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Abstract

Computation tree logic (CTL) and its extension CTL∗ offer a rigorous approach to program
verification. The highly expressive modal µ-calculus subsumes both CTL and CTL∗ while
remaining computationally well-behaved. Translations from CTL and CTL∗ into the modal
µ-calculus are known, but the resulting fragments have not been identified syntactically.
Having an exact characterization of a logic as a fragment of the modal µ-calculus gives a
better understanding of the expressivity of both logics involved. An automata theoretic
approach serves to form a bridge between logics and game semantics are instrumental when
comparing formulas with automata.

In this thesis CTL∗ is translated into a class of modal parity automata. An exact
characterization of this class of automata as a fragment of the modal µ-calculus is given.
Furthermore CTL is fully characterized both as a class of modal automata with singleton
clusters and as a one-variable fragment of the modal µ-calculus.

Keywords: computation tree logic, game semantics, automata theory, modal µ-calculus.
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Chapter 1

Introduction

Debugging – the task of identifying and resolving flaws in a computer program – is a
standard chore for any programmer. For small programs a combination of reasoning and
testing is enough to solve most issues, but as programs grow more complex they become
less transparent and the need for rigorous debugging methods increases. For concurrent
systems in particular it can be essential to ensure various liveness and safety properties
in order to avoid unforeseen deadlock or starvation. Work done by Lamport (1977) and
others show that mathematical proofs can aid in this respect.

The field of logic can formalize this method of program verification even further. Tem-
poral properties can be described using the temporal operators F and G from Prior (1957),
which state that something holds at some point in the future and at every point in the
future respectively. Pnueli (1977) introduced these operators to the world of program ver-
ification and showed that linear temporal logic (LTL) can be used to encode liveness and
safety. For instance, the property that every request (r) made at any time during the pro-
gram execution is eventually satisfied (s) can be expressed by the formula G(r → Fs). The
use of LTL is limited by its linear nature, since programs often rely on branching. If one
models the execution of a program as a computation tree, then LTL can only be used to
describe the behavior along a single path down the tree at a time. Computation tree logic
(CTL) as introduced by Clarke and Emerson (1981) is capable of describing properties of
nodes in a tree with respect to different paths simultaneously. It has operators such as
AF and EF, which state that something will hold eventually in every possible future and
in some possible future respectively. However CTL has the opposite problem, in that it
cannot express some interesting properties of individual paths, such as G(r → Fs). In
Emerson and Halpern (1986) both approaches are unified in a logic called CTL∗. Its key
feature is that the operators E and A are used to quantify an LTL formula over individual
paths originating from a single node. Its syntax separates ‘state-formulas’ which are eval-
uated at the nodes of a tree from ‘path-formulas’ which are evaluated at the paths. This
separation is somewhat similar to the way propositional dynamic logic (PDL) is defined in
terms of formulas and programs.

Another logic used in verification is the modal µ-calculus (µML), which was described
in its current form by Kozen (1983). The logic µML is very expressive and at the same time
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computationally well-behaved. However its formulas are less human-readable than those
from temporal and dynamic logics such as LTL, CTL and PDL. It is therefore worthwhile
to find translations from these logics into µML. The operators of CTL were immediately
shown to be expressible by fixpoints in Clarke and Emerson (1981), and Dam (1990) gives
a direct translation of CTL∗ into the modal µ-calculus. A translation from PDL into
µML was given by Pratt (1981). Translations back to CTL∗, PDL etcetera are generally
impossible because these logics are not expressive enough to capture the full power of µML.
At the same time, knowing exactly which fragment of µML a logic corresponds to can give
a better understanding of the expressivity of both logics involved. A characterization of
PDL as a fragment of µML is due to Carreiro and Venema (2014). Characterizations for
LTL, CTL and CTL∗ in µML do not yet exist, but these logics have been characterized
as second-order logics. Kamp (1968) shows that LTL corresponds to first order logic on
linear models, and Moller and Rabinovich (2001) show that CTL∗ corresponds to the
bisimulation invariant fragment of monadic path logic – the fragment of monadic second
order logic where quantification over sets is restricted to sets that are path-like. This result
relates back to µML in the context of the work by Janin and Walukiewicz (1996), where
the modal µ-calculus is shown to be as expressive as the bisimulation invariant fragment
of monadic second order logic.

Janin and Walukiewicz use automata as an intermediary between the modal µ-calculus
and monadic second order logic. In Janin and Walukiewicz (1995) it is shown that the prop-
erties expressible in µML are exactly those properties that are definable by FO-automata
– that is, automata whose transition terms are formulas in first order logic without equal-
ity. Similarly in Walukiewicz (1996) monadic second order logic is shown to be equivalent
over trees to FOE-automata – automata over first order logic with equality. Then Janin
and Walukiewicz (1996) show that these two classes of automata are equivalent under
bisimulation invariance. Comparing logical formulas with automata is somewhat similar
to Kleene’s Theorem, due to Kleene (1951), which states that regular languages are exactly
those languages definable by finite automata. The class of automata that corresponds to
PDL is given by Carreiro and Venema (2014). Diekert and Gastin (2008) show that LTL
corresponds to counter-free Büchi stream automata.

When comparing formulas with automata, it proves convenient to take a game theoret-
ical perspective on truth. Using game semantics to prove and disprove properties is used
to great effect in the Ehrenfeucht-Fräıssé games, due to Fräıssé (1955) and Ehrenfeucht
(1961). Evaluation games are two-player games where one player tries to verify a formula
and the other tries to falsify it. For example when evaluating a formula of the form ϕ∨ψ,
it is the verifier who chooses to verify either ϕ or ψ; conversely for a formula ϕ ∧ ψ both
conjuncts must hold, so the falsifier may decide with which subformula the game contin-
ues. Automata have acceptance games where a verifier tries to show that a word, stream
or system is accepted by an automaton and a falsifier tries to have the automaton reject it.
Especially when looking at modal automata – automata whose transition terms are modal
formulas – the two games are very similar.

This thesis introduces a class of modal parity automata that CTL∗ formulas can be
translated into, and gives a characterization of this class as a syntactic fragment of the
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modal µ-calculus. A main result is that the modal automata in this class and the µML
formulas that correspond to them make use of modal formulas that are dominated by one
of the two players; roughly speaking, in the evaluation match of a dominated formula one
player can control the flow of the game whereas the other player has relatively little power.
A third result is that CTL can be characterized by restricting this class of automata to
automata with singleton clusters, and consequently restricting the fragment of µML to be
one-variable.

The next chapter lays the groundwork on CTL∗, board games, the modal µ-calculus
and modal automata. In chapter 3, evaluation game semantics for CTL∗ are given and
the syntactic property of modal formulas called “dominance” is introduced. A construc-
tion of modal automata for CTL∗ formulas is presented in chapter 4. The problem of a
translation back into CTL∗ is discussed briefly in chapter 5, where the class of automata
with dominated clusters is characterized in µML. In chapter 6 a characterization of CTL
is given, both as a class of modal automata and as a fragment of µML. Finally, chapter 7
will contain a summary of our results, discuss the translation from automata back to CTL∗

and pose a number of open questions for future work.
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Chapter 2

Preliminaries

Literals will serve as the smallest elements of all the logics and automata featured in this
paper. Throughout this paper we will assume that Prop is a finite set of proposition letters.
Other than proposition letters from Prop and their negations, we have the constants > for
truth and ⊥ for falsehood.

Definition 2.1. The set Lit of literals over Prop is generated by

` ::= > | ⊥ | p | ¬p

where p ∈ Prop. /

We will consistently use the symbol ` to refer to elements of Lit. Literals are given
their meaning by valuations in the standard manner.

Definition 2.2. Let V : Prop→ ℘(S) be a valuation of Prop on a set S of states. Define
satisfaction of a literal ` at a state s ∈ S under the valuation V , denoted s V `, by

s V > always

s V ⊥ never

s V p if s ∈ V (p)

s V ¬p if s 6∈ V (p)

where p ∈ Prop. /

The structures considered in this paper are valued transition systems over Prop, i.e.
monomodal Kripke models with serial accessibility relations. Note that infinite trees can
be seen as a special case of a serial transition system.

Definition 2.3. A transition system is S = (S,R, V ) where S is a set of states, R ⊆ S×S
a serial relation and V : Prop→ ℘(S) a valuation. /

Seriality means that for every s ∈ S there is t ∈ S with sRt. As a result one can
construct, from any starting state s ∈ S, an infinite path that goes from state to state via
the accessibility relation R.
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Definition 2.4. Let S be a transition system. A path through a transition system S is a
map π : N→ S such that π(i)Rπ(i + 1) for all i ∈ N. For a path π and k ∈ N, define the
path πk by πk(i) := π(k + i) for all i ∈ N. Let Π(S) denote the set of all paths through a
transition system S, and let Π(S, s) denote the set of all paths through S with π(0) = s. /

2.1 The logics CTL* and CTL

Traditionally, the formulas of CTL∗ can be generated by the grammar

ϕ ::= > | p | ¬ϕ | ϕ ∨ ϕ | Eψ
ψ ::= ϕ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ

where p ∈ Prop, where E is the existential path-quantifier, X is the ‘next time’ operator
and U is the ‘until’ operator. However as we work with evaluation games for CTL∗, it is
more convenient to work in a negation normal form, so that negations only occur at the
level of proposition letters.

Definition 2.5. The syntax of CTL∗ is generated by the dual grammar

ϕ ::= ` | ϕ ∨ ϕ | ϕ ∧ ϕ | Eψ | Aψ
ψ ::= ϕ | ψ ∨ ψ | ψ ∧ ψ | Xψ | ψUψ | ψRψ

where ` ∈ Lit. The set CTL∗Σ of state-formulas of CTL∗ is generated by ϕ. The set CTL∗Π
of path-formulas of CTL∗ is generated by ψ. /

The operator R, also known as ‘release’, is the dual of U. When ϕUψ is taken to mean
“ψ will hold at some point in the future and until that time ϕ holds”, ϕRψ can be explained
as “ψ will hold forever in the future, unless it is at some point released by ϕ”. Note that
X is its own dual. Two other common temporal operators, F and G, can be defined by
Fϕ := >Uϕ and Gϕ := ⊥Rϕ respectively. We separate state-formulas, which are evaluated
on states, from path-formulas, which are evaluation on paths. However this separation is
not at all strict, as every state-formula is also a path-formula.

Historically the logic CTL∗ is an extension of CTL, and the logic CTL was presented
with the operators EX, AU and EU as atomic elements of the language. In this paper we
treat CTL as a fragment of CTL∗ by restricting the shapes of the path-formulas. The
semantics of a CTL formula will therefore be given by the semantics of that formula when
seen as a CTL∗ formula.

Definition 2.6. The syntax of CTL is generated by the dual grammar

ϕ ::= ` | ϕ ∨ ϕ | ϕ ∧ ϕ | Eψ | Aψ
ψ ::= Xϕ | ϕUϕ | ϕRϕ

where ` ∈ Lit. The set CTLΣ of state-formulas of CTL is generated by ϕ. The set CTLΠ

of path-formulas of CTL is generated by ψ. /
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The relational semantics for CTL∗ are entirely standard.

Definition 2.7. Let S be a transition system. Define satisfaction of a formula ϕ ∈ CTL∗Σ
at a state s ∈ S, denoted S, s  ϕ, and of a formula ψ ∈ CTL∗Π at a path π ∈ Π(S),
denoted S, π  ϕ, as follows:

S, s  ` ⇔ s V `

S, s  ϕ1 ∨ ϕ2 ⇔ S, s  ϕ1 or S, s  ϕ2

S, s  ϕ1 ∧ ϕ2 ⇔ S, s  ϕ1 and S, s  ϕ2

S, s  Eψ ⇔ ∃π ∈ Π(S, s) (S, π  ψ)

S, s  Aψ ⇔ ∀π ∈ Π(S, s) (S, π  ψ)

S, π  ϕ ⇔ S, π(0)  ϕ whenever ϕ ∈ CTL∗Σ
S, π  ψ1 ∨ ψ2 ⇔ S, π  ψ1 or S, π  ψ2

S, π  ψ1 ∧ ψ2 ⇔ S, π  ψ1 and S, π  ψ2

S, π  Xψ ⇔ S, π1  ψ

S, π  ψ1Uψ2 ⇔ ∃k (S, πk  ψ2 and ∀i < k (S, πi  ψ1))

S, π  ψ1Rψ2 ⇔ ∀k (S, πk  ψ2 or ∃i < k (S, πi  ψ1))

where ` ∈ Lit. /

If ϕ and ψ are state-formulas we will write ϕ ≡ ψ whenever ϕ and ψ are logically
equivalent, i.e. when S, s  ϕ iff S, s  ψ for all transition systems S and all s ∈ S. We
will also use this notation for path-formulas.

As said, we define CTL∗ in a negation normal form. This is not a loss in expressivity,
since logical complementation can still be defined.

Definition 2.8. Define the logical complement ¬ϕ of a CTL∗ formula ϕ by

¬> := ⊥ ¬⊥ := >
¬(p) := ¬p ¬(¬p) := p

¬(ϕ ∨ ψ) := ¬ϕ ∧ ¬ψ ¬(ϕ ∧ ψ) := ¬ϕ ∨ ¬ψ
¬Eϕ := A¬ϕ ¬Aϕ := E¬ϕ
¬Xϕ := X¬ϕ

¬(ϕUψ) := ¬ϕR¬ψ ¬(ϕRψ) := ¬ϕU¬ψ

where p ∈ Prop. /

The following proposition states that the logical complementation of a formula is true
whenever the original formula is false. Its proof is completely standard and we will omit
the details.

Proposition 2.9. Let S be a transition system. Let s ∈ S and ϕ ∈ CTL∗Σ, then S, s  ¬ϕ
iff S, s 1 ϕ. Let π ∈ Π(S) and ψ ∈ CTL∗Π, then S, π  ¬ψ iff S, π 1 ψ.

Proof. By analysis of the relational semantics.
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2.2 Board games

Throughout this paper mathematical games will be extensively used. The games featured
in this paper are all two-player games played on colored game boards, which are (possibly
infinite) graphs of which the vertices are colored with a finite set of colors. The two players
are traditionally called Éloise and Abélard, and we will use the symbols ∃ and ∀ to represent
them. In broad terms, it is the goal of ∃ to show that something is true, whereas ∀ tries
to show that it is not. The use of these symbols ∃ and ∀, which denote “there exists” and
“for all” in first order logic, is deliberate; a victory for ∃ often lies in her showing that
there exists a solution and in those situations ∀ wins if all attempted solutions fail. At the
same time, the games in this paper are very symmetric, and we will make repeated use of
this symmetry. For now, we focus on the abstract game theoretical notions that will play
a role in this paper.

Definition 2.10. A colored game board is (B∃, B∀, E, C,Γ) where B := B∃ ∪ B∀ is a set
of positions divided between the players ∃ and ∀, so that B∃ ∩B∀ = ∅, where E ⊆ B ×B
is a relation defining the moves, where C is a finite set of colors and where Γ : B → C
is a coloring. A match is a finite or infinite sequence b0, b1, . . . such that biEbi+1 for all
applicable i. Every match induces a sequence c0, c1, . . . of colors by setting ci := Γ(b0).
For b ∈ B we write E[b] := {b′ ∈ B | bEb′} for the set of admissible moves from b. /

When defining the evaluation games and acceptence games in later sections, it will be
convenient to have positions where there is only one admissible move. Since the move is
necessary, we will not specify which of the two players must make the move.

For a finite match m = b0, . . . , bn write last(m) := bn. Now for every finite match m
there is a player u such that last(m) ∈ Bu. Here u needs choose one of the admissible
moves from E[last(m)]. If E[last(m)] is empty then this is impossible, so match ends and
u loses. If E[last(m)] is not empty then the match must continue.

Definition 2.11. A matchm is complete ifm is infinite or ifm is finite and E[last(m)] = ∅;
it is partial otherwise. A complete finite match m is won by ∃ if last(m) ∈ B∀ and won by
∀ if last(m) ∈ B∃. /

This gives us an elegant way to decide a winner for finite matches, but we still need to
address infinite matches. A game therefore consists of a colored game board together with
a winning condition that is based on colors. For an infinite match m let Inf(m) denote the
set of colors that occur infinitely often in the sequence induced by m. In this paper we
consider two types of winning conditions and thus two types of games.

Definition 2.12. A Muller game is G = (B∃, B∀, E, C,Γ,F) where (B∃, B∀, E, C,Γ) is a
game board and where F ⊆ ℘(C) is a Muller condition. An infinite match m is won by ∃
if Inf(m) ∈ F and won by ∀ otherwise. /

Definition 2.13. A parity game is G = (B∃, B∀, E, C,Γ,Ω) where (B∃, B∀, C,Γ, E) is a
game board and where Ω : C → N is a priority function. An infinite match m is won by ∃
if the maximum priority among colors in Inf(m) is even and won by ∀ if it is odd. /
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Note that this maximum is well-defined because C is finite. Also note that every parity
game can be turned into a Muller game by having F consist of those X ⊆ C such that
max{Ω(c) | c ∈ X} is even. The converse is less evident, but in some cases a Muller game
can also be expressed as a parity game. Parity games have some desirable properties that
Muller games do not, so it will sometimes be useful to turn a Muller game into a parity
game.

A key feature of this game theoretic framework is that we can discuss strategies. A
strategy for a player u tells u what to do when it is their turn to move. Our two players
have a perfect memory and there is no hidden information, so a strategy may use the entire
history of the match. Let PMu ⊆ B∗ denote the set of partial matches m of G for which
last(m) ∈ Bu.

Definition 2.14. A strategy of a player u for a game G is a map f : PMu → B such
that f(m) ∈ E[last(m)] for all m ∈ PMu. A strategy f is positional if f(m) = f(m′)
for all m,m′ ∈ PMu with last(m) = last(m′). A match b0, b1, . . . is consistent with f if
bi+1 = f(b0, . . . , bi) for all i for which bi ∈ Bu. A strategy f of u is winning if u wins every
complete match that is consistent with f . /

Strategies are hardly ever winning in this broad sense, and we will instead look at
strategies which are winning when the starting position is fixed.

Definition 2.15. An initialized game is G@b where G is a game and b is a board position.
A match of G@b is a match b0, b1, . . . of G such that b0 = b. A winning strategy of a player
u for G@b is a strategy f of u such that u wins every complete match of G@b. A position
b is winning for u if u has a winning strategy for G@b. Let Winu(G) ⊆ B denote the set of
winning positions for u. /

Clearly Win∃(G)∩Win∀(G) = ∅ because a match of G@b cannot be won by both players
at the same time. On the other hand it is not immediate that Win∃(G) ∪Win∀(G) = B,
i.e. that for every position one of players has a winning strategy. In fact this only holds
for games that enjoy determinacy.

Definition 2.16. A game G enjoys determinacy if for every position b ∈ B either ∃ or ∀
has a winning strategy for G@b. A game enjoys positional determinacy if for every position
b ∈ B either ∃ or ∀ has a positional winning strategy for G@b. /

Determinacy is essential when using games to define semantics. This is because when
the positions of a game represent logical statements, we will interpret Win∃(G) as the set
of statements that are true and Win∀(G) as the set of statements that are false. Luckily
the games discussed in this paper all enjoy determinacy.

Theorem 2.17. All Muller games enjoy determinacy.

Proof. By Zielonka (1998).

Theorem 2.18. All parity games enjoy positional determinacy.

Proof. By Emerson and Jutla (1991).
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2.3 The modal µ-calculus

The modal µ-calculus is obtained from basic modal logic by adding variables and fixpoint
operators. Throughout this paper we will assume Var is countably infinite set of variables,
disjoint from Prop.

Definition 2.19. The syntax of µML(Y ) is generated by the grammar

ϕ ::= ` | y | ϕ ∨ ϕ | ϕ ∧ ϕ | 3ϕ | 2ϕ | µx.ϑ | νx.ϑ

where ` ∈ Lit, y ∈ Y , x ∈ Var and ϑ ∈ µML(Y ∪ {x}). The syntax of µML is given by
µML(∅). /

We will use λ to mean either fixpoint operator, thus λx.ϑ refers to both µx.ϑ and νx.ϑ.
For every fixpoint formula λx.ϑ, we say that this formula binds x. Variables that are not
bound by a fixpoint formula are free. The sets FV(ϕ) and BV(ϕ) of respectively free and
bound variables in ϕ can be given by induction.

Definition 2.20. The free and bound variables of a µML(Y ) formula are defined by

FV(`) := ∅ BV(`) := ∅
FV(y) := {y} BV(y) := ∅

FV(ϕ ∨ ψ) := FV(ϕ) ∪ FV(ψ) BV(ϕ ∨ ψ) := BV(ϕ) ∪ BV(ψ)

FV(ϕ ∧ ψ) := FV(ϕ) ∪ FV(ψ) BV(ϕ ∧ ψ) := BV(ϕ) ∪ BV(ψ)

FV(3ϕ) := FV(ϕ) BV(3ϕ) := BV(ϕ)

FV(2ϕ) := FV(ϕ) BV(2ϕ) := BV(ϕ)

FV(λx.ϕ) := FV(ϕ) \ {x} BV(λx.ϕ) := BV(ϕ) ∪ {x}

where ` ∈ Lit and y ∈ Y . /

Although formally allowed in µML, formulas where a single variable is bound by multi-
ple fixpoint operators are a bit hard to work with. Through this paper we will assume that
FV(ϕ) and BV(ϕ) are disjoint and that every bound variable is only bound by a single
subformula. This creates a natural order on the bound variables by the complexity of their
binding formula.

Definition 2.21. A µML(Y ) formula is clean if no two fixpoint subformulas bind the same
variable and no free variable is bound by a fixpoint subformula. If ξ is a clean µML formula
then for every bound variable x there is a unique fixpoint formula λξ(x) := λxx.ϑx that
binds it. Define the relation ≺ξ on BV(ξ) by having x ≺ξ y whenever λξ(x) is a proper
subformula of λξ(y). Write x �ξ y whenever x ≺ξ y or x = y. /

Note that ≺ξ is a transitive irreflexive relation and that �ξ is a transitive reflexive
antisymmetric relation.
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The semantics for µML as defined by Kozen (1983) are algebraic, i.e. based on a map
that assigns to each formula ϕ its meaning JϕKS on a transition system S. In Emerson and
Jutla (1991) these algebraic semantics were shown to be equivalent to semantics based on
evaluation games. Evaluation game semantics proved to be much more convenient when
comparing µML with automata, as we will do in this paper. Therefore we will forgo the
algebraic semantics entirely and focus on evaluation game semantics.

Evaluation games are games played on a board S ×Φ, where S is the set of states of a
transition system S and where Φ is a finite set of formulas. A position (s, ϕ) is intended to
be winning for ∃ whenever ϕ is true at s. The set Φ also serves as the set of colors, with a
natural coloring that sends (s, ϕ) to ϕ. A match of an evaluation game therefore induces
a sequence of formulas from Φ. We will call such sequences traces. For a µML formula ξ,
the formulas that occur in a trace will be subformulas of ξ.

Definition 2.22. For a µML formula ξ, let Sb(ξ) denote its set of subformulas. /

Traces will generally start at some ϕ0, then go to some subformula ϕ1 of ϕ0, then to
some subformula ϕ2 of ϕ1, etcetera. When a bound variable x is reached, the trace will
continue to its binding formula. Any other formula will be followed by one of its direct
proper subformulas.

Definition 2.23. Let ξ be a µML formula and let ϕ ∈ Sb(ξ). Define the set ∇ξ(ϕ) of
ξ-derivatives of ϕ as follows:

∇ξ(`) := ∅
∇ξ(x) := {λξ(x)}

∇ξ(ϕ ? ψ) := {ϕ, ψ} where ? is one of ∨, ∧
∇ξ(τϕ) := {ϕ} where τ is one of 3, 2

∇ξ(λx.ϕ) := {ϕ} where λ is one of µ, ν

where ` ∈ Lit and x ∈ BV(ξ). For ϕ, ψ ∈ Sb(ξ), write ϕ /ξ ψ whenever there is a sequence
ϕ0, . . . , ϕn with ϕ0 = ϕ, ϕn = ψ and ϕi ∈ ∇ξ(ϕi+1). Write ϕ ./ξ ψ when ϕ /ξ ψ and
ϕ .ξ ψ. /

Note that /ξ is a transitive reflexive relation and that ./ξ is an equivalence relation.
Also note that Sb(ξ) is closed under ξ-derivatives, i.e. ∇ξ(ϕ) ⊆ Sb(ξ) for all ϕ ∈ Sb(ξ),
and therefore under /ξ and ./ξ.

Definition 2.24. Let ξ be a µML formula. A ξ-trace is a finite or infinite sequence
ϕ0, ϕ1, . . . of formulas such that ϕi .ξ ϕi+1 for all i. An infinite trace is stalling if there is
k such that ϕi = ϕi+1 for all i ≥ k. A trace is complete if it either ends with a literal or
free variable or is non-stalling. A trace ϕ0, ϕ1, . . . is direct if ϕi+1 ∈ ∇ξ(ϕi) for all i. /

Note that every direct trace is complete. As one might expect, complete matches will
induce complete traces. For traces that end in a literal, the winner can be determined by
whether that literal is true or not. For infinite traces the winner will depend on the bound
variable with the most complex binding formula.
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position player admissible moves
(s, `) ∀ ∅ if s V `
(s, `) ∃ ∅ if s 1V `
(s, x) - {(s, λξ(x))}
(s, ϕ1 ∨ ϕ2) ∃ {(s, ϕ1), (s, ϕ2)}
(s, ϕ1 ∧ ϕ2) ∀ {(s, ϕ1), (s, ϕ2)}
(s,3ϕ) ∃ {(t, ϕ) | sRt}
(s,2ϕ) ∀ {(t, ϕ) | sRt}
(s, µx.ϕ) - {(s, ϕ}
(s, νx.ϕ) - {(s, ϕ}

Figure 2.1: The rules for the evaluation game of µML formulas.

Proposition 2.25. Let ξ be a µML formula. For every infinite direct ξ-trace ϕ0, ϕ1, . . .
there is a �ξ-greatest bound variable of ξ that occurs infinitely often.

Proof. By Emerson and Jutla (1991).

We are now ready to define the evaluation game for µML.

Definition 2.26. Let ξ be a µML formula and let S = (S,R, V ) be a transition system.
The evaluation game for ξ on S, denoted E(ξ, S), is played on the board

S × Sb(ξ)

according to the rules given by Figure 2.1. Every match induces a direct ξ-trace. Now
Proposition 2.25 states that there is a �ξ-greatest bound variable x that occurs infinitely
often during the match. The winner is decided by the type of fixpoint that bound x; ∃
wins if λx = ν and ∀ wins if λx = µ. /

We define the meaning of a formula ϕ on a transition system S as the set of states
s ∈ S for which (s, ϕ) is a winning position for ∃ in the game E(ϕ, S).

Definition 2.27. Let S be a transition system. Define satisfaction of a formula ϕ ∈ µML
at a state s ∈ S by S, s  ϕ iff (s, ϕ) ∈Win∃(E(ϕ, S)). /

With this in mind, a roles of ∃ and ∀ as verifier and falsifier respectively shine through
the rules in Figure 2.1. For instance if ∃ wants to show that a formula 3ϕ holds at s, then
she needs to be able to find a state t reachable from s such that ϕ holds at t. Conversely
if 2ϕ is to hold at s, then ϕ needs to hold at every successor t of s, and it is the task of
∀ to choose such a t. This also illustrates the duality of ∃ and ∀: if ∀ wants to show that

2ϕ does not hold at s, then he needs to find a successor t of s where ϕ does not hold.
Therefore it would be nice if S, s 1 ϕ iff (s, ϕ) ∈Win∀(E(ϕ, S)). This in fact follows from
the determinacy of evaluation games, which can be given by defining a priority based on
fixpoint depth.

