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Abstract

For a ⊆ b ⊆ ω with b\a infinite, the set D = {x ∈ [ω]ω : a ⊆ x ⊆ b} is called a doughnut. Doughnuts
are equivalent to conditions of Silver forcing, and so, a set S ⊆ [ω]ω is called Silver measurable,
also known as completely doughnut, if for every doughnut D there is a doughnut D′ ⊆ D which is
contained or disjoint from S. In this paper, we investigate the Silver measurability of ∆1

2 and Σ1
2

sets of reals and compare it to other regularity properties like the Baire and the Ramsey property
and Miller and Sacks measurability.

0. Introduction

Most forcings that are used in Set Theory of the Reals belong to a class called
arboreal forcing notions. A forcing notion P is called arboreal if its conditions
are trees on either 2 = {0, 1} or ω ordered by inclusion and for each T ∈ P, the set
of all branches through T is homeomorphic to either 2ω or ωω.
Each arboreal forcing notion is canonically related to a notion of measurability

and an ideal:
If P is an arboreal forcing notion, we define

AP := {A : ∀T ∈ P (∃S ≤ T ([S] ⊆ A or [S] ∩A = ∅) ) }, and

IP := {A : ∀T ∈ P (∃S ≤ T ([S] ∩A = ∅) ) }.

We call the elements of AP P-measurable sets and the elements of IP P-null
sets.† Standard examples of arboreal forcing notions are Cohen forcing C (the
set of basic open sets), Sacks forcing S (the set of perfect trees), Miller forcing
M (the set of superperfect trees), Silver forcing V (the set of uniform perfect
trees), Mathias forcing R (the set of basic Ellentuck neighbourhoods).‡ The cor-
responding notions of measurability and smallness have been investigated in many
contexts, and some of them are known under different names: the sets in IS are also
called Marczewski null, the sets in AR are also said to be completely Ramsey,
and the sets in AV are said to be completely Doughnut (cf. Section 1.2).
Note that the measurability property connected to Cohen forcing is the Baire
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property (a set A has the Baire property if there is an open set P such that AMP
is meagre) which is not the same as membership in AC.

Being P-measurable is considered a regularity property of a set, and people have
investigated the extent of these regularity properties: usually, all Σ1

1 sets are P-
measurable†, there are ∆1

2 sets that are not P-measurable in the constructible uni-
verse L, and very often the statements “Every ∆1

2 set is P-measurable” and “Every
Σ1

2 set is P-measurable” can be characterized in terms of transcendence over L as
exemplified in Fact 0.1.
In the following, we will write Γ(

�
), Γ( � ), Γ(� ), Γ( � ), Γ( � ) for “Every Γ set

has the Baire property (is completely Doughnut, is Miller measurable, is completely
Ramsey, is Sacks measurable)”.

Fact 0.1.

(i) (Solovay/Folklore) Σ1
2(

�
) is equivalent to “for all r ∈ ωω there is a comeager

set of Cohen reals over L[r]”,
(ii) [JudShe89, Theorem 3.1] ∆1

2(
�

) is equivalent to “for all r ∈ ωω there is
a Cohen real over L[r]”,

(iii) [JudShe89, Theorem 2.10] ∆1
2( � ) and Σ1

2( � ) are equivalent,
(iv) [JudShe89, Theorem 3.5(iv)] Σ1

2( � ) does not imply ∆1
2(

�
),

(v) [BreLöw99, Theorem 6.1] Σ1
2(� ) and ∆1

2(� ) are equivalent, and equiva-
lent to “for all r ∈ ωω (ωω ∩ L[r] is not dominating)”,

(vi) [BreLöw99, Theorem 7.1] Σ1
2( � ) and ∆1

2( � ) are equivalent, and equiva-
lent to “for all r ∈ ωω (ωω ∩ L[r] 6= ωω)”.

Abstractly, you could describe Fact 0.1 (1) as “Measurability of Σ1
2 sets corre-

sponds to the existence of a large set of generics over L[r],” while you could describe
Fact 0.1 (2) as “Measurability of ∆1

2 sets corresponds to the existence of generics
over L[r].” We follow [BreLöw99] and call theorems of type (1) “Solovay-type
characterization” and theorems of type (2) “Judah-Shelah-type characteri-
zations”.

