington’s theorem). Every boolean circuit C with depth d and fan-in 2 can
be computed by a 5-permutation branching program of length at most 4d.

1This order, where the second permutation is selected if xi` = 0 and the first if xi` = 1, may seem reversed,
but it consistent with common use and with the way it was first introduced in [Bar89]. One should think of a
program instruction as an ‘if then else ’ statement.
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〈2, e, (12345)〉 〈1, e, (12453)〉 〈2, e, (54321)〉 〈1, (14235), (15243)〉

Figure 4.2: Execution of the 5-permutation branching program for the OR function on input
(0, 1). See also Example 4.2. The program’s instructions are displayed above the permuta-
tions. The execution for this input results in the permutation e(12453)e(15243) = (14235), as
expected.

As a corollary of this theorem, it follows that if C is an NC1 circuit, then C has depth
O(log n) by definition, and hence its function can be computed using a polynomial-length
5-permutation branching program.

4.3 Instantaneous non-local quantum computation
Because every permutation step only queries a single bit of the input, permutation branching
programs are easily adapted to a setting where the input of the function is distributed amongst
multiple parties. Suppose that two parties, Alice and Bob, hold the respective inputs x and y,
and together want to compute some classical function f(x, y) by permuting a set of k qubits
according to some k-cycle π iff f(x, y). If one of the players starts off with k qubits, they can
distributedly execute a k-permutation branching program for f by letting Alice permute the
qubits whenever a program instruction queries a bit from x, and letting Bob do the permutation
whenever a bit of y is queried. In between program instructions, they can send the qubits back
and forth, or even teleport them (at the expense of a random Pauli error).

For an example computation of the OR function according to the program from Exam-
ple 4.2, see Figure 4.3. For each teleportation action, Alice and Bob need to share k EPR
pairs, to which they connect (through Bell measurements) the k qubits according to the pro-
gram instructions. After all program instructions have been executed in this way, the k qubits
end up on the ‘output’ side of the last set of k EPR pairs, permuted according to the result
of the k-permutation branching program. Note, however, that neither Alice nor Bob knows
how the qubits are permuted until they communicate about how they connected up the EPR
pairs on their respective sides of the protocol. Moreover, there will be a random Pauli error
(determined by the outcomes of the Bell measurements) on each of the qubits.

The ideas of the above construction are exploited in [Spe15] to perform instantaneous
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〈2, e, (12345)〉

〈1, e, (12453)〉

〈2, e, (54321)〉

〈1, (14235), (15243)〉

Figure 4.3: A distributed execution of a 5-permutation branching program for the OR function
on input (0,1), where Alice holds the first input bit (0) and Bob holds the second (1). Bob
starts the computation with five input qubits, which end up permuted according to (14235)
in the output position. Snaky lines represent EPR pairs, while smooth lines represent Bell
measurements on the pairs of qubits they connect.

non-local quantum computation, allowing two parties to jointly perform a computation on a
quantum state with only a single round of simultaneous communication (to share their inputs
and measurement outcomes). In the spirit of [Spe15], we construct a protocol for two parties to
perform a single-qubit Clifford operation conditioned on some (function of) distributed classical
information. The amount of EPR pairs needed for the computation depends exponentially on
the circuit depth of the function that is computed on the distributed inputs.

Lemma 4.4 (variation on [Spe15, Lemma 8]). Assume Bob holds a single qubit in the state2

|ψ〉, along with some classical y ∈ {0, 1}n. Alice holds x ∈ {0, 1}n. Let C ∈ C1 be some single-
qubit Clifford operation, and let f : {0, 1}n × {0, 1}n → {0, 1} be computable by some Boolean
circuit of depth d. Then there exists an instantaneous protocol without any communication
that uses 10(4d + 1) pre-shared EPR pairs, resulting in a known qubit of Bob being in the state
XaZbCf(x,y)|ψ〉 for some a, b ∈ {0, 1}. The values a and b depend on x, y and the 20(4d + 1)
measurement outcomes of Alice and Bob, and can be efficiently computed from those input
values.

Proof. The protocol is as follows: Alice and Bob perform a distributed 5-PBP computation
for f(x, y) using EPR pairs, as described above. Without loss of generality, assume that the
computation starts on Bob’s side and and finishes on Alice’s (if it does not, an additional 2 · 5
EPR pairs suffice to ensure that it does). Bob uses |ψ〉 as the first input qubit, and ancillary
|0〉 qubits for the other four input positions. Let π be the permutation induced by the 5-PBP
in case f(x, y) = 1. Alice applies the operation C to the output qubit in position π(1). Then
she uses these 5 output qubits as an input to the reverse 5-PBP for f , which is defined by

2For notational convenience, we will assume that the state is pure. The lemma also holds for mixed states,
and the proof is identical.
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XaZbC|ψ〉

〈2, e, (12345)〉

〈1, e, (12453)〉

〈2, e, (54321)〉

〈1, (14235), (15243)〉

〈2, e, (12345)〉

〈1, e, (12453)〉

〈2, e, (54321)〉

〈1, (14235), (15243)〉

Figure 4.4: An example execution of the instantaneous non-local computation protocol for a
Clifford gate C conditioned on OR(0, 1), where Alice holds the first input bit and Bob holds the
second input bit. Additionally, Bob has an input qubit |ψ〉 that he wants to apply the gate C to,
plus four ancilla qubits. The output of the protocol is XaZbC|ψ〉, because OR(0, 1) = 1 and so
the qubit is routed through the C gate. Again, snaky lines represent EPR pairs, and continuous
lines represent Bell measurements (or, on the far right, regular circuit wires), possibly preceded
by a C gate.

executing all program instructions in the reverse order, inverting the permutations for each
instruction. The `th instruction 〈i`, π`, σ`〉 of the original program becomes the (L − ` + 1)th

instruction 〈i`, π−1` , σ−1` 〉 in the reverse program. The output of this reverse program ends up
on Bob’s side, and the first output qubit is in a state of the form XaZbCf(x,y)|ψ〉, as we will
argue below. For an example execution of the protocol, see Figure 4.4.

First, we demonstrate that the protocol indeed uses at most3 10(4d + 1) EPR pairs. Bar-
rington’s theorem ensures the existence of a 5-PBP for f of length at most 4d. To compute this
program using teleportation, the qubits have to be teleported at most 4d − 1 times between
Alice and Bob, plus possibly an extra two times to make sure the computation starts and
ends with Bob and Alice respectively. In total, 5(4d + 1) EPR pairs suffice for the distributed
computation of the 5-PBP for f . Because Alice and Bob need to compute the entire protocol
in reverse, the total amount of EPR pairs needed is doubled to 10(4d + 1).

Next, we show that at the end of the computation, a known qubit is in a state of the form
XaZbCf(x,y)|ψ〉, by considering the path that the input qubit takes during the computation.
After the execution of the ‘forward’ direction of the 5-PBP, one of the five qubits will be in the
state Xa1Zb1 |ψ〉 for some a1, b1 ∈ {0, 1}. These values a1, b1 can be straightforwardly computed
by adding, modulo 2, those measurement outcomes from Alice and Bob that correspond to the
path the qubit has taken. This path depends directly on the program and the values x and
y. If f(x, y) = 1, the qubit will be at position π(1), while if f(x, y) = 0, it will be at position
e(1) = 1. Because π is a cycle permutation by definition of the 5-PBP, π(1) 6= 1. Hence, by
applying C only to the output qubit at position π(1), Alice ensures that the relevant qubit
is now in the state Cf(x,y)Xa1Zb1 |ψ〉. However, the location of the qubit is still unknown to
Alice and Bob if they cannot communicate. Computing the 5-PBP in reverse ensures that

3If multiple consecutive program instructions query input bits from the same player, the qubits do not
have to be teleported back and forth in between. Alice or Bob can just apply all consecutive permutations
immediately one after another.
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the qubit ends up in the first output position independently of the values x, y or f(x, y), since
π−1(π(1)) = e−1(e(1)) = 1. Because of the teleportations, additional random Paulis will have
been applied to the state, resulting in

Xa2Zb2Cf(x,y)Xa1Zb2 |ψ〉 (4.1)

for some a2, b2 ∈ {0, 1}. Again, these values are efficiently computable from the measurement
outcomes and the values x, y.