12



Definition 2.28. Define the fixpoint-depth of a µML(Y ) formula, fd(ϕ), by

fd(`) := 0

fd(y) := 0

fd(ϕ ? ψ) := max{fd(ϕ), fd(ψ)} where ? is one of ∨, ∧
fd(τϕ) := fd(ϕ) where τ is one of 3, 2

fd(λx.ϕ) := fd(ϕ) + 1 where λ is one of µ, ν

where ` ∈ Lit and y ∈ Y . /

Proposition 2.29. Evaluation games for µML formulas enjoy positional determinacy.

Proof. Let ξ be a µML formula. Define a priority Ωξ on Sb(ξ) by

Ωξ(x) := 2 · fd(ϑx) + 1 if λx = µ

Ωξ(x) := 2 · fd(ϑx) + 2 if λx = ν

for x ∈ BV(ξ) and Ωξ(ϕ) := 0 for other formulas.
Note that if x ≺ξ y then Ωξ(x) < Ωξ(y). This means that if x is the �ξ-greatest element

of a set of bound variables, then its priority is the highest priority among variables from
that set. Furthermore note that Ωξ(x) is odd if λx = µ and even if λx = ν. The winning
condition from Definition 2.26 is therefore equivalent to a parity winning condition based
on Ωξ. The result now follows from Theorem 2.18.

To fully appreciate the duality between ∃ and ∀, we can look at logical complementation.

Definition 2.30. Define the logical complement ¬ϕ of a µML(Y ) formula ϕ by

¬> := ⊥ ¬⊥ := >
¬(p) := ¬p ¬(¬p) := p

¬y := y

¬(ϕ ∨ ψ) := ¬ϕ ∧ ¬ψ ¬(ϕ ∧ ψ) := ¬ϕ ∨ ¬ψ
¬3ϕ := 2¬ϕ ¬2ϕ := 3¬ϕ

¬(µx.ϑ) := νx.¬ϑ ¬(νx.ϑ) := µx.¬ϑ
where p ∈ Prop and y ∈ Y . /

The complementation rule for variables might seem unintuitive at first. However, if
we interpret fixpoint operators as binary operators between literals and formulas, then the
complement of a formula such as ϕ := µx.(p ∧ 3x) would be ν(¬x).(¬p ∨ 2(¬x)). If we
treat ¬x as another variable, say y, then this is just νy.(¬p∨2y). This is in fact equivalent
to the real complement of ϕ, which is νx.(¬p ∨2x).

Now the following proposition states that logical complementation is indeed the same
as switching the roles of ∃ and ∀. We will omit the details of its proof.

Proposition 2.31. Let S be a transition system. Let s ∈ S and ϕ ∈ µML, then S, s  ¬ϕ
iff S, s 1 ϕ.

Proof. By Emerson and Jutla (1991).
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2.4 Stream automata

Although we will mostly work with modal automata in this paper, let us first look at
stream automata. Stream automata work not just on Σ-words, i.e. finite sequences of
symbols from some finite alphabet Σ, but particularly on infinite Σ-streams.

Definition 2.32. A parity Σ-stream automaton is B = (B, δ,Ω, bI) where B is a finite set
of states, where δ ⊆ B × Σ × B is a transition relation, where Ω : B → N is a priority
function and where bI ∈ B is the initial state. /

The set B together with its transition relation δ can be seen as a directed graph whose
edges are labelled with symbols from Σ. A finite walk through this graph then becomes
labelled by some word over Σ.

Definition 2.33. Let B = (B, δ,Ω, bI) be an Σ-stream automaton and let b, b′ ∈ B. For a
symbol σ ∈ Σ, write b →σ b

′ whenever (b, σ, b′) ∈ δ. For an Σ-word w = σ1, . . . , σn, write
b�w b

′ when there are b0, . . . , bn with b0 = b, bn = b′ and bi →σi bi+1 for each i < n. /

On the other hand, for a given word it remains to be seen if there are finite walks
through the graph that are labelled with that word; if there are, the automaton accepts
that word. To find these walks, we start with the initial state and then read off one symbol
at a time, taking one of the outgoing arrows labelled with that symbol. Generalizing this
to an infinite stream of symbols, we get infinite runs.

Definition 2.34. A run of an automaton B = (B, δ,Ω, bI) on a stream σ0, σ1, . . . is an
infinite sequence b0, b1, . . . of states such that b0 = bI and bi →σi bi+1 for all i. A run is
accepting if the highest priority among states occurring infinitely often in the run is even.
An automaton B accepts a stream if there exists an accepting run of B on the stream. /

The above defined transition relation can be non-deterministic; for any state b and
symbol σ, there may be multiple outgoing arrows from b labelled with σ, or none at all.
When appropriate, deterministic stream automata can be used instead.

Definition 2.35. A stream automaton B = (B, δ,Ω, bI) is deterministic if δ is a total
function, i.e. if for every b ∈ B and σ ∈ Σ there is exactly one b′ ∈ B with b→σ b

′. /

When defining deterministic stream automata we will write δ(b, σ) = b′ instead of
(b, σ, b′) ∈ δ. Note that for deterministic automata, there is exactly one run for every
stream; a deterministic automaton accepts a stream if and only if this run is accepting.

2.5 Modal automata

Instead of on words or streams over some alphabet, modal automata work on transition
systems. For modal automata, the role of the arrows between states that are labelled with
symbols is fulfilled by a single modal ‘transition term’ for each state. These transition
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terms are modal formulas that contain occurrences of states of the automaton. If a state
b occurs in the transition term for a, this represents an arrow from a to b. To be more
precise, the transition terms are modal one-step formulas over the set of states.

Definition 2.36. The syntax of ML1(A) is generated by the grammar

ϕ ::= ` | a | 3a | 2a | ϕ ∨ ϕ | ϕ ∧ ϕ

where ` ∈ Lit and a ∈ A. Occurences of a ∈ A of the form a, 3a and 2a are called
unguarded, 3-guarded and 2-guarded respectively. A modal one-step formula is guarded
and hence in gML1(A) if it contains no unguarded occurrences of a ∈ A. /

In some papers modal automata are implicitly guarded and thus have transition terms
from gML1; in that context modal automata with transition terms from ML1 are called
‘silent-step’ automata. However here it is more convenient to work with silent-step au-
tomata by default, and we will be explicit whenever we use guarded automata.

Definition 2.37. A modal automaton is A = (A,∆,Acc, aI) where A is a finite set of
states, where ∆ : A → ML1(A) is a transition function, where Acc is some acceptance
condition where aI ∈ A is the initial state. /

When A = (A,∆,Acc, aI) is an automaton and b ∈ A is a state, we will write (A, b)
to refer to the automaton (A,∆,Acc, b) where the starting state has been replaced with b.
The most general acceptance condition we will use in this paper is the Muller condition.

Definition 2.38. A modal Muller automaton is a modal automaton A = (A,∆,F , aI)
where the acceptance condition is given by a Muller set F ⊆ ℘(A); an infinite sequence of
states is accepted iff the set of states occurring infinitely often belongs to F . /

This corresponds in a natural way with the Muller games from section 2.2. Of particular
interest are automata whose acceptance condition is a parity condition.

Definition 2.39. A modal parity automaton is a modal automaton A = (A,∆,Ω, aI) where
the acceptance condition is given by a priority function Ω : A→ N; an infinite sequence of
states is accepted iff the highest priority among states occurring infinitely often is even. /

For modal automata, the definition of acceptance can best be given by game semantics.

Definition 2.40. Let A be a modal automaton and let S be a transition system. The
acceptance game for A on S, denoted A(A,S), is played on the board

S ×ML1(A)

according to the rules given in Figure 2.2. Every infinite match induces an infinite sequence
of states from A by looking at the positions of the form (t, a). An infinite match is won by
∃ iff the acceptance condition of A accepts this sequence. /
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position player admissible moves
(s, a) - {(s,∆(a)}
(s, `) ∀ ∅ if s V `
(s, `) ∃ ∅ if s 1V `
(s, ϕ1 ∨ ϕ2) ∃ {(s, ϕ1), (s, ϕ2)}
(s, ϕ1 ∧ ϕ2) ∀ {(s, ϕ1), (s, ϕ2)}
(s,3a) ∃ {(t, a) | sRt}
(s,2a) ∀ {(t, a) | sRt}

Figure 2.2: The rules for the acceptance game of modal automata.

It may be clear that the acceptance game of a Muller automaton is a Muller game,
where the set of states A serves as the finite set of colors. Similarly, the acceptance
game of a parity automaton is a parity game. We now define acceptance in terms of the
acceptance game as initialized by a state of the transition system and the starting state of
the automaton.

Definition 2.41. Let A be a modal automaton and let S be a transition system. The
automaton A accepts a state s ∈ S, denoted S, s  A, whenever (s, aI) ∈Win∃(A(A,S)). /

The reversed notation of S, s  A is appropriate in this context because automata – like
formulas – are used to encode properties of transition systems. As with formulas, we will
write A ≡ A′ when two automata accept the same states, i.e. when S, s  A iff S, s  A′
for all transition systems S and all s ∈ S. With some abuse of notation, we will also write
A ≡ ϕ when an automaton is logically equivalent to a (state) formula. Again it seems
intuitive to have that S, s 1 A whenever (s, aI) ∈ Win∀(A(A,S)); this holds because the
acceptance games of automata enjoy determinacy.

Proposition 2.42. Acceptance games for modal Muller automata enjoy determinacy.

Proof. This follows from Theorem 2.17.

Proposition 2.43. Acceptance games for modal parity automata enjoy positional deter-
minacy.

Proof. This follows from Theorem 2.18.

Although the transitions between states are given by formulas instead of relations, it
is still useful to consider concepts such as reachability.

Definition 2.44. Let A be an automaton. Define → on A by a → b whenever b occurs
in ∆(a). Define � to be the transitive reflexive closure of →. Define _ on A by a _ b
whenever a� b and b 6� a. /

Note that _ is transitive, irreflexive and hence asymmetric. The _ relation indicates
that a state can ‘descend’ to another state, after which point it cannot go back. If two
states can reach each other, then they are part of the same ‘cluster’.
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Definition 2.45. Let A be a modal automaton. A cluster of A is a maximal subset C ⊆ A
such that a� b for all a, b ∈ C. A cluster C is trivial if C = {c} and c 6→ c. /

Since A is finite and _ is both transitive and asymmetric, _ is converse-wellfounded,
i.e. there is no infinite sequence a0 _ a1 _ . . . in A. This induces a natural notion of
depth on clusters and on the states within them, which decreases whenever a match of the
acceptance game descends to a lower cluster. The ‘cluster-depth’ of a state is the maximum
number of _-steps that can be taken, plus one if the resulting cluster is non-trivial.

Definition 2.46. The cluster-depth of a state a0 ∈ A is the length of the longest sequence
a1, . . . , an ∈ A such that ai _ ai+1 for all i < n− 1 and an−1 → an. /

Note that the cluster-depth of any two elements of a cluster is the same, and that if
a _ b then the cluster-depth of b is strictly less than that of a. This allows us to perform
induction on the cluster-depth of states. For the base case of such an induction, note
that only trivial clusters have elements with cluster-depth 0. Other than clusters, we will
sometimes need a slight generalization of clusters.

Definition 2.47. Let A be a modal automaton. A generalized cluster of A is a subset
X ⊆ A such that if a ∈ X and a→ b then either b ∈ X or b 6� a. /

Note that every cluster is a generalized cluster. The converse does not hold; in particular
an automaton A might have many different clusters but the entire set A will always be
a generalized cluster. Unlike clusters, generalized clusters might overlap and might be
contained in one another.

The number, size and depth of clusters all attribute to the complexity and thus power
of an automaton. The complexity of a parity automaton can also be influenced by its
Mostowski index, which is the range of priorities that the priority map can use. The
smaller this range, the less powerful the automaton. We also define Mostowski indices for
individual clusters of an automaton.

Definition 2.48. The Mostowski index of a modal parity automaton A is (l, h) where l is
the lowest priority among states of A and h the highest. The Mostowski index of a cluster
C of A is (l, h) where l is the lowest priority among states in C and h the highest. /

For given x, y ∈ N, we will say that an automaton has a Mostowski index inside (x, y)
if its Mostowski index is (l, h) for some l, h ∈ N with x ≤ l ≤ h ≤ y. Similarly we say that
an automaton has a Mostowski index of at most y if its index is (l, h) where h ≤ y. Of
particular interest are the Mostowski indices (1, 2) and (0, 1).

Definition 2.49. A cluster of a modal parity automaton is Büchi if it has a Mostowski
index inside (1, 2). It is co-Büchi if it has a Mostowski index inside (0, 1). /

Lastly we note that priorities are relative. That is, we are free to increase or decrease
all priorities by some natural number, as long as the parities and the relative order of the
priorities remain the same.
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Proposition 2.50. Let A = (A,∆,Ω, aI) be a modal parity automaton. Let Ω′ : A → N
be a priority map such that if Ω(a) < Ω(b) then Ω′(a) < Ω′(b) and such that the parity of
Ω′(a) is the parity of Ω(a). Then A ≡ (A,∆,Ω′, aI).

Proof. Let A be a modal parity automaton and let Ω′ be such a priority map. Define
A′ := (A,∆,Ω′, aI). Let S be a transition system. Clearly any match of A(A,S) is also a
match of A(A′,S) and vice versa, so it remains to check that the winner is the same in both
games. Let m be an infinite match, then there are states a and b that occur infinitely often
during the match such that Ω(a) ≥ Ω(c) and Ω′(b) ≥ Ω′(c) for all c that occur infinitely
often. In particular Ω′(b) ≥ Ω′(a), hence Ω′(b) 6< Ω′(a) and thus Ω(b) 6< Ω(a). But also
Ω(b) ≤ Ω(a), so it must be that Ω(b) = Ω(a). Now the parity of Ω′(b) must be equal to the
parity of Ω(b) = Ω(a). This means that m is won by the same player in both games.
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Chapter 3

Dominance in evaluation games

At first glance the logics CTL∗ and µML may seem very different; one operates both on
states and on paths, whereas the other uses variables. However the two logics have in
common that their central operators, U and R for CTL∗ and µ and ν for µML, reveal an
unfolding behavior. For CTL∗ this behavior is exemplified by the equivalences

αUβ ≡ β ∨ (α ∧ X(αUβ))

αRβ ≡ β ∧ (α ∨ X(αRβ))

for all α, β ∈ CTL∗. For µML, it is given by the equivalence

λx.ϑ ≡ ϑ[λx.ϑ/x]

for every fixpoint formula λx.ϑ ∈ µML(∅), where the right-hand formula is created from
ϑ ∈ µML({x}) by replacing every free occurrence of x with λx.ϑ. As a specific example,
for ϕ := µx.(p ∨3x) the equivalence is ϕ ≡ p ∨3ϕ.

Note that the occurrence of ϕ in its unfolding is guarded by the modality 3 because
x was 3-guarded. Likewise, the occurrences of U and R in their unfoldings can be seen
as being guarded by the operator X. In this way unfolding allows us to break down a
semantically complicated formulas into a “now” and a “later”. This will play a key role in
the construction of automata for CTL∗.

Lastly, observe that unfolding for both U and µ is in a sense finite, whereas for R and
ν it is infinite. This suggests that it is possible to encode the formula pUq in µML as
µx.(q ∨ (p ∧ Xx)) and dually pRq as νx.(q ∧ (p ∨ Xx)), except that the operator X is not
part of µML. Indeed much of the complexity of the translation of CTL∗ into µML by Dam
(1990) and the translation from CTL∗ into automata in this paper, lies in the apparent
inability to evaluate modal formulas on paths.

3.1 Evaluation games for CTL*

In order to better integrate CTL∗ with the other frameworks in this paper, we will define
evaluation game semantics for CTL∗ as well. As with µML, the positions of the evaluation
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game for CTL∗ will be of the form (s, ϕ) where s is a state in a transition system and ϕ
a formula from a finite set Φ. Additionally, there are positions (π, ϕ) where π is a path.
The matches of the evaluation match will form direct traces; that is, each formula will be
followed by one of its derivatives.

Definition 3.1. Define the set ∇ϕ of derivatives of a CTL∗ formula ϕ as follows:

∇(`) := ∅
∇(ϕ ? ψ) := {ϕ, ψ} where ? is one of ∨, ∧
∇(Qϕ) := {ϕ} where Q is one of E, A

∇(Xϕ) := {ϕ}
∇(ϕUψ) := {ψ ∨ (ϕ ∧ X(ϕUψ))}
∇(ϕRψ) := {ψ ∧ (ϕ ∨ X(ϕRψ))}

where ` ∈ Lit. /

Note that as CTL∗ does not have variables and bindings, the derivatives no longer
depend on a starting formula. On the other hand, if we start with a U-formula then its
derivative is not a subformula. Instead of taking Sb(ξ) the finite set of states, we will take
the (Fischer-Ladner) closure of ξ.

Definition 3.2. The closure Cl(Φ) of a set of CTL∗ formulas Φ is the least set of formulas
that contains Φ and is closed under derivatives. /

We write ClΣ(Φ) := Cl(Φ) ∩ CTL∗Σ, ClΠ(Φ) := Cl(Φ) ∩ CTL∗Π and Cl(ϕ) := Cl({ϕ}).
Naturally every derivative of a CTL∗ formula is itself a CTL∗ formula; in this sense CTL∗

is closed under taking derivatives. However CTL is not closed; for example pUq is a CTLΠ

formula, but its derivative q ∨ (p∧X(pUq)) is not in CTL. On the other hand, Cl(CTL) is
still much smaller than CTL∗, as we will see at the end of this section. First, we will need
that Cl(ξ) is finite for every CTL∗ formula ξ.

Proposition 3.3. If Φ ⊆ CTL∗ is finite then Cl(Φ) is finite.

Proof. First observe that Cl is a finitary closure operator, such that Cl(Φ) =
⋃
ϕ∈Φ Cl(ϕ).

In particular Cl(ϕ) = {ϕ} ∪
⋃
ψ∈∇ϕ Cl(ψ). An induction on the structure of ϕ then shows

that Cl(ϕ) is finite for every ϕ. We highlight the case where ϕ = αUβ. Here

Cl(αUβ) = {αUβ} ∪ Cl(β ∨ (α ∧ X(αUβ)))

= {αUβ, β ∨ (α ∧ X(αUβ))} ∪ Cl(α ∧ X(αUβ)) ∪ Cl(β)

= {αUβ, α ∧ X(αUβ), β ∨ (α ∧ X(αUβ))} ∪ Cl(X(αUβ)) ∪ Cl(α) ∪ Cl(β)

= {αUβ, X(αUβ), α ∧ X(αUβ), β ∨ (α ∧ X(αUβ))} ∪ Cl(α) ∪ Cl(β)

which is finite if Cl(α) and Cl(β) are finite.
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As derivatives do not depend on the starting formula, we can define the relations / and
./ on the entirety of CTL∗. Write ϕ / ψ when ϕ ∈ Cl(ψ), and ϕ ./ ψ when ϕ / ψ and
ϕ . ψ. Note that / is a transitive reflexive relation and that ./ is an equivalence relation.
As ξ-traces were sequences that follow .ξ, so are traces of CTL∗ sequences that follow ..

Definition 3.4. A trace through CTL∗ is a finite or infinite sequence ϕ0, ϕ1, . . . of formulas
such that ϕi . ϕi+1 for all i. An infinite trace is stalling if there is k such that ϕi = ϕi+1

for all i ≥ k. A trace is complete if it either ends with a literal or is non-stalling. A trace
ϕ0, ϕ1, . . . is direct if ϕi+1 ∈ ∇ϕi for all i. /

Before we can define the evaluation games, we will need to address infinite traces. First
observe that every trace eventually ends up in an equivalence class of ./.

Proposition 3.5. For every trace ϕ0, ϕ1, . . . there is k such that ϕi ./ ϕj for all i, j ≥ k.

Proof. Let ϕ0, ϕ1, . . . be an infinite trace. Clearly ϕi ∈ Cl(ϕ0) for all i, which is finite by
Proposition 3.3. Thus there must be a ψ ∈ Cl(ϕ0) that occurs infinitely often along the
trace. Let k be the index of its first occurrence, then for every i ≥ k there is j ≥ i with
ϕj = ψ; now ψ = ϕk . ϕi . ϕj = ψ hence ϕi ./ ψ. This gives ϕi ./ ψ ./ ϕj for all i, j ≥ k.
For a finite trace ϕ0, . . . , ϕn, take k = n.

In order to determine a winner for infinite traces, we thus need to classify the equiva-
lences classes of ./ as “good” or “bad” for ∃. In fact, it turns out that there are only two
kinds to non-trivial classes.

Proposition 3.6. The non-trivial equivalence classes of ./ on CTL∗ are of the form

{αUβ, X(αUβ), α ∧ X(αUβ), β ∨ (α ∧ X(αUβ))}

or

{αRβ, X(αRβ), α ∨ X(αRβ), β ∧ (α ∨ X(αRβ))}

for some α, β.

Proof. Note that the derivatives of a CTL∗ formula ϕ are proper subformulas of ϕ, unless
ϕ is a U-formula or an R-formula. If ϕ ./ ψ and ϕ 6= ψ then there are χ0, . . . , χn, . . . , χn+k

such that χ0 = ϕ, χn = ψ, χn+k = ϕ and χi ∈ ∇χi+1 for all i < n + k. Note that
ϕ ./ χi ./ ψ for all i ≤ n + k. It cannot be that each χi is a proper subformula of χi+1,
because then ϕ would have to be a proper subformula of itself. Therefore there must be
some i for which χi is either a U-formula or an R-formula. We conclude that any non-trivial
equivalence class of ./ contains such a formula.

Define the UR-depth of a CTL∗ formula, urd(ϕ), by

urd(`) := 0

urd(ϕ ? ψ) := max{urd(ϕ), urd(ψ)} (? ∈ {∨,∧})
urd(τϕ) := urd(ϕ) (τ ∈ {E,A,X})

urd(ϕ ? ψ) := max{urd(ϕ), urd(ψ)}+ 1 (? ∈ {U,R})
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and note that urd(ϕ) ≤ urd(ψ) whenever ϕ ∈ ∇ψ, and therefore urd(ϕ) ≤ urd(ψ) whenever
ϕ / ψ. Let αUβ be a formula of CTL∗, then urd(ϕ) ≤ urd(α) < urd(αUβ) and hence
urd(αUβ) 6≤ urd(ϕ) for all ϕ ∈ Cl(α), and similarly urd(αUβ) 6≤ urd(ϕ) for all ϕ ∈ Cl(β).
Thus if ϕ . αUβ then ϕ 6∈ Cl(α) ∪ Cl(β). Now

{ϕ | ϕ ./ αUβ} = {ϕ ∈ Cl(αUβ) | αUβ / ϕ}
= {ϕ ∈ {αUβ, X(αUβ), α ∧ X(αUβ), β ∨ (α ∧ X(αUβ))} | αUβ / ϕ}
∪ {ϕ ∈ Cl(α) | αUβ / ϕ} ∪ {ϕ ∈ Cl(β) | αUβ / ϕ}

= {αUβ, X(αUβ), α ∧ X(αUβ), β ∨ (α ∧ X(αUβ))} ∪∅,

thus the equivalence class of αUβ is of the desired form. The proof for αRβ is dual.

We will refer to the above types of equivalence classes as U-cells and R-cells respectively.
The following proposition combines the previous two results and gives us a nice way to
classify infinite traces: traces that end up in a U-cell are “bad” because they contradict the
finiteness of the unfolding of U, whereas traces that end up in a R-cell are “good” because
R-formulas may be unfolded infinitely often.

Proposition 3.7. Every complete infinite trace ends up in either a U-cell or an R-cell.

Proof. Let ϕ0, ϕ1, . . . be a complete infinite trace. By Proposition 3.5 there is a point after
which all ϕi belong to the same equivalence class of ./. As the trace is non-stalling, this class
contains more than one element, hence is either a U-cell or an R-cell by Proposition 3.6.

Note that as long as the trace is non-stalling, it does not matter if we “skip” any
formulas; for example the trace that repeats pUq . X(pUq) . (p ∧ X(pUq)) . pUq ends up in
the equivalence class of pUq. In fact this trace is cofinal with respect to the direct trace
that repeats pUq . (q ∨ (p ∧ X(pUq))) . (p ∧ X(pUq)) . X(pUq) . pUq, which clearly stays in
the equivalence class of pUq.

Definition 3.8. A trace ϕ0, ϕ1, . . . is cofinal with respect to another trace ψ0, ψ1, . . . if
for every i there is j ≥ i with ψi . ϕj. /

Mutually cofinal traces are guaranteed to end up in the same cell, as is ensured by the
following proposition. As a result, any two complete traces that are mutually cofinal either
both end up in a U-cell or both end up in a R-cell.

Proposition 3.9. Let ϕ0, ϕ1, . . . and ψ0, ψ1, . . . be mutually cofinal traces, then there is k
such that ϕi ./ ψj for all i, j ≥ k.

Proof. Let ϕ0, ϕ1, . . . and ψ0, ψ1, . . . be mutually cofinal traces. Let l and m be such that
ϕi ./ ϕj for all i, j ≥ l and ψi ./ ψj for all i, j ≥ m, as given by Proposition 3.5. Take
k := max{l,m}. Let i, j ≥ k, then by cofinality of the first trace there is a i′ ≥ j such
that ϕj . ψi′ , and by cofinality of the second trace there is j′ ≥ i′ such that ϕi′ . ψj′ . Now
j, j′ ≥ k ≥ m hence ψj ./ ψj′ , which gives ψj .ϕi′ .ψj′ .ψj hence ψj ./ ϕi′ . Also i, i′ ≥ k ≥ l
hence ϕi ./ ϕi′ . Thus ϕi ./ ψj.
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Before we define the evaluation game for CTL∗ we take a look at the closure of CTL.
As said, for every CTL formula ϕUψ its unfolding ψ ∨ (ϕ ∧ X(ϕUψ)) must be added to
the closure since it is not in CTL itself, and the same holds for the unfolding of every
R-formula in CTL. Luckily this is all that needs to be added; we do not have to worry
about an infinite chain of unfoldings that become less and less “CTL-like”. The only extra
formulas in the closure of CTL are elements of the equivalence classes of CTL formulas.

Proposition 3.10. For every ϕ ∈ Cl(CTL) there is ψ ∈ CTL such that ϕ ./ ψ.

Proof. First note that this holds for every derivative of a CTL formula. For if ϕ ∈ ∇(ψ)
and ψ ∈ CTL, then either ϕ is a subformula of ψ hence ϕ ∈ CTL, or ψ = αUβ and
ϕ = β ∨ (α ∧ Xψ) ./ ψ, or ψ = αRβ and ϕ = α ∧ (β ∨ Xψ) ./ ψ.

We can construct Cl(CTL) from CTL by taking Cl(CTL) =
⋃∞
n=0 Γn, where Γ0 = CTL

and where Γn+1 consist of all the derivatives of Γn. Suppose that for all ϕ ∈ Γn there is
ϕ′ ∈ CTL with ϕ ./ ϕ′; certainly this holds for Γ0. Let ϕ ∈ Γn+1, then ϕ is the derivative
of some ψ ∈ Γn. The induction hypothesis then states that there is ψ′ ∈ CTL such that
ψ ./ ψ′. If ψ = ψ′ then ϕ is a derivative of a CTL formula and we are done. If ψ 6= ψ′ then
ψ and ψ′ both belong to the same non-trivial equivalence class, which by Proposition 3.6
is either a U-cell or an R-cell. Looking at the contents of the equivalence class of a formula
αUβ, we see that only αUβ itself can be a CTL formula, and thus if ψ′ belongs to the
equivalence class of αUβ then ψ′ = αUβ. This means that ψ′ = αUβ or ψ′ = αRβ. We find
that either ϕ is α or β, hence a subformula of ψ′ and thus in CTL, or ϕ ./ ψ′. Thus we
have shown that for all n and all ϕ ∈ Γn, there is ϕ′ ∈ CTL with ϕ ./ ϕ′, and we conclude
that it holds for all ϕ ∈ Cl(CTL).

