
Closed Sets of Higher-Order Functions

MSc Thesis (Afstudeerscriptie)

written by

Evan Marzion
(born August 20, 1992 in West Allis, Wisconsin, USA)

under the supervision of Dr. Piet Rodenburg, and submitted to the Board
of Examiners in partial fulfillment of the requirements for the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:
June 28th, 2016 Dr. Maria Aloni

Dr. Benno van den Berg
Dr. Piet Rodenburg
Prof. Dr. Ronald de Wolf

Abstract

In universal algebra, clones may be viewed as a way of studying definability
between functions within the presence of certain natural operations, namely
projection and composition. We show how the simply typed lambda calculus
provides a suitable framework for extending this study to higher-order functions
as well. We define what we call a combinatory clone, a higher-order analogue of
regular clones, and establish some basic results about them. Inspired by Post’s
classification of the boolean clones, boolean combinatory clones are studied.
Finally, we consider an extension of the simply typed lambda calculus with
product types, and show how they do not affect anything from the point of view
of combinatory clones.

Acknowledgements

First and foremost, I would like to thank my supervisor Piet Rodenburg for
all of the work he put into advising me on this thesis. He encouraged me to
devise and study a problem that had almost no previous work done on it, when
it would have been perfectly understandable for him to instead suggest that I
head down a more well-trodden path. I am grateful for all of the helpful com-
ments, suggestions, assistance, and words of encouragement he offered me over
the course of our weekly meetings. All in all, writing this thesis was a pleasant
experience, and I believe that much of that is owed to having a supervisor like
Piet.

I would like to also thank the three other members of my committee, Maria
Aloni, Benno van den Berg, and Ronald de Wolf, for taking time out of their
no-doubt busy schedules to read through this thesis and offer their criticisms.

Lastly, I would like to thank my parents Mark and Wendy for all the support
they have given me over these last two years (and all the support they gave in
the years before that, for that matter).

Contents

Introduction 3

1 Preliminaries 6
1.1 Clones . 6
1.2 Boolean Clones . 7

1.2.1 False-Preserving Functions 7
1.2.2 True-Preserving Functions 7
1.2.3 Monotone Functions . 7
1.2.4 Self-dual Functions . 7
1.2.5 Affine Functions . 8

1.3 The Typed Lambda Calculus . 8
1.3.1 Syntax . 8
1.3.2 Set-based Semantics . 9
1.3.3 Long Normal Forms . 10
1.3.4 Combinatory Completeness 10

2 Combinatory Clones 11
2.1 Definitions and Basic Results . 12

2.1.1 The Lattice of Combinatory Clones 13
2.2 Relating Clones to Combinatory Clones 13
2.3 Connections to Logic . 15

2.3.1 Intuitionistic Implicational Logic 15
2.3.2 The Single-Typed Case 16
2.3.3 The Multi-Typed Case . 20

3 The General Case with Finite Sets 21
3.1 Zero or one elements . 21
3.2 Two or more elements . 22
3.3 Infinite Sets . 24

4 The Boolean Case 25
4.1 Basic Results . 25

4.1.1 Non-injectivity of Φ . 25
4.1.2 Bases in CCl(B) . 27

1

4.1.3 A Lindenbaum lemma for CCl(B) 28
4.2 Categorical characterizations of the coatomic boolean clones . . . 28

4.2.1 False- and True-Preserving Functions 29
4.2.2 Monotone Functions . 30
4.2.3 Self-dual Functions . 30
4.2.4 Affine functions . 30

4.3 False- and True-Preserving Functions 31
4.3.1 Completeness of TPflat . 32

4.4 Monotone Functions . 36
4.5 Self-dual Functions . 39

4.5.1 G-sets . 43

5 The Addition of Products 46
5.1 Simply Typed Lambda Calculus with Products 46

5.1.1 Syntax . 46
5.1.2 Semantics . 48
5.1.3 Congruent Types . 48

5.2 Combinatory Clones with Products 51
5.2.1 Relating Combinatory Clones with and without products 51

Conclusion 54

Bibliography 55

2

Introduction

Motivation

In mathematical logic and computer science, lambda calculi have been exten-
sively studied for their expressive power as systems in which to do mathemat-
ics and computation. In computability theory, the untyped system is one of
the most well-known Turing-complete models of computation. In type theory,
typed lambda calculi have been developed as foundational systems for construc-
tive mathematics. In programming language theory, both typed and untyped
lambda calculi serve as the basis for the design of many programming languages,
especially those falling under the functional paradigm.

From a less foundational perspective, one may view a system such as the simply-
typed lambda calculus as an elegant and flexible notational system for defining
new functions from old, especially in the case of higher-order1 functions. As an
example, consider the operation of pointwise addition on functions. Given some
algebraic structure (R,+) and X some set, we can define pointwise addition
on RX with some equation like (f u g)(x) := f(x) + g(x). Using the lambda
calculus, we would write something like

u := λfX→RgX→RxX .f(x) + g(x).

Conceptually, this has the advantage of clarifying precisely what the free vari-
ables f, g, x are doing in the above expression, while also isolating u as an entity
itself in the domain RX ×RX → RX .

While this example may not be terribly impressive, suppose that we take the
level of abstraction one step further:

pointwise := λ+R×R→R fX→RgX→RxX .f(x) + g(x).

Already at this point, mathematicians are arguably more likely to think of this
more as a pattern of construction (“every binary operation on R can naturally
be made into a binary operation on RX”) than as an object in its own right
(“there is an operation in the domain (R×R→ R)→ (RX ×RX → RX) such

1Functions which accept other functions as arguments.

3

that...”). We can then see the benefit of lambda notation in defining higher-
order operations which mathematicians would otherwise have difficulty writing
out in full.

When we say that we are taking a less foundational perspective, we mean that
we take for granted the existence of sets and functions. In the above example,
for instance, we do not concern ourselves with the existence of the operation +
(or the existence of R,X, or even function spaces, for that matter). We only
concern ourselves with how functions may be combined using the simply-typed
lambda calculus in order to define other functions. To put it another way, we
are interested in relative definability between functions, elements, and higher-
order operations, as opposed to absolute definability of these objects within
some foundational framework.

This suggests a study of the simply-typed lambda calculus as a sort of “algebra
of functions”. One of the earliest works which studied the interdefinability of
functions within a notational framework was Post’s classification of the boolean
clones[5]. Post was motivated by questions concerning the interdefinability of
connectives in classical propositional logic. Since classical propositional logic
is complete with respect to the two-element boolean algebra, this question
could naturally be rephrased in terms of finitary operations on the two-element
boolean domain. While the language of propositional logic naturally suggests a
sort of notational system (sentence letters as boolean variables, connectives as
functions being applied to expressions containing these variables), it is not im-
mediately obvious how this notion of definability can be captured algebraically.
For instance, if we have some ternary connective C(x, y, z), it is intuitively clear
that we can define from it the binary connective C(x, y, x). However, it is not
necessarily clear what steps were needed to derive a definition of the second
from the first. A satisfactory answer to this question comes from the notion of
a clone, a set of finitary operations which contain the projections and is closed
under composition.

By virtue of currying, we may always view functions of the form Xk → X
as also taking the form X → . . . → X → X. From this perspective, clones
represent just the non-higher-order portion of the functions represented by the
simply-typed lambda calculus. We then endeavor to extend the study of clones
to include these higher-order functions as well.

Overview of this work

In Chapter 1, we review basic definitions and facts about clones and the simply-
typed lambda calculus. In Chapter 2, we establish notions of definability be-
tween higher-order functions. As in the case of clones, there are two equivalent
notions: one notational (given by the lambda calculus) and one algebraic (what

4

we call a combinatory clone, based on combinatory logic). Basic results on
combinatory clones and how they relate to regular clones are established. In
Chapter 3, combinatory clones over finite sets are studied. In Chapter 4, we
tackle the specific problem of classifying boolean combinatory clones, with an
eye toward a classification of the coatomic clones similar to Post’s. In Chapter 5,
we briefly consider the problem of extending combinatory clones with additional
type constructors.

5

Chapter 1

Preliminaries

1.1 Clones

Fix a family of sets X = (Xα)α∈A.

Definition 1.1.1. By a clone over X, we shall mean a collection C of functions
of the form Xα1

× . . .×Xαn → Xβ such that

1. Every projection function πni : Xα1
× . . .×Xαn → Xαi given by the rule

〈x1, . . . , xn〉 7→ xi

is in C

2. If f : Xβ1
× . . . × Xβm → Xγ is in C and g1, . . . , gm are functions in C

of type gi : Xα1
× . . . × Xαn → Xβi for each i, the composed function

f ◦ (g1, . . . , gm) : Xα1
× . . .×Xαn → Xγ given by the rule

〈x1, . . . , xn〉 7→ f (g1(x1, . . . , xn), . . . , gm(x1, . . . , xn))

is in C.

Note that our definition of a clone differs from the standard presentation in two
ways: First, we allow for the possibility of multiple sorts, whereas clones are
traditionally taken to be over a single set. Second, constants or nullary func-
tions are included, whereas they are often omitted in standard presentations.

It is easy to see that the clones over X always form a bounded lattice, which
we denote by Cl(X). We shall denote the top (the set of all finitary operations
over X) and bottom (the set of all projections) clones by C(X) and Π(X), re-
spectively.

6

1.2 Boolean Clones

Let B = {⊥,>} be the two-element boolean domain. In [5], Post gives a com-
plete characterization of the lattice of the clones1 over B. He shows that the
lattice of boolean clones is countable and has a simple structure. He also shows
that every clone is finitely generated. In particular, he describes the five coatoms
of the lattice, which we list here:

1.2.1 False-Preserving Functions

A function f : Bk → B is said to be false-preserving if

f(⊥, . . . ,⊥) = ⊥.

A basis for the false-preserving functions is given by {∨,⊕} (where ⊕ denotes
exclusive disjunction). If nullary functions are considered, the constant ⊥ must
be added.

1.2.2 True-Preserving Functions

The true-preserving functions are similarly defined. A basis for them is given
by {∧,→}, and of course we must include > if nullary functions are considered.

1.2.3 Monotone Functions

Give B the obvious order with ⊥ ≤ >. We can then endow Bk with the product
ordering. A function f : Bk → B is then said to be monotone if

x ≤ y⇒ f(x) ≤ f(y).

A basis for the monotone functions is given by {∨,∧,⊥1,>1}, the latter two
being the unary constant functions. If nullary functions are considered, we may
replace the unary constant functions with their actual constants.

1.2.4 Self-dual Functions

A function f : Bk → B is said to be self-dual if

f(¬x1, . . . ,¬xk) = ¬f(x1, . . . , xk).

A basis for the self-dual functions is given by {¬,Maj}, where Maj denotes the
ternary majority function:

1Although he chose to omit nullary functions from his definition of a clone.

7

Maj(x, y, z) := (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z).

1.2.5 Affine Functions

If v,w are k-length boolean vectors, their dot product v·w is given by
⊕k

i=1 vi∧
wi.

A function f : Bk → B is then said to be affine if there is a v ∈ Bk and b ∈ B
such that

f(x) = v · x⊕ b.

A basis for the affine functions is given by {⊕,>1}. If nullary functions are
considered, we may replace >1 with just >.

1.3 The Typed Lambda Calculus

We briefly provide a formulation of the simply-typed lambda calculus and recall
some basic facts about it. Since we will largely be using the lambda calculus as
a means of denoting functions and elements, our focus will lie more on the se-
mantic side of things. For a more thorough overview of typed lambda calculus,
especially with respect to syntactic matters, the reader may consult [1].

1.3.1 Syntax

Types

Given a set of atomic types A, we let T denote the set of types freely generated
by A and →:

T ::= T → T | α (α ∈ A).

Convention 1.3.1. We take → to be right-associative. That is, α → β → γ
will stand for α→ (β → γ), and more generally σ1 → σ2 → . . . σn−1 → σn will
stand for σ1 → (σ2 → (. . . (σn−1 → σn))).

The follow fact about types is simple to show, but useful enough that it warrants
statement:

Claim 1.3.2. Let σ ∈ T . Then there is a natural number N (possibly zero, in
the case that σ is atomic), types σ1, . . . , σN ∈ T , and α ∈ A such that

σ = σ1 → . . .→ σN → α.

