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Abstract

This thesis investigates what role paraconsistency can play in dealing with
traditionally intractable problems concerning identity and change. More
specifically, we consider three logics that all commit to a Leibnizian account
of identity, but that provide distinct solutions to a version of the sorites para-
dox related to the Ship of Theseus. It is shown how the first of these logics
solves the problem by taking an approach that embraces inconsistency, ren-
dering invalid some familiar principles, while the second takes a more consis-
tent approach, satisfying these familiar principles, but is not able to capture
some core elements of paraconsistency. The final logic uses positive features
of both approaches to provide a radically different account of the nature of
change. This logic is particularly interesting in that it is a non-monotonic
logic inspired by pragmatic considerations regarding vagueness. The viabil-
ity of each approach is assessed in part according to their treatment of the
paradox, and in part according to five rules of inference that we argue any
account of identity should allow.
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Chapter 1

Introduction

Doubts concerning the principle of bivalence - that every statement has ex-
actly one truth value, either true or false - are as old as logic itself.1 It was not
until the early Twentieth Century and the independent work of  Lukasiewicz
[21] and Post [24] that such doubts could find a place within formal systems:
the arrival of Many-Valued logics. Since then, numerous such logics have
been proposed, and with them as many purported applications, some purely
philosophical, others less so. For our present purposes, the most important
of these contributions have been those capable of making some sense of the
issue of borderline cases, i.e. vagueness. Might it be that some proposi-
tions are vaguely true in the sense that they are neither true nor false (i.e.
truth-gaps)? Or perhaps, there are some propositions that are both true and
false (truth-gluts)? Logics capable of dealing with the latter of these two
options will be of central importance to this work - the so-called paracon-
sistent logics. Taken to first- and higher-order settings, where we are not
limited to discussion concerning complete sentences, but can also speak of
objects and predicates, debate has naturally centred around the issue of their
vagueness2. Might it be the case, for example, that the predicate “... is tall”
is vague in a paraconsistent sense? There are certain individuals, no doubt,
of whom we would say are (clearly) tall, and others of whom we would say

1Aristotle, who, it has been said created logic ex nihilo ([23], p.206), also considered
future contingents in chapter IX of De Interpretatione, and whether statements like “There
will be a sea battle tomorrow” could be neither true nor false. Such considerations would
come to serve as  Lukasiewicz’s motivation for his logic  L3.

2Note that there may be many different ways to understand phrases like “a vague
object”. The question of what it is to be a vague object (or, likewise, a vague predicate) is
not uncontroversial. See, for example, [44] for some extensive thoughts on the matter. For
better or worse, in this paper, we will consider the idea of vague object and vague property
to be, in a sense, co-extensional. Where some predicate P both holds for an object a and
not, i.e. Pa ∧ ¬Pa, then both the object and the predicate will be said to be vague.
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CHAPTER 1. INTRODUCTION 5

are (clearly) not tall, but are there individuals of whom we might say “well,
yes and no - they are tall and they aren’t”? It at least seems plausible that
this is the case. Tallness is not a peculiar predicate in this respect; We could
make similar remarks concerning the predicate “...is large”, or “...is young”,
to name just two. In short, vagueness appears to be prevalent in the world.
Where talk of objects is permissible, it is no great leap to consider the idea of
identity between objects. But within the context of some or other paracon-
sistent logic, it is not altogether clear how to proceed. How would allowing
for objects that both have and do not have some property affect identity? In
other words, how might we expect identity to behave, given paraconsistency?

Although this is one motivation for considering identity - that it is a puzzle
as to how it might work where paraconsistency is around - this would not
be much of one, if we were entirely content with how identity is treated in
more familiar logics. That is, identity would appear to hold little interest,
if, say, first-order logic with identity (FOL=) was entirely problem-free. On
the contrary, FOL= appears to face many problems of identity. To name
but a few, we have sorites paradoxes; the Ship of Theseus; Church’s (other)
paradox; the problem of identity through time; the possibility of contingent
identity; Evans’ argument against vague identity; Geach’s argument against
absolute identity; the problem(s) of personal identity. In what follows, we
will not attempt to propose solutions for all of these problems. Indeed, for
most of them, the best we can offer is a starting point with which to base
further research. Others will be entirely off limits to us, and for good reason.
One problem that we will hope to deal with is a version of the sorites para-
dox. Later, we will see why accounting for this paradox can facilitate the
treatment of other problems associated with change and identity. Consider
the following thought experiment.

Suppose you are shown a wall upon which hang many sheets of paper -
256 of them to be exact - all in a horizontal line. Each sheet has been filled
entirely with colour according to the RGB colour model. The first (the fur-
thest to the left, say) has a colour value (a 3-tuple) of 〈255, 0, 0〉, the second
has a colour value 〈254, 0, 0〉, and so on, until the last sheet - the 256th sheet
- has value 〈0, 0, 0〉. Suppose that you come to make ‘two’ observations: (i)
the first sheet is red, and (ii) every adjacent sheet is identical. This leads
you to make the following (sorites-like) argument to yourself:
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Ra255

a255 = a254

a254 = a253

. . .
a2 = a1

a1 = a0

Ra0.

For short, we will represent the argument as: Ra255,∀n(an = an−1) |= Ra0,
with the assumption that 0 ≤ n ≤ 255. In words, it says that if the first
sheet (a255) is red, and any two sheets next to each other are identical, then
you can correctly infer that the final sheet (a0) is red too.3

Contrary to what the argument tells you, though, when you look at the
final sheet (because, after all, it has value 〈0, 0, 0〉), it appears to you black,
or in other words: most definitely not red. The paradox has thus been estab-
lished: you have reasoned - validly, you suppose - towards a false conclusion
from seemingly true premises.

1.1 The standard account, Leibniz’s Law, and

the Ship of Theseus

In both FOL= and second-order logic (SOL) the above argument is valid.
In light of this, and also because they are both bivalent logics, we will refer
to their approaches collectively as “the standard account”. There are many
features of the standard account that we might focus on to explain why the
argument goes through. Here, we will look at two: the substitutivity of iden-
tity, and the transitivity of identity. The first of these principles says that
whenever some predicate P holds of an object named a (i.e. Pa is true),
and a is identical to b, then we can infer that Pb is true also. So, in our
example, because Ra255 is true, and a255 = a254, then we infer that Ra254 is
true. But notice that this process can continue for as long as our identity

3It should be mentioned that implicit in the example is the fact that most people
can’t distinguish a single colour-value shift like the one described. This might suggest a
favouring of a de dicto as opposed to de re reading of vagueness, but this is unintended.
There may also be questions as to whether the sorites generally is better viewed as involving
conditionals ( - the more common reading, to be found in, for example, [35], [44], [38])
or identity statements ( - the rarer view, for example, [26]), but this is not important
for what we say. There may be questions as to whether this specific example should be
considered in the conditional way, but we will come to this point later.
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statements do. That is, from Ra254 and a254 = a253, we infer Ra253. From
Ra253 and a253 = a252, we infer Ra252, and so on, until we reach Ra1 and
a1 = a0, and we conclude Ra0. This is our troubling conclusion. The second
of our principles says that if an identity holds between two named objects,
and from the second named object to a third, then we can infer that identity
holds between the first and the third. So, in our example, because a255 = a254

and a254 = a253, then we can infer that a255 = a253. Similar to before, we
can apply this many times to reach the conclusion that a255 = a0. With one
application of substitutivity, then, we reach our troubling conclusion again.
In short, from Ra255 and a255 = a0, it follows that Ra0. Note that a255 = a0

is a troubling conclusion in itself. It means that the (really) red sheet is the
same as the (really) not red one. In fact, it is clear that the transitivity of
identity will make it so that every sheet is identical to every other one. This
seems to be a very troubling conclusion.

Given this situation, we might want to ask the following question: what
rationale does the standard account have for finding the two principles we
have mentioned correct? A plausible answer is that the standard account
commits to Leibniz’s law. That is, that objects are identical iff they have
all the same properties, i.e. the conjunction of the identity of indiscernibles
and the indiscernibility of identicals. Strictly speaking, of course, because
FOL= does not allow for quantification over properties, it can only do this
implicitly. For example, Leibniz’s law often serves as the motivation for
identity’s introduction and elimination rules. In SOL, where it is fully ex-
pressible, it is the go-to definition for identity, usually taking the form of
a = b iff ∀P (Pa ↔ Pb). Another way to put the definition is that two ob-
jects (a and b) are identical (one and the same) iff for every predicate, P , Pa
will receive the same truth-valuation as Pb. Although these two definitions
are usually equivalent, we will come to see that this need not be the case.
Where we refer to Leibniz’s Law in this paper, we will usually mean the first.
Where we do not, that will be made clear. Although this version of identity
is not without controversy4, we will, in this paper, only be looking at logics
which define identity in this way. This is perhaps surprising, given what we
have said about the standard approach’s connection to Leibniz’s Law, and its
failure to deal with the sorites. We will need to make one further qualification
to the definition of Leibniz’s Law we have given, namely that the properties
we have in mind are in a sense simple. More specifically, our properties

4A historically famous counterexample is Black’s symmetric universe, [5]. None of the
paraconsistent approaches appear to help us deal with this problem, though there may be
more standard ways of dealing with it. See, for example, [16].
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will be extensional as opposed to intensional predicates. This will mean,
for example, that we won’t be considering modal properties. As to what
sort of predicates we will consider, this will be made clear. For now, let us
return to our version of the sorites paradox, the problem involving red sheets.

Though the particular example we gave involved the predicate redness and
sheets of paper, the argument can be adapted, with suitable care, to cover
any number of different predicates and objects, for example the predicate
“...is a heap” and grains of sand5, or number of hairs and heads. It is worth
noting that in the early history of the sorites (stemming from Eubulides of
Miletus - from whom it appears to have originated), it was framed and con-
sidered more of a puzzle than a paradox, the puzzle being specifically: where
exactly is the cut-off point between, say, a red sheet of paper and a non-
red one? In more recent times, the paradox approach, focusing instead on
where the argument as a whole errs (with premise(s) and/or inference rule),
has been far more popular. One notable exception that at least attempts
to address both the paradox and the puzzle is the philosophical position of
Epistemicism (for example, found in [44]), which claims that there is a sharp
cut-off point, we just can’t know where it is. Although Epistemicism can
be praised for at least addressing the puzzle of the sorites, because it rejects
vagueness at a fundamental level, we do not consider it a viable solution to
the sorites.

We can use the version of the sorites we have given to make sense of other
identity problems. Take for example, the idea of a ship undergoing change
through time - the Ship of Theseus. Suppose that every so often, one of
the old wooden planks of a ship is replaced with a new one. This process
continues for a hundred years until every plank has been replaced. A plausi-

5The case of the heap might be objected to on the grounds that one could never mistake
one grain, say, for two. In other words, while more standard sorites work because we need
only demand that a single grain and two are identical with regards to the predicate “...is a
heap”, ours doesn’t because we need a stronger sense of identity. While we might agree for
the case given, it does not seem implausible that the argument could be changed to allow
for this. Consider a descending sorites that starts with, say, 100 grains and ends with, say,
13 grains, and suppose that you were not able to stare at the heap for any great length
of time. Given empirical work on ‘subitizing’ [19] this would now seem more plausible
an example. This gives a sense of what we might mean by “suitable care” in adapting
the argument. Similarly, for the red sheets example, we might want to say this is just an
identity-in-terms-of-redness relation. After all, the sheets have different positions on the
wall, so they can’t be identical. Again, it appears that suitable changes could be made.
This example seems to be easily translatable to a more abstract plane, where the sheets
are atemporal aspatial objects.
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ble reading of this is as a sorites-like transition: at each temporal stage the
ship is identical to its previous self (because who’s going to notice a single
plank?) and yet the latest version of the ship is entirely different to the orig-
inal. In this example, of course, our ship is analogous to the sheet of paper;
the ship through time is the collection of sheets on the wall; and our individ-
ual planks are the individual colour-value changes. This should mean, then,
that if we can have a solution to the version of the sorites paradox we have
given, we can solve the problem of Theseus’ Ship. Furthermore, in dealing
with the sorites, we should also be able to deal with examples with many
properties, for example, the one given by Priest [31] involving his motorbike.
Over the course of time, this bike undergoes many changes: the tyres are
replaced, the handlebars, and the seat, etc. The addition of further proper-
ties need not matter for us, whether they be one after another or concurrent
through time. All that is crucial is that none of the changes are significant
enough to cause a failure of identity between any stage and the one next to it.

It should now be mentioned that this is not the only possible reading of
Theseus’ Ship. Part of why it is a paradox, no doubt, lies in the idea that
some crucial part of the ship never changes. Such thoughts naturally lead
us towards personal identity. Are we to imagine ourselves as Theseus’ Ship
- never changing, yet always remaining the same? Such ponderings will not
be possible in this paper, in light of what we have said about Leibniz’s Law.
In more Aristotelian terms, such thoughts involve properties that are both
essential and accidental, and if we want to have identity hold in terms of all
properties, then by saying the ship (or we) never change, we would be ignor-
ing all the accidental properties that do. Our initial reading of the sorites
only makes sense, then, if we limit our properties to extensional predicates,
avoiding the mysterious thing-in-itself of intensional predicates. Another way
in which the intensional reading of Theseus’ Ship appears problematic is in
light of Hobbes’ addition to the problem, which is the idea that all the old
bits from Theseus’ Ship are assembled together to form a new, replica ship.
Under the intensional view, which might define Theseus’ Ship as, say, ob-
jects arranged in a Theseus Ship like way, we will now find there are two
Theseus’ Ships. Under the extensional view that we have taken, this second
ship would, in fact, be the real Theseus’ Ship, i.e. the original one, because
it has exactly the same properties or material constituents as the original
ship. There are many other issues we could discuss here involving the issue
of material constitution, and whether the identity we are dealing with is an
absolute one (as we have suggested) or just a relative one according to some
narrow criterion, or predicate. With what we have, we are now in a position
to more closely state the central question of this paper:
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Can we provide an account that deals with identity problems that also
satisfies our natural intuitions regarding identity?

We have seen some example problems that we hope to deal with, but we
have not yet fully addressed what counts as “our natural intuitions regard-
ing identity”. We can separate this into two parts. Firstly, we can think of
how we should like identity to be defined, and secondly, we can think about
how it should behave. To be sure, the behaviour of identity in any given logic
will be wholly determined by how it is defined in that logic. We have already
said that we want identity to be defined according to Leibniz’s Law. But how
identity behaves, then, will as much depend on the inner workings of the logic
considered. It will thus make sense for us to isolate some specific behaviours
that we think identity should have. To this end, we will focus on five sequents
(which, strictly speaking, includes one meta-sequent) that together will form
what will be called the “target features”. They are: the substitution of
identicals (SI); the transitivity of identity (TI); the non-absurdity of vague
identity (NV I); the non-absurdity of contradictory objects (NCO); and fi-
nally, the transitivity of inference (ToI). Some initial remarks concerning
each will be appropriate here.