Because CTL∗ has both state-formulas and path-formulas, the board of the evaluation
game for a CTL∗ formula ξ consists of two parts, one S×ClΣ(ξ) and the other Π(S)×ClΠ(ξ).
The match goes from the first part to the second part whenever a formula Eψ or Aψ
with ψ ∈ CTL∗Π is reached, and it goes back whenever a formula ϕ ∈ CTL∗Σ is reached.
Technically the formula p ∧ q is both a state-formula and the conjunction of two path-
formulas, but because p ∧ q as a state-formula is still a conjunction, this does not lead to
any fundamental problems.

Definition 3.11. Let ξ be a CTL∗ formula and let S = (S,R, V ) be a transition system.
The evaluation game for ξ on S, denoted E(ξ, S), is played on the board

S × ClΣ(ξ) ∪ Π(S)× ClΠ(ξ)

according to the rules given in Figure 3.1. Every match induces a direct trace through
CTL∗. Now Proposition 3.7 tells us that all infinite matches end up in either a U-cell or
an R-cell; in the former case ∀ wins, in the latter case ∃ wins. /

In the evaluation game of a µML formula ξ, the rule for a position (s, x) as given in
Figure 2.1 depends on ξ by referencing λξ(x). If we look closely at the rules as given in
Figure 3.1, however, it becomes clear that these rules are completely independent of ξ. In
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position player admissible moves
(s, `) ∀ ∅ if s V `
(s, `) ∃ ∅ if s 1V `
(s, ϕ1 ∨ ϕ2) ∃ {(s, ϕ1), (s, ϕ2)}
(s, ϕ1 ∧ ϕ2) ∀ {(s, ϕ1), (s, ϕ2)}
(s,Eψ) ∃ {(π, ψ) | π ∈ Π(S, s)}
(s,Aψ) ∀ {(π, ψ) | π ∈ Π(S, s)}
(π, ϕ) - {(π(0), ϕ)} if ϕ ∈ CTL∗Σ
(π, ψ1 ∨ ψ2) ∃ {(π, ψ1), (π, ψ2)}
(π, ψ1 ∧ ψ2) ∀ {(π, ψ1), (π, ψ2)}
(π,Xψ) - {(π1, ψ)}
(π, ψ1Uψ2) - {(π, ψ2 ∨ (ψ1 ∧ X(ψ1Uψ2)))}
(π, ψ1Rψ2) - {(π, ψ2 ∧ (ψ1 ∨ X(ψ1Rψ2)))}

Figure 3.1: The rules for the evaluation game of CTL∗ formulas.

fact we can see an evaluation match of a CTL∗ formula ξ on a transition system S as a
match played on a much larger board, S × CTL∗Σ ∪ Π(S)× CTL∗Π, that only depends on
S. This gives evaluation games for CTL∗ a useful context-independence.

Proposition 3.12. Let S be a transition system and let ϕ, ψ be CTL∗ formulas. If a
position p is both on the board of E(ϕ,S) and on the board of E(ψ,S), then p is a winning
position for ∃ in the game E(ϕ,S) iff p is a winning position for ∃ in the game E(ψ,S).

Proof. Let S, ϕ and ψ be as such. The positions appearing on both boards are exactly the
positions in the subboard

S × (ClΣ(ϕ) ∩ ClΣ(ψ)) ∪ Π(S)× (ClΠ(ϕ) ∩ ClΠ(ψ)).

For any position (s, χ) or (π, χ) in this subboard we have Cl(χ) ⊆ Cl(ϕ)∩Cl(ψ), hence any
admissible move from such a position leads to another position in the subboard. Therefore
a match that enters the subboard never leaves it. The result follows since the rules given
in Figure 3.1 and the winning condition for infinite matches, as given by Proposition 3.6,
don’t depend on the initial formula, be it ϕ or ψ.

Before we can use evaluation game semantics for CTL∗, we first need to reconcile these
semantics with the relational semantics defined in section 2.1. We will make implicit use
of this theorem throughout this paper.

Theorem 3.13 (Adequacy of Game Semantics for CTL∗). Let S be a transition system.
Let ϕ ∈ CTL∗Σ and s ∈ S, then S, s  ϕ iff (s, ϕ) ∈ Win∃(E(ϕ, S)). Let ψ ∈ CTL∗Π and
π ∈ Π(S), then S, π  ψ iff (π, ψ) ∈Win∃(E(ψ,S)).

Proof. By induction on the structure of the formula. We highlight the case where ψ = αUβ.
Let π ∈ Π(S).
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Suppose S, π  αUβ, then there is k with S, πk  β and S, πi  α for all i < k. Using the
induction hypothesis ∃ has winning strategies for E(β, S)@(πk, β) and for E(α, S)@(πi, α)
for each i. This means that (πk, β) and each of the (πi, α) are winning positions in their
respective games, and by Proposition 3.12 they are also winning positions in the game
E(αUβ, S). Now (πk, β ∨ (α∧X(αUβ))) is a winning position for ∃, as she is free to choose
the left disjunct. Therefore (πk, αUβ) is a winning position for ∃.

If (πi+1, αUβ) and (πi, α) are winning positions for ∃, then so is (πi,X(αUβ)) and hence
so is (πi, α∧X(αUβ)), since any choice of ∀ leads to a winning position. This in turn gives
that (πi, β ∨ (α ∧ X(αUβ))) is winning for ∃, as she is free to choose the right disjunct.
Therefore so is (πi, αUβ). By backwards induction we get that (π0, αUβ) is a winning
position for ∃. Thus ∃ has a winning strategy for E(αUβ, S)@(π, αUβ).

Suppose ∃ has a winning strategy for E(αUβ, S)@(π, αUβ). This means that (π, αUβ)
is a winning position for ∃, hence so is (π, β ∨ (α ∧ X(αUβ))). If (πi, β ∨ (α ∧ X(αUβ)) is
a winning position for ∃, then so is either (πi, β) or (πi, α ∧ X(αUβ)); in the latter case so
are (πi, α), (πi,X(αUβ)), (πi+1, αUβ) and (πi+1, β ∨ (α ∧ X(αUβ))). Because a match that
would go through infinitely many (πi, αUβ) would be lost by ∃, there must be a least k for
which (πk, β) is a winning position. By the induction hypothesis and Proposition 3.12, we
have S, πk  β and S, πi  α for all i < k. Thus S, π  αUβ.

As with the evaluation games for µML and the acceptance games for modal automata,
it will prove extremely useful to fully embrace the dual nature of these game; therefore we
need to have S, s 1 ϕ whenever (s, ϕ) ∈Win∀(E(ϕ, S)). This is given by the determinacy.

Proposition 3.14. Evaluation games for CTL∗ formulas enjoy positional determinacy.

Proof. The winning condition from Definition 3.11 is equivalent to a parity winning condi-
tion, where U-formulas have priority 1 and other formulas priority 0. The result therefore
follows from Theorem 2.18.

3.2 Dominated formulas

As mentioned at the start of this chapter, a crucial challenge in the translation from CTL∗

to modal automata and the modal µ-calculus is working out how to translate path-formulas.
This is because the semantics of CTL∗ use paths as well as states, whereas the semantics
of automata and the semantics of µML only use states. As an example, consider the CTL∗

formula EGFp, which states that there is exists a path on which p is true infinitely often.
In the evaluation game for this formula, ∃ is first tasked to find a path π and the game
then continues to evaluate GFp on this path π. In the evaluation game of a modal formula,
it is not possible for ∃ to “commit” to a path in this way; whenever a subformula 3ψ is
reached, ∃ is free to choose any reachable state. Simply dropping the commitment comes
down to evaluating the CTL formula EGEFp instead. Since CTL is significantly weaker
than CTL∗, this will not do.

Instead, we will give ∃ more power in the evaluation games and acceptance games
that correspond to formulas Eψ. She will be able to dictate the flow of the match, in
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the sense that she decides which states of the transition system the match goes through.
Note that in games with modal formulas, choices by ∀ are made at formulas 2ϕ and at
formulas ϕ ∧ ψ. As an extreme, outright banning 2 and ∧ would give ∃ total control. If
we look at a formula such as EGF(p ∧ q), however, we see that this can’t work; surely any
equivalent µML formula needs to contain a conjunction. Still, we will use formulas that
are “dominated” by ∃ and where the use of 2 and ∧ are limited in certain ways. Likewise,
modal formulas used in games that correspond to formulas Aψ will be dominated by ∀ and
will make limited use of 3 and ∨. For now we will be interested in modal automata whose
transition terms are dominated.

Definition 3.15. A ML1(A) formula is X-free for some X ⊆ A if it is in ML1(A\X). It is
∃-dominated with respect to X if every subformula 2ϕ is X-free and for every subformula
ϕ ∧ ψ either ϕ or ψ is X-free. It is ∀-dominated with respect to X if every subformula

3ϕ is X-free and for every subformula ϕ∨ψ either ϕ or ψ is X-free. It is dominated with
respect to X if it is either ∃-dominated or ∀-dominated. /

It may be clear that if a formula is X-free, then it is also Y -free for every Y ⊆ X. As
such, any formula that is ∃-dominated with respect to X is also ∃-dominated with respect
to every Y ⊆ X. Also note that some formulas, in particular X-free formulas, can be
simultaneously ∃-dominated and ∀-dominated with respect to X; this is only a linguistic
issue, and we will simply pick one of the two players if necessary. Now let us define what
it means for an automaton to have dominated clusters.

Definition 3.16. A (generalized) cluster C of a modal automaton A is ∃-dominated if
for every c ∈ C, ∆(c) is ∃-dominated with respect to C. It is ∀-dominated if for every
c ∈ C, ∆(c) is ∀-dominated with respect to C. It is dominated if it is either ∃-dominated
or ∀-dominated. /

Importantly, for a cluster C to be dominated it is not enough that the transition term of
every state in C is dominated with respect to C; the transition terms must all be dominated
by the same player, be it ∃ or ∀. Note that if a generalized cluster C is dominated by a
player, then any subcluster of C is also dominated by that player. Now for guarded modal
automata with dominated clusters, the transition terms can be written in a special form.

Proposition 3.17. For every gML1(A) formula ϕ that is dominated with respect to a set
C = {c1, . . . , cn} ⊆ A there are formulas ϕ0, ϕ1, . . . , ϕn ∈ gML1(A \ C) such that

ϕ ≡ ϕ0 ∨ (ϕ1 ∧3c1) ∨ . . . ∨ (ϕn ∧3cn)

if it is ∃-dominated, or

ϕ ≡ ϕ0 ∧ (ϕ1 ∨2c1) ∧ . . . ∧ (ϕn ∨2cn)

if it is ∀-dominated.
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Proof. Let ϕ be guarded and ∃-dominated with respect to C; the case where ϕ is ∀-
dominated is dual. We can write ϕ in a disjunctive normal form and get ϕ ≡ α1 ∨ . . .∨αm
where αi = βi,1∧ . . .∧βi,ki . Because ϕ is ∃-dominated we know that for every i at most one
βi,j contains an occurrence of an element of C, and because it is guarded such occurrences
are 3-guarded. Thus for every i we can either find a unique ji ∈ {1, . . . , n} such that αi
contains a conjunct 3cji , or set ji = 0. For every i ≤ m create α′i from αi∧> by removing
the conjunct 3cji , then α′i contains no occurrences of c ∈ C, hence α′i ∈ gML1(A \ C).
For j ∈ {1, . . . , n} let ϕj be the disjunction of all the α′i for which ji = j, or ⊥ if there
are no such i. Let ϕ0 be the disjunction of all αi where ji = 0, or ⊥. Now we find
∆(a) ≡ ϕ0 ∨ (ϕ1 ∧3c1) ∨ . . . ∨ (ϕn ∧3cn).

This special form further illustrates how one player controls the flow of the game. In
the case of an ∃-dominated cluster C, it says that ∃ can pick a candidate state c ∈ C, and
then ∀ can choose either to go to c and have ∃ pick a successor, or to leave the cluster. In
this way, ∃ decides the path through the transition system that the match will follow as
long as the match remains in the cluster.

3.3 Cluster-path acceptance

We started this chapter by noting that acceptance games for modal automata do not
operate on paths. We then saw that for modal automata with dominated clusters, one
player can dictate the path that the acceptance match operators on as long as the match
remains inside a cluster. In this section we solidify this idea with an alternate game
semantics for modal automata. In the “cluster-path acceptance game” for a cluster C and
a path π, the match is forced to stay on the path π for as long as the match remains in
the cluster C. As a result, the modality 3 and 2 are no longer decision points for ∃ and
∀, instead behaving somewhat as the X operator from CTL∗. When the cluster is left,
however, the path is discarded and the match continues as normal.

Definition 3.18. Let A be a modal automaton and let C be a (generalized) cluster of A.
Let S be a transition system and let π be a path through S. The cluster-path acceptance
game for A on S with respect to C and π, denoted A(A,S, C, π), is played on the board

(N×ML1(A)) ∪ (S × A)

according to the rules given in Figure 3.2. Every infinite match induces an infinite sequence
of states from A by looking at the positions of the form (i, a) where a ∈ C. An infinite
match is won by ∃ iff the acceptance condition of A accepts this sequence. /

Clearly this game poses a restriction for the players. Since in ∃-dominated clusters ∀
did not have much control over the match to begin with, ∃ is restricted the most. Thus
it makes sense that if she is able to win with these restrictions in place, then she can also
win without them. The following proposition states this.
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position player admissible moves
(i, a) - {(i,∆(a)} if a ∈ C
(i, a) - {(π(i), a)} if a 6∈ C
(i, `) ∀ ∅ if π(i) V `
(i, `) ∃ ∅ if π(i) 1V `
(i, ϕ1 ∨ ϕ2) ∃ {(i, ϕ1), (i, ϕ2)}
(i, ϕ1 ∧ ϕ2) ∀ {(i, ϕ1), (i, ϕ2)}
(i,3a) - {(i+ 1, a)} if a ∈ C
(i,3a) ∃ {(t, a) | π(i)Rt} if a 6∈ C
(i,2a) - {(i+ 1, a)} if a ∈ C
(i,2a) ∀ {(t, a) | π(i)Rt} if a 6∈ C
(s, a) ∀ ∅ if (s, a) ∈Win∃(A(A,S))
(s, a) ∃ ∅ if (s, a) 6∈Win∃(A(A,S))

Figure 3.2: The rules for the cluster-path acceptance game of modal automata.

Proposition 3.19. Let A be a modal automaton and let C be a dominated (generalized)
cluster of A. Let S be a transition system. For all a ∈ C and s ∈ S:

1. if C is ∃-dominated and ∃ has a winning strategy for A(A,S, C, π)@(0, a) for some
path π starting at s, then ∃ has a winning strategy for A(A,S)@(s, a);

2. if C is ∀-dominated and ∀ has a winning strategy for A(A,S, C, π)@(0, a) for some
path π starting at s, then ∀ has a winning strategy for A(A,S)@(s, a).

Proof. We will prove (1.); the proof for (2.) is dual.
Let C be ∃-dominated, let a ∈ C and let s ∈ S. Suppose that π is a path starting at s

and that f is a winning strategy of ∃ for the game A(A,S, C, π). While ∃ and ∀ are playing
a match m of A(A,S)@(s, a), ∃ will play a shadow match m′ of A(A,S, C, π)@(0, a) such
that every shadow position of the form (ki, ϕi) corresponds to the real position (π(ki), ϕi),
and a shadow position of the form (t, b) with b 6∈ C corresponds to the real position (t, b).

Since m starts at (s, a), m′ starts at (0, a) and π(0) = s, we can start both matches
in this way. Whenever the matches are at positions (π(k), c) and (k, c) with c ∈ C, they
will necessarily continue to (π(k),∆(c)) and (k,∆(c)). Whenever they are at (π(k), `) and
(k, `), both matches end; it may be clear that the winner of both matches is the same.
Whenever they are at (π(k), ϕ1 ∨ ϕ2) and (k, ϕ1 ∨ ϕ2), the strategy f of ∃ prescribes a
move (k, ϕi) of the shadow match. Here ∃ performs the move (π(k), ϕi) in the real match.
Whenever they are at (π(k), ϕ1 ∧ ϕ2) and (k, ϕ1 ∧ ϕ2), any move (π(k), ϕi) that ∀ makes
in the real match can be mimicked in the shadow match with (k, ϕi). Whenever they are
at (π(k),3c) and (k,3c) with c ∈ C, the shadow match necessarily continues to (k+ 1, c).
Here ∃ performs the move (π(k + 1), c) in the real match. Because C is ∃-dominated,
positions of the form 2c with c ∈ C never occur.

Whenever they are at (π(k), b) and (k, b) where b 6∈ C, the shadow match necessarily
continues at (π(k), b) and then ends; because f is winning, it ends in a victory for ∃ hence
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(π(k), b) ∈ Win∃(A(A,S)). Thus ∃ has some strategy g with which she can continue the
real match m to a victorious conclusion. Whenever they are at (π(k),3b) and (k,3b)
where b 6∈ C, the shadow match continues to some (t, b) with π(k)Rt as prescribed by f ,
and then ends; again this means (t, b) ∈ Win∃(A(A, S)). Here ∃ performs the move (t, b)
in the real match as well and will eventually win. Whenever they are at (π(k),2b) and
(k,2b) where b 6∈ C, any move (t, b) that ∀ makes in the real match can be mimicked
in the shadow match with (t, b). The shadow match then ends with ∃ winning, hence
(t, b) ∈Win∃(A(A, S)). Thus any move ∀ can make leads the real match to a position that
is winning for ∃.

In this way m′ can be simulated by ∃ while m is being played. Because m′ is consistent
with f , ∃ wins m′. The shadow match can end in one of three ways. If m′ is finite and
ends in a true literal, then m also ends in that literal and ∃ wins m. If m′ is finite and
ends in a position (t, b) with b ∈ C, this position must be winning for ∃; as m also goes
through (t, b), ∃ wins m. If m′ is infinite then its i-th position is of the form (ki, ϕi) and the
i-th position of m is of the form (π(ki), ϕi). Therefore the induced sequences are identical.
Since ∃ wins m′, this sequence is accepted by the acceptance condition of A, and thus ∃
wins m.

This shows that ∃ has a winning strategy for A(A,S)@(s, a).

The true strength of dominated clusters lies in the converse of the Proposition 3.19. The
following proposition implies that whenever ∃ enters an ∃-dominated cluster, she actually
can commit to a single path π. This will aid us in creating automata for formulas Eψ; we
construct a cluster for ψ, and then show that she can win an acceptance game starting in
this cluster if there is a path for which she can win the cluster-path acceptance game.

Proposition 3.20. Let A be a modal automaton and let C be a dominated (generalized)
cluster of A. Let S be a transition system. For all a ∈ C and s ∈ S:

1. if C is ∃-dominated then ∃ has a winning strategy for A(A, S)@(s, a) iff she has one
for A(A,S, C, π)@(0, a) for some path π starting at s;

2. if C is ∀-dominated then ∀ has a winning strategy for A(A,S)@(s, a) iff he has one
for A(A,S, C, π)@(0, a) for some path π starting at s;

Proof. We will prove (1.); the proof for (2.) is dual. Note that one direction is already
given by Proposition 3.19.

Let C be a ∃-dominated cluster, let a ∈ C and let s ∈ S. Suppose that f is a winning
strategy for A(A,S)@(s, a). We need to find a path π such that ∃ has a winning strategy
for A(A,S, C, π)@(0, a). To do this we play a mock match of A(A, S)@(s, a) that we keep
inside the cluster C for as long as possible. Whenever ∃ has to make a choice, she chooses
according to her winning strategy f . Whenever the mock match arrives at a position
(t, ϕ1 ∧ ϕ2) at least one of the conjuncts does not contain any occurrences from states in
C, because C is ∃-dominated. Here mock-∀ chooses whichever conjunct has an occurrence
from a state in C; the match ends prematurely if neither conjunct does. Whenever the
mock match arrives at a position (t,2b) we have b 6∈ C because C is ∃-dominated; the
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match ends prematurely. In this way a possibly partial mock match m′ is played. We
construct π from this m′ by first taking π(0) = s, and whenever a position (π(i),3b)
occurs it is followed by some (t, b), where we define π(i + 1) := t. If the mock match m′

was partial and the last position was π(k), then we can extend π to a proper path by
appending an arbitrary path from Π(S, π(k)).

We note that if m′′ is an initial segment of m′ then this m′′ is consistent with f hence
its last position is winning for ∃. As a result, every position in m′ is a winning position
for ∃. Furthermore if m′′ is an initial segment of m′ that ends in a position where ∀ has to
make a move, then any move by ∀ brings the match to a winning position for ∃.

We are left to prove that ∃ has a winning strategy for A(A, S, C, π)@(0, a). Her strategy
is such that whenever m is a partial segment of an infinite match of this game, replacing
each (k, ϕ) with (π(k), ϕ) yields an initial segment of m′. Certainly this holds for (0, a)
which yields (s, a), an initial segment of m′. Whenever the real match is at a position
(k, c) with c ∈ C and the mock match at the position (π(k), c), the real match and the
mock match necessarily continue to (k,∆(c)) and (π(k),∆(c)) respectively. Whenever the
matches are at (k,3c) and (π(k),3c) with c ∈ C, the real match necessarily continues to
(k + 1, c) and the mock match continues to (π(k + 1), c) by construction of π. Because C
is ∃-dominated, positions of the form (k,2c) with c ∈ C cannot occur.

Whenever the matches are at (k, `) and (π(k), `), ∃ wins the real match because she
won the mock match. Whenever the matches are at (k, b) and (π(k), b) with b 6∈ C,
the real match necessarily continues to (π(k), b) which is a winning position for ∃ in the
game A(A,S). Therefore ∃ wins both matches. Whenever the matches are at (k,3b) and
(π(k),3b) with b 6∈ C, the strategy f prescribes a move (t, b) which is also admissible in
the real match. As (t, b) is a winning position for ∃ in A(A,S), ∃ wins both matches.
Whenever the matches are at (k,2b) and (π(k),2b) with b 6∈ C, any move (t, b) that ∀ can
make in the real match is admissible in the partial mock match, hence (t, b) is a winning
position for ∃ in A(A,S) and ∃ wins both matches.

Whenever the matches are at (k, ϕ1 ∨ϕ2) and (π(k), ϕ1 ∨ϕ2) respectively, the strategy
f prescribes a move (π(k), ϕi). Here ∃ chooses (k, ϕi). Whenever the matches are at
(k, ϕ1 ∧ ϕ2) and (π(k), ϕ1 ∧ ϕ2) respectively and ∀ performs the move (k, ϕi) in the real
match, either the mock match continues to (π(k), ϕi) or ϕi does not contain occurrences
from states in C. In the latter case we have that the real match will stay at k and end after
a finite number of moves because no position (k,3c) or k,2c) with c ∈ C can be reached.

In this manner ∃ can play the match m of A(A,S, C, π). We have seen that if m is
finite, then ∃ wins. If m is infinite, then each position (k, ϕ) corresponds to (π(k), ϕ) in
m′, hence the induced sequences are identical for both matches. Because ∃ won m′ this
sequence is accepted by the acceptance condition of A, hence ∃ wins m.

When looking at Proposition 3.17, we noted that for an ∃-dominated cluster ∃ picks
not only the successor in the transition system, but also the next state of the automaton.
The following proposition extrapolates this further; ∃ can in fact plan out the entire match
of the cluster-path acceptance game in advance, and this plan will prove correct for as long
as the actual match remains in the cluster.
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Proposition 3.21. Let A be a guarded modal automaton and let C be a dominated cluster
of A. Let S be a transition system. For all a ∈ C and π ∈ Π(S):

1. if C is ∃-dominated then for every winning strategy f of ∃ for A(A, S, C, π)@(0, a)
there is a function ε : N → C such that for all positions (i, b) that occur in a match
consistent with f , either b = ε(i) or b 6∈ C.

2. if C is ∀-dominated then for every winning strategy of ∀ there is such a function.

Proof. Let A, C, S, a and π be as such. Let C be ∃-dominated; the case where C is
∀-dominated is dual. Let f be a winning strategy of ∃ for the game A(A,S, C, π)@(0, a).
To construct ε, ∃ plays a possibly partial mock match that is consistent with f . If the
mock match reaches a position (i, ϕ1∨ϕ2), then f instructs ∃ to move either to (i, ϕ1) or to
(i, ϕ2). If the mock match reaches a position (i, ϕ1∧ϕ2), then because C is ∃-dominated at
most one conjunct contains occurrences of states in C. Now if ϕ1 is this conjunct we have
mock-∀ move to (i, ϕ1); otherwise we have him move to (i, ϕ2). In this way the mock match
is played out to completion or until a position (i,3b) or (i,2b) with b 6∈ C is reached. If a
position (i, c) is followed by a position (j, d) with i, j ∈ N and c, d ∈ C, then i < j because
A is guarded. For every i ∈ N for which a position (i, c) exists in the mock match, define
ε(i) := c. For all other i define ε(i) := a.

Now ∃ and ∀ play a match of A(A,S, C, π)@(0, a) that is consistent with f . The first
positions of the real match and the mock match are the same: (0, a). Suppose the k-th
positions of the real match and the mock match are the same. If ∃ has to move, then in
both matches she will move according to her strategy f hence also the (k+ 1)-th positions
of both matches are the same. If the move is automatic, then the result is the same in
both matches. If ∀ has to move and the k-th position is (i, ϕ1 ∧ ϕ2) then either ∀ moves
to the same position as mock-∀ did, or ∀ moves to a position (i, ϕ) where ϕ contains no
occurrences of states in C. Since C is a cluster, this means no states from C will occur for
the rest of the real match. If the mock match ends prematurely because a position (i,3b)
or (i,2b) with b 6∈ C is reached, then neither match will contain any more states from C.
We conclude that if the k-th position of the real match is (i, c) with c ∈ C, then the two
matches are identical up to the first k moves; in particular c = ε(i).
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Chapter 4

An automaton construction for CTL*

In the following section, we will construct unguarded modal Muller automata for CTL∗

formulas. The automata will be given a parity condition and made guarded in section 4.2.
It will prove convenient to work with Dam terms, which are quantified sets of formulas

QΦ. We will use sequential notation for QΦ, writing Q(Φ, ϕ) instead of Q(Φ ∪ {ϕ}).
Sets are interpreted conjunctively if quantified by E and disjunctively if quantified by A.
Thus given a transition system S and a state s ∈ S we will write S, s  EΦ instead of
S, s  E(ϕ1 ∧ . . .∧ϕn) if Φ = {ϕ1, . . . , ϕn}. Every CTL∗Σ formula ξ has an equivalent Dam
term; if ξ = Qψ then it is Q(ψ), and otherwise we will take E(ξ).

4.1 Automaton construction

The transition terms of the automaton will be guided by Dam rules. Dam rules exist in
one of two forms: terminal and non-terminal.

I
QΦ

`
τ

QΦ

Q1Ψ1 · · · QnΨn

Here the operator τ is one of I, ∨, ∧, 3 and 2, where I stands for the identity operation.
The rules for AΦ are always dual to those of EΦ. The first set of rules are extraction rules,
in which one formula is separated from the rest.