In this paper, we shall investigate Silver measurability, continuing research from
the paper [Hal03], in order to give a complete diagram of the implications between
the three properties

�
, � and � for ∆1

2 and Σ1
2 sets. Further we will compare

Silver measurability with Miller measurability � and Sacks measurability � .
In particular, it will be shown that ∆1

2(
�

) implies that all projective sets are
Silver measurable, that ∆1

2( � ) implies that there are splitting reals over each L[r],
and that Σ1

2( � ) implies that there are unbounded reals over each L[r].
We will introduce some notation in Section 1 and list what was known about

Silver measurability before our work. In Section 2 and Section 3 we show how to
get models for ∆1

2( � ) and Σ1
2( � ), respectively, and how ∆1

2( � ) and Σ1
2( � )

are related to certain ideals and to splitting and unbounded reals, respectively. In
Section 4, we will summarize our results and list some open questions.

†There is a uniform approach via game proofs of analytic measurability for these regularity
properties in [Löw98].
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1. Definitions

Throughout this paper we will use standard set theoretic terminology which the
reader can find, e.g., in textbooks like [BarJud95]. We will introduce some of the
notions which are of particular interest for our paper in this section.

1.1. Trees

As usual, a tree on X is a subset ofX<ω closed under initial segments whereX<ω

is the set of all finite sequences of elements ofX. If x ∈ ωX is a function from ω toX
and n ∈ ω is a natural number, we denote the finite sequence 〈x(0), x(1), ..., x(n−1)〉
by x¹n and call it the restriction of x to n. If s ∈ X<ω and t ∈ X<ω or x ∈ ωX,
we can define the concatenation of s and t (of s and x), denoted by sat (sax)
in the obvious way.
A tree on 2 = {0, 1} is called uniform, if for all s, t ∈ T of the same length we

have

sa0 ∈ T ⇐⇒ ta0 ∈ T and sa1 ∈ T ⇐⇒ ta1 ∈ T .

If T is a tree, then a function x ∈ ωX is called a branch through T , if for all
n ∈ ω, we have that x¹n ∈ T . The set of all branches through T is denoted by [T ].
A tree T on 2 is called perfect, if for every s ∈ T there is a t ∈ T with s ⊆ t such
that both ta0 and ta1 belong to T ; such a sequence t is called a splitting node
of T .
A perfect T tree is canonically (order) isomorphic to the full binary tree 2<ω,

and the order isomorphism induces a homeomorphism ΘT : [T ]→ 2ω. Note that if
B ⊆ [T ] is a Borel set with a Borel code in L[r], then ΘT [B] is a Borel set with a
Borel code in L[r, T ] since the homeomorphism can be read off in a recursive way
from the tree T . This will be used later.

Similarly, if T is a tree on ω, we can call s ∈ T an ω-splitting node if s has
infinitely many immediate successors. A tree T is called superperfect if for each
s ∈ T there is an ω-splitting node t ⊇ s with t ∈ T .

We can now use the special kinds of trees just defined to define the forcing notions
mentioned in the introduction:
Silver forcing V is the set of all uniform perfect trees ordered by inclusion,†

Sacks forcing S is the set of all perfect trees ordered by inclusion, and Miller
forcing M is the set of all superperfect trees ordered by inclusion.

1.2. Doughnuts

Investigating arrow partition properties, Carlos DiPrisco and James Henle intro-
duced in [DiPHen00] the so-called doughnut property: Let [ω]ω := {x ⊆ ω : |x| =
ω}. Then, for a ⊆ b ⊆ ω with b \ a ∈ [ω]ω, the set D = {x ∈ [ω]ω : a ⊆ x ⊆ b} is
called a doughnut, or more precisely, the (a, b)-doughnut, denoted by [a, b]ω.
Doughnuts are equivalent to uniform perfect trees in the following sense (cf. [Hal03]):

†Uniform perfect trees have been used in recursion theory, and are called Lachlan 1-trees there.
Cf. [Lac71].
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Fact 1.1. Each uniform perfect tree T ⊆ {0, 1}<ω corresponds in a unique way
to a doughnut, and vice versa.

Di Prisco and Henle said that a set A has the Doughnut property if it either
contains or is disjoint from a doughnut, and that it is completely Doughnut if
for every doughnut D there is a doughnut D∗ ⊆ D such that either D∗ ⊆ A or
D∗ ∩A = ∅.
By virtue of Fact 1.1, being completely Doughnut is just equivalent to being Silver

measurable in the sense of the introduction.

The Ramsey property, originally defined in terms of the Baire property in the
Ellentuck topology or in terms of partitions†, can be equivalently defined in terms
of doughnuts: a set S ⊆ [ω]ω is completely Ramsey, denoted by � , if it for each
doughnut [∅, a]ω there is a doughnut [∅, b]ω such that [∅, b]ω ⊆ S or [∅, b]ω∩S = ∅.