Remember that the Clifford operations commute with the Pauli group (see Section 2.3).
Therefore, CXa1Zb1 = Xa

′
1Zb

′
1C = for some a′1, b

′
1 ∈ {0, 1}. These values can be efficiently

computed from a1 and b1, see Appendix A.1. Therefore, the state in (4.1) can be rewritten to
Xa2⊕a

′
1Zb2⊕b

′
1C|ψ〉 if f(x, y) = 1. In general, the state of the first output qubit is of the form

XaZbCf(x,y)|ψ〉, where (a, b) = (a2 ⊕ a1, b2 ⊕ b1) if f(x, y) = 0, while (a, b) = (a2 ⊕ a′1, b2 ⊕ b′1)
if f(x, y) = 1. In either case, the values a and b are efficiently computable from x and y and
the measurement outcomes of both Alice and Bob.

With the construction from Lemma 4.4, Alice and Bob can instantaneously and non-locally
perform a single-qubit Clifford operation (plus a random Pauli that can only be removed after
a round of simultaneous communication), conditioned on some function f . If f ∈ NC1, they
can perform the operation using only polynomially many EPR pairs (in the length of x, y). A
stronger version of Lemma 4.4 also holds [Spe15, Lemma 8], and is proven using roughly the
same construction, but for garden-hose computations [BFSS13] instead of distributed 5-PBP
computations.

In a garden-hose computation, Alice and Bob start out with a number of EPR pairs which
they can connect (through Bell measurements) dependent on their inputs x and y. Bob con-
nects an input qubit to one of the EPR pairs, and the value of f(x, y) will determine where
this qubits ends up. Distributed executions of 5-PBP programs are a subset of the garden-
hose computations, but garden-hose computations are not limited to connecting only groups
of 5 EPR pairs according to some list of program instructions. More general strategies are
allowed, which are potentially more efficient in terms of the number of resource EPR pairs. In
particular, for any log-space computable f there exists an (efficiently computable) garden-hose
strategy using only polynomially many EPR pairs in the length of x, y [BFSS13]. In other
words, the garden-hose complexity of log-space computable functions is polynomial.

Speelman [Spe15] shows that a single-qubit Clifford Cf(x,y) can be performed instanta-
neously and non-locally using polynomially many EPR pairs, provided that f has polynomial
garden-hose complexity. It is, however, not guaranteed that Alice and Bob can efficiently com-
pute the list of measurements they need to perform given their inputs x and y, because the
garden-hose model allows for arbitrary pre-processing of the inputs x and y. Since we need
these strategies to be efficiently computable for our construction of a quantum homomorphic
encryption scheme in Chapter 5, we will apply the result from [Spe15] only to log-space com-
putable functions, for which it is known that the garden-hose strategies for Alice and Bob can
be computed efficiently [BFSS13, Theorem 2.12].

4.4 Conditional computation gadgets
In the previous section, we have seen how two parties Alice and Bob can jointly perform a
Clifford operation conditioned on some classical information that is distributed among them,
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with the output state affected by a random Pauli operator. Even though we like to think of
the qubit in the protocol as being sent back and forth between Alice and Bob step-by-step,
with permutations in between, this is not necessarily the case. In fact, the order in which
the Bell measurements are performed is irrelevant for the outcome of the protocol because
of entanglement swapping (see Section 4.1.1). In this section, we consider a variant on the
non-local computation protocol where Alice performs all of her measurements first, effectively
creating a ‘gadget’ for Bob to use depending on his input. This gadget will be an important
ingredient for the construction of our QFHE scheme in Chapter 5.

Theorem 4.5. Let f : {0, 1}n×{0, 1}n → {0, 1} be a log-space computable function. Then there
exists a number m polynomial in n, two quantum algorithms GenGadgetf and UseGadgetf and
a classical algorithm ComputeKeysf that all run in time poly(n), such that:

(i) GenGadgetf (C, x), given C ∈ C1 and x ∈ {0, 1}n, produces some classical information
gf,C(x) and, using some randomness r = (rx, rz) ∈ {0, 1}2m, creates a gadget γr(gf,C(x))
of size 2m from this classical information.

(ii) UseGadgetf (γr(gf,C(x)), y, ρ), for γr(gf,C(x)) ← GenGadgetf (C, x), y ∈ {0, 1}n, and a

single-qubit state ρ, produces an output state XaZbCf(x,y)ρ(C†)f(x,y)ZbXa for some a, b ∈
{0, 1}, and a list of outcomes from m Bell measurements, r′ ∈ {0, 1}2m.

(iii) ComputeKeysf (gf,C(x), y, r, r′) = (a, b).

Proof. For clarity of exposition, we prove the theorem only for functions with NC1 circuits.
The construction can straightforwardly be adapted to log-space computable f if we base the it
on [Spe15, Lemma 8] instead of Lemma 4.4, but one has to closely follow the proof of [BFSS13,
Theorem 2.12] to ensure that GenGadgetf and UseGadgetf run in poly(n) time. The definition
of ComputeKeysf is also somewhat more complex, but it still runs in time poly(n): see [DSS16,
Appendix A.2].

The algorithms GenGadgetf and UseGadgetf resemble the tasks of Alice and Bob, respec-
tively, in the protocol in Lemma 4.4. First, let 2m be the number of EPR pairs needed for the
execution of that protocol: that is, 2m = 10(4d + 1) where d is the smallest depth of a circuit
computing f . Clearly, if f has an NC1 circuit, then m is polynomial in n. We prove the three
claims stated in Theorem 4.5 one by one:

(i) Define GenGadgetf (C, x) as follows: using the instructions from the 5-PBP for f and the
distributed protocol described in Lemma 4.4, create a list ((si, ti))

m
i=1 of Bell measure-

ments that Alice would perform for her part of the protocol: the item (si, ti) describes a
Bell measurement between (Alice’s halves of) the sthi and tthi EPR pair. This list can be
generated in time poly(n) simply by going through the instruction list for the 5-PBP and,
conditioned on the relevant bits of x, adding the 5 Bell measurements for that instruction
to the list. Furthermore, let c ∈ {0, 1}m describe which of these m Bell measurements
should be preceded by the execution of C.4 Define

gf,C(x) := ((si, ti)
m
i=1, c, x,C).

where the last item C is just some classical description of the C gate, for example its
index in some fixed ordering of the finite set C1. Using this classical information, the

4In the construction of Lemma 4.4, there is only one such measurement, but in the more general construction
from [Spe15, Lemma 8], there may be more than one measurement that is preceded by C gate.
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〈1, e, (12453)〉 〈1, (14235), (15243)〉 〈1, e, (12453)−1〉〈1, (14235)−1, (15243)−1〉

Figure 4.5: Gadget γr(gOR,C(0)) for the OR function for x = 0. The snaky lines repre-
sent EPR pairs, each of which is independently and uniformly randomly picked from the set
{|Φ+〉, |Φ−〉, |Ψ+〉, |Ψ−〉} by starting with |Φ+〉 applying Xrx[i]Zrz [i] to one of the qubits of the
ith pair, for random r = (rx, rz). On one EPR pair, the gate C is applied afterwards. The gad-
get can be used by connecting up the three sets of EPR pairs according to Bob’s strategy for
the OR function, and his input y ∈ {0, 1}. For both possible inputs, the correct permutation
emerges.

quantum gadget γr(gf,C(x)) is created by constructing m EPR pairs |Φ+〉, applying ran-
dom quantum one-time pads Xrx[i]Zrz [i] to the second qubit of each pair, and permuting
their qubits according to the list (si, ti)

m
i=1 so that we end up with a list of 2m qubits,

where the sthi qubit is maximally entangled with the tthi qubit. For every pair (si, ti), the
operation C is applied to the tthi qubit if c[i] = 1. The resulting state is

γr(gf,C(x)) :=
m∏
i=1

(
Cc[i]Xrx[i]Zrz [i]

)
ti

∣∣Φ+
〉〈

Φ+
∣∣
siti

(
Zrz [i]Xrx[i]

(
C†
)c[i])

ti

of size 2m. This size is completely independent of x, as is the length of gf,C(x).

Note that this state is exactly the state that results from first creating 2m EPR pairs as
a resource for the protocol from Lemma 4.4, then applying C to the relevant qubits, and
finally swapping entanglement (see Section 4.1.1) by performing Bell measurements ac-
cording to Alice’s part of the protocol, to connect up the right EPR pairs. See Figure 4.5
for a gadget constructed for the OR function.

(ii) Define UseGadgetf (γr(gf,C(x)), y, ρ) as the execution of Bob’s strategy from Lemma 4.4,
treating the 2m qubits from γr(gf,C(x)) as the resource EPR pairs. By that lemma,
there is a known qubit in a state of the form XaZbCf(x,y)ρ(C†)f(x,y)ZbXa (for some a, b ∈
{0, 1}) after execution of the protocol. Set this qubit to be the output of UseGadgetf .
The algorithm UseGadgetf can be executed in time poly(n) by executing the program
instructions for the 5-PBP program one by one.