1.2 The Target Features

We saw the substitutivity of identicals (SI) in the red sheet example earlier.
In sequent form it can be represented as Pa, a = b |= Pb. If some property
holds for some named object and this object is identical to ‘another’, then the
property must hold of that ‘second’ object. Our use of quotation marks is, of
course, indicative of the fact that, in an important sense, there is but one ob-
ject, they are only named differently. We will see how paraconsistency might
seem to put this into question somewhat, but this is the idea. It is important
to distinguish (SI) from Leibniz’s Law (as we have defined it). It is perfectly
possible for two object-predicates to be equivalent for all predicates, and yet
for (SI) to fail. Indeed, we will see an example of this in the next chapter.
There have been numerous proposed counterexamples to (SI) in the litera-
ture, many focusing on what we might call naming predicates. To describe
just two: Cicero = Tully, and “Cicero” has six letters, yet “Tully” does not
have six letters. a = b, and “a” is the first letter of the alphabet, yet “b”
is not [30]. Such examples appear to take the same form, and appear to be
straightforwardly soluble in a Fregean manner, namely using the sense/ref-
erence distinction (i.e. the intensional/extensional distinction). In each case,
it is the objects themselves (i.e. the referents) that are said to be identical
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(one and the same), and so it is the properties of the referents and not their
senses that are said to be shared. (Again, it should be stressed that the idea
is that there is only one referent (or extensional object).) There are further
cases involving naming predicates that require more unpacking, the notable
example being: Giorgione = Barbarelli; Giorgione was so-called because of
his size; yet Barbarelli was not so-called because of his size. Though no ex-
plicit quotation has occurred here, a naming-predicate has been employed,
which we will, by the reasons discussed before, disallow. That is, because we
wish to take an extensional reading of the Ship of Theseus, we will only be
focusing on extensional predicates. To further clarify, we might use Quinean
terminology and say that the predicates, in that they will be extensional,
will all be referentially transparent (as opposed to opaque). In effect, this
says that wherever we wish to substitute some object for another into a sen-
tence, we can only do so when that sentence doesn’t involve predicates that
won’t allow this. (In a sense, it might seem trival that (SI) should hold
then, but this needn’t be the case. Again, in the next chapter.) We can use
this idea of referential transparency to also deal with other non-extensional
predicates. For example, intentional ones. These are predicates which in
some way or another involve mental states. There are numerous examples
of the failure of (SI) with such predicates. A historically famous example
(which, interestingly, was also proposed by Eubulides) is the paradox of the
hooded man. A man knows his brother who is standing in front of him. But
he doesn’t know who the person is because he’s wearing a hood. It follows
that (SI) does not hold for the property of being known. (See [29] for more
details on this specific paradox.) This appears to share some commonality
with Church’s (other) paradox. Suppose an object has two names, a and b,
and suppose that I know various things about a and b, but not that they are
equal. a = b iff they share all the same properties, though, so they can’t be
identical because they’re not identical in my mind. There are other apparent
counterexamples that involve different modal properties than epistemic ones
(see, for example, [43] [22]). Given that we will only focus on extensional
predicates, such examples will not be counterexamples of (SI) for us, and
they will not be of concern in this paper. Where our properties are exten-
sional, (SI) would appear to hold, hence its inclusion in our list of target
features.

We have also seen the transitivity of identity (TI) before (again, in the red
sheet sorites). We will represent it as a = b, b = c |= a = c. In mathemati-
cal settings, such a sequent would appear undeniable. Indeed, it is common
for the transitivity of a relation, together with its reflexivity and symmetry
to be the necessary and sufficient conditions of an equivalence relation, and
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identity is often defined to be the smallest equivalence relation. In more
quotidian settings, the transitivity of identity appears equally intuitive. If
you heard some historian saying, “George VI was the last Emperor of India,
and the last Emperor of India was the first Head of the Commonwealth”
you would be inclined to think that George VI was the first Head of the
Commonwealth. Though this example might bring up other questions (are
these names or descriptions? is ‘was’ ‘is’?) the idea should be clear enough:
where an identity holds between two objects and between the second and a
third, identity will hold between the first and the third. Despite the apparent
certainty of (TI), counterexamples to it have been proposed, most notably,
perhaps, Prior’s6 amoeba example. Suppose at some time (t0) we have an
amoeba (a) which at some later time (t0) divides to form two children (b
and c). The children, being separate entities, exist at separate locations (lb
and lc, respectively). b (say) must be identical to a, for if c were to cease to
exist this would be obvious. If we were to ask at t1, “where is a now?”, the
answer would be: “there, of course!” (pointing at b). And that the identity
between any two things relies on something else is absurd. This is how the
argument goes, at least. If we accept this for b, then we can make the similar
argument for c, and so a = b and a = c. But b 6= c because they are clearly
separate: they occupy separate positions - one is at lb and the other at lc.
It follows that the transitivity of identity has failed: we have (in this case),
a = b, a = c 6|= b = c. There is more to say concerning this (for example,
what about property la?), but for now, the point is fairly clear: there may
well be cases where the identity of transitivity might fail. Recent empirical
research suggests that it fails for icebergs, for example [37]. We will see how
our logics can deal with this example, but despite what we have said about
possible counterexamples, given the intuitiveness of (TI), we will view it that
(TI) should be the case.

We will represent the non-absurdity of vague identity (NV I) as a = b, a 6=
b 6|= ⊥. ⊥ here will be used as shorthand for the idea that anything will fol-
low from the premises, i.e. that Γ |= ⊥ iff Γ |= φ for any arbitrary φ ( - often
referred to as “explosion”). Note that in none of the logics we consider will ⊥
have any place in the language of those logics as a constant, nor will it be the

6The example, to be sure, relies as much on Priest as it does Prior. Prior made no
mention of amoebas, but rather only referred to hypothetical individuals: “Let us suppose
that the single individual x has become two individuals y and z.” ([33], p.83) It might
thus be better called “Prior-Priest’s amoeba example”. It is also worth noting that Prior’s
motivation for it was as a counterexample to what we have called (SI), and specifically as
a counterexample that didn’t rely on descriptions. It will also hold some importance for
us for this reason as we will see.
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case that, say, φ→ ⊥ is equivalent to ¬φ in any of the logics we consider. In-
formally, we might want to understand ⊥ as implying that a serious problem
has occurred, something much worse than ‘mere’ paraconsistency. We may
in places refer to this as a contradiction, but as we will shortly see, our usage
of this term is not consistent. It should also be noted that a = b, a 6= b is
not the same idea of vague identity that is, for example, used by Evans [13].
There the idea is of indeterminate identity, where indeterminacy is a senten-
tial operator; Here it is an example of a fairly common set of premises to see
in a paraconsistent logic. We have already seen - in Prior’s amoeba example
- some evidence of why we might want (NV I) to be the case. Observe that
it seems to be the case that a = b and a 6= b because ¬lba ∧ lbb (because a
has all the properties of c). If we took this to be problematic, then it doesn’t
seem like we would be able to deal with the amoeba example. Despite this,
the idea that objects can be indistinguishable and yet distinct might seem
plainly absurd. The special case where a and b are symbolically indistinct,
i.e. a = a, a 6= a 6|= ⊥ appears especially troubling. Some treatment of this
view will be considered throughout, but also in the conclusion.

On its own, (NCO) - represented as the sequent Pa, a = b,¬Pb 6|= ⊥ -
can also be considered a fairly common principle in any paraconsistent logic.
Its relevance to the sorites was implicit when we discussed the red sheet ex-
ample earlier. In a sense, we can think of it as being a miniature sorites
in one, incorporating its main features. Despite the fact that all our logics
will be able to deal with the sorites, we will see what use (NCO) can have
in further distinguishing them. In the fourth chapter, (NCO) will play an
important role in dealing with the sorites, which, roughly speaking, will be
a result of how affirming (SI) together with a variation of (NCO) has dra-
matic consequences for the inner workings of the logic of that chapter.

The last of our target features - the transitivity of inference (TOI) - is neither
a sequent, nor does it explicitly refer to identity at all. We will represent it
here as the meta-sequent φ |= ψ, ψ |= χ ⇒ φ |= χ, which, in words, means
that where we have an inference from one sentence to another, and also an
inference from that second to a third, it follows that from the first sentence
we can infer the third. We have chosen this formulation of inferential tran-
sitivity, as opposed to, say, the more general Γ |= Γ′,Γ′ |= Γ′′ ⇒ Γ |= Γ′′,
where Γ,Γ′, Γ′′ are all sets, because all the logics we will be considering will be
single-conclusion logics. It might also need mentioning that because of how
our logics are constructed, a more technically correct representation of (ToI)
would be {φ} |= ψ, {ψ} |= χ⇒ {φ} |= χ. This will be implicit whenever we
use it. We won’t, at this stage, dwell upon (ToI)’s importance, save to say
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that for the logic we consider in the third chapter it will be crucial to our
resolution of the sorites. Related to this, it can also serve as a feature with
which to distinguish the logic of the third chapter from the standard account.

At this early stage, we are in a position to mention how the standard ap-
proach deals with our target features. While (SI), (TI), and (ToI) hold,
(NCO) and (V I) both fail. It can be said, then, that the standard account
fails on two separate fronts: it is incapable of dealing adequately with iden-
tity problems (specifically, it is unable to deal with our version of the sorites
paradox and hence Theseus’ Ship), and it fails to satisfy our intuitions in
terms of the target features. In what follows, we will see what hope paracon-
sistent logics might have on both these counts.



Chapter 2

Logic of Paradox - Embracing
Inconsistency

The logic of Paradox (LP ) is probably the most well-known paraconsistent
logic. Although part of the semantics for it were initially considered by
Asenjo ([3]), it is now almost exclusively associated with Graham Priest,
who has argued extensively for its employment over classical logic in a wide
variety of different contexts (for example, the liar paradox in [25], and even
pure mathematics, [28]). The present chapter will focus, in the main, on a
version of LP found in [31]. The main idea there was that we can use some
of the properties of propositional LP - specifically, the non-standard way the
conditional behaves - to define identity in the Leibnizian way using the bi-
conditional within second-order LP , and then use identity to solve problems.
Broadly speaking, this will in fact be how we proceed for all the paraconsis-
tent logics in this paper. The procedure can be thought of as a three-step
process: (i) Take some paraconsistent logic extrapolated to second-order; (ii)
Define identity in the Leibnizian way; (ii) Use identity as defined to solve
previously intractable identity problems. For now, we will look in detail at
how the process can be carried out with LP , starting with our second-order
formulation.

2.1 Formalising LP

Our language will contain individual constants (a, b, c, ...) and variables (x, y, z, ...),
monadic predicate constants (A,B,C, ...) and variables (X, Y, Z, ...), connec-
tives (∧,∨,¬), and finally the first and second-order quantifiers ∀, ∃. The con-
nectives→ and↔ will be considered as derived, namely that φ→ ψ := ¬φ∨ψ

15
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and φ↔ ψ := (φ→ ψ)∧ (ψ → φ). Function symbols will be avoided, as will
formulas involving free variables.

An interpretation for the language, I, is a triple 〈D1, D2, θ〉, where D1 is
the non-empty domain of first-order quantification, and D2 is a set of pairs
of the form 〈A+, A−〉, where A+ ∪ A− = D1. Intuitively, A+ (which we’ll
call the extension of A) and A− (its co-extension) contain the objects of D1

for which the property A holds, and does not hold, respectively. In classical
logic, we would only need to specify the extension - any object not in the
extension would be in its co-extension, and no object could possibly be in
both. Given paraconsistency, we specify the co-extension, meaning we can
have objects in this, or the extension, or both. Note that because A+∪A− =
D1, it is not possible for an object to be in neither. (In the next chapter the
consequences of dropping this restriction will be briefly mentioned.) We will
also make the restriction that for every A ⊆ D1, there is a B ⊆ D1 such that
〈A,B〉 ∈ D2, but make no further claims about how extensive D2 is. (For
example, if D1 = {d1}, it needn’t be the case that both 〈{d1}, {∅}〉 ∈ D2,
and 〈{d1}, {d1}〉 ∈ D2, but our restriction does demand that at least one of
them is in D2. Intutively, the semantics employed is closer to full semantics
(as opposed to Henkin semantics) in that the union of the predicate exten-
sions (

⋃
A∈D2

A+) is equal to the power set of D1. The union of the predicate
co-extensions need not be though.)

θ will assign an element of D1 to every individual constant, and an element
of D2 to every predicate constant. If A is a predicate, we will write θ(A)
as 〈θ+(A), θ−(A)〉, and we define θ(Aa) = θ(A)(θ(a)). Finally, an evaluation
v assigns to every formula one of {0}, {1}, {0, 1} (intuitively, strictly false,
strictly true, borderline true, respectively) according to the following rules:

0 ∈ v(Aa) iff θ(a) ∈ θ−(A)

1 ∈ v(Aa) iff θ(a) ∈ θ+(A)

0 ∈ v(¬φ) iff 1 ∈ v(φ)

1 ∈ v(¬φ) iff 0 ∈ v(φ)

0 ∈ v(φ ∧ ψ) iff 0 ∈ v(φ) or 0 ∈ v(ψ)

1 ∈ v(φ ∧ ψ) iff 1 ∈ v(φ) and 1 ∈ v(ψ)

0 ∈ v(φ ∨ ψ) iff 0 ∈ v(φ) and 0 ∈ v(ψ)

1 ∈ v(φ ∨ ψ) iff 1 ∈ v(φ) or 1 ∈ v(ψ)
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For example, suppose we have some predicate A and an object a, and our
interpretation I is such that θ(a) ∈ D1 and θ(A) = 〈{a}, {a}〉 ∈ D2. It
follows that, for this interpretation, v(Aa) = {0, 1} as θ(a) ∈ θ+(A) and
θ(a) ∈ θ−(A). Intuitively, A is thus a vague predicate - it can be said to
both hold for the object a and not hold for it. As might be expected then,
the sentence Aa ∧ ¬Aa will also be true, that is, 1 ∈ v(Aa ∧ ¬Aa) under I.
More precisely though, v(Aa ∧ ¬Aa) = {0, 1}, as one of the conjuncts (in
this case, both) will have value 0. In short, Aa∧¬Aa will be borderline true
under I. It can be shown that all the familiar features of propositional LP
( - and first-order, for that matter -) will be carried over to the second-order
version of LP we are considering; That is, we can safely say that this ver-
sion of LP is an extrapolation into second-order. Before we come to define
quantification, we will look at two propositional examples. Starting with the
conditional, we said before that φ → ψ would be understood as short-hand
for ¬φ ∨ ψ. This means that: v(φ→ ψ) = {1} iff v(φ) = {0} or v(ψ) = {1};
v(φ→ ψ) = {0} iff v(φ) = {1} and v(ψ) = {0}; and finally that v(φ→ ψ) in
every other case, i.e. where one of (or both) v(φ) = {0, 1} and v(ψ) = {0, 1}.
In words then, φ→ ψ is strictly true (i.e. v(φ→ ψ) = {0, 1}) iff φ is strictly
false or ψ is strictly true; φ→ ψ is strictly false iff φ is strictly true and ψ is
strictly false; and φ→ ψ is borderline true in every other case. All this is in
agreement with the perhaps more standard truth-table approach.1 Following
from these results, we have it that φ↔ ψ is strictly true iff both φ and ψ are
strictly true, or both are strictly false; φ↔ ψ is strictly false iff φ is strictly
true and ψ is strictly false, or vice versa; and finally that φ↔ ψ is borderline
true where one (or both) φ and ψ are borderline true. Intutively, for φ↔ ψ
to have some truth (i.e. to be at least tolerantly true), φ and ψ must share
some common truth-value, that is, 0 or 1.

For the quantifiers, we will assume that the language is expanded if nec-
essary to give each member of D1 and D2 a name. If d ∈ D1, we will write
its name as d and if A ∈ D2, we’ll call it A.

0 ∈ v(∃xφ(x)) iff for all d ∈ D1, 0 ∈ v(φ(d))

1 ∈ v(∃xφ(x)) iff for some d ∈ D1, 1 ∈ v(φ(d))

0 ∈ v(∀xφ(x)) iff for some d ∈ D1, 0 ∈ v(φ(d))

1 ∈ v(∀xφ(x)) iff for all d ∈ D1, 1 ∈ v(φ(d))

0 ∈ v(∃Xφ(X)) iff for all A ∈ D2, 0 ∈ v(φ(A))

1See, for example, p277 in [25]. Note, the terminology used there is somewhat different
from the one we use in this paper.
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1 ∈ v(∃Xφ(X)) iff for some A ∈ D2, 1 ∈ v(φ(A))

0 ∈ v(∀Xφ(X)) iff for some A ∈ D2, 0 ∈ v(φ(A))

1 ∈ v(∀Xφ(X)) iff for all A ∈ D2, 1 ∈ v(φ(A))

For example, suppose we have an interpretation, I, such that d1 ∈ D1,
A = 〈d1, ∅〉 ∈ D2, . It will follow that the sentence Pa will be strictly true,
that is, v(Ad) = {1}, because θ(d) ∈ θ+(A), and θ(d) 6∈ θ−(A). It will also
follow then that v(∃x(Ax)) = {1} because d ∈ D1 such that 1 ∈ v(Ad),
and 0 6∈ v(Ad). Suppose also though that for I there is some other pred-
icate B ∈ D2 such that θ(B) = 〈{d}, {d}〉. It will follow that Ba is true
and false, i.e. borderline true. It will follow that ¬∀X(Xa ∧ ¬Xa), because
1 ∈ v(Ba) and 0 ∈ v(Ba). Note also, though, that it will still be the case
that ∀X(Xa↔ Xa) because for every predicate X, Xa still shares a truth-
valuation with itself.

