Institute for Language, Logic and Information

NEURAL NETS AND THEIR RELEVANCE FOR
INFORMATION RETRIEVAL

J.C. Scholtes

ITLI Prepublication Series
for Computational Linguistics CL-91-02

%
&
%

University of Amsterdam



Instituut voor Taal, Logica en Informatie

Institute for Language, Logic and Information

Faculteit der Wiskunde en Informatica

(Department of Mathematics and Computer Science)
Plantage Muidergracht 24

1018TV Amsterdam

Faculteit der Wijsbegeerte
(Department of Philosophy)
Nieuwe Doelenstraat 15
1012CP Amsterdam

NEURAL NETS AND THEIR RELEVANCE FOR
INFORMATION RETRIEVAL

J.C. Scholtes
Department of Compuational Linguistics, Faculty of Arts
University of Amsterdam
email: scholtes@alf.let.uva.nl
mail: Dufaystr.1, 1075GR Amsterdam
fax: +31 20 6710793

ITLI Prepublications
for Computational Linguistics

This research is supported by
Received October 1991 - : MSC Beheer BV, Amsterdam






Neural Nets and Their Relevance in Information Retrieval J.C. Scholtes

Abstract

This paper presents two types of implemented neural methods for free-text data-
base search. In the first method, a specific interest (or "query”) is taught to a
Kohonen feature map. By using this network as a neural filter on a dynamic free-
text data base, only associated subjects are selected from this data base. The
second method can be used in a more static environment. Statistical properties
(n-gram or keyword distributions) from various texts are taught to a feature map.
A comparison of a query with this feature map results in the selection of texts
closely related to each other with respect to their contents.

All methods are compared with classical statistical information-retrieval
algorithms. Various simulations show that the neural net indeed converges
towards a proper representation of the query as well as the objects in the data
base. The first algorithm seems much better scalable (linear versus exponential
complexity) than its statistical counterparts, resulting in higher speeds, less
memory needs, and easier maintainability. The second one particularly shows an
elegant and uniform generalization and association method, increasing the
selection quality.

By combining research results from connectionist Natural Language Processing
(NLP) and Information Retrieval (IR), a better understanding of neural nets in
NLP, a clearer view of the relation between neural nets and statistical Pattern
Recognition, and an increased Information Retrieval quality are obtained.

Keywords: Information Retrieval, Neural Nets, Kohonen Self-Organizing Feature Maps,
Natural Language Processing, Statistical Pattern Recognition.
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Background

The Information Retrieval (IR) problem has many facets. The queries as well as the data base
elements may be characterized by either static or dynamic features. Information filtering relates
to static queries in a dynamic data-base environment. Here, one teaches a common interest to a
filtering device, which selects interesting free-text with respect to the filter. Regular free-text
search refers to a more static data base with dynamic queries. Due to the static character of the
data base, elements can be preprocessed. In the retrieval phase, one compares the statistic
analysis of a query with all the analyses of elements in the data base. Highly correlated
analyses suggest a common subject [Croft et al., 1979].

The level of analysis in IR varies between statistical pattern recognition and a symbolic
linguistic approach. Clearly, the retrieval quality dependents heavily on the amount of context
and conceptual knowledge that is available in the retrieval phase. However, linguistic
approaches result in complicated and computationally complex systems that are not quite usable
in practical implementations. On the other hand, statistical pattern recognition techniques are
quite unable to handle conceptual relations and higher order grammatical inferences, which are
important to get the retrieval quality above the level of global surface analyses.

Generally, IR systems use statistical matching methods on either characters or words. Context
is mostly represented by Markov chains on characters or words. Normally, the analysis of
meaning doesn't 2o beyond the usage of synonyms [Rijsbergen, 1979], [Lancester, 1979],
[Salton, 1968, 1971, 1980, 1986, 1989].

The free-text search problem (design and implementation of an efficient query system for a
large unformatted text data base) can be approached with various techniques [Tenopir, 1984],
[Barrett, 1989], [Tenopir et al., 1990]. An obvious search method is a keyword matching
algorithm between a query and keyword records of separated parts in the data base (i.e.,
papers, or stories). The disadvantage of these algorithms is that one must either preprocess the
text (attaching keywords to a data base object) or search all texts for a single query. The first
problem can be solved by automatic indexing algorithms (which might be useful in a static
environment, but are completely useless for the filtering problem) [Salton et al., 1968, 1973],
[Sparck Jones, 1971], [Salton, 1972], [Willett, 1979].

[Stanfill et al., 1986,1989] propose an efficient method for the filter problem. Here, a
massively-parallel free-text search method is implemented on the Connection Machine. This
matching algorithm is probably the most thorough one possible, but it is quite expensive due to
the need for parallel hardware [Pogue et al., 1987], [Salton et al., 1988], [Weyer, 1989],
[Waltz, 1990], [Frieder et al., 1991], [Oddy et al., 1991].

Single keyword string-matching algorithms often result in an enormous amount of possible
data base objects. By incorporating context in the queries and retrieval functions, irrelevant
information can be eliminated from the retrieval set. Some derive context dependencies from
boolean relations between keyword occurrences [Salton et al., 1983]. However, besides the
increasing complexity in retrieval evaluation functions it is hard to express a query in such
boolean relations. In short: single keywords often result in an over-kill in information, boolean
keywords mostly cause an under-kill.

