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Abstract

There have been recent developments in mathematics that indicate that the
theory of infinite collections exemplified by Cantor’s cardinals and ordinals does
not have to be the only alternative to be considered.

Here we are interested in investigating different ways of comparing the size
of infinite collections — we will not enter the debate over their existence.
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for agreeing to discuss my thesis long before it was in a presentable shape.

Thanks also to all my friends, and especially to Guillaume, who could tame
my swinging moods at crucial times.

And finally, thanks to my whole family, who have sacrificed so much to let
me study what I wanted, where I wanted.

1



Contents

1 Introduction 5

1.1 Two intuitions, two principles . . . . . . . . . . . . . . . . . . . . 6

1.2 Thesis plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Preliminaries 10

2.1 Ordinals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Arithmetical operations that are definable on the ordinals 11

2.2 Cardinals and cardinality . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Cantor’s cardinals and ordinals . . . . . . . . . . . . . . . . . . . 15

2.4 What this tells us about ordinals and cardinals as extensions of
the natural numbers . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.1 Why the ordinals cannot measure the size of sets . . . . . 18

2.5 Numerosities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.1 Motivation for a theory of numerosities . . . . . . . . . . 22

2



CONTENTS CONTENTS

2.5.2 The theory of numerosities for countable subsets of N . . 23

2.5.3 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
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Chapter 1

Introduction

Suppose you want to teach your child about counting the elements of infinite
collections. They have already learnt how to count elements of finite collections,
so for example they know that if they have a bag of oranges and a bag of apples,
they can compare how many apples and oranges there are by putting all their
oranges on a line and then juxtaposing to each one apple, and then if they have
(at least) one orange with no apple by the side, there are more oranges, and
vice versa if there is at least one apple with no orange by the side, it means
there are more apples. Your child though also knows that if they count all of
their apples, and then eat one and give another to a friend, they will have fewer
apples than before, because what they have is only a part of what they used to
have. Suppose now they want to know how many even numbers there are with
respect to all natural numbers. They know that the even numbers are what
remains of the natural numbers if you remove all the odds, so there should be
fewer even numbers than all natural numbers. At the same time, though, you
show them how to associate exactly one even number for each natural number,
so that the apples-and-oranges scenario is recreated. What should your child
conclude? that there are just as many evens as the natural numbers, or that
the evens are strictly fewer?

The standard response1 would be to say that the reasoning behind the ‘fewer
than’ conclusion is ultimately flawed, because one finds oneself very quickly in
situations where that reasoning does not help in determining the relative size
of two infinite collections — Cantor has shown the one-to-one correspondence
approach to be the most proficuous one, so we should forget about the other.

1. by ‘standard’ I mean the response that would mirror the default mathematical treatment
of the size of infinite quantities, i.e. Cantorian cardinals.
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1.1. Two intuitions, two principles

I suspect that child wouldn’t be particularly impressed by such an explana-
tion. Offering Cantor’s definition of cardinals as an answer to the problem of
how many evens there are does not explain the pull exerted by the other answer.

1.1 Two intuitions, two principles

In the recent literature on the topic2 the dilemma faced by the child above is
presented via the classical paradox of the squares of the natural numbers in the
form first verbalised by Galilei.3 Briefly, the paradox is that the collection of
the natural numbers on one hand, and the collection of all squared numbers
on the other hand, seem to have both the same number of elements and to be
one smaller than the other (the second collection smaller than the first). The
contradiction arises as follows

(P1) If there is a one-to-one correspondence between two collections, then they
have the same number of elements.

(P2) If one collection is a proper part of another, then it is strictly smaller
than the other.

(P3) There is a one-to-one correspondence between the natural numbers on
one hand, and the squares on the other.

(P4) The collection of all squares is properly included in the collection of all
natural numbers.

(C1) (from (P1) and (P3)) The collection of all natural numbers and that of
all squares have the same number of elements.

(C2) (from (P2) and (P4)) The collection of all squares is strictly smaller than
the collection of all natural numbers.

(C) (from (C1) and (C2)) The two collections have the same number of ele-
ments, and at the same time one is smaller than the other.

Galilei (and Mancosu) take the conclusion to be contradictory, because the
notion of ‘smaller than’ is translated into ‘has fewer elements than’, so that

2. Paolo Mancosu, “Measuring the size of infinite collections of natural numbers: was Can-
tor’s theory of infinite number inevitable?,” The Review of Symbolic Logic 2, no. 4 (December
2009); Matthew W. Parker, “Set-size and the Part-Whole Principle,” The Review of Symbolic
Logic 6, no. 4 (December 2013); Paolo Mancosu, “In Good Company? On Hume’s Principle
and the Assignment of Numbers to Infinite Concepts,” Review of Symbolic Logic 8, no. 2
(2015): 370–410.

3. Mancosu, “Measuring the size of infinite collections of natural numbers: was Cantor’s
theory of infinite number inevitable?”
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1.1. Two intuitions, two principles

(C2) becomes a negation of (C1). Mancosu then argues that, in the course of
history, this contradiction has led to four positions regarding the possibility of
completed infinite collections:

1. The paradox illustrates that there is something fundamentally wrong with
the very notion of different infinities, thus the resolution of the paradox
should be to reject the existence of different infinities altogether. This is
the position that concedes the least to the exploration of a mathematical
treatment of the infinite.

2. There are infinite collections but it is misguided to try and apply concepts
of size comparison to them.

3. Infinite collections exist and can be compared, but their part-whole re-
lations are inherently different from those occurring within the class of
finite collections, hence they cannot be treated in the same way as finite
collections.

4. Infinite collections can and should be treated in a way that extends and
generalises the arithmetical treatment of finite quantities.4

Of these four positions, the only one that clearly entails investigating ex-
tensions of the theory of finite arithmetic to infinite “numbers” is the fourth
one. Whereas positions 1. to 3. seem to be mainly documented in ancient,
medieval and modern texts 5, the fourth position is the one that is nowadays
considered the default one, and the one advocated for by both Cantor and
Bolzano.6 Bolzano and Cantor7 did nevertheless disagree on what it meant to
try and develop an arithmetic of the infinite that would be similar to that of
finite quantities. In order to phrase this disagreement, we need to reconsider
the paradox of Galilei’s outlined above. The premises that we labelled as (P1)
and (P2) can be rephrased in set-theoretic terms as follows:

(CP) Given two sets A and B, size(A) = size(B) if and only if there is a
one-to-one correspondence between A and B.

(PW) If a set A is a proper subset of set B (written A ⊂ B) then size(A) <
size(B).

4. Mancosu, “Measuring the size of infinite collections of natural numbers: was Cantor’s
theory of infinite number inevitable?,” p. 616.

5. the reader should consult Mancosu ibid. for a list of philosophers endorsing each of the
views listed here

6. Bernard Bolzano, Theory of Science (Reidel, 1973); Bernard Bolzano, Paradoxes of the
Infinite (Routledge / Kegan Paul, 1950).

7. Georg Cantor, “Ein Beitrag zur Mannigfaltigkeitslehre,” in Abhandlungen mathema-
tischen und philosophischen Inhalts, ed. Adolf Fraenkel (Georg Olms Verlagsbuchhandlung,
1966), 119–138.
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1.1. Two intuitions, two principles

The labels stand for Cantor’s principle and Part-whole principle, respec-
tively, because this is how the two principles are often designated in the liter-
ature. Thus the difference between Cantor and Bolzano is that Cantor would
want to extend (CP) to be valid for all infinite collections, as well as the finite
ones, whereas Bolzano believed that one should keep (PW) when developing a
rigorous treatment of infinities.

We should be careful however in that (CP) is not quite just the translation of
(P1) in set theoretic terms. (CP) is in fact a biconditional, whereas (P1) is only
a conditional statement. (PW) is also sometimes called Euclid’s principle,8 and
it is perceived to be a version of the fifth common notion of Euclid’s Elements:

(CN5) The whole is larger than its parts.

Once Cantor introduced and developed his system of powers (what we nowadays
call cardinals), the success of his approach eventually meant that defending the
part-whole approach was regarded as a mistake, and Cantor’s way of treating
the infinite was to be seen as the only correct way.

In recent years, however, scholars have been proposing treatments of the
size of infinite collections that would preserve (PW) for infinite collections, thus
dropping (CP) as guiding principle for their notion of size. The proposal that we
are going to discuss the most in this thesis is the so-called theory of numerosities,
that is at once the most recent, and the most mathematically developed, of the
non-Cantorian theories of size we are aware of. This seems to give reason to
reconsider the ‘solution’ of the Galilean paradox, because now there seem to
be three options for anyone who wants to develop an arithmetic for infinite
quantities:

(O1) There is only one correct solution to the paradox, as there is only one
correct notion of size for infinite collections. This is the solution that
preserves (CP) and drops (PW). The correct mathematical treatment of
size is the one offered by the theory of cardinals.

(O2) There is only one correct solution to the paradox, as there is only one
correct notion of size for infinite collections. This is the solution that
preserves (PW) and drops (CP). The one correct mathematical treatment
of size is the one offered by the theory of numerosities.

(O3) The paradox admits for two incompatible solutions, that is either drop-
ping (CP) and stipulating to use the theory of numerosities as the theory
of size for infinite collections, or dropping (PW) and using the theory of

8. Parker, “Set-size and the Part-Whole Principle.”
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1.2. Thesis plan

cardinals as the theory of size for infinite collections. The two principles
(CP) and (PW) would be epistemically on equal standing

(O4) The paradox can be explained away by giving a different interpretation
of one of the two principles, thus removing the incompatibility. This is the
strategy followed in the present thesis, where we offer a new interpretation
of the part-whole principle which does not weaken it, thus showing that
(CP) and (PW) do not exemplify two competing notions of size for infinite
collections.

Having said this, we give the full structure of the thesis in a nutshell.

1.2 Thesis plan

In the introduction, we offer a brief presentation of the problem of the treatment
of the size of infinite collections in mathematics, problem this thesis proposes
to address.

In Chapter 2 of the thesis, we introduce the standard solution to the problem,
namely Cantor’s theory of cardinals, and we compare it with the theory of
ordinals; we also introduce the main other player, the theory of numerosities.

In Chapter 3 we consider the only known philosophical argument for the
inevitability of Cantor’s cardinals as the extension of the natural numbers into
infinite quantities, namely Gödel’s argument, and consider one set of responses.
We conclude by introducing a way of reelaborating Gödel’s defence of Cantor’s
cardinals offered recently by Parker.9

In Chapters 4 and 5 we articulate our reply to Parker’s challenge and illus-
trate its significance within the context of giving a conceptual interpretation to
the theory of numerosities.

In the conclusion we present a list of open problems and ways in which our
proposal could be improved upon.

9. Matthew W. Parker, “Philosophical Method and Galileo’s Paradox of Infinity,” in New
Perspectives on Mathematical Practices: Essays in Philosophy and History of Mathematics:
Brussels, Belgium, 26-28 March 2007, ed. Bart Van Kerkhove (World Scientfic, 2009).
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Chapter 2

Preliminaries

In what follows we are going to recall the standard definitions of ordinals and
cardinals given in modern-day treatment of ZFC set theory, recall some funda-
mental results concerning cardinals and ordinals, and then summarise Cantor’s
own work on ordinal and cardinal numbers. We are aware that some readers
might be afraid that, considered Cantor developed his own work outside of an
axiomatic framework, a comparison between what is done with ZFC and what
he achieved in his set-theoretic results is wrong-headed. We do not want to
enter the merits of the debate, but we are indeed assuming that ZFC is, to some
extent, an attempt at giving an axiomatic form to Cantor’s work, and that is all
we ask the reader to accept. Our exposition has only two objectives: to recall
some fundamental definitions and concepts that are going to be central to this
work, and to clarify why we are dealing with cardinals and not ordinals when
discussing different options for theories of size.

2.1 Ordinals

In order to define the concept of ordinal number, it is best to give the following
preliminary definitions

Definition 2.1.1 (Transitive set). A set a is transitive if and only if for any
b ∈ a, b ⊆ a.

Definition 2.1.2 (Well-ordered set, well-ordering). A set a is well-ordered by
a relation r iff r is a total order over a and for any non-empty subset b of a,
there is a1 ∈ b that is the r-least element of b. A set a that is well-ordered by a
relation r is also called a well-ordering and it is written as 〈a, r〉.

10



2.1. Ordinals

Definition 2.1.3 (Order isomorphic). Given two well-orderings 〈a, r〉 and 〈b, s〉,
we say that 〈a, r〉 and 〈b, s〉 are order isomorphic if and only if there is a bijection
f between a and b such that for all a1, a2 ∈ a, a1ra2 ↔ f(a1)sf(a2).

Definition 2.1.4 (Order type). Given a well-ordering 〈a, r〉, the order type
(a, r) is the unique ordinal α such that 〈a, r〉 ∼= α.

Finally, the main definition:

Definition 2.1.5 (Ordinal). A set a is an ordinal iff a is transitive and well-
ordered by ∈.

Although we tend to refer to ordinals just as the respective underlying sets,
without considering the order ∈, an ordinal is not completely determined just
by a list of its elements; the well-order needs to be specified, too. Each ordinal
is in fact the canonical representative of a class of order-isomorphic sets. 1

2.1.1 Arithmetical operations that are definable on the
ordinals

There are a few arithmetical operations that are characteristic of the natural
numbers but that nonetheless can be defined for all ordinals as well. Here we
give in particular the definitions of successor ordinal, sum and multiplication.

Definition 2.1.6 (Successor). If α is an ordinal, then S(α) = α∪{α}. S is the
successor operation.

Definition 2.1.7 (Sum and multiplication). Let α, β be ordinals. Then we can
define

α + β = type(α × {0} ∪ β × {1}, r), where r = {〈〈ξ, 0〉, 〈η, 0〉〉 : ξ < η <
α} ∪ {〈〈ξ, 1〉, 〈η, 1〉〉 : ξ < η < β} ∪ [(α× {0}) ∪ (β × {0})]

α · β = type(β × α, r), where 〈η, ξ〉r〈ξ′, η′〉 ↔ (ξ < ξ′ ∨ (ξ = ξ′ ∧ η < η′))

Informally, the definition for addition means that the sum of two ordinals
α and β corresponds to the disjoint union of the underlying sets, paired with
an order that will put the elements of the first addend first, and those from the
second addend afterwards.

1. This is the definition first proposed by von Neumann in “On the introduction of trans-
finite numbers”, although there the author defines each ordinal as the set of all preceding
ordinals.