2.2 LP Validity, Consequence, and the Bicon-

ditional

For validity, we will say that an interpretation is a model of φ iff 1 ∈ v(φ).
Where Σ is a set of formulas, I is a model of Σ iff it is a model of every
member. Finally, Σ |=LP φ will hold iff every model of Σ is a model of φ.
(Note that we will usually drop set brackets from premises.)

Intuitively, entailment in LP preserves truth, though not necessarily strict
truth. (Put another way, LP preserves non-strictly false interpretations.) A
famous sequent in LP that shows this is the failure of modus ponens : φ, φ→
ψ 6|=LP ψ. Suppose we have an interpretation, I, for which v(φ) = {0, 1}
and v(ψ) = {0}. I will be a model for φ because 1 ∈ v(φ). It will also be
the case that 1 ∈ v(φ→ ψ) because 0 ∈ v(φ) (this was shown previously). It
follows then that I is a model for both φ and φ→ ψ, hence it is a model for
the set containing them. But, by our assumption, 1 6∈ v(ψ), hence I is not
a model for ψ. It follows that there is a model for the premises that is not
a model for the conclusion, and so modus ponens fails. Interestingly though,
|=LP (φ∧ (φ→ ψ))→ ψ will hold. This is because under any interpretation,
(φ ∧ (φ→ ψ))→ ψ will at least be borderline true. For example, if we take
our interpretation I from above, I will make v(φ ∧ (φ→ ψ)) = {0, 1}, and,
as said before, if 0 is in the antecedent of a conditional, then 1 will be in the
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conditional. It will be the case then that v((φ ∧ (φ → ψ)) → ψ) = {0, 1, }
under I. In fact, all propositional and first-order LP validities will be clas-
sical ones, and vice versa. The same could be said for second-order LP and
second-order logic, given our second-order logic is defined in the right way.
(See [31] p.7).

As we proceed, the following sequents involving the biconditional will be
of particularly importance to us:

|=LP φ↔ φ.

φ↔ ψ |=LP ψ ↔ φ

φ, ψ |=LP φ↔ φ.

¬φ,¬ψ |=LP φ↔ ψ

φ,¬ψ |=LP ¬(φ↔ ψ)

φ,¬φ |=LP φ↔ ψ

φ, ψ |=LP ¬φ↔ ¬ψ

φ↔ ψ, ψ ↔ χ |=LP ¬(φ↔ χ)

The first of these implies that the biconditional is reflexive; The second, that
it is symmetric; The next two suggest that if two sentences have the same
truth-value, the biconditional will hold between them; The fifth implies that if
two sentences have different truth-values then the biconditional will not hold;
The sixth, that where we have a borderline true sentence (φ), any sentence
(ψ) will be equivalent to it (this follows from what we were saying before
about the biconditional needing sentences to share a common truth-value - 0
or 1); The seventh shows that the contrapositive holds for the biconditional;
Finally, the eighth sequent implies that the biconditional is not transitive.
Together with the sixth result, these two are the only non-classical results in
the sequents listed above. The non-transitivity of the biconditional, we will
see, does most of the heavy lifting when it comes to the examples. Consider
some interpretation, I, where v(φ) = {1}, v(ψ) = {0, 1}, and v(χ) = {0}, i.e.
where φ is strictly true, ψ is borderline true, and χ is strictly false. As shown
previously, the biconditional will hold between two sentences wherever they
share a common truth-value. It follows then that I is a model for each φ↔ ψ
and ψ ↔ χ (and so for the set containing them). In short, our premises hold.
But clearly I is not a model for φ↔ χ, because v(φ) = {0} and v(χ) = {1},
i.e. they do not share a common truth-value. Hence our conclusion is false,
and the biconditional can be said to not be transitive. Of course, there will
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be other interpretations (for example, where v(φ) = v(ψ) = v(χ)) where
transitivity does hold for the biconditional, so it will be the case that the
biconditional is non-transitive rather than intransitive. We will omit the
proofs for the other sequents. They can be carried out in a similar manner.

2.3 LP and the Identity Problems

We are now in a position to define identity in the Leibnizian way, i.e. that
two objects are identical iff they have the same properties:

a = b iff ∀P (Pa↔ Pb).

In so far as we have defined it, then, identity could be said to be standard.
However, because of the underlying non-bivalent nature of the logic out of
which it has been formed, it ends up behaving non-standardly. Roughly
speaking, we can think of the properties of the biconditional as carrying over
to identity. For example, identity will be reflexive and symmetric in LP . Just
as with the biconditional however, this should not be misunderstood as mean-
ing that under every possible interpretation a = a, say, will be strictly true.
In fact, for v(a = a) = {1} to be the case, we would need something much
stronger, namely that ¬∃X(Xa∧¬Xa), i.e. that a holds no vague predicates,
or equivalently (see introduction) that a is not a vague object. For suppose
we have some interpretation, I, where d ∈ D1, and A = 〈{d}, {d}〉 ∈ D2. It
will be the case that 1 ∈ v(a = a) because they share a common truth-value,
but also that 1 ∈ v(a 6= a), because they don’t. One way of putting this
is that a = a is borderline true under I, but perhaps a more telling way of
putting it is that, under I, a = a∧a 6= a is (borderline) true. Indeed it is the
case that in LP vague objects are both self-identical and not self-identical.
(We could make similar remarks regarding the symmetry of identity in LP .)
Although this simultaneous success and failure of self-identity is perhaps un-
problematic for the logician, or one who is interested only in the mechanics
of LP , (they can, after all, merely cite it as a characteristic of vague objects),
for the philosopher, or one who wants to explain what is going on intuitively,
this might be appear to be a problem. What does it mean for an object to
be identical to itself and yet be distinct? Does it provide any insight into
the nature of vague objects? We will return to this point in the concluding
chapter of this paper. For now, we will look at some more concrete exam-
ples of the behaviour of identity, with an eye toward dealing with the more
full-blown problems we were considering in the introduction. Lets see some
real-world examples, with a view to getting towards the examples we saw in
the introduction.
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To start with, lets consider an object that undergoes change. Suppose we
start out with an object, a that, at some time, is consistent. That is, for
every predicate a has, a has only that predicate, and does not have also its
negation. Let’s focus on one of these predicates, A for which, by assumption
Aa holds. (The example runs equally well, mutatis mutandis, if we let ¬Aa
hold initially.) Suppose though that at some later time, our object comes to
hold the predicate ¬A in addition to all the others it previously did. Call
this “new” object b. It will then be the case that ∀X(Xa ∧ Xb), and yet
∃X(Xa ∧ ¬Xb). It follows that ∀X(Xa ↔ Xb), and so a = b, and also
∃X(Xa ↔ ¬Xb), and so ¬(a = b). In other words, a will at once be iden-
tical to b and also distinct from it. It follows that (NV I) holds for LP .
This example also shows us how (NCO) fails for LP . We can have identical
objects, but that have contradictory properties. In this case, we have Aa,
a = b, and ¬Ab all being true (at least borderline true), but because of the
paraconsistent nature of LP , we can’t conclude everything.

Let us suppose now that our object comes to fully lose that property A.
In a similar vein, we hypothesize a third object, c, and stipulate that ¬Ac
is the case, but not Ac, all other predicates remaining the same. It will
now follow that b = c, because the two objects share the property ¬A (and
all other predicates remained constant), but a = c will not be the case be-
cause it is not the case that ∀X(Xa ↔ Xc) (Aa is strictly true, while Ac
is strictly false, hence they share no common-truth value). As we changed
nothing involving a and b, a = b will still hold. Hence, we will have it
that a = b, b = c, and yet ¬(a = c). In other words, the transitivity
of identity has failed. To see this in more detail, lets consider interpre-
tations again. Suppose I is an interpretation whereby D1 = {d1, d2, d3},
θ(a) = d1, θ(b) = d2, θ(c) = d3, A = 〈{d1, d2}, {d2, d3}〉 ∈ D2, and for all
other B ∈ D2, B− = D1. In words, our first-order domain has three ob-
jects (d1, d2, d3) that are assigned our constants (a, b, c, respectively) by the
function θ; our second-order domain contains a predicate A which has d1

and d2 in its extension, and d2 and d3 in its co-extension; by assumption,
this is the only predicate that a, b, c have - d1, d2, d3 are only in the co-
extension of every predicate other than A. It will follow that for I, Aa will
be strictly true (because θ(a) ∈ A+ and θ(a) 6∈ A−), Ab will be borderline
true (because θ(b) ∈ A+ and θ(b) ∈ A−), and finally Ac will be strictly false
(because θ(c) ∈ A−). For every other predicate B, Ba, Bb, and Bc will all
be strictly false. From our rules concerning the biconditional, it will thus
follow that, under I, 1 ∈ v(∀X(Xa ↔ Xb), 1 ∈ v(∀X(Xb ↔ Xc), and
1 6∈ v(∀X(Xa ↔ Xc)). In other words, 1 ∈ v(a = b), 1 ∈ v(b = c), and
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1 6∈ (a = c) under I. To show that a = b, b = c 6|=LP a = c we need only an
interpretation that is a model for a = b and a = c, but not for a = c. I is
such an interpretation. Therefore, identity is not transitive in LP : (TI) fails.

The above example will allow us to make sense of Prior’s amoeba exam-
ple. In the introduction we described a situation in which an amoeba existed
at time t0 which then divided into two ‘new’ amoebas at t1. The resulting
amoebas b and c, existing now as clearly separate entities, would have dis-
tinct locations - lb and lc, respectively. We can let these locations act much
like the predicate A above. Amoebas b and c can then be consistent in terms
of these predicates. That is, lbb, ¬lcb, ¬lbc, and lcc will all be strictly true.
We noted that an amoeba parent and the child that results from its splitting
could be said to be identical. We said that this would be obvious if one of
the two offspring were to cease to be, and that it wouldn’t make sense for
an identity statement to depend upon the existence or non-existence of some
other entity. In this example, a can play the role b did in the example above,
acting, in a sense, as the bridge between the two other amoebas. In other
words, lba, ¬lba, lca, ¬lca will all be the case, and a will be vague. If we
assume these to be the only relevant properties, then a = b and a = c, but
it will not be the case that b = c, because b would not share any predicate
with c. Put another way, lbb and lbc would share no common valuation, and
nor would lcb and lcc, so ¬∃X(Xb↔ Xc), hence b 6= c. Given what we have
said then, LP does a rather good job at making sense of Prior’s amoeba
example. The example can serve to show why (SI) fails in LP . For consider
the property lb, i.e. the property of having b’s location. In that a and b are
identical, a is said to have this property. But a is also identical to c, and yet
c does not have this location. In other words, lba, a = c 6|=LP lbc, and (SI)
fails in LP .
We now have all we need to make sense of the version of sorites paradox in
the introduction, and so Theseus’ Ship. Recall our argument:

Ra255

a255 = a254

a254 = a253

. . .
a2 = a1

a1 = a0

Ra0.



CHAPTER 2. EMBRACING INCONSISTENCY 23

Given the at we have seen both (TI) and (SI) fail for LP , we might suspect,
from what was said in the introduction, that this argument is not valid in
LP . This is indeed the case. For it is not possible even to conclude Ra254,
because a254 might, after all, simply be borderline true. This means that we
definitely can’t conclude Ra0. For identity, we have a similar result. We can’t
even be sure that a255 = a253, for example, let alone that every element in the
series is identical. This does not mean that some interpretations won’t allow
for this to be the case; To see whether the argument as a whole is valid, we
are of course only speaking of all possible interpretations. A plausible model
for the above example would be one which had the first certain number of
objects all consistent and strictly true; the next certain amount borderline;
and the final consistent but strictly false. The result would be that those
first objects would all be identical, and so would the last number, but the
middle ones would be both identical and not. The presence of borderline
cases would mean that the predicate would not bleed across the border. As
to precisely what model to use, this would be an empirical matter, based on
experiments with many subjects, but the point is that it is at least plausible
that such research could be done. Where we want to adapt the sorites to
fit other phenomena, such as the Ship of Theseus, or personal identity (with
extensional predicates), the crucial feature of the sorites would remain in
place. All that is important is that the change is gradual in the sense that
there are no sharp cut-off points, and LP allows this.

From what has been said, LP is capable of at least plausibly dealing with
identity problems, and in summary of its treatment of the target features,
(SI) and (TI) fail in LP , while (NV I), (NCO), and (ToI) all hold.



Chapter 3

Strict-Tolerant Logic - Saving
Consistency

In the previous chapter we saw how paraconsistency could help us to to deal
with some traditional identity problems, problems that were not resolvable
through what we called the standard account. Loosely speaking, we can put
the successes of LP in this regard down to its weakening of various classical
laws. Specifically, we saw that the failure of (TI) in LP played an important
role in our reading of the sorites and Theseus’ Ship paradoxes, and we saw
that this was, in a sense, a product of the non-standard way the biconditional
behaves in LP . We also saw what benefits paraconsistency in LP had with
respect to other identity problems, for example with Prior’s amoeba exam-
ple. We likewise feel that its treatment of (NV I) and (NCO) as holding
is correct. Although for these reasons it might be said that LP should be
commended, given what was said in the introduction regarding our target
features, we do not think LP adequately captures our natural intuitions re-
garding identity. In particular, we saw that (SI) failed for LP , which we
took to be, given certain qualifications, a perfectly reasonable principle. In
this chapter, we will see what hope there might be for holding on to the more
consistent target features of (SI) and (TI), while still being able to deal with
identity problems. In short, this chapter will answer the question of what
other possibilities might there be for dealing with identity problems that do
not resort to denying (SI) and (TI).

It is important to note that we need not be confined to the notion of model
taken by LP . That there are other options we may take, though, is some-
what obscured by the notation we have seen. For this reason, we will provide
another, one that can be shown to be equivalent to it. Our usage will be
the same as in [10], which is the most important paper for this chapter as a

24
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whole. Using this new notation will also bring things more in to line with
respect to the field of many-valued logics generally. Before we do so, though,
it is perhaps worth mentioning why we might, for philosophical reasons, pre-
fer the Priest notation to the one we will give in this chapter. This is in
the sense that in choosing a three- (as we will do), or generally, an n-valued
description of situations appears us to commit to more truth-values than
we might want to. Whether this commitment is purely a linguistic one, or
is also ontological in some sense is debatable, but in either case, positing
values over and above the traditional two might not be something that we
want to do. Of course, formally, our values will behave as symbols do on
the page, devoid of meaning, so to speak, so it is perhaps only a matter for
philosophers. Priest’s own position is that LP specifically is not a logic that
has any more truth-values than the familiar two. In his words, “[...] there
are, in fact, only two truth values, true and false. It is just that sentences
may have various combinations of these.”1. With other logics, for example,
Bochvar’s three-valued logic, the ‘third’ value is simply an absence of truth-
value (see [41]). From this perspective, the name Many-Valued Logics could
well be thought of as a misnomer. Priest’s reason for his own view could be
that it lessens the radicalness of LP . While LP is of course radical in that
it allows sentences to have more than one truth-value, it goes no further: it
does not go so far as to change the fundamental nature of what references (in
a Fregean sense) sentences can have. Whether Priest’s position is the right
one or not, we will remain neutral on the matter. But it is at least worth
pointing out that the position taken by Priest regarding LP appears to be
equally applicable to any of the three main logics we consider in this paper.
For some further thoughts on this issue, see, for example, [17] pp.213-215.
We will now set out ST formally, making use of a Strong-Kleene valuation
schema.

3.1 Formalising ST

Assume the (second-order) language of the previous chapter, i.e. we will have
individual names/variables, predicate names/variables, and the connectives
¬,∧,∨, and the quantifiers ∀, ∃. φ→ ψ will again be a notational shorthand
for ¬φ ∨ ψ, and φ↔ ψ will be short for (φ→ ψ) ∧ (ψ → φ). Once more we
will avoid polyadic predicates (i.e. relations) and function symbols.

An MV2 −model is a structure 〈D1, D2, I〉 such that:

1[30] p.7
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· D1 is a non-empty domain of quantification.

· D2 is a set of functions in {0, 1/2, 1}D1 .

· I is an interpretation function that:

- For an individual name or variable a, I(a) ∈ D1.

- For a predicate name or variable P , I ∈ {0, 1/2, 1}D1 .

- For an atomic formula Pa, I(Pa) = I(P )I(a).

- I(¬φ) = 1− I(φ).

- I(φ ∧ ψ) = min(I(φ), I(φ)).

- I(φ ∨ ψ) = max(I(φ), I(φ)).