I
E(`)

`
∧

E(Φ, `)

EΦ E(`)
I
A(`)

`
∨

A(Φ, `)

AΦ A(`)

I
E(Eϕ)

E(ϕ)
∧

E(Φ,Eϕ)

EΦ E(ϕ)
I
A(Aϕ)

A(ϕ)
∨

A(Φ,Aϕ)

AΦ A(ϕ)

I
E(Aϕ)

A(ϕ)
∧

E(Φ,Aϕ)

EΦ A(ϕ)
I
A(Eϕ)

E(ϕ)
∨

A(Φ,Eϕ)

AΦ E(ϕ)
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Then there are unfolding rules, where one formula is replaced by some other formulas.
Note that in the following rules, Φ can be empty.

I
E(Φ, ϕ ∧ ψ)

E(Φ, ϕ, ψ)
I
A(Φ, ϕ ∨ ψ)

A(Φ, ϕ, ψ)

∨
E(Φ, ϕ ∨ ψ)

E(Φ, ϕ) E(Φ, ψ)
∧

A(Φ, ϕ ∧ ψ)

A(Φ, ϕ) A(Φ, ψ)

∨
E(Φ, ϕUψ)

E(Φ, ψ) E(Φ, ϕ,X(ϕUψ))
∧

A(Φ, ϕRψ)

A(Φ, ψ) A(Φ, ϕ,X(ϕRψ))

∨
E(Φ, ϕRψ)

E(Φ, ψ, ϕ) E(Φ, ψ,X(ϕRψ))
∧

A(Φ, ϕUψ)

A(Φ, ψ, ϕ) A(Φ, ψ,X(ϕUψ))

Lastly there are two modal rules, where an X operator is removed from every formula.

3
E(Xϕ1, . . . ,Xϕn)

E(ϕ1, . . . , ϕn)
2

A(Xϕ1, . . . ,Xϕn)

A(ϕ1, . . . , ϕn)

Note that if a modal rule is applicable to QΦ, then no other rule is. The rules are all
semantically sound, as the following two propositions show.

Proposition 4.1. Let I : QΦ⇒ ` be a terminal Dam rule, then QΦ ≡ `.

Proof. If I : QΦ ⇒ ` is a terminal rule, then Φ = {`}. Let s ∈ S. Note that by seriality,
Π(S, s) is non-empty. For a path π ∈ Π(S, s) we have π(0) = s and S, π  ` iff S, π(0)  `.
Therefore S, s  A` iff S, s  ` iff S, s  E`. We conclude Q(`) ≡ `.

Proposition 4.2. Let τ : QΦ ⇒ Q1Ψ1, . . . , QnΨn be a non-terminal Dam rule, then
QΦ ≡ τ(Q1Ψ1, . . . , QnΨn) where Iξ := ξ, 3ξ := EXξ and 2ξ := AXξ.

Proof. By inspection of the rules. Note in particular that ϕUψ ≡ ψ∨(ϕ∧X(ϕUψ)), whence
the rule for E(Φ, ϕUψ), and that ϕRψ ≡ ψ ∧ (ϕ ∨ X(ϕRψ)) ≡ (ψ ∧ ϕ) ∨ (ψ ∧ X(ϕRψ)),
whence the rule for E(Φ, ϕRψ).

Furthermore, there is a strong connection between the Dam rules and the relation .
defined in section 3.1. For instance, the E-rule for ϕUψ can be seen as first replacing ϕUψ
with its derivative ψ ∨ (ϕ ∧ X(ϕUψ)) and then applying the E-rules for ∧ and ∨.

Proposition 4.3. Let τ : QΦ ⇒ Q1Ψ1, . . . , QnΨn be a non-terminal Dam rule and let
i ≤ n, then Cl(Ψi) ⊆ Cl(Φ) and either Q = Qi or Cl(Ψi) 6= Cl(Φ).

Proof. By inspection of the rules. In particular note that Q 6= Qi only happens with the
extraction of a formula Qiϕ ∈ Φ, where Ψi = {ϕ} and where Qiϕ ∈ Cl(Φ) \ Cl(Ψi).
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In Dam (1990), trees are built based on these rules, and Dam then analyzes the traces
that run through branches of this tree. Here traces will run through sequences of continu-
ation relations, which can be seen as bundles of traces.

Definition 4.4. A continuation for Φ is a non-empty binary relation Z on Cl(Φ) such
that ϕ . ψ for all (ϕ, ψ) ∈ Z. Let Z(Φ) denote the set of all continuations on Φ. /

Definition 4.5. A trace ϕ0, ϕ1, . . . is said to run through a (finite or infinite) sequence
Z1, Z2, . . . of continuations if ϕiZi+1ϕi+1 for all i. /

The states of our automaton will be quantified continuations ; they are of the form QZ
where Q is either E or A and where Z is a continuation. The transition term of a state
QZ is then based on a Dam rule for QΦ, where Ran(Z) = Φ. If the range of Z consists
of a single literal, then this rule must be terminal; in this case we will call the state QZ
terminal as well. Otherwise a non-terminal rule τ : QΦ⇒ Q1Ψ1, . . . , QnΨn can be applied
to QZ, and this results in the rule τ : QZ ⇒ Q1Z1, . . . , QnZn, where each Zi will have
Dom(Zi) ⊆ Ran(Z) and Ran(Zi) = Ψi.

If the range of Z contains only X-formulas then this rule must be modal. In that case
the rule for QZ becomes τ : QZ ⇒ QZ1 where Z1 := {(Xϕ, ϕ) | Xϕ ∈ Ran(Z)} and
τ ∈ {3,2} as appropriate. Otherwise there might be multiple extraction and unfolding
rules that can be applied, one for each formula in Ran(Z) that isn’t an X-formula. We will
assume a linear order on the formulas of CTL∗, and we will apply the rule for the greatest
formula under that order.

If the rule of QΦ is an extraction rule, then there is some χ ∈ Φ which is extracted.
The rule was of the form τ : QΦ ⇒ QΨ1, Q2Ψ2 where Ψ1 = Φ \ {χ} and the rule for
QZ becomes τ : QZ ⇒ Q{(ϕ, ϕ) | ϕ ∈ Ψ1}, Q2{(χ, ψ) | ψ ∈ Ψ2}. If the rule of QΦ is
an unfolding rule, then there is some χ ∈ Φ which is unfolded. The rule was of the form
τ : QΦ ⇒ QΨ1, . . . , QΨn where each of the Ψi is of the form (Φ \ {χ}) ∪ {ψi,1, . . . , ψi,ki}.
Now the rule for QZ becomes τ : QZ ⇒ QZ1, . . . , QZn where each Zi is defined by
{(ϕ, ϕ) | ϕ ∈ Φ \ {χ}} ∪ {(χ, ψi,1), . . . , (χ, ψi,ki)}.

Now for every QZ we have fixed a unique rule to be applied, which we will call the ap-
plicable rule for QZ. This allows us to define the transition terms of the modal automaton
we will construct. Let us first construct the modal automaton Aξ before worrying about
its acceptance condition.

Definition 4.6. Let ξ be a CTL∗Σ formula and let QI(ϕI) be its equivalent Dam term. The
modal automaton Aξ generated by ξ is Aξ = (Aξ,∆,Acc, QIZI), where ZI := {(ϕI, ϕI)},
where Aξ := {QZ | Q ∈ {E,A}, Z ∈ Z(Cl(ϕI))}, where ∆(QZ) = ` if QZ is terminal
and I : QZ ⇒ ` is the applicable rule, where ∆(QZ) := τ(Q1Z1, . . . , QnZn) if QZ is
non-terminal and τ : QZ ⇒ Q1Z1, . . . , QnZn is the applicable rule and where Acc accepts
a sequence Q0Z0, Q1Z1, Q2Z2, . . . through Aξ if either there is k with Qi = E for all i ≥ k
and all infinite traces through Z1, Z2, Z3, . . . end up in an R-cell, or there is k with Qi = A
for all i ≥ k and at least one infinite trace through Z1, Z2, Z3, . . . ends up in an R-cell. /
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The following proposition helps clarify the definition of Acc. It implies that for every
infinite sequence Q0Z0, Q1Z1, . . . through Aξ there is a k such that Qi = Qk for all i ≥ k.
Now if Qk = E then Acc requires all infinite traces to end up in an R-cell, and if Qk = A
then there needs to be at least one such trace.

Proposition 4.7. Let C be a cluster of Aξ for some ξ. If QZ,Q′Z ′ ∈ C then Q = Q′ and
Cl(Ran(Z)) = Cl(Ran(Z)).

Proof. Let QZ,Q′Z ′ ∈ C, then by definition of a cluster there are Q0, . . . , Qn, . . . , Qn+k,
Z0, . . . , Zn, . . . , Zn+k and Φ0, . . . ,Φn, . . . ,Φn+k, such that Q0 = Q, Qn = Q′, Qn+k = Q,
Z0 = Z, Zn = Z ′, Zn+k = Z, Φi = Ran(Zi) for i ≤ n + k and QiZi → Qi+1Zi+1 for
i < n + k. Per construction of Aξ we get τi : QiΦi ⇒ . . . , Qi+1Φi+1, . . . for i < n + k.
By Proposition 4.3 this means that Cl(Φ0) ⊆ . . . ⊆ Cl(Φn) ⊆ . . . ⊆ Cl(Φn+k) = Cl(Φ0)
and therefore Q0 = . . . = Qn = . . . = Qn+k = Q0. In particular Q = Q0 = Qn = Q′ and
Cl(Ran(Z)) = Cl(Φ0) = Cl(Φn) = Cl(Ran(Z ′)).

With this proposition in mind, we can discern between “E-clusters”, where each state
is of the form EZ, and “A-clusters”, where the states are of the form AZ.

Proposition 4.8. For any CTL∗Σ formula ξ the automaton Aξ has dominated clusters.

Proof. Let ξ be a CTL∗Σ formula. For every QZ ∈ Aξ we have that ∆(QZ) is an instance
of a Dam rule. The resulting terms are “shallow”, in that they can be generated by

ϕ ::= ` | a | 3a | 2a | a ∨ a | a ∧ a

where a ∈ A.
Define the quantifier-depth of a CTL∗ formula, qd(ϕ), by

qd(`) := 0

qd(Xϕ) := qd(ϕ)

qd(ϕ ? ψ) := max{qd(ϕ), qd(ψ)} (? ∈ {∨,∧,U,R})
qd(Qϕ) := qd(ϕ) + 1 (Q ∈ {E,A})

and define qd on Aξ by qd(QZ) := max{qd(ϕ) | ϕ ∈ Cl(Ran(Z))}. By Proposition 4.7 we
have qd(a) = qd(b) whenever a and b are in the same cluster.

Let C be an E-cluster of Aξ. There are no a ∈ C with ∆(a) = 2b because there is
no E-rules that uses 2. Let a ∈ C with ∆(a) = b1 ∧ b2, then the applicable rule for a
was an extraction rule. Looking at these rules gives us that b2 is either terminal or of the
form Q{(Qϕ,ϕ)}; in the latter case we find qd(b) = qd(ϕ) < qd(Qϕ) ≤ qd(a). Either way
b2 6� a hence b2 6∈ C. Therefore C is ∃-dominated.

Dually all A-clusters are ∀-dominated.

Before we can use duality in the proof of the correctness of this automaton construction,
we will need to make the acceptance condition more symmetric. Any sequence through Aξ
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will eventually stay in some cluster. For ∃-dominated clusters Acc states that all traces
must end up in an R-cell in order for ∃ to win. For ∀-dominated clusters it states that in
order for ∀ to win, all traces must not end up in an R-cell. With Proposition 3.7 in mind,
this is equivalent to saying that all traces must end up in a U-cell if we can show that none
of the traces are stalling. In fact, there is an upper bound on the number of →-steps you
can take before you reach a state whose applicable rule is modal.

First, let us define a measure of complexity that can capture this upper bound.

Definition 4.9. Define the immediate complexity of a CTL∗ formula, ic(ϕ), by

ic(`) := 1

ic(Xϕ) := 0

ic(ϕ ? ψ) := ic(ϕ) + ic(ψ) + 1 (? ∈ {∨,∧,U,R})
ic(Qϕ) := ic(ϕ) + 1 (Q ∈ {E,A})

and define ic on Aξ by ic(QZ) =
∑

ψ∈Ran(Z) ic(ψ). /

Analyzing the Dam rules gives us that if ic decreases when applying a rule, unless that
rule is a modal rule. Because modal rules are only applied to QZ when all the formulas in
the range of Z are of the form Xϕ, this means the traces that go through Z will have to
go from Xϕ to ϕ. The following proposition formalizes this.

Proposition 4.10. If Q1Z1, Q2Z2, . . . is a sequence of states of Aξ with QiZi → Qi+1Zi+1

for all i, then all infinite traces through Z1, Z2, . . . are complete.

Proof. Let Q1Z1, Q2Z2, . . . be as such, then there is m such that all QiZi for i ≥ m belong
to the same cluster C. By Proposition 4.7 we have Qi = Qm for all i ≥ m. Let ic be
the immediate complexity on Aξ defined in Definition 4.9, then ic(QiZi) > ic(Qi+1Zi+1)
unless the rule applied to QiZi is a modal rule. Of course it is impossible that a decreasing
sequence ic(QiZi) > ic(Qi+1Zi+1) > . . . continues forever. This means that for every k
there is i ≥ k such that Zi contains only pairs of the form (Xψ, ψ). Therefore if ϕ0, ϕ1, . . .
is an infinite trace through Z1, Z2, . . . , then ϕi+1 = Xϕi (hence ϕi 6= ϕi+1) for infinitely
many i’s and thus the trace is non-stalling.

We are now ready to show that the automaton Aξ is indeed equivalent to ξ.

Lemma 4.11. Let ξ be a CTL∗Σ formula. Let S be a transition system. If QZ ∈ Aξ,
Φ = Ran(Z) and s ∈ S, then S, s  QΦ iff S, s  (Aξ, QZ). In particular ξ ≡ Aξ.

Proof. We will prove

(∀s ∈ S) S, s  QΦ ⇐⇒ S, s  (Aξ, QZ) (?)

where Φ := Ran(Z) by induction on the cluster-depth of QZ ∈ Aξ. Once we have this, we
use ξ ≡ QI(ϕI) ≡ (Aξ, QIZI) ≡ Aξ to get the particular case.
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For the base case we have that the cluster-depth of QZ is 0, which means that there are
no a ∈ A with QZ → a. It must be that QZ is terminal. Let I : QΦ⇒ ` be the applicable
rule, then the only possible match of the game A(Aξ,S)@(s,QZ) goes (s,QZ) → (s, `),
where ∃ wins if S, s  ` and loses otherwise. Thus S, s  (Aξ, QZ) iff S, s  `. By
Proposition 4.1 we have S, s  ` iff S, s  QΦ. This concludes the base case.

For the inductive case let d > 0 be the cluster-depth of QZ. The induction hypothesis
states that (?) holds for all states in A of cluster-depth less than d. Note that whenever
QZ � a, either a is in the same cluster as QZ or a has cluster-depth less than d. Note that
since there is a ∈ A with QZ → a, QΦ is non-terminal. Let τ : QZ ⇒ Q1Z1, . . . , QkZk be
the applicable rule for EZ. Let {ϕ1, . . . , ϕl} = Φ.

We will first prove (?) for states EZ. We have S, s  EΦ iff (s,EΦ) ∈ Win∃(E(EΦ, S))
iff there is a path π starting at s such that (π, ϕ1 ∧ . . . ∧ ϕl) ∈ Win∃(E(EΦ,S)). By
Proposition 3.20 we also have S, s  (Aξ,EZ) iff (s,EZ) ∈ Win∃(A(Aξ, S)) iff there is a
path π starting at s such that (0,EZ) ∈ Win∃(A(Aξ, S, C, π)), where C is the cluster EZ
belongs to. We shall show that

(π, ϕ1 ∧ . . . ∧ ϕl) ∈Win∃(E(EΦ,S))⇐⇒ (0,EZ) ∈Win∃(A(Aξ,S, C, π))

holds for every path π through S.

(=⇒)
Suppose that f is a winning strategy of ∃ for E(EΦ, S)@(π, ϕ1 ∧ . . . ∧ ϕl). By Proposi-

tion 3.14 we may assume that f is positional. Some matches starting there continue through
choices of ∀ to (π, ϕi); these partial matches are consistent with f since ∃ hasn’t made any
choices yet. This means that each (π, ϕ) for ϕ ∈ Φ is a winning position for ∃ under f .
While ∃ and ∀ play a match of the cluster-path acceptance game A(Aξ,S, C, π)@(0,EZ), ∃
creates a list EZ,EZ?

1 ,EZ
?
2 , . . . of the states in C that are visited. This list is such that if

the acceptance match is at (j,EZ?
r ) and EZ?

r ∈ C, then the list is EZ,EZ?
1 , . . . ,EZ

?
r , every

position (πj, ψ) for ψ ∈ Ran(Z?
r ) is a winning position for ∃ in the evaluation game, and

for every trace through Z?
1 , . . . , Z

?
r there is an f -consistent match of the evaluation game

that goes through the formulas in the trace in order. The real match starts at (0,EZ), the
first visited state is EZ and each (π, ϕ) for ϕ ∈ Φ = Ran(Z) is indeed winning for ∃.

When the game is at a position (j,EZ?
r ) with EZ?

r ∈ C, it necessarily continues to
(j,∆(EZ?

r )). How the acceptance match continues from there depends on the applicable
rule for EΨ where Ψ = Ran(Z?

r ), which is some τ : EΨ ⇒ Q1Ψ1, . . . , QkΨk. Note that if
∆(EZ?

r ) = τ(Q1Z1, . . . , Q1Zk) and Ran(Zi) = Ψi for each i. Let {ψ1, . . . , ψn} = Ψ.
If the applicable rule is a modal rule then we have τ = 3, k = 1, each ψi is of the form

Xψ′i, Q1 = E, Ψ1 = {ψ′1, . . . , ψ′n} and Z1 = {(Xψ′1, ψ′1), . . . , (Xψ′n, ψ
′
n)}. Now the acceptance

match is at (j,3(EZ1)). All evaluation matches that go through (πj,Xψ′i) necessarily
continue to (πj+1, ψ′i); since each former position is winning for ∃, so must each latter be
winning for ∃. If EZ1 ∈ C then the acceptance match necessarily continues to (j+ 1,EZ1).
From there the acceptance match moves on with EZr+1 = EZ1 as the last visited state.
An evaluation match that goes through a trace of Z?

1 , . . . , Z
?
r and ends in (πj,Xψ′i) can be
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extended with (πj+1, ψ′i). If EZ1 6∈ C then ∃ has to choose a move (t,EΨ1) where π(j)Rt.
She chooses (π(j + 1),EΨ1). After this move, the acceptance match ends.

If the applicable rule is not modal, then it affects exactly one of the ψi. Let e be the
index of the affected element of Ψ. What exactly the applicable rule is now only depends
on the shape of ψe, which is one of `, EΘ, AΘ, ϑ1 ∧ ϑ2, ϑ1 ∨ ϑ2, ϑ1Uϑ2 and ϑ1Rϑ2. Some
Ψi will contain Ψ \ {ψe} together with some other formulas; note that every (πj, ψi) will
remain a winning position thus it is enough to check these extra formulas. Similarly an
evaluation match that goes through a trace of Z?

1 , . . . , Z
?
r and ends in (πj, ψ) with ψ 6= ψe

is also an evalution match of the trace that goes through Z?
1 , . . . , Z

?
r , Zi if (ψ, ψ) ∈ Zi.

If ψe = EΘ or ψe = AΘ, and Ψ = {ψe}, then τ = I, k = 1, Ran(Z1) = Θ and
QZ _ Q1Z1. The acceptance match goes from (j,EZ?

r ) to (j,Q1Z1). Now Q1Z1 6∈ C and
therefore the match continues to (π(j), Q1Z1), where it ends.

If ψe = `, ψe = EΘ or ψe = AΘ, and Ψ \ {ψe} 6= ∅, then τ = ∧, k = 2, Q1 = E,
Ψ1 = Ψ \ {ψe}, Z1 = {(ψ, ψ) | ψ ∈ Ψ1}, Q2Φ2 ≡ ψe and QZ _ Q2Z2. The acceptance
match goes from (j,EZ?

r ) to (j,EZ1 ∧ Q2Z2), where ∀ has to choose one of (j,EZ1) and
(j,Q2Z2). If he chooses the latter then Q2Z2 6∈ C and therefore the match continues to
(π(j), Q2Z2), where it ends. If he chooses the former then either EZ1 6∈ C and the match
ends at (π(j),EZ1), or EZ1 ∈ C and the match necessarily continues to (j,∆(EΨ1)). In
that case the acceptance match moves on with EZ?

r+1 = EZ1 as the last visited state. An
evaluation match that goes through a trace of Z?

1 , . . . , Z
?
r and ends in (πj, ψi) with ψi 6= ψe

is also an evaluation match for the trace that goes through Z?
1 , . . . , Z

?
r , Z1.

If ψe = ϑ1 ∧ ϑ2 then we have τ = I, k = 1, Q1 = E, Ψ1 = (Ψ \ {ψe}) ∪ {ϑ1, ϑ2} and
Z1 = {(ψe, ϑ1), (ψe, ϑ2)} ∪ {(ψ, ψ) | ψ ∈ Ψ \ {ψe}}. Some of the evaluation matches going
through (πj, ψe) continue to (πj, ϑ1) and others to (πj, ϑ2). Since this is a choice of ∀ both
are consistent with f , hence both (πj, ϑ1) and (πj, ϑ2) are winning positions for ∃. The
acceptance match necessarily continues to (j,EZ1) and moves on with EZ?

r+1 = EZ1 as the
last visited state. An evaluation match that goes through a trace of Z?

1 , . . . , Z
?
r and ends

in (πj, ψe) can be extended with each (ψe, ϑi) since any choice of ∀ is consistent with f .
If ψe = ϑ1 ∨ ϑ2 then we have τ = ∨, k = 2 and Qi = E, Ψi = (Ψ \ {ψe}) ∪ {ϑi},

Zi = {(ψe, ϑi)} ∪ {(ψ, ψ) | ψ ∈ Ψ \ {ψe}} for both i. Evaluation matches consistent with
f that go through (πj, ψe) continue to either (πj, ϑ1) or (πj, ϑ2) as instructed by f . The
acceptance match is at the position (j,Q1Z1 ∨ Q2Z2) and there ∃ must choose between
(j,Q1Z1) and (j,Q2Z2). If the f -consistent evaluation matches continue to (πj, ϑi) then
she chooses (j,QiZi); note that in that case (πj, ϑi) is a winning position for ∃. Now either
QiZi 6∈ C and the match ends at (π(j), QiZi), or QiZi ∈ C and the match necessarily
continues to (j,∆(QiZi)). In that case the acceptance match moves on with EZ?

r+1 = Q1Zi
as the last visited state. An evaluation match that goes through a trace of Z?

1 , . . . , Z
?
r and

ends in (πj, ψe) can be extended with (πj, ϑi), since this is consistent with f , to become
an evaluation match for the trace through Z?

1 , . . . , Z
?
r , Zi.

If ψe = ϑ1Uϑ2 then we have that τ = ∨, k = 2, Q1 = E, Ψ1 = (Ψ \ {ψe}) ∪ {ϑ2},
Z1 = {(ψe, ϑ2)} ∪ {(ψ, ψ) | ψ ∈ Ψ \ {ψe}}, Q2 = E, Ψ2 = (Ψ \ {ψe}) ∪ {ϑ1,Xψe} and
Z2 = {(ψe, ϑ1), (ψe,Xψe)} ∪ {(ψ, ψ) | ψ ∈ Ψ \ {ψe}}. The evaluation matches that go
through (πj, ψe) necessarily continue to (πj, ϑ2 ∨ (ϑ1 ∧ Xψe)), and then continue to either

38



(πj, ϑ2) or (πj, ϑ1 ∧ Xψe) as instructed by f . This again helps ∃ choose between (j,Q1Z1)
and (j,Q2Z2). Note that in the case that ∃ chooses (j,Q2Z2), some evaluation matches
that go through (πj, ϑ1 ∧ Xψe) continue via an ∀-move to (π, ϑ1) and others to (π,Xψe).
Therefore either (πj, ϑ2) is a winning position or both (πj, ϑ1) and (πj,Xψe) are. Again
the acceptance match either ends at (π(j), QiZi) or moves on with QiZi as the last visited
state. An evaluation match that goes through a trace of Z?

1 , . . . , Z
?
r and ends in (πj, ψe)

can be extended with (πj, ϑ2), with (πj, ϑ1 ∧ Xψe) and (πj, ϑ1) or with (πj, ϑ1 ∧ Xψe) and
(πj,Xψe), whichever is appropriate.

If ψe = ϑ1Rϑ2 then we have that τ = ∨, k = 2, Q1 = E, Ψ1 = (Ψ \ {ψe}) ∪ {ϑ2, ϑ1},
Z1 = {(ψe, ϑ2), (ψe, ϑ1)} ∪ {(ψ, ψ) | ψ ∈ Ψ \ {ψe}}, Q2 = E, Psi2 = (Ψ \ {ψe}) ∪ {ϑ2,Xψe}
and Z2 = {(ψe, ϑ2), (ψe,Xψe)} ∪ {(ψ, ψ) | ψ ∈ Ψ \ {ψe}}. The evaluation matches that go
through (πj, ψe) necessarily continue to (πj, ϑ2∧ (ϑ1∨Xψe)) and from there some continue
via an ∀-move to (πj, ϑ2) and others to (πj, ϑ1∨Xψe). Both (πj, ϑ2) and (πj, ϑ1∨Xψe) must
be winning positions for ∃. For the evaluation matches that go through (πj, ϑ1 ∨Xψe), the
strategy f instructs ∃ to continue either to (πj, ϑ1) or to (πj,Xψe). This helps ∃ choose
between (j,Q1Z1) and (j,Q2Z2); note that the chosen position in the evaluation match is
a winning position for ∃. Again the acceptance match either ends at (π(j), QiZi) or moves
on with QiZi as the last visited state. The evaluation matches that go through traces of
Z?

1 , . . . , Z
?
r can again by extended with (πj, ϑ2), with (πj, ϑ1 ∨ Xψe) and (πj, ϑ1) or with

(πj, ϑ1 ∨ Xψe) and (πj,Xψe), whichever is appropriate.
In this manner ∃ and ∀ play an acceptance match, with ∃ keeping track of the visited

states EZ,EZ?
1 ,EZ

?
2 , . . . .

Suppose the acceptance match ends after finitely many moves at (πj, QZ) with QZ 6∈ C.
Let Ψ = Ran(Z). If this happened after a point where ψe = `, ψe = EΘ or ψe = AΘ,
then we have QΨ ≡ ψe. Now per construction (πj, ψe) is a winning position for ∃ in the
game E(EΦ,S), therefore S, πj  ψe, hence S, πj  QΨ and thus S, π(j)  QΨ. If not then
Q = E; let {ψ1, . . . , ψn} = Ψ. Per construction each of the positions (πj, ψi) is a winning
position for ∃ in the game E(EΦ,S). By Proposition 3.12 they are also winning positions
in the game E(EΨ, S). This means (πj, ψ1 ∧ . . . ∧ ψn) is a winning position for ∃ in that
game, and therefore so is (π(j),EΨ). Hence S, s  EΨ. Either way we find S, π(j)  EΨ.
Since EZ 6∈ C we can use the induction hypothesis to get (π(j),EZ) ∈ Win∃(A(Aξ,S)).
Therefore ∃ wins the acceptance match.