Silver measurability or the doughnut property was investigated by the first author
in [Bre95], for analytic sets in terms of games by the third author in [Löw98], and
for Σ1

2-sets by the second author in [Hal03].
One simple consequence of this analysis that we shall use later is

Observation 1.2. Every Borel set either contains the branches through a uni-
form perfect tree or is disjoint from the set of branches through a uniform perfect
tree.

1.3. Weak Measurability

The notion of P-measurability is a Π2 notion. By dropping the first universal
quantifier you arrive at a weaker Σ1 notion that is called weak P-measurability: A
set A is said to be weakly P-measurable if there is a T ∈ P such that either
[T ] ⊆ A or [T ] ∩ A = ∅. In general, the notion of weak measurability is not a
statement about the regularity of a set: a set can contain a P-condition T and be
completely irregular outside of T . Compare this to the Doughnut property from
Section 1.2: as Silver measurability is equivalent to being completely Doughnut,
weak Silver measurability is equivalent to the Doughnut property.
Although weak measurability of a single set doesn’t imply its regularity, classwise

statements of weak measurability suffice to prove full measurability as the following
general lemma from [BreLöw99] shows:

Lemma 1.3 Brendle-Löwe (1999). Let Γ be a boldface pointclass closed under
intersections with closed sets (in this paper, ∆1

2 and Σ1
2 are the only examples).

Then the following are equivalent:

(i) Every set in Γ is Silver measurable, and
(ii) every set in Γ is weakly Silver measurable.

Lemma 1.3 was proved in an abstract setting in [BreLöw99, Lemma 2.1].

†Cf. [Kec95, 19.D].
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1.4. Quasigenericity

Let I be an ideal and M be a model of set theory. We write N(I,M) for the set
of all Borel sets B such that
– B ∈ I, and
– there is a Borel code for the set B in M .
It is well-known that there are characterizations of the generics of random and

Cohen forcing via the ideals N of Lebesgue null and M of meagre sets, respectively:†

Fact 1.4 Solovay.
– A real r is random over M if and only if r /∈

⋃
N(N,M), and

– a real c is Cohen over M if and only if c /∈
⋃

N(M,M).

For arbitrary arboreal forcings P, the set ωω\
⋃

N(IP,M) is not in general the
set of generics. But we can use Fact 1.4 to define a notion of quasi-genericity:
Let I be an ideal and M be a model of set theory. We set

QG(I,M) := ωω\
⋃

N(I,M),

and call the elements of QG(I,M) I-M-quasigeneric.

Our notation for Borel codes will be standard: if c is a Borel code, we denote the
decoded set by Bc.

1.5. The least non-smooth equivalence relation E0 and Silver Homogeneity

The equivalence relation E0, defined by xE0y ⇐⇒ ∀∞n(x(n) = y(n)), is well-
known from Descriptive Set Theory. It is the least non-smooth countable Borel
equivalence relation and as such the object of the famous Generalized Glimm-
Effros Dichotomy of Harrington, Kechris and Louveau.‡ We call a Borel set A ⊆ ω2
an E0-selector if for any distinct x, y ∈ A there are infinitely many n ∈ ω such
that x(n) 6= y(n). This makes sure that A selects at most one element from each
equivalence class of E0 (see [Zap∞, Section 2.3.10]). Denote the set of E0-selectors
with SelE0

.
Now, let IE0

be the σ-ideal of sets σ-generated by Borel E0-selectors.
An ideal I is called Silver homogenous if for each T ∈ V, the canonical homeo-

morphism ΘT : [T ]→ 2ω preserves membership in I, i.e., if A ∈ I, then ΘT [A] ∈ I.§

Observation 1.5. Both IV and IE0
are Silver homogeneous.

Lemma 1.6 First Homogeneity Lemma. Let I be Silver homogeneous and T ∈ V.
Suppose that there is an I-L[r, T ]-quasigeneric real x, then Θ−1

T (x) is also I-L[r, T ]-
quasigeneric.