- I(∀xA) = min({I′(A) : I′ is an x-variant of I}).
- I(∃xA) = max({I′(A) : I′ is an x-variant of I}).
- I(∀XA) = min({I′(A) : I′ is an X-variant of I}).
- I(∃XA) = max({I′(A) : I′ is an X-variant of I}).

We can also put the constraint we saw before concerning relevant proper-
ties. Here, this will be that for each A ⊆ D1 there is an f ∈ D2 such that for
each a ∈ A, f(a) > 0. The resulting account is equivalent to the one we saw in
the last chapter. Instead of speaking of extensions and co-extensions of predi-
cates as we did previously, though, we now speak of predicates as being made
of functions that map objects in D1 to the truth-values 0, 1/2, 1. For example,
if want to express there being a vague predicate in a model M , P ∈ D2 - a
predicate for which we want the sentence Pa∧¬Pa to hold, say - we will make
it so that P contains a function that assigns the value 1/2 to a ∈ D1. It will
now be the case that, under M , I(Pa∧¬Pa) = 1/2 will be the case because
I(Pa) = 1/2, I(¬Pa) = 1 − 1/2, and I(Pa ∧ ¬Pa) = min(1/2, 1/2) = 1/2.
We will define identity in the same way as before, i.e. a = b iff ∀P (Pa↔ Pb).
(There is no difference in definition between LP identity and ST identity.)

LP consequence can be re-expressed as:

Γ |=LP φ iff there is no MV2-model for which I(γ) > 1, for every γ ∈ Γ and I(φ) = 0.

In the previous chapter, we said that LP consequence preserved tolerant
truth. That is, LP inference made it so that whenever all the premises were
not strictly false, the conclusion would not be strictly false either. It is clear
that the above definition, in that it relies on interpretations being greater
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than 0 is in agreement with this. Given we have three values to play with,
however, it is equally clear that this needn’t be the only sort of consequence
we could think of. For example, suppose we made it so that consequence
relied instead on interpretations having value 1. That is, suppose we insisted
on preservation of strict truth. The resulting logic would be Kleene’s K32.
One insight in [?] was that in principle we needn’t restrict ourselves to the
same interpretation for premises and conclusions, that we could, in this sense,
have our interpretations respect positionality, and that actually logics with
so-called “mixed” consequence relations might be worth studying in their
own right. The strict-tolerant logic (ST ) is one such logic, treating premises
like K3 and conclusions like LP . We can define it as:

Γ |=ST φ iff there is no MV2-model for which I(γ) = 1, for every γ ∈ Γ and I(φ) = 0.

Intuitively, we might want to understand ST as making the following
demands on an acceptable inference: it must have premises that are true
enough to make a sound argument, while not having a conclusion that is
false enough to allow for a counterexample.

3.2 ST and the Identity Problems

We said previously that, with a classical vocabulary, LP validities were all
classical validities and vice versa. Given that, with respect to premise-less ar-
guments, ST and LP are indistinguishable - they both take a tolerant reading
of sentences in the conclusion position - it follows then that ST validities will
likewise totally coincide with classical ones. But ST takes this idea further
though. In fact, all inferences in ST are classical inferences. To get a sense of
this, consider the simple example of modus ponens, i.e. φ, φ→ ψ |= ψ. (Re-
call that this failed for LP - perhaps an unwelcome feature.) For ST , we only
need to look at an interpretation I such that I(φ) = I(φ→ ψ) = 1. From how
we defined the conditional, I(φ→ ψ) will be equal to whatever is the highest
value of I(¬φ) and I(ψ). But if I(φ) = 1, then I(¬φ) = 0, and given that,
by assumption, I(φ → ψ) = 1, then this must mean that I(ψ) = 1. Hence

2It would also make sense to change our restriction that for each A ∈ D1, there is an
f ∈ D2 such that for each a ∈ A, f(a) > 0 (or, in the formalism of the previous section,
that for each A ∈ D2, A+ ∪A− = D1) to f(a) 6= 1/2 (A+ ∩A− = ∅). This is because K3
is a paracomplete, rather than paraconsistent logic, i.e. it has truth-gaps as opposed to
truth-gluts.
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modus ponens holds in ST . For proof of the general classicality of ST , see
[6]. Given this situation with ST , it might be thought that it would provide
no help for us regarding our identity problems, but it turns out this is not
the case. Before we come to see why, it will first be useful to address a cou-
ple of our target features that we think ST gets right, namely (SI) and (TI).

Recall that in LP , the biconditional between two sentences was strictly true
iff they were both strictly true, or both strictly false. This is likewise the
case for ST : I(φ ↔ ψ) = 1 iff I(φ) = I(ψ) = 1 or I(φ) = I(ψ) = 0. As we
saw with the conditional, we haven’t changed any of the inner workings of
the logic, only the consequence relation. For identity, then, this will mean
that for each predicate P , I(Pa) = I(Pb) = 1 or I(Pa) = I(Pb) = 0. If we
assume a model where I(Pa) = 1, then, as we must do for (SI), it will follow
that I(Pa) = I(Pb) = 1. Hence (SI) holds for ST . Likewise, with (TI), if
we assume a = b and b = c are both value 1, then Pa and Pb and Pc must
all have value 1 or all have value 0, individuated according to each predicate.
It is clear then that a = c will have value 1, so (TI) holds for ST .

Now let us return to the sorites paradox, and specifically, to the case of
the coloured sheets of paper hanging on the wall. One way of representing
the argument was as Ra255,∀n(an = an−1) |= Ra0. This was shorthand for
the following elliptical argument:

Ra255

a255 = a254

a254 = a253

. . .
a2 = a1

a1 = a0

Ra0.

Recall that in the introduction one way of explaining the standard account’s
failure at properly dealing with the argument was through the transitivity
of identity and the substitutivity of identicals. We have already shown that
both these principles hold in ST , that is, (SI) and (TI) are both the case.
The suspicion again, then, might be that ST would be ill-equipped to deal
with the paradox, much like the standard account. But this is not so. For
observe now what role another sort of transitivity plays in ST , namely the
transitivity of inference, (ToI).

From (SI) holding in ST , we know that Ra255, a255 = a254 |=ST Ra254,
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that is we can infer from (some of) our premises that the sheet of paper
with color value 〈254, 0, 0〉 is red. But note that because ST differenti-
ates sentence values according to their positions, the value of Ra254 needn’t
be the value of Ra255. In short, all the argument implies is that Ra254 is
tolerantly true. The result of this is that we can’t plug Ra254 back into
another (SI)-type argument to continue the sorites progression, i.e. al-
though Ra254, a254 = a253 |=ST Ra253 holds, given that we can’t be sure
that I(Ra254) = 1, our first premise is not good enough - it is not strictly
true. Contrary to the standard account, then, we can make no judgement
regarding the redness of a253 in ST . In this way, the sorites argument is cut
off very quickly, well before we can reach the troublesome conclusion Ra0.

What we have said with respect to (SI) also holds for (TI). Although by
assumption we know that every adjacent sheet of paper is indistinguishable,
and this, by (TI) will mean that sheets adjacent plus one will be identical,
we cannot chain the inferences together to render the entire series of sheets
identical. For example, although a255 = a254, a254 = a253 |=st a255 = a253,
this only says something relatively weak about a255 = a253, namely that it
is tolerantly true. The result is that we can’t go on to make the argument
that a255 = a253, a253 = a252 |=ST a255 = a252, despite this arguments’ correct-
ness in ST . Again, the sorites is ended swiftly before we can claim anything
like a255 = a0, so we avoid the problem associated with the standard account.

In light of these two results, it could be said that ST treats the sorites in as
plausible a way as LP . Furthermore, it does so for similar reasons, namely
in its use of tolerant truth. We stopped both the never-ending substitutivity
of identicals and the never-ending transitivity of identity by relying on this
lesser version of truth. More precisely, ST relies on tolerant truth to make it
so that (ToI) fails in ST : for some formulas φ, ψ, χ, we can have it so that
φ |=ST ψ, and ψ |=ST χ, without having φ |=ST χ.3 Another way in which we
can distinguish LP from ST is that LP cuts off sorites-like progressions one
step sooner than ST does. This would mean that ST wouldn’t be able to deal

3Strictly speaking, (ToI) does not directly address the sheets of paper example as we
have represented it, as (ToI) only concerns singletons while our representation implicitly
assumed sets with multiple formulas. A more accurate way of putting the substitutivity
example (transitivity of identity would be similar) would be that: Ra255 ∧ a255 = a254 ∧
a254 = a253 |=ST Ra254 ∧ a255 = a254 ∧ a255 = a253 and Ra254 ∧ a255 = a254 ∧ a255 =
a253 |=ST Ra253, but Ra255 ∧ a255 = a254 ∧ a254 = a253 6|=ST Ra253 (with = taking
precedence over the associative ∧). This is clearly a violation of (ToI), and it is also
implicit in the reasoning we gave in the example, but it also a little cumbersome to state
and hence obscure.
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well with a simple three object situation, a situation which LP can handle.
This is only a minor inconvenience: usually, sorites situations require many
objects. We said before that with the red sheets example, it would make
empirical sense to allow (SI) and (TI) a number of times before we held
them to fail. Just as with LP , ST can do this: we can have many objects
all equal each other in the strong sense required for ST , only for identity to
break down somewhere in the middle.

Despite ST ’s favourable qualities (its acceptance of (SI) and (TI), and its
plausible treatment of the sorites) it does suffer from some serious drawbacks,
namely in the way that it deals with our vague target features, i.e. (NCO)
and (NV I). The premises of these arguments can never be strictly true in
the version of ST we have presented. It is impossible, for example, that
both I(a = b) = 1 and I(a 6= b) = 1 for any MV2-model. It will follow that
problems like Prior’s amoeba example will not find a resolution in the ver-
sion of ST we have presented. will not fit the more standard definition that
φ, ψ |= ⊥. We did see however that ST relies on tolerance, and hence, plau-
sibly, paraconsistency, in order to deal with the sorites then. For this reason,
we might call ST a para-paraconsistent logic. Although ST is not a para-
consistent logic in the sense that inconsistencies lead to everything in ST ,
it does allow for inconsistent models in principle. It should also be stressed
that the version of ST presented here was only a limited one. In [10] a second
version of identity (≈) is also defined, one that is better suited to matters
of vagueness. This version of identity is capable of allowing models for con-
tradictory premises. Furthermore, it also allows for (SI). Unfortunately, ≈
is not transitive, and so, in this respect is more similar to the identity of
LP . (Given the non-transitivity of inference of ST though, it can be used
to produce some different results.) Because we were looking for versions of
identity for which transitivity would hold, we need not look at this version
of identity, nor indeed the strict-tolerant approach any further. The main
lesson to take from this chapter is that we can keep hold of some consistency,
while still being able to handle identity problems. We will try and use this
as inspiration to form our third and final logic of the next chapter.



Chapter 4

A Pragmatic Approach

4.1 Towards a Pragmatic Approach

Up to this point, we’ve seen that we can use paraconsistent logics extrapo-
lated to a second-order to give an account of identity that is better suited to
deal with identity problems in the context of vagueness than first- or second-
order logic. We also saw, however, that neither LP nor st were fully capable
of capturing our natural intuitions regarding identity, and that specifically, in
neither would all our five target features hold true. The aim of this chapter
will be to present a logic prpr (pronounced “prag - prag”) that will provide
such an account of identity. Before we come to prpr in detail, it might first
be useful to dwell upon some thoughts that we haven’t yet touched upon in
detail, namely default assumptions.

One such default assumption that is often spoken about is that of con-
sistency: where possible, we should try our best to give consistent readings.
This is no doubt an appealing idea. After all, we were not compelled towards
non-classical logics in the first place because classical logic was particularly
bad at dealing with consistent scenarios, but rather because it could not
handle inconsistent ones. It might make sense then that where everything
behaves well, and there is no vagueness, we should fall back on the assump-
tion of consistency. With LP we saw evidence of this approach in at least two
places: once concerning the non-transitivity of identity, and also the failure
(and simultaneous success) of self-identity. In both cases, the cognitive shock
brought about by the failure of these familiar laws was tempered by the idea
that whenever our models are consistent, identity is indeed transitive and
reflexive; it is only when we are dealing with vague objects that anything
out of the ordinary occurs. We think that there is an element of truth in the

31
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default assumption of consistency, namely that when it is explicitly stated
that some such thing is consistent (e.g. “John is tall”), we should not be
able to infer vagueness (for example that John is both tall and not tall). The
same can be said for the inference from “John is not tall” to “John is vaguely
tall”.1 In the absence of information indicating consistency however, we feel
that the impartial approach of allowing for inconsistent readings as much as
we do consistent ones makes the most sense: if we haven’t specifically men-
tioned whether an object is vague or not, we shouldn’t by default rule either
case out. We think this, in short, because of the apparent prevalence of in-
consistency in the world. If we were to fully embrace the default assumption
of consistency and reject inconsistent readings, we would be denying this ap-
parent truth.

We can take our example non-inferences of consistency to vagueness in rela-
tion to another default assumption: pragmatism. Suppose you are presented
with a disjunction, say, “The world is beautiful or there is no God”. Of
course, classically, such a disjunction needn’t preclude the corresponding
conjunction. Just because it has been said that it is true that the world is
beautiful or it is true that there is no God doesn’t meant that it can’t be
the case that the world is beautiful and there is no God. From a certain
perspective though, such a reading doesn’t seem quite right. For wouldn’t
it be the case, that if the speaker really wanted to allow for the conjunc-
tion they would have made that clear? Shouldn’t we assume by default the
weaker statement (i.e. the disjunction) if the speaker has chosen not to say
the stronger one (the conjunction)? If we answer “yes”, we are said to allow
for scalar implicatures, which are often said to follow from standard Gricean
principles2 We will use this idea, but within the context of vagueness. Ear-
lier, we saw that prpr should not allow inferences from, say, “John is tall”
to “John is vaguely tall” because if we are given indication of consistency,
this should be kept to, by default, and inconsistent readings should be ruled
out. From a pragmatic perspective we can reach the same conclusion. For
if a speaker informs you that John is tall, then they have, under the default
pragmatic assumption, implicitly rejected telling you that they are both tall
and not tall. The very fact that they didn’t say the stronger statement thus
indicates that John must simply be tall, or better put, that “John is tall” is
strictly true. Conversely, by analogous reasoning, we think that if an asser-
tion is made to the effect that John is vaguely tall, it would not be correct

1There is some empirical evidence for what we are saying here, for example, [40], [1],
[9], [36].

2See, for example, [15].
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to infer that he is, after all, strictly tall. That is, we should have it that
Tj ∧¬Tj 6|=prpr Tj. Allowing for situations such as this will mean that prpr
will be quite unlike any of the logics we have seen so far - specifically, it will
be non-monotonic, i.e. Γ |=prpr {φ} 6⇒ Γ ∪ ψ |=prpr φ. Unsurprisingly, this
will have big consequences for how identity behaves in prpr. We will see how
we can use it to our advantage in dealing with identity problems, for example
giving us a novel way of dealing with the sorites and Theseus’ Ship paradoxes.

To explicate prpr, we will not use one of the formalisms already introduced.
Instead, we will take a more “fine-grained” approach to truth, making use
of a more general formalism, originally found in van Fraassen’s [42]. That
this formalism is more general will become clear as we go along, as will the
notion of fine-grainedness. As a starting point, we must return to a central
question for logic, namely, “Under what circumstances should we consider a
sentence to be true?”, i.e. what are a sentence’s truth-conditions? For van
Fraassen, the answer is that sentences are made true by facts. To put it more
accurately, sentences have truth-makers, which are sets of facts. Facts are
themselves sets, built up from the most primitive elements, namely elements
of the state of affairs, which intuitively we can think of as the collection of
possible situations. The set of possible worlds will be the set of maximal
subsets of the state of affairs, that is, the set of all subsets which include
at least p. For each atomic sentence p, there is a corresponding element in
the state of affairs p. A truth-maker for p is then defined as all the sets
that contain the state of affairs p. For complex sentences, let’s first look at
negated formulas. The first thing we will need is false-makers, that is, facts
that make sentences false. We can then define the truth-makers for a negated
formula as simply the set of false-makers for the corresponding non-negated
formula. Where p is atomic, we can think of at least two different ways of
dealing with the truth-makers of ¬p, i.e. the false-makers of p. The first
would be to say that there is some (positive) state q in the state of affairs
that rules out p. The second would be to say that there are negative states
in the state of affairs. Van Frassen chooses the latter of these two options.
There is thus an intimate connection between the set of literals in a language
and the state of affairs: for each atomic sentence p, there is a member of the
state of affairs that makes it true: p, and a member that makes it false: p.
For the truth-makers for conjunctions, naturally enough, we consider con-
junctions of facts. To say for example that a conjunction of atomic sentences
p and q is true, is to say that its truth-makers must consist of a (conjunctive)
fact containing both p and q , that is, {{p,q}} is its set of truth-makers.
For disjunctive sentences, intuitively it makes sense that they may have more
than one truth-maker. For example, p∨q can be made true either by the fact
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{p} or {q}, and hence its truth-makers come out as {{p}, {q}}. To generate
the false-makers for conjuctions and disjunctions, we can make use of the
familiar de Morgan rules to say that a conjunction’s false-makers will be a
disjunction of the conjuncts’ false-makers, and a disjunction’s false-makers
will be the conjunction of the disjuncts’ false-makers. We can extend this to
account for higher-order sentences in a natural way, namely that universal
statements will be considered as (possibly infinite) conjunctions, and exis-
tential statements as disjunctions.