11



2.2. Cardinals and cardinality

The definition for multiplication can similarly be understood in informal
terms – multiplication works, just like for the natural numbers, as repeated
addition after a fashion. Multiplying α and β means taking β-many copies of
α, preserving their α-order.

Just like addition and multiplication of the natural numbers, addition and
multiplication of the ordinals obey associativity, but distributivity of multiplica-
tion on the right fails, that is α ·(β+γ) = α ·β+α ·γ, but (α+β)·γ 6= α ·γ+α ·β.
On the other hand, there are these significant properties that are not valid for
ordinals in general, but are valid for the natural numbers, such as commutativ-
ity of addition and multiplication, respectively. For multiplication, for example,
2ω is a series of ω-many copies of the finite ordinal 2, whereas ω · 2 are two
copies of ω, and therefore in the first one, 2ω, each element has a predecessor,
but that is not the case in ω · 2, so the two ordinals are not order-isomorphic,
hence they are different.

More interesting features: the ordinal numbers satisfy the Peano axioms in
the following form:

1. 0 ∈ ω.

2. ∀n ∈ ω(S(n) ∈ ω)

3. ∀n,m ∈ ω(n 6= m→ S(n) 6= S(m))

4. ∀x ⊂ ω((0 ∈ x ∧ ∀n ∈ x(S(n) ∈ x))→ x = ω)

The last one is the induction axiom for the natural numbers, and it is crucial
as induction is seen as one of, if not the, defining characteristic of the structure
of the natural numbers. Ordinals themselves satisfy a form of induction, that is
transfinite induction. Kunen2 formulates it as a least number principle: Given
any class C ⊂ On (where On is the class of ordinal numbers), if C 6= 0 then C
has a least element.

2.2 Cardinals and cardinality

As for defining cardinals, there are different (equivalent) formulations of the
definition once one assumes the axiom of Choice; here we are going to consider
the one offered by Kunen3 as the standard one. Before defining the cardinals,
we need to give the following definition:

2. Kenneth Kunen, Set Theory: An Introduction to Independence Proofs (North Holland,
1980).

3. Ibid.
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2.2. Cardinals and cardinality

Definition 2.2.1 (Cardinality). Let a be a well-orderable set4. Then the car-
dinality of a, written as |a|, is the least ordinal α such that there is a one-to-one
correspondence between a and α.

Thus we can define cardinals in terms of cardinality.

Definition 2.2.2 (Cardinal). An ordinal α is a cardinal if and only if |α| = α.

We can think of the distinction between cardinalities and cardinals as a
distinction between equivalence classes and their canonical representative. The
relation from which the equivalence classes arise is that of being in a one-to-one
correspondence, and it is usually perceived as partitioning the whole class of
sets on the basis of size.

So for example, while it is correct to say that |ω · 2| = ℵ0 = |ω|, it is not the
case that ω · 2 = ω (as ordinals, because they are not order isomorphic).

Definition 2.2.3 (Sum and multiplication). Let κ, λ be cardinals. Then
κ+ λ = |κ× {0}| ∪ |λ× {1}|
κ · λ = |κ× λ|.

2.2.1 Remarks

From the definition 2.2.3 of cardinal addition and multiplication it becomes ap-
parent that, when computing the cardinality of a set, one forgets about any
order-relation among the members, and this allows for addition and multiplica-
tion to be commutative, unlike in the case of ordinals; moreover, multiplication
distributes over addition, and both operations are associative. All these alge-
braic properties are desirable, in the sense that they give substance to the claim
that cardinal numbers allow one to carry on arithmetic into the infinite in a
way that is analogous to finite arithmetic (arithmetic on finite numbers). In
this respect, however, there is an important rupture of the analogy: whenever
either κ or λ are transfinite cardinals, κ · λ = κ + λ = max{κ, λ}. This point
is important to mention because the so-called Euclidean theories of size we are
going to introduce later on in the thesis are partly motivated by dissatisfaction
with this ‘flat’ arithmetic of infinite cardinals.

Secondly, a point on terminology: some authors (Mancosu included) use
‘cardinality’ to mean ‘size’ of a set – cardinality is then the underlying feature
of sets that is measured by cardinals or whatever may serve the purpose. In

4. If one assumes the axiom of choice, any set can be well-ordered.
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2.2. Cardinals and cardinality

this thesis, however, we will refer to the feature of sets as their ‘size’, and will
keep using ‘cardinality’ and ‘cardinal’ strictly in their technical sense. When
reporting Cantor’s work and views, we will use ‘power’ instead of ‘cardinal’, as
it is Cantor’s own terminology.

14



2.3. Cantor’s cardinals and ordinals

Before introducing our representative of choice of Euclidean theories, namely
the theory of numerosities, we want to consider the development of ordinals and
cardinals as effected by Cantor, because we think it is important to investigate
what was the role Cantor himself wanted these two classes of numbers to play.

2.3 Cantor’s cardinals and ordinals

Ordinals and cardinals were first introduced by Cantor. The full development of
the respective theories started around 18785 and continued through decades, at
least until 1897, year of publication of Cantor’s Beiträge.6 Here we summarise
Cantor’s work, with the intent of uncovering the role that ordinals and cardinals
were to cover, according to him.

The first mention of the power of a set is in Cantor (1878).7 Here he intro-
duces such notion by giving a criterion for when two sets have the same power,
namely when they are in a one-to-one correspondence. They are also said then
to be equivalent – equipollent, in modern terms. (Cantor (1966), p.119). Over
the rest of the initial paragraph of this paper Cantor introduces the notion that
for any two sets a and b, if a and b themselves are not equipollent, then either
a is equipollent to some subset of b or viceversa. Notice that this is tantamount
to imposing trichotomy8 over the notion of cardinality of a set, although the
context of the paper and of the letters Cantor was exchanging at the time with
Dedekind9 suggest that Cantor was not taking himself as stipulating trichotomy,
rather he seems to take it as an obvious feature implicit in the concept of cardi-
nality itself. The way in which it is phrased also suggests that Cantor already
viewed powers as a way of measuring relative size of sets, for he writes: “In
the first case [when set M is in one-one correspondence with a subset of set N ]
we call the power of M smaller; in the second case [when set N is in one-one
correspondence with a subset of M ] we call the power of M bigger than the
power of N”. (ibid.)

After this initial mention of powers, Cantor continued developing a theory of

5. Cantor, “Ein Beitrag zur Mannigfaltigkeitslehre.”
6. Georg Cantor, “Beiträge zur Begründung der transfiniten Mengenlehre,” in Abhandlun-

gen mathematischen und philosophischen Inhalts, ed. Adolf Fraenkel (Georg Olms Verlags-
buchhandlung, 1966), 282–356.

7. Cantor, “Ein Beitrag zur Mannigfaltigkeitslehre.”
8. Given an order relation < over a class R, the law of trichotmoy is the proposition:

∀x, y ∈ R, x < y ∨x = y ∨ y < x. To impose trichotomy for cardinality would mean to impose
that, for R the class of cardinalities of all sets, given any two cardinalities x, y, either x = y or
x < y or y > x. Informally, trichotomy can be considered as total comparability: all elements
of a given domain are comparable with one another with respect to a certain ordering relation.

9. José Ferreirós, Labyrinth of thought: a history of set theory and its role in modern
mathematics (Springer Science & Business Media, 2008).

15



2.3. Cantor’s cardinals and ordinals

powers that was consigned to its finished form in his 1897 Beiträge. According
to Hallett’s and Dauben’s reconstructions, Cantor developed the ordinals while
trying to expose his theory of cardinal numbers.

The paper considered to be programmatic regarding the theory of cardinals is
“Über unendliche, lineare Punktmannigfaltigkeiten, 5”;10 in a letter to Dedekind
of November 1882 (Ewald From Kant to Hilbert, p. 875 and ff.), Cantor claims
to have found a way of proving that, given sets a, b and c such that a and c
can be put into a one-one correspondence and a ⊆ b ⊆ c, then b also has the
same power as a and c. What Cantor is referring to is the work that is then
published in this article, in which he introduces the transfinite ordinals and
argues for the conceptual coherence of these, thus concluding in favour of their
existence. The steps of his argument are as follows. Firstly, he considers both
transfinite ordinals and natural numbers as ordinal numbers, and these in turn
are explained as numerals (Anzahlen) of well-ordered sets – Cantor’s definition
of well-ordered sets is different from the current one, although extensionally
equivalent.

What remains to explain then is what these numerals are; it emerges from
Cantor’s 1883 that these numerals ‘stand for’, represent, well-ordered sets (Hal-
lett, p. 52). Recall (definition 2.1.2) that a well-ordering is not completely
determined just by a list of its elements; one needs to specify also the order re-
lation among them to obtain a full determination of the set. Numerals represent
different ways of ordering sets, and so they can be seen as a way of enumerating
sets (Dauben, pp. 101-102).

Although he does not fully explain the notion of numeral in this paper,
Cantor still defines the operations of addition and multiplication of ordinals
in the usual way (see 2.1.7), thus suggesting that whatever the relationship
of ‘representation’ between a well-ordered set and its ordinal number is, it is
such that the arithmetical operations on the ordinals can be carried out as set-
theoretic operations. So the ordinals are not (yet) said to be sets, but one can
manipulate them as such.

Having sketched a theory of ordinals, Cantor is in a position to elaborate on
his (1878) remarks regarding powers, by developing the “number-classes”. He
defines the first number-class, (I), as the set of all finite sets; the second, (II), as
the set of all ordinals standing for countable well-ordered sets, and so on(Cantor
(1966), p. 167). Unfortunately, even though he envisages the existence of limit
steps in this recursive procedure, he does not offer an explicit way of extending
the recursion to limit ordinals as well. This though suffices to understand what

10. Georg Cantor, “Über unendliche lineare Punktmannigfaltigkeiten, 5., §1-3,” in Abhand-
lungen mathematischen und philosophischen Inhalts, ed. Adolf Fraenkel (Georg Olms Verlags-
buchhandlung, 1966), 165–169.
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Cantor’s project is: he wants to use the ordinals to define a scale of powers, via
number-classes.11 These number-classes have to behave ‘like natural numbers’
(cfr. Cantor (1966), p.119), when it comes to fulfilling the role of cardinals, i.e.
instruments to measuring the size of sets via counting how many members a set
has.

In the finite case, the ordinary nonnegative integers – or equivalently, the
natural numbers – do double duty: the number 5, for example, can be used
both to designate the size of a group of five objects, and the fifth position on
the scale of the natural numbers, not counting zero as the starting position.
Hallett (p.62) expresses the situation in the following way: in the finite case,
counting the elements suffices as a way of measuring size. In the infinite case,
this may not be so.

2.4 What this tells us about ordinals and cardinals as ex-
tensions of the natural numbers

Let us briefly review what has been said in the previous section. We have seen
that Cantor first mentioned powers in his 1878, and he already considered them
as a tool to measure the size of sets via counting the elements. In order to be
able to solve the problem of defining what these powers are, he developed a
theory of ordinals – (representatives of) equivalence classes of sets that track
the ‘length’ of a set once it is well-ordered (Hallett, p. 62). Cardinals (number-
classes) are obtained from ordinals by identifying those that can be put in a
one-to-one correspondence.

From this summary of Cantor’s discovery and development of cardinals and
ordinals one can conclude that Cantor perceived the need for having both cardi-
nals and ordinals – as different extensions of the natural numbers. The cardinals,
first thought of as powers of sets, were needed to measure the size of sets. For
Cantor, this meant they had to provide a way of counting the elements in a set,
even a transfinite set, because the size of a set just is the number of elements
it has. Ordinals were needed to give a sufficiently clear definition of how one
obtains cardinals, and also they stand for equivalence classes – to use modern
terms – of order type, that is they track something more fine-grained than just
size.

Both ordinal and cardinal numbers can be seen as expansions of the natural
numbers. They are expansions of the natural numbers in the following sense:

11. At this stage, it is not said whether the transfinite cardinals are just to be identified
with the number classes or if they are special representatives, or primitive entities that are
somehow related to these classes.
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if we imagine the class of ordinals (cardinals) as ordered in the standard way,
then the ‘initial segment’ of this order is exhausted by the natural numbers.
This occurs because Cantor defined ordinals and cardinals in such a way that
the set-theoretic representation of the natural numbers coincides with the initial
segment of the class of ordinals, and of cardinals, respectively. The definitions of
ordinals and cardinals in ZFC also preserve this characteristic. So the concept
of ordinal number, as well as that of cardinal number, expands that of natural
number in the sense that it encompasses the same entities and some more.

Cardinals and ordinals are also generalisations of the natural numbers in
the following sense: the ordinals are defined by recursion, just like the natural
numbers, only they also allow a third step in the recursion, different from the
successor step: once all successors have been formed, one can consider the union
of all the ordinals formed at the previous steps and that constitutes a new
element of the class of ordinals. To express the idea more clearly, consider the
following as a recursive definition of natural numbers:

• 0 is a natural number

• If n is a natural number then n ∪ {n} is a natural number

And compare with the recursive definition of ordinals:

• ∅ is an ordinal

• if α is an ordinal, then α ∪ {α} is a successor ordinal

• given a series of ordinals αi, then their union
⋃

i αi is also an ordinal,
called a limit ordinal.

Then it is easier to see where the ordinals generalise the natural numbers, and
that is in extending the domain on which one can apply induction, thanks to
the recursive definition: while with the natural numbers induction can only be
performed on 0 and successor elements, with the ordinals this can be extended
to a broader class of sets.

2.4.1 Why the ordinals cannot measure the size of sets

Even if by assuming choice one can always find a well-ordering for a set, and
hence an isomorphism with some ordinal, so that each set has an ordinal-
representative, ordinals have never been perceived as entities measuring the
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size of sets. One plausible reason is that ordinals track order-type, that is the
different ways in which a collection of elements can be ordered. The same col-
lection of elements – the same set – can have a representative belonging to
different order-types, and then if order-types, hence ordinals, were used to de-
termine size, size could not be univocally determined. One would need to choose
which order-type somehow mirrors the size of the set, among some equally good
candidates, for they would all have in common the underlying set of elements,
that is what one is trying to measure. This sort of difficulty does not arise
with cardinals, for in the case of cardinals, the elements of sets are enough to
determine their size and size-relations with other sets. As we already noted in
2.2, ℵ0 = |ω| = |2ω| = |ω · 2|, but then ω · 2 6= 2ω, and yet, order aside, these
sets are virtually the same.
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2.5 Numerosities

From the section concerning cardinal numbers there are two takeaway points:
one, equality of cardinalities is sanctioned by the existence of a bijection between
two sets; two, Cantor himself takes cardinal numbers as measuring the size of
sets – and if one believes in set theoretic reductionism, then cardinal numbers
can measure the size of any mathematical object.