(iii) The path of the input qubit can be determined efficiently from the structure of the
gadget, listed in gf,C(x), and the value of y combined with the program instructions for
f . The X and Z keys before and after the conditional application(s) of C can be computed
by adding (modulo 2) the corresponding measurement outcomes and one-time pad keys
contained in r′ and r respectively. Finally, using c to determine whether or not a C gate
occurs on the path, combined with the commutation rules listed in Appendix A.1, the
values of a and b can be computed. For a more detailed description of the algorithm
ComputeKeysf , see Appendix A.2.
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We will refer to the gadget created by GenGadgetf as a conditional computation gadget,
since Bob (or any other party holding y) can use it to apply some gate C, determined by
whoever created the gadget, conditioned on f(x, y). Alice (or any other party holding x) can
create the gadget without knowledge of y.

An important property of the conditional computation gadget is that the quantum part is
completely mixed to anyone who does not know the randomness r, regardless of the structure
of the gadget:

Lemma 4.6. For all f : {0, 1}n ⊗ {0, 1}n → {0, 1}, C ∈ C1, and x ∈ {0, 1}n:

1

22m

∑
r∈{0,1}2m

γr(gf,C(x)) =
I22m

22m
.

Proof. By distributivity of the matrix product over the direct sum, we have

∑
r∈{0,1}2m

γr(gf,C(x))

=
m∏
i=1

∑
rx[i],rz [i]∈{0,1}

(
Cc[i]Xrx[i]Zrz [i]

)
ti

∣∣Φ+
〉〈

Φ+
∣∣
siti

(
Zrz [i]Xrx[i]

(
C†
)c[i])

ti

=

m∏
i=1

(
Cc[i]

)
ti

 ∑
rx[i],rz [i]∈{0,1}

(
Xrx[i]Zrz [i]

)
ti

∣∣Φ+
〉〈

Φ+
∣∣
siti

(
Zrz [i]Xrx[i]

)
ti

((C†)c[i])
ti

=

m∏
i=1

(
Cc[i]

)
ti

(∣∣Φ+
〉〈

Φ+
∣∣
siti

+
∣∣Φ−〉〈Φ−∣∣

siti
+
∣∣Ψ+

〉〈
Ψ+
∣∣
siti

+
∣∣Ψ−〉〈Ψ−∣∣

siti

)((
C†
)c[i])

ti

=
m∏
i=1

(
Cc[i]

)
ti

(I4)siti

((
C†
)c[i])

ti

=
m∏
i=1

(I4)siti

= I22m .

The step from |Φ+〉〈Φ+|si,ti + |Φ−〉〈Φ−|si,ti + |Ψ+〉〈Ψ+|si,ti + |Ψ−〉〈Ψ−|si,ti to identity can be
made by adding the 4 × 4 matrices for these four states, or by observing that the Bell states
form a basis for the two-qubit-state space C4.

This property will be important in the security proof of the scheme presented in the next
chapter; intuitively it shows that these gadgets do not reveal any information about x whenever
the randomness r is unknown or securely encrypted.
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5
A TELEPORTATION-BASED QUANTUM

HOMOMORPHIC ENCRYPTION SCHEME

5.1 Definition of the scheme TP

Our scheme TP (for teleportation) is an extension of the scheme CL presented in [BJ15]: the
quantum state is encrypted using a quantum one-time pad, and Clifford gates are evaluated
simply by performing the gate on the encrypted state and then homomorphically updating the
encrypted keys to the pad. The new scheme TP, like AUX [BJ15], includes additional resource
states (gadgets) in the evaluation key. These gadgets can be used to immediately correct any
P errors that might be present after the application of a T gate.

For every T gate, the evaluation key contains one gadget, along with some classical infor-
mation on how to use that gadget. The number of gadgets in the evaluation key thus grows
linearly with the upper bound to the number of T gates in the circuit, and the size of each
gadget is polynomial in the security parameter.

The scheme TP is built upon an arbitrary classical fully homomorphic encryption scheme
HE. We assume throughout this chapter that HE.Dec runs in space logarithmic in the security
parameter κ, and is q-IND-CPA secure.

5.1.1 Key generation
Using the classical HE.KeyGen as a subroutine to create multiple classical homomorphic keysets,
we generate a classical secret and public key, and a classical-quantum evaluation key that
contains L gadgets, allowing evaluation of a circuit containing up to L T gates. Every gadget
depends on a different secret key, and its classical information is always encrypted using the
next public key. The key generation procedure1 TP.KeyGen(1κ, 1L) is defined as follows:

1. For i = 0 to L: execute (pk i, sk i, evk i) ← HE.KeyGen(1κ) to obtain L + 1 independent
classical homomorphic key sets.

1Our scheme is leveled, so an extra parameter L is supplied to the key generation function, see Section 3.1.
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2. Set the public key to be the tuple (pk i)
L
i=0.

3. Set the secret key to be the tuple (sk i)
L
i=0.

4. For i = 0 to L− 1, create error correction gadgets as follows:

a) Run the procedure GenGadgetHE.Dec(P
†, sk i) from Theorem 4.5(i) to produce some

classical information gi := gHE.Dec,P†(sk i) and subsequently a random quantum gad-
get γr(gi) consisting of 2m qubits (and dependent on some randomness r).

b) Encrypt the classical information gi and the randomness r using the classical ho-
momorphic encryption scheme and the next public key pk i+1 to create the mixed
state

Γpk i+1
(sk i) := ρ

(
HE.Encpk i+1

(gi)
)
⊗ 1

22m

∑
r∈{0,1}2m

(
ρ
(
HE.Encpk i+1

(r)
)
⊗ γr(gi)

)
.

If HE.Dec is a logspace computable function, then by Theorem 4.5(i) the gadgets will be
of size polynomial in the length of sk i, which is in turn polynomial in κ.

5. Set the evaluation key to be the set of all gadgets created in the previous step (including
their encrypted classical information), plus the tuple (evk i)

L
i=0. The resulting evaluation

key is the quantum state

L−1⊗
i=0

(
Γpk i+1

(sk i)⊗ |evk i〉〈evk i|
)
.

Note that because the classical information gi that accompanies each gadget contains infor-
mation about the secret key sk i, it might not be secure to encrypt it using the public key pk i
unless the classical homomorphic encryption scheme has circular security (meaning that it can
securely encrypt key dependent messages [MTY11]). This is why we need to use L+1 different
classical key sets. The evaluator will have to do some recrypting during the evaluation phase,
but otherwise using independent keys does not complicate the construction much. More details
on how the evaluation procedure deals with the different keys is provided in Section 5.1.3.

5.1.2 Encryption
The encryption procedure TP.Enc is identical to CL.Enc, using the first public key pk0 for
the encryption of the one-time-pad keys. Every single-qubit state σ is encrypted separately
with a quantum one-time pad, and the pad key is (classically) encrypted and appended to the
quantum encryption of σ, resulting in the classical-quantum state:∑

a,b∈{0,1}

1

4
ρ(HE.Encpk0

(a),HE.Encpk0
(b))⊗XaZbσZbXa.

5.1.3 Circuit evaluation
Consider a circuit C with n wires. The evaluation of the circuit on the encrypted data is carried
out one gate at a time, treating gates that are on the same layer separately.
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Recall from Section 2.4 that our quantum circuit can be written using only the standard
set {H,CNOT,T}. Although in principle all single-qubit Clifford operations can be constructed
using only H and T =

√
P , we will consider them all as basic gates to build circuits with, because

they can be evaluated considerably more efficiently than their equivalent circuits constructed
with only H and T.

Before the evaluation of a single gate G, the encryption of an n-qubit state ρ is of the form(
Xa1Zb1 ⊗ · · · ⊗ XanZbn

)
ρ
(
Xa1Zb1 ⊗ · · · ⊗ XanZbn

)
.

The evaluating party holds the encrypted versions ã1
[i], . . . , ãn

[i] and b̃1
[i]
, . . . , b̃n

[i]
, with respect

to the ith key set for some i (initially, i = 0). The goal is to obtain a quantum encryption
of the state GρG† (where G is applied to the appropriate wire, and all other wires are left
unchanged), such that the evaluator can homomorphically compute the encryptions of the new
keys to the quantum one-time pad. If G is a Clifford gate, these encryptions will still be in the
ith key. If G is a T gate, then all encryptions are transferred to the (i + 1)th key during the
process.