8

Terms

To every σ ∈ T we assume an inexhaustible supply of variables xσ, yσ, zσ
We then build up terms inductively in the following manner:

1. Each variable xσ is a term of type σ.

2. If f is a term of type σ → τ and s is a term of type σ, then fs is a term
of type τ .

3. If t is a term of type τ , then λxσ.t is a term of type σ → τ .

If t is a term of type τ , we shall then write t : τ . Free variables and bound
variables are defined in the standard fashion, and terms without free variables
will be called closed terms.

There are two ways to simplify a term which preserve the inherent meaning of
the term:

• The beta reduction: (λx.M)N β [N/x]M .

• The eta reduction: λx.Mx η M (when x is not free in M).

Both reductions may also occur within subterms. We will more generally use
T β T ′ and T η T

′ to mean that T ′ can be obtained from T by a finite
sequence of beta (eta) reductions. If T ′ can be obtained from T by a sequence
of both types of reductions, we write T βη T

′.

1.3.2 Set-based Semantics

Let X = (Xα)α∈A be an assignment of set domains to each atomic type. We
may inductively define the set domain Xσ for arbitrary σ ∈ T :

Xα := Xα, α ∈ A
Xσ→τ := XXσ

τ .

If we have that s ∈ Xσ, we will equivalently write s : σ.

Let g be a partial mapping of variables xσ into Xσ (for arbitrary σ ∈ T). By
g[yτ 7→ T] we shall mean the mapping which results from modifying g in order
to send the variable yτ to the element T ∈ Xτ .

Given a partial variable mapping g and an arbitrary term t : τ , we assign to it
an element JtKg ∈ Xτ in the following inductive manner:

1. JxσKg := g(x)

2. If f : σ → τ and s : σ, then JfsKg := JfKg(JsKg)

9

3. If t : τ , then Jλxσ.tKg is the function given by the rule

a 7→ JtKg[xσ 7→a].

Convention 1.3.3. We will employ the symbol λ as a function-defining oper-
ator at set level, whereby the third rule above can be given as

Jλx.tKg := λa.JtKg[x7→a].

As we said before, beta and eta reductions preserve the meaning of terms. We
make this claim explicit:

Claim 1.3.4. Suppose M βη N . Then for any X and g we have that JMKg =
JNKg.

1.3.3 Long Normal Forms

It will occasionally be useful to assume that our lambda terms are in certain
syntactic normal forms.

Definition 1.3.5. Let σ = σ1 → . . .→ σn → α, α atomic. We say that s : σ is
in long normal form if s = λxσ1

1 . . . xσnn .vT1 . . . Tm for v some variable (either
free or one of the xi’s) and T1, . . . , Tm each in long normal form.

Claim 1.3.6. For every s : σ there is an s′ : σ such that s′ is in long normal
form and for all assignments g we have that JsKg = Js′Kg.

Proof. See [1].

1.3.4 Combinatory Completeness

Given types σ, τ, ρ, the so-called K- and S-combinators are defined as follows:

Kσ,τ := λxσyτ .x : σ → τ → σ

and

Sσ,τ,ρ := λxσ→τ→ρyσ→τzσ.xz(yz) : (σ → τ → ρ)→ (σ → τ)→ σ → ρ.

It is a classic result that the K- and S-combinators form a basis for the closed
terms of the simply-typed lambda calculus. To be precise:

Claim 1.3.7. Let t : τ be a closed term. Then there is a t′ : τ built by repeated
application of the K’s and S combinators such that for any X, JtK = Jt′K.

Throughout the remainder of this work, we shall let Kσ,τ := JKσ,τ K and Sσ,τ,ρ :=
JSσ,τ,ρK.

10

Chapter 2

Combinatory Clones

We are interested in formulating a notion of definability between elements and
functions within

⋃
σ∈T Xσ. Intuitively, when we say that t is definable from a set

of elements S, we mean that there is a lambda term T which uses s1, . . . , sn ∈ S
as variables which represents t. To be more precise:

Definition 2.0.1. Let s1 ∈ Xσ1
, . . . , sn ∈ Xσn , t ∈ Xτ . We say that t is

definable from s1, . . . , sn if there is a lambda term T : τ with free variables
xσ1

1 , . . . , xσnn such that

JT K[x1 7→s1,...,xn 7→sn] = t.

Note that as a consequence that the free variables of T must be limited to
x1, . . . , xn.

When establishing definability, we will not be so pedantic:

Convention 2.0.2. When giving definitions between elements, we will employ
notation which freely mixes the syntax of the lambda calculus with names for
elements in X. For example, if we wished to show that boolean conjunction
is definable from boolean disjunction and boolean negation, we will write out
something like

∨ = λxy.¬(¬x ∧ ¬y)

when technically we should write something like

∨ = Jλxy.f(g(fx)(fy))K[f 7→¬,g 7→∧].

We immediately obtain the following result which allows us to control the oc-
currences of S in a definition of t:

Lemma 2.0.3. Let t ∈ Xτ be definable from s1 ∈ Xσ1
, . . . , sn ∈ Xσn . Then

there is a closed lambda term (in the strict sense that it contains no variables
representing the si) M : σ1 → . . .→ σn → τ such that

11

t = Ms1 . . . sn.

Proof. Let T : τ represent t with occurrences of s1, . . . , sn represented by free
variables x1, . . . , xn, respectively. We can then capture these variables in lambda
abstractions to obtain M :

M := λxσ1
1 . . . xσnn .T.

As in the case of standard clones, we seek a second notion of definability which
is more algebraic in nature. Our first notion based on lambda notation has
the advantage that it allows us to easily write out definitions between elements.
However, it is difficult to reason inductively about the structure of definitions.
The fundamental difficulty comes from lambda abstraction: if we look at a
closed term λx.T , we pass from a (potentially) un-closed term (T) to closed
one (λx.T). So if we wish to prove something along the lines of “all functions
definable from the class of functions C have property P” and λx.T denotes such
a function, we will not be able to apply our inductive hypothesis on the term T ,
since it no longer denotes a function. At best, we could attempt to rephrase the
result over arbitrary terms with free variables, but this is messy and complicates
matters.

Instead, we shall develop a second notion of definability based on combinators,
which is equivalent to our first notion by virtue of combinatory completeness.

2.1 Definitions and Basic Results

Given a set of functions and elements G ⊆
⋃
σ∈T Xσ, let Gσ := G ∩Xσ. That

is, Gσ is the set of elements of G which have type σ.

Definition 2.1.1. A combinatory clone over X is a set of functions and
elements G ⊆

⋃
σ∈T Xσ such that

1. for all σ, τ ∈ T the function Kσ,τ ∈ Gσ→τ→σ

2. for all σ, τ, ρ ∈ T the function Sσ,τ,ρ ∈ G(σ→τ→ρ)→(σ→τ)→σ→ρ

3. for all σ, τ ∈ T , if f ∈ Gσ→τ and s ∈ Gσ, then fs ∈ Gτ .

Definition 2.1.2. Given S ⊆
⋃
σ∈T Xσ, the closure of S, denoted by S, is the

least combinatory clone containing S.

Definition 2.1.3. B ⊆
⋃
σ∈T Xσ is said to be a basis for a combinatory clone

G if B = G.

12

Lemma 2.1.4. For any t ∈ Xτ and S ⊆
⋃
σ∈T Xσ, t is definable from S if and

only if t ∈ S.

Proof. ⇒ Let t be definable from S. By lemma 2.0.3, there is a closed term M
and elements s1, . . . sn ∈ S such that

t = Ms1 . . . sn.

Since M is closed, it follows that there is an M ′ built up from K- and S-
combinators which is extensionally equivalent. Thus,

t = M ′s1 . . . sn.

We see now that t can be derived solely by application of the K- and S-
combinators to some elements of S. Thus, t ∈ S.

⇐ Let t ∈ S. We induct on the membership of t in S: If t ∈ S, then t
represents itself. If t is either Kσ,τ or Sσ,τ,ρ, then it is represented by Kσ,τ , Sσ,τ,ρ,
respectively. Finally if t = t1t2, by inductive hypothesis, t1, t2 are represented
by terms T1, T2, respectively. Thus, t is represented by T1T2.

2.1.1 The Lattice of Combinatory Clones

Let G(X) :=
⋃
σ∈T Xσ. In the case that A contains a single atomic type (which

we shall always denoted by 0) and X consists of the single set X, we will make
a slight abuse of notation and write G(X).

Claim 2.1.5. G(X) is a combinatory clone.

Claim 2.1.6. Let G,H be combinatory clones. Then G ∩ H is a combinatory
clone.

Definition 2.1.7. Given G,H combinatory clones, let G ∨ H := G ∪ H.

Definition 2.1.8. Let Λ(X) := {Kσ,τ}σ,τ∈T ∪ {Sσ,τ,ρ}σ,τ,ρ∈T , the lambda-
definable functions.

Let CCl(X) denote the set of all combinatory clones over X.

Claim 2.1.9. CCl(X) is a bounded lattice when ordered by inclusion, with top
element given by G(X), bottom element given by Λ(X), meets given by ∩, and
joins given by ∨.

2.2 Relating Clones to Combinatory Clones

Definition 2.2.1. The flat types F are those which can be generated by the
following grammar:

F ::= α | α→ F (α ∈ A)

13

Any element of G(X) with flat type can naturally be thought of as an element
of C(X) through the typical uncurrying operation. Specifically, if f : Xα1 →
. . . → Xαn → Xβ , there is a related function f̂ : Xα1

× . . . ×Xαn → Xβ . We
will not always be so explicit in differentiating these two functions, and will
typically choose to conflate a function with its curried or uncurried form, when
applicable.

Lemma 2.2.2. Let G ∈ CCl(X). Then the flat elements of G form a clone
over X.

Proof. First, the projection functions πni : Xα1
× . . . Xαn → Xαi are given by

the lambda term

λxα1
1 . . . xαnn .xi.

If f ∈ Gβ1→...→βn→γ and g1, . . . , gn are such that gi ∈ Gα1→...→αm→βi , then the
term

λxα1
1 . . . xαmm .f(g1x1 . . . xm) . . . (gnx1 . . . xm)

corresponds to f ◦ (g1, . . . , gn).

In light of this lemma, we give the following definition:

Definition 2.2.3. Let Φ : CCl(X) → Cl(X) denote the map which takes
G ∈ CCl(X) to the clone of its flat elements.

Of course, we also have a natural way to produce a combinatory clone from a
standard clone: Given C ∈ Cl(X), we may curry the elements of C and take the
closure of the resulting set.

Definition 2.2.4. Let Ψ : Cl(X) → CCl(X) denote the map which takes
C ∈ Cl(X) to C ∈ CCl(X).

Obviously, C ⊆ Φ(Ψ(C)). Does the reverse inclusion hold? Perhaps the presence
of the higher-order lambda notation allows us to define additional flat functions.
Fortunately, we may use long normal forms to see that this isn’t the case.

Lemma 2.2.5. Let T : α (α an atomic type) be a term with free variables
among t1, . . . , tn of flat type and x1 : β1, . . . , xn : βn of atomic type. For any
f1, . . . , fn we have that the function

Jλxβ1

1 . . . xβnn .T K[t1 7→f1,...,tn 7→fn]

belongs to the clone generated by f1, . . . , fn.

Proof. By claim 1.3.6 we may suppose that T is in long normal form. We then
induct on the structure of the term. There are two cases to consider: First, T
could just be a variable of atomic type, in which case T after lambda abstractions
will be interpreted as a projection function. Secondly, T could begin with a flat
free variable ti. We then have that T = tiT1 . . . Tm for T1, . . . , Tm of atomic

14

type. By inductive assumption, T1, . . . , Tm correspond to functions g1, . . . , gm
in the clone generated by f1, . . . , fn. We then see that

Jλxβ1

1 . . . xβnn .T K[t1 7→f1,...,tn 7→fn] = Jλxβ1

1 . . . xβnn .tiT1 . . . TmK[t1 7→f1,...,tn 7→fn]

= fi ◦ (g1, . . . gm).

Lemma 2.2.6. Φ(Ψ(C)) ⊆ C for any C ∈ Cl(X).

Proof. Suppose f : Xβ1
× . . .×Xβn → Xα ∈ Φ(Ψ(C)). There is then a term F ,

free variables t1, . . . , tn and flat functions f1, . . . , fn ∈ C such that

JF K[t1 7→f1,...tn 7→fn] = f.