From the first point it follows that cardinalities do not respect the so-called
part-whole principle, that is, if a ⊂ b, then it is not the case that card(a) <
card(b), because we have many proper subsets of the natural numbers that can
be put into a one-one correspondence with the whole set of natural numbers.
If one also accepts to interpret cardinality as a faithful size measurement, the
theory of cardinals is to be considered as the proper theory of size, therefore
the proper theory of size will not preserve the part-whole principle (PW): if two
sets a and b are such that a is a proper subset of b then the size of a is strictly
smaller than the size of b. The theory of cardinals, however, does satisfy the
following: given two sets a and b such that a ⊂ b, then size(a)≤ size (b), where
size(–) stands for card(–). Call this the weak part-whole principle (WPW).

The failure of Cantorian cardinals to obey the full part-whole principle has
recently given spur to the formulation of alternative systems that would measure
size by means other than cardinals, in an effort to present a coherent theory of
size that does not share this – in the eyes of the proponents – weakness. Fail-
ure of satisfying the part-whole principle, though, is not the only aspect that
has made people wary of endorsing the theory of size exemplified by cardinals.
Some alternative axiomatisations of set theory 12 also seem motivated by dis-
satisfaction with the Cantorian treatment of infinite quantities, so the concern
that cardinals may not capture size after all goes beyond the observance of the
part-whole principle in particular. Nevertheless, since there is a tradition of con-
sidering the two principles, Cantor’s principle and the part-whole principle, that
is, as the two premises that lead to contradiction in the traditional paradoxes
of the infinite, we are interested in the alternative theories that try to preserve
the part-whole principle. We focus specifically on numerosities because they are
Parker’s prime target in his criticism of Euclidean theories (theories that choose
to preserve the part-whole principle over Cantor’s), and because we think it
is the easiest to compare with the Cantorian theory, since they can both be
expressed in the language of ZFC.

12. e.g. the ‘pocket set theory’ presented in the SEP article by Holmes, M. Randall, ”Alter-
native Axiomatic Set Theories”, The Stanford Encyclopedia of Philosophy (Fall 2014 Edi-
tion), Edward N. Zalta (ed.), <http://plato.stanford.edu/archives/fall2014/entries/

settheory-alternative/>. I am indebted to Prof. Löwe for bringing this to my attention
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Context

The theory of numerosities was first presented in a paper published in Italian
in 1995, then translated into English and published in 2003 as “Numerosities
of labelled sets: A new way of counting”. At that early stage, the system was
developed only to the point of measuring the size of countable subsets of N.
In the papers that have come after that, the authors have tried to make the
theory strong enough to enable measurement of a broader class of sets, and
they have also discussed some fundamental issues that arise in the required set-
ups. As the last paper on the subject was published only last year, it is likely
that numerosities are still work in progress. The circle of people working on
numerosities, however, does not seem to have widened significantly.

In philosophy, numerosities were first mentioned in an article by Parker,13

only to then be extensively discussed by Mancosu in (2009), and at later dates
they were once again considered by Parker in what is a reply to Mancosu of
sorts; subsequent citations occur always in the context of a discussion of one
of the papers authored by Mancosu. This situation then seems to call for a
justification for discussing numerosities beyond their presence in these papers.

The only people who are working on the theory of numerosities are the
same who first articulated the theory. So we cannot really say (perhaps it
is too early?) that their work has proved influential in any of their fields of
research – applied maths, foundations for analysis and so forth. It is also not the
case that numerosities are the only ‘alternative’ to cardinalities when it comes
to measuring set sizes. It is not even the only alternative that preserves the
principle that we are interested in, the part-whole principle. The reason why we
picked numerosities as the token alternative is because it is nevertheless the most
thoroughly motivated theory in its details when compared to other Euclidean
theories14,15 and because it is the theory on which there is still ongoing research
– even though as already said, always by and large by the people who came up
with the idea in the first place – and because, at least in some papers, the
authors take themselves as trying to forge an alternative theory of size that is
a ‘better’ one than Cantor’s.16

13. Parker, “Philosophical Method and Galileo’s Paradox of Infinity.”
14. By Euclidean in this context we mean a theory of size for sets that obeys the part-whole

principle
15. Mancosu, “Measuring the size of infinite collections of natural numbers: was Cantor’s

theory of infinite number inevitable?”
16. Vieri Benci and Mauro Di Nasso, “Numerosities of labelled sets: a new way of counting,”

Advances in Mathematics 173 (2003): pp. 50-1.
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2.5.1 Motivation for a theory of numerosities

The authors of most of the papers on numerosities are Benci, Di Nasso and
Forti. The authors usually work in the fields of analysis and its applications
(Benci), and mathematical logic and foundations (Di Nasso, Forti), which seems
to explain why they would be interested in making ‘an attempt to extending
the notion of finite cardinality’ (quoted from Benci, Di Nasso (2003)). As this
quote shows, the theory of numerosities was initially presented as an alternative
to Cantor’s cardinals, first and foremost. In a number of subsequent publica-
tions, however, numerosities are also presented as offering a way of unifying
the construction of ‘infinitely large’ quantities and ‘infinitely small’ ones, as nu-
merosities can be interpreted as the set of hypernatural numbers, and hence be
used to construct infinitesimals. We can then say that numerosities seem to
be motivated by, on the one hand, developing a theory of size that preserves
the fundamental algebraic properties of finite cardinals, and on the other by
offering a unified foundation for the infinitely small and the infinitely large. For
present purposes, we will not discuss numerosities as a unified treatment for
the infinitely large and the infinitely small, but only as an attempt to provide
a theory of size that, unlike Cantor’s, preserves (PW) for (countably) infinite
sets, as well as finite ones.

After the first few papers in fact, where the authors only mention the part-
whole principle (PW) as the feature missing from the usual transfinite cardinals,
which they yet want a theory of size to satisfy, they subsequently frame the
discussion around Euclid’s five ‘common notions’ from the first book of the
Elements. They claim that Euclid’s five common notions ‘traditionally embody
the properties of magnitudes’ (Benci, Di Nasso, Forti (2007), p.43), and this
seems to be their reason to argue that these notions are to be incorporated in
any theory of size. They are the following:

(CN1) Things equal to the same thing are also equal to one another

(CN2) If equals are added to equals, the wholes are equals

(CN3) If equals are subtracted from equals, the remainders are equal

(CN4) “Things applying onto one another are equal to one another” 17

(CN5) The whole is bigger than the part.

The requirement that any theory of size satisfy all five common notions allows
the proponents of numerosities to make a stronger case in favour of their work,

17. This is the exact way in which Benci et al. translate the text from Euclid because they
feel applying onto to be the most precise rendition of ἐφαρμόζοντα.
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because they can now say that cardinals are defective not just with respect to
some principle, but to a more comprehensive conception of what size should be.
They do in fact highlight that (CN3) as well as (CN5) is violated by the theory
of transfinite cardinals, and so somehow this also serves as further motivation
to prefer numerosities over cardinals. We have already discussed how (CN5)
is not respected by the theory of cardinals if we interpret it as (PW); the way
(CN3) fails is even subtler. There is no way of defining subtraction of cardinals
in a meaningful way.

The weak aspect in motivating their work in terms of the five common no-
tions is that they do not offer a justification as per why one should consider
these principles as prescriptive any more than just the axioms of Peano arith-
metic, for example. Since the authorship of the principles is also debated by
philologists18, it seems one cannot even appeal to the authority of Euclid to
justify them. In Chapters 4 and 5 of the thesis, we will propose a different way
of motivating the theory that does not incur in this sort of issue.

2.5.2 The theory of numerosities for countable subsets of
N

Intuitively, the underlying idea for numerosities is that one procedure for count-
ing infinite sets is to partition them into finite subsets, that then can be counted
in the usual way and the sequence of the finite cardinalities of the subsets forms
the approximate size of the original set. While this procedure does not yield
any different result from cardinals when the set one is trying to measure is fi-
nite, this ‘counting via partitions’ makes the results for infinite sets nontrivial.
Different numerosities arise from different ways of partitioning the given set.

The Benci-Di Nasso original paper starts off by giving three desiderata any
counting system should satisfy. Letting ν denote the size-measuring function:

1. if there exists a bijection between A and B, then ν(A) = ν(B).

2. if A is a proper subset of B then ν(A) < ν(B).

3. if ν(A) = ν(A′) and ν(B) = ν(B′), then ν(A ] B) = ν(A′ ] B′) and
ν(A×B) = ν(A′ ×B′) (where ] denotes disjoint union).

The second item in the list is of course a version of the part-whole principle
in set-theoretic terms, and clearly Cantor’s ordinals and cardinals do respect

18. T.L. Heath, for example; compare his Introduction to Euclid’s Elements
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(CN1) and (CN3) but they do not satisfy (CN2). This is what motivates the
authors’ investigation in what they dub numerosities – which are a special kind
of function.

In order to present the definition of numerosities, we need to first define
labelled sets, labelled subset-hood, and sum and product of labelled sets.

Definition 2.5.1. A labelled set A is a pair 〈A, lA〉 where A is a set, and the
labelling lA : A→ N is a finite-one mapping.

The set A can be viewed as a union of finite sets A0 ⊆ A1 ⊆ · · · ⊆ An ⊆ . . . .
Ai := {a : lA(a) ≤ i}. Each Ai has therefore a cardinality (in the standard
sense of the term), and the sequence formed by the cardinalities of the Ai’s is
called the approximating sequence of A.

Definition 2.5.2. Given A = 〈A, lA〉 and B = 〈B, lB〉 we say that A ⊆ B if
and only if A ⊆ B and for all a ∈ A, lA(a) = lB(a).

Definition 2.5.3 (Sum and Product). The sum of two labelled sets 〈A+B, lA⊕
lB〉, where A = 〈A, lA〉,B = 〈B, lB〉 is defined as 〈A]B, lA ] lB〉 where for any
x ∈ A ∪B, lA+B(x) = lA(x) if x ∈ A, lA+B(x) = lB(x) if x ∈ B.

The product of two labelled sets 〈A×B, lA � lB〉 is given by the set A ×
B = {(a, b) : a ∈ A, b ∈ B} and the labelling for each (a, b) ∈ A × B is
(lA � lB)(a, b) = max{lA(a); lB(b)}

The definition of sum is not quite complete, because the domain of the sum
〈A + B,⊕〉 is the disjoint union A ] B of A and B; hence if an element x is
such that x ∈ A and x ∈ B, the definition does not determine what should be
the label of x. It is clear though that it can be defined as any binary function
of the labels lA(x) and lB(x), such as their sum or product.

Definition 2.5.4 (Numerosity function). A numerosity function is thus a map
µ : L → N , where L is the class of labelled sets and N is a linearly ordered
set according to an order ≤, such that µ satisfies the desiderata 1-3 expressed
above.

Even when extended beyond countable subsets of the natural numbers, the
theory of numerosities easily satisfies common notions (CN1)-(CN3) and (CN5),
suitably formulated. Whether numerosities do indeed respect (CN4) or not de-
pends on what kind of mapping one takes to capture the relation “applying onto
one another”. Benci, Forti and Di Nasso argue for a narrow interpretation, so
to speak, that should encompass only permutations and regroupings. Since this
feature of numerosities is related to one of Parker’s criticisms against Euclidean
theories, we will briefly discuss this in the relevant chapter.
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So defined, numerosities enjoy some nice features, notably that the oper-
ations of addition and multiplication, defined as num(A + B) = num(A) +
num(B) and num(A) · num(B) = num(A ·B), behave like the usual addition
and multiplication of finite cardinalities whenever both A and B are finite. More
than that, N is a positive semi-ring.

An important aspect that will be discussed later is in which sort of models of
ZFC numerosities do exist. Benci and Di Nasso19 have proved that the existence
of numerosities is equivalent to the existence of a selective ultrafilter.

An ultrafilter U over some set I is a nonempty family of sets such that, if
D ∈ U and D ⊆ D′ then D′ ∈ U , and if D0, . . . , Dn ∈ U , for any finite n⋂

nDn ∈ U .
An ultrafilter U is called nonprincipal if it does not contain any finite subset of
I.
A nonprincipal ultrafilter U on I is called selective if for any function ϕ : I → I
there is a D ∈ U such that ϕ restricted to D is nondecreasing.20

Once there is a selective ultrafilter U over N, we consider its ultrapower21

over N, namely the set N := {[ϕ]U | ϕ : N → N}, where [ϕ]U is the equivalence
class of the map ϕ : N→ N determined by the equivalence relation:

ϕ ∼U ψ ⇔ {n| ϕ(n) = ψ(n)} ∈ U .22

The claim is that this set N satisfies the axioms of numerosities. The proof is
too elaborated to try and relay here, but the interested reader can find it in the
original paper.

Having defined the set N , we can define an order [ϕ]U ≤ [ψ]U ⇔ {n :
ϕ(n) ≤ ψ(n)} ∈ U , and this order turns out to be a linear order whenever ϕ,ψ
are approximating sequences – this means that the order thus defined over N
satisfies trichotomy. If we set that for each labelled set A, num(A) = [γA]U
then we obtain that this yields numerosities.

Numerosities then appear to be equivalence classes of non-decreasing func-
tions having as both domain and codomain the set of natural numbers.

19. Benci and Di Nasso, “Numerosities of labelled sets: a new way of counting.”
20. The interest in nondecreasing functions from N to N is that they simulate the process of

counting the elements of subsets of N itself.
21. An ultrapower is a specific case of the ultraproduct construction. For a definition of

ultraproduct, see Insall, Matt. “Ultraproduct” From MathWorld–A Wolfram Web Resource,
created by Eric W. Weisstein. http://mathworld.wolfram.com/Ultraproduct.html

22. Clearly, if ϕ ∼U ψ then [ϕ]U = [ψ]U .
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2.5.3 Remarks

As the reader may have realised, building numerosities from a selective ultrafilter
leaves many issues unsolved. Since the construction only assumes the existence
of an ultrafilter, we do not know which sets are members and which are not –
all we know is that we cannot have both a set A and its complement N − A
as an element of an ultrafilter, and also that the finite subsets of N cannot be
in a selective ultrafilter (for if a finite subset A ⊆ N were an element of the
ultrafilter, it would fail to be a nonprincipal ultrafilter).