Proof. Let x ∈ QG(I,L[r, T ]). We claim that y := Θ−1
T (x) is also I-L[r, T ]-

quasigeneric.
But this is a direct consequence of Silver homogeneity: take any Borel set B ∈ I

†Cf. [Kan94, Theorem 11.10].
‡Cf. [HarKecLou90] and the survey paper [Kec99, p. 166-167].
§This is a slight generalization of Zapletal’s notion of homogeneity [Zap∞].
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coded in L[r, T ], then B ∩ [T ] is still a Borel set from I coded in L[r, T ]. We
shift it from [T ] to 2ω via ΘT . By Silver homogeneity, it is still in I. But since
ΘT is recursively defined from T , ΘT [B ∩ [T ]] is in N(I,L[r, T ]). If y ∈ B, then
x ∈ ΘT [B ∩ [T ]], contradicting x’s quasigenericity; thus, y can’t lie in B.

Note that ΘT and Θ−1
T preserve the property of being a uniform perfect tree: If

S is a uniform perfect tree, then Θ−1
T [S] is the set of branches through a uniform

perfect subtree of T .

Lemma 1.7 Second Homogeneity Lemma. Let A = 2ω\
⋃

QG(I,L[r]). Suppose
that the following conditions are met:

(i) A is weakly Silver measurable,
(ii) I is Silver homogeneous,
(iii) for each s there is an I-L[r, s]-quasigeneric.

Then there is a uniform perfect tree of I-L[r]-quasigenerics.

Proof. Since A is weakly Silver measurable, there is either a uniform perfect tree
whose branches are disjoint from A or one whose branches are all in A.
In the former case, all of the branches of that tree are quasigeneric by definition

of A and we’re done immediately.
In the latter case, all of the branches of T are non-quasigeneric. By the assump-

tion, we can pick some I-L[r, T ]-quasigeneric real. Now the assumptions of the First
Homogeneity Lemma 1.6 are satisfied, so we get a I-L[r, T ]-quasigeneric inside [T ].
But since QG(I,L[r, T ]) ⊆ QG(I,L[r]), this is absurd.

2. ∆1
2 sets

Let us start by forcing a model in which all ∆1
2-sets are Silver measurable.

Theorem 2.1. An ω1-iteration with countable support of Silver forcing, starting
from L, yields a model in which every ∆1

2-set is Silver measurable.

Proof. Let V be Silver forcing, Vω1
be the ω1-iteration with countable support,

starting from L, and let W be the Vω1
-extension. Let A ⊆ [ω]ω be a ∆1

2-set in W.
Thus, there are Σ1

2-formulas ϕ and ψ such that W |= A = {y ∈ [ω]ω : ϕ(y)} = {y ∈
[ω]ω : ¬ψ(y)}. So, W |= ∀y

(
ϕ(y) ↔ ¬ψ(y)

)
, which is a Π1

3-sentence and therefore
downward absolute. Let [a, b]ω be any doughnut in W. Without loss of generality
we may assume that the parameters of ϕ and ψ, as well as a and b belong to the
ground model L.
We claim that there is a doughnut [a′, b′]ω ⊆ [a, b]ω such that either [a′, b′]ω ⊆ A

or [a′, b′]ω ∩A = ∅.
Let ż be the canonical V-name for the V-generic real. Let M 4 H(χ) be a

countable elementary submodel of H(χ) (for some χ) such that a, b, ż belong to M .
Let p be a V-generic condition over M , and without loss of generality let us assume
that p = [a′′, b′′]ω ⊆ [a, b]ω and that p V ϕ(ż) (the case when p V ψ(ż) is similar).
We claim that there is a doughnut [a′, b′]ω ⊆ [a′′, b′′]ω so that whenever z ∈

[a′, b′]ω, then z is V-generic overM . To see this, let {An : n ∈ ω} be an enumeration
of all antichains of V inM . Then, by fusion, we can construct a doughnut [a′, b′]ω ⊆
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[a′′, b′′]ω such that for each ∀z ∈ [a′, b′]ω ∀n ∈ ω ∃F ∈ An(z ∈ F ), and hence, z is
V-generic over M .
Since we assumed p V ϕ(ż), and since each z ∈ [a′, b′]ω ⊆ p is V-generic over M ,

for all z ∈ [a′, b′]ω we have M [z] |= ϕ(z). Now, because Σ1
2 formulae are upwards

absolute for countable models, we also have W |= ϕ(z) for all z ∈ [a′, b′]ω, which
implies W |= [a′, b′]ω ⊆ {y : ϕ(y)} = A and completes the proof.

Proposition 2.2. If for all r ∈ ωω there is IV-L[r]-quasigeneric real, then
every ∆1

2 set is Silver measurable.