Again, by 1.3.6 we may assume that F is of the form λxβ1

1 . . . xβnn .T for T of
atomic type containing as free variables t1, . . . , tn and x1, . . . xn. The claim then
follows from the previous lemma.

Corollary 2.2.7. Φ(Ψ(C)) = C for any C ∈ Cl(X).

2.3 Connections to Logic

Through the well-known “propositions as types” paradigm, many type theories
can be seen as corresponding to certain systems of logic. We briefly recall the
nature of this correspondence in the case of the simply-typed lambda calculus,
and mention some applications to the study of combinatory clones.

2.3.1 Intuitionistic Implicational Logic

Let L denote the set of formulas built up from atomic sentences A and the
connective →. Intuitionistic Implicational Logic may be given by a Hilbert-
style proof system over the language L with the inference rule modus ponens
and the following two axiom schemes:

1. ϕ→ (ψ → ϕ).

2. (ϕ→ (ψ → χ))→ ((ϕ→ ψ)→ (ϕ→ χ)).

Formulas in L are naturally recast as types in T and vice-versa, and in fact
we will entirely conflate the two from here on out. Axioms 1 and 2 correspond
to the types of the K- and S-combinators, and modus ponens corresponds to
function application.

15

Claim 2.3.1. For any σ ∈ T , σ is a tautology of intuitionistic implicational
logic if and only there is a closed term S : σ.

Claim 2.3.2. Let G be a combinatory clone. Define TG := {σ | Gσ 6= ∅}. Then
TG is a deductively closed theory.

Claim 2.3.3. Let T ⊆ T be a deductively closed theory. Then
⋃
τ∈T Xτ is a

combinatory clone.

Proof. The inclusion of the K- and S-combinators is given by the fact that their
types correspond to tautologies, and closure under application is given by the
fact that T is closed under modus ponens.

In light of this fact, we give the following definition:

Definition 2.3.4. For any deductively closed T , GT (X) will denote the combi-
natory clone of elements with types in T . In particular, Gtaut(X) will denote the
combinatory clones of elements with types which are tautologies. Combinatory
clones of this form will be called logical.

Claim 2.3.5. T 7→ GT (X) is a lattice embedding.

Definition 2.3.6. Let G be a combinatory clone. We say that G is extensional
if for any σ, τ ∈ T and f, g ∈ Xσ→τ , if f ∈ Gσ→τ and f |Gσ = g|Gσ , then
g ∈ Gσ→τ .

Lemma 2.3.7. Let G be extensional. Then G is either a logical combinatory
clone, or it is covered by a logical combinatory clone.

Proof. Clearly, G ⊆ GTG . If G = GTG we are done, so suppose instead that
G (GTG . Let s 6∈ Gσ for σ ∈ TG . We must show that G ∪ {s} = GTG .

G ∪ {s} ⊆ GTG is obvious. Suppose then that t : τ ∈ GTG . By definition of TG ,
there must be some f ∈ Gσ→τ . Define f∗ : σ → τ as follows:

f∗(x) :=

{
t x = s

f(x) otherwise.

Since s 6∈ Gσ, we have that f |Gσ = f∗|Gσ . By extensionality of G, we then have
that f∗ ∈ G. Thus, t = f∗s ∈ G ∪ {s}.

2.3.2 The Single-Typed Case

Of particular interest to us will be the case where there is only one atomic
type which we will denoted by 0 (A = {0}). In this case, the underlying logic
becomes essentially boolean:

Claim 2.3.8. Let σ ∈ T . Then σ is logically equivalent to either 0 or 0→ 0.

Corollary 2.3.9. There are only two logical combinatory clones in the single-
typed case, G(X) and Gtaut(X).

16

The following two claims are useful:

Claim 2.3.10. Let σ = σ1 → . . .→ σn → 0 ∈ T be a tautology. Then there is
some i such that σi is a non-tautology.

Claim 2.3.11. Let σ = σ1 → . . .→ σn → 0 ∈ T be a non-tautology. Then for
all i, σi is a tautology.

Proof. See Proposition 2.4.4 of [1].

Bases for tautological clones

Suppose that X is our sole base set. Given some b ∈ X, b has more defining
power than λxX .b simply by virtue of its type: 0 → 0 is a tautology, while 0
isn’t, and so b cannot be recovered from λx.b without using some other element
of non-tautological type. In a sense, however, that is the only difference between
the two: b and λx.b will define the same elements which are tautologies. We
make this claim precise:

Lemma 2.3.12. Let B be a basis for G. Then {λxX .b | b ∈ B} is a basis for
G ∩ Gtaut(X).

Proof. Let t : τ be any element in G ∩ Gtaut(X), with τ = τ1 → . . . → τn → 0.
Since τ is a tautology, by 2.3.10 there is some τi which is not a tautology. Thus,
there is some closed term T : τi → 0.

Since t ∈ G, there are b1, . . . , bm ∈ B and a closed term M such that t =
Mb1 . . . bn. Fully eta-expanding yields

t = λxτ11 . . . xτnn .Mb1 . . . bmx1 . . . xn.

This gives us access to the bound variable xi, allowing us to form the term
Txi : 0. We can then modify the above equation as follows:

t = λxτ11 . . . xτnn .M((λx.b1)(Txi)) . . . ((λx.bm)(Txi))x1 . . . xn.

Thus, t is defined in terms of λx.b1, . . . ,λx.bm.

Pairing

An old result due to Grzegorczyk[4] says that the simply typed lambda cal-
culus with with a single atomic type has product-like types with terms which
mimic the behavior of pairing and projection functions. A proof may be found
in Proposition 1.4.21 of [1]. As Grzegorczyk was studying functionals over the
natural numbers, he naturally allowed his terms to include a constant 0 of type
0. This is unsatisfactory for our purposes, and so we present a modest improve-
ment which avoids using a free variable of type 0:

17

Claim 2.3.13. Let σ, τ ∈ T . Then there is a type σ×τ ∈ T and closed terms
P : σ → τ → σ×τ , P1 : σ×τ → σ, and P2 : σ×τ → τ such that any two terms
s : σ, t : τ ,

P1(Pst) βη s

P2(Pst) βη t

Proof. Let σ = σ1 → . . . → σn → 0 and τ = τ1 → . . . → τm → 0 be given.
There are three cases to consider: i) σ, τ are both non-tautologies; ii) σ, τ are
both tautologies; and iii) one is a tautology and the other is a non-tautology.

Case i: σ and τ are both non-tautologies.

Let σ×τ := (0→ 0→ 0)→ σ1 → . . .→ σn → τ1 → . . .→ τm → 0.

By 2.3.11, σ1, . . . , σn, τ1, . . . , τm are all tautologies. Therefore, there are closed
terms s1, . . . , sn, t1 . . . tm of each such type. We then let

P := λfσgτh0→0→0xσ1
1 . . . xσnn yτ11 . . . yτmm .h(fx1 . . . xn)(gy1 . . . ym)

P1 := λPσ×τλxσ1
1 . . . xσnn .P (λx0y0.x)x1 . . . xnt1 . . . tm

P2 := λPσ×τλyτ11 . . . yτmm .P (λx0y0.y)s1 . . . sny1 . . . ym.

We then have that for any s : σ, t : τ ,

P1(Pst) =
(
λP x̄.P (λxy.x)x̄t̄

)(
(λfghx̄ȳ.h(fx̄)(gȳ))st

)
 β

(
λP x̄.P (λxy.x)x̄t̄

)(
λhx̄ȳ.h(sx̄)(tȳ)

)
 β λx̄.

(
λhx̄ȳ.h(sx̄)(tȳ)

)
(λxy.x)x̄t̄

 β λx̄.(λxy.x)(sx̄)(tȳ)

 β sx̄

 η s

and similarly in the case of P2.

Case ii: σ and τ are both tautologies.

By 2.3.10, there are σi, τj which are non-tautologies. Thus, τj → σ1, . . . , τj →
σn, σi → τ1, . . . , σi → τm are all tautologies, and so there are corresponding
closed terms s1, . . . , sn, t1, . . . , tm of each of these types. We define P as before,
but the definitions for P1,P2 need slight modifications to ensure that types
match:

18

P1 := λPσ×τλxσ1
1 . . . xσnn .P (λx0y0.x)x1 . . . xn(t1xi) . . . (tmxi)

P2 := λPσ×τλyτ11 . . . yτmm .P (λx0y0.y)(s1yj) . . . (snyj)y1 . . . ym.

Note that the xi and yj variables are bound in each case, so these terms are
indeed closed. The proofs for correctness work much like before.

Case iii: σ is a tautology and τ is a non-tautology.

We see here that we must modify σ×τ , since we will need it to be a non-
tautology, and yet it would be a tautology if we were to use the previous defini-
tion. The issue is that at least one of the σi’s is a non-tautology. The simplest
way to turn all of these into tautologies is to simply precede them with a 0;
thus, our product in this case will be

σ×τ := (0→ 0→ 0)→ (0→ σ1)→ . . .→ (0→ σn)→ τ1 → . . .→ τm → 0.

Since 0→ σ1, . . . , 0→ σn, τ1, . . . , τm are all tautologies, fix closed terms s1, . . . , sn
and t1, . . . , tm of corresponding type. We then let

P := λfσgτh0→0→0x0→σ1
1 . . . x0→σn

n yτ11 . . . yτmm .h(f(x1(gȳ) . . . (xn(gȳ))(gy1 . . . ym)

P1 := λPσ×τλxσ1
1 . . . xσnn .P (λx0y0.x)(λz0.x1) . . . (λz0.xn)t1 . . . tm

P2 := λPσ×τλyτ11 . . . yτmm .P (λx0y0.y)s1 . . . sny1 . . . ym.

It may seem strange that g(ȳ) is present in the arguments of f , but we only
need it as something of type 0 that can fill in the holes left by the newly added
abstractions before each σi. The proof of P2’s correctness works much as before,
but let us show why P1 works:

P1(Pst)

=
(
λP x̄.P (λxy.x)(λz.x1) . . . (λz.xn)t̄

)(
(λfghx̄ȳ.h(f(x1(gȳ) . . . (xn(gȳ))(gȳ))st

)
 β λx̄.

(
(λhx̄ȳ.h(s(x1(tȳ)) . . . (xn(tȳ))(tȳ))

)
(λxy.x)(λz.x1) . . . (λz.xn)t̄

 β λx̄.(λxy.x)(s((λz.x1)(tt̄)) . . . ((λz.xn)(tt̄))(tt̄)

 β λx̄.sx1 . . . xn

 η s.

Corollary 2.3.14. Let B be a finite basis for a combinatory clone G. Then G
is generated by a single element.

Proof. All the elements of B can be paired together into one by the previous
result.

19

Nullary Functions in Clones

Propositional logic sheds a bit of light on the nature of the nullary functions
in standard clones. Logically speaking, the type Xk → X is a tautology when
k > 0 and is just X when k = 0. It is then easy to justify their exclusion,
since they may in some sense be viewed as an exceptional case or an annoying
technicality. In the higher-order case, however, we have an infinitude of types
which are non-tautologies, and so it becomes far more difficult to justify their
exclusion. For this reason, and for the fact that the general problem is more
easily stated with non-tautological types included, we choose not to exclude
them in either the standard or combinatory clone cases.

2.3.3 The Multi-Typed Case

In the single-typed case, we saw that there are only two distinct types modulo
logical equivalence, and as a consequence, there are only two deductively closed
theories and two logical combinatory clones. Of course, this does not hold if we
assume more than one atomic type. However, there is something to say if the
set of atomic types is finite.

It is a classic result due to Diego[2] that intuitionistic implicational logic with
finitely many atoms generates only finitely many sentences:

Claim 2.3.15. Let A be finite, and let L be the set of sentences generated by
A and →. Then there are only finitely many sentences of L, modulo logical
equivalence.

Proof. See [6].

Corollary 2.3.16. Let A be finite. Then for any X, there are only finitely
many logical combinatory clones over X.

Pairing

It is not difficult to see that we cannot obtain pairing in the case where there
are two or more atomic types. Logically, σ×τ is the greatest lower bound on σ
and τ . However, for α 6= β atomic, α and β don’t even share a common lower
bound, much less a greatest lower bound.