Clifford gates

For the evaluation of a single-qubit Clifford gate or a CNOT, we proceed exactly as in CL.Eval
(see Section 3.4). The gate is simply applied to the encrypted qubit(s), and since it commutes
with the Pauli group, the evaluator only needs to update the encrypted keys in a straightfor-
ward way (see Appendix A.1). These updates are performed using the procedure HE.Eval for
the update functions of the keys.

T gate

The evaluator starts out by applying a T gate to the appropriate wire w. Afterwards, the
qubit at wire w is in the state(

PawXawZbwT
)
ρw
(
T†XawZbw(P†)aw

)
.

In order to remove the P error, the evaluator uses one gadget Γpk i+1
(sk i) from the evalua-

tion key; he possesses the classical information ãw
[i] encrypted with the correct key, so by

Theorem 4.5(ii), he can run the procedure

UseGadgetHE.Dec

(
γr(gi), ãw

[i],
(
PawXawZbwT

)
ρw
(
T†XawZbw(P†)aw

))
to obtain a state of the form(

Xa
′
wZb

′
w(P†)HE.Dec(sk i,ãw

[i])PawXawZbwT
)
ρw

(
TZbwXawPawPHE.Dec(sk i,ãw

[i])Zb
′
wXa

′
w

)
for some a′w, b

′
w ∈ {0, 1}. With very high probability, aw ← HE.Dec(sk i, ãw

[i]), in which case
the above state equals (

Xa
′
w⊕awZb

′
w⊕bwT

)
ρw

(
TZb

′
w⊕bwXa

′
w⊕aw

)
which is of the desired form. Let r′ describe the Bell measurement outcomes of the evaluator
during the execution of UseGadgetHE.Dec. Encryptions (under pk i+1) of gi and the random-
ness r from γr(gi) are contained in the evaluation key Γpk i+1

(sk i). Using the functionality
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ComputeKeysHE.Dec from Theorem 4.5(iii), the evaluator can homomorphically compute the
values a′w and b′w by executing

HE.Eval
ComputeKeysHE.Dec
pk i+1

(
g̃i

[i+1], HE.Reci→(i+1)

(
ãw

[i]
)
, r̃[i+1], HE.Encpk i+1

(r′)
)
.

Then, recrypting all previous keys a1, ..., aw, b1, ..., bw into the new key set, the evaluator can
homomorphically update the keys to wire w by adding a′w and b′w to the old keys (modulo 2).

Note that the gadget is destroyed by the Bell measurements. The evaluation of every new
T gate requires the consumption of a new conditional computation gadget, and transfers all
classical encryptions to the next key set.

At the end of the evaluation of a circuit C containing k T gates, the evaluator holds a one-
time-pad encryption of the state CρC†, together with the keys to the pad, classically encrypted
in the kth key. The last step is to recrypt (in L−k steps) this classical information into the Lth

(final) key. Afterwards, the quantum state and the key encryptions are sent to the decrypting
party.

5.1.4 Decryption

The decryption procedure is identical to CL.Dec. For each qubit, HE.DecskL
is run twice in

order to retrieve the keys to the quantum pad. The correct Pauli operator can then be applied
to the quantum state in order to obtain the desired state CρC†.

The decryption procedure is fairly straightforward, and its complexity does not depend on
the circuit that was evaluated. This is formalized in a compactness theorem for the TP scheme:

Theorem 5.1. If HE is compact, then TP is compact.

Proof. Note that because the decryption only involves removing a one-time pad from the
quantum ciphertext produced by the circuit evaluation, this decryption can be carried out a
single qubit at a time. By compactness of HE, there exists a polynomial p(κ) such that for any
function f , the complexity of applying HE.Dec to the output of HE.Evalf is at most p(κ). Since
the keys to the quantum one-time pad of any wire w are two single bits encrypted with the
classical HE scheme, decrypting the keys for one wire requires at most 2p(κ) steps. Obtaining
the qubit then takes (at most) two gates more for applying Xaw and Zbw . The total number of
steps is polynomial in κ and independent of the circuit, so we conclude that TP is compact.

5.2 Security of TP
In order to guarantee the privacy of the input data, we need to argue that an adversary that
does not possess the secret key cannot learn anything about the data with more than negligible
probability. To this end, we show that TP is q-IND-CPA secure, i.e. that no polynomial-time
quantum adversary can tell the difference between an encryption of a real message and an
encryption of |0〉〈0|, even if he gets to choose the message himself (recall the definition of q-
IND-CPA security from Section 3.3). Like in the security proofs in [BJ15], we use a reduction
argument to relate the probability of being able to distinguish between the two encryptions
to the probability of winning an indistinguishability experiment for the classical HE, which we
already know to be small. The aim of this section is to prove the following theorem:
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Theorem 5.2. If HE is q-IND-CPA secure, then TP is q-IND-CPA secure for circuits contain-
ing up to polynomially (in κ) many T gates.

In order to prove Theorem 5.2, we first prove that an efficient adversary’s performance
in the indistinguishability game is only negligibly different whether or not he receives a real
evaluation key with real gadgets, or just a completely mixed quantum state with encryptions
of 0’s accompanying them (Corollary 5.4). Then we argue that without the evaluation key,
an adversary does not receive more information than in the indistinguishability game for the
scheme CL, which has already been shown to be q-IND-CPA secure whenever HE is.

We start with defining a sequence of variations on the TP scheme. For ` ∈ {0, . . . , L}, let
TP(`) be identical to TP, except for the key generation procedure: TP(`).KeyGen replaces, for
every i ≥ `, all classical information gi = gHE.Dec,P†(sk i) and r accompanying the ith gadget
with the all-zero string of length |gi|+ |r| = O(m) before encrypting it.

Note that the length of the classical information does not depend on sk i itself: the size 2m
of the gadget and the length of sk i are completely determined by the choice of the protocol
HE and the security parameter κ. Hence, a potential adversary cannot gain any information
about sk i just from this encrypted string of zeros.

In summary,

TP(`).KeyGen(1κ, 1L) :=
L−1⊗
i=0

|evk i〉〈evk i| ⊗
`−1⊗
i=0

Γpk i+1
(sk i)⊗

L−1⊗
i=`

(
ρ(HE.Encpk i+1

(0|gi|))⊗

1

22m

∑
r∈{0,1}2m

ρ(HE.Encpk i+1
(02m))⊗ γr(gi)

)
.

Intuitively, one can view TP(`) as the scheme that provides only ` usable gadgets in the evalu-
ation key. Note that TP(L) = TP, and that in TP(0), only the classical evaluation keys remain,
since without the encryptions of the classical r, the quantum part of the gadget is just the
completely mixed state. By Lemma 4.6, we can rewrite the final line of the previous equation
as

1

22m

∑
r∈{0,1}2m

ρ(HE.Encpk i+1
(02m))⊗ γr(gi)

= ρ(HE.Encpk i+1
(02m))⊗ I22m

22m
. (5.1)

With the definitions of the new schemes, we can lay out the steps to proving Theorem 5.2
in more detail. First, we show that in the quantum CPA indistinguishability experiment,
any efficient adversary interacting with TP(`) only has negligible advantage over an adver-
sary interacting with TP(`−1), i.e. the scheme where the classical information g`−1 is removed
(Lemma 5.3). By iteratively applying this argument, we are able to argue that the advantage
of an adversary who interacts with TP(L) over one who interacts with TP(0) is also negligible
(Corollary 5.4). Finally, we conclude the proof by arguing that TP(0) is q-IND-CPA secure by
comparison to the CL scheme.
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Lemma 5.3. Let 0 < ` ≤ L. If HE is q-IND-CPA secure, then for any quantum polynomial-
time adversary A = (A1,A2), there exists a negligible function η such that2

Pr[PubKcpa

A ,TP(`)(κ) = 1]− Pr[PubKcpa

A ,TP(`−1)(κ) = 1] ≤ η(κ).