Proof. By Lemma 1.3 we only have to show that for every ∆1
2 set X there is a

T in S such that either [T ] ⊆ X or [T ] ∩X = ∅.
Given a ∆1

2 set X with parameter r, we define Y , Xα, Yα as follows:
Let ϕ(v0, v1) and ψ(v0, v1) be Σ1

2-formulae such that for X = {x : ϕ(x, r)} and
Y = {y : ψ(y, r)} we have X ∪ Y = [ω]ω and X ∩ Y = ∅. Now we use the
representation of Σ1

2 sets as unions of ω1 Borel sets and let X =
⋃
α<ω1

Xα and
Y =

⋃
α<ω1

Yα, where the Xα’s and Yα’s are Borel sets with Borel code in L[r].

Case 1: There is an α such that Xα /∈ IV. Since Xα is Borel, this means by
Observation 1.2 that there is T in S such that [T ] ⊆ Xα ⊆ X.

Case 2: There is an α such that Yα /∈ IV. Since Yα is Borel, this means that
there is T in S such that [T ] ⊆ Yα ⊆ Y .

Case 3: For all α, both Xα and Yα are Silver null. Then
⋃
α<ω1

(Xα ∪ Yα) ⊆⋃
N(IV,L[r]), hence it can’t contain a quasigeneric. But

⋃

α<ω1

(Xα ∪ Yα) = X ∪ Y = 2ω,

contradicting the existence of quasigenerics.

Proposition 2.3. ∆1
2( � ) implies that for all r ∈ ω2 there is a IE0

-L[r]-
quasigeneric.

Proof. Assume towards a contradiction that there is an r such that QG(IE0
,L[r]) =

∅. Now, for each x ∈ ω2 define the set

Cx := {c ∈ L[r] : Bc ∈ SelE0
& ∃y ∈ Bc(yMx) is finite}.

We fix some x ∈ ω2. By our assumption, x is not IE0
-L[r]-quasigeneric, so is

in some set in IE0
, hence in some E0-selector, so Cx is a non-empty Σ1

2(r, x) set.
Pick the <L[r]-least element of Cx and call it cx. Note that Bcx

contains exactly
one y such that yMx is finite: since Bcx

is an E0-selector, any distinct y0 and y1
in Bcx

must have infinite symmetric difference, so only one of them can have finite
symmetric difference with x. Thus we can define nx to be the number of yMx for
this uniquely defined y.
Define C0 := {x : nx even} and C1 := {x : nx odd}. Both of these sets are Σ1

2

sets (with parameter r), and hence ∆1
2 sets (by our assumption, we have C0∪C1 =

2ω).
But neither C0 nor C1 contains a uniform perfect tree: If z ∈ C0 and T is a uniform

perfect tree with z ∈ [T ], then [T ] contains infinitely many elements {zn : n ∈ ω}
that differ in exactly one place from z (say, z(kn) 6= zn(kn)).
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Note that cz = czm
and

nz = nzm
⇐⇒ km ∈ zMzm,

hence some of the zn don’t lie in C0.

The same argument works for C1. Consequently, neither C0 nor C1 contain a
uniform perfect tree, and thus they can’t be Silver measurable.

With a similar technique, we can show:

Proposition 2.4. ∆1
2( � ) implies that for all reals r there is a splitting real

over L[r].

Proof. For x ∈ [ω]ω let τx ∈
ωω be an increasing one-to-one mapping from ω

onto {k : k ∈ x} and let x̂ ∈ [ω]ω be defined as follows:

k ∈ x̂ ⇐⇒ ∃n ∈ ω
(
τx(2n) < k ≤ τx(2n+ 1)

)
.

Assume towards a contradiction that there is r ∈ [ω]ω such that there is no
splitting real over L[r], which is equivalent to

∃r ∈ [ω]ω ∀x ∈ [ω]ω ∃y ∈ [ω]ω ∩ L[r]
(
y ∩ x or y \ x is finite

)
.

Now, for each x ∈ [ω]ω pick the <L[r]-least yx ∈ [ω]ω ∩ L[r] such that yx ∩ x̂ or
yx \ x̂ is finite, and let A ⊆ [ω]ω be the set of all x̂ for which the former case holds.
It is easy to see that A is a ∆1

2-set (with parameter r) and that A does neither
contain nor is it disjoint from any uniform perfect tree, which completes the proof.

3. Σ1
2 sets

First of all, let us remark that by work of the second author on Cohen reals and
doughnuts in [Hal03], we know that the existence of Cohen reals implies Silver
measurability at the second level of the projective hierarchy.