Suppose the acceptance match is infinite, then the winner of this match depends on the
induced sequence of states, all of which are in C. Let EZ,EZ1,EZ2, . . . be this sequence
and let ϕ0, ϕ1, ϕ2, . . . be a trace through Z1, Z2, . . . , then by Proposition 4.10 this trace is
non-stalling. Per construction there is a match of the evaluation game that is consistent
with f and that goes through the formulas in the trace in order. The induced trace of
that match and the trace ϕ0, ϕ1, . . . are therefore mutually cofinal. By Proposition 3.9 and
Proposition 3.7, both traces end up in the same cell, which is either a U-cell or an R-cell.
Because f is a winning strategy the evaluation match is won by ∃, and thus the cell in
question is an R-cell. We conclude that all traces through Z1, Z2, . . . end up in an R-cell
and therefore ∃ wins the acceptance match.
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(⇐=)
Suppose that g is a winning strategy of ∃ for A(A,S, C, π)@(0,EZ). If ∃ and ∀ play a

match of E(EΦ,S)@(π, ϕ1∧ . . .∧ϕl), then this match continues through a series of ∀-moves
to some (π, ϕi). During the match ∃ plays a shadow match of A(A,S, C, π)@(0,EZ) that
is consistent with g, creates a sequence of continuations Z?

0 , Z
?
1 , Z

?
2 , . . . , and creates a trace

ϕ?0, ϕ
?
1, ϕ

?
2, . . . through Z?

1 , Z
?
2 , . . . such that whenever the real match is at (πj, ϕ?k) the

shadow match is at (j,EZ?
k) and ϕ?k ∈ Ran(Z?

k). To start ∃ defines ϕ?0 := ϕi and Z?
0 := Z.

Note ϕi ∈ Ran(Z). The acceptance match indeed begins at (0,EZ?
0).

Suppose the real match is at (πj, ϕ?k) and the acceptance match is at (j,EZ?
k). How the

matches continue depends on the Dam rule that is applicable to EΨ where Ψ = Ran(Z?
k).

If it is the modal rule, then every ψ ∈ Ψ is of the form Xψ′. In particular ϕ?k = Xϕ′.
The evaluation match necessarily continues to (πj+1, ϕ′) and the shadow match necessarily
continues to (j+1,EZ ′) where Z ′ = {(Xψ′, ψ′) | Xψ′ ∈ Ψ}. Note that because (ϕ?k, ϕ

′) ∈ Z ′
we have that ϕ?0, ϕ

?
1, . . . , ϕ

?
k, ϕ

′ is a trace through Z?
1 , Z

?
2 , . . . , Z

?
k , Z

′ and that ϕ′ ∈ Ran(Z ′).
Thus we define ϕ?k+1 = ϕ′ and Z?

k+1 = Z ′.
If it is not a modal rule, then it affects exactly one of the ψ ∈ Ψ, say ψe. What exactly

the applicable rule is now only depends on the shape of ψe, which is one of `, EΘ, AΘ,
ϑ1 ∧ ϑ2, ϑ1 ∨ ϑ2, ϑ1Uϑ2 and ϑ1Rϑ2. Define Z ′ := {(ψ, ψ) | ψ ∈ Ψ \ {ψe}}

If ψe = `, ψe = EΘ or ψe = AΘ, and ψe 6= ϕ?k, then the acceptance match necessarily
continues to (j,EZ ′ ∧ Q2Z2) and (ϕ?k, ϕ

?
k) ∈ Z ′. Here shadow-∀ chooses (j,EZ ′), and we

define ϕ?k+1 = ϕ?k and Z?
k+1 = Z ′.

If ψe = ` and ψe = ϕ?k, then EZ?
k is terminal. Now the acceptance match necessarily

continues to (j, `) where the game ends, with ∃ winning if S, π(j)  ` and losing otherwise.
The real match also ends here, with ∃ winning in exactly the same conditions.

If ψe = EΘ or ψe = AΘ and ψe = ϕ?k, then there is QiZi with EZ?
k _ QiZi and

QiZi ≡ ϕ?k. Now τ is either I or ∧; in the latter case shadow-∀ chooses (j,QiZi) and in
the former case this is automatic. From there the acceptance match necessarily continues
to (π(j), QiZi) since QiZi 6∈ C, and there it ends. Now because this match is consistent
with g, it is won by ∃. This means S, π(j)  (A, QiZi). Because QiZi 6∈ C we can use the
induction hypothesis to get S, π(j)  QiZi, and therefore S, π(j)  ϕ?k. This in turn means
that (π(j), ϕ?k) is a winning position in E(EΦ,S). The real match necessarily continues
from (πj, ϕ?k) to (π(j), ϕ?k), hence is eventually won by ∃.

If ψe is of the form ϑ1∧ϑ2, ϑ1∨ϑ2, ϑ1Uϑ2 or ϑ1Rϑ2, and ψe 6= ϕ?k, then whichever QiZi
is chosen (in accordance with g) will have (ϕ?k, ϕ

?
k) ∈ Z ′ ⊆ Zi. We define ϕ?k+1 = ϕ?k and

Z?
k+1 = Zi.

If ϕ?k = ψe = ϑ1 ∧ ϑ2, then in the evaluation match ∀ can choose either (πj, ϑ1) or
(πj, ϑ2). Say he chooses (πj, ϑi). The acceptance match necessarily continues to (j,EZ1)
where Z1 = {(ϕ?k, ϑ1), (ϕ?k, ϑ2)} ∪ Z ′. We define ϕ?k+1 = ϑi and Z?

k+1 = Z1.
If ϕ?k = ψe = ϑ1 ∨ ϑ2, then the acceptance match continues to (j,EZ1 ∨ EZ2) where

Zi = {(ϕ?k, ϑi)}∪Z ′ for each i. Here g instructs ∃ to choose either (j,EZ1) or (j,EZ2). This
helps ∃ choose between (πj, ϑ1) and (πj, ϑ2). If shadow-∃ is instructed to choose (j,EZi)
then ∃ chooses (πj, ϑi) and defines ϕ?k+1 = ϑi and Z?

k+1 = Z1.
If ϕ?k = ψe = ϑ1Uϑ2, then the acceptance match continues to (j,EZ1 ∨ EZ2) where
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Z1 = {(ϕ?k, ϑ2)} ∪ Z ′ and Z2 = {(ϕ?k, ϑ1), (ϕ?k,Xϕ
?
k)} ∪ Z ′. Here g instructs ∃ to choose

either (j,EZ1) or (j,EZ2). The evaluation match necessarily continues from (πj, ϕ?k) to
(πj, ϑ2 ∨ (ϑ1 ∧ Xϕ?k)). Here ∃ chooses (πj, ϑ2) if g instructs shadow-∃ to pick (j,EZ1), and
(πj, ϑ1 ∧ Xϕ?k) if g instructs shadow-∃ to pick (j,EZ2). In the latter case, ∀ chooses either
(πj, ϑ1) or (πj,Xϕ?k). In this way the acceptance match is at a position (j,EZi) and the
evaluation match is at a position (πj, ϕ′) where ϕ′ ∈ {ϑ1, ϑ2,Xϕ

?
k}. Note (ϕ?k, ϕ

′) ∈ Zi.
Define ϕ?k+1 = ϕ′ and Z?

k+1 = Zi.
If ϕ?k = ψe = ϑ1Rϑ2, then the acceptance match continues to (j,EZ1 ∨ EZ2) where

Z1 = {(ϕ?k, ϑ2), (ϕ?k, ϑ1)} ∪ Z ′ and Z2 = {(ϕ?k, ϑ2), (ϕ?k,Xϕ
?
k)} ∪ Z ′. Here g instructs ∃ to

choose either (j,EZ1) or (j,EZ2). The evaluation match necessarily continues from (πj, ϕ?k)
to (πj, ϑ2∧(ϑ1∨Xϕ?k)). If ∀ chooses ϑ1∨Xϕ?k then ∃ chooses (πj, ϑ1) if g instructs shadow-∃
to pick (j,EZ1), and (πj,Xϕ?k) if g instructs shadow-∃ to pick (j,EZ2). In this way the
acceptance match is at a position (j,EZi) and the evaluation match is at a position (πj, ϕ′)
where ϕ′ ∈ {ϑ1, ϑ2,Xϕ

?
k}. Note (ϕ?k, ϕ

′) ∈ Zi. Define ϕ?k+1 = ϕ′ and Z?
k+1 = Zi.

In this way the evaluation match can be played. If the acceptance match is finite then
it ends when EZ?

k is either terminal or not in C; in those cases we have seen that ∃ wins.
If the acceptance match is infinite then its k-th position is of the form (j,EZ?

k), and every
position in the evaluation match is of the form (πj, ϕ). Furthermore ϕ?0, ϕ

?
1, ϕ

?
2, . . . is a trace

through Z?
1 , Z

?
2 , . . . , and the evaluation match goes through all of the positions (πj, ϕ?k) in

order. By Proposition 4.10 the trace is non-stalling, and hence ends up in either a U-cell
or a R-cell. By Proposition 3.9 the evaluation match also ends up in such a cell, and these
two cells must be the same. Because the acceptance match is won by ∃ all traces through
Z?

1 , Z
?
2 , . . . end up in an R-cell. That means that the evaluation match ends up in an R-cell,

and hence is won by ∃.

We now return to the dual case, i.e. where Q = A. Note that (?) and

(∀s ∈ S) S, s 1 QΦ ⇐⇒ S, s 1 (Aξ, QZ)

are equivalent. By Proposition 3.14 we have that S, s 1 AΦ iff (s,AΦ) ∈Win∀(E(AΦ, S)) iff
there is a path π starting at s with (π, ϕ1∨ . . .∨ϕl) ∈Win∀(E(AΦ,S)). By Proposition 2.42
and Proposition 3.20 we also have S, s 1 (Aξ,AZ) iff (s,AZ) ∈Win∀(A(Aξ,S)) iff there is
a path π starting at s such that (0,AZ) ∈Win∀(A(Aξ,S, C, π)), where C is the cluster AZ
belongs to. It is therefore enough to show that

(π, ϕ1 ∨ . . . ∨ ϕl) ∈Win∀(E(EΦ, S))⇐⇒ (0,AZ) ∈Win∀(A(Aξ,S, C, π))

holds for every path π through S. The proofs for (=⇒) and (⇐=) are dual to the above.
Note in particular that by Proposition 3.7 and Proposition 4.10 any infinite trace through
a sequence of states of Aξ that doesn’t end up in an R-cell must end up in a U-cell.
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4.2 Automaton modification

In this section we will construct a guarded modal parity automaton that is equivalent to
Aξ. First we focus on turning the acceptance condition Acc into a parity condition. If we
view sequences through Aξ as streams over the alphabet Aξ, then Acc denotes a language
over Aξ. Our strategy is to first find an Aξ-stream automaton Bξ that recognizes Acc and
then combine it with Aξ to get an automaton that runs both Aξ and Bξ simultaneously.

For ∃ to win a match that stays in an ∃-typical cluster, all traces through the match
need to end up in an R-cell. With Proposition 3.6 in mind, she loses if there is even one
trace through the match that ends up in a U-cell. If we look at the Dam rule for E(ϕUψ),
we see that only one of the two resulting Dam terms contains X(ϕUψ). We can see the left
term as “resolving” the U-formula, and the right term as “postponing”. Now a sequence
through Aξ has a trace that ends up in a U-cell whenever there is a U-formula that is
postponed infinitely often. Conversely, in order for ∃ to win she needs to show that every
occurring U-formula is eventually resolved.

The idea of the stream automaton Bξ is this: while in an ∃-dominated cluster, ∃ keeps a
“to-do list” of U-formulas that still need to be resolved. Whenever a U-formula is resolved,
it is crossed of the list. Whenever the list becomes empty, a new list of U-formulas is
created. Now ∃ wins if her to-do list is empty infinitely often. Therefore we assign a
priority of 2 to empty list and a priority 1 to non-empty lists. For ∀-dominated clusters, ∀
keeps a to-do list of R-formulas; here the empty list has priority 1 and non-empty lists have
priority 0. Whenever a match changes from an ∃-dominated cluster to an ∀-dominated
cluster or vice versa, the list is discarded and a new one is created.

Definition 4.12. Let ξ be a CTL∗Σ formula, let QI(ϕI) be its equivalent Dam term and
let Aξ be its automaton. Let ΦU be the set of all U-formulas in Cl(ϕI), and ΦR the set
of all R-formulas in Cl(ϕI). The deterministic parity Aξ-stream automaton Bξ generated
by ξ is Bξ := (Bξ, δ,Ω, QI∅) where Bξ := {EΨ | Ψ ⊆ ΦU} ∪ {AΨ | Ψ ⊆ ΦR}, where
δ : Bξ × Aξ → Bξ is given by

δ(E∅,EZ) := E{ϕ ∈ ΦU | (Xϕ, ϕ) ∈ Z}
δ(EΨ,EZ) := E{ϕ ∈ Ψ | {(ϕ, ϕ), (Xϕ, ϕ), (ϕ,Xϕ), (Xϕ,Xϕ)} ∩ Z 6= ∅}
δ(EΨ,AZ) := δ(A∅,AZ)

δ(AΨ,EZ) := δ(E∅,EZ)

δ(A∅,AZ) := A{ϕ ∈ ΦR | (Xϕ, ϕ) ∈ Z}
δ(AΨ,AZ) := A{ϕ ∈ Ψ | {(ϕ, ϕ), (Xϕ, ϕ), (ϕ,Xϕ), (Xϕ,Xϕ)} ∩ Z 6= ∅}

and where Ω : Bξ → N is given by Ω(EΨ) := 2 if Ψ = ∅, Ω(EΨ) := 1 otherwise, Ω(AΨ) := 1
if Ψ = ∅, and Ω(AΨ) := 0 otherwise. /

For reasons which will become apparent later, a new list is only created directly after
a modal step. This is why the transition function for empty lists only adds formulas ϕ for
which (Xϕ, ϕ) belongs to the continuation. For now, we need to prove that this stream
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automaton actually emulates Acc. First, note that every formula in the range of a reachable
state in Aξ is the end-point of some finite trace.

Proposition 4.13. If Q1Z1, . . . , QnZn is a sequence of states of Aξ with QiZi → Qi+1Zi+1

for all i and ϕ ∈ Ran(Zn), then there is a trace ϕ0, . . . , ϕn through Z1, . . . , Zn with ϕn = ϕ.

Proof. By induction on n. For the base case let ϕ ∈ Ran(Z1), then (ψ, ϕ) ∈ Z1 for some
ψ. Now take ϕ0 := ψ and ϕ1 := ϕ. For the inductive case, let n ≥ 2 and suppose it holds
for all formulas in Ran(Zn−1). Let ϕ ∈ Ran(Zn), then (ψ, ϕ) ∈ Zn for some ψ. If we have
a trace ϕ0, . . . , ϕn−1 through Z1, . . . , Zn−1 with ϕn−1 = ψ, then we take ϕn := ϕ. Thus
we are left to prove that ψ ∈ Ran(Zn−1). In fact per construction Dom(Z ′) ⊆ Ran(Z)
whenever QZ → Q′Z ′ in Aξ.

This allows us to construct a trace that ends up in a U-cell or an R-cell as appropriate
whenever we have a to-do list that remains non-empy forever.

Proposition 4.14. Let ξ be a CTL∗Σ formula and let Aξ be its automaton. The automaton
Bξ accepts a sequence Q1Z1, Q2Z2, . . . of Aξ if and only if Acc does.

Proof. Let Q1Z1, Q2Z2, . . . be a sequence through Aξ, then there is m such that all QiZi
for i ≥ m belong to the same cluster. By Proposition 4.7 we have Qi = Qm for all i ≥ m.
Now we have that Acc accepts the sequence iff Acc accepts QmZm, Qm+1Zm+1, . . . , and
the same thing for Bξ. Thus we may assume without loss of generality that we have a Q
with Qi = Q for all i ≥ 0. Note that if b0, b1, . . . is the run of Bξ on such a sequence, then
each bi for i ≥ 1 is of the form QΨi for some Ψi.

Suppose Q = E and Acc rejects the sequence. This means that there is a trace
ϕ0, ϕ1, ϕ2, . . . that ends up in a U-cell; let k ≥ 1 and ψ be such that ψ is a U-formula
and ϕi ∈ {ψ,Xψ} for all i ≥ k. Let QI∅,EΨ1,EΨ2, . . . be the run of Bξ on the sequence. If
Ψi 6= ∅ for all i ≥ k, then Ω(EΨi) = 1 for all i ≥ k and therefore Bξ rejects the sequence.
So assume that there is j ≥ k such that Ψj = ∅. If Ψi = ∅ then either the rule for EΨi is
not modal and Ψi+1 = ∅, or (ϕi, ϕi+1) ∈ Zi+1 and (ϕi, ϕi+1) = (Xψ, ψ), hence ψ ∈ Ψi+1.
Since the trace is non-stalling, there is j′ > j with ψ ∈ Ψj′ . If i ≥ j′ and ψ ∈ Ψi, then
from (ϕi, ϕi+1) ∈ Zi+1 we get that ψ ∈ Ψi+1. We conclude that ψ ∈ Ψi for all i ≥ j′, and
therefore Ω(EΨi) = 1 for all i ≥ j′. This means that Bξ rejects the sequence.

Suppose Q = E and Bξ rejects the sequence. Let QI∅,EΨ1,EΨ2, . . . be the run of Bξ
on the sequence, then there is k ≥ 1 with Ψi 6= ∅ for all i ≥ k. Observe that Ψ′ ⊆ Ψ if
EΨ′ = δ(EΨ,EZ) and Ψ 6= ∅, and thus . . . ⊆ Ψk+2 ⊆ Ψk+1 ⊆ Ψk. Since Ψk ⊆ Cl(ϕI) is
finite, there must be j ≥ k and Ψ 6= ∅ such that Ψi = Ψ for all i ≥ j. Pick any ψ ∈ Ψ, then
we find that there are ϕ, ϕ′ ∈ {ψ,Xψ} such that (ϕ, ϕ′) ∈ Zj. By Proposition 4.13 there
is a trace ϕ0, . . . , ϕj−1 through Z1, . . . , Zj−1 with ϕj−1 = ϕ. Define ϕj = ϕ′. Once we have
defined ϕ0, . . . , ϕi and have ψ ∈ Ψi, we get that (ϕi, ϕi+1) ∈ Zi+i for some ϕi+1 ∈ {ψ,Xψ},
and therefore ψ ∈ Ψi+1. We continue this way and construct a trace ϕ0, ϕ1, ϕ2, . . . through
Z1, Z2, . . . which ends up in a U-cell. Therefore Acc rejects the sequence.

Suppose Q = A and Acc accepts the sequence. This means that there is a trace
ϕ0, ϕ1, ϕ2, . . . that ends up in a R-cell; let k ≥ 1 and ψ be such that ψ is an R-formula
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and ϕi ∈ {ψ,Xψ} for all i ≥ k. Let QI∅,AΨ1,AΨ2, . . . be the run of Bξ on the sequence.
If Ψi 6= ∅ for all i ≥ k, then Bξ accepts the sequence. So assume that there is j ≥ k
such that Ψj = ∅. If Ψi = ∅ then either the rule for AΨi is not modal and Ψi+1 = ∅, or
(ϕi, ϕi+1) ∈ Zi+1 and (ϕi, ϕi+1) = (Xψ, ψ), hence ψ ∈ Ψi+1. Since the trace is non-stalling,
there is j′ > j with ψ ∈ Ψj′ . If i ≥ j′ and ψ ∈ Ψi, then from (ϕi, ϕi+1) ∈ Zi+1 we get that
ψ ∈ Ψi+1. We conclude that ψ ∈ Ψi for all i ≥ j′, and therefore that Ω(AΨi) = 0 for all
i ≥ j′. Thus Bξ accepts the sequence.

Lastly, suppose Q = A and Bξ accepts the sequence. Let QI∅,AΨ1,AΨ2, . . . be the
run of Bξ on the sequence, then there is k ≥ 1 such that Ψi 6= ∅ for all i ≥ k. Observe
that Ψ′ ⊆ Ψ if AΨ′ = δ(AΨ,AZ) and Ψ 6= ∅, and thus . . . ⊆ Ψk+2 ⊆ Ψk+1 ⊆ Ψk. Since
Ψk ⊆ Cl(ϕI) is finite, there must be j ≥ k and Ψ 6= ∅ such that Ψi = Ψ for all i ≥ j.
Pick any ψ ∈ Φ, then we find that there are ϕ, ϕ′ ∈ {ψ,Xψ} such that (ϕ, ϕ′) ∈ Zj. By
Proposition 4.13 there is a trace ϕ0, . . . , ϕj−1 through Z1, . . . , Zj−1 with ϕj−1 = ϕ. Define
ϕj = ϕ′. Once we have defined ϕ0, . . . , ϕi and have ψ ∈ Ψi, we get that (ϕi, ϕi+1) ∈ Zi+i
for some ϕi+1 ∈ {ψ,Xψ}, and therefore ψ ∈ Ψi+1. We continue this way and construct a
trace ϕ0, ϕ1, ϕ2, . . . through Z1, Z2, . . . which ends up in an R-cell. Therefore Acc accepts
the sequence.

With Bξ in place, we can create an automaton Aξ � Bξ that simultaneously runs both
Aξ and Bξ. Its states are quantified continuations from Aξ that are annotated with a to-do
list from Bξ. The transition term for (a, b) is based on the transition term of a as defined
by Aξ, and the priority of (a, b) will be given by that of b.

Definition 4.15. Let ξ be a CTL∗Σ formula, let Aξ = (Aξ,∆,Acc, aI) be its modal au-
tomaton and let Bξ = (Bξ, δ,Ω, bI) be its Aξ-stream parity automaton. The modal parity
automaton Aξ � Bξ is given by (Aξ × Bξ,∆

�,Ω�, (aI, bI)) where ∆�(a, b) is created from
∆(a) by replacing occurrences of states a′ with (a′, δ(b, a)), and where Ω�(a, b) := Ω(b). /

The proof of its correctness is fairly standard.

Proposition 4.16. Let ξ be a CTL∗Σ formula, let Aξ be its modal automaton and let Bξ be
its Aξ-stream parity automaton. Let (a, b) ∈ Aξ × Bξ then (Aξ, a) ≡ (Aξ � Bξ, (a, b)). In
particular Aξ ≡ Aξ � Bξ.

Proof. Note that if (a, b) → (a′, b′) and (a, b) → (a′′, b′′), then b′ = δ(b, a) = b′′. This
means that every sequence (a0, b0), (a1, b1), . . . with (ai, bi) → (ai+1, bi+1) in Aξ � Bξ is
uniquely determined by b0 and the sequence a0, a1, . . . with ai → ai+1 in Aξ. Given
(a0, b0) ∈ Aξ × Bξ we therefore have a one-to-one correspondence between sequences in
Aξ�Bξ that start from (a0, b0) and sequences in Aξ that start from a0. Since the transition
terms ∆�(ai, bi) and ∆(ai) are the same with respect this correspondence, we can translate
matches of the acceptance game of Aξ � Bξ to that of Aξ, and vice versa. It remains to
check that the winning conditions for infinite matches are the same, but this is given by
Proposition 4.14.

Because we have not changed the transition terms in any meaningful way, dominated
clusters of Aξ correspond to dominated clusters in Aξ � Bξ.

44



Proposition 4.17. For any ξ ∈ CTL∗Σ the automaton Aξ � Bξ has dominated clusters.

Proof. Let (a, b) ∈ Aξ × Bξ. Let C be the cluster of Aξ that a belongs to. From the
construction it follows that the cluster of Aξ � Bξ that (a, b) belongs to is a subset of the
generalized cluster C×Bξ. By Proposition 4.8, C is dominated. Now if C is ∃-dominated,
then C × Bξ is ∃-dominated as well. Therefore the cluster that (a, b) belongs to is also
∃-dominated. Similarly if C is ∀-dominated, then so is the cluster that (a, b) belongs to.

We are left to make the automaton Aξ � Bξ guarded. Turning arbitrary (silent-step)
modal automata into guarded modal automata is a bit of a challenge and usually results
in an exponential blowup in the size of the automata. Here we will give two properties
that allow this guardification to be relatively painless; in fact, they shrink the automaton
instead. First, let us separate guarded and unguarded transitions.

Definition 4.18. Let A be a modal automaton. Define→◦ and→τ on A by a→◦ b (resp.
a→τ b) whenever b occurs guarded (resp. unguarded) in ∆(a). /

The basic idea of guardification is that we replace unguarded occurrences of a state
a with its transition term ∆(a). However this transition term might in turn contain
unguarded occurrences of other states. To avoid getting stuck in an infinite loop, we
demand that the automata do not contain silent-cycles.

Definition 4.19. A modal automaton A is silent-cycle safe if →τ is acyclic, i.e. if there
is no sequence a0 →τ . . .→τ an →τ a0 in A. /

We have already seen that the automata constructed in section 4.1 have this property.

Proposition 4.20. The automaton Aξ is silent-cycle safe for any ξ.

Proof. Let ic be the immediate complexity on Aξ defined in Definition 4.9. Analyzing the
Dam rules gives us that if a → b in Aξ, then ic(a) > ic(b) unless the rule applied to a is
a modal rule. Let a0 →τ . . . →τ an →τ an+1 in Aξ then ic(a0) > . . . > ic(an) > ic(an+1),
thus it cannot be that an+1 = a0. Therefore Aξ is silent-cycle safe.

For automata that have this property, defining a guarded modal automaton that looks
similar is easy.

Definition 4.21. Let A = (A,∆,Ω, aI) be a modal parity automaton that is silent-cycle
safe. Since A is finite, →τ is converse-wellfounded. Thus we can define the silent-step
depth ssd : A → N such that ssd(a) is the length of the longest sequence a1, . . . , an ∈ A
such that ai →τ ai+1 for all i < n. Clearly ssd(a) ≥ ssd(b) + 1 whenever a →τ b, i.e.
whenever b occurs unguarded in ∆(a). The map ∆γ : A→ gML1(A) is defined recursively
using ssd. Let a ∈ A with ssd(a) = k and assume that ∆γ(b) has been defined for all b ∈ A
with ssd(b) < k. Create ∆γ(a) from ∆(a) by replacing every unguarded occurrence of a
state b with its guarded transition term ∆γ(b). Now define Aγ := (A,∆γ,Ω, aI). /
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In fact for finite matches, this automaton is equivalent. For infinite matches however,
the trace of the original automaton might contain states with a high priority that are
“skipped” in the guarded automaton. Again, we avoid this problem by demanding that it
is safe to skip the priorities of states that are reached by silent steps.

Definition 4.22. A modal parity automaton A is silent-priority safe if for every sequence
a0 →τ . . .→τ an →◦ an+1 in A where a0 and an+1 belong to the same cluster, it holds that
Ω(ai) ≤ Ω(an+1) for all i > 0. /

Note that these two properties are very strong; most of the work of guardifying a modal
automaton usually lies in obtaining such properties and that is where the exponential
blowup occurs. However we constructed the automaton Aξ � Bξ with this property in
mind; the priority of a state in Aξ × Bξ only decreases when a new to-do list is created,
and this is only done directly after a modal step.

Proposition 4.23. For any CTL∗Σ formula ξ the modal parity automaton Aξ � Bξ is both
silent-cycle safe and silent-priority safe.