Another method to do text recognition is the n-gram search algorithm. This mechanism can be
implemented on machines less powerful than the Connection Machine, but it still provides
enough distinction between different objects in the data base. A query (one or more sentences)
is reduced to a n-gram vector, representing the most frequent n character combinations in the
query. This vector is compared to n-gram vectors of texts in the data base. By shifting a
window over the text, relations between words are recorded without the need for a dictionary,
prefix- and suffix stripping and boolean relations. The method has shown to be very successful
in information retrieval problems. However, there are some major drawbacks.
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First, there is the Markovian nature of the model. It cannot remember strings longer than the
order of the Markov chain, even when a larger context is relevant to distinguishing two objects.
One can extend the order of the chain, but every step results either in exponential memory
usage or in the exponential increase of computation time. So, the n-gram method is not really
scalable to higher order dependencies (e.g., 5S-Gram word chains).

Second, the implementation of higher order n-grams requires skilled programming techniques.
Le., the statistical tables should be hashed, ordered, and normalized. Because of the trade off
between memory and speed, one optimizes differently for different orders of the problem. So
no uniform method can be used.

Third, there is still no meaning involved in the comprehension method; only structural features
of the text are taken in account. 2

As mentioned before, statistical IR methods have some shortcomings. The keyword based
methods need a dictionary and suffix stripping algorithms. If one uses n-gram methods to
eliminate the need for a dictionary, the complexity of the problem is exponential with respect to
the window size. Furthermore, the window size limits the memory length. Moreover, the
incorporation of meaning, other than synonyms, is hard to carry out with a statistical method.
Finally, although statistical methods (computer procedures) provide a flexible method to
implement local optimizations, all the normalizations, orderings, generalizations and
associations must be programmed explicitly.

Especially this last reason combined with the need for longer memory (scalability) and
possibilities to attach some (implicit) mechanism for meaning determination, resulted in the
research described here. Research in neural nets showed good results in other pattern
recognition tasks. Implicit parallelism, easy incorporation of knowledge from different
sources, good generalization and easy association capabilities are the best known examples of
advantages of neural nets. So why not use them for another classification task: Information
Retrieval.

IR needs context. Recent research in connectionist Natural Language Processing (NLP)
showed interesting results in self-learning systems [Elman, 1988], [Scholtes, 1991a-c]. The
proposed models can learn Regular (Finite State) Grammars from unformatted sentences by
using an (infinite length) Markov chain on words. In IR, this problem can be simplified to the
use of finite length conditional probabilities over characters and words. Other research shows
automatic categorizations of unknown words into appropriate clusters [Ritter et al., 1989b],
[Elman, 1988], [Scholtes, 1991a-c]. Such automatic derivation of synonyms and related
objects might be used to incorporate a simple notion of meaning in IR.

Although these methods are not capable to analyse complex linguistic structures, they do
distinguish different contents better than global surface analyses, while they are still based on
fast and automatically derivable learning and retrieval algorithms.

2 We are aware that there are many possibilities to optimize the statistical methods. Much has been written on
the string matching problem, clustering algorithms for n-gram vectors, etc. All resulting in better solutions for
the brute force methods as proposed here. On the other hand, we don't incorporate these methods in our
comparison because neural nets can be optimized in the same way with the same results [Kelly, 1991],
[Koikkalainen et al., 1990]. Therefore, only plain, non-optimized methods are compared.
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On of the first efforts to use connectionist methods in information retrieval can be found in
[Mozer, 1984]. This was indeed a very localist solution, which mainly uses the parallel and
generalization characteristics of PDP systems. Continuing this line of research resulted in
[Belew, 1986], [Belew, 1987], [Bein et al., 1988], which uses localist connectionist systems
to build networks of concepts. More recent work incorporates neural and symbolic techniques
in information retrieval: [Belew et al., 1988], [Belew, 1989], [Rose et al., 1989a-b], [Rose,
1990], [Rose et al., 1991], [Rose, 1991]. The possible application of standard information
retrieval strategies in (localist) neural nets is showed in [Wilkinson et al., 1991]. A good
overview article of various efforts in connectionist information retrieval can be found in
[Doszkocs et al., 1990]. These references describe the most important early work in
connectionist IR.

Recently, a whole series of new papers appeared, reporting the use of Back Propagation (BP),
Simple Recurrent Nets (SRN), Hopfield Nets, and Kohonen Feature Maps (KFM) in
information retrieval. [Gersho et al., 1990a-b] propose a multi-layer hybrid neural net system.
A Kohonen Feature map is used to determine global data clusters, while various
backpropagation networks are taught to classify specific elements into these common clusters.
The system is tested on a real data base and results in 93% correct retrievals. The main
advantage of the neural method above the statistical and structural ones was the very short
development time of the system. [Lin, 1991] used a Kohonen feature map to cluster 140
Artificial Intelligence papers based on the use of 25 keywords in the paper titles. By using this
method, related papers cluster in neighbouring regions on the feature map.

[Allen, 1991] uses a Simple Recurrent Network (SRN) to answer questions on semantic
aspects of simple propositions. Others teach bigram vectors to a regular back-propagation
network [Mitzmann, 1991], or derive library categories with an SRN from book titles
[Wermter, 1991]. In [Jagota, 1990a-b], [Jagota et al., 1990] and [Jagota, 1991] a Hopfield net
is used to derive and store a large lexicon.

The research reported on in the current paper builds on what's good from the n-gram methods
and has developed a Neural Filtering mechanism for (dynamic) free-text data bases. The
statistical as well as the neural algorithms have been implemented and are compared to each
other. Where the statistical method is fast for small dimensions of the problem, the neural
(Kohonen) feature map shows considerable advantages for higher orders in as well speed,
memory need, scalability, implementation ease, generalization and selection power.
Implemented in or with parallel hardware, the neural method definitely outperforms the
statistical.