Lemma 3.1. Suppose that A is a Σ1
2(r) set for some real number r and c is a

Cohen real over L[r]. Then there is a uniform perfect tree T ∈ L[r, c] such that
either [T ] ⊆ A or T ∩A = ∅.

Proof. See (the proof of) [Hal03, Lemma 2.1].

Corollary 3.2. ∆1
2(

�
) implies Σ1

2( � ).

Proof. Immediate from Lemma 3.1 and Fact 0.1 (ii).

We can use the Second Homogeneity Lemma 1.7 to derive a result about Σ1
2( � )

and the existence of quasigenerics:

Lemma 3.3. The following are equivalent:
(i) For all r, we have QG(IV,L[r]) 6= ∅ and Σ1

2( � ) holds, and
(ii) for all r, the set QG(IV,L[r]) is co-Silver null (i.e., its complement is in IV.
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Proof. “⇒”: Consider the Σ1
2 set X =

⋃
N(IV,L[r]). Σ

1
2( � ) implies that A is

weakly Silver measurable. Let T be an arbitrary uniform perfect tree. We have to
show that there is a uniform perfect subtree S ⊆ T that consists of quasigenerics.
We can apply the Second Homogeneity Lemma 1.7, and get a uniform perfect

tree of quasigenerics. Now we can use the First Homogeneity Lemma 1.6 to copy
that tree into T .

“⇐”: Let X = {x : ϕ(x, r)} be a Σ1
2-set with parameter r, so, X =

⋃
α<ω1

Xα,
where the Xα’s are Borel sets with Borel code in L[r]. Further, let S be a uniform
perfect tree with code in L[r].
If for all α < ω1, Xα ∩ [S] ∈ N(IV,L[r]), then, by assumption, there is a uniform

perfect tree T ⊆ S of quasigenerics. For this tree T , we have [T ] ∩Xα = ∅ for all
α, which implies that [T ] ⊆ ω2 \X.
On the other hand, if there is an α < ω such that Xα ∩ [S] /∈ N(IV,L[r]), then

we find a uniform perfect tree T ⊆ S such that [T ] ⊆ Xα ⊆ X using Observation
1.2.

The next Propositions 3.4 is not exactly a characterization of Σ1
2( � ), but very

close, since the ideals IV and IE0
are very similar.

Proposition 3.4.

(i) If for each r the set of IV-L[r]-quasigenerics is co-Silver null, then Σ1
2( � )

holds.
(ii) If Σ1

2( � ) holds, then for each r the set of IE0
-L[r]-quasigenerics is co-Silver

null.

Proof. “(1)”: This is an immediate consequence of Lemma 3.3.

“(2)”: For the second implication, we apply the Homogeneity Lemmas again as in
Lemma 3.3:
Consider the Σ1

2 set X =
⋃

N(IE0
,L[r]). Σ1

2( � ) implies that A is weakly Silver
measurable. This time, we use the Silver homogeneity of IE0

(Observation 1.5).
After we fixed a uniform perfect tree T . we can apply the Second Homogeneity
Lemma 1.7, and again get a uniform perfect tree of quasigenerics which we paste
into T by use of the First Homogeneity Lemma 1.6.

We can also connectΣ1
2( � ) to splitting reals, and almost get a converse to Propo-

sition 2.4. We will later see (Corollary 3.9) that in Proposition 3.6, the conclusion
cannot be strengthened to “weakly Silver measurable”.

Lemma 3.5. If s ∈ [ω]ω splits the set A (i.e., for all a ∈ A, both a ∩ s and a\s
are infinite), then there is a uniform perfect tree T such that [T ] ∩A = ∅.

Proof. Define

Us := {t ∈ 2<ω : (n /∈ s & n ∈ dom(t))→ t(n) = 0}.

Since s is an infinite set, Us is a uniform perfect tree. If now a ∈ A, then by the
assumption there is an n such that n ∈ a\s, so the real associated to a cannot
belong to [Us].



10 jörg brendle, lorenz halbeisen, and benedikt löwe

Proposition 3.6. If for each r there is a splitting real over L[r], then every Σ1
2

set either contains the branches through a perfect tree or its complement contains
the branches through a uniform perfect tree.

Proof. By Mansfield-Solovay [Kan94, Corollary 14.9], every Σ1
2 set A either

contains a perfect subset or is contained in L[r]. But if it’s contained in L[r], we
can take the splitting real and construct a uniform perfect tree in the complement
of A by Lemma 3.5.