4.2 Formalising prpr

We will now spell out what was described informally above.3 We begin with
a definition for a state of affairs, and what our possible worlds are.

Definition of the state of affairs (SOA):

For each atomic sentence (p) of the language : p,p ∈ SOA and p = p.

Definition of the set of possible worlds (W ):

W = {w ∈ P(SOA) | ∀p ∈ SOA : p ∈ w or p ∈ w}.

We can now state the simultaneous recursive definition for truth- and false-
makers for a formula φ, denoted T (φ) and F (φ) respectively. As is perhaps al-
ready clear, this framework closely resembles disjunctive normal form. Note,
by ⊗ we will have in mind a set operation similar to the Cartesian product,
but rather than generating a set of ordered pairs of two sets, ⊗ will generate
an (unordered) set, i.e. A⊗B = {X ∪ Y | X ∈ A and Y ∈ B}.

Definition for propositional truth- and false-makers:

T (p) = {{p}} F (p) = {{p}} (where p is atomic.)

T (¬φ) = F (φ) F (¬φ) = T (φ)

T (φ ∧ ψ) = T (φ)⊗ T (ψ) F (φ ∧ ψ) = F (φ) ∪ F (ψ)

T (φ ∨ ψ) = T (φ) ∪ T (ψ) F (φ ∨ ψ) = F (φ)⊗ F (ψ)

3The following account shares many common features to those of [11] and [12]. One
notable distinction is in our focus on (general) identity as opposed to the more specific
identity-with-respect-to-predicate relation, i.e. the similarity relation ∼P .
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For example then, T (p∧(q∨r)) = T (p)⊗(T (q∨r)) = T (p)⊗(T (q)∪T (r)) =
{{p,q}, {p, r}}, and T (p ∨ ¬p) = T (p) ∪ F (p) = {{p}, {p}}. (Note that,
in this paper, false-makers will only be useful in so far as they are needed
to construct our truth-makers, so I will avoid giving any direct examples of
them.)

As before, φ → ψ will be defined standardly as ¬φ ∨ ψ, so for example,
T (p → q) = {{p}, {q}}. Likewise, the bi-conditional will be considered as
the conjunction of the conditional and its converse, that is, φ ↔ ψ iff (φ →
ψ) ∧ (ψ → φ). In this latter case, it follows that for some atomic sentences
p and q, T (p ↔ q) = {{p,q}, {p,q}, {p,p, }, {q,q}}. This will be of par-
ticular interest when we come to defining identity later in this chapter. For
the moment, it will suffice to point out that the truth-makers for the bi-
conditional connecting atomic sentences include facts whereby each atomic
sentence is vague ( - for the example given, the sets {p,p} and {q,q}).

For the quantifiers, we will need a way to interpret (atomic) sentences with
predicate constants and individual constants. We will assume for simplicity
that each element d ∈ D1 and each A ∈ D2 has a unique name in the lan-
guage: d and A respectively. Where we wish to refer to an element of either
domain, we will say it is an element of D. By α we will refer ambiguously to
either an individual or predicate variable in the language. As before, we will
just be considering monadic predicates, and we will likewise ignore function
symbols.

Quantified truth- and false-makers:

T (Ad) = {{Ad}} F (Ad) = {{Ad}}

T (∃αφ) =
⋃
d∈D

T (φ[α/d]) F (∃αφ) =
⊗
d∈D

F (φ[α/d])

T (∀αφ) =
⊗
d∈D

T (φ[α/d]) F (∀αφ) =
⋃
d∈D

F (φ[α/d])

So for example then, ifD1 = {a, b}, T (∃x(Px∧¬Px)) = {{Pa,Pa}, {Pb,Pb}},
and ifD1 = {a, b} andD2 = {P,Q} then T (∀X(Xa∨Xb)) = {{Pa,Qa}, {Pb,Qb}}.

Truth- and false-makers can be thought of as providing a fine-grained se-
mantic interpretation, which is really just another way of saying that they
can allow us to define notions that are more nuanced than we would normally
be able to. One such notion will be be of critical importance to prpr. We can
use truth- and false-makers together with our worlds to define a wide variety
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of different logics. For example, to recover the standard truth-conditional
semantics for a sentence φ, JφK, we limit our worlds to be consistent (as well
as maximal), and then define JφK to be the set of worlds which have a truth
maker, i.e. JφK = {w ∈ W | ∃f ∈ T (φ) : f ⊆ w}. Standard logical conse-
quence would hold between a set of premises Γ and a conclusion φ just in
case

⋂
γ∈ΓJγK ⊆ JφK.

Where our worlds are simply maximal, and not necessarily consistent (i.e.
as we defined W at the beginning of this section), the set of worlds for
which φ has a truth-maker becomes the set of tolerant worlds for φ. That
is, JφKt = {w ∈ W | ∃f ∈ T (φ) : f ⊆ w}. We can then define strict truth in
terms of this: JφKs = JφKt ∩MC, where MC is the set of maximally consis-
tent sets of W . Put another way, JφKs = {w ∈ W | ∃f ∈ T (φ) : f ⊆ w : p ∈
w and p 6∈ w}. (It should be noted that p here, as elsewhere, means any
literal, not necessarily a positive state of affairs. Otherwise, this wouldn’t be
right.) From this we can define the logics seen in the previous chapter in the
following way:

Γ |=LP φ iff
⋂
γ∈Γ

JγKt ⊆ JφKt,

Γ |=st φ iff
⋂
γ∈Γ

JγKs ⊆ JφKt.

Broadly speaking, prpr will be constructed in the same way: a pragmatic
interpretation of φ will restrict our worlds to those which contain truth-
makers for φ, given some further conditions; and prpr consequence will be
said to hold between a set of premises Γ and a conclusion φ iff the intersection
of the pragmatic Γ worlds are all included in the pragmatic φ ones. As to what
counts as “further conditions”, we will make use of the notion of minimally
inconsistent worlds.

4.3 Pragmatic Interpretation

The task of making precise the notion of minimal inconsistency essentially
boils down to the problem of creating an ordering amongst worlds with re-
spect to their consistency. In [?] (pp. 7-8), this was carried out by defining a
world w as less inconsistent than another v iff v has every inconsistency of w
and more, i.e. that w < v iff {p ∈ SOA | p ∈ w and p ∈ w} ⊂ {p ∈ SOA |
p ∈ v and p ∈ v}. A minimally inconsistent world w1 then, is simply one
for which there is no other w2 such that w2 < w1. The truth-conditions for a
sentence φ can then be defined as the set of minimally inconsistent worlds for
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which φ has a truth-maker in w, i.e. {w ∈ W | ∃f ∈ T (φ) : f ⊆ w and ¬∃v ∈
W : f ⊆ v and w < v}. Although not without its merits, this approach has
the unfortunate consequence of unfairly discounting what we consider to be
harmlessly inconsistent worlds. A notable example discussed in [?] concerns
the sentence “John is vaguely tall or Mary is rich”. It is not hard to see why
such a sentence might be problematic: we have a disjunction of an incon-
sistency (John being vaguely tall) and a strict truth (Mary being tall), and
minimal inconsistency, as defined above, will seek to minimise inconsistency,
avoiding cases whereby the first disjunct is true. In slightly more detail, sup-
pose we have two worlds, w1 = {Tj,¬Tj,Rm}, and w2 = {Tj,Rm}. Both
worlds contain at least one truth-maker for the whole sentence ({Tj, T j}
and {Rm}, respectively), and so are initially included by the interpretation,
but because w2 < w1 (because ∅ ⊂ {Tj, T j}), a world such as w1 will never
emerge from the above interpretation. In fact, the interpretation above will
render the whole sentence as being equivalent to Mary being tall.4 We think
this wrong, intuitively, simply because there seem to be possible worlds in
which Mary is in fact not tall, and yet the whole sentence still true prag-
matically, namely when the other disjunct is true, and John is vaguely tall.
For this reason, we will reject Priest’s definition of less inconsistent worlds
in favour of the following definition.

Definition of a world (w) being less inconsistent than another (v):

v <f w iff {p ∈ SOA | p ∈ f and p ∈ v} ⊂ {p ∈ SOA | p ∈ f and p ∈ w}.

We can see that inconsistency is thus relativised according to a specific truth-
maker f . As such, we will not face the problem we did above concerning the
“John is vaguely tall or Mary is rich” problem. If we consider again our two
worlds w1 and w2, each has a different truth-maker, and because our defini-
tion of being less inconsistent is relativised to them separately, they will each
be minimally inconsistent in their own right. This specific example will be
treated in more detail once we have concluded formalising prpr.

Definition of Pragmatic Interpretation:

PRAG(φ) = {w ∈ W | ∃f ∈ T (φ) : f ⊆ w and ¬∃v ∈ W : f ⊆ v and v <f w}.

To re-iterate, PRAG(φ) looks for worlds for which φ has a truth-maker f
which are as consistent as possible with respect to f . If for a given world
w, there is another v that also makes φ true, and is less inconsistent than

4See [?] for more details on this.
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w, then w will be excluded and not emerge from our pragmatic interpretation.

Where we are only considering single-premised sequents, concluding the logic
would be simply enough. We could let φ |=prpr ψ hold iff PRAG(φ) ⊆
PRAG(ψ). Where we have more than one premise however, the situation is
more tricky. This is because if we define things in the standard way, i.e. that
Γ |=prpr φ iff

⋂
γ∈Γ PRAG(γ) ⊆ PRAG(φ), we will find that we will not ad-

equately be able to deal with relatively inconsistent premises. Consider, for
example, where Γ = {Pa,¬Pa}. As we have defined things, PRAG(Pa) and
PRAG(¬(Pa)) will be disjoint, and so PRAG(Γ) will be empty, resulting in
an incorrect reading5. Instead we would like the pragmatic interpretation for
premises to behave much in the same way as PRAG deals with conjunctions,
so that in the example given, PRAG(Γ) behaved in much the same way as
PRAG(Pa ∧ ¬Pa). The following definition allows for this.

Definition for multi-premised PRAG:

PRAG(Γ) =


⋂
γ∈Γ

PRAG(γ,W ), if this is non-empty;⋂
γ∈Γ

PRAG(γ, JΓKt), otherwise,

where,

PRAG(φ,W ′) = {w′ ∈ W ′ | ∃f ∈ T (φ) : f ⊆ w′ and ¬∃v ∈ W ′ : f ⊆ v and v <f w},

and,

JΓKt =
⋂
γ∈Γ

JγKt.

To see why, consider again the example where Γ = {Pa,¬Pa}. As previ-
ously stated, if we perform PRAG for all worlds, PRAG(Γ) = ∅, hence our
definition forces us to reinterpret Γ, instead considering the worlds in which
every element of Γ is tolerantly true. The result will be that PRAG(Γ) =
PRAG(Pa∧¬Pa) which is what we wanted. (Note that this is not generally
the case for prpr. Later in this chapter we will see a counterexample to it
related to our target feature (NV I)) We can now state what it means for a
sequent to hold in prpr.

5Note that PRAG(∅) is very different from PRAG(Γ) = ∅. While the latter would
allow for any sequent holding, simply because the emptyset is a subset of every set, the
former can be understood in the standard way regarding logical consequence, as providing
no demands on models for the premises, hence forcing the pragmatic interpretation of the
conclusion needing to be equal to W .
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Definition of prpr consequence:

Γ |=prpr φ iff PRAG(Γ) ⊆ PRAG(φ).

This concludes the basics of prpr. Before coming to how prpr deals with
identity, it might first be useful to see how it deals with sequents involving
simpler formulas, including some that we considered informally at the begin-
ning of this chapter.

One of the first ideas we considered, was that where consistency has explicitly
been mentioned, we should not then allow for inconsistency. For example, it
should hold that Pa 6|=prpr Pa ∧ ¬Pa. While this is the case for many logics
- including LP - simply because there exists a model whereby the premise is
true and the conclusion false, the situation is more extreme in prpr: there is
simply no world w ∈ PRAG(Pa) such that w ∈ PRAG(Pa ∧ ¬Pa). It is in
this sense that inconsistency is said to be ruled out, given evidence of consis-
tency. With the tolerant approach (recall that LP can be thought a tolerant-
to-tolerant logic), we could not reach such an extreme position because the
tolerant worlds for Pa would be any set containing Pa (i.e. T (Pa) = {Pa} ⊆
those sets), and so worlds w for which {Pa,Pa} ⊆ w could not necessarily
be ruled out. Put in more intuitive terms, the premise Pa, when understood
tolerantly, may only be half true, that is Pa ∧ ¬Pa might hold, in which
case Pa ∧ ¬Pa would be true. But with PRAG, while {Pa} ⊆ w for any
world w containing Pa, any world that also contains Pa will be more in-
consistent than w (assuming there it has no other truth-maker), and so be
excluded by our definition. It follows that the PRAG worlds for Pa will only
be the consistent ones - at least in terms of the truth-maker Pa. Or put an-
other way, the pragmatic interpretation of Pa says that Pa must be strictly
true. As for other, non-explicitly mentioned atomic sentences, PRAG does
not force us to make any judgments as to their consistency because of the
way we relativised inconsistency according to truth-makers. It will thus be
the case that for any q 6= Pa, the pragmatic worlds will include those in
which q are strictly true, strictly false, or both true and false, equally. It
was this that we were giving indication of in the beginning of the chapter,
saying that in general, prpr would hold no default assumption of consistency.

We also mentioned the perhaps more surprising result that Pa ∧ ¬Pa 6|=prpr

Pa, an example that shows the non-monotonic nature of prpr. In the light
of what has been said, this is perhaps less surprising. All of the worlds in
PRAG(Pa ∧ ¬Pa) will be supersets of {Pa,Pa}, while none of the same
supersets will be found in PRAG(Pa) because it limits Pa to being strictly
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true. This gives evidence for the fact that statements concerning inconsis-
tency (e.g. Pa ∧ ¬Pa) behave in prpr very differently from how they do
in LP and ST , and that specifically we are better able to map our natural
intuitions (such as the idea that we can’t conclude a consistency from an
inconsistency) because of this.

As a final example, we will consider in more detail the “John is vaguely
tall or Mary is rich” problem, with the aim of showing that we cannot infer
from this sentence that Mary is rich. To this end, it will suffice to show that
there is a model for which the premise (Tj ∧ ¬Tj) ∨ Rm is pragmatically
true, while the conclusion Rm is pragmatically false, or more accurately, that
there is a world in PRAG((Tj ∧ ¬Tj) ∨ Rm) that is not in PRAG(Rm).
In taking a more exhaustive approach, we will perhaps get a clearer sense of
how the elements of prpr we have thus discussed so far come together.