20

Chapter 3

The General Case with
Finite Sets

We now restrict our attention to the case when X is a family of finite sets.
Our main result will be that the elements of Cl(X) are enough to generate all
elements of CCl(X):

Theorem 3.0.1. Suppose X is a family of finite sets. Then G(X) is generated
by C(X).

For simplicity’s sake, we consider separately the cases where X does not or does
contain a set with two elements.

3.1 Zero or one elements

Lemma 3.1.1. Suppose X is a family of sets which are either empty or single-
tons. Then the flat elements C(X) generate all of G(X).

Proof. It is easy to see that for every σ ∈ T , Xσ is either empty or a singleton.
In case Xσ is a singleton, we shall denote its unique element by uσ. If Xσ is
empty, for arbitrary τ we denote the empty map from Xσ → Xτ by eσ,τ .

If every set in X is a singleton, the proof is simple: For arbitrary σ = σ1 →
. . .→ σn → α (α atomic), we have that

uσ = λxσ1
1 . . . xσnn .uα

and since uα is a flat term, uσ is then definable from C(X).

21

Thus, we may assume that at least one set in X, which we will call Xα, is empty.

Our proof will go more smoothly if we instead prove the following, which of
course entails our previous claim:

For any σ ∈ T , if Xσ is non-empty, then uσ is definable from C(X), and if σ
is empty, then the empty maps eα,σ, eσ,α are both definable from C(X).

We now proceed naturally by induction on σ. If σ is atomic, then uσ, eα,σ, and
eσ,α are all of flat type, and thus belong to C(X).

Suppose that σ = τ1 → τ2. If Xτ2 is a singleton, then

uτ1→τ2 = λxτ1 .uτ2

which is definable from C(X) since uτ2 is definable from C(X) by inductive hy-
pothesis.

Suppose then that Xτ2 is empty. If Xτ1 is also empty, then

uτ1→τ2 = λxτ1 .eα,τ2(eτ1,αx)

where eα,τ2 , eτ1,α are definable from C(X) by inductive hypothesis.

Finally, we must consider the case where Xτ2 is empty and Xτ1 is non-empty.
Since Xτ1→τ2 is then empty, we must give definitions for eα,τ1→τ2 and eτ1→τ2,α.
They are given by

eα,τ1→τ2 = λxαyτ1 .eα,τ2x

eτ1→τ2,α = λfτ1→τ2 .eτ2,α(fuτ1)

where eα,τ2 , eτ2,α, uτ1 are definable from C(X) by inductive hypothesis.

3.2 Two or more elements

We now tackle the case where at least one set in X has two distinct elements.
The essential ideas and constructions behind our proof were already noted
by Zaionc in [7], where he establishes the definability of all Church-encoded1

boolean functionals in the simply typed lambda calculus.

1That is, booleans are given the type 0 → 0 → 0, with ⊥ := λx0y0.x and > := λx0y0.y.
Zaionc’s proof uses only the definability of the two constants along with a functionally complete
set of connectives (for instance, ∧ and ¬ given by the terms λp0→0→0q0→0→0x0y0.px(qxy)
and λp0→0→0x0y0.pyx, respectively). Therefore, his result can be viewed as equivalent to
ours within our framework.

22

Suppose Xα has cardinality at least two, with 0 6= 1 ∈ Xα. Let u : α→ α→ α
denote the function defined by

ua1a2 :=

{
1 a1 = a2 = 1

0 otherwise.

Since u is flat, we are free to use it. For any σ ∈ T , let Eqσ : σ → σ → α
denote the function defined by

Eqσs1s2 :=

{
1 s1 = s2

0 otherwise.

Claim 3.2.1. For any β ∈ A, Eqβ ∈ C(X).

Claim 3.2.2. For any σ, τ ∈ T , Eqσ→τ is definable from C(X), Eqτ and all
of the elements of Xσ.

Proof. Since Xσ is finite, extensional equality between two functions can be
written out in full. Suppose Xσ = {s1, . . . , sN}. Then

Eqσ→τ := λfσ→τgσ→τ .
lN

i=1
(Eqτ (fsi)(gsi)).

For any σ ∈ T , let Ifσ : α→ σ → σ → σ denote the function defined by

Ifσas1s2 :=

{
s1 a = 1

s2 otherwise.

Claim 3.2.3. For any σ ∈ T , Ifσ is definable from C(X).

Proof. Induction on σ. If σ is atomic, then Ifσ is flat. Suppose then that
σ = τ1 → τ2. We then have that

Ifσ→τ = λaαfτ1→τ2gτ1→τ2xτ1 .Ifτ2a(fx)(gx)

where the definability of Ifτ2 follows from inductive hypothesis.

We are now ready to show how elements of G(X) can be defined in terms of
these operations.

Claim 3.2.4. For any β ∈ A, Xβ ⊆ C(X).

Claim 3.2.5. For any σ, τ ∈ T , the elements of Xσ→ are definable from C(X),
Eqσ, and all of the elements of Xσ and Xτ .

Proof. Let f : σ → τ . Since Xσ is finite, we may represent f by a table:

23

x fx
s1 t1
...

...
sN tN

We then give the following definition of f :

f := λxσ.Ifτ (Eqσxs1)t1

Ifτ (Eqσxs2)t2

...

Ifτ (EqσxsN−1)tN−1 tN .

The idea behind this construction is on input x to run through the list s1, . . . , sN ,
and after finding some si which is equal to x, output the corresponding ti.

Lemma 3.2.6. For any σ ∈ T , all elements of Xσ are definable from C(X).

Proof. As before, it helps to instead prove a modified statement:

For any σ ∈ T , Eqσ and all elements of Xσ are definable from C(X).

This naturally follows by induction on σ using 3.2.1, 3.2.2, 3.2.4, and 3.2.5.

3.3 Infinite Sets

It is not difficult to see that issues of cardinality prevent us from establishing
a similar result in the case of infinite sets. Consider the single-typed case with
set ω. A basic cardinality calculation shows that |C(ω)| = 2ℵ0 . The number of
lambda terms using metavariables among C(ω) is then also size 2ℵ0 . However,

ωω
ω

already has cardinality 22ℵ0 2.

2In fact, |G(ω)| = iω , considerably larger than |C(ω)| = i1.

24

Chapter 4

The Boolean Case

We now focus our attentions on CCl(B), the combinatory clones over the single
set B, which is essentially the simplest non-trivial case to consider. Throughout
this chapter, we take A = {0} with 0 corresponding to B. In particular, we
work toward a classification of the coatomic combinatory clones in hopes of a
classification of the bases of CCl(B) similar to Post’s classification of the func-
tionally complete sets of connectives.

4.1 Basic Results

4.1.1 Non-injectivity of Φ

In 2.2.7, we saw that the clones over a family of sets X inject into the combi-
natory clones over X via the map Ψ. We now provide a simple counterexample
which shows that Φ is not injective.

Throughout this section, let F : (0→ 0)→ 0→ 0 denote the following function:

f F(f)
λb.⊥ λb.⊥
λb.b λb.b
¬ λb.⊥

λb.> λb.>

Lemma 4.1.1. F is not lambda definable.

Proof. Let T : (0 → 0) → 0 → 0 be a closed lambda term. By 1.3.6, suppose
it is in long normal form. It is well known that the long normal forms of type
(0→ 0)→ 0→ 0 are λf0→0x0.fkx for k ∈ ω, the so-called Church numerals.

It is not hard to see that the Church numerals cannot map ¬ to λx.⊥:

25

Jλfx.fkxK(¬) =

{
λx.x k even

¬ k odd.

Therefore, no such T can represent F.

Lemma 4.1.2. Let T : 0 be a term whose free variables are among F : (0 →
0)→ 0→ 0 and x1, . . . , xn : 0. Then there is an xi such that for all assignments
g we have that

JT Kg[F 7→F] = g(xi).

Proof. Assume T is in long normal form. We now induct on the structure of
T . If T is just a variable, then it must be some xi, and so the claim follows
immediately. The other option is that T begins with F , in which case we have
that T = F (λy.U)V , for U, V : 0 in long normal form. By inductive hypothesis,
U and V each correspond to some free variables of type 0. Let xj be the free
variable for V . For U , there are two cases to consider: First, the variable could
be the y from the neighboring lambda abstraction. In that case we have that

JT Kg[F 7→F] = JF (λy.U)V Kg[F 7→F]

= F(Jλy.UKg[F 7→F])(JV Kg[F 7→F])

= F(λb.JUKg[F 7→F,y 7→b])(g(xj))

= F(λb.b)(g(xj))

= (λb.b)(g(xj)

= g(xj).

U might also correspond to one of the xi’s. In that case,

JT Kg[F 7→F] = JF (λy.U)V Kg[F 7→F]

= F(Jλy.UKg[F 7→F])(JV Kg[F 7→F])

= F(λb.JUKg[F 7→F,y 7→b])(g(xj))

= F(λb.g(xi))(g(xj))

= (λb.g(xi))(g(xj))

= g(xi).

Corollary 4.1.3. The only flat functions definable from F are the projections.

Proof. Suppose G is a flat term with at most one free variable F : (0 → 0) →
0→ 0. As always, we may assume G is in long normal form:

26

G = λx0
1 . . . x

0
n.T

where T is of type 0 with free variables among F and x1, . . . , xn. Applying the
previous lemma to T , we obtain some variable xi which corresponds to it. Thus,

JGK[F 7→F] = Jλx1 . . . xn.T K[F 7→F]

= λb1 . . . bn.JT K[F 7→F,x1 7→b1,...,xn 7→bn]

= λb1 . . . bn.bi

which is of course a projection.

We can summarize these results as follows:

Corollary 4.1.4. Λ(B) 6= {F}, but Φ(Λ(B)) = Φ({F}) = Π(B).

4.1.2 Bases in CCl(B)

We briefly restate some of our previous results in terms of combinatory clones
over B.

Claim 4.1.5. Let B be a basis for C(B). Then B is a basis for G(B).

Proof. This follows from 3.0.1.

Claim 4.1.6. G(B) is generated by a single element.

Proof. Take a finite basis for C(B), e.g. {⊥,→}. By the previous lemma, it is
also a basis for G(B). The claim then follows from 2.3.14.

Claim 4.1.7. Let B be a basis for C(B) save for the two boolean constants (that
is, B generates all functions of arity 1 or higher; for example, {¬,∧}). Then B
is a basis for Gtaut(B).

Proof. By 4.1.5 and 2.3.12, {λx.⊥,λx. →} are a basis for Gtaut(B). Since B
generates all flat non-constants, both are definable from B.

Let us conclude by showing that Gtaut(B) is a coatom:

Claim 4.1.8. Gtaut(B) is a coatom.

Proof. Let σ be a non-tautology and let s ∈ G(B)σ be arbitrary. Let t ∈ G(B)τ
be any element. Clearly, σ → τ must be a tautology, so λxσ.t ∈ Gtaut(B). Thus,
t = (λx.t)s ∈ Gtaut(B) ∪ {s}. This hold for arbitrary t, so Gtaut(B) ∪ {s} =
G(B).

27

4.1.3 A Lindenbaum lemma for CCl(B)

Lemma 4.1.9. Let G (H ∈ CCl(B) with H generated by a single element.
Then there is a combinatory clone G′ covered by H such that G ⊆ G′.
Proof. We employ a standard Lindenbaum-like argument: Let H be generated
by t and let {ti}i∈ω be an ordering of the elements of H. Define Gn inductively:

G0 := G

Gn+1 :=

{
Gn t ∈ Gn ∪ {tn}
Gn ∪ {tn} otherwise.

Let G′ :=
⋃
i∈ω Gi. Obviously, G ⊆ G′ ⊆ H. Furthermore, G′ (H, since t 6∈ G′:

Suppose t = tN . Since t 6∈ G, if t were in G′ then it would’ve been added at
stage N + 1 of this process, which clearly isn’t possible. The real work then is
showing that G′ is a combinatory clone. Of course, G contains all K’s and S’s,
since those were already present in G at stage 0, so it remains to be seen that
G′ is closed under application. Let ti, tj ∈ G′ and suppose that tk = titj 6∈ Gi.
The only way this can be is that tk wasn’t added at stage k + 1, meaning that
t is definable from tk, the elements of G, and some tk1 , . . . , tkn ∈ Gk. Consider
M := max{i, j, k1, . . . , kn}. At stage M + 1, adding tM would yield all the
necessary ingredients to define t, since GM+1 would then have all elements of G,
each such tkl , and ti, tj which are sufficient to define tk. Therefore, tM 6∈ GM ,
which contradicts our assumption that tM was added.