As mentioned, Proposition 3.6 can not be improved to “If for each r there is a
splitting real over L[r], then every Σ1

2 set is weakly Silver measurable”. It is still
interesting to ask whether some other form of a Mansfield-Solovay dichotomy for
Σ1

2 sets holds.†

Proposition 3.7. Σ1
2( � ) implies that for each r ∈ ωω there is an unbounded

real over L[r].

Proof. For every strictly increasing function f ∈ ωω we will construct a tree
Pf ⊆ {0, 1}

<ω which belongs to IE0
; and for every uniform perfect tree T we will

construct a function gT ∈ ωω, such that f > gT implies [Pf ] ∩ [T ] 6= ∅. The
conclusion follows then easily by construction.
For T ∈ V, gT is just the increasing enumeration of the split levels of [T ].
For f ∈ ωω, let k0 = 0 and kn+1 = f(kn + 1). We construct the tree Pf by

induction. For n = 0, let P n
f = {0, 1}<ω be the full binary tree. Assume we have

already constructed Pn
f for some n ∈ ω. Let Pn

f |kn+1
=

{
t ∈ Pn

f : |t| ≤ kn+1

}
.

Further, for every t ∈ {0, 1}<ω with |t| = kn+1 let ξtn ∈ {0, 1} be defined as follows:

ξtn =

{
0 if t(n) ≡ |{m : n < m < kn+1 and t(m) = 0}| mod 2,

1 otherwise.

Now, define

(Pn
f )

∗ :=
{
s ∈ Pn

f : ∃t, t′ ∈ 2<ω ( |t| = kn+1 & s = taξtn
at′ )

}
, and

Pn+1
f = Pn

f |kn+1
∪ (Pn

f )
∗.

Finally, let Pf =
⋂
n∈ω P

n
f , then, by construction, [Pf ] is a closed set in IE0

with
parameter f . To see that [Pf ] ∈ IE0

, assume towards a contradiction that there
are two distinct x, y ∈ [Pf ] and an m ∈ ω such that x(m) 6= y(m) and for all
m′ > m, x(m′) = y(m′). Then, by construction, we get x(km+1) 6= y(km+1), and
since km+1 > m, this is a contradiction.
Further, if f > gT , then gT (kn) < kn+1, which implies that for any n ∈ ω,

there is a split level of T between kn and kn+1, and thus, by construction, we have
[Pf ] ∩ [T ] 6= ∅.

Proposition 3.8. Let Cω1
be the ω1-product with finite support of Cohen forc-

†E.g., compare Spinas’ theorem that every analytic set is either not dominating or contains the
branches through a weakly uniform tree. [Spi94, Theorem 1] (Spinas calls the trees “uniform
trees”; we changed the notation to avoid confusion).
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ing. Then

VCω1 |= “all projective sets are Silver measurable”.

Proof. Let A =
{
y : ϕ(y)

}
, where ϕ is a Σ1

n-formula with some parameter r.
Given [a, b]ω ∈ VCω1 , we want to find [a′, b′]ω ⊆ [a, b]ω such that either [a′, b′]ω ⊆ A
or [a′, b′]ω ∩A = ∅. Without loss of generality, let us assume that a, b, r . . . belong
to V. Recall that Cω1

is homogeneous, and therefore, for every sentence σ of the
forcing language with parameters in V we have either [[σ]]Cω1

= 1 or [[σ]]Cω1
= 0.

Notice also that if c ∈ VCω1 is Cohen-generic over V, then Cω1
= C ∗ Ȧ, where

Cω1
Ȧ ∼= Ċω1

steps into V[c].
Let us consider ϕ(c): By homogeneity, in V[c] we have either [[ϕ(c)]]Cω1

= 1

or [[ϕ(c)]]Cω1
= 0. Hence, in V, we have either

[[
[[ϕ(ċ)]] Ċω1

= 1̇
]]

C = p(1) or[[
[[ϕ(ċ)]] Ċω1

= 0̇
]]

C = p(0), where p(1)∨ p(0) = 1 and p(1)∧ p(0) = 0. Now, in V[c]

we find a doughnut [a′, b′]ω ⊆ [a, b]ω such that for all x ∈ [a′, b′]ω, x is Cohen-generic
over V. By shrinking [a′, b′]ω if necessary, we may assume that [a′, b′]ω ⊆ p(1) or
[a′, b′]ω ⊆ p(0). Let us consider just the former case, since the latter case is similar.
We claim that [a′, b′]ω ⊆ A: If x ∈ [a′, b′]ω ⊆ p(1), then x is Cohen-generic over

V (no matter where x is). Thus, V[x] |= [[ϕ(x)]]Cω1
= 1. But the extension leading

to VCω1 is a Cω1
-extension, hence, VCω1 |= ϕ(x).