Proof. The silent-cycle safeness follows from that of Aξ, which is proven in Proposition 4.20.
For the silent-priority safeness, let (a0, b0)→τ . . .→τ (an, bn)→◦ (an+1, bn+1) in Aξ�Bξ

such that (a0, b0) and (an+1, bn+1) belong to the same cluster. Since (a0, b0) � (ai, bi) and
(ai, bi) � (an+1, bn+1), all the (ai, bi) belong to that cluster. From Proposition 4.7 it follows
that there is Q such that ai = QZi and bi = QΨi for each i. If Q = E then Ω(ai, bi) ∈ {1, 2}
for all i; if Q = A then Ω(ai, bi) ∈ {0, 1} for all i. Let u := 1 in the former case and u := 0
in the latter, then Ω(ai, bi) = u + 1 if Ψi = ∅ and Ω(ai, bi) = u otherwise. If Ω(ai, bi) = u
for all i > 0 then Ω(an+1, bn+1) ≥ u and we are done. So suppose there is j ∈ {1, . . . , n}
with Ψj = ∅. Since (aj−1, bj−1) →τ (aj, bj), the rule for QZj−1 was not a modal rule,
and therefore Zj contains no pairs of the form (Xϕ, ϕ). This means Ψj+1 = ∅. Therefore
if Ψj = ∅ with j > 0 then Ψi = ∅ for all i ≥ j; in particular Ψn+1 = ∅ and hence
Ω(an+1, bn+1) = u+ 1.

Thus it remains to prove that guardification works for automata that are both silent-
cycle safe and silent-priority safe.

Proposition 4.24. For every modal parity automaton A that is both silent-cycle safe and
silent-priority safe, the guarded modal parity automaton Aγ is equivalent to A, has at most
as many states as A and has a Mostowski index inside that of A.

Proof. Let A = (A,∆,Ω, aI) be such an automaton. We will show that (A, a) ≡ (Aγ, a) for
all a ∈ A, so that in particular A ≡ Aγ.

Let a ∈ A. Let S be a transition system and let s ∈ S. Suppose S, s  (A, a), then ∃
has a winning strategy for A(A,S)@(s, a). While ∃ and ∀ play a match of A(Aγ,S)@(s, a),
∃ plays a shadow match of A(A, S)@(s, a) that is consistent with her strategy. Whenever
the shadow match is at a position (s, ϕ) the real match will be at the position (s, ϕγ), where
ϕγ ∈ gML1(A) is obtained from ϕ by replacing every unguarded occurrence of a state a
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with ∆γ(a). If the shadow match moves from (s, ϕ) to (s, ψ) where ψ is a subformula of
ϕ, then in the real match ∃ can move from (s, ϕγ) to (s, ψγ). If the shadow match moves
from (s, a) to (s,∆(a)), then the real match will already be at (s, (∆(a))γ) = (s,∆γ(a)).

In this way the two matches will be nearly identical, with the exception that the real
match might skip some unguarded positions (s, a); that is, if the shadow match contains a
sequence . . . , (s, ϕ), (s, a), (s,∆(a)), . . . where a occurs unguarded in ϕ, then the real match
will have the sequence . . . , (s, ϕγ), (s,∆γ(a)), . . . instead. Of course finite matches are won
by the same player. So suppose that both matches are infinite, then because the shadow
match is consistent with f , the highest priority occurring infinitely often in the shadow
match, say m, is even. Let a0, a1, . . . be the sequence of states visited in the shadow match,
then we may assume that they all belong to the same cluster. The states visited in the real
match will be ae0 , ae1 , . . . where each aei occurred guarded in the transition term of aei−1.
For any omitted unguarded state ai with Ω(ai) = m we can find i′ and i′′ with i′ < i ≤ i′′

such that ai′ →τ . . .→τ ai′′ →◦ ai′′+1. Now the silent-priority safeness of A guarantees that
Ω(ai) ≤ Ω(ai′′+1) hence Ω(ai′′+1) = m. This means that for every i with Ω(ai) = m there
is j such that ej ≥ i and Ω(aej) = m. Therefore the highest priority occurring infinitely
often in the real match is also m, thus ∃ wins and S, s  (Aγ, a).

For the converse, suppose S, s 1 (A, a). By Proposition 2.43, this means ∀ has a
winning strategy for A(A,S)@(s, a) and we need to show that ∀ has a winning strategy for
A(Aγ,S)@(s, a). The rest of the proof is dual.

Since we want to work with automata with dominated clusters, it is important that
this property is preserved under this operation. For guardification this is indeed the case.

Proposition 4.25. If A has dominated clusters then so does Aγ.

Proof. In the construction of Aγ, the modalities that occur are not changed in any way.
Each ∃-dominated cluster in A corresponds to a ∃-dominated cluster in the modified au-
tomaton, and the same holds for ∀-dominated clusters. Note that for a, b ∈ A with a _ b,
if c occurs in ∆(b) then c 6� a.

We conclude that for every CTL∗Σ formula ξ, the automaton (Aξ � Bξ)γ is a guarded
modal parity automaton with dominated clusters. Note that in the construction of Bξ the
highest priority used is 2. In fact, ∃-dominated clusters use the priorities 1 and 2 whereas
∀-dominated clusters use the priorities 0 and 1. The following theorem summarizes the
results of this chapter.

Theorem 4.26. For every CTL∗Σ formula there is an equivalent guarded modal parity
automaton that has dominated clusters, whose ∃-dominated clusters are Büchi and whose
∀-dominated clusters are co-Büchi.

Proof. Let ξ be a CTL∗Σ formula. By Lemma 4.11 we have ξ ≡ Aξ, and by Proposition 4.16
we have Aξ ≡ Aξ � Bξ. By Proposition 4.23 we can use Proposition 4.24 to get an
equivalent guarded modal parity automaton (Aξ � Bξ)γ. Lastly we use Proposition 4.17
and Proposition 4.25 to get that this automaton has dominated clusters.
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Chapter 5

Dominance in the modal µ-calculus
and its automata

In chapter 4, we give a translation of CTL∗ into guarded modal parity automata with
dominated clusters. Unfortunately this class of automata is too broad to allow a translation
back into CTL∗. As a minimal counter-example, consider the automaton A = (A,∆,Ω, a)
where A = {a, b}, ∆(a) = p∧3b, ∆(b) = 3a, Ω(a) = 2 and Ω(b) = 2. Now A is a guarded
modal parity automaton and its only cluster is both ∃-dominated and Büchi. We will
discuss why this automaton cannot be expressed by a CTL∗ formula in chapter 7. In the
modal µ-calculus, however, this automaton can be expressed by the formula νx.(p∧33x).

In this chapter, we will explore what dominance means in the context of fixpoints,
and introduce a fragment of µML that characterizes the class of modal automata with
dominated clusters.

5.1 Automata and the modal µ-calculus

In this section, we will construct modal automata for µML formulas and µML formu-
las for modal automata. Although standard translations already exist due to Janin and
Walukiewicz (1995) and others, we will give slightly modified constructions here in order to
better fit the needs of section 5.2, where we will show that the translations preserve dom-
inance. In particular the translation from automata to clean formulas is very meticulous,
which will pay off later in the chapter.

When translating between µML and modal automata, it is conventient to first find a
guarded equivalent. To understand what guardedness means for a µML formula, we first
generalize the modal one-step formulas from Definition 2.36 to basic modal logic formulas
over a set A.

Definition 5.1. The syntax of ML(A) is generated by the grammar

ϕ ::= ` | a | ϕ ∨ ϕ | ϕ ∧ ϕ | 3ϕ | 2ϕ
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where ` ∈ Lit and a ∈ A. An occurrence of a ∈ A in a modal formula ϕ is 3-guarded if it
is part of some subformula 3ψ of ϕ. Similarly it is 2-guarded if it is within the scope of a

2. It is unguarded if it is neither 3-guarded nor 2-guarded. /

Now a µML formula is guarded if for every subformula λx.ϑ, x does not occur unguarded
in ϑ. It can be shown that every µML formula is equivalent to a guarded µML formula. In
this paper, however, we will use a particular fragment of µML which we will call the modal
“one-step” µ-calculus. The formulas of µ1ML already look a lot like the modal one-step
formulas found in modal automata. We will give translations between µ1ML and modal
automata. Together with the standard translations between µML and modal automata,
this shows that restricting to µ1ML does not decrease the expressive power of µML.

Definition 5.2. The syntax of µ1ML(Y ) is generated by the dual grammar

ϕ ::= ` | ϕ ∨ ϕ | ϕ ∧ ϕ | 3ψ | 2ψ
ψ ::= y | µx.ϑ | νx.ϑ

where ` ∈ Lit, y ∈ Y , x ∈ Var and ϑ ∈ µ1MLM(Y ∪ {x}). The set µ1MLM(Y ) of modal
formulas of µ1ML(Y ) is generated by ϕ. The set µ1MLΛ(Y ) of point-formulas of µ1ML(Y )
is generated by ψ. The syntax of µ1ML is given by µ1MLΛ(∅). /

Note that µ1ML formulas are always guarded. The idea behind the phrase “one-step”
in “modal one-step µ-calculus” is that every µ1MLM formula looks like a guarded modal
one-step formula when we view µ1MLΛ formulas as objects. In general we can decompose
a µMLM formula – i.e. a formula that isn’t a free variable or fixpoint formula – as a modal
formula over a set of µMLΛ formulas – i.e. over a set of free variables and fixpoint formulas.

Definition 5.3. Every µMLM(Y ) formula ϕ has has a canonical decomposition of the form
ϕ = α(ψ1, . . . , ψn) where α ∈ ML(N) and where each ψi ∈ µMLΛ(Y ). /

The natural numbers here act as temporary meta-variables. As a concrete example, the
formula (p∧2x)∨µy.(2y ∨ q) is decomposed as α(x, µy.(2y ∨ q)) where α = (p∨21)∨ 2.
Now when a µ1MLM formula ϕ is decomposed as α(ψ1, . . . , ψn), α will be a guarded modal
one-step formula.

Decomposition gives a natural way to define automata for µ1MLΛ formulas. There
is a one-to-one correspondence between fixpoint formulas in Sb(ξ) and BV(ξ); for every
x ∈ BV(ξ) we have λxx.ϑx ∈ Sb(ξ) and for every λx.ϑ ∈ Sb(ξ) we have λ = λx and ϑ = ϑx.
Therefore we identify bound variables with their binding formulas, so that when either x
or λξ(x) occurs in ϑy there is a transition from y to x; or rather, from the state y to the
staty x. This will be the basis for the transition terms.

We still need a winning condition for infinite matches. Here we use the similarity
between the winning conditions of the evaluation game for µML, Definition 2.26, and the
acceptance game for modal automata, Definition 2.40. For infinite matches in both games
there is a greatest object (variable, state) that is visited infinitely often, and this object is
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either “good” (bound by ν, even parity) or “bad” (bound by ν, odd parity) for ∃. Thus,
the parity for the state x will be even when x is bound by a ν-formula, and odd when it
is bound by a ν-formula. This still leaves the ordering of the priorities, but this problem
was already solved in the proof of Proposition 2.29.

Definition 5.4. Let ξ be a µ1MLΛ formula. Define Aξ := {x | x ∈ BV(ξ)}. Let x ∈ BV(ξ),
then we can decompose ϑx as ϑx = α(y1, . . . , yn, λξ(z1), . . . , λξ(zk)) where α ∈ gML1(N) and
y1, . . . , yn, z1, . . . , zk ∈ BV(ξ). Define ∆ξ(x) := α(y1, . . . , yn, z1, . . . , zk) and Ωξ(x) = Ωξ(x).
Define Aξ := (Aξ,∆ξ,Ωξ, x) where x is the variable bound by ξ. /

In the following, we will be a bit more lax with notation and omit ξ from λξ(x). The
clusters of Aξ correspond to the ./ξ equivalence classes of Sb(ξ) in a natural way when
identifying states x with their binding formulas λ(x).

Proposition 5.5. Let ξ ∈ µ1MLΛ. For all x, y ∈ BV(ξ), λ(x) .ξ λ(y) iff x� y in Aξ.

Proof. Let x, y ∈ BV(ξ) with λ(x) .ξ λ(y), then there are ϕ0, . . . , ϕn such that ϕ0 = λ(x),
ϕn = λ(y) and ϕi+1 ∈ ∇ξ(ϕi). Let i0, . . . , ik be the indices of fixpoint formulas, then there
are z0, . . . , zk ∈ BV(ξ) such that z0 = x, zk = y and ϕij = λ(zj) for each j. Let j < k, then
there are no fixpoint formulas between ϕij and ϕij+1

, and the only possible bound variable
would be zj+1. As such, either zj+1 or λ(zj+1) occurs in the decomposition of ϕij+1, hence
zj+1 occurs in ∆ξ(zj). This means zj → zj+1 for all j, which gives x� y.

Let x, y ∈ BV(ξ) with x � y, then there are z0, . . . , zn such that z0 = x, zn = y and
zi → zi+1. From the construction of ∆ξ we see that this means that for each i either zi+1

or λ(zi+1) is a subformula of λ(zi). Since u .ξ λ(u) for all u ∈ BV(ξ) we get λ(zi) .ξ λ(zi+1)
for all i. This gives λ(x) .ξ λ(y).

Proposition 5.6. Let ξ ∈ µ1MLΛ. For all x, y ∈ BV(ξ), λ(x) ./ξ λ(y) iff x and y belong
to the same cluster of Aξ.

Proof. Let x, y ∈ BV(ξ). By Proposition 5.5 we have that λ(x) ./ξ λ(y) iff λ(x) .ξ λ(y)
and λ(y) .ξ λ(x) iff x� y and y � x iff x and y belong to the same cluster.

The following theorem states that this automaton construction is indeed correct.

Theorem 5.7. For every µ1MLΛ formula ξ there is an equivalent guarded modal parity
automaton Aξ.

Proof. Let ξ ∈ µ1MLΛ and let x0 be such that λ(x0) = ξ. Let S be a transition system and
let sI ∈ S. The evaluation game E(ξ, S)@(sI, ξ) and the acceptance game A(Aξ,S)@(sI, x0)
are very similar. Suppose a match of each game is played, one a real match and the other a
shadow match. The evaluation match starts at (s, λ(x0)) and the acceptance match starts
at (s, x0).

If the evaluation match is at (s, λxx.ϑx) and the acceptance match is at (s, x), the
the evaluation match continues to (s, ϑx) = (s, α(y1, . . . , yn, λ(z1), . . . , λ(zk))) for some
α ∈ gML1(N) and some y1, . . . , yn, z1, . . . , zk ∈ BV(ξ). Meanwhile the acceptance match
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continues to (s,∆ξ(x)) = (s, α(y1, . . . , yn, z1, . . . , zn)). Again, moves in the former can be
mimicked with moves in the latter and vice versa, until a literal is reached in both games,
in which case the winner is the same, or until a pairing (t, yi) and (t, yi) for some i ≤ n is
reached, or until a pairing (t, λ(zi)) and (t, zi) for some i ≤ k is reached.

If the evaluation match is at (s, x) and the acceptance match is at (s, x), then the
evaluation match continues to (s, λxx.ϑx) and we arrive at the previous pairing.

It remains to check that the winner is the same in the case that the matches are infinite;
in this case the evaluation match has a �-greatest bound variable x that it goes through
infinitely often, and based on the pairings the acceptance match will go through the state x
infinitely often. Let Ωξ(y) be the highest priority among states visited infinitely often, then
Ωξ(y) = Ωξ(y) ≤ Ωξ(x) because λ(y) is a subformulas of λ(x), and thus Ωξ(y) = Ωξ(x).
Since Ωξ(x) = Ωξ(x) is even if and only if λx = ν, the winner of both games is the same.

Now we also want a converse to Theorem 5.7, that is, we want to translate modal
automata into clean µ1MLΛ formulas. As a simple example, consider the automaton
(A,∆,Ω, a) where A = {a, b}, ∆(a) = 3b ∨ (p ∧ 3a), ∆(b) = 2a ∨ (q ∧ 3b), Ω(a) = 2
and Ω(b) = 1. With the translation from formulas to automata in mind, states with even
priorities should turn into ν-formulas and states with odd priorities into µ-formulas. Thus
we might construct for a the formula ϕa = νxa.(3xb ∨ (p ∧ 3xa)) and for b the formula
ϕb = µxb.(2xa∨(q∧3xb)). Indeed the formula ψ = νxa.(3µxb.(2xa∨(q∧3xb))∨(p∧3xa)),
where we replaced xb in ϕa with ϕb, is equivalent to (A,∆,Ω, a). The nesting of the variables
here works because xb ≺ xa and Ω(b) < Ω(a). If we applied the same method to (A,∆,Ω, b)
however, we would replace xa in ϕb with ϕa and get µxb.(2(νxa.(3xb∨(p∧3xa))∨(q∧3xb)).
This is not equivalent, because here xa ≺ xb. Instead we could take

µx′b.(2(νxa.(3µxb.(2xa ∨ (q ∧3xb)) ∨ (p ∧3xa))) ∨ (q ∧3x′b))

where we first replace every xb in ϕb with a fresh variable x′b and then every xa with ψ.
Now xb ≺ xa ≺ x′b; the variable x′b does not occur in ψ hence xa ≺ x′b is not a problem.

This already shows that the converse direction is a bit more involved. States can be
represented by multiple fixpoint formulas, depending on which other states are allowed
to appear as variables and which states must be represented by new fixpoint formulas.
States with lower priority are always represented by fixpoint formulas; it is the states with
higher priority that can cause problems. As such, the variables used are indexed by a state
together with a set of states that have higher priority. Put differently, the variables are
indexed by a set of states and represent the state with the least priority. Because priorities
only matter inside a cluster, these sets of states are always subsets of a cluster.

Definition 5.8. Let A = (A,∆,Ω, aI) be a guarded modal parity automaton. By induction
on clusters we define a formula ξa ∈ µ1ML for every a ∈ A.

Let C be a cluster of A. The induction hypothesis states that whenever a ∈ C and
a → b either b ∈ C or ξb has been defined. Fix a numbering C = {c1, . . . , cn} such that
Ω(ci) ≤ Ω(cj) whenever i ≤ j. Define I := {I ⊆ {1, . . . , n} | I 6= ∅}. For I ∈ I we
write cI := cmin(I). For I ∈ I and j ∈ {1, . . . , n}, we write I(j) := {i ∈ I | i ≥ j}. We
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assume we have a set of fresh variables X := {xI | I ∈ I} ⊆ Var. Let r be the bijective
map r : I → {1, . . . , 2n − 1} by r(I) := 2n −

∑
i∈I 2i−1, then r(I) is the rank of I. Note

that r(I) ≥ r(J) whenever I ⊆ J and that r(I(j) ∪ {j}) < r(I) whenever j 6∈ I. Using
induction on r, we will define a fixpoint formula ϕI ∈ µ1ML(X) for every I ∈ I.

For I ∈ I, define ϕI := λIxI .ϑI , where λI := ν if Ω(cI) is even and λI := µ if Ω(cI)
is odd, and where ϑI is created from ∆(cI) by replacing every b ∈ A \ C with ξb, every ci
where i ∈ I with xI(i) and every cj where j 6∈ I with ϕI(j)∪{j}. Note that ϑI is a µ1ML
formula because ∆(cI) is guarded. Also note that FV(ϑI) ⊆ {xI(i) | i ∈ I}. Lastly note
that ϕI is clean and that if ϕI is a proper subformula of ϕJ , then r(I) < r(J).

Let k ∈ {1, . . . , n}, then define ξck := ϕ{k} ∈ µ1ML(∅). /

Note that the set I, the variables from X, the ranking r etcetera are all relative to the
cluster C. To avoid even more laborious notation, we will leave this implicit. This poses no
problems for the proof of Theorem 5.9 because it is based on induction on cluster-depth.

Theorem 5.9. For every guarded modal parity automaton A there is an equivalent µ1MLΛ

formula ξA.

Proof. Let A = (A,∆,Ω, aI) be a guarded modal parity automaton. By induction on
cluster-depth we show that (A, a) ≡ ξa for all a ∈ A. This then gives A ≡ ξA := ξaI .

Let C be a cluster of A. The induction hypothesis states that whenever a ∈ C and
a→ b either b ∈ C or ξb ≡ b has already been shown. Let k ∈ {1, . . . , n}. We need to show
that ξck ≡ (A, ck). Let S be a transition system and let sI ∈ S. Suppose that S, sI  ϕ{k},
then ∃ has a winning strategy f for E(ϕ{k},S)@(sI, ϕ{k}). By Proposition 2.29 we may
assume that f is positional. While ∃ and ∀ play a match of A(A,S)@(sI, ck), ∃ plays a
shadow match of E(ϕ{k},S)@(sI, ϕ{k}) consistent with f , in such a way that positions (s, cI)
in the real match correspond to positions (s, ϕI) in the shadow match.

Suppose the real match is at (s, cI) and the shadow match is at (s, ϕI), then the matches
necessarily continue to (s,∆(cI)) and (s, ϑI) respectively. By the construction of ϑI , moves
in the one game can be mimicked with moves in the other game and vice versa, until either
both matches reach a literal, in which case the winner is the same, or the real match reaches
a position (t, a) for some a ∈ A. If a 6∈ C then the shadow match is at (t, ξa), and we can
use the induction hypothesis to get (A, a) ≡ ξa, hence both positions are winning for ∃. If
a ∈ C then a = cj for some j ∈ {1, . . . , n}. If j ∈ I then the shadow match is at (t, xI(j))
and necessarily continues to (t, ϕI(j)). Because j = min(I(j)) we can take J := I(j) to
get that the real match is at (t, cJ) and the shadow match is at (t, ϕJ). If j 6∈ I then the
shadow match is at (t, ϕI(j)∪{j}). Now taking J := I(j) ∪ {j} gets us that the real match
is at (t, cJ) and the shadow match is at (t, ϕJ).

It remains to check that the winner is the same if both matches are infinite. In this case
there is a �-greatest variable xM that occurs infinitely often during the shadow match.
Since every position (t, xM) is followed by (t, ϕM), cM is visited infinitely often in the
real match. Since X is finite, there is a point after which the only variables that are
visited in the shadow match are variables that are visited infinitely often. Let ψ be a
formula that occurs in the trace induced by the shadow match after this point, then
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walking backwards through the trace we find only superformulas of ψ, until we go from a
superformula λIxI .ϑI to xI . Now xI � xM hence ϕI is a subformula of ϕM , which means
also ψ is a subformula of ϕM . As a result every ϕI that occurs infinitely often in the
shadow match is a subformula of ϕM , and this means r(I) ≤ r(M). Take m := min(M)
then we show that I(m) = M for all ϕI that occur infinitely often; certainly M(m) = M .
If ϕI with I(m) = M is followed by ϕJ where J := I(j) ∪ {j} for some j 6∈ I, then j > m
would imply I(j) = {i ∈ I | i > j > m} ⊆ M \ {m} hence J ( M which contradicts
r(J) ≤ r(M). Therefore j ≤ m hence M ⊆ I(j) which gives J(m) = M . This means
that m ∈ I for all ϕI that occur infinitely often in the shadow match. For every state cI
that occurs infinitely often in the real match we have that ϕI occurs infinitely often in the
shadow match, but then min(I) ≤ m = min(M). Since the numbering of C is from low to
high priority, this means Ω(cI) ≤ Ω(cM). Therefore Ω(cM) is the highest priority among
states visited infinitely often in the real match. Because the shadow match is consistent
with f it is won by ∃, which means that λM = ν and so Ω(cM) must be even. We conclude
that ∃ wins the real match.

For the converse, let S be a transition system, let sI ∈ S and suppose that S, sI 1 ϕ{k}.
By Proposition 2.29 this means ∀ has a winning strategy. The rest of the proof is dual.

5.2 Dominated fixpoints

A nice property of dominance is that it applies both to modal formulas and to modal
automata; the following definition generalizes Definition 3.15 to arbitrary µML formulas.

Definition 5.10. A µML(Y ) formula ξ is X-free for some X ⊆ Y if FV(ξ) ⊆ Y \X. It is
∃-dominated with respect to X if every subformula 2ϕ is X-free and for every subformula
ϕ ∧ ψ either ϕ or ψ is X-free. It is ∀-dominated with respect to X if every subformula

3ϕ is X-free and for every subformula ϕ∨ψ either ϕ or ψ is X-free. It is dominated with
respect to X if it is either ∃-dominated or ∀-dominated. /

In fact, the class of modal automata that have dominated clusters can be characterized
by a fragment of the modal µ-calculus, which we will call µdomML.

Definition 5.11. A µML formula has dominated fixpoints if for every subformula of the
form λx.ϑ the formula ϑ is either ∃-dominated or ∀-dominated with respect to FV(ϑ). The
fragment µdomML of µ1ML consists of all formulas that have dominated fixpoints. /

Note that here we take µdomML as a fragment of µ1ML, so that we can apply the
automata constructions from section 5.1. Because dominance is a rather syntactic property,
it is preserved under these constructions; we will see that for every µdomML formula ξ the
automaton Aξ has dominated clusters, and for every automaton A with dominated clusters
the formula ξA is in µdomML.

The direction from automata to formulas is relatively easy: the fixpoint formulas that
correspond to states in a ∃-dominated cluster C are ∃-dominated over their free variables,
because these free variables also correspond to states in C.
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Proposition 5.12. If A has dominated clusters then ξA has dominated fixpoints.

Proof. Let ϕ be a fixpoint subformula of ξA, then there is a cluster C and a set J ∈ I such
that ϕ = ϕJ = λJxJ .ϑJ . The cluster C is either ∃-dominated or ∀-dominated. We assume
the former; the latter case is dual. We will show using induction on the rank r that ϑI is
∃-dominated with respect to FV(ϑI) for all I ∈ I, so that in particular ϑJ is ∃-dominated
with respect to FV(ϑJ).

Let I ∈ I. For a formula α ∈ gML1(A), let α′ be created from α by replacing every
a ∈ A \ C with ξa, every ci ∈ C where i ∈ I with xI(i) and every cj ∈ C where j 6∈ I with
ϕI(j)∪{j}, so that ϑI = ∆(cI)

′. It may be clear that subformulas of ϑI are either of the form
α′ where α is a subformula of ∆(cI), or subformulas of ϕI(j)∪{j} for some cj ∈ C with j 6∈ I.
The induction hypothesis states that for all cj ∈ C with j 6∈ I that occur in ∆(cI), ϑI(j)∪{j}
is ∃-dominated with respect to FV(ϑI(j)∪{j}). If a variable x ∈ FV(ϑI) were to occur in
ϑI(j)∪{j} then it would be in FV(ϑI(j)∪{j}). Therefore we only need to check subformulas
of the former kind.

Let 2β be a subformula of ∆(cI) then β = a for some a ∈ A \ C because ∆(cI) is
∃-dominated with respect to C. This means that β′ = ξa and FV(ξa) = ∅, which means
that 2β′ cannot contain occurrences of variables from FV(ϑI). Similarly if β1 ∧ β2 is a
subformula of ∆(cI), then one of β1 and β2 is in gML1(A\C), whence either FV(β′1) = ∅ or
FV(β′2) = ∅ and therefore one of β′1 and β′2 does not contain any occurrences of variables
from FV(ϑI).

For the other direction, we need two more propositions about relations /ξ and ./ξ.

Proposition 5.13. Let ξ be a µML formula. For every non-trivial ./ξ equivalence class Φ
there is x ∈ BV(ξ) such that x ∈ Φ, λxx.ϑx ∈ Φ and Φ ⊆ Sb(λxx.ϑx).