Finally, G′ is covered by H: Let tk ∈ H \ G′. We have that tk was not added at
stage k + 1, so t is definable from tk and Gk ⊆ G′. Since t generated all of H,
we then have that G′ ∪ {tk} = H.

Corollary 4.1.10. Let C be coatomic in Cl(B). Then there is some G coatomic
in CCl(B) such that Φ(G) = C.

Proof. By 2.2.7, Φ(Ψ(C) = C. By 4.1.9, we may find some G such that Ψ(C) ⊆ G
and G is covered by G(B). Clearly, we have that

C = Φ(Ψ(C)) ⊆ Φ(G)

and since C is a coatom, Φ(G) must either be C or C(B). Since C(B) generates
all of G(B), we can conclude that Φ(G) = C.

4.2 Categorical characterizations of the coatomic
boolean clones

While 4.1.9 establishes the existence of a coatomic combinatory clone for each
coatomic clone in Cl(B), the proof provides us with little extra information. In
particular, the following questions remain unanswered:

28

• Do the coatoms in CCl(B) have nice characterizations? If so, what are
they?

• Can there be multiple coatoms in CCl(B) for a given coatom in Cl(B)
(in the same way that a maximal consistent extension of a theory need
not be unique)?

In 1.2, we saw that the coatoms of CCl(B) have nice, fairly natural charac-
terizations. The obvious thing to do is then to see if these characterizations
can be extended to higher-order type. However, it is not always clear how to
“correctly” generalize a property from flat to higher-order. Take, for instance,
the false-preserving functions. Every type has a bottom element of sorts: For
σ = σ1 → . . . → σn → 0, take ⊥σ := λxσ1

1 . . . xσnn .⊥. We might then expect
that false-preserving functions from Bσ → Bτ be given as those f for which
f(⊥σ) = ⊥τ . As it turns out, this is not the correct definition, but it is still
helpful to understand why it does not work. To that end, we begin by exploring
how clones can be understood in terms of structures over B (specifically, those
that lie in a category with finite products).

Claim 4.2.1. Let C be a set-based1 category with finite products and X an object
in C whose underlying set is B. Then the collection⋃

i∈ω
Hom(Xk, X)

reinterpreted as elements of C(B) is a clone.

Proof. Standard.

In fact, every clone over a family of sets can be seen as arising in this manner,
albeit from a possibly quite artificial category. Nonetheless, we will now observe
that the five coatomic clones as given by Post have very natural categorical
interpretations:

4.2.1 False- and True-Preserving Functions

Recall that a pointed set is just a set X paired with an element of x0 ∈ X. A
homomorphism between pointed sets 〈X,x0〉 and 〈Y, y0〉 is a function f : X → Y
such that f(x0) = y0. Pointed sets have products given by 〈X,x0〉 × 〈Y, y0〉 :=
〈X × Y, 〈x0, y0〉〉.

Let B⊥ := 〈B,⊥〉.
Claim 4.2.2. The false-preserving functions of arity k are precisely Hom(Bk

⊥,B⊥).

Proof. Notice that the distinguished point in Bk
⊥ is just the vector 〈⊥, . . . ,⊥〉.

Of course, the true-preserving functions have a similar characterization.

1To be precise, there is a forgetful functor from C into Set.

29

4.2.2 Monotone Functions

Given posets 〈X,≤〉, 〈Y,�〉, a homomorphism between them is a function f :
X → Y which preserves order: x ≤ x′ ⇒ f(x) � f(x′). Posets have products
given by the product orderings. Let B≤ denote B with the standard ordering:
⊥ ≤ >.

Claim 4.2.3. The monotone functions of arity k are precisely Hom(Bk
≤,B≤).

4.2.3 Self-dual Functions

By a unary system we mean a set X together with a unary operation fX :
X → X. Given unary systems 〈X, fX〉, 〈Y, fY 〉, a homomorphism between them
is a function g : X → Y such that for all x ∈ X, g(fX(x)) = fY (g(x)). Unary
systems have products given by 〈X, fX〉 × 〈Y, fY 〉 := 〈X × Y, fX × fY 〉, with

(fX × fY)〈x, y〉 = 〈fX(x), fY (y)〉.

Let B¬ := 〈B,¬〉.

Claim 4.2.4. The self-dual functions of arity k are precisely Hom(Bk
¬,B¬).

Proof. The unary operation corresponding to Bk
¬ is the function given by the

rule

〈x1, . . . , xk〉 7→ 〈¬x1, . . . ,¬xk〉

and so a function f : Bk → B is a unary system homomorphism from Bk
¬ to

B¬ if and only if for all x1, . . . , xk

f(¬x1, . . . ,¬xk) = ¬f(x1, . . . , xk).

4.2.4 Affine functions

Let 〈M, ∗, 1M 〉, 〈N, ◦, 1N 〉 be monoids. A function f : M → N is said to be
affine if there is a monoid homomorphism ϕ : M → N and a b ∈ N such that
for all x ∈M , f(x) = ϕ(x) ◦ b.

Monoids with affine functions form a category with products given by the usual
product on monoids.

Let B⊕ := 〈B,⊕,⊥〉, the monoid whose operation is given by exclusive disjunc-
tion.

Claim 4.2.5. The affine functions of arity k are precisely Hom(Bk
⊕,B⊕) in the

category of monoids with affine maps.

30

Proof.
⇒ Suppose f(x) = v ·x⊕b . Observe that x 7→ v ·x is a monoid homomorphism
by virtue of the linearity of the dot product.

⇐ Suppose f(x) = ϕ(x) ⊕ b is affine and arity k. For 1 ≤ i ≤ k, let ei denote
the vector whose entries are all ⊥ except in the i position where it is >.

Let v := 〈ϕ(e1), . . . , ϕ(ek)〉. We now claim that for all x, v · x = ϕ(x). Since
both are homomorphisms and since {e1, . . . , ek} generate all of Bk

⊕, it suffices
to show that for each i that v · ei = ϕ(ei). This is immediate.

With these characterizations in hand, we look to extend them to the higher-
order types. In addition to finite products, we will expect that our categories
of interest have exponential objects, i.e. are Cartesian closed.

4.3 False- and True-Preserving Functions

In the previous section, we saw that false- and true-preserving (flat) functions
correspond to the category of pointed sets. Unfortunately, this category is not
Cartesian closed. Therefore, our idea from the start of 4.2 won’t work. However,
if we instead think of ⊥ (in the false-preserving case) not as a distinguished point
but as a distinguished subset, we are able to define exponentials:

Definition 4.3.1. A set with subset is a set X paired with some distinguished
SX ⊆ X.

A homomorphism from 〈X,SX〉 to 〈Y, SY 〉 is a function f : X → Y for which
f(SX) ⊆ SY .

Sets with subsets form a Cartesian closed category with exponentials given by

YX := 〈Y X ,Hom(X,Y)〉.
With this in mind, we generate the generalized false-preserving functions from
the object 〈B, {⊥}〉. To be precise:

Definition 4.3.2. FP, the combinatory clone of false-preserving functions is
defined inductively:

FP0 := {⊥}
FPσ→τ := {f : Bσ → Bτ | f(FPσ) ⊆ FPτ}.

The true-preservers are similarly defined:

Definition 4.3.3.

TP0 := {>}
TPσ→τ := {f : Bσ → Bτ | f(TPσ) ⊆ TPτ}.

31

Since they are nearly identically defined, we will only prove a given result for
one of either FP or TP.

Lemma 4.3.4. FP is a combinatory clone.

Proof. FP is closed under application by design, so it suffices to check that the
K and S combinators belong to FP.

Suppose s ∈ FPσ. We must check that Kσ,τs = λy.s ∈ FPτ→σ. Suppose
then that t ∈ FPτ . We then have that Kst = s ∈ FPσ by assumption. Thus,
Ks ∈ FPσ→τ , and so K ∈ FPσ→τ→σ.

A no less simple but much more tedious argument shows that an arbitrary S
combinator belongs to FP as well.

Let us be sure that our generalized version of false-preserving encompasses the
old version:

Lemma 4.3.5. Let FPflat denote the FP functions of flat type. For any f ,
f ∈ FPflat ⇔ f⊥ . . .⊥ = ⊥.

Proof. Induction on the arity of f . If f is nullary, the statement is immediate.
Suppose then that f is n+ 1-ary.

⇐ Suppose f ∈ FPflat. By definition, this means that f⊥ is an n-ary function in
FPflat. By inductive assumption, this means that f⊥⊥ . . .⊥ = (f⊥)⊥ . . .⊥ =
⊥.

⇒ Suppose that f⊥⊥ . . .⊥ = (f⊥)⊥ . . .⊥ = ⊥. By inductive assumption, this
means that f⊥ ∈ FPflat. Thus, f sends every element in FP0 (⊥) to one in FP
(f⊥). Thus, f ∈ FPflat.

It is not hard to see that FP is extensional: We only require a given FP function
to send FP elements to FP elements, but that function can do whatever it wants
with the non-FP elements. Thus, we obtain the following result:

Lemma 4.3.6. FP is a coatom.

Proof. By 2.3.7, FP is either a logical combinatory clone or covered by one.
Clearly, it isn’t logical (since ⊥ ∈ FP but > 6∈ FP) and it cannot be covered by
Gtaut(B) (since ⊥ ∈ FP). Thus, FP must be covered by G(B).

4.3.1 Completeness of TPflat

Close examination of the proof of 3.0.1 shows that in the boolean case, the only
connectives needed are conjunction, equivalence, the if-then-else operator, and
the two boolean constants. Since each of these except for the false constant are

32

truth-preserving, one might wonder if the proof can be modified to show that
the flat truth-preservers are enough to generate all truth-preservers. Indeed,
this is exactly what we endeavor to do.

Immediately, one finds some obvious difficulties with this approach. First, to
define a function of type σ → τ , we needed definitions for all elements of σ
and τ . Since our inductive assumption will not give us the non-TP elements of
these types, we will need to work around this. However, we know that the flat
truth-preservers with the single addition of ⊥ is functionally complete, and so
for any element s : σ there is a TPflat-definable function T s : 0 → σ such that
T s⊥ = s.

The idea now is this: if our function f maps the non-TP element s to a (possi-
bly non-TP) element t, we can use the fact that s is non-TP in order to give a
definition of ⊥ from it. We can then use ⊥ and T t in order to define t.

We shall do this using the indicator functions for TP. Given a type σ, let IsTPσ :
σ → 0 be the function given by

IsTPσ x =

{
> x ∈ TPσ

⊥ otherwise.

Claim 4.3.7. IsTP0 is TPflat-definable.

Proof. Obviously, IsTP0 = λx0.x.

Claim 4.3.8. IsTPσ→τ is TPflat-definable from IsTPτ and the elements of
TPσ.

Proof. Suppose s1, . . . , sN are the elements of TPσ. We then have that
IsTPσ→τ = λfσ→τ

∧N
i=1 IsTPτ (fsi).

The second issue we encounter is that the old proof requires that we have an op-
eration Eqσ : σ → σ → 0 which mimics equality. However, we quickly see that
this won’t be definable from truth-preserving functions alone: We might have
two terms s 6= s′ ∈ TPσ; however, if Eqσ is truth-preserving, then Eqσ ss

′ = >.

To get around this, we need to augment our domain of truth values with a new
false constant which itself is truth-preserving. The simplest way to do this is
to take our new truth value domain to be 0→ 0, with λx0.⊥,λx0.> interpreted
as false and true as expected, but with λx0.x additionally interpreted as false
(negation remains uninterpreted).

We now need new logical operations to match this new set of truth values.
Let If : 0 → 0 → 0 → 0 denote the standard if-then-else operator (that is,
If>xy = x and If⊥xy = y). We modify If in order to accommodate our new
set of truth values in the first argument:

33

Ĩf : (0→ 0)→ 0→ 0→ 0 := λb0→0x0y0.If(b(x ∧ y))xy.

Notice that Ĩf is definable from TPflat, since If ,∧ ∈ TPflat.

Claim 4.3.9. We have the following equations:

Ĩf(λx.>)ab = a

Ĩf(λx.x)ab = b

Ĩf(λx.⊥)ab = b.

Proof. Routine.