For any set A that is neither finite nor cofinite, then, it is undetermined
whether it is a member of the selective ultrafilter or not. As an example, the
set 3N (the set of multiples of 3) might be in the ultrafilter, or alternatively its
complement might – and similarly, the set of the odd numbers could be in the
ultrafilter, or the set of the evens – they are equally good alternatives. There is
no constraint that suggests which of these sets should be in the ultrafilter, and
this has immediate consequences for size relations.

Consider the following example, given by Benci and Di Nasso (2003, p.
63) and Mancosu (2009, pp. 634-35): suppose the selective ultrafilter U is
in the model of ZFC you are considering, and 2N ∈ U (and 0 ∈ 2N). We
know that the numerosity of the labelled set of even numbers, Even, is de-
fined as the (equivalence class of) the approximating sequence of 2N. This is
γeven = 〈1, 1, 2, 2, 3, 3, . . . 〉. Similarly, for the labelled set Odd, the approxi-
mating sequence is γodd = 〈0, 1, 1, 2, 2, 3, 3, . . . 〉. Since, given any two labelled
sets A, B, num(A) + num(B) = num(A+B), and Even+Odd= N (where
N is the set N together with the canonical labelling, i.e. identity), we have
that num(N) = γN = 〈1, 2, 3, . . . 〉 = num(Even) + num(Odd). At the
same time, though, since 2N ∈ U , num(Even) = num(Odd) + 1: by def-
inition, num(Odd) + 1 = num(Odd + 1), and num(Odd + 1) = γOdd +
γ1 = 〈0, 1, 1, 2, 2, 3, 3, 4 . . . 〉+ 〈1, 1, 1, 1, 1, . . . 〉, and the latter equals γEven+1 =
〈1, 2, 2, 3, 3, 4, 4, . . . 〉. It is easy to check that for every nth position where n
is an even number, γOdd+1(n) = γEven(n). Thus the set {n|γOdd+1(n) =
γEven(n)} = 2N ∈ U , and this, by definition 2.5.2 of ϕ ∼U ψ, means that
[γOdd+1] = [γEven], hence num(Odd+1) = num(Even), so num(Odd) + 1 =
num(Even), as anticipated.

The problem is that then one can substitute this last result in the equation
num(N) = num(Odd)+num(Even) and obtain num(N) = 2num(Even)+1,
that can be interpreted as showing that the numerosity of the natural numbers
is odd (because it can be written as 2k + 1 for some k). On the other hand,
if U actually contained the set of the odd numbers instead, we would have
num(Odd) = num(Even) and so num(N) would be even. So if on the one
hand numerosities, unlike cardinals, allow to make sense of the notion that an
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infinite number may be even or odd, on the other they cannot determine for
any infinite set (such as N) whether their numerosity is even or odd – this may
change depending on the ultrafilter one chooses.
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Chapter 3

Gödel’s defence of Cantor’s
proposal

3.1 An argument in favour of cardinals

Cardinals were famously defended as the sole genuine extension of the concept of
number (into the infinite) by Gödel in his (1947) paper. Since we are interested
in discussing the interpretation of this argument, it seems necessary to give the
reader an opportunity to judge the faithfulness of the competing interpretations
by themselves. Thus, we report the whole passage in which Gödel’s argument
is found.

[. . . ] Closer examination, however, shows that Cantor’s definition
of infinite numbers really has this character of uniqueness, and that
in a very striking manner. For whatever “number” as applied to
infinite sets may mean, we certainly want it to have the property
that the number of objects belonging to some class does not change
if, leaving the objects the same, one changes in any way whatsoever
their properties or mutual relations (e.g., their colors or their dis-
tribution in space). From this however, it follows at once that two
sets (at least two sets of changeable objects of the space-time world)
will have the same cardinal number if their elements can be brought
into a one-to-one correspondence, which is Cantor’s definition of
equality between numbers. For if there exists such a correspondence
between two sets A and B it is possible (at least theoretically) to
change the properties and relations of each element of A into those

28



3.1. An argument in favour of cardinals

of the corresponding element of B, whereby A is transformed into a
set completely indistinguishable from B, hence of the same cardinal
number.1

We are going to restructure the argument as follows:

thesis (T) Cantor’s definition of cardinal number is the unique extension of
the concept of number that can account for infinite quantities. (‘Cantor’s
definition of infinite numbers really has this character of uniqueness’)

premise (P1) The number of objects of a set is invariant under change of
qualities or relations. (‘For whatever “number” as applied to infinite sets
may mean, we certainly want it to have the property that the number
of objects belonging to some class does not change if, leaving the objects
the same, one changes in any way whatsoever their properties or mutual
relations’)

premise (P2) If a feature of a set is invariant under change of qualities or
relations among its members, then it is invariant under bijections. (‘For
if there exists such a correspondence between two sets A and B it is pos-
sible (at least theoretically) to change the properties and relations of each
element of A into those of the corresponding element of B[. . . ] hence of
the same cardinal number.’).

Conclusion(C) Any mathematically viable way of extending the concept of
number coincides with Cantor’s way.

So the argument made of (P1), (P2) and (C) supports thesis (T). Mancosu
refutes the argument because he believes that the existence of numerosities is
enough to show (P1) as unwarranted for infinite quantities: according to him,
(P1) is uncontroversial for finite sets, but it needs more justification than an
argument from analogy to be extended to infinite sets as well. To declare Can-
tor’s cardinals as the only sensible way of extending the concept of number by
appeal to (P1) is almost a petitio principii, or so Mancosu seems to suggest.
The reasoning goes as follows: when Gödel asserts that Cantor’s way of extend-
ing the concept of number has a claim to uniqueness as an extension to infinite
sets, he likely means that Cantor’s is the only “mathematically viable” way of
extending the concept. Mancosu thus considers the theory of numerosities to be
well-developed enough to count as a “mathematically viable” way of extending
the concept of number to the infinite, and yet it does not coincide with Can-
tor’s – moreover, this way of extending the concept is such that the number

1. Kurt Godel, “What is Cantor’s Continuum Problem?,” The American Mathematical
Monthly 54, no. 9 (1947): 515–525, issn: 00029890, 19300972, http : / / www . jstor . org /

stable/2304666.
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of elements of an infinite set does change under certain alterations of relations
among the elements of the set, so premise (P1) must be unsound, or at the very
least is not easy to defend as sound unless one is already committed to Cantor’s
cardinals.

We should recognise that the attribute of “mathematical viability” plays a
key role in our presentation of Gödel’s argument; Gödel claims uniqueness for
Cantor’s extension of the natural numbers, but this claim of uniqueness means
that cardinals are the only (unique) extension of the natural numbers into the
infinite of a certain kind, that meets certain requirements. We express these
requirements as “mathematical viability” to convey the fact that more than
consistency with known characteristics of finite arithmetic, say, is needed. It
is however difficult to be more specific than this – and this is what allows for
different readings of Gödel’s argument. Crucially, the meaning one may attach
to this mathematical viability determines what sort of inevitability Gödel is
attaching to Cantor’s definition of the cardinals.

When arguing against Gödel’s conclusion, Mancosu leaves unexplained what
is the ‘inevitability’ he interprets Gödel as advocating. This leaves his rebuttal
of the argument open to criticism, but at the same time he offers tools to make
his attack on Gödel’s argument more precise and forceful. Mancosu2 quotes the
work of Meir Buzaglo3 on concept expansion in mathematics as an additional
sceptical voice towards this ‘inevitability’ of Cantor’s theory of cardinals. Man-
cosu himself though is not interested in using Buzaglo’s formalisation of concept
expansion to explain exactly what it means for Cantor’s theory of cardinals to
(fail to) be inevitable.

This is the work we carry out in the next section.

3.2 Buzaglo’s concept expansion and expanding the con-
cept of ‘number of’

In his book The Logic of Concept Expansion, Meir Buzaglo offers a logical treat-
ment of the phenomenon of concept expansion. To that end, he first presents
an enriched first-order language – still countable though – and then interprets
concept expansions as embeddings of models of such language. In chapter 3
he offers formal definitions of different sorts of such embeddings, basing his ac-
count on Tarski’s definition of truth in a model. The ‘concept’ is formalised as
a (partial) function, and the expansion is interpreted as an enlargement of the

2. Mancosu, “Measuring the size of infinite collections of natural numbers: was Cantor’s
theory of infinite number inevitable?,” p. 638.

3. Meir Buzaglo, The logic of concept expansion (Cambridge University Press, 2002).
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domain over which the function is defined. Formally, this means that he con-
siders models in a signature that contains function symbols and a distinguished
constant X, and interprets a function f as defined on an element a in a model
M whenever f(a)M 6= X.

Of the various definitions of expansion offered in the book, we are only going
to consider the following:

Definition 3.2.1 (Internal expansion). Let M,N be models of the first order
language of concept expansion. N is an internal expansion of M if and only
if Dom(M) = Dom(N), XM = XN , and if a function f is in the signature of
M and N , then for all a, b ∈ Dom(M) \ XM , if f(a)M = b, then f(a)N = b.
Notation: M << N or N >> M .

Informally, an internal expansion of a concept f occurs when there is a
context of interpretation (a model, to follow the definition) of the concept in
which f still applies to the same objects as in the restricted context (M) – and
possibly some more. Note that this kind of expansion only has to preserve the
values of the concept f on the original domain, but it does not have to meet
any other constraints.

Definition 3.2.2 ( Forced Internal Expansion). Let N >> M as defined above.
Let Φ be a set of sentences from the language of concept expansion. Then N is
a forced (internal) expansion of M with respect to Φ (equivalently, N >> M is
forced by Φ) if M � Φ, N � Φ and for every K >> M such that K � Φ, the
functions in K and N agree on their common part and therefore compatible,
i.e., for any function symbol f in the signature, and any a ∈ Dom(M) \XM , if
f(a)N 6= XN and f(a)K 6= XK , then f(a)N = f(a)K .

This second kind of expansion is more demanding. Informally, A forced
internal expansion N occurs whenever, given a certain context M for interpret-
ing f , there may be several ways of expanding M , but once one assumes that
a certain set of conditions Φ is true, then all these ways of expanding M are
consistent with N .

What this means is that, if M has a forced internal expansion, even though
there may be different ways of expanding M , given a certain set of assumptions,
there is a core of “facts” about the concepts interpreted in M that are fixed
across all expansions.

Definition 3.2.3 (Strongly Forced Expansion). Let N, M, Φ as above. We say
N is strongly forced by Φ if and only if

(i) N >> M is forced by Φ;
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(ii) for any set Ψ of sentences in the language, if Ψ forces an extension N ′ >>
M , N ′ is compatible with N .

This means that not only do all expansions of M which satisfy Φ agree on
the ways in which N evaluates functions (i.e., which elements fall under which
concepts in interpretation N), but any expansion of M that is forced by any
other set of conditions Ψ is going to agree with N on the ways in which N
evaluates functions.

The second type of expansion is the one under which the expansion of the
concept of relation ‘x has the same number of elements as y’ from only finite to
also infinite sets falls, according to Buzaglo. His formalization of the situation
is the following. He considers a partial function f(x, y) from V , the hierarchy
of sets, into {0, 1} and defines it as such:

f(x, y) =


0 if x and y are both finite and do not have the same number of elements

1 if x and y are both finite and have the same number of elements

undefined otherwise

As it stands, f is a binary function, or a function defined on pairs of finite
sets; equivalently, its domain is Vfin×Vfin, where Vfin stands for the finite sets
in V . In the forced expansion N , f will be defined as f(x, y) = 1 iff there is a
one-one correspondence from x to y; f(x, y) = 0 otherwise. Since f is now a
function defined for all pairs of sets, with no restrictions, it is defined on V ×V .
Clearly, the situation with respect to f in N corresponds to Cantor’s expansion
of the concept of sameness of number to the infinite sets.

As noted by Mancosu (2009) already, Buzaglo here comments that it may
be possible to expand f differently, if one considers a set of sentences other than
Φ, and goes on by producing an example thereof. For our purposes, we are
interested in considering {(PW )} as Φ′. Then we can indeed define f(x, y) = 1
iff num(x) = num(y), where num stands for the numerosity function 4.

Assuming for the sake of argument that Buzaglo’s proposal is faithful enough
as a formalisation of concept expansion in mathematics, comparing Cantor’s
definition on one hand and the one via numerosities on the other leads to the
conclusion that, from the conceptual point of view, the two expansions are on a
par. They can both be formalised as forced expansions of the standard model,

4. to see this, one needs to check that the whole definition of num(x) = num(y) can indeed
be expressed in first order logic, which it can. The problem is that we have checked this
only for the definition of numerosities which encompasses countable sets, nothing more and
by far not the whole of V , so this expansion does not go as far as that formalising the work
of Cantor’s.
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and since they’re clearly incompatible with one another, neither of them is a
strongly forced expansion. There is also no way of pushing either of the expan-
sions into the stronger category of strongly forced expansion, because that would
require compatibility with other expansions which is ruled out automatically for
both, given the existence of the other. This observation offers a specific sense
in which claims of inevitability and uniqueness of Cantor’s definition might be
refused.5

3.3 Another interpretation of Gödel’s argument

There is reason to doubt though that Mancosu’s (and Buzaglo’s) reading is the
only one supported by the text of Gödel’s article. A few lines after the long
passage quoted above, in fact, Gödel writes: “ [By accepting Cantor’s defini-
tion of equality of numbers] it becomes possible to extend (again without any
arbitrariness) the arithmetical operations to infinite number.” (Gödel p. 515).
When remarking that Cantor’s definitions of sameness of number and less than,
and greater than, allow for a reconstruction of ordinary arithmetical results for
infinite quantities, he writes in parenthesis: ‘again without any arbitrariness’
(emphasis mine). Yet the word ‘arbitrariness’ has not appeared before – so what
is Gödel talking about? why again? I think the answer is that Gödel views Can-
tor’s definition of cardinal number as the only one that is not arbitrary. That
ought to be the meaning of the idea of iteration here. The choice of Cantor’s
definition is not arbitrary, the way the ensuing transfinite arithmetic develops is
not arbitrary. Neither of them is arbitrary, in the sense that Cantor’s definition
was guided by a natural principle, the one Gödel discusses at the beginning of
the first section of his paper, and the arithmetic of these new numbers does not
betray the basic mechanisms of its preexisting finite cousin, and so they share
some of the guiding principles.