Proof. Since Φ ⊆ Sb(ξ) we know that Φ is finite, say Φ = {ϕ0, . . . , ϕn}. By definition of ./ξ
there are ψi,0, . . . , ψi,ki such that ψi,0 = ϕi for all i ≤ n, ψi,ki = ϕi+1 for all i < n, ψn,kn = ϕ0

and ψi,j+1 ∈ ∇ξ(ψi,j) for all i ≤ n and j < ki. Now we can construct a direct ξ-trace by
repeating ψ0,0, . . . , ψ0,k0−1, ψ1,0, . . . , ψn,kn−1. Note that ϕ0 .ξ ψi,j .ξ ϕ0 and thus ψi,j ∈ Φ
for all i and j, and that every ϕi occurs infinitely often in the trace. By Proposition 2.25
we get a �-greatest bound variable x of ξ that occurs infinitely often during the trace.
Because x will always be followed by λxx.ϑx we have λxx.ϑx ∈ Φ. Now if we start at ϕi
and go backwards through the trace, then we will always get a superformula of ϕi until we
go from λyy.ϑy to y for some bound variable y. Note that ϕi is a subformula of λyy.ϑy.
For this y we have y � x, which means λyy.ϑy is a subformula of λxx.ϑx. Therefore ϕi is
a subformula of λxx.ϑx, and so Φ ⊆ Sb(λxx.ϑx).

Next, we note that bound variables are the only µML-formulas that have derivatives
which are not subformulas. As a result, the only way to go from a formula ϕ to something
which isn’t a subformula of ϕ, is by visiting a variable that is bound by some superformula
of ϕ. For this to be possible, that variable must be free in ϕ.

Proposition 5.14. Let ξ be a µML formula and let ϕ, ψ ∈ Sb(ξ). If FV(ϕ) = ∅ then
ϕ .ξ ψ iff ψ ∈ Sb(ϕ).
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Proof. Let ξ and ϕ be as such. Of course ϕ .ξ ψ for all ψ ∈ Sb(ϕ). Let Φ be the closure
of Sb(ϕ) under .ξ, then we can construct Φ as

⋃
n∈N Φn where Φ0 = Sb(ϕ) and where

Φn+1 consists of all the ξ-derivatives of formulas in Φn. We have Φ0 ⊆ Sb(ϕ). Suppose
Φn ⊆ Sb(ϕ) and let ψ ∈ ∇ξ(ψ

′) for some ψ′ ∈ Φn. Either ψ is a subformula of ψ′ ∈ Sb(ϕ),
in which case ψ ∈ Sb(ϕ), or ψ′ = x for some x ∈ BV(ξ) and ψ = λxx.ϑx. Because x is a
subformula of ϕ and ϕ has no free variables, x must be bound by some subformula of ϕ.
Since ξ is clean this formula must be ψ, which means ψ ∈ Sb(ϕ). This shows Φn+1 ⊆ Sb(ϕ)
and by induction Φ ⊆ Sb(ϕ). Now if ψ ∈ Sb(ξ) is such that ϕ .ξ ψ, then ψ /ξ ϕ ∈ Sb(ϕ)
hence ψ ∈ Φ ⊆ Sb(ϕ).

Now the other direction can be proven. The trick lies in identifying which fixpoint
formulas of ξ belong to the same ./ξ class, because Proposition 5.6 then gives that the
corresponding states form a cluster of Aξ.

Proposition 5.15. If ξ ∈ µ1MLΛ has dominated fixpoints then Aξ has dominated clusters.

Proof. Let ξ be a µdomMLΛ formula. Let C be a non-trivial cluster of Aξ and define
Y := {x ∈ BV(ξ) | x ∈ C}. By Proposition 5.6, all λ(x) for x ∈ Y belong to the same non-
trivial ./ξ class, and no other fixpoint formulas do. By Proposition 5.13 there is a y ∈ Y
with λ(x) ∈ Sb(λ(y)) for all x ∈ Y . Now ϑy is either ∃-dominated or ∀-dominated with
respect to FV(ϑy). We assume that it is ∃-dominated; the case where it is ∀-dominated is
dual. We will show that ∆ξ(x) is ∃-dominated with respect to C for all x ∈ Y , so that C
is an ∃-dominated cluster.

If we write x� x′ whenever λ(x′) occurs in the decomposition of ϑx, then every x ∈ Y
is reachable by a finite number of � steps from y. Therefore we can use finite induction
on �, starting with y. We assumed that ϑy is ∃-dominated with respect to FV(ϑy). Now
if x ∈ Y is such that ϑx is ∃-dominated with respect to FV(ϑx), then we will show that
∆ξ(x) is ∃-dominated with respect to C and that if x � x′ then ϑ′x is ∃-dominated with
respect to FV(ϑx′).

Let x ∈ Y be such that ϑx is ∃-dominated with respect to FV(ϑx). Let ϑx be decom-
posed as α(z1, . . . , zj, λ(zj+1), . . . , λ(zk)) where α ∈ ML(N) and z1, . . . , zk ∈ BV(ξ), so that
∆ξ(x) = α(z1, . . . , zk), z1, . . . , zj ∈ FV(ϑx) and FV(ϑzi) ⊆ FV(ϑx) ∪ {zi} for i > j. It may
be clear that the subformulas of ∆ξ(x) are the form β(z1, . . . , zk) where β ∈ ML(N) is a
subformula of α, and that β(z1, . . . , zj, λ(zj+1), . . . , λ(zk)) is then a subformula of ϑ.

Let 2β be a subformula of α, then because ϑx is ∃-dominated β(z1, . . . , λ(zk)) does
not contain occurrences from variables in FV(ϑx), which means that β(z1, . . . , zk) does
not contain occurrences of z1, . . . , zj. Let i > j such that zi occurs in β(z1, . . . , zk), then

λ(zi) occurs in β(z1, . . . , λ(zk)) and therefore does not contain occurrences from variables
in FV(ϑx), hence FV(λ(zi)) = ∅. Because β is a proper subformula of 2β, λ(zi) is a proper
subformula of λ(x). Now by Proposition 5.14 and Proposition 5.5 this means zi 6� x and
thus zi 6∈ C. Therefore β(z1, . . . , zn) does not contain any occurrences of states from C.

Let β1∧β2 be a subformula of α, then because ϑ is ∃-dominated either β1(z1, . . . , λ(zk))
or β2(z1, . . . , λ(zk)) does not contain occurrences from variables in FV(ϑx). Without loss
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of generality we assume it is β1. As above we find that β1(z1, . . . , zn) does not contain any
occurrences of states from C.

Let x′ ∈ Y such that x � x′, thus λ(x′) occurs in the decomposition of ϑx. Note
that FV(λ(x′)) ⊆ FV(ϑx). It cannot be the case that FV(λ(x′)) = ∅, because then
Proposition 5.14 and Proposition 5.5 tell us that x′ 6� x whence x′ 6∈ C. Thus there is
some z ∈ FV(ϑx) that occurs in λ(x′) and hence in ϑx′ . Because ϑx′ is a µ1ML formula,
this z occurs in some subformula of ϑx′ that is either of the form 3ψ or of the form 2ψ.
But this subformula is also a subformula of ϑx, so it must be 3ψ. This means that ϑx′
cannot be ∀-dominated with respect to FV(ϑx′). Because ξ has dominated fixpoints, it
must be ∃-dominated.

5.3 Mostowski index and alternation depth

Next we will look at modifications to the priority map of an automaton. Armed with
Proposition 3.21, we can obtain an interesting result about the Mostowski indices of modal
parity automata with dominated clusters. For arbitrary parity automata, there is a strict
hierarchy based on the Mostowski index. For guarded modal parity automata with domi-
nated clusters, this hierarchy collapses to the class of automata whose ∃-dominated clusters
are Büchi, i.e. have a Mostowsk index inside (1, 2), and whose ∀-dominated clusters are
co-Büchi, i.e. inside (0, 1).

First, Proposition 2.50 tells us that we can make sure that the dominated clusters have
Mostowski indices of the form (1, h) and (0, h) respectively.

Definition 5.16. Let A = (A,∆,Ω, aI) be a modal parity automaton with dominated
clusters. Let C be a cluster of A and let (l, h) be its Mostowski index. Let c ∈ C. If l is odd,
define Ω�(c) := Ω(c)− l+ 1. If l is even and C is ∃-dominated, define Ω�(c) := Ω(c)− l+ 2.
If l is even and C is ∀-dominated, define Ω�(c) := Ω(c)− l. Define A� = (A,∆,Ω�, aI). /

Proposition 5.17. For every guarded modal parity automaton A with dominated clusters,
the guarded modal parity automaton A� is equivalent to A and has dominated clusters.

Proof. Since the transition terms remain unchanged, A� is a guarded modal parity au-
tomaton with dominated clusters. Equivalence follows from Proposition 2.50.

The key then lies in bringing down the height of the highest priorities that are needed
inside a cluster. Proposition 3.21 tells us that in an ∃-dominated cluster, ∃ can predict
which states the acceptance match will visited for as long as the acceptance match remains
in the cluster. This gives her two alternatives: either the match visits some states with
priorities deemed “high” infinitely often, in which case it is irrelevant which states with
lower priorities the match will visit, or there comes a point after which the match only
visits states with priorities deemed “low”, in which case she can commit to never visiting
a state with a high priority again.

To make this commitment explicit, we can divide every ∃-dominated cluster into a low
part and a high part. For every cluster a copy of the low part is added. The states in the
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original cluster will all have high priorities, and the states in the copy will all have low
priorities. At a state in the original, ∃ can now decide to either stay in the original cluster
or to go to the copy. Once inside the copy, ∃ cannot go back; hence her commitment.

The following definition simultaneously divides all the clusters.

Definition 5.18. Let A = (A,∆,Ω, aI) be a guarded modal parity automaton with domi-
nated clusters. Create for every a ∈ A a new state ā. For X ⊆ A write X̄ := {ā | a ∈ X}.
Let C be a cluster of A. Take m := 2 if C is ∃-dominated and m := 1 if it is ∀-dominated.
Divide C into C0 := {c ∈ C | Ω(c) ≤ m} and C1 := {c ∈ C | Ω(c) > m}. For a formula
ϕ ∈ gML1(A) create ϕ− from ϕ by replacing every occurrence of c for c ∈ C0 with c̄, every
occurrence of 3c for c ∈ C1 with ⊥ and every occurrence of 2c for c ∈ C1 with >. For
c ∈ C, define ∆÷(c) := ∆(c) ∨ ∆(c)−, ∆÷(c̄) = ∆(c)−, Ω÷(c) := max{Ω(c),m + 1} and
Ω÷(c̄) := min{Ω(c),m}. Define A÷ := (A ∪ Ā,∆÷,Ω÷, aI). /

Note that the threshold m and the substitution ·− on gML1(A) are relative to the
cluster C, but because we will only look at one cluster at a time this is not reflected in
the notation. Also note that Ω(c) = Ω÷(c) for all c ∈ C1, and Ω(c) = Ω÷(c̄) for all c ∈ C0.
The clusters of A are replaced by generalized clusters of A÷, and dominance is preserved.

Proposition 5.19. For every guarded modal parity automaton A with dominated clusters,
the guarded modal parity automaton A÷ has dominated clusters.

Proof. Let C be an ∃-dominated cluster of A, then C ∪ C̄ is a generalized cluster of A÷.
Both ∆÷(c) and ∆÷(c̄) are ∃-dominated over C ∪ C̄, and thus C ∪ C̄ is ∃-dominated.
Similarly for every ∀-dominated cluster C of A, C ∪ C̄ is an ∀-dominated generalized
cluster of A÷. Now the A÷-clusters of states in C ∪ C̄ are subsets of C ∪ C̄, hence will also
be dominated.

For a cluster C of A we write C ′ := C ∪ C̄0. Note that C ′ is a generalized cluster of A÷.
In order to prove that A÷ is equivalent to A, we will show that the states in a cluster C
are equivalent to their counterparts in C ′. For the following two propositions, we use the
cluster-path acceptance games for the cluster C of A and the generalized cluster C ′ of A÷.

Proposition 5.20. Let A be a guarded modal parity automaton. Let C be a cluster of A
and let a ∈ C. Suppose that (A, b) ≡ (A÷, b) for all b ∈ A of cluster-depth less than that
of a. Let S be a transition system and let π ∈ Π(S). If a player has a winning strategy for
A(A, S, C, π)@(0, a), then that player has a winning strategy for A(A÷,S, C ′, π)@(0, a).

Proof. Suppose the ∃ has a winning strategy; the case where ∀ has a winning strategy is
dual. Let f be her strategy. By Proposition 3.21 there is a function ε : N → C such that
any position (i, c) with c ∈ C in a match consistent with f has c = ε(i). If there is a least
k such that Ω(ε(i)) ≥ m for all i ≥ k, then define ε′ : N→ C ′ by ε′(i) := ε(i) for i < k and
ε′(i) := ε̄(i) for i ≥ k. If not then for every k there is i ≥ k with Ω(ε(i)) > m; in that case
define ε′ := ε. Now note that ε′(k) 6∈ C iff Ω(ε(i)) ≤ m for all i ≥ k. While ∃ and ∀ play
a match of A(A÷,S, C ′, π)@(0, a), ∃ plays a shadow match of A(A,S, C, π)@(0, a) that is
consistent with f .
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Suppose both matches are at a position (i, c) with c ∈ C. The real match necessarily
continues to (i,∆÷(c)) = (i,∆(c) ∨ ∆(c)−) and the shadow match continues to (i,∆(c)).
If ε′(i+ 1) ∈ C then ∃ should move to (i,∆(c)). Otherwise she should move to (i,∆(c)−).
Suppose the shadow match is at (i, c) with c ∈ C0 and the real match is at (i, c̄), then the
matches necessarily continue to (i,∆(c)) and (i,∆(c)−) respectively. Suppose both matches
are at (i, ϕ) with ϕ ∈ gML1(A), then the two matches continue identically. Suppose that
the shadow match is at (i, ϕ) with ϕ ∈ gML1(A), that the real match is at (i, ϕ−) and that
ε′(i + 1) 6∈ C. The two matches continue virtually identically with real moves to (i, ψ−)
corresponding to shadow moves to (i, ψ) and vice versa. The shadow match will not reach
a position (i,3c) with c ∈ C1 because then c = ε(i+ 1) which contradicts Ω(ε(i+ 1)) ≤ m.
If the shadow match is at (i,3b) or (i,2b) with b 6∈ C, then the real match is at that
position as well. Clearly any move to (t, b) in one match can be mimicked in the other
match, and from there the winners of both matches are the same because (A, b) ≡ (A÷, b).

In this way the two matches are played to completion. If both matches are infinite,
then the states visited in the shadow match are the states of ε, whereas the states visited
in the real match are the states of ε′. Because the shadow match is consistent with f hence
won by ∃, the highest priority among its states must be even. Let x be this priority. If
x > m then there are infinitely many states in ε with priority bigger x > m, hence ε′ = ε.
The only states c ∈ C for which Ω÷(c) 6= Ω(c) are those where Ω(c) < m + 1, but then
Ω(c) < x as well. This means that the highest priority among states visited in the real
match is also x, hence ∃ wins. If x ≤ m then there is k with Ω(ε(i)) ≤ m for all i ≥ k, but
then ε′(i) ∈ C̄0 hence Ω÷(ε′(i)) = Ω(ε(i)) for all i ≥ k. Thus the highest priority occurring
infinitely often in the real match is x. We conclude that ∃ wins the real match.

Proposition 5.21. Let A be a guarded modal parity automaton. Let C be a cluster of
A and let a ∈ C. Suppose that (A, b) ≡ (A÷, b) for all b ∈ A of cluster-depth less than
that of a. Let S be a transition system and let π ∈ Π(S). If ∃ has a winning strategy for
A(A÷,S, C ′, π)@(0, a), then she has a winning strategy for A(A,S, C, π)@(0, a).

Proof. Let g be her strategy. While ∃ and ∀ play a match of A(A,S, C, π)@(0, a), ∃ plays
a shadow match of A(A÷,S, C ′, π)@(0, a) that is consistent with g.

Suppose the two matches are at position (i, c) with c ∈ C. The real match necessarily
continues to (i,∆(c)) and the shadow match continues to (i,∆÷(c)) = (i,∆(c) ∨ ∆(c)−).
There g instructs ∃ to move to either (i,∆(c)) or (i,∆(c)−). Suppose the real match
is at (i, c) with c ∈ C0 and the shadow match is at (i, c̄), then the matches necessarily
continue to (i,∆(c)) and (i,∆(c)−) respectively. Suppose the two matches are at (i, ϕ)
with ϕ ∈ gML1(A), then the two matches continue identically. Suppose the real match is
at (i, ϕ) with ϕ ∈ gML1(A) and that the shadow match is at (i, ϕ−). The two matches
continue virtually identically with real moves to (i, ψ) corresponding to shadow moves to
(i, ψ−) and vice versa. The shadow match will not reach a position (i, (3c)−) with c ∈ C1

since (3c)− = ⊥ and (i,⊥) is losing for ∃. If the shadow match is at (i,3b) or (i,2b) with
b 6∈ C, then the real match is at that position as well. Clearly any move to (t, b) in one
match can be mimicked in the other match, and from there the winners of both matches
are the same because (A, b) ≡ (A÷, b).
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In this way the two matches are played to completion. If both matches are infinite,
then a position (i, c) with c ∈ C in the shadow match corresponds to that same position
in the real match and a position (i, c̄) with c ∈ C0 in the shadow match corresponds to
(i, c) in the real match. Because the shadow match is consistent with g hence won by ∃,
the highest priority among states visited in the shadow match must be some even x. If
x > m then x > m + 1 because m + 1 is odd, and thus Ω(c) = Ω÷(c) = x for infinitely
many c ∈ C. Therefore the highest priority among states in the real match must also be
x. If x ≤ m then after a certain point only states c̄ are visited in the shadow match, but
that then means that in the real match positions c with c ∈ C0 hence Ω(c) = Ω÷(c̄) are
visited. Thus the highest priority among states in the real match must again be x. We
conclude that ∃ wins the real match.

With these two propositions in place, we can apply induction to get A ≡ A÷.

Proposition 5.22. For every guarded modal parity automaton A with dominated clusters,
the guarded modal parity automaton A÷ is equivalent to A.

Proof. We prove (A, a) ≡ (A÷, a) for all a ∈ A by induction on the cluster depth of a,
so that in particular A ≡ A÷. Let C be a cluster of A and let c ∈ C. The induction
hypothesis states that (A, b) ≡ (A÷, b) for all b of cluster-depth less than that of c. In light
of Proposition 2.43 and Proposition 3.20, Proposition 5.20 and Proposition 5.21 prove that
(A, c) ≡ (A÷, c).

The above construction does not actually decrease the Mostowski index of the au-
tomaton. However, if the automaton had an ∃-dominated cluster with index (1, 6), then
this has been replaced with ∃-dominated clusters that have indices inside (1, 2) and inside
(3, 6). These can then be shifted down to get clusters with indices inside (1, 2) and (1, 4).
Repeating this process enough times results in Büchi and co-Büchi clusters.

Theorem 5.23. For every guarded modal parity automaton with dominated clusters there is
an equivalent guarded modal parity automaton with dominated clusters whose ∃-dominated
clusters are Büchi and whose ∀-dominated clusters are co-Büchi.

Proof. Let A be a guarded modal automaton with dominated clusters. By Proposition 5.17,
A� is equivalent to A and has dominated clusters. The ∃-dominated clusters of A� have a
Mostowski index of (l, h) where l ∈ {1, 2}, and the ∀-dominated clusters have a Mostowski
index of (l, h) where l ∈ {0, 1}. By repeated application of the modifications ·÷ and ·�,
the Mostowski indices of ∃-dominated clusters can be brought down to (1, 2), while the
Mostowski indices of ∀-dominated clusters are brought down to (0, 1). By Proposition 5.19,
Proposition 5.22 and Proposition 5.17, the resulting automaton is equivalent to A.

Low Mostowski indices correspond with low alternation depth. The above theorem
states that the Mostowski index hierarchy collapses for automata with dominated clusters.
When this result is combined with the theorems from section 5.2, we obtain a similar
collapse in the alternation depth hierarchy for µdomML.
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Theorem 5.24. For every µdomML formula there exists an equivalent guarded modal parity
automaton with dominated clusters whose ∃-dominated clusters are Büchi and whose ∀-
dominated clusters are co-Büchi.

Proof. An immediate result of Theorem 5.7, Proposition 5.15 and Theorem 5.23.

Theorem 5.25. For every guarded modal parity automaton with dominated clusters there
exists an equivalent µdomML formula of alternation depth at most 2.

Proof. This follows from Theorem 5.23, Theorem 5.9 and Proposition 5.12. Note that if A
is a guarded modal parity automaton with dominated clusters whose ∃-dominated clusters
are Büchi and whose ∀-dominated clusters are co-Büchi, then the formula ξA will have
alternation depth at most 2.

Theorem 5.26. For every µdomML formula there exists an equivalent µdomML formula of
alternation depth at most 2.

Proof. A direct result of Theorem 5.24 and Theorem 5.25.

60



Chapter 6

A characterization of CTL

When CTL was introduced by Clarke and Emerson (1981), they immediately gave an
interpretation of the CTL operators as fixpoints of one-variable maps. It is indeed relatively
easy to come up with an inductive translation of CTL into the modal µ-calculus using only
one variable. In this chapter, we will give an exact characterization of the expressive power
of CTL, both in terms of a class of modal automata and as a fragment of µML.

6.1 Automata for CTL

In chapter 4 we saw that for every CTL∗ formula there is an equivalent guarded modal
parity automaton with dominated clusters. In this section we will see that CTL can be
characterized by restricting this class of automata to those automata that have singleton
clusters. We start with showing that for a CTLΣ formula ξ the clusters of the automaton
(Aξ � Bξ)γ are of size 1. The key observation is that if ξ is in CTL then the Dam terms
used to construct Aξ contain at most one actual path-formula, and this formula is relatively
simple. First, let us define a measure of complexity that can formalize this with.

Definition 6.1. Define the explosive complexity of a CTL∗ formula ϕ, xc(ϕ), by

xc(`) := 0

xc(ϕ ? ψ) := 5 ∗ xc(ϕ) + 5 ∗ xc(ψ) (? ∈ {∨,∧})
xc(Qϕ) := 0 (Q ∈ {E,A})
xc(Xϕ) := xc(ϕ) + 2

xc(ϕ ? ψ) := 5 ∗ xc(ϕ) + 5 ∗ xc(ψ) + 1 (? ∈ {U,R})

where ` ∈ Lit. /

The number 5 here is arbitrary, but chosen large enough so that non-zero values are
blown up. In this way, if xc(ϕ) > 0 or xc(ψ) > 0 then xc(ϕ ∧ ψ) ≥ 5. A simple inductive
proof shows that xc(ϕ) = 0 for every ϕ ∈ CTL∗Σ. Conversely if ϕ is an actual path-formula,
i.e. ϕ ∈ CTL∗Π \CTL∗Σ, then xc(ϕ) > 0. Lastly CTLΠ \CTLΣ formulas are formulas of the
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form Xα, αUβ and αRβ where α, β ∈ CTLΣ, and this means xc(ϕ) ≤ 2 for every ϕ ∈ CTL.
Again, it is not hard to show that if xc(ϕ) > 2 then ϕ 6∈ CTL.

In this way xc can identify formulas that are small enough to be in CTL. However in
section 3.1 we noted that CTL is not closed under derivatives; the following proposition
ensure that formulas in Cl(CTL) are still small in terms of xc.

Proposition 6.2. For every ϕ ∈ Cl(CTL), xc(ϕ) ≤ 3.

Proof. Let ϕ ∈ Cl(CTL), then by Proposition 3.10 there is a CTL formula ψ such that
ϕ ./ ψ. Now Proposition 3.6 tells us that either ϕ = ψ, in which case xc(ϕ) = xc(ψ) ≤ 2,
or ϕ and ψ both belong to the ./-class of some χ, where χ is either a U-formula or an
R-formula. Looking at the formulas in this cell it becomes clear that only χ can be in
CTL, hence χ = ψ and xc(ψ) = 1, and that xc(ϕ) ≤ xc(χ) + 2. Thus xc(ϕ) ≤ 3.

Now we can count the number of path-formulas that occur in a state of the automaton
Aξ. If ξ is a CTLΣ formula, we obtain that there is at most one path-formula per state.

Definition 6.3. Let ξ be a CTL∗Σ formula. Define the path-formula count of a state
QZ ∈ Aξ, pc(QZ), by pc(QZ) := #{ϕ ∈ Ran(Z) | xc(ϕ) > 0}. /

Proposition 6.4. Let ξ be a CTLΣ formula. For any reachable state a ∈ Aξ, pc(a) ≤ 1.

Proof. It certainly holds for QIZI since ZI is a singleton. Let QZ be reachable and non-
terminal, and suppose that pc(QZ) ≤ 1. Let τ : QZ ⇒ Q1Z1, . . . , QnZn be the applicable
rule for QZ. Let Φ := Ran(Z) and Φi := Ran(Zi).

If it is an extraction rule then there is a formula ϕ ∈ Φ that is being extracted. Note
that ϕ ∈ CTLΣ hence xc(ϕ) = 0. Now Φ1 = Φ \ {ϕ} and Φ2 = {ϕ}, and therefore
pc(Q1Z1) ≤ pc(QZ) ≤ 1 and pc(Q2Z2) = 0.

If it is an unfolding rule then there is a formula ϕ ∈ Φ that is being unfolded, and this ϕ
is of the form ϕ = α?β for some ? ∈ {∨,∧,U,R}. Note that ϕ ∈ Cl(CTL) hence xc(ϕ) ≤ 3
by Proposition 6.2, and since 5 ∗ xc(α) + 5 ∗ xc(β) ≤ xc(ϕ) we get xc(α) = 0 and xc(β) = 0.
If ? ∈ {∨,∧} then Φi ⊆ (Φ \ {ϕ}) ∪ {α, β} for each i, hence pc(QZi) ≤ pc(QZ) ≤ 1.
Otherwise ? ∈ {U,R} and xc(ϕ) = 1, which means xc(ψ) = 0 for every ψ ∈ Φ \ {ϕ}, and
we have Φi ⊆ (Φ \ {ϕ})∪ {α, β,Xϕ} for each i. Thus either (ϕ,Xϕ) ∈ Zi and pc(QZi) = 1
or (ϕ,Xϕ) 6∈ Zi and pc(QZi) = 0.

If it is a modal rule then all the formulas in Φ are X-formulas, but since pc(QZ) ≤ 1
it must be that Φ contains exactly one formula, say Xψ. Now Z1 = {(Xψ, ψ)} hence the
range of Z1 is a singleton. This gives pc(QZ1) ≤ 1.

If the states of the automaton Aξ contain at most one path-formula, then the “lists”
from Bξ contain at most one formula as well. This ensures that the clusters of Aξ �Bξ are
simply rings of silent steps with one guarded step. Thus, when guardifying the automaton
only one state per cluster remains. Also, note that for clusters of size 1 there is no need
for priorities other than 0 or 1.
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Theorem 6.5. For every CTLΣ formula there is an equivalent guarded modal Büchi au-
tomaton that has dominated clusters of size 1.

Proof. Let ξ ∈ CTLΣ. Note that any parity automaton with clusters of size 1 is essentially
a Büchi automaton. Given Theorem 4.26, it is therefore enough to prove that (Aξ � Bξ)γ
has clusters of size 1. This follows from the construction of Definition 4.21 once we have
shown for all sequences (a0, b0) →◦ (a1, b1) →τ . . . →τ (an, bn) →◦ (an+1, bn+1) in Aξ � Bξ
that if (an+1, bn+1) belongs to the same cluster as (a1, b1), then (an+1, bn+1) = (a1, b1).