Let SOA = {Tj,Tj,Rm,Rm}. It follows that we will have 9 possible
worlds, the set of maximal subsets of SOA, which we will label w1 through
w9. Let φ = (Tj ∧ ¬Tj) ∨Rm. Recall that T (φ) = {{Tj,Tj}, {Rm}}. The
following table shows which worlds satisfy the two conditions of PRAG(φ).

world label world (w) ∃f ∈ T (φ) : f ⊆ w? ¬∃v ∈ w : f ⊆ v and w <f v?
w1 {Tj,Rm} yes: {Rm} yes
w2 {Tj,Rm} no -
w3 {Tj,Rm,Rm} yes: {Rm} no: w3 <{Rm} w1

w4 {Tj,Rm} yes: {Rm} yes
w5 {Tj,Rm} no -
w6 {Tj,Rm,Rm} yes: {Rm} no: w6 <{Rm} w1

w7 {Tj, T j, Rm} yes: {Tj, T j}, {Rm} yes: either
w8 {Tj, T j, Rm} yes: {Tj, T j} yes
w9 {Tj, T j, Rm,Rm} yes: {Tj, T j}, {Rm} yes: {Tj, T j}

We can see that some worlds, namely w2 and w5 fail to have any truth-
maker for φ. These are excluded immediately. There are other worlds that
do contain at least one φ truth-maker, but that fail to be minimally incon-
sistent worlds. For example, w3 is a superset of the truth-maker {Rm},
but w1 is more consistent than w3 in terms of it (because ∅ ⊂ {Rm,Rm}),
it is thus excluded from PRAG(φ). Similarly, w6 is excluded. With every
other world, our two PRAG conditions are met. Of particular note are w7

and w9. w7 is minimally inconsistent in terms of either of the truth-makers,
while in the latter, only {Tj, T j} (because w1 <{Rm} w9). It follows that
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PRAG(φ) = {w1, w4, w7, w8, w9}.

The table also makes it fairly clear which worlds emerge from PRAG(Rm).
They will be the worlds which have (just) Rm, i.e. the worlds that don’t also
have Rm, i.e. PRAG(Rm) = {w1, w4, w7}. Clearly then, there is at least
one world, for example w8 which is a PRAG world for φ and not for Rm.
It follows that PRAG(φ) 6⊆ PRAG(Rm) and (Tj ∧ ¬Tj) ∨ Rm 6|=prpr Rm,
which is what we wanted to show.

4.4 A Return to Identity

In the two previous chapters we saw that identity could be defined in the
familiar Leibnizian way, i.e. a = b iff ∀X(Xa ↔ Xb). This was some-
what appealing in that it could be argued that any non-standard behaviour
of identity was a result of the underlying (non-classical) logics from which it
emerged, and not per se from identity itself being defined non-standardly. As
mentioned previously though, the truth-makers for the bi-conditional (say,
p↔ q) include cases of vagueness (e.g. the sets {p, p} and {q, q}}. Were we
to define identity in the Leibnizian way then, it would follow that T (a = b) =
T (∀X(Xa ↔ Xb)) =

⊗
A∈D2
{{Aa,Ab}, {Aa,Ab}, {Aa,Aa}, {Ab,Ab}}.

The presence of these two final sets would generally be problematic in light of
our PRAG definition because it would go against our insistence that where
there is evidence of consistency, we should not be able to derive inconsistency.
By having, for example, {Pa,Pa} as a truth-maker for identity statements,
worlds which are subsets of {Pa,Pa} would automatically emerge from our
PRAG definition as they would contain a truth-maker and be minimally in-
consistent worlds with respect to this truth-maker. However, from the prag-
matic perspective, there is every reason to think that asserting an identity
statement is an assertion of consistency, much like it is for, say, an assertion
of an atomic sentence. In fact, were we to commit ourselves to the above
definition of identity, the result would be disastrous in reference to our target
features. For example, if we did not implicitly rely on the consistency of an
asserted identity statement, we would be quite unable to properly deal with
the substitution of identicals. Because of this, we will have to embrace an
alternate definition, one that by fiat removes these latter two sets.

Definition for the truth- and false-makers of Identity:

T (a = b) =
⊗
A∈D2

{{Aa,Ab}, {Aa,Ab}}
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F (a = b) =
⋃
A∈D2

{{Aa,Ab}, {Aa,Ab}}.

It is easy to see that, given only consistent worlds, our truth- and false-makers
for identity will be just the standard truth-conditional ones. We are, after
all, simply saying that for an identity statement to be true we must have it
that for every predicate, the conjunction of both predicated objects is true
or both are false; and with regards to false-makers, that one predicated ob-
ject is true while the other false. As Priest puts it, using slightly different
terminology, “What is required for Leibniz’s Law is that for every predicate,
P , Pt1 and Pt2 have the same truth value” ([31] p.7). It is in this sense that
we think that, as defined, we capture the spirit of the Leibnizian definition,
though not, we must concede, the form. (More strictly, it corresponds to
the second definition of identity in the introduction as opposed to the first.)
This point will further be discussed in the concluding chapter.

4.5 prpr and the Target Features

We are now in a position to see how prpr deals with our five target features.
We will also see what effect this has in dealing with identity problems in the
context of vagueness. Firstly, consider (SI), that is, Pa, a = b |= Pb.

Let Γ = {Pa, a = b}. Clearly T (Pa) = {{Pa}}, T (a = b) =
⊗

A∈D2
{{Aa,Ab},

{Aa,Ab}}, and T (Pb) = {{Pb}}. It follows that every world in PRAG(Pa)
will contain Pa, but, as we saw before, {Pa,Pa} 6⊆ w for any w ∈ PRAG(Pa)
because if this were the case then these worlds would be more inconsistent
than those that contain just Pa. By the same reasoning, PRAG(Pb) will in-
clude only worlds in which Pb is a member, and not also Pb. For PRAG(a =
b), we know that every world must either be a superset of {Pa,Pb} or
{Pa,Pb}. (For example, if D1 = {a, b} and D2 = {P,Q}, PRAG(a = b) =
{{Pa,Pb,Qa,Qb},
{Pa,Pb,Qa,Qb}, {Pa,Pb,Qa,Qb}, {Pa,Pb,Qa,Qb}}.) From our defi-
nition of PRAG(Γ), we first interpret Γ according to the set of worlds W , and
if the resulting set is non-empty then this is our pragmatic interpretation.
Any of those sets in PRAG(a = b) which are supersets of {Pa,Pb} will be
disjoint to those that are supersets of those (just) containing Pa, hence these
will be excluded. The only sets that won’t be excluded will be those which are
supersets of {Pa,Pb}. As said previously, PRAG(Pb) will contain supersets
of {Pb} (and not also {Pb}. It follows that PRAG(Γ) ⊆ PRAG(Pb), and
so Pa, a = b |=prpr Pb.
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Of course, objects a, b, and predicate P were chosen arbitrarily, and so what
was said regarding (SI) also holds in the context of the sorites. That is, where
we have some sequence of pair-wise indistinguishable objects, and we assert
these identities, together with a claim concerning the X−ness of one of these
objects, where X is some predicate, we will pragmatically conclude that ev-
ery object is X too (or symbolically, that Xa1,∀n(an = an+1) |=prpr ∀n(Xn)).
In other words, we find no problem at all with the argument that if a single
grain is not a heap, and any addition to a non-heap is also a non-heap, we
must pragmatically conclude, given what has been said, that an arbitrarily
large number of grains is also not a heap. Recall the specific argument con-
cerning red sheets of paper given in the introduction:

Ra255

a255 = a254

a254 = a253

. . .
a2 = a1

a1 = a0

Ra0.

We likewise no fault with this argument. prpr concludes that the final sheet
of paper is red, that is, Ra255, ∀n(an = an−1) |=prpr Ra0.

This is not the end of the story though. For with further information of
the right sort, the possible worlds made true by PRAG will end up being
radically different. Specifically, if at some point it becomes clear that for some
object z in the sequence, ¬Xz holds, or in our example - “z is a heap” is true,
then this will force a radical reinterpretation. Likewise, with the red sheets
example, if we come to learn that, say, Ra0, then we are forced to reinterpret.
As to what exact change this introduces, let us consider the so-called “non-
absurdity of inconsistent objects” target feature: Pa, a = b,¬Pb 6|=prpr ⊥
(NIO). The first thing to say is that where Γ = {Pa, a = b,¬Pb}, the
intersection of the respective PRAG premises will be empty. That is, our
premises are relatively inconsistent, the reason being that PRAG(Pa) will
generate Pa consistent worlds, PRAG(a = b) will generate a = b consistent
worlds, and PRAG(¬Pb) will generate ¬Pa consistent worlds, and there is
simply no world which is a member of all three. We are thus forced to con-
sider the PRAG worlds of the tolerantly Γ worlds, JΓKt, as opposed to W .
The resulting PRAG worlds will be a set of worlds containing supersets of
{Pa,Pa,Pb}, {Pa,Pb,Pb}, or Pa,Pa,Pb,Pb}. Or in other words: one
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(or both) of our objects will be vaguely P . Note that PRAG(Γ) will not be
empty, that is (NIO) holds in prpr.

While (NIO) only concerned two objects, given any number of objects, the
situation is the same: one, or possibly any number of objects in a sorites-
like sequence must be vague (given the information that two hold inconsis-
tent predicates and every pair-wise object is identical). This means then,
that with our red sheets example, given the new information that ¬Ra0 this
instantly makes every one of the sheets of paper now borderline red, i.e.
∀n(Ran ∧ ¬Ran), where 0 ≤ n ≤ 255. On the face of it, this might seem to
be a rather unsatisfying result. It does, after all, bear some resemblance to
the classical problem with the sorites as described at the beginning of this
paper, namely that if we have a sequence of pair-wise identical objects, and
the first is said to have some predicate, and the last not, then every object in
such a sequence must be contradictory. One obvious difference is that incon-
sistencies in prpr do not behave as traditional contradictions. They do not,
for example entail anything and everything. Instead they mean something
quite specific, that when such and such an object has both a property and
its negation, it is vague in terms of that property. The best way of under-
standing the apparent omni-vagueness that comes out of the prpr reading
of the sorites then, might be to invoke some notion of meta-vagueness: that
sometimes, it might be vague as to what objects are vague or not. This
does not seem unreasonable in the context of the sorites, and perhaps like-
wise for other contexts, including Theseus’ Ship. What is perhaps surprising,
especially considering on our insistence that from consistency we don’t prag-
matically infer inconsistency, is that our assertions of strict truth (i.e. that
Ra255 and ¬Ra0) end up being ignored. Furthermore, no amount of contin-
ued assertions of consistency will change the matter. That is, we can insist
as much as we care to that, say, object a255 really is R, it will not make one
jot of difference: it will remain the reading that it is only vaguely red. More
will be made of this point in the conclusion that follows this chapter. As
a final word, for now, on the sorites, it will be important to mention one
such assertion that will make a difference, and that is an assertion that one
of the objects is vague. For with a further assertion of say, Ra127 ∧ ¬Ra127,
the PRAG worlds that emerge from the premises will then resolve down to
only include those which are supersets of the truth-maker {Ra127,Ra127}.
All other worlds, i.e. the ones where other objects are vague will then fail to
come out of the pragmatic interpretation. In other words, once the vagueness
has been pinpointed (either one object or more), every other object will then
return to being interpreted as strictly true or strictly false. This is a further
reason to think that prpr deals with the identity sorites (and hence examples
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like the Ship of Theseus) in a reasonable manner.

We have three target features remaining to take care of: transitive iden-
tity (TI), transitivity of inference (TOI), and finally, the non-absurdity of
vague identity (NV I). The first follows from a similar argument to the one
we saw with (SI). The worlds made true by PRAG(a = b) and the worlds
made true by PRAG(b = c) are not disjoint: they will consist of the su-
persets of {Pa,Pb,Pc} or {Pa,Pb,Pc}. Such worlds will clearly coincide
with those of PRAG(a = c), which are supersets of {Pa,Pc} or {Pa,Pc}.
It follows that PRAG({a = b, b = c}) ⊆ PRAG(a = c), that is, (TI) holds.
This does not, however, mean that we can’t deal with cases where the tran-
sitivity of identity is put under strain. In fact, we have already seen hints
of this with (NV I). Observe that it is the case that Pa, a = b,¬Pb 6|=prpr

a = b, because PRAG(a = b) will only include worlds which are supersets of
{Pa,Pb} or {Pa,Pb}, while there are no consistent worlds that will be in
PRAG(Pa, a = b,¬Pb). Intuitively, this can be explained: when we utter
(just) an identity statement, we are implicitly committing ourselves to con-
sistency (at least in terms of the objects that are said to be identical), while
asserting our premises, we are explicitly denying this. Let’s look at the truth-
makers for an identity statement and its negation: T (a = b ∧ ¬(a = b)) =⊗

A∈D2
{{Aa,Ab}, {Aa,Ab}}

⋃
B∈D2

{{Ba,Bb}, {Ba,Bb}},. Clearly there
will always be some worlds that satisfy PRAG(a = b∧¬(a = b)), (for exam-
ple, if D1 = {a, b}, and D2 = {P}, the world {Pa,Pa,Pb} ∈ PRAG(a =
b ∧ ¬(a = b))). It turns out though that PRAG(a = b ∧ a 6= b) is not quite
the same as PRAG(a = b, a 6= b). This is because the former excludes cases
whereby both objects are vague. PRAG, because of its want to minimise
inconsistency, ends up rejecting the case where both objects are vague. It
will be the case then that while (NV I) is the case (we can’t infer anything
from a = b, a 6= b), we can’t infer that a = b ∧ a 6= b. This is therefore a
counterexample to the sequent φ, ψ |= φ ∧ ψ that we said we’d come to ear-
lier. Although this is perhaps not entirely welcome, there does seem to be a
way of making sense of it intuitively. Suppose you have come to learn certain
things about one person, and also certain things about a person that you
thought was someone else. Perhaps a somewhat concrete example would be
that of superman/clark kent. Suppose Lois thought Superman was strong,
but that Clark Kent was weak, i.e. not strong. But then, when she found out
that Clark Kent and Superman were the same person, to make sense of it,
she pragmatically tried to interpret what was going on. The most reasonable
assumption, perhaps, is that one of them was lying. So, either Clark wasn’t
really weak, or Superman wasn’t really strong. This at least seems plausible.
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Indeed, we might take it to be the most plausible option that Clark Kent
is, after all, not strong, and the pragmatic reading we have given allows for
this, while LP could not. It should be noted that it is possible to regain an
interpretation that does allow both: we can stipulate this as a premise. For
example, Lois can say: Ss,¬Ss, ,¬Sc, s = c, s 6= c, and it will follow that
both Superman and Clark Kent are vague. Because of this, vague identity
(as we have called it) can be made to act exactly as it does in LP . Before,
we saw that LP at least plausibly allows us to make sense of Prior’s amoeba
example. It follows then that prpr will be as equally capable in this regard.
We can use prpr to deal with cases like the amoeba.

Our final target feature, (ToI) follows from the properties of inclusion. Where
A,B and C are formulas, clearly if PRAG(A) ⊆ PRAG(B) and PRAG(B) ⊆
PRAG(C), then PRAG(A) ⊆ PRAG(C). Therefore, A |=prpr B,B |=prpr

C ⇒ A |=prpr C. Where we are considering multi-premised sequents, the
situation is not complicated any further, because our conclusions are not
themselves sets, so Γ |=prpr φ, φ |=prpr ψ ⇒ Γ |=prpr ψ. Considering multi-
conclusion sequents might be source of further work. It would likely be not
entirely straightforward, and may also put strain on (TOI) in the more more
general case.



Chapter 5

Problems, Further Research,
Conclusion

5.1 prpr - pros and cons

We can represent the results of the previous chapters (in terms of the target
features, at least) in the following table:

FOL=/ LP ST prpr
SOL

(SI) � × � �
(TI) � × � �

(NIO) × � × �
(NV I) × � × �
(ToI) � � × �

We have argued that prpr thus better suits our intuitions regarding identity,
and that, in a sense, it provides us with the best of both worlds with respect
to our other two logics: we can deal with vagueness in a way comparible to
LP (contra ST ), and yet still retain a level of consistency comparible to ST
(contra LP ). Furthermore, prpr provided plausible solutions to our identity
problems (the sorites, Theseus’ Ship, Prior’s amoeba), problems that could
not be accounted for by the standard account. We saw that prpr was able to
do this by channeling a more pragmatic notion of truth, one inspired by how
speakers can use language to sometimes imply things without saying them.
For example, we saw that prpr could make sense of situations where a speaker
implicitly avoids inconsistency without explicitly doing so. Such situations
were not capturable in LP because it was always possible for sentences in-
volving identity, or atomic sentences to be given inconsistent readings. We
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also saw that the minimal inconsistency approach taken by prpr was more
nuanced than it is in other places (Priest’s version in somewhere) in that
it wouldn’t automatically extinguish inconsistency in the presence of consis-
tency (specifically, it provided a meaningful reading of the “Mary is rich or
John is vaguely tall” example). We think these are all positive features of
prpr, and in virtue of them, prpr appears to hold some promise. It would be
unwise to end our analysis here, though. There are always bound to be some
percieved problems with any given logic, and prpr is of course no different.
This will be a suitable place to mention a few problems we might have, with
an aim to address them as best we can.