As a consequence we get:

Corollary 3.9. An ω1-iteration with countable support of Silver forcing, start-
ing from L, yields a model W in which we have ∆1

2( � ) + ¬Σ1
2( � ) + ¬∆1

2(
�

) +
¬∆1

2( � ).

Proof. Firstly recall that Silver forcing does not add unbounded reals. Thus,
since ∆1

2( � ) implies that for all r ∈ ωω there is a dominating real over L[r], we
have W |= ¬∆1

2( � ). Secondly, in Theorem 2.1 we have seen that an ω1-iteration
of Silver forcing with countable support, starting from L, yields a model W in
which every ∆1

2-set is Silver measurable, and in Proposition 3.7 we have seen that
Σ1

2( � ) implies that for every real r, there are unbounded reals over L[r]. Hence,
since Silver forcing does not add unbounded reals, by Corollary 3.2 we have W |=
∆1

2( � ) + ¬Σ1
2( � ) + ¬∆1

2(
�

).

4. Conclusion

Theorem 4.1. The only implications between the properties � ,
�

and � of
∆1

2 and Σ1
2-sets are given in the following transitive diagram:
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Σ1
2(

�
)

#+
OOOOOO

OOOOOO

∆1
2(

�
)

#+PPPPPP

PPPPPP
∆1

2( � ) ks +3

s{ nnnnnn
nnnnnn

Σ1
2( � )

Σ1
2( � )

®¶

∆1
2( � )

Proof. For the implications between the Baire and Ramsey property of ∆1
2 and

Σ1
2 sets see [Jud88] and [JudShe89].
Σ1

2( � ) 6⇒ ∆1
2( � ): This follows from Σ1

2( � ) ⇔ ∆1
2( � ) (cf. Fact 0.1 (iii)) and

Σ1
2( � ) 6⇒ Σ1

2( � ) (cf. [Hal03]).
Σ1

2( � ) 6⇒∆1
2(

�
): This follows from the obvious implication Σ1

2( � )⇒ Σ1
2( � )

and Σ1
2( � ) 6⇒∆1

2(
�

) (cf. [JudShe89]).
∆1

2( � ) 6⇒ Σ1
2( � ): This follows from Corollary 3.9.

Proposition 4.2. Between the properties � , � , � and � σ of ∆1
2 and Σ1

2-
sets, we have the following implications:

Σ1
2( � σ)

®¶

Σ1
2( � )

®¶

s{ nnnnnn
nnnnnn

Σ1
2(� ) ks +3 ∆1

2(� )

»Ã
99

99
99

99
99

99
99

99

99
99

99
99

99
99

99
99

∆1
2( � )

®¶

Σ1
2( � ) ks +3 ∆1

2( � )

Proof. In [Jud88] it is proved that

Σ1
2( � σ) ⇐⇒ ∀r ∈ ωω (ωω ∩ L[r] is bounded) .

The proposition follows from Fact 0.1 (v) & (vi), Proposition 3.7 and Proposi-
tion 2.3.

We have succeeded in determining the strength of∆1
2( � ) and Σ1

2( � ) in terms of
other regularity properties. What is still missing are results of Solovay- and Judah-
Shelah-type: Propositions 2.2, 2.3, and 3.4 yield almost equivalences since the ideals
IV and IE0

are very close to each other. It is even conceivable that the existence of
IV- and IE0

-quasigenerics are equivalent. But so far, we don’t know.
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In terms of connections between ∆1
2( � ) and the existence of certain reals, we

have the following diagram:

[v] IV-generics

®¶

[d] ∆1
2( � )

px iiiiiiiii
iiiiiiiii

&.UUUUUUUUU

UUUUUUUUU

[e] IE0
-generics [s] splitting reals

The question is: can we get the reverse directions anywhere in this diagram?

Question 1. Does [d]⇒ [v] hold (the converse to Proposition 2.2) ?

Note that if [d] ⇒ [v], then we can also characterize Σ1
2( � ) in terms of quasi-

generics by Lemma 3.3): In that case, the converse to Proposition 3.4 (1) holds as
well.

Question 2. Does the existence of a splitting real over each L[r] imply ∆1
2( � )

([s]⇒ [d]; the converse to Proposition 2.4) ?

Question 3. Does the existence of IE0
-L[r]-quasigenerics imply ∆1

2( � ) ([e]⇒
[d]; the converse to Proposition 2.3) ?
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