Therefore, Ĩf correctly interprets λx.> as true and λx.x,λx.⊥ as false.

We extend this definition to arbitrary type, letting Ĩf0 := Ĩf and letting

Ĩfσ→τ := λb0→0fσ→τgσ→τxσ.Ĩfτ b(fx)(gx).

Equations similar to the above three hold for arbitrary Ĩfσ.

We define conjunction pointwise: ∧̃ : (0 → 0) → (0 → 0) → 0 → 0 :=
λb0→0c0→0x0.(bx) ∧ (cx). One can verify that this correct with respect to our
interpreted truth values.

By an equality operation on a type σ we shall mean any function f : σ → σ →
0→ 0 such that for all s : σ, fss = λx.>, and for s 6= s′ : σ, fss′ equals either
λx.⊥ or λx.x.

Claim 4.3.10. There is a TPflat-definable equality operator Eq0 on 0.

Proof. Let Eq0 := λxyz.x↔ y.

Claim 4.3.11. There is a TPflat-definable equality operator Eqσ→τ on σ → τ
definable from the elements of TPσ and an equality operator on τ .

Proof. Let Eqτ be an equality operator on τ . Let s1, . . . , sN be the TPσ ele-
ments and let u1, . . . , uM be the non-TPσ elements. We define Eqσ→τ to be
the following function:

λfσ→τgσ→τx0.
(∧̃N

i=1
Eqτ (fsi)(gsi)∧̃

∧̃M

j=1
Eqτ (f(Tujx))(g(Tujx))

)
x.

34

We are now ready to demonstrate how we can use these operations to define
elements of TP.

Claim 4.3.12. All elements of TP0 are TPflat-definable.

Claim 4.3.13. All elements of TPσ→τ are TPflat-definable from IsTPσ, an
equality operator Eqσ, and the elements of TPσ and TPτ .

Proof. Let s1, . . . , sN be the elements of TPσ and let u1, . . . , uM be the non-
TPσ elements. Suppose f : σ → τ is given by the following table:

x fx
s1 t1
...

...
sN tN
u1 v1

...
...

uM vM .

Since f ∈ TP, we know that t1, . . . , tN ∈ TPτ , so we are free to use them in our
definition. We now define f as follows:

f := λxσ.Ĩfτ (Eqσxs1)t1

Ĩfτ (Eqσxs2)t2

...

Ĩfτ (EqσxsN)tN

Ĩfτ (Eqσx(Tu1(IsTPσ x)))v1

Ĩfτ (Eqσx(Tu2(IsTPσ x)))v2

...

Ĩfτ (Eqσx(TuM−1(IsTPσ x)))vM−1vM .

The construction works much like before, with the added wrinkle that if we
“reach” the lines dealing with non-TP elements, we know that the argument x
of the function f is non-TP. Therefore, IsTPσ x will equal ⊥, and so the T t

functions will yield the necessary elements.

Lemma 4.3.14. For every σ ∈ T we have that all elements of TPσ, IsTPσ,
and an equality operator Eqσ are TPflat-definable.

35

Proof. This follows from an induction on the type σ using claims 1.4, 1.5, 1.6,
1.7, 1.8, and 1.9.

Corollary 4.3.15. TP = TPflat and TP is the unique generalized clone G such
that Φ(G) = TPflat.

Proof. Suppose G is such that Φ(G) = TPflat. By the previous lemma, TP ⊆ G.
Since TP is a coatom, it follows that G is either TP or G(B). The latter is easily
ruled out, and so G = TP.

4.4 Monotone Functions

At first, we are encouraged by the fact that posets are Cartesian-closed: Given
posets X = 〈X,≤X〉 and Y = 〈Y,≤Y 〉, the exponential is given by

YX := 〈Hom(X,Y),�〉

with � defined pointwise:

f � g :≡ ∀x ∈ X, f(x) ≤Y g(x).

There is one problem in basing our definition of higher-order monotone on this:
The exponentials “forget” the non-monotone elements. For instance, suppose
we wish to see what the monotone elements of type (0→ 0)→ 0 are. Naturally,

we expect them to be Hom(B
B≤
≤ ,B≤). However, the functions in this set have

as domain the three element set Hom(B≤,B≤) and not the four element set BB

as desired. In other words, these functions don’t tell us what to do with the
sole non-monotone element (¬).

We then must be very careful in defining what we mean by monotone in the
higher-order case.

Definition 4.4.1. For each σ ∈ T , define Monσ and ≤σ by mutual recursion:

Mon0 := {⊥,>}
≤0 :=≤ .

Monσ→τ := {f : Bσ → Bτ | f(Monσ) ⊆ Monτ

& ∀s, s′ ∈ Monσ, s ≤σ s′ → fs ≤τ fs′}
f ≤σ→τ g :≡ ∀s ∈ Monσ, fs ≤τ gs.

Note that ≤σ is generally now a preorder and not a partial order.

Lemma 4.4.2. Mon is a combinatory clone.

36

Proof. Once again, Mon is closed under application by design. We are then left
to check the inclusion of the K and S combinators. We give a proof for K:

Let s ∈ Monσ.

Sub-claim: λy.s ∈ Monτ→σ.

Let t ∈ Monτ .

Sub-sub-claim: (λy.s)t = s ∈ Monσ. This of course follows from assumption.

Let t ≤τ t′ ∈ Monτ .

Sub-sub-claim: s = (λy.s)t ≤σ (λy.s)t′ = s. It is not hard to see that ≤ is
always reflexive, so this holds.

Let s ≤σ s′ ∈ Monσ.

Sub-claim: λy.s ≤σ→τ λy.s′. Let t ∈ Monτ be arbitrary. We must show that
s = (λy.s)t ≤σ (λy.s′)t = s′. This follows from assumption.

As one might expect, a proof for S is long and tedious, and so it is omitted.

It is not hard to see that Mon is extensional, so by virtue of 2.3.7 we have the
following:

Claim 4.4.3. Mon is a coatom.

Proof. The argument is similar to that of 4.3.6.

We now verify that Mon encompasses our old notion of monotone:

Lemma 4.4.4. Let f, g be flat function of arity k. If for all x1, . . . , xk we have
that

fx1, . . . xk ≤ gx1, . . . xk

then f ≤0→...→0 g.

Proof. Induction on k. If k = 0 the statement is trivial. Suppose then that
k > 0. For b ∈ B arbitrary, we have that fbx2 . . . xk ≤ gbx2 . . . xk for arbitrary
x’s. Therefore, fb ≤ gb by inductive assumption. This held for arbitrary b, so
f ≤ g.

Lemma 4.4.5. Let Monflat denote the Mon functions of flat type. For any
f , f ∈ Monflat if and only if for all 〈x1, . . . , xk〉 ≤ 〈y1, . . . , yk〉 we have that
fx1 . . . xk ≤ fy1 . . . yk.

37

Proof. Induction on k. The statement is trivial for k = 0 so assume k > 0.

⇒ Suppose f ∈ Mf and let x, x̄ ≤ y, ȳ be arbitrary vectors of boolean values.
Since x ≤ y we then have that fx ≤ fy. Since fx ∈ Monflat, by inductive
assumption we have that fxx̄ ≤ fxȳ. Since fx ≤ fy, we have that fxȳ ≤ fyȳ.
Thus, fxx̄ ≤ fxȳ ≤ fyȳ.

⇐ Suppose f has the right-hand property. We see that f⊥, f> each have
the same property, so by inductive assumption, both are in Monflat. From the
previous lemma, we see that f⊥ ≤ f>, so we are done.

We conclude by showing that Monflat does not generate all of Mon.

Let F : (0→ 0)→ 0 denote the following function:

f F(f)
λb.⊥ >
λb.b >
¬ ⊥

λb.> >

This can be viewed as a sort of indicator function for the monotone elements of
type 0→ 0.

Claim 4.4.6. F ∈ Mon.

Proof. Routine verification.

Lemma 4.4.7. There is no term T : 0 definable from Monflat with a single free
variable f : 0→ 0 such that for all g ∈ BB, JT K[f 7→g] = F(g).

Proof. Suppose such a T exists. We then induct on the structure of T . Assume
T is in long normal form. Since Monflat has {∧,∨,>,⊥} as a basis, there are
four cases to consider:

Case i: T = fT ′. We then have that

JT K[f 7→λx.⊥] = JfT ′K[f 7→λx.⊥]

= (λx.⊥)JT ′K[f 7→λx.⊥]

= ⊥
6= F(λx.⊥).

Case ii: T is one of the two constants. This is immediately ruled out, because
F is not constant.

38

Case iii: T = ∧T1T2. We have that J∧T1T2K[f 7→¬] = F(¬) = ⊥, so one of either
T1, T2 must then evaluate to ⊥. Without loss of generality suppose it is T1.
Since ∧T1T2 evaluates to true under substitution of the other three functions,
we have that T1 must evaluate to true under all of these substitutions as well.
Thus, T1 has the behavior of F, a contradiction by inductive assumption.

Case iv: T = ∨T1T2. We have that J∨T1T2K[f 7→λx.⊥] = F(λx.⊥) = >. Thus,
one of either T1 or T2 must evaluate to> under this substitution. Without loss of
generality let it be T1. Since λf.T1 is defined from monotone functions, it must
itself be monotone. Thus, T1 evaluates to > as well when λx.x or λx.> are sub-
situted in for the variable f . However, we have that J∨T1T2K[f 7→¬] = F(¬) = ⊥,
so T1 must evaluate to ⊥ when ¬ is substituted in for f . Thus, T1 has the
behavior of F, a contradiction by inductive assumption.

Corollary 4.4.8. F is not definable from Monflat.

Proof. Suppose T defines F in normal form. We then have that T = λf0→0.T ′

for some T ′. We then apply the previous lemma to T ′.

4.5 Self-dual Functions

Intuitively, the dual of an arity-k boolean function f is the function that results
from negating the inputs of f and then negating the output:

〈x1, . . . , xk〉 7→ ¬f(¬x1, . . . ,¬xk).

In this sense, the self-dual functions according to Post really are the functions
which are equal to their own dual. It seems natural then to go about general-
izing the notion of self-dual by instead generalizing the notion of a dual.

Definition 4.5.1. For each σ ∈ T , define the dualizer dσ : Bσ → Bσ induc-
tively:

d0 := ¬
dσ→τ := (dτ ◦ − ◦ dσ).

For any s : σ, dσs is called the dual of s.

Lemma 4.5.2. For each σ ∈ T , dσ is an involution.

Proof. Straightforward induction on σ.

39

Claim 4.5.3. Duals are distributive in the following sense: For each σ, τ ∈ T ,
f : σ → τ and s : σ, we have that

dτ (fs) = (dσ→τf)(dσs).

Proof.

(dσ→τf)(dσs) = (dτ ◦ f ◦ dσ)(dσs)

= dτ (f(dσ(dσs)))

= dτ (fs).

Definition 4.5.4. We define SD, the combinatory clone of self-dual elements,
as the set of elements which are equal to their own dual:

SDσ := {s ∈ Bσ | dσs = s}.

Lemma 4.5.5. SD is a combinatory clone.

Proof. First, to show that it is closed under application, let f ∈ SDσ→τ , s ∈
SDσ. By 4.5.3 we then have that

dτ (fs) = (dσ→τf)(dσs) = fs.

The fact that K combinators are self-dual follows from a straightforward calcu-
lation:

dσ→τ→σ(λxy.x)

= λx.dτ→σ(λy.dσx).

= λxy.dσ(dσx)

= λxy.x.

And likewise for the S combinators:

40

d(σ→τ→ρ)→(σ→τ)→σ→ρ(λxyz.xz(yz))

= λx.d(σ→τ)→σ→ρ(λyz.(dσ→τ→ρx)z(yz))

= λx.d(σ→τ)→σ→ρ(λyz.dτ→ρ(xdσz(yz)))

= λx.d(σ→τ)→σ→ρ(λyz.dρ((x(dσz))dτ (yz)))

= λxy.dσ→ρ(λz.dρ((x(dσz))dτ (dσ→τyz)))

= λxy.dσ→ρ(λz.dρ((x(dσz))dτ (dτ (y(dσz))))

= λxyz.dρ(dρ((x(dσ(dσz)))dτ (dτ (y(dσ(dσz)))))

= λxyz.xz(yz).