One initial clarification might serve some purpose. This is in regards to
how the various target features have been said to hold in prpr. The criticism
could be put like this. Though technically (SI), say, holds in prpr, it only
does so in a very limited sense. That is, it is really the case that substitu-
tivity in prpr is the same as substitutivity in LP , in that, in both, it fails
when we are in inconsistent situations. While this is loosely correct, there is
nonetheless a crucial difference between prpr and LP , and that is that for
prpr, it as assumed by default that substitutivity, say, holds, and likewise
for transitivity. This is an important difference because it means that in
the absence of inconsistent information, prpr will get the intuitively right
answer. For example, with our version of the sorites paradox, this stresses
that there is nothing wrong, in itself, with the argument. If you are told that
some object is always identical to the last version of itself, then the intuitive
reading is that this object is unchanging - it doesn’t change properties. It
is only in light of new, inconsistent information (i.e. that one of the sheets
isn’t red, or that the object now has a property that it didn’t have) that we
need to go back and change our reasoning. prpr clearly allows for this, while
LP can’t. Another way of describing prpr’s treatment of (SI) and (TI) is
that (SI) and (TI) are soft constraints in prpr.

An issue that prpr arguably gets wrong is self-identity. We noted in the
introduction that together with symmetry and transitivity, reflexivity is of-
ten perceived to be one of the defining features of identity, as the smallest
equivalence relation. Indeed, however we define identity, its reflexivity ap-
pears undeniable. Even Wittgenstein, who is skeptical about a number of
issues concerning identity (for example, that it is a relation) appears con-
vinced that everything is self-identical:

For identity we seem to have an infallible paradigm: namely,
in the identity of a thing with itself. I feel like saying: ‘Here at
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any rate there can’t be different interpretations. If someone sees
a thing, he sees identity too.’ 1

We saw previously that (TI) holds for prpr, and the situation with symmetry
is much the same: it is clear that T (a = b) =

⊗
A∈D2
{{Aa,Ab}, {Aa,Ab}} =⊗

A∈D2
{{Ab,Aa}, {Ab,Aa} = T (b = a), and so PRAG(a = b) = PRAG(b =

a), and a = b |=prpr b = a. Contrary to our intuitions, though, 6|=prpr a = a.
Identity is not reflexive in prpr. If we look at the truth-makers for a = a
where we have only one predicate and one object a for simplicity, it is easy
to see why. Where P is our only predicate, T (a = a) = {{Pa}, {Pa}}. It
will follow, then, that PRAG(a = a) will not include the world/set {Pa,Pa}
because it is more inconsistent than either of the ones in T (a = a) in terms of
them. That is, {Pa} <{Pa} {Pa,Pa} and {Pa} <{Pa} {Pa,Pa}. It follows
that PRAG(a = a) 6= W (the set of all worlds), and hence 6|=prpr a = a.
Informally, we can think of the failure as resulting from our commitment to
the principle that uttering an identity statement is much like uttering an
atomic statement. In both, we assume that the speaker is implicitly making
a claim of consistency. Given that not all our worlds are consistent, then,
an identity statement of the form a = a will fail to be true in every world,
and so |=prpr a = a will not be the case. There are at least three responses
that can be given to this. The first two both bite the bullet, in a sense, and
accept the criticism (albeit differently), while the third accepts the criticism
as compelling enough to force a re-evaluation of prpr.

The first response is perhaps the most dismissive. We might refer to it
as a negative response. It is to say that prpr needn’t concern itself with
self-identity because pragmatic logics generally needn’t concern themselves
with it, nor indeed any similarly premise-less arguments, because if nothing
has been said - that the information with which you are basing an inference
is zero - then, pragmatically speaking, there is nothing with which to base
one’s conclusions. Another way to put this is that a pragmatic logic needn’t
concern itself with the a priori. In short, then, this response views the whole
issue of self-identity as a moot point.2 Although this position might have

1[45], p90e.
2I am reminded of a discussion I took part in when I was first being introduced to the

basics of logic. My initial query lay in whether or not we should consider premise-less
arguments sound or not. It wasn’t clear to me whether the definition “a valid argument
with true premises” required that there actually be premises, or just that any premises it
had needed to be true. In any case, I thought, can’t I start an argument with a logical
truth? The premise would be redundant in a sense, but why couldn’t I argue p or not
p, therefore...? My professor at the time, who, it should be noted was of a legal bent,
was very much against the idea, insisting that it would be pointless to construct such
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some merit, it largely goes against the spirit of this paper. In forming prpr
we were, after all, thoroughly concerned with what assumptions we should
make prior to any a posteriori information; Default assumptions were seen
to be very important for prpr. Whatever value is in the negative response,
then, for the reason outlined, it cannot be a serious position (for us).

The second response is to accept the failure of self-identity, but to do so
on the grounds that it says something philosophically important about the
nature of vagueness. That in other words, self-identity must fail for some
reason. We might refer to this as the positive response to the failure of
self-identity, as opposed to the negative one that we just mentioned. As for
what specific reason we might have, it is difficult to extend beyond mere
speculation, but there may well be rational grounds for disallowing a = a
for all objects, vague or not. Consider, for example, the following utterance
that you have no doubt heard (or said) before: “I don’t feel like myself right
now...” Perhaps the most comfortable way to interpret this is simply that the
person means that they are not feeling like the person they felt previously,
yesterday, say. But what if we were to take the utterance more literally?
Could they really mean that this very instant they feel as though they are
not themselves? What could this mean? One plausible way to make sense of
this might be through linguistic vagueness. Consider the following highly ide-
alized thought experiment. You have but two phrases with which to describe
your whole world: “light” and “not light”. You are sitting at the beach at
the early evening of a midsummer’ day. Slowly but surely the sun descends,
and ever so gradually day becomes night. By hypothesis, you can’t describe
all of this, of course. Suppose, for the sake of argument, you can’t even think
it: your thoughts are wholly constrained by your language. Even so, it seems
plausible that you might be able to think or say “light” and “no light” at
the right moments, namely towards the beginning of the night and the end
of it. But in that borderline between, the idea would be that your language
(and so your mind) would fail you. You would not be able to identify this
half-light state, it would be left as a blur: an indescribable, unintelligible
absence of a definite self-identical object. Whether this really fits with the

arguments. He added that it would never find a place in court. We already know p ∨ ¬p,
so such arguments are pointless. This is roughly the idea I’m getting at in the negative
response. The negative response views self-identity and other premise-less arguments in
the same way as my teacher viewed the soundness of trivial truths. I’m still not entirely
convinced on the soundness matter. Even in court I could imagine a lawyer using such an
argument to force a reluctant witness to speak, saying, “You were either friends with my
client or not, Mr. X. Which one was it?”. Whether this is an argument or not, I’m not
sure. Perhaps the issue is more about whether everyone knows trivial laws like p or ¬p.
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dialethic reading of paraconsistency in prpr is questionable. It is also espe-
cially troubling with regards to how prpr deals with the sorites argument:
before we can come to find inconsistency, every ‘object’ in the series is an
indefinite blur - quite a paradox! Perhaps it is more understandable what
emotions the person uttering the claim of non-self-identity must be feeling,
then. This response would clearly need , but it does seem like a worthwhile
direction in which to travel, if only because rejecting it would deny prpr of
its ability to always demand consistency of identity statements.

If neither of these options are compelling, and self-identity is seen to be
a principle that must be kept, we might withdraw towards the LP approach,
which arguably gets things slightly better by at least allowing a = a. That is,
even though inconsistency will demand that a = a∧ a 6= a, it is still the case
that |=LP a = a. Self-identity is, for LP , a soft constraint. A way in which
we might adapt prpr would be to take mimic what we did in ST and favour a
mixed consequence relation, for example, prt. This would allow self-identity
to be a law in the LP sense. This would also solve our problem regarding the
fact that a = b, a 6= b 6|=prpr a = b ∧ a 6= b, as a = b, a 6= b |=prt a = b ∧ a 6= b,
because with inconsistent premises, the pragmatic interpretation collapses to
the tolerant one. prt has other nice features, as well, like (SI), (TI), (NCO)
and (NV I). We would lose (ToI) though. A detailed look at prt and the
version of the sorites considered would be worth pursuing. For some other
problems this has been done (see [11]).

Another issue concerns our definition of identity in prpr. We argued that,
although it did not concur with the perhaps more standard biconditional
approach as seen in LP and ST , it still satisfied Leibniz’s Law in some sense.
Specifically, it satisfied the definition that a = b should hold iff for every prop-
erty, P , Pa and Pb would have the same truth-value. Even so, it might be
said that the definition was ad hoc, and that it has drastic consequences for
the account, namely that the truth-value definition no longer tallies with the
biconditional definition. Interestingly, it might be said that the real problem
lies with the way conjunction is defined in prpr. This is because conditionals
by themselves appear to behave perfectly well. For example, unlike in LP ,
modus ponens holds in prpr. More generally, conditionals by themselves are
perfectly well behaved consistent entities. In actual fact, during the process
of coming to prpr as it is now, the idea of better capturing the biconditional
by changing the definition was considered. The hope then, was that we could
define identity in the biconditional way. In the end, the change, as we made
it, led to other, less appealing properties. For example, premises would de-
pend dramatically on their order, leading to some unwanted results. There
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may be some better way to do it, though, a way that both keeps the bicon-
ditional definition and leads to more reasonable results. This would have to
be an issue for further research.

Aside from problems related to prpr as a whole, it might also be useful
to look, for a final time, at our treatment of identity across all three of our
logics.

5.2 A Final Look at Identity

Arguably, all our logics deal with a changing object in the same way: by
resorting to a third truth-value (whether this be distinct from true and false,
or just a combination of them). In the face of many challenges, then, all three
approaches will live or die by the same sword. Perhaps the most common
criticism offered is that the addition of a third, or indeed, an n−th value does
not help with matters of vagueness, and so also our approach with changing
objects. This is summed up well by Sainsbury’s “You do not improve a bad
idea by iterating it” ([39] p. 255). The criticism is usually that whereas
before we had only one vagueness problem, i.e. between the certainties of
truth and falsity, by adding a third value we now have two: the vagueness
between strict truth and borderline, and borderline and strict falsity. We can
keep on adding values, but we’ll just end up with more and more vagueness.
This would have to stop, at some point, we would think. At some point,
we might put it that there would be a sufficient number of truth-degrees for
total meta-vagueness to be present. That we would have, perhaps, a contin-
uum of values, a fuzzy logic. Although this needn’t be any better than what
we have, it does highlight the perhaps obvious fact that if we never could
improve a bad idea by iterating it, then any field of study having connection
to statistics or the like would be fatally flawed. This view seems to suggest
that all our logics fall short. They are three-valued and no more, and this
“no more” means that they don’t iterate the bad idea enough. While this
process would be easy for LP and ST given the formalism in chapter three,
the notation in chapter four would make it a little harder for prpr at present.
In principle it should be possible, though, and this approach might be worth
investigating.

Another communal problem that all our approaches share is that they don’t
provide any resolution to what we called the puzzle (as opposed to the para-
dox) of the sorites. This was the problem of where to place the border-
line. Traditionally, “borderline” here could perhaps mean the abstract non-
position that lies between truth and falsity - or better put, in the case for



CHAPTER 5. PROBLEMS, FURTHER RESEARCH,... 53

identity, the position ‘between’ some predicate that holds and predicate that
doesn’t. The less abstract meaning of borderline would be the last property
before the change, i.e. there would be two borderlines. Where we are using
the three-values of our logics, this can, in some cases, be uniquely identifi-
able, for example, as with the case of the ‘bridge’ amoeba in Prior’s example.
In any case, the point is that none of our logics tell us where borderlines lie.
Perhaps this is as it should be. Perhaps such things are empirical matters,
and our logics, then, should be viewed as flexible in that they can deal with
a wide range of data. It does seem plausible though, that borderlines be
constant, in the sense that we always found them in the same places. Just
how constant would be an interesting question to look at. Where borderlines
be may depend on what predicate one is considering, perhaps, or one’s phys-
iology, but it seems possible that this could all be factored into a logic. We
could then plug in the information and the logic would give us answers to
the puzzle of the sorites, as well as the paradox. Again, this would suggest a
“more values” many-valued approach, if we wanted to keep any of the logics
in this paper.

In conclusion, our approach was to consider three logics that all could all deal
with sorites-like change while holding on to a Leibnizian account of identity.
With LP , we saw how this was achieved through the non-transitivity of iden-
tity, which could allow for borderline cases where predicates could be said to
both hold and not hold for a given object. The account of identity was strong
enough to account for the premise that the change was gradual so as to allow
identity between objects at each successive step. We saw that the problem-
atic conclusion was not reachable in light of this non-transitivity. In ST , we
kept (TI), but saw how the non-transitivity of ST inference would not allow
the chaining together of otherwise valid arguments. We saw that, because
ST allowed for (SI), we could move one further step along in compared to
LP , but then the argument would break off. Despite some of the admirable
properties of ST , for example, that it doesn’t conclude the problematic con-
clusion, and that it holds (TI) to be true, we found that, as presented, this
version of ST was not capable of truly capturing the spirit of a paraconsis-
tent logic. We then saw how a logic could be constructed by inspiration of
pragmatic considerations regarding vagueness. Specifically, we argued that
prpr was plausibly more viable than LP because it would allow the general
form of the sorites argument to go through, which we should expect, but that
with new information of inconsistency, due to the non-monotonic nature of
the logic, we could reinterpret our premises to allow for borderline objects.
The result was such that all our objects would become borderline, which we
argued might explain the troubling aspect of the sorites paradox. Again,
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with new information, prpr could make it so that we fall back into a more
LP -style reading of the sorites, so that there would be minimal borderlines.
For these reasons, together with its successful treatment of all the target fea-
tures, we said that prpr was the most viable logic of the three we considered,
taking in a sense, the best of both aspects from the LP and ST accounts.
We went on to consider possible problems in the account, including the case
of self-identity, and we also considered the adoption of another logic with
beneficial properties, namely prt. If there was an overall message to describe
what we have found in this paper, it would be that while paraconsistency
can help, it needn’t overshadow consistency, and that we can take the most
agreeable aspects of both to make sense of the nature of change.