Suppose Gödel is arguing here that Cantor’s extension is the only logically
possible way of extending the concept of infinite number. Although the part-
whole principle by itself does not determine a theory of size, let alone a com-
prehensive mathematical theory of the infinite comparable to Cantor’s, even in
Gödel’s times it was a conceptual possibility to define the size of infinite sets in
such a way that it would respect the part-whole principle. Hence, we feel it is
doubtful that Gödel might have believed that Cantor’s conception of size was

5. Luca Incurvati has rightfully objected that the defender of Cantor’s cardinals as the one
right expansion of the concept of natural number could claim that the definition of equality of
cardinality in terms of one-to-one correspondence (that is, (CP)) is already a constituent part
of the concept of number, albeit implicit, hence it cannot just be treated as a requirement
or constraint to be met by an expansion of the concept. My reply to such a concern is that
whoever may want to pursue such defence would still have to produce an argument to assert
that (CP), not restricted to just finite cardinalities, is part of the concept of number.
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the only consistent one – he might have well thought though that it was the
only extension amenable to a thorough mathematical treatment.

Both interpretations we propose therefore agree that Gödel must have thought
that Cantor’s was the only adequate extension of the concept. The problem is to
decide what are the minimal requirements of adequacy. If adequacy just means
that the concept extension is such that it can support a rigorous arithmetisation
of the infinite, by defining operations of addition and multiplication among dif-
ferent magnitudes of the infinite, then Mancosu’s reply is a satisfactory one that
proves Gödel wrong. If, on the other hand, adequacy means more than that, for
example, that Cantor’s is the only way of expanding the concept and develop an
arithmetic of the infinite non-arbitrarily, then further work is needed to refute
his claim. More specifically, one would need to show that e.g. the numerosities
considered by Mancosu are not arbitrary.

3.4 Parker’s counterattack

In the first section of the current chapter, we have introduced Gödel’s argument
defending the uniqueness of Cantor’s definition of number. We have also re-
marked that Gödel might be interpreted as claiming that Cantor’s is the unique
proposal satisfying some desiderata – yet it is unclear which ones these might
be. We have therefore entertained the option that Gödel defends Cantor’s as
the unique extension of the concept of number (into the infinite) that can have
a satisfactory mathematical treatment (that is mathematically viable). If that
is the right interpretation, then Mancosu can indeed appeal to numerosities as a
counterexample. If the assertion being defended is that the concept of number
for finite quantities is such that it can only be extended in one way to infinite
quantities, then, depending on what one takes to be constitutive of the concept
of number, Cantor’s may or may not be the unique expansion of the concept. In
particular, if one agrees that the concept of number does not contain Cantor’s
principle (CP) as an implicit component, then it is possible to use Buzaglo’s
framework to show precisely how uniqueness fails for Cantor. That is what we
have done in the second section.

From the work carried out so far we conclude that Gödel’s argument falls
short of establishing uniqueness of Cantor’s definition of cardinals as extension
of the concept of number – at least so long as one does not think that (CP)
itself is part of the concept of number.

The Cantorian however is not left empty-handed when trying to defend
cardinals as the one extension. Parker (2013)6 offers an argument that can

6. Parker, “Set-size and the Part-Whole Principle.”
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be seen as a more contemporary take on Gödel’s; instead of trying to defend
cardinals as the only true extension in fact, Parker aims at establishing that
theories of size which forfeit (CP) in favour of (PW) – which he calls Euclidean
theories of size – are not good enough as theories of size, because they are of
limited epistemic use (compared to the standard Cantorian theory of cardinals).

He explains that for a theory of size to count as epistemically useful, said
theory needs to satisfy four criteria: it has to be ‘strong, general, well motivated,
and informative’7, and then explains the four criteria as follows:

By a general theory I mean one that applies to a broad domain or
many domains, including, in particular, subsets of the whole num-
bers and countable point sets. By strong I mean logically strong –
a theory that leaves little undecided [. . . ] By well-motivated I mean
that the details of the theory – all of the particular sizes and size
relations it assigns – are so assigned for some reason; they are not
chosen arbitrarily. And finally, informative here means that the con-
sequences of the theory (or concept) indicate something of interest
that holds independently of the theory itself.8

Before we move on to consider how Parker embeds this framework in his
general argument against Euclidean theories, we should comment on the criteria
he singles out as criteria for an epistemically useful theory of size. First of
all, these are not, in and of themselves, specific to a theory of size – they
seem more like general criteria of epistemic adequacy for any scientific theory.
Secondly, in spite of Parker’s explanations, it remains quite hard to grasp the
precise signification of those four criteria, or the relations they might bear to
one another. We will come back later on to this point. For the moment however,
I would like to focus on the last two criteria. Given Parker’s explanations, it
seems that being well motivated and being informative are related, because if
a theory is well motivated, then it is informative: if each size relation has a
reason – is not arbitrarily imposed – then whatever does the motivating is what
the theory is informative about. So in the case of the Cantorian theory, the
single size-relations are motivated by the existence of bijections, and the theory
is informative about properties of bijections, in a way. The converse however
seems to fail. Imagine a theory of size such that it assigns one same size to
all sets, except precisely when one is a proper subset of the other, in which
case the proper subset gets assigned a stricly smaller size. This size assignment
could be considered as informative, because whenever size(A) < size(B) is true
in the theory, for sets A and B, that means that A is a proper subset of B,
and conversely if size(A) = size(B) then A and B are certainly disjoint, so
size would be tracking subsethood – it would be informative about subsethood.

7. Parker (2013), op. cit., p. 590.
8. Parker, ibid.
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This theory however could still count as arbitrary, in Parke’s sense of the term,
because this size assignment would fail to discriminate between substantially
different sets, and would identify, for example, the size of the set of negative
integers to that of positive real numbers for seemingly no good reason.

Let us now turn to the main goal of the paper, though. Parker’s claim regard-
ing Euclidean theories of size is that they are either too weak and not general,
or arbitrary (non well motivated) and uninformative, to count as good theories
of size. The strategy is to argue that any Euclidean theories cannot satisfy all
four criteria at the same time, although the heart of the paper is to show that
any Euclidean theory that meets his criteria of strength and generality is then
either arbitrary or not informative. In the specific case of numerosities they
seem to be judged as arbitrary. Either way, he makes the immediate inference
that a theory that is either weak and with a narrow domain of application or
arbitrary and uninformative is going to be limitedly useful from an epistemic
point of view to conclude that Euclidean theories are not mathematically useful
as theories of size.

In the next section, we consider Parker’s argument in somewhat more detail.

3.4.1 Structure of the argument

Parker builds his argument by presenting the two only principles he is going to
assume any Euclidean theory of size subscribes to. The first one is (PWS), or
the part-whole principle in its set form:

(PWS) If A ⊂ B then size(A) < size(B).

He refers to this principle as Euclid’s principle, as noted in the introduction ??.

The second principle is discreteness:

If size(A) < size(B) then size(A ∪ {x}) ≤ size(B).

Despite presenting his main thesis as a disjunction (“Any Euclidean theory of
size is either too weak or arbitrary to be useful”), Parker devotes most of the
discussion in his paper to establishing that, under the assumption of discrete-
ness, Euclidean theories of size are arbitrary. His presupposition is that rigid
transformations should preserve size, but some of them do not, if the theory of
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size adopted is Euclidean (and discrete). Recall the definition of rigid transfor-
mation:

Definition 3.4.1 (Rigid transformation). Let 〈S, s〉, 〈T, t〉 be two metric spaces9,
and let f : S → T be a bijection. Then f is a rigid transformation (or isometry)
if and only if, for any a, b ∈ S, s(a, b) = t(f(a), f(b)).

Informally, then, rigid transformations are transformations that preserve
distances – it seems reasonable then to expect them to preserve size, but this
is not the line followed by Parker. Rather, he asserts that the guiding principle
behind the requirement that rigid transformations preserve size is: the more
properties a map can preserve, the more it has a claim to preserving size, too.
Parker is also adamant though that his argument for arbitrariness itself does
not rest on this principle. These are the invariance principles he considers:

(ATI) If T is a translation on a metric space

〈S, d〉, then for any A ⊆ S we want that the size of TA equals the size of
A.

(RTI) If T : S → S is a translation over a metric space 〈S, d〉 and A,B ⊆ S
then the size of A is no larger than the size of B if and only if the size of
TA is no larger than the size of TB.

(ARI) For any rotation R on a Euclidean metric space 〈S, d〉 and any A ⊆ S,
size(A) = size(RA).

(RRI) For any rotation R on a Euclidean metric space 〈S, d〉 and any A,B ⊆ S,
size(A) ≤ size(B) if and only if size(RA) ≤ size(RB).

The first two principles are the ones discussed more generously in the paper,
hence we will consider these in particular. An easy example to visualise the
meaning of the ATI principle is that of N and N − {0} = Z+. Z+ can be
considered as the result of translating N by the translation T (n) = n+1 ∀n ∈ N.
Then according to the principle, N and Z+ should have the same size. But if
we want size to agree with the part-whole principle, since Z+ is a proper subset
of N, it should be strictly smaller than N, too. The problem of course is not
just that the adoption of the part-whole principle generates different theorems

9. A metric space〈S, d〉 is a set S together with a distance map d satisfying the following:

(i) d(x, y) = 0 if and only x = y.

(ii) d(x, y) = d(y, x).

(iii) d(x, z) ≤ d(x, y) + d(y, z).

A Euclidean metric space is a metric space 〈S, d〉 such that, for some n ∈ N, 〈S, d〉 is

isometric to Rn with respect to d and the metric d′(a, b) =
√

(a1 − b1)2 + · · ·+ (an − bn)2.
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when it comes to sizes, but that it seems to violate results which it seems
unmotivated to drop. For example, if we accept that Odd and Odd2 (the set
of all odd numbers and the set of the squares of all odd numbers, respectively)
have different sizes 10, because Odd2 ⊂ Odd, then we are letting two sets
with the exact same algebraic structure differ in size. This, says Parker, is
misleading, because the two sets have exactly the same algebraic structure (the
map f(m) = m2 from Odd to Odd2 preserves multiplication, and also addition
on both sets, vacuously, as neither is closed under addition) and yet they do not
have the same size.

This is an instance of how the criterion of informativeness is not specific
enough to serve its purpose. Informativeness of a theory of size, if interpreted
as the requirement that two objects A and B are assigned different sizes only
if there are significant differences between their algebraic structures, is not sat-
isfied even by Cantor’s theory of cardinals, because we can have homomorphic
algebraic objects, for example, two groups(G,+), (H,⊕), that are homomor-
phic – namely there is a map f : G → H such that for any g1, g2 ∈ G,
f(g1 + g2) = f(g1) ⊕ f(g2), but they may not be in a bijection (i.e. they
may not be isomorphic), hence, they would not have the same cardinality. I
am aware that the reply here could be that there is a significant structural dif-
ference between being just homomorphic and being isomorphic groups, hence
cardinality still is informative; but it seems that Parker has left the notion of
informativeness too underspecified to both be able to use it against Euclidean
theories and not harm the status of cardinalities.

3.5 Taking stock

Let us summarise once more Parker’s overall argument.

A Euclidean theory of size is a theory of size that obeys the part-whole
principle for sets, and the discreteness principle.

From those two principles alone, it is provable that principles (ATI),(RTI),
(ARI) and (RRI) fail. Since these principles are necessary and sufficient to
guarantee that size is invariant under common rigid transformations, it means
that Euclidean theories of size are incapable of warranting invariance under
these maps.

This is particularly damaging because (even though Parker does not frame
his attack this way) Euclid’s fourth common notion (see 2.5.1) is interpretable as

10. This is an example of Parker’s, op.cit. pp.600-601
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requiring invariance of size under a suitable class of transformations. The most
common interpretation of what these transformations might be is congruences –
however Benci, Di Nasso and Forti have argued for a narrower interpretation of
what the transformations should be. Parker’s attack makes their position rather
delicate, because it pushes them to defend the exclusion of rigid transformations
from the class of transformations that should preserve size – without presenting
it as an ad hoc move.

Parker’s main line of attack against numerosities and Euclidean theories of
size and/or size assignments is that of pointing out that, if we adopt Euclidean
theories across the board, their applications will incur a number of limitations
that would limit and deform ordinary mathematical activity in a way that is
downplayed by e.g. the authors of the papers on numerosities themselves, even
when they do know that these limitations occur (see for example the failure of
ATI).

The general strategy of Parker is therefore to point at situations in which
we would expect (it would be useful from a mathematical point of view, he
claims) that size is preserved, only to be forced, by the assumption of (PWS),
to conclude that this translation or rotation does not preserve size, or it does
not preserve size relations. However, there seems to be essentially three ways
in which his claim to that the maps he considers should preserve size may be
convincing.

The first possibility is that the rhetorical strength of his argument relies
on some sort of geometric intuition about size. In particular the failure of
the principles mentioned above in Euclidean theories is a problem because, in
plain Euclidean geometry, the area of any geometric figure that undergoes rigid
transformations remains unchanged. What is being discussed here, however, is
whether the number of points should be left unchanged by such transformations,
which is not the same thing as preservation of the area. So if Parker’s idea
is to argue that maps such as translations and rotations should preserve the
number of points, appealing to geometric intuitions does not seem like a cogent
argument.

The second possibility is that, perhaps more that he would admit it, Parker is
relying on the principle that the more mathematical properties a map between
two sets preserves, the more likely it is to also preserve size. In particular,
the maps that Parker considers as likely to preserve size are all bijections with
certain additional properties, and so, by this principle, they are more likely
to preserve size than bijections themselves. On this respect however, it seems
difficult to see what kind of justification of this idea could be given. For if one
wants to argue against Euclidean theories without presupposing the background
of the Cantorian position, then one has to discard the fact that the maps Parker
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considers are bijections as a justification for them to preserve size.

On the other hand, it is not clear either why the fact that a given map pre-
serves some other properties of certain mathematical structures should be any
indication that it is more likely to preserve also size. We discussed earlier the
reasons why preservation of algebraic structures is not a sufficient reason for
preservation of size even if one understands size as cardinality. Moreover, this
argument can be extended to a much wider class of mathematical structures. In-
deed, the well-known Löwenheim-Skolem theorem for First-Order Logic shows
that two mathematical structures that can be so similar that they are both
models of a complete first-order theory can nevertheless have different cardinal-
ities. So it seems that, even in the case of Cantor’s cardinals, a wide number of
mathematical properties can be shared by two different structures without that
being a guarantee that they also have the same size.