Proof. The difference between schemes TP(`) and TP(`−1) lies in whether the gadget state
γr`−1

(g`−1) is supplemented with its classical information g̃`−1, r̃`−1, or just with an encryption

of 0|g`−1|+2m.
Let A = (A1,A2) be an adversary for the game PubKcpa

A ,TP(`)(κ). We will define an adver-

sary A ′ = (A ′1 ,A
′
2) for PubKcpa−mult

A ′,HE (κ) that will either simulate the game PubKcpa

A ,TP(`)(κ) or

PubKcpa

A ,TP(`−1)(κ). Which game is simulated will depend on some s ∈R {0, 1} that is unknown

to A ′ himself. Using the assumption that HE is q-IND-CPA secure, we are able to argue that
A ′ is unable to recognize which of the two schemes was simulated. This fact allows us to
bound the difference in success probabilities between the security games of TP(`) and TP(`−1).
The structure of this proof is very similar to e.g. Lemma 5.3 in [BJ15]. The adversary A ′ acts
as follows (see also Figure 5.1):

A ′1 takes care of most of the key generation procedure: he generates the classical key sets
0 through ` − 1 himself, generates the random strings r0, . . . , r`−1, and constructs the
gadgets γr0(g0), . . . , γr`−1

(g`−1) and their classical information g0, . . . , g`−1. He encrypts
the classical information using the appropriate public keys. Only g`−1 and r`−1 are left
unencrypted: instead of encrypting these strings himself using pk `, A ′1 sends the strings
for encryption to the challenger. Whether the challenger really encrypts g`−1 and r`−1 or
replaces them with a string of zeros, determines which of the two schemes is simulated.
A ′ is unaware of the random choice of the challenger.

The adversary A ′1 also generates the extra padding inputs that correspond to the already-
removed gadgets ` up to L− 1. Since by definition of TP(`), these gadgets consist of all-
zero strings encrypted with independently chosen public keys that are not used anywhere
else, together with a completely mixed quantum state (as shown in Equation 5.1), the
adversary can generate them without needing any extra information.

A ′2 feeds the evaluation key and public key, just generated by A ′1 , to A1 in order to obtain a
chosen message M (plus the auxiliary state E). He then picks a random t ∈R {0, 1} and
erasesM if and only if t = 0. He encrypts the result according to the TP.Enc procedure
(using the public key (pk i)

L
i=0 received from A ′1), and gives the encrypted state, plus E ,

to A2, who outputs t′ in an attempt to guess t. A ′2 now outputs s’ := 1 if and only if
the guess by A was correct, i.e. s′ := t ≡ t′.

Because HE is q-IND-CPA secure, the probability that A ′ wins PubKcpa−mult
A ′,HE (κ), i.e. that

s′ ≡ s, is at most 1
2 + η′(κ) for some negligible function η′. There are two scenarios in which

A ′ wins the game:

• s = 1 and A guesses t correctly: If s = 1, the game that is being simulated is
PubKcpa

A ,TP(`)(κ). If A wins the simulated game (t ≡ t′), then A ′ will correctly out-

put s′ = 1. (If A loses, then A ′ outputs 0, and loses as well).
2Note that the difference in probabilities is only bounded in one direction. The other direction can be proven

with a slight adaptation of the definition of A ′ (by outputting s′ := t 6≡ t′, see Figure 5.1). However, for the
proof of Theorem 5.2, this bound suffices.
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for i = 0 to `− 1 do:
g`−1, r`−1

g`−2, r`−2
...
g0, r0

⊗`−1
i=0 γri(gi)

(evk i)
`−1
i=0

(pk i)
`−1
i=0

HE.Encpk1

HE.Encpk`−1

0|g`−1|+2m Ξcpa−mult,s
HE

create padding

M

EA1

t
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Ξ
cp

a
,t
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t′A2

A ′1 A ′2

s′ :=
(t ≡ t′)

Figure 5.1: A strategy for the game PubKcpa−mult
A ′,HE (κ), using an adversary A for PubKcpa

A ,TP(`)(κ)

as a subroutine. All the wires that form an input to A1 together form the evaluation key and
public key for TP(`) or TP(`−1), depending on s. Note that Ξcpa,t

TP = Ξcpa,t

TP(`) = Ξcpa,t

TP(`−1) , so A ′2
can run either one of these independently of s (i.e. without having to query the challenger).
The ‘create padding’ subroutine generates dummy gadgets for ` up to L − 1, as described in
the definition of A1.

• s = 0 and A does not guess t correctly: If s = 0, the game that is being simulated is
PubKcpa

A ,TP(`−1)(κ). If A loses the game (t 6≡ t′), then A ′ will correctly output s′ = 0. (If

A wins, then A ′ outputs 1 and loses).

From the above, we conclude that

Pr[s = 1] · Pr[PubKcpa

A ,TP(`)(κ) = 1] + Pr[s = 0] · Pr[PubKcpa

A ,TP(`−1)(κ) = 0] ≤ 1

2
+ η′(κ)

⇔ 1

2
Pr[PubKcpa

A ,TP(`)(κ) = 1] +
1

2

(
1− Pr[PubKcpa

A ,TP(`−1)(κ) = 1]
)
≤ 1

2
+ η′(κ)

⇔ Pr[PubKcpa

A ,TP(`)(κ) = 1]− Pr[PubKcpa

A ,TP(`−1)(κ) = 1] ≤ 2η′(κ)

Set η(κ) := 2η′(κ), and the proof is complete.
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By applying Lemma 5.3 iteratively, L times in total, we can conclude that the difference be-
tween TP(L) and TP(0) is negligible, because the sum of polynomially many negligible functions
is still negligible:

Corollary 5.4. If L is polynomial in κ, then for any quantum polynomial-time adversary A =
(A1,A2), there exists a negligible function η such that

Pr[PubKcpa

A ,TP(L)(κ) = 1]− Pr[PubKcpa

A ,TP(0)(κ) = 1] ≤ η(κ).

Using Corollary 5.4, we can finally prove the q-IND-CPA security of our scheme TP =
TP(L).

Proof of Theorem 5.2. The scheme TP(0) is very similar to CL in terms of its key generation
and encryption steps. The evaluation key consists of several classical evaluation keys, plus some
completely mixed states and encryptions of 0 which we can safely ignore because they do not
contain any information about the encrypted message. In both schemes, the encryption of a
qubit is a quantum one-time pad together with the encrypted keys. The only difference is that
in TP(0), the public key and evaluation key form a tuple containing a list of public/evaluation
keys that are independent of the encryption, in addition to pk0 and evk0 which are used
for the encryption of the quantum one-time pad. This list of extra keys does not provide
any advantage (in fact, the adversary could have generated it himself by repeatedly running
HE.KeyGen(1κ, 1L)). Therefore, we can safely ignore these keys as well.

In [BJ15, Lemma 5.3], it is shown that CL is q-IND-CPA secure. Because of the similarity
between CL and TP(0), the exact same proof shows that TP(0) is q-IND-CPA secure as well,
that is, for any A there exists a negligible function η′ such that

Pr[PubKcpa

A ,TP(0)(κ) = 1] ≤ 1

2
+ η′(κ).

Combining this result with Corollary 5.4, it follows that

Pr[PubKcpa
A ,TP(κ) = 1] ≤ Pr[PubKcpa

A ,TP(0)(κ) = 1] + η(κ)

≤ 1

2
+ η′(κ) + η(κ).

Since the sum of two negligible functions is itself negligible, we have proved Theorem 5.2.

5.3 Circuit privacy of TP

The scheme TP as presented above ensures the privacy of the input data. It does not guarantee,
however, that whoever generates the keys, encrypts, and decrypts cannot gain information
about which circuit C was applied to the input ρ by the evaluator. Obviously, the output value
CρC† often reveals something about the circuit C, but apart from this necessary leakage of
information, one may require a (quantum) homomorphic encryption scheme to ensure circuit
privacy in the sense that an adversary cannot statistically gain any information about C from
the output of the evaluation procedure, other than what it can already gain from CρC† itself.
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5.3.1 Classical circuit privacy
Classically, circuit privacy is defined by requiring the existence of a simulator SimHE whose
inputs are the publicly known parameters (such as the public key and the security parameter)
and the value C(x), and whose output is indistinguishable from the homomorphic evaluation
of C on the encryption of x. Formally, circuit privacy is defined as follows.

Definition 5.5 (Classical circuit privacy – semi-honest setting [IP07]). A classical homomor-
phic encryption scheme HE has statistical circuit privacy in the semi-honest (‘honest-but-
curious’) model if there exists a PPT algorithm SimHE and a negligible function η such that
for any security parameter κ, input x, key set (pk , evk , sk)← HE.KeyGen(1κ), and circuit C:

δ(HE.EvalCevk (HE.Encpk(x)),SimHE(1κ, pk , evk ,C(x))) ≤ η(κ)

Here, δ(X,Y ) := 1
2

∑
u∈U

∣∣Pr[X = u] − Pr[Y = u]
∣∣ is the statistical distance between two

random variables over a finite universe U . We will sometimes write X ≈a Y to indicate that
δ(X,Y ) ≤ a.