If the data base is a more static one, objects can be clustered on (predetermined) keywords,
abstracts or even on the entire text. By clustering such related objects, it is easier to discover
correlated objects. One can determine the best group instead of the best paper (factor fewer
comparisons). In neural nets research, such clusters are formed on so-called feature maps. If
the neuron that correlates best to the query is found, the paper represented by this neuron and
all papers in neighbouring regions are probably of the same category.3

On the one hand, connectionist NLP techniques can increase the retrieval quality. On the other
hand, the IR problem can contribute to the understanding of neural nets as pattern classifiers by
comparing neural information retrieval with (already well known) statistical information
retrieval results.

3 Plain Kohonen feature maps have the disadvantage that one has to take into account the Euclidean distance as
well as the cluster boundaries if a measure of correlation between two objects is determined. More advanced
methods, which automatically develop a feature map that fits the underlaying probability distribution better are
under consideration [Fritzke, 1991a,b], [Martinetz et al., 1991].
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Introduction

A statistical algorithm that also incorporates some context and that can be used to implement
synonyms is the n-gram vector method. Formally, an n-gram is an nth order Markov chain
over character strings. Less formally it can be described as an n-length sequence of characters
occurring in a word. For example, the trigrams (n = 3) occurring in the word trigram are --t, -
tr, tri, rig, igr, gra, ram, am-, m-- (the - indicates a space). An n-gram frequency vector can be
viewed as a document finger print, documents can be identified by such vectors.

Normally, 2-grams are not distinguishing enough, trigrams (3-grams) yield enough distinction
and can be practically calculated, 4-grams do not add more difference in feature vectors, worth
the computational power, 5-grams are almost impossible to calculate and resemble keyword
vectors. N-gram vectors provide enough distinguishing power only then if common words and
common endings are eliminated from the text learned to the neural map. Furthermore, by
multiplying n-gram frequencies with weight values (high values for rare n-grams and low
values for frequent n-grams), less frequent n-grams may be accentuated. Synonym tables can
create the illusion of intelligent behaviour at a reasonable (computational) price. In short: n-
gram vectors are very powerful, easily manipulable, self-learning and language independent 4
[Forney, 1973], [Hanson, 1974], [Neuhoff, 1975], [Shingal et al., 1979a-b], [Hull et al.,
1982], [Shihari et al., 1983], [Shihari, 1985], [D'Amore et al., 1988], [Kimbrell, 1988].

The first neural efforts in information retrieval based on localist and backpropagating neural
nets showed considerable advantages over regular IR techniques. However, the so-called
cluster network types are more suited for the IR task (as indicated by [Honkela et al., 1991]
and shown by [Gersho et al., 1990a,b]). These models can be used to derive clusters from
unformatted input data by using an unsupervised learning algorithm. The Kohonen network is
known to implement a vector quantization algorithm, well svited for clustering purposes.

The Kohonen formalism is a competitive learning algorithm [Kohonen, 1982a-c, 1984, 1988,
1990a-b]. A two-dimensional map is constructed in a rectangular or hexagonal structure from
individual neurons. Each neuron has a number of input sensors with an input activation and an
input weight. All neurons have the same number of input sensors. The learning rule acts in the
following way. First, copy the activation values of an input element into all input activation
sensors of all neurons. Next, determine the best match by finding the neuron with the
minimum (e.g., Euclidean or Cosine) mathematical distance between input and weight values.
Then, adapt the weights of the neurons within a certain region of this minimum, so they'll
recognize the current input vector better in the future. After numerous cycles, a topological map
is formed, holding related elements in neighbouring regions.

To cut the noise and to restrict the input space, some measurements ought be taken. First, all
lower case characters should be transformed to upper case. Furthermore, all non-alphabetic
characters must be eliminated (digits, point, comma's, etc.).

For reasons of efficiency, all irrelevant n-grams have to be eliminated so the rare ones are
accentuated. Therefore, one has to remove non-relevant words within a language (e.g., the, a,
an, all, every, who, which, etc.). This might sound awful for a psycholinguist, but one should
remember that this solution treats information filtering as a pattern recognition problem. Next,
eliminate all common word endings such as: -ing, -ant, -end, etc. The remaining n-grams can
be taught to the feature map in order of appearance according to the Kohonen formalism 5.

4 Although the quality of retrieval is increased by eliminating specific words and word-endings (which are in fact
language dependent), this method is still categorized as being language independent because this is just a simple
(very trivial) table of words. Normally, this list isn't longer than 250 words and about 20 endings (see also the
next footnote).

51f enough data for a specific field is available, the detection of frequent (or non-relevant) words can also be done
automatically by a preprocessor. However, every language has its own non-relevant words, these hold for all
different corpera. Therefore, the perfect filter set would contain the domain dependent as well as the domain-
independent word set.
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Models and Algorithms

This paragraph discusses the models and corresponding algorithms in detail. The models are
based on the Kohonen learning rule and on extensions of this model.

Algorithm 1.1: The Kohonen Neural Filter Based on Characters

The n-gram analysis method can be interpreted as a window size n, shifting over the words.
This can be implemented quite simply in the Kohonen input sensors by assigning several
sensors to each element in the window and concatenating all the window sensors to one big
input vector. By shifting this window over the learning text, only frequent n-grams form
clusters on the feature map, the others are overruled.

After learning, texts Neuron Map

corresponding best to the holding

query in the feature map symbols

will fit best to the clusters

in the map (i.e., will yield L
D=~

the lowest cumulative _
error). Thus, this type of S
feature map can be used as AL
a filtering device in an /
environment with a static
query and a dynamic
information flow. The

method can be extended by
incorporating spaces, S0 it
learns simple contextual

and semantical relations W
between words.