Common sense tells us that ⊥ and > must be treated symmetrically. After all,
they are just two elements in the structureless set B, so if we have a combinatory
clone, we can switch the roles of ⊥ and > in it and still have a combinatory
clone. We make this precise:

Corollary 4.5.6. Let G be a boolean combinatory clone. Then

Gd := {dσs | σ ∈ T , s ∈ Gσ}

is a combinatory clone.

Proof. By 4.5.5, the K and S combinators are self-dual. Since Kσ,τ ∈ G, we
then have that Kσ,τ = dσ→τ→σKσ,τ ∈ Gd, and likewise for S.

Suppose f ′ = dσ→τf ∈ Gd and s′ = dσs ∈ Gd. Since G is closed under applica-
tion, fs ∈ G. By 4.5.3, we then have that

f ′s′ = (dσ→τf)(dσs)

= dτ (fs) ∈ Gd.

For instance, FPd = TP.

Once more, let us verify that our generalized notion encompasses the old one:

Lemma 4.5.7. Let SDflat denote the SD functions of flat type. For any flat f
of arity k, the dual of f is given by λx0

1 . . . x
0
k.¬(f(¬x1) . . . (¬xk)).

Proof. Induction on k. The statement is immediate for k = 0. Suppose then
that f is of type 0→ 0→ . . .→ 0. We then have that

41

d0→0→...→0(f) = λx0
1.d0→...→0(f(d0x1))

= λx1.d0→...→0(f(¬x1))

= λx2 . . . xk.¬(f(¬x1)(¬x2) . . . (¬xk)).

The following alternative characterization of self-dual functions is useful:

Lemma 4.5.8. For any σ, τ , f : σ → τ is self-dual if and only if f preserves
duals. That is, for all s : σ, f(dσs) = dτ (fs).

Proof. ⇒ Suppose f is self-dual. Then for any s,

f(dσs) = (dσ→τf)(dσs)

= dτ (f(dσ(dσ(s))))

= dτ (fs).

⇐ Suppose f preserves duals. We then have that

dσ→τf = dτ ◦ f ◦ dσ
= dτ ◦ dτ ◦ f
= f.

Claim 4.5.9. For any σ, SDσ is non-empty if and only if σ is a tautology.

Proof. We use induction on σ. The atomic case is obvious. Suppose then that
our type is σ → τ . If τ is a tautology, then by the inductive hypothesis, there
is some t ∈ SDτ . We then see that σ → τ is a tautology and λx.t ∈ SDσ→τ .

Suppose then that τ is not a tautology, and thus equivalent to 0. If σ is a
tautology, then by inductive hypothesis, there is some s ∈ SDσ. Since σ → τ is
then not a tautology, suppose for contradiction that f : σ → τ is self-dual. We
then have that fs ∈ SDτ , a contradiction by inductive hypothesis.

We are then left to consider the case where σ and τ are both non-tautologies.
Since σ → τ is then a tautology, we must provide some self-dual f : σ → τ . Fix
some t : τ and let t′ be the dual of t. By inductive hypothesis, t 6= t′. Since σ
has no self-dual elements, dσ partitions σ into two-element subsets. Within each
two-element subset, send one to t and the other (its dual) to t′. In this fashion
we construct a function f : σ → τ which one can easily verify is self-dual.

42

Since SD doesn’t contain any non-tautological elements, we cannot say that SD
is maximal, since it is below the full combinatory clone of tautological elements.
Nonetheless, we have some results:

Claim 4.5.10. Let b ∈ B. SD∪{b} = G(B).

Proof. Since ¬ ∈ SD0→0, assume without loss of generality that b = ⊥. Consider
the function f : 0 → 0 → 0 → 0 which sends ⊥ to → and > to d0→0→0(→).
Clearly, f ∈ SD0→0→0→0, so f⊥ provides a definition of →. Since ⊥,→ is
functionally complete, we are done.

Claim 4.5.11. Let s : σ where σ is a non-tautology. Then SD∪{s} = G(B).

Proof. From the previous claim, it suffices to define a boolean. Since σ → 0 is
a tautology, there is some self-dual f : σ → 0, and so fs gives us the definition
of a boolean.

Claim 4.5.12. SD is covered by Gtaut(B).

Proof. Let f : σ → τ be a non-self-dual element of tautological type. We shall
show that f can be used to define a function of flat type which is not self-dual.
By claim 4.1.7, this will be enough to generate all of Gtaut(B).

Since f is non-self-dual, there is some s : σ such that f(dσs) 6= dτ (fs). Let
g : 0→ σ send ⊥ to s and > to dσs. Clearly, g ∈ SD0→σ. Now we consider two
case:

(i) fs is self-dual. In this case define h : τ → 0→ 0→ 0 by sending t to π1 and
everything else to π2. We can see that h is self-dual, so h ◦ f ◦ g ∈ SD∪{f}.
However, h(f(g⊥)) = π1 and h(f(g>)) = π2, so h ◦ f ◦ g is not self-dual.

(ii) fs is not self-dual. In this case, let h : τ → 0 → 0 send fs to λx.⊥,
dτ (fs) to λx.>, and everything else to λx.x. Clearly, h ∈ SDτ→0→0. Observe
that h(f(g(⊥))) = λx.⊥, and h(f(g(>))) is either λx.x or λx.⊥. In either case,
h ◦ f ◦ g is not self-dual.

Remark 4.5.13. Since SD is not extensional, it provides a counterexample to
the converse of 2.3.7.

4.5.1 G-sets

We will now give an alternative categorical characterization of the self-dual func-
tions.

Fix a group G := 〈G, e, ∗〉. Recall that a group action from G to a set X is a
map · : G×X → X such that

1. ∀x ∈ X, e · x = x

43

2. ∀a, b ∈ G, x ∈ X, a · (b · x) = (a ∗ b) · x.

A G-set is a pair 〈X, ·〉 such that · is a group action from G to X. Given G-sets
〈X, ·〉, 〈Y, ◦〉, a G-set homomorphism is a function f : X → Y such that for
all a ∈ G and x ∈ X,

f(a · x) = a ◦ f(x).

Given G-sets 〈X, ·〉, 〈Y, ◦〉, we may define a group action on Y X as follows:

〈a, f〉 7→ λx.a−1 ◦ f(a · x).

In fact, this defines an exponential object, and so G-sets form a cartesian-closed
category.

Let B⊕ denote the group 〈B,⊥,⊕〉. Any group G can be thought of as acting
on its own underlying set, with the action given by the group operation. With
that in mind let B denote the B⊕-Set 〈B,⊕〉.

Given σ ∈ T , define Bσ inductively:

B0 := B

Bσ→τ := BBσ
τ .

Lemma 4.5.14. For each σ ∈ T , let · denote the group action associated with
Bσ. Then > · s = dσs.

Proof. Induction on σ. In the atomic case, > · s = >⊕ s = ¬s = d0s.

Suppose then that f : σ → τ . Then

> · f = λx.>−1 · (f(> · x))

= λx.> · (f(dσx))

= λx.dτ (f(dσx))

= dσ→τf.

Lemma 4.5.15. f : Bσ → Bτ is self-dual if and only if f ∈ Hom(Bσ,Bτ).

Proof. We use the previous lemma and 4.5.3.

⇒ Suppose that f is self-dual. For any s ∈ Bσ we must verify that f(⊥ · s) =
⊥ · fs and f(> · s) = > · fs. Since ⊥ is the identity, the first equation follows
from the definition of a group action for arbitrary f . We are left to verify the
second:

44

f(> · s) = f(dσs)

= dτ (fs)

= > · fs.

⇐ Suppose that f ∈ Hom(Bσ,Bτ). For arbitrary s we have that

f(dσs) = f(> · s)
= > · fs
= dτ (fs).

Thus, f is self-dual.

45

Chapter 5

The Addition of Products

We now consider a natural extension of the simply-typed lambda calculus with
explicit product types, and the resulting algebra of functions. A nice discussion
of this system may be found in Chapters 3 and 4 of [3].

5.1 Simply Typed Lambda Calculus with Prod-
ucts

5.1.1 Syntax

Fix a set of atomic types A. Define the types over A to be

T ::= T × T | T → T | α (α ∈ A).

Convention 5.1.1. × is given precedence over →. That is, by σ × τ → ρ we
will mean (σ × τ)→ ρ.

Convention 5.1.2. We take × to be right-associative. That is, by σ1×. . .×σN
we will mean σ1 × (σ2 × (. . .× (σN−1 × σN))).

Lambda terms are defined as before, but with three additional constructions:

• If S : σ and T : τ , then 〈S, T 〉 : σ × τ .

• If P : σ × τ , then π1P : σ and π2P : τ .

In addition to the usual beta and eta reductions, we introduce three new reduc-
tions:

• The projection reductions: π1〈S, T 〉 P S and π2〈S, T 〉 P T .

• The surjective pairing reduction: 〈π1P, π2P 〉 SP P .

Definition 5.1.3. A term T is said to be normal if it cannot be reduced further
using beta, eta, or projection reductions.

46

Claim 5.1.4. Every term has a normal form which is unique.

Proof. See sections 4.1-3 of [3].

We will take T T ′ to mean that there is a finite sequence of beta, eta, pro-
jection, and surjective pairing reductions from T to T ′.

The pairing and projection operations can naturally be extended to higher ari-
ties:

Claim 5.1.5. Let n ≥ 2 and σ1, . . . , σn ∈ T . There is an arity n pairing term
〈−, . . . ,−〉 : σ1 → . . .→ σn → σ1× . . .×σn and for each 1 ≤ i ≤ n a projection
term πni : σ1× . . .× σn → σi which satisfy the following generalized pairing and
surjective pairing reductions:

πni 〈s1, . . . , sn〉 P si

〈πn1 v, . . . , πnnv〉 SP v.

We will wish to examine the simply typed lambda calculus as a fragment of
the lambda calculus with products. To this end, we introduce the following
definitions:

Definition 5.1.6. A type σ ∈ T is said to be simple if it is built up from A
and →.

Definition 5.1.7. A term S of type σ is said to be simple if all of its variables
are of simple type, and it does not contain any instances of pairing or projections.

Notice that simple terms are necessarily of simple type.

In some sense, the lambda calculus with products is conservative over the simply-
typed lambda calculus. In order to show this, we prove a couple of lemmas:

Lemma 5.1.8. Let P : σ × τ be in normal form whose free variables are all
simple. Then P is a pair.

Proof. Induction on P . P cannot be a variable, since the type of P is not simple.
P cannot be a lambda abstraction, since P is a product. If P = πiQ, then Q
is a pair by inductive hypothesis. However, this contradicts the fact that P is
normal. Lastly, suppose P = MN for M : ρ → σ × τ and N : ρ. M cannot be
a variable, since M is not of simple type. M cannot be a lambda abstraction,
since P would then not be normal. M cannot be a pair, since its type is not a
product. Thus, M must itself be a result of function application. Continuing
this argument, we arrive at the conclusion that MN = vP1 . . . PnN for some
variable v and P1, . . . , Pn. Since MN : σ × τ , we have that v : σ1 → . . . σn →
σn+1 → σ × τ . This contradicts the fact that as a free variable, v must be of
simple type.

47

Lemma 5.1.9. Let T : τ be a term of simple type whose free variables are all
of simple type. Then the normal form of T is a simple term.

Proof. Induction on T . If T is a variable, then of course it is simple. If T = λx.U ,
then x is a variable of simple type, and so U is a term of simple type with free
variables all simple, and so by inductive hypothesis, it is a simple term. T cannot
be a pairing, since its type is simple. If T = πiU , then by the previous lemma, U
is a pairing, which violates normality. Lastly, suppose T = MN with M : σ → τ
and N : σ. If M is a variable, then σ must also be a simple type, and so N is a
simple term by inductive hypothesis. M cannot be a lambda abstraction, since
that would violate normality. M cannot be a pair, since it is not a product.
The case of M being the result of a projection is once again ruled out by the
previous lemma. Thus, M is also a result of function application. Once again,
we continue this argument and arrive at the conclusion that MN = vP1 . . . PnN
for some variable v and P1, . . . , Pn. Since v must be of simple type, P1, . . . , PnN
must all be of simple type. By inductive hypothesis, they are simple terms, and
so we are done.

5.1.2 Semantics

Fix X = (Xα)α∈A. We define Xσ as before, additionally stipulating that

Xσ×τ := Xσ ×Xτ .