The last possibility is that the maps Parker consider should preserve size
because otherwise our theory of size for infinite collections would not be as
mathematically useful as one such that translations and rotations would preserve
size. This is most likely the point Parker is trying to make. In order to assess
if his argument goes through under this specific reading, we need however a
clearer picture of what exactly the role of a theory of size for infinite collections
should be. As noted earlier, Parker’s own four criteria for a theory of size seem
too general to provide us with such a picture. In the next chapter, I will try
to expand this part of Parker’s work, and come up with a more precise picture
of what a theory of measurement of size should be like, in the hope that this
will allow us to determine whether or not he is right in dismissing Euclidean
theories of size.
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Chapter 4

Measuring size of infinite
collections

This thesis has seen us entangled in at least two problems: on the one hand, one
wonders what is the right way of extending the concept of number to encompass
infinite quantities; on the other, there is the problem of how to measure the size
of infinite objects – and more specifically, infinite collections. In this chapter,
we are going to focus on this second problem, trying to keep it separate from
the former.

4.1 Principles for a theory of size of (infinite) collections

The main lesson from Parker is that there may well be no notion of size justi-
fying the details of size assignments that respect (PWS). Parker presents a few
principles that are not validated by Euclidean theories of size and argues that
failure of these principles makes sets which share all sorts of properties funda-
mentally different. In other words, Euclidean size assignments are not guided
by any significant property of sets.

In the previous chapter we have introduced the reader to Parker’s attempts
to revisit Gödel’s argument. Parker defends the primacy of the theory of car-
dinals indirectly, that is, by questioning the epistemic adequacy of other the-
ories of set size – Euclidean theories. His strategy is to consider four criteria
(strength, generality, being well motivated, being informative) that are neces-
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sary conditions for any theory of size to be epistemically useful, and then show
that Euclidean theories cannot satisfy all four criteria at once. In particular, if
Euclidean theories are strong and general, then they violate certain principles
of size invariance under rigid transformations, and these violations imply that
the theories are arbitrary, i.e. not well motivated.

Although Parker himself is not interested in investigating the adequacy of
Euclidean theories of size from a conceptual point of view (i.e. he is not inter-
ested in establishing that Euclidean theories do not meet the epistemic standards
any theory of set size should, as a theory of the size concept), his four criteria
provide a starting point for an analysis of theories of size based on the crite-
ria they need to meet as theories of size. Better still, they provide a starting
point for a discussion for what a theory of measuring size should be like, for
collections.

It might be the case that difference in size as sanctioned by Euclidean theories
is no reliable indicator of variations in one (family of) mathematical properties of
sets, as Parker stresses; yet this does not rule out the possibility that measuring
size by preserving the part-whole principle might be useful, or interesting.

Let us start with a seemingly uncontroversial statement, that has nonetheless
important consequences. The size of a collection is a quantitative magnitude,
where a quantitative magnitude is defined as any magnitude that can be mea-
sured on a numerical scale.1 As for any theory of magnitudes, a theory of size
should provide one with a way of measuring a certain property that is shared
by a wide class of objects – collections are the objects, in our case. We can list
a certain number of desiderata for such a theory, some depending on general
principles of a theory of measurement, some depending on the property that one
seeks to measure, i.e. size, and finally some depending on the specific measuring
procedure we are interested in – namely, counting.

4.2 General principles of a theory of measurement of size

Any theory of measurement of property X for a class of objects C should provide
the following:

1. An assignment A of values to objects in C.

2. An effective rule or method M to determine the value of a given object,
and mathematical relations between values.

1. Eran Tal, “Measurement in Science,” in The Stanford Encyclopedia of Philosophy, Sum-
mer 2015, ed. Edward N. Zalta (2015).
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3. A mathematical structure S associated to the set of values, that allows
for mathematical investigations via algebraic operations to be performed.

4. A conception J of property X, containing justifications of why the theory
provides a meaningful and valuable way of tracking property X.

Note that we can reformulate Parker’s four criteria for epistemic usefulness
as conditions to impose on A, M , S, and J respectively. Thus a theory T of
size measurement for collections (sets) is general if the assignment A is total;
it is strong, if M can determine size for as many objects of the domain of A
as possible. On the other hand, T is well motivated if the algebraic relations
established by S are interpreted in a natural way as relations among the objects
of the domain of A; lastly, T is informative if J is nonempty.

One needs to be slightly careful when making comparisons with Parker,
though, because we use the same word, ‘theory’, to mean somewhat different
things: Parker uses ‘theory’ in its logical sense of deductively closed set of
sentences, whereas in the rest of the thesis theory is used in the more generic
sense of body of propositions about one concept – size and size measurement,
in this particular instance.

We now turn to the discussion of some principles that any theory of mea-
surement (A, M, S, J) should satisfy. We provide here a list of plausible ones.

(a) The assignment A should be functional: for every object P in C, at most
one value should be assigned to P.

(b) The method M should be consistent, sound and useful: it should allow
to determine unambiguously and whenever possible which value has been
assigned to an object C – this is what we mean by useful. In particular,
this means that the method should not lead one to determine different
values for the same object, nor to determine a value different from that
assigned by A – this is what we mean by consistent. Finally, it should
also guarantee a certain independence of the result from the choices made
when one tries to determine the size of such an object. This determines
usefulness.

(c) The mathematical structure S should offer a faithful representation of the
behaviour of the property it models, and operations in S, should have a
natural interpretation on the property X. In other words, every syntactic
manipulation in S should have a semantic counterpart on X (note the
similarity with our reinterpretation of well-motivatedness).

(d) The set of justifications J should define a conception of the property X
that should give reasons as per why all and only those operations defined
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in S make sense (for example, why addition of Celsius temperatures does
not make sense, but ordering of intervals does).

(e) Moreover, the conception should present a justification for why the whole
theory of measurement effectively tracks property X, i.e. it should at
the very least provide justifications for equality or inequality between the
values assigned to two different objects. That is, if two given objects are
assigned the same value by A, then the conception should explain why
they both have property X in exactly the same respect, or with negligible
differences, and, similarly if they are assigned different values.

The principles of generality, strength, avoidance of ad-hocness and concep-
tual justification are often mentioned in general philosophy of science as some
of the requirements any scientific theory should aspire towards. We have simply
formulated them in a way that is more specific to our specific interests over
theories of measurement. The following list is a list of characteristics that seem
to be essential to the concept of size, and at least some of the items on the
list have already been discussed in the existing literature. To my knowledge,
though, none of them has been presented in the context of a programmatic at-
tempt of giving an account of what a theory of size measurement for collections
should look like.

(f) Size is a property exhibited by any collection of objects: whatever the size
of a collection is, and regardless of whether or not we can always determine
the size of a collection, we want to argue that the property we are after is
exhibited by any collection. As we already mentioned in Chapter 1, this is
not a position that has always been universally accepted by philosophers.
This requirement implies that the assignment A be total: even if it may
not always be possible to determine the size of some collection, it should
be the case that every collection has a size.

(g) Size is a quantitative property. This implies that the mathematical struc-
ture S should contain that of a partial order, since, if both things have
a quantity, it makes sense to ask whether one has more or less than the
other. Whether this question must always have an answer is the point of
the next requirement.

(h) Any two sizes should be comparable. This, like (f), is a supposition that
can already be found in Cantor’s (1878),2 where the mathematician sim-
ply assumes trichotomy, as already noted in Chapter 2. Katz,3 author of
another system for a Euclidean theory of size – different from numerosi-
ties - also retains trichotomy among the axioms of his theory, because he
believes it is essential to the very concept of size of collections. In terms

2. Cantor, “Beiträge zur Begründung der transfiniten Mengenlehre,” p. 119.
3. Fred M. Katz, “Sets and Their Sizes” (PhD diss., M.I.T., 1981).
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of characteristics of the structure S, should be total. Note that a stronger
version of this requirement could be adopted, namely that any two sizes
should be expressible as a multiple of one another, or as a ratio.

(i) For any collection of objects P, the size of P should be such that method
M yields an effective way of determining the size of A, and for any two
collections of objects P and Q, M should allow one to determine the order
relation between the size of P and that of Q. This requirement is strength,
formulated in a way that is specific to theories of size: not only it assigns
a size to everything, but also in such a way that the full mathematical
structure can be known. This is very hard to achieve, and in particular,
the problem of (CH) is a witness to that.

(j) Addition and multiplication should be definable on S, and satisfy certain
equations (commutativity, distributivity, associativity): here the require-
ment that addition be definable seems to be justified by the fact that by
the homogeneity of sizes of collections, and the fact that every two collec-
tions can be unified into a bigger one, we would like to have a function
or relation in the structure S such that it mirrors the fact that the size
of the bigger collection is a function of the size of the smaller ones – this
would be the role played by addition. Multiplication would be justified
because it can be easily seen as shorthand for iterated addition – especially
if we want to interpret multiplication as a relation among collections. For
example, in the finite case we want a way of measuring size of collections
that enables us to compute how many apples we need to feed a certain
group of people, if we know that each person needs two apples.

(k) The size of a collection is compositional, i.e. it is a product of the sizes of its
elements. This is a requirement that has two justifications: first, the idea
that extensive magnitudes are magnitudes compositionally (see Kant4).
Second, the requirement that M be both effective and as strong as possible
forces us towards a recursive, or bottom-up way of determining the size of
a collection, and the compositionality principle fits that requirement.

As the last step in our construction of a theory of measurement for infi-
nite collections, we introduce two requirements that are justified by the specific
purposes of this thesis:

(l) The method M for determining the size of a collection (i.e. the value
assigned by A) should be via counting. Now by counting one means a suc-
cessive and discrete procedure, and this seems to require the existence of
a unit, or a ‘quantum’ of size, i.e. a value that is both significant(i.e. such

4. for Kant, extensive magnitudes are those “in which the representation of the parts makes
possible the representation of the whole”(1787: A162/B203). This is what we mean here by
‘compositionality’
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that if added to a collection A, it leads to an increase of size) and irre-
ducible (i.e. there is no smaller quantity that can be added to a collection
and that will increase the size of the collection).

(m) The whole theory should be formalised in standard set theory, and collec-
tions are to be identified with sets.

Now we see how the standard conception fares with respect to these require-
ments.

4.3 Framing the standard conception

Cantor’s principle is the main component of the Cantorian theory of size: it
allows to define the assignment A, provides an effective way of determining
relations of size, and is the basis for the definition of the algebraic properties of
S (the cardinal number scale). Cantor’s principle plays the role of an abstraction
principle, which means it can be put in the shape

∀A∀B(♠x(Ax) = ♠x(Bx)↔ A ≡ B)

where A and B are sets, ♠ is the ‘ abstraction operator’ to be interpreted as
‘number of’, and A ≡ B means (always just in the specific case of (CP)) ‘A
and B are in a one-to-one correspondence’. So (CP) is an abstraction principle,
because it can be interpreted as defining a second-order abstraction operator
(number of) by using an equivalence relation between classes ((CP) is about
not proper classes, i.e. sets). Since we are singling out an equivalence relation,
we can partition the domain of discourse into equivalence classes, determined
by (CP).

Hence (CP) provides everything we need for an assignment A all at once: a
set of values (equivalence classes), and the assignment itself (sending every set
to its equivalence class). It also provides in a natural way the order that has
to be on the set of values, although the proof that every set has a cardinality
relies on the well-ordering theorem (but the totality of the order, on the other
hand, is a consequence of the linearity of ordinals). Finally, the definitions for
addition and multiplication make use of (CP) as well as very simple concepts
like disjoint union and product. The weaknesses of the theory on the other hand
may lie in the conception of size that CP is supposed to promote, and the sense
in which bijections truly are a way of counting sets. Gödel’s argument seems to
be meant to motivate a certain conception of the size of sets.
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Let us reconsider then the argument under this new interpretation (for the
full extract, see p. 28 of the thesis). It can be summarised as follows:

The number of objects is invariant under permutation of qualities and re-
lations of said objects. But then every two sets that are in one-to-one corre-
spondence should have the same size. For if there is such a correspondence
between A and B, then replacing every element in A by its image in B amounts
to changing properties of elements, which preserves cardinality. Then by the
axiom of extensionality the new A and B are one and the same set, and so their
cardinality should be the same.

Here we have explicitly mentioned the role played by the axiom of exten-
sionality in the argument, which we had not highlighted in the reconstruction
of the argument in Chapter 2. There is also another implicit premise, that as
we will soon realise, is less trivial than at first sight: The size of an infinite set
just is the number of its elements.

4.3.1 Making the implicit explicit in Gödel’s argument

There are a few points that can be extracted from Gödel’s argument thus in-
terpolated. First of all, size is a property of collections qua sets, therefore
determining the size of a set is enough to determine that of the corresponding
collection. Second, to determine the size of a set it is enough to determine the
number of its objects. This implies that one only has to count the number of
objects in order to determine the size of a set (this is closely related to the idea
that the unit in counting is the element). Such assumption seems to dovetail
with the extensionality of sets that George Boolos56, for one, considered as an-
alytic of the concept of set. Under the assumption of extensionality, then, it is
a forced choice that the size of a set be completely determined by its elements.

4.4 Framing the Euclidean conception

Difficulties aside, (CP) provides a clear way of defining A, T and S in a unique
way. It is far from clear that the same can be said about (PW). As noted
above, (CP) defines implicitly equivalence classes of sets, and then plays the
role of an abstraction principle. It is not clear that this is what is happening
with (PW). Prima facie, (PW) just says something about relations between

5. George Boolos, “The Iterative Conception of Set,” The Journal of Philosophy 68, no. 8
(1971): 215–231, issn: 0022362X, http://www.jstor.org/stable/2025204.

6. The full quote can be found on p. 119 of the article.
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some sets, namely, that under certain hypotheses (a part-whole relation) some
are smaller than others. As it stands, it does not tell us what should be the
case when those conditions do not hold, i.e. when something is not a part of
something else, nor does it prove that those conditions always hold. Moreover,
(PW) does not immediately suggest an effective method for determining the
size of some collection. One could try some kind of “sandwich” method: if we
know the size of A and C, and also that A is a part of B and B a part of C,
then we can conclude that the size of B is somewhere in between that of A and
that of C. So if one is to make use of (PW) for a theory of measurement of
size for infinite collections, it seems that PW would be unable to play the same
determining role as (CP) does for the standard theory. Instead, it seems like
(PW) itself needs to be derived from some conception of size, thus earning its
justification.

There might be two ways of giving a conception of size that would entail
(PW). One is to say that the size of infinite collections should obey the same
rules as that of finite collections, i.e. that the axioms for finite arithmetic should
also hold for the infinite one. The other is to appeal to some geometric intuitions
about sizes, in particular via Euclid’s common notions.

4.4.1 The argument from finite arithmetic

We already stipulated that we should assume an homogeneity in kind between
finite and infinite collections. If so, then any theory of size for infinite collections
should be as continuous with the theory of size for finite collections as possible
– which is finite arithmetic.