\ Input Fibres with weight w(t) and input x(t)

Window Holding n-elements
(characters, words, ... )

Algorithm 1.1: Neural Filter with N-Grams
Step A: Teach Query to a Neural Net

Initialize and determine best learning parameters
Change all lower case characters to upper case
Eliminate all non-alphabetic characters
Eliminate non-relevant words

Eliminate non-relevant word endings
Determine n-grams

Teach trigrams to Kohonen feature map

AR R

Step B: Pass Free Text along Neural Filter

Determine text start-end (line, passage, paragraph, separator, etc.)
Change all lower case characters to upper case

Eliminate all non-alphabetic characters

Eliminate non-relevant words

Eliminate non-relevant word endings

Determine n-grams

Input n-grams to neural net and determine error

Select text if cumulative error < threshold

NOARBN=~O
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Algorithm 1.2: The Neural Filter Based on Words

In the second neural filtering algorithm, the system has access to a small dictionary of 500 to
1,000 words. Every word has a unique code of some sensor values. After elimination of non-
relevant words (words that are not in the lookup table) and word-endings, a vector representing
a Markov chain over words is calculated. This vector is taught to the system. After passing the
learning text multiple times, the Kohonen feature map represents a representation of common
word combinations in the learning text.

By processing the retrieval Neuron Map
text similarly, the retrieval holding
algorithm incorporates symbols
contextual relations. The

s L

measure of correlation A Z 2 C Z 7

between these vectors and
the representation on the
feature map, determines (il
whether a text part can be ‘
selected or not.

In this example all words

are taught to the net.

However, sometimes a

word does not occur in the
dictionary (because it is
irrelevant for the selection ~ This
process). The model

ignores these words. As a Window Holding n-elements
result, it determines context (words)

from the relations between the remaining words.

AR

\ Input Fibres with weight w(t) and input x(t)

Sentence —_—

Algorithm 1.2: Neural Filter with a Markov Chain on Words

Step A: Teach Query to a Neural Net

Initialize and determine best learning parameters

Change all lower case characters to upper case

Eliminate all non-alphabetic characters

Eliminate non-relevant words

Eliminate non-relevant word endings

Determine vector representing Markov chain on known words
Teach word n-grams to Kohonen feature map

QRS

Step B: Match Free Text with Neural Filter

Determine text start-end (line, passage, paragraph, separator, etc.)
Change all lower case characters to upper case

Eliminate all non-alphabetic characters

Eliminate non-relevant words

Eliminate non-relevant word endings

Determine vector representing Markov chain on known words
Input this vector to the neural net and determine error

Select text if cumulative error < threshold

NOAARBN=S
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Algorithm 1.3: The Neural Filter Based on (Preselected Large) N-Grams

Sometimes the vocabulary of a specific domain is not known exhaustively or it is very
dynamic. In such a case the model first calculates the most frequent n-grams (for large n =
average word length in a language). Then all non-relevant n-grams are eliminated from the

learning text.
Neuron Map
By shifting a window over holding
the remaining n-grams, the lleréselected
neural map learns a rams
representation of these n- “ L L L s
b VA

gram combinations.

If the number of n-grams
exceeds the addressing
space, more n-grams might
be eliminated from the
learning text manually or on
the basis of frequency.

JERN

\ Input Fibres with weight w(t) and input x(t)

| 6 ——

Window Holding n-elements: Preselected Large NGrams

PN RWNNO

WONANRBNND

Algorithm 1.3: Neural Filter with a Markov Chain on (Preselected Large) N-Grams

Step A: Teach Query to a Neural Net

Initialize and determine best learning parameters

Change all lower case characters to upper case

Eliminate all non-alphabetic characters

Eliminate non-relevant words

Eliminate non-relevant word endings

Determine n-grams

Select known n-grams

Determine vector representing the Markov chain of such known large n-grams
Teach Vectors to Kohonen feature map

Step B: Match Free Text with Neural Filter

Determine text start-end (line, passage, paragraph, separator, etc.)

Change all lower case characters to upper case

Eliminate all non-alphabetic characters

Eliminate non-relevant words

Eliminate non-relevant word endings

Determine n-grams

Select known n-grams

Determine vector representing the Markov chain of such known large n-grams
Input vectors to neural map and determine error.

Select text if cumulative error < threshold
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Algorithm 2.1: The Neural Interest Map Based on Keyword Clustering

The algorithms just mentioned use the Kohonen feature maps in a way they were not meant to
be. They only remember a group of n-grams or keywords which occur frequently within a
certain context (globally these n-grams are not necessarily the most frequent ones!). The
resulting topology of the feature map is ignored completely (See the sections Results and
Discussion for a more thorough deliberation on this subject).

Another, more normal use of ﬁlﬁon Map

i 1 olding
feature maps is clustering of Keyword Vectors
keywords that represent for Titles or
interests. Assume a full-text Abstracts of Data
data base and a limited Base Objects

vocabulary in a specific
domain (about 1,000 words).
Then, each object can be
represented by a vector
holding a dimension for the
frequency of every keyword.
By teaching the keyword
vector for every data base
object to the Kohonen feature
map, a topological
representation of various [KW, KW, KW, .., KW ] Vector Holding the Frequency of Keyword
interests will occur. Such a 1 2 3 n  (KW) Ocurrence in a Data Base Object
map might be seen as a neural

interest map, where related

papers are clustered in adjacent neighbourhoods.