If the recryption functionality HE.Reci→j is defined as the composition of the procedures

HE.EvalHE.Deci
evkj

and HE.Encpkj
, as in Section 3.1, then recryptions do not degrade the privacy of

the computation: a homomorphic evaluation of some function with key switching is statistically
close to running the simulator directly on the function output using only the last key set.

Lemma 5.6. Suppose HE has statistical circuit privacy in the semi-honest setting, and let
SimHE and η be as in Definition 5.5. Then for any security parameter κ, L polynomial in κ,
list of circuits C1, ...,CL and list of keysets (pk i, evk i, sk i)

L
i=1 generated by HE.KeyGen(1κ), and

input x, the statistical distance between

HE.EvalCL
evkL

(HE.Rec(L−1)→L(HE.Eval
CL−1

evkL−1
(· · ·HE.EvalC1

evk1
(HE.Encpk1

(x))))

and

SimHE(1κ, pkL, evkL,CL(CL−1(· · ·C1(x))))

is negligible in κ.

Proof. Since HE.Rec(L−1)→L = HE.Eval
HE.DecskL−1

evkL
◦ HE.EncpkL

by definition, we have that

HE.EvalCL
evkL

(HE.Rec(L−1)→L(HE.Eval
CL−1

evkL−1
(· · ·HE.EvalC1

evk1
(HE.Encpk1

(x))))

= HE.Eval
CL◦HE.DecskL−1

evkL
(HE.EncpkL

(HE.Eval
CL−1

evkL−1
(· · ·HE.EvalC1

evk1
(HE.Encpk1

(x))))

≈η(κ) SimHE(1κ, pkL, evkL,CL(HE.DecskL−1
(HE.Eval

CL−1

evkL−1
(· · ·HE.EvalC1

evk1
(HE.Encpk1

(x))))))

which, by correctness of HE, is statistically indistinguishable from

SimHE(1κ, pkL, evkL,CL(CL−1(CL−2(· · ·C1(x)))))

as long as L is polynomial in κ. By triangle inequality, the statement of the lemma follows.

In some classical schemes, more efficient recryption is possible than HE.EvalHE.Decski ◦
HE.Encpkj

. For these schemes, Lemma 5.6 would have to be proven separately for the specific
scheme.
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5.3.2 Quantum circuit privacy

In the quantum setting, we need to take into account the fact that the input state may be part
of some larger (possibly entangled) system. This leads to the following definition of quantum
circuit privacy in the semi-honest setting:

Definition 5.7 (Quantum circuit privacy – semi-honest setting). A quantum homomorphic
encryption scheme QHE has statistical circuit privacy in the semi-honest setting if there exists
a quantum PPT algorithm SimQHE and a negligible function η such that for any security
parameter κ, depth parameter L, key set (pk , ρevk , sk) ← QHE.KeyGen(1κ, 1L), state σ, and
circuit C with up to L T-gates:∥∥∥(ΦC,ρevk ,pk

QHE.Eval ◦ Φpk
QHE.Enc

)
−
(

Φρevk ,pk
SimQHE

◦ ΦC

)∥∥∥
♦
≤ η(κ)

In this definition, ΦU denotes the quantum channel induced by the circuit or functionality U.
The diamond norm ‖ΦU‖♦ is defined in terms of the trace norm: ‖ΦU‖♦ := maxσ ‖(ΦU ⊗ I)σ‖1
where the maximisation is over input states σ.

We claim that circuit privacy for TP in the semi-honest setting (i.e. against passive ad-
versaries3) can be obtained by modifying the scheme only slightly, given that the classical
encryption scheme has the circuit privacy property.

Theorem 5.8. If HE has circuit privacy in the semi-honest setting, then TP can be adapted to
a quantum homomorphic encryption scheme with circuit privacy.

Informally, if the evaluator randomizes the encrypted output data by applying a quantum
one-time pad to the (already encrypted) result of the evaluation, the keys themselves are uni-
formly random and therefore do not reveal any information about what circuit was evaluated.
The evaluator can then proceed to update the classical encryptions of those keys accordingly,
and by the circuit privacy of the classical scheme, the resulting encrypted keys will also contain
no information about the computations performed. We make this informal argument explicit.

Proof. We make the following alteration to the scheme TP: at the end of the evaluation proce-
dure, the evaluator applies a (random) quantum one-time pad to the output of the evaluation,
and updates the classical encryptions of the keys accordingly. The rest of the scheme remains
exactly the same, and it is clear that this altered version of TP is still compact and correct.

Intuitively, the randomization step at the end of the evaluation phase completely hides the
circuit: the keys to the quantum one-time pads themselves are now entirely independent of the
circuit, and circuit privacy of HE will ensure that even the classical encryption of these keys
does not reveal any information about the computations performed on them.

To formalize this intuition, we define a quantum algorithm SimTP satisfying the constraints
given in Definition 5.7. Let SimHE be the classical simulator guaranteed to exist by the clas-
sical circuit privacy of HE (see Definition 5.5). Given some security parameter κ, some keys
pk = (pk1, ..., pkL) and evk = (evk1, ..., evkL), and some quantum state σ, let SimTP apply a
uniformly random quantum one-time pad to σ, and apply SimHE(1κ, pkL, evkL, ·) to the pad
keys. The resulting classical-quantum state is the output of SimTP. This algorithm resem-
bles TP.Enc, but instead of calling HE.Enc (with pk1) as a subroutine, it handles the pad key
information using the classical simulator SimHE (with pkL).

3Note that there are various ways to define passive adversaries in the quantum setting [DNS10, BB14]. Here,
we are considering adversaries that follow all protocol instructions exactly.
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If we can show that the trace distance∥∥∥((ΦC,ρevk ,pk
TP.Eval ◦ Φpk

TP.Enc

)
⊗ I
)
σ −

(
(Φρevk ,pk

SimTP
◦ ΦC)⊗ I

)
σ
∥∥∥
1

is negligible for any quantum state σ of an appropriate dimension, then quantum circuit privacy
of TP immediately follows from Defintion 5.7 and the definition of the diamond norm.

Write σsim :=
(

(Φρevk ,pk
SimTP

◦ ΦC)⊗ I
)
σ, and σeval :=

((
ΦC,ρevk ,pk
TP.Eval ◦ Φpk

TP.Enc

)
⊗ I
)
σ. We

study the state σsim in more detail, and show how to transform it into σeval in a few (negligible)
steps. As a result, the trace distance of these two states is negligible.

By definition of the algorithm SimTP, the state σsim is equal to

1

22n

∑
x,z∈{0,1}n

( n⊗
i=1

ρ
(
SimHE(1κ, pkL, evkL, x[i])

)
⊗

n⊗
i=1

ρ
(
SimHE(1κ, pkL, evkL, z[i])

)
⊗

((
n⊗
i=1

Xx[i]Zz[i]C⊗ I

)
σ

(
C†

n⊗
i=1

Xx[i]Zz[i] ⊗ I

)))
.

During the evaluation procedure of TP, the evaluator updates the keys to the quantum one-time
pad for all n qubits in the circuit. These updates depend on the circuit that is being evaluated,
some randomness r from the Bell measurement outcomes4 and of course on the initial one-time
pad keys. Let fC,ri (a, b) denote the X key on the ith qubit after the evaluation of some circuit
C with randomness r, with a, b ∈ {0, 1}n the initial pad keys before the evaluation procedure.

Similarly, let gC,ri (a, b) denote the Z key for that qubit.

At the end of the evaluation phase, the evaluator chooses bit strings x and z uniformly at
random, so the final keys fC,ri (a, b)⊕x[i] and gC,ri (a, b)⊕z[i] are themselves completely uniform
for any a, b. Therefore, the state σsim is actually equal to

1
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∑
a,b,x,z∈{0,1}n
r∈{0,1}∗

Pr
R

(r)

( n⊗
i=1

ρ
(
SimHE(1κ, pkL, evkL, f

C,r
i (a, b)⊕ x[i])

)
⊗

n⊗
i=1

ρ
(
SimHE(1κ, pkL, evkL, g

C,r
i (a, b)⊕ z[i])

)
⊗

((
n⊗
i=1

Xf
C,r
i (a,b)⊕x[i]Zg

C,r
i (a,b)⊕z[i]C⊗ I

)
σ

(
C†

n⊗
i=1

Xf
C,r
i (a,b)⊕x[i]Zg

C,r
i (a,b)⊕z[i] ⊗ I

)))
.