Formally, if one concedes that Peano’s axioms capture the essence of finite
arithmetic, this means that the structure S given by our theory should be a
model of PA, which means it should be a discrete linear order with successor;
associative, commutative and distributive additions and multiplication; and can-
cellation for addition. In particular, 0 (the ‘null size’) should be the only case in
which adding it to some non-zero element is not strictly increasing. So adding
something that is not null in size should cause the size to change. It is well
known that this does not hold for cardinals, though. If there is a smallest non-
zero size, then why is it acceptable that adding such a size suddenly does not
change anything anymore? We know that the reason why not all of the prop-
erties of the finite numbers is that then one can derive a contradiction in the
system. The question is though, what in the notion of size for collections, and
size measurement, justifies the choice of preserving commutativity of addition
and multiplication, but not the cancellation property. One intuitive motivation
for commutativity and associativity of addition is that it should capture the
summation of collections into a bigger collection. But now if the size of a collec-
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tion is somehow non-relative to other collections (i.e., it is an intrinsic feature of
a collection), then the result of adding two collections should not depend on the
way we add them (provided it is a disjoint addition). In particular, it should not
depend on whether we are adding the first one to the second one, or the second
one to the first one, hence commutativity should hold. Similarly, if we actually
want to add the size of three collections, then the result should not depend on
whether we add the first two to the third, or the first one to the sum of the
two others, hence associativity should hold. It is hard to explain why one could
not motivate the cancellation property in a very similar way. Suppose we have
two collections A and B, and we decide to add them, and them remove one of
them, say A. If their sizes are intrinsic properties of collections, then combining
collections or separating them should not make a difference on the collections
themselves. But of course, in the Cantorian view, if one decides to add an in-
finite collection to a finite one, and then subtract this infinite collection, the
theory predicts that the result should be zero.

Problems with the argument

The argument ‘from analogy’ with the finite case is too quick. It seems rea-
sonable that Cantor would have wanted to preserve as much as possible of the
features of finite arithmetic, but this was not possible because of the paradox
of the infinite we have mentioned in the introduction.

Once faced with a contradiction between preserving the law of cancellation
on one hand, and choosing to define size of sets in terms of cardinals (instead
of ordinals, say), it seems sensible to argue that the best choice is to resort to
some guiding principle that is not descended from the concept of size or size
measurement, if those do not seem to be able to give a priority to either the
cancellation law, or commutativity of the sum of sizes, say.

One could interpret the Cantorian ‘choice’7 as guided my a cost/benefit
analysis of what was there to lose in forgoing the cancellation law in order to
keep cardinals.

The payoff for dropping some of the algebraic features of addition and multi-
plication – the never-ending scale of cardinals – must have outweighed the cost
of interrupting the continuity between the finite and the infinite at the level
of arithmetical operations. This at least would allow for the very existence of
different infinities.

7. We cannot talk about choice simpliciter, because we do not know whether Cantor himself
actually did consider a Euclidean option to define “cardinals”.
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4.4.2 The argument from geometric intuition

Euclid’s five common notions include the part-whole principle as the fifth com-
mon notion, but they also provide an example of what a theory of size based
on geometric intuitions could look like, in particular because notions CN1 to
CN4 are properties that can be interpreted as setting requirements for equiv-
alence classes of magnitudes of the same size, the first common notion being
exactly that having the same size is transitive (or euclidean, depending on how
it is read; cfr. p.22). Common notions CN2 and CN3 put as a condition that
this equivalence relation of size also be a congruence with respect to the op-
erations of adding and subtracting quantities: A ∼ B and C ∼ D imply that
A+ C ∼ B +D, and A− C = B −D.

Problems with the geometric conception

Unfortunately, CN4 is the only one that seems to determine when two magni-
tudes belong to the same equivalence class – but it is also the most obscure: it
states that magnitudes are equal when they “apply onto one another”. It is not
clear what would be the application of CN4, and it is in any case not nearly as
helpful as CP.

Moreover, there is a more general problem with the appeal to the geometric
discourse in the case at hand here. Even if one is charitable and grants that
the five common notions indeed offer a conceptualisation of size measurement,
we need to make an argument as per why this is the conceptualisation that one
would want to extend to the infinite.

4.5 A difficulty for any theory of size?

From the analysis of the two competing approaches we are mainly preoccupied
with, it seems that the standard (i.e. Cantorian) conception fares better than
Euclidean approaches, and that (CP) provides a solid basis for a theory of
measurement of sizes of infinite collections, while the same cannot be said of
(PW). However, I would like to raise a concern that stems from the requirements
that we have imposed on any theory of measurement of size.

In the case of geometry, the measure is done by counting, but a unit has
to be specified, and, in general, this unit is not the point. Classical definitions
of the point describe it as an entity that has no dimension, no size, and no
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quantity. But geometric figures that are being measured, like lines or figures,
exist in at least one dimension, and, in the case of a line, it seems like an odd
claim to make that its size ought to be the “number of points” it contains.
The parallel with elements in a collection here is quite tempting: in infinite
collections, according to the Cantorian view, the size of elements is negligible,
just like the size of a point is negligible in a line: adding a point to a line will
not affect its size, for only the addition of a unit will make such a difference.
The important distinction that has to be drawn between points and lines on
the one hand, and units and (finite) collections on the other, however, is that
points never make a difference in size, while elements do make a difference in
finite sizes. How can we explain the difference? When it comes to continuous
magnitudes, the size of a magnitude is always relative to a unit that has been
fixed. The null quantity is always the same, but the interval that counts as a
unit is a matter of convenience and significance. When considering collections,
there is a canonical unit that can be defined in the finite setting, namely the
element of a collection. However, when we move to infinite collections, the
element becomes negligible, and virtually of size 0. All of this poses a challenge
to any theory of measurement of infinite quantities that operates via counting,
and in particular it seems to threaten the standard conception. In fact, it seems
that we can argue for the following

Claim 4.5.1. No theory can consistently satisfy all the desiderata for a theory
of measurement of size for infinite collections.

For, assume you have a theory of measurement of size (A, M, S, J) that is
both via counting and compositional (we have defined these notions earlier in
the chapter). This means that given any collection P, we have an effective way of
measuring the value A(P) by counting how many units one can find in P and that
A(P) is a direct product8 of the size of the elements in P. Now if collections are
sets, then they are completely determined by their elements, and there is nothing
more to them apart their elements. But then the only thing that can be picked
as a unit are the elements themselves, and we must conclude that every element
in a set has size “unit”. Hence counting the units means counting the elements.
But then, by Gödel’s argument, counting the elements implies that Cantor’s
principle should be satisfied. If Cantor’s principle is implied by our theory,
though, then it is not true anymore that units always make a difference (in the
strict sense we considered before), since adding an element to an infinite set
does not change its cardinality. So we reach the following paradoxical situation:

1. adding units makes a difference (they are significant magnitudes: for if
this is not the case, then how can one be certain that counting units is a
sound method for determining size?)

8. not in the technical sense.
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2. In any set, an element has always size “unit” (for this is the only way to
fix a unit if collections are sets)

3. adding elements to a set does not always make a difference in size (conse-
quence of Cantor’s principle).

It seems hard to imagine how any conception of size could justify such a
feature of the theory, namely that objects that are assigned a significant size do
not make a difference in size when added to certain collections.

4.6 Conclusions of this chapter

If one grants that the argument above poses a problem for any theory of size in
the sense given in this chapter, then it seems that a diagnosis of the paradoxical
situation above is necessary.

In the argument offered for Claim 4.6.1, it seems that the very assumption
that the unit in the counting for determining the size of infinite collections
should be the element is what triggers the paradoxical conclusion: on one hand,
elements have a size that is significant enough to stand as the unit for counting
collections, but on the other hand, they are in some cases not significant enough
for an increase in elements to be an increase in size. It is not clear whatGödel
would reply to this sort of objection; to be fair, it seems that Gödel was more
interested in arguing that transfinite numbers are the only viable and non-
arbitrary extension of the finite numbers, than that Cantor’s way is the right
way of measuring the size of infinite collections. More importantly, it seems that
Gödel took for granted that counting the elements of a set was the right way of
determining the size of a collection. So it seems that if the assumption that is
to blame for the paradox is that the unit in the counting should be the element,
this could have important consequences, and ultimately force us to abandon
the assumption that the notion of a set captures enough about collections for
us to be able to determine their size by regarding them as sets alone. This is
the hypothesis that I would like to explore in the next chapter, and I will focus
especially on the possibility hat it may open for a reassessment of Euclidean
theories, and of numerosities in particular.
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Chapter 5

Reframing numerosities

5.1 Chapter plan

Goal of this final chapter is to provide an argument for considering numerosi-
ties not as an alternative theory to that of Cantorian cardinalities, but as a
complement of it.

The key idea is that the theory of numerosities captures the size relations
between “wholes and parts”, whereas cardinals treat size relations of sets and
subsets, and sets and subsets do not necessarily coincide with parts and wholes.

There are two main reasons to believe that subsets and parts are not iden-
tical: first, intuitive reasons – we do not seem to individuate, say, the even
numbers, merely as a list of objects. We conceive of them as certain spaces on
the line of the natural numbers. The second reason to distinguish parts from
subsets comes from the discussion in chapter 4.

If we do not equate subsets and parts any more, then Parker’s arguments
against Euclidean theories suddenly lose their grip: they are based on the set-
theoretic reading of the part-whole principle and they do not seem amenable to
an obvious reworking with another formulation of the principle. Thus here we
have a possibly strong strategy against Parker’s arguments, at last.

We are left only to answer the question of whether we still can formulate
(PW) in the language of set theory, and the answer is yes, through a ‘toy
theory’ of parts. We conclude by suggesting that numerosities may be seen as
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a generalisation of this toy theory.

5.2 Why subsets are not necessarily parts

It seems that there is a substantial difference between considering the set {1, 2, . . . }
as N− {0} on one hand, and as Z+ on the other hand. In the first instance the
most correct visualisation is to draw a line starting from 0 and then highlight-
ing it only from 1 onwards; in the second case, it is enough to just draw the
line starting with 1. Parker recognises that there is a case to be made that in
the context of sets of integers, failure of preserving translation invariance is not
per se a reason to consider the theory of size one is evaluating as arbitrary1.
He does not go as far as to distinguish between N − {0} and Z+, though, and
that prevents him from giving a good reason for why, in this particular case,
translation invariance is not the right criterion.

It is our opinion that the reason why translation invariance is not the right
criterion is because there is a substantial difference between N − {0} and Z+,
namely the first is a proper part of N while the latter is an independent math-
ematical entity, as it were. Hence, the part-whole principle really should be
reformulated as

(PWP) If A is a proper part of B then [A] < [B].

One reason to consider the part-whole principle as not specifically about
sets and subsets is that the part-whole principle for sets (PWS) is one among
several possible specifications of 1.1 (CN5). Another reason is that it seems that
we do make a distinction whenever we think of (to take our favourite example)
the even numbers as a set, independently of whether they are a subset of N or
Q and so forth, or as a structure embedded into the natural numbers, or the
rationals, et cetera. Once again, considering how we would represent the set
graphically helps. In the case we want to represent the evens without worrying
what set they are a subset of, we may draw them on a line just like the one
we would use for all nonnegative integers, only instead of writing the sequence
{0, 1, 2, 3, . . . } underneath, we would write {0, 2, 4, 6, . . . } in exactly the same
positions. If instead we wanted to stress the fact that the evens are a subset of

1.

there is a qualitative difference between N and Z+, and likewise between any
two sets of whole numbers. Hence, the failure of ATI for number sets does not
directly imply that their sizes are arbitrary. (. . . )

Parker, op.cit., p.600.
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the set N, we would most likely draw them by leaving exactly one ‘empty spot’
between each element of the set.

The main feature that is missing from subsets and that we think is instead
essential of parts is something that can witness that they are extracted from
some other entity – something that can keep track of the ‘empty spots’. This
deficiency (not meant in a negative way, we only want to stress that it is a
missing feature) is somehow mirrored by how subsets are formed according to
the iterative conception of sets. Once we have a set m at a certain stage λ of
the cumulative hierarchy, its subsets are formed, i.e.‘come into existence’, at the
following stage λ+1, although the members of all of these new sets were already
present at stage λ,2 so it feels like forming subsets out of m is more than just
partitioning m into overlapping parts. This is our first justification for the claim
that subsets and parts are not quite the same thing, at least intensionally.

A second justification comes from the outcome of the analysis we carried out
in Chapter 4: the contradiction we derived from trying to apply the desiderata
to the Cantorian theory of cardinals shows that there is something amiss with
cardinals as the scale for measuring the size of infinite sets.

Before moving on with an exposition of our ‘theory of parts’, we should
briefly mention what is its relation with traditional mereology, since mereology
is defined3 as the theory of parthood.

As Burgess4 notes, one of the central differences between mereology and set
theory is their treatment of the singleton. While the singleton set is considered
in set theory as the atomic part of any set (meaning there can be no smaller part
than that), this is not so for the mereologist, who does not see the positing of the
existence of singletons as metaphysically innocent. In particular, the mereologist
seems to have issues with the idea that several things can be collected into a set
in such a way that they remain distinct elements. As Burgess puts it:

Nominalists have traditionally objected [to the] implication that set-
formation is less a process of merger, like that by which Italy was
formed from various minor states, than a process of federation, by
which thirteen colonies became the United States. The implication,
to be more explicit, is that even after the many have been collected
together into a one, it is still discernible which many they were: that
just as the set is determined by its elements, so also the elements are
determined by the set. Mereological fusion, by contrast, obliterates

2. Boolos, “The Iterative Conception of Set,” pp. 220-221.
3. Achille Varzi, “Mereology,” in The Stanford Encyclopedia of Philosophy, Spring 2016,

ed. Edward N. Zalta (2016).
4. John P. Burgess, “Lewis on set theory” (https://www.princeton.edu/ jburgess/Lewis.pdf).
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the separate identities of the fused: A single whole can be taken
apart in many ways, and there is no one way of taking it apart
of which it can be said that the genuine parts of which the set is
composed are just those pieces into which it is disassembled when
taken apart in that way and no other.5

Mereology and our theory of parts have in common that they reject the
following equivalence:

(E) X is a part of set A if and only if X ⊆ A.