Input Fibres with weight w(t) and inputx(t)

The main difference between this method and work done by [Lin, 1991] is that this model uses
the entire text (or that of an abstract) to cluster the papers, where Lin only uses 25 keywords
occurring in paper titles. The amount of keywords used here is much larger (= 500).
Moreover, the keywords are determined automatically by deriving the 500 most frequent (non-
trivial) words in all the papers.

The map formed might be seen as a semantic map of the data base objects. Since [Doyle, 1961]
there has been research towards the automatic formation of such maps. The author expressed
his desire to use the computer not only as a tool in searching, but as a method to discover
semantical relations. The approach taken by Doyle is quite simular to the neural net formalism
of Kohonen. [Ritter et al., 1989b], [Ritter et al., 1990] and [Ritter, 1991] show possible
applcation of such self-organizing sematopical maps in the derivation of semantic relations
between regular words.

Moreover, there is a lot of literature on the functional specifications of a user friendly interface
for document relations [Crouch, 1986]. The specifications pointed out in this work strongly
resemble the characteristics of the Kohonen feature maps.

Although the relation between the cognitive and semantic maps as meant in the literature and the
Kohonen formalism is not that direct, the Kohonen feature maps do share some properties of
cognitive maps. Kohonen maps express relations between objects in euclidean distances, and
they are able to reduce complex relations in an n- dimensional feature space into a lower two
(or three) dimensional space with conservation of spatial and topological relations.

More on research toward the cognitive map can be found in [Lakoff, 1988], [Regier, 1988],
[Chrisley, 1990], and [Palakal et al., 1991]

10
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Algorithm 2.1: Interest Map Selected Keywords
Step A: Teach Query to a Neural Net
For all data base objects do:

Change all lower case characters to upper case
Eliminate all non-alphabetic characters
Eliminate non-relevant words

Eliminate non-relevant word endings
Determine keyword vectors

SR~

For all n-gram vectors do:

Determine best learning parameters

Code n-gram vectors

Reduce Dimension

Teach n-gram vector to the Kohonen feature map

VNS

Step B: Match Free Text with Neural Filter

Determine text start-end (line, paragraph, passage, section, separator, etc.)

Change all lower case characters to upper case

Eliminate all non-alphabetic characters

Eliminate non-relevant words

Eliminate non-relevant word endings

Determine selected keywords

Input selected keyword vector to neural net and determine error and position activated.
Select related data base objects if the error < threshold

NSRBI =S

11




Neural Nets and Their Relevance in Information Retrieval J.C. Scholtes

Algorithm 2.2: The Neural Interest Map Based on N-Gram Clustering

Algorithm 2.1 has the disadvantage of assuming a limited vocabulary that must be determined
manually. The advantages of n-grams over keywords have been argued before. So, suppose
we have calculated an n-gram vector holding the n most frequent n-grams for a certain (static)
text stored in the data base. Then, a way of comparing a query to the database is by comparing
the n-gram vector with all the n-gram vectors in the data base. If the data base holds many
texts, this might be quite a job. Therefore, statistical methods use clustering algorithms and
compare the n-gram vector to a cluster of data base elements. By learning the n-gram vectors of
the data base to a Kohonen feature map, a topological (clustered) map of interest develops
automatically, eliminating the need to program complicated clustering, generalization and
association algorithms. To query the data base, a free-text query is processed like the learning
text. The resulting vector is positioned on the map. By investigating the activity on the map, the
area representing this vector can be found efficiently. All texts represented by neurons in the
neighbouring region can then be considered of interest. A threshold function fine tunes the
system.

Neuron Map
Holding

NGram Vectors
for all the Data
Base Objects

Input Fibres with weight w(t) and input x(t)

[AAA, AAB, AAC, ... ,ZZ7] Vector Holding the NGram Frequency of
One Data Base Object

However, these vectors have dimension 273 = 19,683 (in the case of a 37 order markov chain
over 27 characters), which is definitely too much for any practical solution. But, we can
transform this vector to a much smaller base, without losing too much of its characteristics.
The legitimacy of this dimension reduction is based on the heuristic that most elements in the
trigram vector: y(t) are about zero. Suppose the new basis consists of vectors ¢ ;. Then,a
number of vectors ¢ j is generated randomly, one for each dimension of y(t). The reduced
vector y'(t), is determined by computing the sum of the products of the separate dimensions
of y(t) with the corresponding components of in { ;.

y@ = g N(yi®-Cy)

where

N = Dimension vector y; (t)

yi® = Original vector with dimension N

C; = Vector i from a set of N vectors of lower dimension n
' which altogether form the new basis for y'(t)

y@ = Transformed vector of lower dimension n

12
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By doing so, the number of fibres can be reduces enormously. So, even large maps learn
complex representations within reasonable time limits. See [Ritter et al., 1989a] for a proof of
the legitimacy of this operation.

After dimension reduction, a 500 up to 1000 dimensional vector remains, which represents all
possible keyword relations without any dictionary and prefix- or suffix stripping.

Although this method still uses complicated algorithms to determine the initial n-gram vectors
and to reduce them in dimension, the neural net smoothly solves the entire generalization and
association process.