This is where the classical circuit privacy property kicks in: for any fixed i, a, b,C, r, x, the
result of the probabilistic computation SimHE(fC,ri (a, b)⊕x[i]) is statistically indistinguishable

from the evaluation of the function fC,ri (·, ·)⊕x[i] on the encryptions of a and b. Note however

4Although for the scheme TP, the measurement outcomes will in principle be uniformly distributed, we will
not make this assumption here. In case of a malicious key generator, measurement outcomes might be correlated
in some way. Therefore, we will simply assume that r is distributed according to some distribution PR.
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that the evaluation of fC,ri is performed in several steps, with key switching in between. That
is, separate functions h1 through hL are evaluated in each key set 1 through L, such that
fC,ri = hL ◦ · · · ◦h1. We abstract away from the exact way in which the function fC,ri is broken

up into these separate functions h1, ..., hL, and simply write HE.Eval
fC,ri (·,·)⊕x[i]
1,...,L (HE.Encpk1

(a, b))
to denote

HE.Eval
(·⊕x[i])◦hL
evkL

(HE.Rec(L−1)→L(HE.Eval
hL−1

evkL−1
(· · ·HE.Evalh1evk1

(HE.Encpk1
(a, b)))).

By Lemma 5.6, it follows that

δ
(
HE.Eval

fC,ri (·,·)⊕x[i]
1,...,L (HE.Encpk1

(a, b)),SimHE(1κ, pkL, evkL, f
C,r
i (a, b)⊕ x[i])

)
≤ η(κ)

for some negligible function η. We can rewrite this equation in terms of the trace distance to
get

∥∥∥∥ρ(HE.EvalfC,ri (·,·)⊕x[i]
1,...,L (HE.Encpk1

(a, b))
)
− ρ
(
SimHE(1κ, pkL, evkL, f

C,r
i (a, b)⊕ x[i])

)∥∥∥∥
1

≤ 2η(κ)

A similar result holds for gC,ri (·, ·) ⊕ z[i]. Using subadditivity of the trace norm with respect
to the tensor product, it follows that the trace distance between σsim and

1

24n

∑
a,b,x,z∈{0,1}n
r∈{0,1}∗

Pr
R

(r)

( n⊗
i=1

ρ
(
HE.Eval

fC,ri ⊕x[i]
1,...,L (HE.Encpk1

(a, b))
)
⊗

n⊗
i=1

ρ
(
HE.Eval

gC,ri ⊕z[i]
1,...,L (HE.Encpk1

(a, b))
)
⊗

((
n⊗
i=1

Xf
C,r
i (a,b)⊕x[i]Zg

C,r
i (a,b)⊕z[i]C⊗ I

)
σ

(
C†

n⊗
i=1

Xf
C,r
i (a,b)⊕x[i]Zg

C,r
i (a,b)⊕z[i] ⊗ I

)))

is at most 4n · η(κ). Note that this last state is exactly σeval, the result of putting σ through

the channel (ΦC,ρevk ,pk
TP.Eval ◦ Φpk

TP.Enc)⊗ I. We conclude that for any σ,

‖σeval − σsim‖1 ≤ 4n · η(κ)

for some negligible function η that does not depend on σ. Hence,∥∥∥(ΦC,ρevk ,pk
TP.Eval ◦ Φpk

TP.Enc)− (Φρevk ,pk
SimTP

◦ ΦC)
∥∥∥
♦

=

max
σ

∥∥∥((ΦC,ρevk ,pk
TP.Eval ◦ Φpk

TP.Enc)⊗ I
)
σ −

(
(Φρevk ,pk

SimTP
◦ ΦC)⊗ I

)
σ
∥∥∥
1
≤ 4n · η(κ)

which is negligible if η is negligible.
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5.4 Quantum power required for TP.KeyGen
In a setting where a less powerful client wants to delegate some computation to a more pow-
erful server, it is important to minimize the amount of quantum work the client needs to do.
For example, the client might not have access to a universal quantum computer and might
only be able to perform a limited variety of quantum operations. The client could send his
homomorphically encrypted quantum data to another party that can perform any quantum
computation.

TP.Enc and TP.Dec only require the application of Pauli operators to a quantum state,
but TP.KeyGen is more involved. In the current description of the gadget generation (see
Section 4.4), the client has to be able to perform a variety of tasks to generate the keys: he has
to generate EPR pairs, as well as perform P† gates and Bell measurements. We show in this
section how the gadgets can be generated securely using only X, Z and swap operations, when
the client is supplied with resources by some computationally more powerful (but potentially
malicious) party, for example the evaluator. The client can prevent the leakage of information
about his input, even when the provided resources are corrupted by the supplier.

As described in Section 4.4, we see from Figure 4.5 that the quantum part of a gadget,
γr(gi), is effectively a list of 2m EPR pairs (some of which have an extra (I⊗P†) transformation
on them), with the qubits ordered in some way that depends on sk i. If the key generator is
supplied with a list of 2m EPR pairs |Φ+〉 and as many pairs (I⊗ P†)|Φ+〉, it is clear that he
can create the gadget by swapping some of the qubits (e.g. using CNOT gates), and applying
random Pauli operations (using X and Z gates) on every pair. Any unused pairs are discarded.
For the conditional computation gadgets based on Barrington’s theorem, one pair (I⊗P†)|Φ+〉
suffices, but for the general gadget based on the garden-hose model, more than one may be
needed.

If the supplier of these pairs follows the protocol and sends actual EPR pairs to the key
generator, this tactic suffices to hide all information about sk i. However, if the supplier acts
maliciously, he may send two qubits to the key generator claiming that they form an EPR pair,
while in reality he is keeping some form of entanglement with one or both of the qubits. We
need to make sure that even in this case, where the supplier actively tries to gather information
about sk i or the client’s input, this information is still secure.

The key generator, upon receiving the (real or fake) EPR pairs, can apply independently
selected random Pauli transformations on every qubit instead of just on one qubit of every
(claimed) EPR pair. By applying this transformation to both qubits, any entanglement that
a malicious supplier might hold with any of them becomes completely useless. Since a swap
of two qubits consists of three CNOT gates that commute with the Pauli’s, the state after
swapping the qubits into the correct order is still completely mixed. Hence, no information
about sk i is revealed to the supplier. By updating the classical information r that accompanies
the gadget, the client ensures that the gadget can still be used for the homomorphic evaluation
of a T gate.
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CONCLUSION

We have presented the first quantum homomorphic encryption scheme TP that is compact
and allows evaluation of circuits with polynomially many T gates in the security parameter,
i.e. arbitrary polynomial-sized circuits. Assuming that the number of wires involved in the
evaluated circuit is also polynomially related to the security parameter, we may consider TP to
be leveled fully homomorphic. The scheme is based on an arbitrary classical FHE scheme, and
any computational assumptions needed for the classical scheme are also required for security
of TP. However, since TP uses the classical FHE scheme as a black box, any FHE scheme can
be plugged in to change the set of computational assumptions.

Our constructions are based on a new and interesting connection between the area of
instantaneous non-local quantum computation and quantum homomorphic encryption. Recent
techniques developed by Speelman [Spe15], based on the garden-hose model [BFSS13], have
turned out to be crucial for our construction of quantum gadgets which allow homomorphic
evaluation of T gates on encrypted quantum data.

The quantum part of our evaluation gadget is strikingly simple, which provides a number
of advantages. To start with, the evaluation of a T gate requires only one gadget, and does
not cause any errors to accumulate on the quantum state. The scheme is very compact in the
sense that the state of the system after the evaluation of a T gate has the same form as after
the initial encryption, except for any classical changes caused by the classical FHE evaluation.
Hence, the size of the evaluation key only grows linearly in the upper bound to the number of
T gates in the circuit (and polynomially in the security parameter), allowing the scheme to be
leveled fully homomorphic. This kind of compactness also implies that individual evaluation
gadgets can be supplied “on demand” by the holder of the secret key. Once an evaluator runs
out of gadgets, the secret key holder can simply supply more of them.

Furthermore, TP does not depend on a specific classical FHE scheme, so any advances
in classical FHE can directly improve our scheme. Our requirements for the classical FHE
scheme are quite modest: we only require the classical scheme to have a log-space computable
decryption procedure and to be secure against quantum adversaries. In particular, no circular
security assumption is required. Since we supply at most a polynomial number of evaluation
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gadgets, our scheme TP is leveled quantum fully homomorphic by construction, and we simply
switch to a new classical key after every evaluation gadget. In fact, under every key set we only
need to be able to perform a limited amount of classical computation: the Clifford gates in the
quantum evaluation circuit only require additive operations from the classical homomorphic
scheme, while each T gate needs a fixed (polynomial) number of multiplications. Hence, we
do not actually require fully homomorphic classical encryption, but leveled fully homomorphic
schemes suffice.