Now let (a0, b0) →◦ (a1, b1) →τ . . . →τ (an, bn) →◦ (an+1, bn+1) in Aξ � Bξ such
that (an+1, bn+1) belongs to the same cluster as (a1, b1). By Proposition 4.7 there are
Q, Z1, . . . , Zn+1, Ψ1, . . . ,Ψn+1 such that (ai, bi) = (QZi, QΨi) for i > 0. Since the rule
for (a0, b0) is a modal rule, we know that the range of Z0 contains only X-formulas, and
by Proposition 6.4 there can only be one such formula. Thus Z1 = {(Xϕ, ϕ)} for some ϕ.
From this it also follows that either Ψ1 = ∅ or Ψ1 = {ϕ}. Note that since Xϕ ∈ Cl(CTL)
it follows from Proposition 3.10 and Proposition 3.6 that ϕ ∈ CTL.

Suppose this ϕ is of the form αUβ, then the applicable rule for QZ1 must be the
unfolding of ϕ and the resulting continuations will be subsets of {(ϕ, α), (ϕ, β), (ϕ,Xϕ)}.
Since Cl({α, β}) ( Cl({ϕ}), Proposition 4.7 tells us that Z2 must contain {(ϕ,Xϕ)}. Now
if Q = E then Ψ2 = {ϕ} and if Q = A then Ψ2 = ∅. For any i ∈ {2, . . . , n − 1} we have
that the rule for QiZi is not modal, hence (Xϕ,Xϕ) ∈ Zi+1. Also Proposition 6.4 ensures
that no other U-formulas or R-formulas can appear. Thus we will have Ran(Zn) = {Xϕ}
and either Q = E and Ψn = {ϕ} or Q = A and bn = ∅. The rule for QZn is modal
and we find Zn+1 = {(Xϕ, ϕ)} = Z1. Now we have either Q = E and Ψn+1 = {ϕ} or
Q = A and Ψn+1 = ∅. If Q = A then certainly Ψ1 ⊆ {ϕ} ∩ ΦR = ∅. If Q = E then
we have shown, without specifying Ψ1, that Ψn+1 = {ϕ}. But since (QZ1, QΨ1) and
(QZn+1, QΨn+1) belong to the same cluster, this must mean that Ψ1 = {ϕ}. This means
(QZ1, QΨ1) = (QZn+1, QΨn+1), as desired.

The case where ϕ is of the form αRβ is similar. If ϕ would be of the form ` then QZ1

would be terminal, which is impossible since QZ1 → QZ2. If ϕ would be of the form Q′ψ,
then we would have Q′ψ ∈ Cl(Ran(Z1)) \ Cl(Ran(Z2)) which contradicts Proposition 4.7.
If ϕ would be of the form α∨β or α∧β, then since ϕ ∈ CTL it must be that ϕ ∈ CTLΣ, but
then Ran(Z2) ⊆ {α, β} and ϕ ∈ Cl(Ran(Z1))\Cl(Ran(Z2)), which again is impossible.

At the start of chapter 3 we saw that the unfolding of the CTL∗ formula ϕUψ is
ψ ∨ (ϕ ∧ X(ϕUψ)). The construction of Aξ is based on this unfolding, and in fact the
automaton (Aξ � Bξ)γ for ξ := pUq will have a state a with ∆(a) = q ∨ (p ∧ 3a). Now
note that when we restrict Proposition 3.17 to singleton clusters, all ∃-dominated states
will have a transition term that is equivalent to one of the form ∆(a) = ψ∨ (ϕ∧3a). If we
can replace the gML1(A) terms ϕ and ψ with CTLΣ formulas ϕ′ and ψ′, then this suggests
the formula ϕ′Uψ′ as a translation for the state a. Indeed it is easy to turn modal formulas
into CTL formulas, by replacing 3 with EX and 2 with AX. This idea is the basis for the
translation from modal automata to CTL formulas.
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Definition 6.6. Let A = (A,∆,Ω, aI) be a guarded modal Büchi automaton with dom-
inated clusters of size 1. Using induction on cluster-depth, we create for every a ∈ A a
formula ξa ∈ CTLΣ. Let a ∈ A, and suppose that ξb has been defined for every b with
a _ b. Let C be the cluster that a belongs to, then C = {a}. Therefore Proposition 3.17
tells us that ∆(a) is equivalent to either α∨(β∧3a) or α∧(β∨2a), where α and β contain
no occurrences of a. Together with Ω(a), this leads to four different types of states.

1. If ∆(a) ≡ α ∨ (β ∧3a) and Ω(a) = 1, take ξa := E(β′Uα′).

2. If ∆(a) ≡ α ∨ (β ∧3a) and Ω(a) = 2, take ξa := E(α′R(α′ ∨ β′)).

3. If ∆(a) ≡ α ∧ (β ∨2a) and Ω(a) = 2, take ξa := A(β′Rα′).

4. If ∆(a) ≡ α ∧ (β ∨2a) and Ω(a) = 1, take ξa := A(α′U(α ∧ β′)).

Here α′ and β′ are created from α and β by replacing every 3b with EXξb and every 2b
with AXξb. Note that α′, β′ ∈ CTLΣ. Once all ξa have been defined, construct the map
·′ : gML1(A)→ CTLΣ : α 7→ α′ by replacing every occurrence of 3a with EXξa and every
occurrence of 2a with AXξa. /

First we need to show that replacing 3 with EX and 2 with AX works, hence that
α′ ≡ α when α does not contain occurrences of the current state.

Proposition 6.7. Let A be a guarded modal Büchi automaton with dominated clusters of
size 1. Let a ∈ A and write C := {a}. Suppose that ξb ≡ (A, b) for all b ∈ A with a _ b.
Let S be a transition system. For every π ∈ Π(S), every i ∈ N and every ϕ ∈ Sb(∆(a)) that
does not contain occurrences of a, if a player has a winning strategy for E(ϕ′,S)@(π(i), ϕ′)
then that player has a winning strategy for A(A, S, C, π)@(i, ϕ).

Proof. Let π ∈ Π(S), i ∈ N and ψ ∈ Sb(∆(a)). Define s := π(i). Suppose that ∃ has a
winning strategy for E(ψ′,S)@(s, ψ′); the proof for the case where ∀ has a winning strategy
is dual. By Proposition 3.14 we may assume that f is positional. As ∃ and ∀ play a match
of A(A,S, C, π)@(i, ψ), ∃ plays a shadow match of E(ψ′,S)@(s, ψ′) that is consistent with
f , such that real positions (i, ϕ) correspond to shadow positions (s, ϕ′). If ϕ = ϕ1∨ϕ2 then
ϕ′ = ϕ′1 ∨ ϕ′2; here f tells ∃ to choose some (s, ϕ′i) and in the real match ∃ should choose
(i, ϕi). If ϕ = ϕ1 ∧ ϕ2 then ϕ′ = ϕ′1 ∧ ϕ′2, and any move by ∀ to (i, ϕi) can be mimicked
with the move to (s, ϕ′i) in the shadow match. In this way both matches are played until,
after a finite number of moves on both sides, positions (i, ϕ) and (s, ϕ′) are reached where
ϕ is one of `, 3b or 2b.

If ϕ = ` then ϕ′ = `, and ∃ wins both games if S, s  ` and loses both if S, s 1 `;
because the shadow match is consistent with ∃’s winning strategy f , ∃ wins. If ϕ = 3b then
ϕ′ = EXξb. Here f tells ∃ to move to (ρ,Xξb) for some ρ ∈ Π(S, s), and the shadow match
then necessarily continues to (ρ1, ξb). Because ξb ∈ CTLΣ, it then continues to (ρ(1), ξb).
Note that sRρ(1) and b 6∈ C, thus ∃ can choose (ρ(1), b) in the real game. Because the
shadow match is consistent with f we have that (ρ(1), ξb) is a winning position for ∃,
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hence S, ρ(1)  ξb. Since a _ b, we get S, ρ(1)  (A, b). This means that (ρ(1), b) is a
winning position for ∃, hence ∃ wins the real match. If ϕ = 2b then ϕ′ = AXξb. Suppose
∀ moves to (t, b) where sRt. By seriality there is some ρ′ ∈ Π(S, t), so define ρ ∈ Π(S, s)
by taking ρ(0) := s and ρ(k + 1) := ρ′(k). Let shadow-∀ move to (ρ,Xξb), then this
necessarily continues first to (ρ1, ξb) = (ρ′, ξb) and then to (ρ′(0), ξb) = (t, ξb). These moves
are consistent with f , so this is a winning position for ∃ and therefore S, t  ξb. Now
because a _ b we get S, t  (A, b), thus (t, b) must be winning for ∃, hence ∃ wins the real
match.

This leaves us to prove that this translation works. The proof is based on the case
distinction from Definition 6.6.

Theorem 6.8. For every guarded modal Büchi automaton with dominated clusters of size
1 there is an equivalent CTLΣ formula.

Proof. Let A = (A,∆,Ω, aI) be a guarded modal Büchi automaton with dominated clusters
of size 1. Using induction on cluster-depth, we show that (A, a) ≡ ξa for every a ∈ A. This
then gives A ≡ ξaI . Let a ∈ A and write C := {a}. Let S be a transition system, then
we need to show that S, s  ξa iff S, s  (A, a) for all s ∈ S. We apply a case distinction
based on ξa as defined in Definition 6.6.

Suppose (1.), thus ξa = E(β′Uα′). Let ψ := β′Uα′. Let s ∈ S and suppose that
S, s  ξa, then ∃ has a winning strategy f for the game E(ξa, S)@(s, ξa). First, this
strategy takes her to a position (π, ψ) for some π ∈ Π(S, s). While ∃ and ∀ play a match of
A(A,S, C, π)@(0, a), ∃ plays a shadow match of E(ξa,S)@(π, ψ). Whenever the real match
is at (i, a) and the shadow match is at (πi, ψ), they necessarily continue to (i, α∨ (β∧3a))
and (πi, α′ ∨ (β′ ∧ Xψ)) respectively. Here if f instructs ∃ to choose (πi, α′), then she
should move to (i, α) in the real game; otherwise it instructs her to choose (πi, β′ ∧ Xψ)
and she should move to (i, β ∧3a). From there an ∀-move to (i, β) can be mimicked with
a shadow move to (πi, β′), and an ∀-move to (i,3a) can be mimicked with a shadow move
to (πi,Xψ). Note that if the matches are at (i,3a) and (πi,Xψ), then they necessarily
continue to (i+1, a) and (πi+1, ψ) respectively. It cannot be that both matches go through
their respective positions (i, a) and (πi, ψ) infinitely often since then ∃ would lose the
shadow match, which is consistent with f . This would contradict the fact that f is a
winning strategy. If the matches eventually reach positions (i, α) and (πi, α′), then the
shadow match is consistent with f hence (πi, α′) is winning for ∃. Because α′ ∈ CTLΣ, a
match from (πi, α′) necessarily continues to (π(i), α′), which must therefore also be winning
for ∃. By Proposition 6.7 this means (i, α) is winning for ∃, and thus ∃ wins the real match.
If not, then the matches must eventually reach positions (i, β) and (πi, β′), and it similarly
follows that (i, β) is winning for ∃ and that ∃ wins the real match. Either way, we conclude
that (0, a) is a winning position for ∃ in the game A(A,S, C, π). Now by Proposition 3.20
this means that (s, a) is a winning position in the game A(A, S), and thus S, s  (A, a).

Now let s ∈ S and suppose that S, s  (A, a). By Proposition 3.20 there is π ∈ Π(S, s)
such that (0, a) is a winning position for ∃ in the game A(A,S, C, π). While ∃ and ∀ play a
match of E(ξa, S)@(s, ξa), ∃ plays a shadow match of A(A,S, C, π)@(0, a). The first move
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for ∃ should be (π, ψ). Now as above the two matches are played very similarly, with
positions (πi, ψ) corresponding to shadow positions (i, a). Again, it cannot be that both
matches are infinite, for then a would be visited infinitely often while Ω(a) = 1. Thus
both matches must eventually reach positions (πi, ϕ′) and (i, ϕ) where ϕ is either α or β.
The shadow position (i, ϕ) is a winning position of ∃. If it were the case (πi, ϕ′) is not a
winning position for ∃, then by Proposition 3.14 this means it is a winning position for ∀.
By Proposition 6.7 this would mean that (i, ϕ) is winning for ∀, which contradicts that it
is winning for ∃. Therefore (πi, ϕ′) must be a winning position for ∃ and she wins the real
match. Thus we have S, s  ξa.

Suppose (2.), thus ξa = E(α′R(α′ ∨ β′)). Let ψ := α′R(α′ ∨ β′). Let s ∈ S and suppose
that S, s  ξa, then ∃ has a winning strategy f for the game E(ξa,S)@(s, ξa). First, this
strategy takes her to a position (π, ψ) for some π ∈ Π(S, s). While ∃ and ∀ play a match of
A(A,S, C, π)@(0, a), ∃ plays a shadow match of E(ξa,S)@(π, ψ). Whenever the real match
is at (i, a) and the shadow match is at (πi, ψ), they necessarily continue to (i, α∨ (β∧3a))
and (πi, (α′ ∨ β′)∧ (α′ ∨Xψ)) respectively. If ∀ moves to (πi, α′ ∨ β′), then f instructs ∃ to
choose either (πi, α′) or (πi, β′). Now ∃ should choose (i, α) if the former or (i, β ∧3a) if
the latter, and in the latter case shadow-∀ can be made to choose (i, β). If ∀ instead moves
to (πi, α′ ∨ Xψ), then f instructs ∃ to choose either (πi, α′) or (πi,Xψ). Again ∃ should
choose (i, α) or (i, β ∧ 3a) accordingly, and in the latter case shadow-∀ chooses (i,3a).
Note that if the matches are at (i,3a) and (πi,Xψ), then they necessarily continue to
(i + 1, a) and (πi+1, ψ) respectively. As in case (1.), if the matches ever reach (i, α) and
(πi, α′) or (i, β) and (πi, β′), then Proposition 6.7 gives us that ∃ wins both matches. If they
never reach such positions, then both matches are infinite. The only state in A which is
visited infinitely often is a; since Ω(a) = 2 we get that ∃ wins the real match and therefore
S, s  (A, a).

Now let s ∈ S and suppose that S, s  (A, a). By Proposition 3.20 there is π ∈ Π(S, s)
such that (0, a) is a winning position for ∃ in the game A(A,S, C, π). While ∃ and ∀
play a match of E(ξa,S)@(s, ξa), ∃ plays a shadow match of A(A, S, C, π)@(0, a). The first
move for ∃ should be (π, ψ). Once again the two matches are played very similarly, with
positions (πi, ψ) corresponding to shadow positions (i, a). If both matches are infinite,
then the formula ψ occurs infinitely often, and ψ is an R-formula. Thus ∃ wins the real
match, and this means S, s  ξa.

Suppose (3.), thus ξa = A(β′Rα′). Let ψ := β′Rα′. Let s ∈ S and suppose that S, s 1 ξa,
then by Proposition 3.14 ∀ has a winning strategy f for the game E(ξa,S)@(s, ξa). First,
this strategy takes him to a position (π, ψ) for some π ∈ Π(S, s). While ∃ and ∀ play
a match of A(A,S, C, π)@(0, a), ∀ plays a shadow match of E(ξa, S)@(π, ψ). As a dual
to (1.), we find that ∀ wins both matches. Again by Proposition 3.14, this means that
S, s 1 (A, a).

Now let s ∈ S and suppose that S, s 1 (A, a). By Proposition 2.43 this means ∀ has
a winning strategy for A(A,S)@(s, a), and by Proposition 3.20 there is π ∈ Π(S, s) such
that (0, a) is a winning position for ∃ in the game A(A,S, C, π). While ∃ and ∀ play a
match of E(ξa, S)@(s, ξa), ∀ plays a shadow match of A(A,S, C, π)@(0, a). The first move
for ∀ should be (π, ψ). As a dual to (1.), we find that ∀ wins both matches. Again by
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Proposition 3.14, this means that S, s 1 ξa.
Suppose (4.), thus ξa = A(α′U(α′ ∧ β′)). Let ψ := α′U(α′ ∧ β′). Let s ∈ S and

suppose that S, s 1 ξa, then by Proposition 3.14 ∀ has a winning strategy f for the
game E(ξa,S)@(s, ξa). First, this strategy takes him to a position (π, ψ) for some π ∈
Π(S, s). While ∃ and ∀ play a match of A(A,S, C, π)@(0, a), ∃ plays a shadow match of
E(ξa,S)@(π, ψ). As a dual to (2.), we find that ∀ wins both matches. Again by Proposi-
tion 3.14, this means that S, s 1 (A, a).

Now let s ∈ S and suppose that S, s 1 (A, a). By Proposition 2.43 this means ∀ has
a winning strategy for A(A,S)@(s, a), and by Proposition 3.20 there is π ∈ Π(S, s) such
that (0, a) is a winning position for ∃ in the game A(A,S, C, π). While ∃ and ∀ play a
match of E(ξa, S)@(s, ξa), ∀ plays a shadow match of A(A,S, C, π)@(0, a). The first move
for ∀ should be (π, ψ). As a dual to (2.), we find that ∀ wins both matches. Again by
Proposition 3.14, this means that S, s 1 ξa.

6.2 CTL as a fragment of the modal µ-calculus

In the previous section we obtained a characterization of CTL as a class of modal automata
with dominated clusters, by restricting the size of the clusters to 1. In this section we will
do the same with µdomML by looking at the one-variable fragment. Because we work
with clean formulas we cannot really restrict the number of variables to 1; we will instead
demand that fixpoint subformulas don’t have free variables.

Definition 6.9. Let µML[1] denote the fragment of µML containing those formulas for
which no fixpoint subformulas have free variables. /

We write µ1ML[1] for the intersection of µ1ML and µML[1], and µdomML[1] for the
intersection of µdomML and µML[1]. Note that although the fragment µ1ML is just as
expressive as µML, this does not hold when restricting the variables that can be used.
As a particular example, the µML[1] formula µx.(p ∧33x) has typical fixpoints but it is
inexpressible in µdomML[1]. In order to see that µML[1] indeed corresponds to a fragment
of µML where only one variable is used, it is enough to realize that ./ξ-classes can contain
at most one bound variable.

Proposition 6.10. Let ξ be a µML[1] formula. Every non-trivial ./ξ-class contains exactly
one fixpoint formula.

Proof. Because bound variables are the only formulas that have non-subformula deriva-
tives, any ./ξ equivalence class must contain at least one bound variable in order to be
non-trivial. Let x ∈ BV(ξ) be part of a non-trivial ./ξ equivalence class Φ. There is
ϕ ∈ Φ \ {x} with ϕ ∈ ∇ξ(x) and this ϕ can only be λxx.ϑx and thus λxx.ϑx ∈ Φ. Let
λyy.ϑy ∈ Φ. Because ξ is a µML[1] formula, FV(λxx.ϑx) = ∅ and FV(λyy.ϑy) = ∅. By
Proposition 5.14 this means that λyy.ϑy must be a subformula of λxx.ϑx and that λxx.ϑx
must be a subformula of λyy.ϑy. This is only possible if λxx.ϑx = λyy.ϑy.
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To show that the logics CTL∗ and µdomML[1] have the same expressive power, we can
use the translations between modal automata that we already have. The logic µ1ML[1]
corresponds very neatly to the class of guarded modal automata with singleton clusters,
and dominance carries over.

Theorem 6.11. For every µdomML[1] formula there exists an equivalent guarded modal
parity automaton with dominated clusters of size 1.

Proof. Let ξ ∈ µdomML[1] and let Aξ be the guarded modal parity automaton as con-
structed in Definition 5.4. By Proposition 5.15 this automaton has dominated clusters. By
Proposition 5.6 and Proposition 6.10, the clusters of Aξ are of size 1.

Theorem 6.12. For every guarded modal parity automaton with dominated clusters of size
1 there exists an equivalent µdomML[1] formula.

Proof. Let A be a guarded modal parity automaton with dominated clusters of size 1
and let ξA be the guarded modal parity automaton as constructed in Definition 5.8. By
Proposition 5.12 this formula has typical fixpoints. Let ϕ be a fixpoint subformula of ξA,
then there is a cluster C and a set I ∈ I such that ϕ = λIxI .ϑI . Because C has size 1,
I = {{1}} and thus I = {1}. Now FV(ϑI) = {xI} and thus FV(ϕ) = ∅. This shows that
ξA ∈ µdomML[1].

Theorem 6.13. The logics CTL and µdomML[1] are equally expressive.

Proof. By Theorem 6.5, Theorem 6.8, Theorem 6.11 and Theorem 6.12.
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Chapter 7

Conclusion

In this paper we gave evaluation game semantics for CTL∗ and we introduced a class of
modal parity automata that CTL∗ formulas can be translated into. We characterized this
class of automata as a fragment of the modal µ-calculus. The class of automata in question
is based on a syntactic property we called ‘dominance’, and it carries over in a natural way
when going from modal automata to µML formulas and back.

We also showed that for a guarded modal parity automaton with dominated clusters,
the Mostowski index can be reduced to be at most 2. In particular, ∃-dominated and
∀-dominated clusters can be given Büchi and co-Büchi acceptance conditions respectively.
From a µML perspective, this means that the fragment consisting of µML formulas with
dominated fixpoints is equivalent to that fragment up to alternation depth 2. This is not
entirely surprising since Dam (1990) translates CTL∗ into a fragment of µML that has
alternation depth 2.

Lastly, we gave a complete characterization of CTL as a class of modal parity automata
by restricting to clusters of size 1, and as a fragment of µML by restricting to the one-
variable fragment of µdomML. This illustrates the simplicity of CTL, or conversely the
relative strength of the one-variable modal µ-calculus.

Discussion

First a note on complexity. The automaton construction in chapter 4 is exponential in size,
as its underlying set of states is based on the powerset of the closure. On the other hand
the guardification given by Definition 4.21 does not increase the size of the automaton. As
remarked by Lenzi (2005), “any translation [from CTL∗ to µML] must be exponentially
complicated, because the modal µ-calculus is decidable in exponential time, whereas CTL*
is decidable in no less than double exponential time.” It was shown by Vardi and Wolper
(1985) that the satisfiability problem for CTL∗ is logspace hard for deterministic double
exponential time, and then by Emerson and Halpern (1999) that the satisfiability problem
for µML can be solved in deterministic exponential time. Because modal automata are so
closely related to µML formulas, a non-exponential translation would be impossible.
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The class of automata that CTL∗ is translated into, i.e. guarded modal parity au-
tomata with ∃-dominated Büchi clusters and ∀-dominated co-Büchi clusters, is currently
too broad to characterize CTL∗. This is given by the following proposition, together with
Theorem 5.24 and Theorem 5.23. Note that νx.(p∧33x) ≡ νx.(p∧3νy.3x) ∈ µdomML.

Proposition 7.1. The formula νx.(p ∧33x) is not expressible in CTL∗.

This can be proven using Ehrenfeucht-Fräıssé games for CTL∗. Alternatively, if we
consider only linear transition systems over {p}, which can be seen as ℘({p})-streams,
then νx.(p∧33x) denotes the language L that contains all streams for which every even-
numbered symbol is {p}. On linear models CTL∗ and LTL coincide, which is equivalent
to first-order logic as shown by Kamp (1968). McNaughton and Papert (1971) show that
first-order logic on linear models corresponds with the class of star-free regular languages
– that is, regular languages that can be constructed without the use of Kleene-star but
with the use of complementation. The language L is not definable as a star-free language,
hence cannot be expressible in CTL∗.

Diekert and Gastin (2008) show that LTL corresponds to the class of nondeterministic
Büchi stream automata that are counter-free; given �w as defined in Definition 2.33, a
nondeterministic stream automaton B is counter-free if b �wm b implies b �w b for all
b ∈ B, all words w and all m ≥ 1. If we can view a guarded modal automata with
dominated clusters as a ℘(Prop)-stream automaton, we can apply the notion of counter-
freeness to it. By Proposition 3.17 the transition term of an ∃-dominated state a is a
disjunction where each disjunct is of the form ϕ∧3a′. If we treat subformulas 3b and 2b
where a _ b as extra propositional letters, then every such formula ϕ has a propositional
extension JϕK ∈ ℘(Prop). Now we can write a→JϕK a

′ when the disjunct ϕ∧3a′ occurs in
the transition term of a. The current constructed automata are not immediately counter-
free, but this might be obtained by changing the Dam rules for U and R formulas. Currently
the E-rule for the unfolding of a U-formula is based on αUβ ≡ β∨(α∧X(αUβ)), but it could
also be based on αUβ ≡ β∨(α∧¬β∧X(αUβ)) where ¬β is as defined in Definition 2.8. The
resulting modal automaton might be counter-free when seen as a ℘(Prop)-automaton. A
better understanding of counter-free behaviour in modal automata might lead to a complete
characterization of CTL∗ as a class of automata.

Even then, there is something inherently tricky about creating CTL∗ formulas for modal
automata with non-singleton clusters. As a specific example, take A = (A,∆,Ω, a) where
A = {a, b}, ∆(a) = ∆(b) = 3b ∨ (p ∧ 3a), Ω(a) = 2 and Ω(b) = 1; note that A is a
guarded modal parity automaton and that its only cluster, {a, b}, is ∃-dominated. During
an acceptance match of A, it is certainly possible to visit both states a and b infinitely
often. A seemingly reasonable approach to creating formulas for A in some logic is to create
formulas ϕa and ϕb such that an evaluation match visits ϕa whenever the acceptance match
visits a and visits ϕb whenever the acceptance match visits b. For this to be possible, we
would need ϕa ./ ϕb.

Translating A to µML, we could first give ξ′a = νxa.(3xb∨ (p∧3xa)) ∈ µML({xb}) and
ξ′b = µxb.(3xb ∨ (p∧3xa)) ∈ µML({xa}). We can see this as a system of equations in two
variables xa and xb, and the solution to this system is ξa = νxa.(3ξ

′
b∨(p∧3xa)) ∈ µML(∅),
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which is obtained by replacing xb in ξ′a with ξ′b. Note that ξa ./ ξ
′
b because ξ′b contains xa

as a variable that is bound by ξa, so that an evaluation match for ξa can go from ξa to ξ′b
and then via xa back to ξa. Solving a system of equations is essentially what is done in the
construction as given in Definition 5.8.

In a similar attempt for CTL∗, we could first create the formulas ψ′a = (Xxb)R(Xxb ∨ p)
and ψ′b = >U(p ∧ Xxa) if we allow xa and xb as extra proposition letters that we will later
replace by CTL∗ formulas. However, when creating ψa = (Xψ′b)R(Xψ′b ∨ p) by replacing
the variable xb in ψ′a with ψ′b, the variable xa remains free in ψa, because nothing in CTL∗

can bind it. In fact, there is no CTL∗ formula χ that we can replace xa with in order to
get ψa . ψ

′
b . χ . ψa, because the ./ equivalence class of the R-formula ψ′a cannot contain

the U-formula ψb, as stated by Proposition 3.6. In this light CTL∗ seems to be inable to
solve systems of equations with more then one variable, and completely different approach
would have to be taken to find the CTL∗ formula that corresponds to A, which is EGFp.

Open questions

First and foremost, analyzing and sharpening the automaton construction given in this
paper might lead to complete characterization of CTL∗ as a class of automata. It might
be worth exploring the notion of counter-free modal automata as discussed above.

When given the class of automata that corresponds to CTL∗, the class that corresponds
to CTL is obtained by restricting the clusters to be of size 1. If we can detect when it
is possible for the automaton generated by a CTL∗ formula to have singleton clusters
and when this is impossible, this might lead to an effective characterization of the CTL∗

formulas that are also expressible in CTL.
Moller and Rabinovich (2001) show that CTL∗ corresponds to the bisimulation invariant

fragment of Monadic Path Logic on trees. It should be possible to reprove those results
by giving effective translations between MPL and the class of automata that characterizes
CTL∗. Furthermore, restricting these translations to automata with singleton clusters
might expose a fragment of MPL that corresponds to CTL.
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