Algorithm 2.2: Interest Map Trigrams

Step A: Teach n-gram vectors to a Neural Map
For all data base objects do:

Change all lower case characters to upper case

Eliminate all non-alphabetic characters

Eliminate non-relevant words

Eliminate non-relevant word endings

Determine n-gram tables, select the n most frequent elements

SR~

For all n-gram vectors do:

Determine best learning parameters

Code n-gram vectors

Reduce dimension

Teach n-gram vector to the Kohonen feature map

0N

Step B: Match Query with Neural Map

Change all lower case characters to upper case

Eliminate all non-alphabetic characters

Eliminate non-relevant words

Eliminate non-relevant word endings

Determine n-gram vector, select the n most frequent elements

Reduce dimension

Input n-gram vector to neural net and determine error and position activated.
Select related data base objects if the error < threshold

PN RN~

13



Neural Nets and Their Relevance in Information Retrieval

J.C. Scholtes

Algorithm 2.3: The Neural Interest Map Based on (Preselected Large) N-Gram Clustering

Now, what if the keywords are too limited (due to a dynamic and unknown vocabulary) and
the trigram vectors end up having far less zero elements than we expected.

Neuron Map
Holding Selected
Number of
NGram (Large N)
Vectors for all the
Data Base Objects

Input Fibres with weight w(t) and input x(t)

[NGl , NG2 , NG3 , .. NG ] Vector Holding Specific NGram Frequencies

n  of One Data Base Object

Then, we can derive the
most frequent (large) n-
grams and teach the
Kohonen feature map a
vector representing a specific
n-gram in every dimension.
After training, the feature
map represents an interest
map of the full-text data
base. Objects related to each
other in n-gram usage are
within nearby clusters.

SR~

6b.

N RN~

Algorithm 2.3: Interest Map Selected Large NGrams

Step A: Teach n-gram vectors to a Neural Map

For all data base objects do:

Change all lower case characters to upper case
Eliminate all non-alphabetic characters
Eliminate non-relevant words

Eliminate non-relevant word endings

Determine n-gram tables, select the n most frequent elements

For all n-gram vectors do:

Find best learning parameters
Code n-gram vectors
Teach n-gram vector to the same Kohonen feature map

Step B: Match Query with Neural Map

Change all lower case characters to upper case
Eliminate all non-alphabetic characters
Eliminate non-relevant words

Eliminate non-relevant word endings

Determine n-gram vector, select the n most frequent elements
Input n-gram vector to neural net and determine error and position activated.

Select related data base objects if the error < threshold

14
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Learning and Retrieval Rules

The learning rule used in the previous model is the Kohonen rule. It doesn't matter whether
one uses characters, words or large n-grams as input elements, a coding procedure prepares all
symbolic data for input to the feature map by translating them to vectors. This coding process
is performed with the aid of a lookup table. All elements of the learning set are assigned
randomly to specific codes in this lookup table. The codes itself are spread homogeneously
through the feature space, to speed up the learning process. Convergence parameters as
proposed by [Ritter et al., 1989a] fine tune the Kohonen rule.

Kohonen Learning Rule

0. N Number neurons in layer n Dimension of input vector
M Set of all neurons in map w(t) Sensor weight
x(t)  Sensor input

1. Determine neuron s. This neuron has the net's best match between the input values and
its weight values:

Vr Ilws(t) - x(Oll < llw (V) - x(ll for r element of M
2. Update all weights in the map according to the Kohonen learning rule:

wi(t+1) = wi (1) + €(t) - Drs - (X(1) - Wr(D))
where:
®rs = eir-sli/2002)
g(t) = €max * (<‘3min/8max)t/tmax
o(t) = Omax - (Gmin/Gmax)!/'max
€max € [0,1] Start Learning Rate
€min € [0,1] Final Learning Rate
Omax = JIN) /2 Start Region Size
Omin € [0,1] Final Region Size
lr-s]l = Physical distance on map from neuronr to s
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Once the feature map training is completed, we must match the test data with the representation
formed on the neural map. In the case of the neural filter, one counts the cumulative
(normalized) error or the cumulative (normalized) number of perfect hits (or whatever variant
of these two functions, see box for details).

In general, one can separate two types of selection rules: positive and negative ones. The
negative approach mainly filters the noise. A more positive approach is used to select possible
candidates for selection. Negative selections are mostly normalized, while positive ones are
not. If one paragraph in a paper is related to a specific interest, the positive filter selects it
directly, where the negative one ignores the one paragaraph due to normalization of the retrieval
value (one paragaraph fires high, all the others low, so the average firing level is still low).
Positive selection mostly results in too many candidates where negative selection results in too
few candidates. A proper combination of both approaches results in the best retrieval results.

Possible positive search methods are plain keyword matches and the (non-normalized) number
of perfect hits on the neural map (in the case of n-gram on characters as well as n-gram on
words). A negative filter is the added and normalized error of all text elements with respect to a
statistical table or a neural map.

Selection Rule 1 for Neural Filter (Negative)

1. Select if: (X g1 n-grams in text part liwg(t) - x(t)ll)/number n-grams in text part )<t
where:
s has the property:  Vr llwg(t) - x(Dll < llw(t) - x(t)ll for r element of M
T € [0,1] Threshold Value
x(t) = vector holding one n-gram

(direct coding through look up tables)

Selection Rule 2 for Neural Filter (Positive)

2. Select if: (Count(all n-grams in text part for which liw(t) - x(t)ll < T)/number n-grams
in text part) > ¢
where:
s has the property:  Vr liwg(t) - x(DIl < llw(t) - x(D)ll for r element of M
T € [0,1] Threshold value before counting (very small)
(0} € [0,1] Threshold value before selection
x(t) = vector holding one n-gram

(direct coding through look up tables)

3. One might combine the rules 1 and 2 in an even more powerful mechanism.
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With the interest map, one determines the neuron representing the interest vector best and
returns the paper represented by this neuron and all the other papers within the same cluster
(determined by euclidean distance or by knowledge of the cluster boundaries on the feature
map). ;

Selection Rule for Keyword Neural Interest Map

1. Select all objects represented by neighbouring neurons of neuron s

s has the property: Vr llwg(t) - x(OIl < liw (1) - x(Dll and llw(t) - x(tll<t

for r element of M
where:
T € [0,1] Threshold Value
x(t) = vector holding keyword frequencies. One dimension for every
keyword known by the system.
Selection Rule for N-Gram Neural Interest Map
2. Select all objects represented by neighbouring neurons of neuron s

s has the property:  Vr llwg(t) - x()ll < liw (1) - x(D)ll and liw (1) - x(Dll< T

for r element of M
where:
T € [0,1] Threshold Value
x(t) = vector holding transformed (by dimension reduction)

representation of n-gram frequencies. One dimension for every
possible n-gram.