Appendix - prpr in Python

The following code (which was written in Python 3 but should also run in
Python 2) gives a sense of prpr in action. The user is prompted to input
some predicates and objects, both of which must be given in the form of a
list of strings (e.g. [“F”, “G”] and [“a”, “b”]). The program will generate
the set (- really a list - ) of possible worlds, and the user can then use the de-
fined functions to perform various logical operations. The most important of
these functions is probably prpr, which takes as arguments a list of premises
and a conclusion and returns True if the argument holds in prpr and false
otherwise (e.g. prpr([“Fa”, neg(“Fa”)], “Fa” ) returns False, as we should
expect). See code comments for more details. The script is neither optimized
for efficiency, nor has it been tested to work for every possible sentence form.
The number of predicates and variables should be kept to a minimum to
ensure results within a reasonable time (less than 5 in total, should be fine).

import i t e r t o o l s
from i t e r t o o l s import chain

p r ed i c a t e s = input ( ”What p r ed i c a t e s do you want?\n” )
domain = input ( ”What ob j e c t s ?\n” )

def oppos i t e (x ) :
i f x [−1] == ” r ” :

return x [0 ]+x [ 1 ]
else :

return x + ”−bar”

## cr e a t i o n o f s t a t e o f a f f a i r s ##
def SOA( ) :

r e s u l t = [ ]
for i in p r ed i c a t e s :

for j in domain :

r e s u l t . append ( i+j )
r e s u l t . append ( oppos i t e ( i+j ) )

return r e s u l t

def posit ive SOA ( ) :
r e s u l t = [ ]
for i in p r ed i c a t e s :

for j in domain :
r e s u l t . append ( i+j )

return r e s u l t

def f a c t s ( ) :
r e s u l t = [ [ ] ]
for i in posit ive SOA ( ) :

temp = [ x for x in r e s u l t ]
r e s u l t = [ ]
for j in temp :

55
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## r e s u l t . append ( [ i ] )
w i l l p o s = [ ooh for ooh in j ]
w i l l p o s . append ( i )
r e s u l t . append ( w i l l p o s )

w i l l p o s = [ ooh for ooh in j ]
w i l l p o s . append ( oppos i t e ( i ) )
r e s u l t . append ( w i l l p o s )

w i l l p o s = [ ooh for ooh in j ]
w i l l p o s . append ( i )
w i l l p o s . append ( oppos i t e ( i ) )
r e s u l t . append ( w i l l p o s )

return r e s u l t

#### SET OPERATIONS #############
def union (x , y ) :

r e s u l t = [ ]
for i in x :

i f i not in r e s u l t :
r e s u l t . append ( i )

for j in y :
i f j not in r e s u l t :

r e s u l t . append ( j )
return r e s u l t

def i n t e r s e c t i o n ( se t 1 , s e t 2 ) :
r e s u l t = [ ]
for i in s e t 1 :

i f i in s e t 2 :
r e s u l t . append ( i )

return r e s u l t

def oc ro s s (x , y ) :
temp = [ ]
for A in x :

for B in y :
wim = union (A,B)
temp . append (wim)

return union ( temp , temp)

## NEGATION ####################
def neg (x ) :

return [ ”neg” , x ]

## DISJUNCTION ##########

def d i s j (x , y ) :
return [ ” d i s j ” , x , y ]

## CONJUNCTION ########################
# s u p e r f i c i a l c o n s t r u c t i o n ##
def conj (x , y ) :

return [ ” conj ” , x , y ]

def exc l (p ) :
return [ p , oppos i t e (p ) ]

## no new i n c o n s i s t e n c y t e s t ##
def nnct ( se t 1 , s e t 2 , un i on s e t ) :

r e s u l t = True
for p in posit ive SOA ( ) :

i f Set ( exc l (p ) ) . i s s ub s e t ( Set ( un i on s e t ) ) :
i f Set ( exc l (p ) ) . i s s ub s e t ( Set ( s e t 1 ) ) == False :

i f Set ( exc l (p ) ) . i s s ub s e t ( Set ( s e t 2 ) ) == False :
return False

return True

def T conj (x , y ) :
return oc ro s s (x , y )

## DISJUNCTION ######################
def T d i s j (x , y ) :

return union (x , y )
#( a l s o F conj ) #

def imp(x , y ) :
return [ ”imp” , x , y ]
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## UNIVERSAL QUANTIFICATION ######
def f o r a l l ( va r i ab l e , formula ) :

return [ ” f o r a l l ” , va r i ab l e , formula ]

def T f o r a l l ( va r i ab l e , formula ) :
r e s u l t = l i s t ( formula )
temp = [ i for i in r e s u l t ]
ber r = [ i for i in temp ]
for i in range (0 , len ( domain ) ) :

print i
for j in range (0 , len ( formula ) ) :

t ext = formula [ j ]
new = l i s t ( t ext )
tutem = new
print ”tutem= ” , tutem
for k in range (0 , len (new ) ) :

i f new [ k ] == va r i ab l e :
tutem [ k ] = domain [ i ]

temp [ j ] = ’ ’ . j o i n ( tutem )
i f i == 0 :

barb = T( temp)
else :

barb = oc ro s s ( barb , T( temp ) )
print ”temp= ” , temp , ”barb= ” , barb

return barb

## SIMILARITY RELATION : : ##############

def sim ( pred icate , a , b ) :
return [ ” sim” , pred icate , a , b ]

def T sim ( pred icate , a , b ) :
return [ [ p r ed i ca t e+a [ 0 ] , p r ed i ca t e + b [ 0 ] ] , [ p r ed i ca t e + a [ 0 ] + ”−bar” , p r ed i ca t e + b [ 0 ] + ”−bar” ] ]

def F sim ( pred icate , a , b ) :
return [ [ p r ed i ca t e+a [ 0 ] , p r ed i ca t e + b [0]+ ”−bar” ] , [ p r ed i c a t e + a [ 0 ] + ”−bar” , p r ed i ca t e + b [ 0 ] ] ]

## IDENTITITY : : ##################
def equal ( a , b ) :

return [ ” equal ” , a , b ]

def T equal ( a , b ) :
r e s u l t = T( sim ( p r ed i c a t e s [ 0 ] , a , b ) )
for i in range (1 , len ( p r ed i c a t e s ) ) :

temp = T( sim ( p r ed i c a t e s [ i ] , a , b ) )
r e s u l t = oc ro s s ( r e su l t , temp)

return r e s u l t

def F equal ( a , b ) :
r e s u l t = F( sim ( p r ed i c a t e s [ 0 ] , a , b ) )
for i in range (1 , len ( p r ed i c a t e s ) ) :

temp = F( sim ( p r ed i c a t e s [ i ] , a , b ) )
r e s u l t = union ( r e su l t , temp)

return r e s u l t

def F conj ( a , b ) :
return union (F( a ) ,F(b ) )

## TRUTH−MAKERS AND FALSE−MAKERS CONJUNCTIONS ##########
def T( phi ) :

i f phi in SOA( ) :
return [ [ phi ] ]

i f phi [ 0 ] == ”neg” :
return F( phi [ 1 ] )

i f phi [ 0 ] == ” d i s j ” :
t1 = phi [ 1 ]
t2 = phi [ 2 ]
return T d i s j (T( t1 ) , T( t2 ) )

i f phi [ 0 ] == ” conj ” :
t1 = phi [ 1 ]
t2 = phi [ 2 ]
return T conj (T( t1 ) ,T( t2 ) )

i f phi [ 0 ] == ”imp” :
return T( neg ( conj ( phi [ 1 ] , neg ( phi [ 2 ] ) ) ) )
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i f phi [ 0 ] == ” f o r a l l ” :
t1 = phi [ 1 ]
t2 = phi [ 2 ]
return T f o r a l l ( t1 , t2 )

i f phi [ 0 ] == ”sim” :
t1 = phi [ 1 ]
t2 = phi [ 2 ]
t3 = phi [ 3 ]
return T sim ( t1 , t2 , t3 )

i f phi [ 0 ] == ” equal ” :
t1 = phi [ 1 ]
t2 = phi [ 2 ]
return T equal ( t1 , t2 )

def F( phi ) :
i f phi in SOA( ) :

i f phi [−1] == ” r ” :
return [ [ phi [ 0 ] ] ]

else :
return [ [ phi+”−bar” ] ]

i f phi [ 0 ] == ”neg” :
return T( phi [ 1 ] )

i f phi [ 0 ] == ” d i s j ” :
t1 = phi [ 1 ]
t2 = phi [ 2 ]
return T conj (F( t1 ) , F( t2 ) )

i f phi [ 0 ] == ” conj ” :
t1 = phi [ 1 ]
t2 = phi [ 2 ]
return T d i s j (F( t1 ) ,F( t2 ) )

i f phi [ 0 ] == ”imp” :
return T( conj ( phi [ 1 ] , neg ( phi [ 2 ] ) ) )

i f phi [ 0 ] == ”sim” :
t1 = phi [ 1 ]
t2 = phi [ 2 ]
t3 = phi [ 3 ]
return F sim ( t1 , t2 , t3 )

i f phi [ 0 ] == ” equal ” :
t1 = phi [ 1 ]
t2 = phi [ 2 ]
return F equal ( t1 , t2 )

W = f a c t s ( )

from s e t s import Set

def c on s i s t en t wo r l d s ( world ) :
temp = [ ]
for i in SOA( ) :

i f i in world and oppos i t e ( i ) not in world :
i f i not in temp :

temp . append ( i )
return temp

def i n c on s i s t e n t wo r l d s ( world ) :
temp = [ ]
for i in SOA( ) :

i f i in world and oppos i t e ( i ) in world :
i f i not in temp :

temp . append ( i )
return temp

def l e s s t h an ( f , w, v ) :
temp 1 = [ ]
temp 2 = [ ]
for i in SOA( ) :

i f i in f and oppos i t e ( i ) in v :
temp 1 . append ( i )

i f i in f and oppos i t e ( i ) in w:
temp 2 . append ( i )

check = True
for i in temp 1 :

i f i not in temp 2 :
check = False

i f check == True and temp 1 != temp 2 :
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return True
else :

return False

def t o l e r wo r l d s ( phi ) :
r e s u l t = [ ]
for w in W:

for f in T( phi ) :
i f Set ( f ) . i s s ub s e t ( Set (w) ) :

r e s u l t . append (w)
return r e s u l t

def tol worlds Gamma (Gamma) :
sclemp = to l e r wo r l d s (Gamma[ 0 ] )
for gamma in Gamma:

scosc lemp = [ ]
for i in sclemp :

i f i in t o l e r wo r l d s (gamma) :
scosc lemp . append ( i )

sclemp = scosc lemp
toler Gamma = sclemp
return toler Gamma

def PRAG( phi , worlds ) :
r e s u l t = [ ]
for w in worlds :

check = False
for f in T( phi ) :

i f Set ( f ) . i s s ub s e t ( Set (w) ) :
check = True
check x = True
while check x == True :

for v in worlds :
i f Set ( f ) . i s s ub s e t ( Set (v ) ) :

i f l e s s t h an ( f ,w, v ) == True :
check = False
check x = False

check x = False
i f check :

r e s u l t . append (w)
return r e s u l t

def prpr (Gamma, phi ) :
temp = [ ]
i f Gamma == [ ] :

i f PRAG( phi , W) == W:
return True

else :
return False

else :
temp = PRAG(Gamma[ 0 ] ,W)
for gamma in Gamma:

sec temp = PRAG(gamma, W)
thi r temp = [ ]
for i in temp :

i f i in sec temp :
th i r temp . append ( i )

temp = thir temp
i f temp != [ ] :

for i in temp :
i f i not in PRAG( phi , W) :

print temp
return False

print temp
return True

else :
temp = PRAG(Gamma[ 0 ] , tol worlds Gamma (Gamma) )
for gamma in Gamma:

sec temp = PRAG(gamma, tol worlds Gamma (Gamma) )
th i r temp = [ ]
for i in temp :

i f i in sec temp :
th i r temp . append ( i )

temp = thir temp
for i in temp :

i f i not in PRAG( phi , tol worlds Gamma ( [ phi ] ) ) :
print temp
return False

return True

## check s s u b s t i t u t i v i t y o f i d e n t i c a l s
def check SI ( ) :
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return prpr ( [ ”Fa” , equal ( ”a” , ”b” ) ] , ”Fb” )
## check s t r a n s i t i v i t y o f i d e n t i c a l s
def check TI ( ) :

return prpr ( [ equal ( ”a” , ”b” ) , equal ( ”b” , ”c” ) ] , equal ( ”a” , ”c” ) )
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[12] Cobreros P., Egré P., Ripley D., van Rooij R., (2016) Comparing Some
Substructural Strategies Dealing with Vagueness Information Processing
and Management of Uncertainty in Knowledge-Based Systems: 16th In-
ternational Conference, IPMU 2016, Eindhoven, The Netherlands, June
20 - 24, 2016, Proceedings, Part II, pp. 161-172, Springer International
Publishing.

[13] Evans, G., ‘Can There Be Vague Objects?’, Analysis, Vol. 38, No. 4
(Oct., 1978), p. 208.

[14] Frege. G., (1892), On Sense and Reference, in P. Geach and M. Black
(eds.) Translations from the Philosophical Writings of Gottlob Frege, Ox-
ford: Blackwell (1952).

[15] Grice, H.P. (1967), Logic and conversation, William James Lectures,
Harvard University Press, reprinted in Studies in the Way of Words,
1989, Harvard University Press, Cambridge, Massachusetts.

[16] Hacking, I., (1975), ”The Identity of Indiscernibles”, Journal of Philos-
ophy, 72 (9): 249-256.

[17] Haack, S., (1978), ‘Philosophy of Logics’, Cambridge University Press.

[18] D. Hyde (1997), From Heaps and Gaps to Heaps of Gluts, Mind 106,
641-60.

[19] Kaufman, E.L., Lord, M.W., Reese, T.W., Volkmann, J. (1949). ‘The
discrimination of visual number’, The American Journal of Psychology.
62 (4): 498525.

[20] Kleene, S., C., ‘On a notation for ordinal numbers’, The Journal of
Symbolic Logic 3 (1938), pp. 150155.

[21]  Lukasiewicz (1920), ‘O logice trjwartociowej’ (in Polish), Ruch filo-
zoficzny 5:170171. English translation: On three-valued logic, in L.
Borkowski (ed.), Selected works by Jan ukasiewicz, NorthHolland, Ams-
terdam, 1970, pp. 8788.

[22] Magidor O. (2011) Arguments by Leibniz’s Law. Philosophy Compass
6: 180195.

[23] Mates, B., ‘Elementary Logic’, second edition, Oxford University Press.

[24] Post, E., L., (1943), ‘Formal Reductions of the General Combinatorial
Decision Problem’, American Journal of Mathematics. 65: 197215.



BIBLIOGRAPHY 63

[25] Priest, G., G., (1979), ‘The Logic of Paradox’, Journal of Philosophical
Logic 8, pp. 219-241.

[26] Priest, G., G., (1991), ‘Sorites and Identity’, Logique Analyse, 135-136,
pp.293-296.

[27] Priest, G., G., (1991) ‘Minimally Inconsistent LP ’, Studia Logica: An
International Journal for Symbolic Logic, 1991, 50 (2) pp.313-331.

[28] Priest, G., G., (1997) ‘Inconsistent Models of Arithmetic Part I: Finite
Models’, Journal of Philosophical Logic, 26 (2) 223235.

[29] Priest, G., G., (2002), ‘The hooded man’, Journal of Philosophical Logic,
31, pp. 445-467.

[30] Priest, G., G., (2008), ‘An Introduction to Non-Classical Logic: From
If to Is’, Cambridge: University of Cambridge Press.

[31] Priest, G., G., (2010), ’Non-Transitive Identity’. in R Dietz S Moruzzi
(eds), Cuts and Clouds: Vagueness, its nature and its Logic. Oxford
University Press, pp. 406-416.

[32] Priest, G., G., (2014), ‘One: being an investigation into the unity of
reality and of its parts, including the singular object which is nothigness’,
Oxford University Press, 2014.

[33] Prior, A. N., (1968), ‘Papers on Time and Tense’, Oxford Clarendon
press.

[34] Quine, W.V.O., (1961), ‘From a Logical Point of View’, Cambridge MA:
MIT Press.

[35] Read, S. 1995: Thinking About Logic: An Introduction to the Philoso-
phy of Logic. Oxford: Oxford University Press.

[36] Ripley, D., (2011), ‘Contradictions at the borders’, in R. Nouwen, R. van
Rooij, H.-C. Schmitz, U. Sauerland (Eds.), (2012), Vagueness in commu-
nication. LICS: Springer.

[37] Rips, L. J., (2011), ‘Split identity: Intransitive judgments of the identity
of objects’, Cognition 119: 356373.

[38] Sainsbury, R. M., 1987: ‘Paradoxes’, Cambridge: Cambridge University
Press, 1995. Originally published in 1987.



BIBLIOGRAPHY 64

[39] Sainsbury, R. M., (1996), Concepts without boundaries, Vagueness: A
Reader, in Keefe and Smith (eds.) 1996, 251264.

[40] Serchuk, P., Hargreaves, I., Zach, R. (2011), Vagueness, logic and use:
Four experimental studies on vagueness, Mind and Language, 26: 540-
573.

[41] Smiley, T.J., 1960, ‘Sense without denotation’, Analysis 20.

[42] van Fraassen, B. C., (1969), ‘Facts and Tautological Entailment’, The
Journal of Philosophy, vol.66, no.15, pp.477-487.

[43] Williamson, T., Vagueness in Reality M. Loux and D. Zimmerman, eds.,
The Oxford Handbook of Metaphysics, Oxford: Oxford University Press.

[44] Williamson, T., (1994) ‘Vagueness’, London: Routledge.

[45] Wittgenstein, L., ‘Philosophical Investigations’, 4th edition, 2009,
P.M.S. Hacker and Joachim Schulte (eds. and trans.), Oxford: Wiley-
Blackwell.


	Introduction
	The standard account, Leibniz's Law, and the Ship of Theseus
	The Target Features

	Logic of Paradox - Embracing Inconsistency
	Formalising LP
	LP Validity, Consequence, and the Biconditional
	LP and the Identity Problems

	Strict-Tolerant Logic - Saving Consistency
	Formalising ST
	ST and the Identity Problems

	A Pragmatic Approach
	Towards a Pragmatic Approach
	Formalising prpr
	Pragmatic Interpretation
	A Return to Identity
	prpr and the Target Features

	Problems, Further Research, Conclusion
	prpr - pros and cons
	A Final Look at Identity