However, the mereologist rejects the left-to-right direction of the bicondi-
tional (not every part of some whole is a subset of that whole), while our theory
rejects the right-to-left direction (part of wholes are a certain kind of subsets).
While mereology still has an extensional understanding of parts, here we are
inviting the reader to consider parts as not just a ‘collection’ of elements all
coming from the same ‘supercollection’ – we are proposing an intensional con-
ception of parts. Another difference is that we are not interested in giving an
account of the real metaphysics of parts, but just an alternative understanding
of what are parts of sets when they cannot be fully identified with subsets.

The next issue we need to address is whether we can talk about parts in
set theoretic terms without reducing them to subsets, and that is technically
challenging, but not impossible. Here we are going to present a toy idea to solve
the problem, at least in part.

5.3 A theory of parts

Suppose we restrict our attention to developing a framework in which we can
talk about the subsets of N, as well as its parts. The first thing we do is to
observe that N is a (nonproper) part of itself, and we are going to express that
by introducing the set Np, where the subscript stands for ‘part’, and Np =
{(0, 1), (1, 1), (2, 1), . . . }. In other words, Np is the graph of the characteristic
function of N as a subset of itself. Next, we are going to consider the graphs
of the characteristic functions of all subsets of N as subsets of N. We will call
them the parts of N.

In order to present things more precisely, we need to introduce a couple of
definitions.

5. ibidem
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Definition 5.3.1 (Significant map). A significant map between two graphs a
and b is a map s : a → b such that for all c ∈ C, if a(c) = 1 then s(a(c)) = 1
and if s(a(c)) = 0 then a(c) = 0.

Definition 5.3.2 (Part). Given two sets a, b, we say that a ⊆p b (read: a is a
part of b) if and only if the second projection of b is the constant function 1
and the second projection of a is the characteristic function of a subset of b.

Definition 5.3.3 (Proper part). Let a be the set that is to be considered as
the whole. Then b is a proper part of a iff b ⊆p a and there is no significant
map between a and b.

Next, we want to define a size-order between the different parts of a set. One
could attempt the following:

Definition 5.3.4 (Less than (≤p)). Given a and b both parts of the same set
C, we say a ≤p b if and only if there is a significant map s : a → b such that
for all c ∈ C, if a(c) = 1 then s(a(c)) = 1 and if s(a(c)) = 0 then a(c) = 0.

This defines an equivalence relation in the usual way: given parts a and b
such that a ≤p b and b ≤p a, then a ∼ b. 6 From now on, we will consider N
to be the set whose parts we are treating7.

We can also render the ≤p order a strict order in the usual way: a <p b iff
a ≤p b but b 6≤p a.

Claim 5.3.1. Given a,b ⊂p N, either a <p b or b <p a or a ∼ b.

(for the proof, see appendix A.1).

This theory is no doubt riddled with limitations. Within this framework, the
part-whole principle for parts (PWP) holds, but not in an interesting way, be-
cause a consequence of the given definitions is that only the set that is considered
the “whole” has parts. For a concrete example, if N is the set we are working
with, given any two parts of N, a and b, by our definitions a is not a part of b,
and vice versa, and it is relatively easy to see that there cannot be a significant
map between Np and any of its proper parts, so (PWP) is safe, although because
we got rid of the most problematic situations quite artificially. It is possible to
give a definition of nested parts such that a part of a part of . . . a part of N is
still a part of N, by keeping track of the characteristic functions, so to speak, but
it would be extremely cumbersome. Moreover, the advantage would be limited

6. The proof is straightforward hence left to the reader.
7. Up to this point, there was nothing of the definitions that depended on features peculiar

to N; however, we were presupposing the well-ordering theorem in the background.
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because it would still not solve the other heavy limitation our toy theory has to
face, namely the absence of any sort of arithmetical manipulations.

When it comes to try to define addition, for example, the situation is prob-
lematic because somehow we have created a closed system with a top element,
that is the set whose parts we are studying (in our specific case, that is N). It
seems then like a reasonable request that the structure composed by our whole
set and its parts be closed under addition, that is, given two parts a and b, the
sum of their sizes should not exceed the size of N. The obvious candidate then
becomes union,but this is incompatible with how we have defined sizes for parts
and wholes, because we used equivalence classes – and union is dependent on
the choice of representatives for each class. At the time of writing, I do not see
a way of avoiding the problem.

This obstacle motivates a reconsideration of numerosities. At first sight
they might not seem helpful, because they are presented as an alternative way
of counting for sets, and more crucially the version of the part-whole principle
they consider is a variation of the part-whole principle for sets. In their (2003)
paper in fact they write the part-whole principle for sets as one of the desiderata
a counting system should satisfy. The conceptual similarities with our approach
are however striking: the construction of numerosities starts by converting each
set into what they call a labelled set. Recall the formal definition of labelled set:
2.5.1. If the reader compares it with the definition of part, they will see that a
part can also be defined as a labelled set where the domain of the labelled set
is e.g. C and the label lC is the characteristic function of C as a subset of N. In
the (2003) paper, Benci and Di Nasso mention the idea of a canonical labelling.
What they define as such is the identity labelling on all subsets of N, but we
can also view the labels of parts as another special sort of labelling, that we can
call the part-labelling.

Indeed, this definition allows them to then define the approximating sequence
of a set in the following way: the labelled sets are used to partition A into finite
subsets A0, A1, A2, . . . such that they are ordered by inclusion and each of them
has finite cardinality. So A can be represented by the sequence made of the
cardinalities of its partitions. Now the similarity with our suggestions are made
clear: the approximating sequence is akin to the characteristic function of a
set, in the sense that it does not progress as long as one does not add elements
to the set, and each repetition keeps track of a number that has been left out,
just like the 0s do with the characteristic function approach. More formally,
one can systematically retrieve the approximating sequence #(A0),#(A1), . . .
by defining it inductively on the characteristic function, that we will denote by
f .8

8. To make this more precise, from an approximating sequence s0, s1, s2 . . . , one can define
a characteristic function r0, r1, r2 . . . as follows:

(i) r0 = s0
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5.4 A reassessment of the contribution of numerosities

I would like to conclude with some remarks about which role numerosities can
play under this reinterpretation of the part-whole principle. My idea is that,
perhaps contrary to what their creators believe, the philosophical value of nu-
merosities is not that they provide an alternative way of measuring the size of
subsets, but as a new way of determining the relative size of parts with respect
to their wholes. Indeed the authors themselves seem to interpret numerosities
as giving the size of subsets, and fail to appreciate that their work could well
be interpreted as being about the size of parts of sets instead. They seem to
be framing their proposal in the following way: right now there is one favourite
scale, Card (the class of all cardinal numbers) that is chosen to determine the
size of sets in the set theoretic universe. This scale has many nice properties,
but it does not satisfy the (set theoretic) part-whole principle: 2N ⊂ N and yet
|N| = |2N| = ℵ0. If one were to insist that this principle is essential to the very
concept of size, then the cardinals are not the right scale. Because of their nice
features though it is advantageous to develop an alternative that is consistent
with the existence of cardinals; the project is of constructing another scale that
can coexist in the set theoretic universe with the cardinals, and that would take
over from them the role of size-scale for sets.

I think this is what makes numerosities vulnerable to Parker’s criticisms: the
ambitious goal of developing a system that is alternative to Cantor’s inevitably
calls for the reaction of looking for some results that have now become com-
monplace and then showing them to fail under the new theory that is meant
to supplant or provide an alternative to the old one. Once a certain paradigm
is entrenched in the practice of a discipline there must be very strong reasons
to eradicate it and replace it with something new. This is another reason –
strategic almost – to wanting to redefine the theory of numerosities and clarify
that it is not meant to be an attempt at supplanting Cantorian cardinals 9.

Moreover, I would like to argue that under our interpretation of the signifi-
cance of numerosities, the sense in which they are “a new way of counting” that
preserves part-wholes relations becomes clearer. When introducing numerosities
to the reader, Mancosu uses an analogy from how to stack pegs numbered from
1 to 90 on a table of squares numbered from 1 to 90. He claims that the way
numerosities work is similar to carrying out the counting of the pegs by placing

(ii) rn+1 = sn+1 − sn
. Conversely, one can retrieve an approximating sequence s0, s1, . . . from a characteristic
function r0, r1, . . . by defining it recursively as follows:

(a) r0 = s0

(b) rn+1 = rn + sn+1.

9. This is something touched upon briefly in Mancosu (2009) as well.
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the pegs numbered from 1 to 10 all on the square labelled as ‘10’, then the pegs
from 11 to 20 are placed on the square ‘20’; and so on, until we have exhausted
all pegs. Count up the number of pegs in each stack, and the sequence you
obtain in the process is the approximating sequence of the collection of pegs for
the game.

On our understanding of numerosities as a way of measuring the size of
‘parts’, the following picture seems more fitting. Suppose you have three bags,
one with (plastic specimens, say, of) all the natural numbers from 0 to infinity
in their natural ordering, and two empty bags, one labelled as the ‘1’-bag, the
other as the ‘0’-bag. You want to have a faithful representation of how your
collection comes from the bigger one. And so you take each number and as you
go, you add it to the ‘0’-bag if you are discarding it, and to the ‘1’-bag if you’re
adding it to the collection you want to form. It is clear that what you are doing
is not simply keeping track of how many elements your collection has, but also
which slot, so to say, they occupy in the collection they come from. This is what
numerosities as a theory of parts and their sizes can allow you to do.

And so at the very least we can view numerosities as a tool to give an
articulate answer to the question: can two sets with the same number of elements
still have different sizes? they allow us to answer that in a sense, yes: to pick
up again one of our running examples, if we view the even numbers just as a
subset, in the standard ZFC sense, of the naturals, they can be put into one-to-
one correspondence with the set N, hence they have the same cardinality, that
is to say, they share the same size, as sets. If we conceive of the even numbers
really as a part of the natural numbers which occupies specific portions of the
“line” on which we can represent them, they do not have the same numerosity,
hence they do not have the same size when considered as objects in a part-whole
relation.
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Chapter 6

Conclusion

6.1 Galileo’s paradox

We started this thesis by considering one of the traditional paradoxes of infinity,
we offered four possible resolutions of the paradox, and promised to argue for
one of them, namely, that it is possible to explain away the paradox.

In the second chapter of the thesis, we analysed the framework that is typ-
ically used to define the size of sets, namely Cantorian cardinal numbers, and
what we chose as the paradigmatic theory for the competing conception of size,
the theory of numerosities.

In the third chapter we moved on to examine one important argument that
has been offered to defend cardinals as the right tool to define set size (Gödel’s),
together with a more recent version of the argument (Parker’s), trying to see
if they would settle the question of solving the paradox by arguing for un-
questionably for Cantorian cardinals. Whereas Gödel’s argument did not seem
particularly compelling, Parker’s indirect argument for cardinals (I say indirect
because it is more of an attack on Euclidean theories than a direct defence for
cardinal numbers) was harder to tackle, and that required us to first propose
a tentative theory of measurement of size for (infinite) collections, and then to
argue for an intensional understanding of the notion of ‘part’ in the part-whole
principle, thus in effect shifting the domain of application of (PW) from subsets
to ‘parts’.

This last move allows us to regard (CP) and (PW) as not in direct conflict
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any more, but as two principles governing two different kinds of size relations:
(CP) is the principle regulating absolute size of sets, while (PW) is the principle
underlying the assessment of size relations between sets and their parts, where
parts are not subsets simpliciter. Hence, the solution to Galilei’s paradox is
as follows: if considered as an independently generated set, N2 (the set of all
squared natural numbers) has exactly as many elements as N, for we count the
elements by using cardinal numbers. If on the other hand we want to consider
it as a part of N, then we should compute its size via numerosities and conclude
that N2 is strictly smaller than N.

6.2 Further work

There are several interesting issues that we would have liked to explore in the
context of this thesis, but couldn’t because of lack of time. Here I am going to
mention just a few.

First of all, in building our defence of numerosities from Parker’s criticisms
of arbitrariness, we had to make the theory less general than what it currently
is: we only discussed (and incorporated in our framework of Chapter 5) nu-
merosities for countable sets; Benci, Forti and Di Nasso, however, have been
able to define numerosities for larger classes of sets, so it would be interesting
to attempt to extend our defence of countable numerosities to the uncountable
ones, too. The problem is that the theory of numerosities becomes very sophis-
ticated very quickly, and it was not possibile in the limited amount of time we
had to try and build a comprehensive defence of the theory.

The second element that needs further work is the tentative theory of mea-
surement of size we propose in Chapter 4: as it is a kind of work that is absent
in the literature, it would be beneficial to investigate further its links with more
traditional general philosophy of science, and with the problem of applicability
of mathematics specifically. Considerations regarding how we teach measure-
ment of size for sets would also need to be incorporated for the theory to be
really well developed.

Finally, a deeper investigation into the origins of the so-called Euclidean
theory of size as exemplified by the five common notions could help us give more
historical perspective to the whole question of what is size, and to what extent we
can have a unified conception of size for geometrical and arithmetical/algebraic
objects.
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Appendix

A.1 Proofs

Proof of the claim that the order of parts is indeed a total order over parts.

Proof. This is an easy proof by cases.

Case 1 The second projection of a contains finitely many 1s and infinitely
many 0s, and so does the second projection of b. Then our p-order col-
lapses to usual comparison of finite cardinalities.

Case 2 The second projection of a contains finitely many 1s and infinitely
many 0s, whereas b has infinitely many 1s and finitely many 0s. Then
a <p b.

Case 3 The second projection of a contains finitely many 1s and infinitely
many 0s, whereas b has infinitely many 1s and infinitely many 0s. Then
a <p b.

Case 4 The second projection of a contains infinitely many 1s and finitely
many 0s, whereas b has finitely many 1s and infinitely many 0s. Then,
since both a and b have finitely many 0s, a <p b if and only if the number
of 0s in the projection of b is strictly smaller than the number of 0s in the
projection of a.

Case 5 The second projection of a contains infinitely many 1s and finitely
many 0s, and so does the second projection of b. Then a ∼p b.
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A.1. Proofs

Case 6 The second projection of a contains infinitely many 1s and finitely
many 0s, whereas b has infinitely many 1s and infinitely many 0s. Then
b<pa.

Case 7 The second projection of a contains infinitely many 1s and infinitely
many 0s, whereas b has finitely many 1s and infinitely many 0s. Then
b<pa.

Case 8 The second projection of a contains infinitely many 1s and infinitely
many 0s, whereas b has infinitely many 1s and finitely many 0s. Then
a <p b.

Case 9 The second projection of a contains infinitely many 1s and infinitely
many 0s,and so does that of b. Then a ∼p b.
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Moore, Gregory H. “Introduction to Gödel’s 1947 and 1964.” In Collected Works,
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