Finally, circuit privacy in the passive setting almost comes for free. When wanting to hide
which circuit was evaluated on the data, the evaluating party can add an extra randomization
layer to the output state by applying his own one-time pad. If the classical FHE scheme has
circuit privacy, then this extra randomization completely hides the quantum circuit from the
decrypting party. This is not unique to our specific scheme: the same is true for CL.

In terms of applications, our construction can be appreciated as a round-optimal scheme
for blind delegated quantum computation [Chi05, BFK09, ABOE10, VFPR14, FBS+14, Bro15,
Lia15], using computational assumptions. With only a single round of communication, the
server can evaluate a universal quantum circuit on the encrypted input, consisting of the
client’s quantum input and a (classical) description of the client’s circuit. In this context, it
is desirable to minimize the number and complexity of quantum operations that the client
needs to perform. In our scheme, the encryption and decryption only requires the client to
apply Pauli operations. We have shown that even the creation of the evaluation key can be
performed (with the help of the server, at the expense of an extra communication round) using
only swap and Pauli operations.

6.1 Future work
Since Yu, Pérez-Delgado and Fitzsimons [YPDF14] showed that information-theoretically se-
cure QFHE is impossible (at least in the exact case), it is natural to wonder whether it is
possible to construct a non-leveled QFHE scheme based on computational assumptions. If
such a scheme is not possible, can one find lower bounds on the size of the evaluation key of a
compact scheme? Other than the development of more efficient QFHE schemes, one can con-
sider the construction of QFHE schemes with extra properties, such as circuit privacy against
active adversaries. It is also interesting to look at other cryptographic tasks that might be exe-
cuted using QFHE. In the classical world for example, multiparty computation protocols can be
constructed from fully homomorphic encryption [CDN01]. We can instantiate our construction
with a classical FHE scheme that allows for distributed key generation and decryption amongst
different parties that all hold a share of the secret key [AJLA+12]. In that case, it is likely
that our techniques can be adapted to perform multiparty quantum computation [BCG+06]
in the semi-honest case. We also consider it likely that our new techniques will be useful in
other contexts such as quantum indistinguishability obfuscation [AF16].
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tanathan, and Daniel Wichs. Multiparty computation with low communication,
computation and interaction via threshold FHE. In Advances in Cryptology–
EUROCRYPT 2012, pages 483–501. Springer, 2012.

[AMTW00] Andris Ambainis, Michele Mosca, Alain Tapp, and Ronald de Wolf. Private quan-
tum channels. In 41st IEEE Symposium on Foundations of Computer Science
(FOCS 00), pages 547–553, 2000.

[Arm88] Mark A Armstrong. Groups and symmetry. Springer-Verlag, 1988.

[AS06] Pablo Arrighi and Louis Salvail. Blind quantum computation. International
Journal of Quantum Information, 4(05):883–898, 2006.

[Bar89] David A. Barrington. Bounded-width polynomial-size branching programs recog-
nize exactly those languages in NC1. Journal of Computer and System Sciences,
164:150–164, 1989.
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KEY-UPDATE RULES

A.1 Applying Clifford-group gates

When applying a Clifford gate C to a state of the form XaZb|ψ〉, we can rewrite the resulting
state as Xa

′
Zb
′
C|ψ〉 for some updated key values a′, b′ ∈ {0, 1}. In this appendix, we list the

key-update rules when applying the generators of the Clifford group to a state that is encrypted
with the quantum one-time pad. These rules can be found in many places in the literature
(or can be easily calculated by hand using the equalities in Section 2.4). See also e.g. [BJ15,
Appendix C].

The X and Z gates do not affect the keys to the quantum one-time pad. For the other
gates, after applying them to the ith wire of a quantum state that has one-time pad keys ai
and bi, we update the keys as

Pi : (ai, bi)→ (ai, ai ⊕ bi)

and

Hi : (ai, bi)→ (bi, ai) .

For the two-qubit CNOT gate applied on control wire i, with target j, we update the
corresponding keys as

CNOTij : (ai, bi; aj , bj)→ (ai, bi ⊕ bj ; ai ⊕ aj , bj) .

A.2 Using a conditional computation gadget

This appendix specifies the algorithm ComputeKeysf (gf,C(x), y, r, r′) from Theorem 4.5(iii),
where gf,C is the classical information accompanying the gadget. This algorithm is called in
TP.Eval after using a gadget from the evaluation key to remove a phase error.
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A.2. USING A CONDITIONAL COMPUTATION GADGET

After performing UseGadgetf (γr(gC,f (x)), y, |ψ〉) for some input state1 |ψ〉, the output state

is of the form Xa2Zb2Cf(x,y)Xa1Zb1 |ψ〉 (see Equation 4.1), where the values a1, a2, b1, b2 ∈ {0, 1}
depend on the path the qubit has taken through the gadget. We sketch how these values can
be computed from the gate C, the values x and y, and the measurement outcomes from Alice
(contained in r) and Bob (who performs UseGadgetf ).

The algorithm tracks the path the qubit takes through the gadget, by resolving the telepor-
tations that involve the qubit one by one. Even though the measurements were all performed
at the same time, we will describe them as if ordered in this manner. All additions of the X
and Z keys will be performed modulo 2, since X2 = Z2 = I.

We first sketch the algorithm to find a1, b1, the keys that are applied to the state |ψ〉 before
the Clifford gate C is applied. The algorithm to find a2, b2 is similar. Let a,b be variables that
hold the current X and Z keys respectively, at every step of the algorithm. Let loc be the vari-
able that contains the current location of the qubit, with possible locations 0 to 2m. That is, we
view the current state as being XaZb|ψ〉 at location loc. For every step we update the location
depending on which qubits Bob measures and on the list {(s1, t1), (s2, t2), . . . , (sm, tm)} con-
tained in gf,C(x), and update the keys depending on the corresponding measurement outcomes
from both Alice and Bob, as follows:

Initialize: a← 0, b← 0, loc← 0.
While loc ≤ m, do:

1. Let loc′ be the position of the qubit that Bob has connected the qubit at position loc to
via a Bell measurement. Let the outcome of this Bell measurement be (a′, b′). Effectively,
these outcomes change the current state to

Xa
′
Zb
′
XaZb|ψ〉,

therefore we update a← a⊕ a′ and b← b⊕ b′.

2. Find the pair (si, ti) ∈ {(s1, t1), (s2, t2), . . . , (sm, tm)} such that si ≡ loc′. The telepor-
tation of the qubit through this pair effectively applies Xrx[i]Zrz [i] to the state. Update
a← a⊕ rx[i] and b← b⊕ rz[i]. Update loc← ti.

Output a, b, loc.

The output of this algorithm corresponds to the values a1, b1 and the location loc where
(possibly) the Clifford gate C is applied. To compute a2, b2, initialize loc to loc, and continue
until loc holds the known output position for the conditional computation gadget.

After the computation of a1, b1, a2, b2, it is straightforward to compute the output of
ComputeKeysf by looking up in the list c (contained inside gf,C(x)) whether or not the gate
C was applied at loc, and commute the Paulis according to the rules in Appendix A.1.
For example, if C = P† (as in the scheme TP), then the output (a, b) of ComputeKeysf is
(a1 ⊕ a2, a1 · c[i] ⊕ b1 ⊕ b2), where i is the index such that ti = loc. Note that at this point,
multiplication is needed to update the keys.

1The input qubit is not necessarily a pure state, but we write an arbitrary pure state without loss of
generality, to simplify notation.
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A.2. USING A CONDITIONAL COMPUTATION GADGET

For the key updates during the evaluation phase of TP, all the above computations are
carried out homomorphically. There is already a quantum one-time pad present on the input
state to the conditional computation gadget, which has to be commuted with the (possible)
P† gate like we did with the keys a2, b2 in the previous paragraph. After the key updates, all
temporary variables can be discarded, and only the new keys are needed for continuing the
protocol.

The ComputeKeysf algorithm for updating the one-time-pad keys after the use of a single
conditional computation gadget runs in time polynomial in m, which is polynomial in the
security security parameter κ. The time complexity of ComputeKeysf can be established by
observing that computing the values a1 and b1 (and similarly computing a2 and b2) requires at
most m/5 iterations of the while loop, and each iteration requires O(m logm) time (it involves
addition modulo 2, looking up values in lists of length 2m, and comparing these values to
the value stored in loc). Commuting the resulting keys with the possible Clifford operation at
location loc can also be done in time linear in m. Overall, the time complexity of ComputeKeysf
is a low-degree polynomial in m.
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