Selection Rule for Selected (Large) N-Gram Neural Interest Map

3. Select all objects represented by neighbouring neurons of neuron s
s : Vr liwg(t) - x(OIl < liw (D) - x(Oll and liw () - x(DlI< T,
for r element of M
where:
T € [0,1] Threshold Value
r = All elements of Map M
x(t) = vector holding frequencies of (preselected) n-gram occurrences.

One dimension for every possible n-gram.
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Simulations and Results Neural Filter

The simulations are implemented on a high end PC (33 Mhz 386) and on a Sun Sparc Station
IPC (the Neural Filter runs on the PC as well as on the Sun IPC. The Neural Interest Map runs
only on the Sun IPC due to its huge memory requirements). The programs are written in C.
The PC was connected to a CD-Rom player holding several free-text data bases such as: The
Complete Works of Shakespeare, The Complete Sherlock Holmes, Microsoft Small Business
Consultant and The Complete Translated 1987 Pravda articles. The algorithm was tested on
selections of these CD-Roms. The most intriguing one was the Pravda data base, which shall
be used in the examples of this paper.

The simulation parameters are determined automatically according to the best parameter
heuristics in [Ritter et al., 1989b] and [Scholtes, 1991c]. Before training, the learning text was
analysed to provide the optimal values for the internal coding, the learning rate, the region size,
and the approximate number of necessary training cycles to reach the self-organizing state.

In the case of algorithm 1: the Neural Filter, the learning set holds a small selection on the 1987
nuclear weapon restriction talks between the USA and the USSR. Keywords as Reykjavik,
ABM, Peace, etc. are more than once used. The test set was the entire Pravda CD-Rom (200
Mbyte), being passed along the neural filter.

Our era, a fast-paced era of nuclear weapons, an era of growing economic and political interdependence, precludes the
possibility of security for one nation at the expense of others. I repeat: we can only survive or perish together.
Security today can only be viewed as mutual, or to be more precise, universal. So whether we like each other or not, we
need to learn how to coexist and live in peace on this small and very fragile planet. Question: Do you support the
continuation in 1987 of the Geneva talks between Soviet and American representatives for the purpose of achieving
progress on the issue of limiting and reducing arms? Answer: Yes, we do. We support talks that would overcome the
state of fruitlessness and inertness and acquire true dynamism, in a word, talks that would become genuine talks on
reducing nuclear arms and preventing an arms race in space. We tried to achieve that in Reykjavik and will try to
achieve it even more energetically in 1987. I am sure that such a radical turnaround in the talks woul respond to the
vital interests of the American people as well. At the same time, the position of the US administration on this issue is
a cause of great disappointment for us. After Reykjavik the American delegation in Geneva has become even less
cooperative. Despite the fact that the USSR has not been conducting nuclear detonations for 18 months, the USA has
continued tests and refused to discuss a total ban on them, though it committed itself to conduct negotiations on that
issue in the two treaties of 1963 and 1974. In November that was aggravated by the provocative action the White
House took when it broke the important strategic arms limitaion agreement (SALT II). It does not help to conduct
successful negotiations on new agreements when the old ones are being deliberately and blatantly broken. This is a
serious problem that deserves very close attention. I will state once again that we support agreements on the most
radical reductions of arms, both nuclear and conventional. Now it is up to Washington.

Learning Set (or 'Query’)

Before learning, the text was filtered to avoid wasting computation time (or neural memory) to
non relevant features. First all non-alphabetic characters (digits, read markers, etc.) were
eliminated. Next all lower case characters were transformed to upper case. About 250 common
English words were eliminated from the text. To obtain an even stronger distinguishing
behaviour, all common endings (resulting in trigrams such as -ary, -able, and -ent ) were
eliminated too. A number of such common words and word endings can be found in the tables
below.
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a few little -ably
about first many -ibly
after get me -ily
all g0 might -$$
always going much -ous
and good near -ies
at got never -8
been he new -ied
before her no -ed
both here not -ing
by I off -
end is often
even it once
every just

Part of Common Words Table Part of Common Endings Table

A First Statistical Analysis of the Learning Set

A first analysis made was the determination of the 27 most frequent trigrams in the query by
brute force counting. The three small tables below hold the values found. The first entity
represents the trigram, the second the absolute frequency and the third the probability of
occurrence, determined on basis of this text. One can right away spot the trigrams from words
as Weapons and Nuclear. This small table is used for some global comparison between the
statistical and neural methods. Off course, the text processed in this simulation was
preprocessed according to the method presented in the boxes of algorithms.