Pairs are interpreted as ordered pairs, with π1, π2 interpretated as the first and
second coordinates:

• J〈M,N〉Kg := 〈JMKg, JNKg〉

• Jπ1P Kg := the first coordinate of JP Kg, and Jπ2P Kg := the second coordi-
nate of JP Kg.

As before, we have that reduction preserves denotation:

Claim 5.1.10. Suppose M N . Then for any X and g we have that JMKg =
JNKg.

5.1.3 Congruent Types

We wish to show that every type can in a sense be “rewritten” as a product of
simple types. This will allow us to “factor” arbitrary elements as finite tuples
of simple elements. To this end, we introduce the notion of congruence:

Definition 5.1.11. Let σ, τ ∈ T . We say that σ and τ are congruent (σ ∼= τ)
when there are closed terms F : σ → τ and G : τ → σ such that for all s : σ,
t : τ , G(Fs) s and F (Gt) t.

Claim 5.1.12. (i) ∼= is an equivalence relation.

48

(ii) ∼= is a congruence with respect to the type operations → and ×: If σ ∼= σ′

and τ ∼= τ ′ then σ → τ ∼= σ′ → τ ′ and σ × τ ∼= σ′ × τ ′.

Claim 5.1.13. × is associative: (σ × τ)× ρ ∼= σ × τ × ρ, and more generally,

(σ1 × . . .× σn)× (τ1 × . . .× τm) ∼= σ1 × . . .× σn × τ1 × . . .× τm.

Lemma 5.1.14. For any σ1, . . . , σn, τ we have that

σ1 × . . .× σn → τ ∼= σ1 → . . .→ σn → τ.

Proof. Define

F := λfσ1×...×σn→τxσ1
1 . . . xσnn .f〈x1, . . . , xn〉

and

G := λgσ1→...→σn→τvσ1×...×σn .g(πn1 v) . . . (πnnv).

We then have that

G(Ff) β (λgv.g(πn1 v) . . . (πnnv))(λx1 . . . xn.f〈x1, . . . , xn〉)
 β λv.(λx1 . . . xn.f〈x1, . . . , xn〉)(πn1 v) . . . (πnnv)

 β λv.f〈πn1 v, . . . , πnnv〉
 SP λv.fv

 η f

and

F (Gg) β (λfx1 . . . xn.f〈x1, . . . , xn〉)(λv.g(πn1 v) . . . (πnnv))

 β λx1 . . . xn.(λv.g(πn1 v) . . . (πnnv))〈x1, . . . , xn〉
 β λx1 . . . xn.g(πn1 〈x1, . . . , xn〉) . . . (πnn〈x1, . . . , xn〉)
 P λx1 . . . xn.gx1, . . . xn

 η g.

Lemma 5.1.15. For any σ, τ1, . . . , τm ∈ T we have that

σ → τ1 × . . .× τm ∼= (σ → τ1)× . . .× (σ → τm).

Proof. Define

F := λfσ→τ1×...×τm .〈λxσ.πn1 (fx), . . . , λxσ.πnn(fx)〉

and

49

G := λV (σ→τ1)×...×(σ→τm)yσ.〈(πn1 V)y, . . . , (πnnV)y〉.

We then have that

G(Ff) β (λV y.〈(πn1 V)y, . . . , (πnnV)y〉)〈λxσ.πn1 (fx), . . . , λxσ.πnn(fx)〉
 β λy.〈πn1 〈λx.πn1 (fx), . . . , λx.πnn(fx)〉y, . . . ,

πnn〈λx.πn1 (fx), . . . , λx.πnn(fx)〉y〉
 P λy.〈(λx.πn1 (fx))y, . . . , (λx.πnn(fx))y〉
 β λy.〈πn1 (fy), . . . , πnn(fy)〉
 SP λy.fy

 η f

and

F (GV) β (λf.〈λx.πn1 (fx), . . . , λx.πnn(fx)〉)(λy.〈(πn1 V)y, . . . , (πnnV)y〉)
 β 〈λx.πn1 ((λy.〈(πn1 V)y, . . . , (πnnV)y〉)x, . . . ,

λx.πnn((λy.〈(πn1 V)y, . . . , (πnnV)y〉)x)〉
 β 〈λx.πn1 (〈(πn1 V)x, . . . , (πnnV)x〉), . . . ,

λx.πnn(〈(πn1 V)x, . . . , (πnnV)x〉)〉
 P 〈λx.(πn1 V)x, . . . , λx.(πnnV)x〉
 η 〈πn1 V, . . . , πnnV 〉
 SP V.

Lemma 5.1.16. For every σ ∈ T there are simple types σ1, . . . , σN such that
σ ∼= σ1 × . . .× σN .

Proof. Induction on σ. If σ = α atomic, then α is already simple.

Suppose σ = τ × ρ. By inductive assumption, τ ∼= τ1 × . . . × τN and ρ ∼=
ρ1 × . . .× ρM , where τi, ρj are all simple. We then have that

σ = τ × ρ
∼= (τ1 × . . .× τN)× (ρ1 × . . .× ρM)
∼= τ1 × . . .× τN × ρ1 × . . .× ρM .

Lastly, suppose σ = τ → ρ with τ ∼= τ1 × . . .× τN and ρ ∼= ρ1 ×× . . .× ρM . We
then have that

50

σ = τ → ρ
∼= (τ1 × . . .× τN)→ (ρ1 × . . .× ρM)
∼= (τ1 × . . .× τN → ρ1)× . . .× (τ1 × . . .× τN → ρM)
∼= (τ1 → . . .→ τN → ρ1)× . . .× (τ1 → . . .→ τN → ρM).

5.2 Combinatory Clones with Products

Given a family of base sets X = (Xα)α∈A, we extend the notion of a generalized
clone over X to be a collection of functions and elements containing the K and
S combinators over all types in T , closed under application, and furthermore
containing for each σ, τ ∈ T

1. the projection functions πσ,τ1 ∈ Xσ×τ→σ, πσ,τ2 ∈ Xσ×τ→τ .

2. the pairing function 〈−,−〉σ,τ : Xσ→τ→σ×τ .

For notational convenience we will leave out type annotations.

As before, the combinatory clones with products form a lattice which we will
denote by CCl×(X).

5.2.1 Relating Combinatory Clones with and without prod-
ucts

As a consequence of 5.1.16, we obtain the following result:

Corollary 5.2.1. Let s ∈ Xσ. Then s is interdefinable with s1, . . . , sn of simple
type.

Proof. By 5.1.16, σ ∼= σ1 × . . . × σn where σ1, . . . , σn are simple. Thus, there
are closed terms F : σ → σ1 × . . . σn and G : σ1 × . . .× σn → σ witnessing this
congruence. Let 〈s1, . . . , sn〉 := JF K(s). We then have that

si = πni (JF K(s))

and

s = JGK(JF K(s))
= JGK(〈s1, . . . , sn〉).

Thus, s and s1, . . . , sn are interdefinable.

51

As in 2.2, we have maps

Φ : CCl×(X)→ CCl(X)

Ψ : CCl(X)→ CCl×(X)

where Φ denotes the operation of forgetting all elements whose types involve
products, and Ψ denote the closure operation.

Lemma 5.2.2. For all G ∈ CCl(X), Φ(Ψ(G)) = G.

Proof. G ⊆ Φ(Ψ(G)) is obvious. Suppose then that t ∈ Φ(Ψ(G)). There is then
a term T with free variable occurrences t1, . . . , tn corresponding to functions in
G which represents t. By 5.1.9, we may take this T to be a simple term. Thus,
t can be defined from t1, . . . , tn in the (non-product) combinatory clone setting.
Thus, t ∈ G.

Lemma 5.2.3. For all G ∈ CCl×(X), Ψ(Φ(G)) = G.

Proof. Ψ(Φ(G)) ⊆ G is obvious. Suppose then that t ∈ G. By 5.2.1, t is
interdefinable with simple elements t1, . . . , tn. Since each such ti is simple and
definable from t, we have that t1, . . . , tn ∈ Φ(G)) and consequently Ψ(Φ(G)).
Since t can be defined by t1, . . . , tn, we conclude that t ∈ Ψ(Φ(G)).

Corollary 5.2.4. CCl(X) and CCl×(X) are isomorphic.

52

Conclusion

We have seen that the simply typed lambda calculus provides a natural frame-
work for extending the study of clones into the higher-order realm. After initi-
ating the study of combinatory clones, we have established results showing that
clones form the non-higher order fragment of combinatory clones. In the case of
combinatory clones over finite sets, we have seen that the elements of flat type
are sufficient to generate all of the higher-order elements as well. Finally, we
have seen that the addition of product types does not essentially alter the study
of combinatory clones. Precisely, all the information about a combinatory clone
with products is already present in its elements which are of simple type.

In the study of boolean combinatory clones, some early work has been done,
but there is still much work to be done toward a complete classification of the
lattice of boolean combinatory clones or even just the coatoms. We have shown
that multiple combinatory boolean clones may project onto the same boolean
clone. In four of the five coatomic boolean clones, we have given corresponding
coatomic combinatory clones with categorical interpretations. In two of those,
we have shown that they are generated by their flat elements, and in one we
have shown this to not be the case.

We close with some open questions:

• What is an example of a coatomic boolean clone corresponding to the
affine functions? Does it have a nice categorical interpretation?

• Are there multiple coatomic boolean clones corresponding to the clones of
monotone or affine functions?

• Is there a G coatomic such that Φ(G) is not a coatom?

• By virtue of his complete classification, Post showed that the lattice of
boolean clones is countable. However, the lattice of clones over a three
element set is already continuum-sized. What is the size of CCl(B)? If
there is a strong affinity between clones and combinatory clones, we might
suspect it to be countable as well. On the other hand, one could imagine
that the presence of higher-order types allows for enough pathology to
make it uncountable.

53

• Post also showed through complete classification that all boolean clones
are finitely based. Does this hold for combinatory boolean clones as well?
The pairing result 2.3.14 would then imply that each combinatory clone
is generated by a single element, radically taming the general problem of
their classificiation.

54

Bibliography

[1] Barendregt, H., Statman, R., Dekkers, R. W. (2013). Lambda Calculus with
Types. Cambridge: Cambridge University Press.

[2] Diego, A. Sur les algébras de Hilbert. Gauthier-Villars, Paris, 1966.

[3] Girard, J. (1989). Proofs and types. Cambridge: Cambridge University Press.

[4] Grzegorczyk, A. Recursive Functionals in All Finite Types. Fund. Math., 54
(1964), 73-93.

[5] Post, E.L. The Two-Valued Iterative Systems of Mathematical Logic, Annals
of Mathematics Studies 5, 1941.

[6] Urquhart, A. Implicational Formulas in Intuitionistic Logic. The Journal of
Symbolic Logic, Vol. 39, Number 4, Dec. 1974.

[7] Zaionc, M. On the λ Definable Higher Order Boolean Operations. Funda-
menta Informaticae, Vol. 12, Number 1, March 1989.

55

	Introduction
	Preliminaries
	Clones
	Boolean Clones
	False-Preserving Functions
	True-Preserving Functions
	Monotone Functions
	Self-dual Functions
	Affine Functions

	The Typed Lambda Calculus
	Syntax
	Set-based Semantics
	Long Normal Forms
	Combinatory Completeness

	Combinatory Clones
	Definitions and Basic Results
	The Lattice of Combinatory Clones

	Relating Clones to Combinatory Clones
	Connections to Logic
	Intuitionistic Implicational Logic
	The Single-Typed Case
	The Multi-Typed Case

	The General Case with Finite Sets
	Zero or one elements
	Two or more elements
	Infinite Sets

	The Boolean Case
	Basic Results
	Non-injectivity of
	Bases in CCl(B)
	A Lindenbaum lemma for CCl(B)

	Categorical characterizations of the coatomic boolean clones
	False- and True-Preserving Functions
	Monotone Functions
	Self-dual Functions
	Affine functions

	False- and True-Preserving Functions
	Completeness of `39`42`"613A``45`47`"603ATPflat

	Monotone Functions
	Self-dual Functions
	G-sets

	The Addition of Products
	Simply Typed Lambda Calculus with Products
	Syntax
	Semantics
	Congruent Types

	Combinatory Clones with Products
	Relating Combinatory Clones with and without products

	Conclusion
	Bibliography