AGR 36 0.005380 ENT 84 0.012552 PEA 36 0.005380
AIN 36 0.005380 ERI 40 0.005977 PER 36 0.005380
ARM 40 0.005977 EST 44 0.006575 POS 36 0.005380
CLE 52 0.007770 GRE 48 0.007173 PRO 48 0.007173
CON 48 0.007173 INT 44 0.006575 REA 60 0.008966
DUC 40 0.005977 ITY 40 0.005977 STR 48 0.007173
EAC 40 0.005977 LEA 56 0.008368 TER 40 0.005977
EAR 60 0.008966 MEN 60 0.008966 TRE 36 0.005380
EAT 44 0.006575 NUC 48 0.007173 UCL 48 0.007173

Most Frequent Trigrams in Learning Text (Format: Trigram Frequency Probability)

Results for the Neural Filter Algorithm Based on N-Grams

The next simulation filtered the query and taught the trigrams (3-gram) up to 4 times to a 15 by
15 Kohonen feature map. Because the text contains many more trigrams than the 225 neurons
can hold, only the most dominant (according to frequency and distance in internal coding) ones
will be stored and each trigram is only held by one neuron.

The presented trigram map was obtained by determining the code for each neuron after the
learning process had converged to a stable state. The meaning of the neuronal fibres can be
looked up rapidly in the internal coding tables. The trigrams showed below are the best ones. It
could well be that a specific neuron represents other trigrams as well within certain limits. By
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comparing the most frequent trigrams obtained with the statistical method, one can observe that
the trigrams represented by the neurons in the map are indeed within the most frequent.

The presented trigram map evolves by determining the code for each neuron after the learning
process converged to a stable state. The trigrams for NUCLEAR are underlined as an example.
In this one and all the following maps, XXX means no proper symbol could be found.

ERN MOM LLY PLA HUM ANI UGG TRY LIM TRA STA MPS GTO ENO PRO
DOU IMA LAN URT REL IMP UPP YME LEA LUD KJA TUA YTH ION GIC
CUM ANT ITS RAT LIZ SEE TOU ODW MBE EME UTU SSF STR DOF POL
STS MEN ENT EAR REA ICY THE ORY DUC ATE ATY APO SUP SOV SEL
END DIS PHE 0SS TAS OAC XIB ELA GRA HIG OLI ARM WID ARY ILI
GRE ONT UMS LIT UCT UCL REQ TLY BOD ICA QUI NOB ORI GIL FIN
ALL EQU BIL ARC EEP UNC OVO CON CLE ISC DET OGR OFF RIT ECI
AST ALT HIE VOC MPL LAB MAT GLI CLI INT RCH RSE OPO RIZ RAN
EST OSP UNR PAC IRE OMP TIP OUS NSI ITI OYM INI INC IZO UMA
RST SSU SHI PEA YST NTE OUR NTA BOR NTO ITY CHI EGI O0OD OBO
NIT USY SET EEM PSE ANG ISA EYK AVI NCL CLU BEC HOR HER DAY
TIC SPH TUR TIO JAV OPH OVI APP ATO SUC RUG NUC VIK DEE ORT
TMO TES TSE GER SAR MAI MAL ART ANC ILL ZON YKJ XXX XXX AGR
ROP FIC SPL VOR EAR MAN REY TON LAT ABO NDO DUR NYT IDE OME
TEG UIR TER UCI GGR ABM AGA EAC TAN ACE ALI MUT GGL GOT BLY

Trigram Feature Map of Query in Neural Filter

There are some aspects that are still not completely clear in this phase of the research. If we
compare the most frequent trigrams (according to the statistics) with the trigrams in the feature
map, then some of them are not there: ain, eat, eri, per, pos, tre. On the other hand, some
trigrams occur that cannot be found in the learning text at all, such as: ggl, xib. This is
probably due to the neighbourhood effects, which do indeed absorb less frequent trigrams, but
they also disturb the internal coding of existing trigrams and cause the occurrence of non-
existing trigrams. '

These two phenomena are more clear in the following examples. Suppose we teach a single
occurrence of the trigrams aaa, aab, ..., aaz and 10 trigrams zzz, and the Kohonen map
consists of 1 neuron. Then, only aaz will be represented and not zzz. Although zzz is the most
frequent one. But, the aa... combination occurs more frequently, so this effect can be defended
as being positive (it does not remember the most frequent trigrams, but the most related). The
other effect is more serious. Say we train many aaa's and aac's, then the model probably ends
up in aab if it is constructed of one neuron, although aab never occurred! This effect explains
the occurrence of non-existing trigrams in the feature map. However, the effect occurs only if
the recognition threshold is too large. By sharpening the threshold, this effect might appear in
theory, but practical emergence will be limited to rare cases. In fact, the trigrams ggl and xib in
the above feature map had pretty large errors (>5%) 6.

Normally, it isn't worth the trouble to derive 4-, 5-, 6-, and 7-grams. The argument that
trigrams give more than enough separation is used more than once. This argument holds if an
increase of the window size corresponds to an exponential increase in space or time to derive
such dependencies. However, here we have a linear increase of complexity as the window size
grows (as shall be shown further on). This result makes it real easy and worth the trouble to
derive such higher order n-grams and determine their influence on the retrieval process.

6 I owe the discovery of these effects and the examples to Brain Bartell.
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An advantage of neural nets over statistics follows undoubtedly from the following simulation.
By increasing the window size from 3 to 4, the neural net learns 4-grams within almost the
same amount of memory and at the same speed as the trigram implementation. However, the
statistical method needs either a factor 27 more memory, or decreases dramatically in speed.
One can recognize frequent words from the learning text even better than in the trigram map.

EREO RUGG LIMP LITI CAUS PLOY DISA EOTY GREA TEND
ALIZ WISH EATY LOYM VIET GLIM ANYT NUCL GOOD XTEN
TRIC IGUR COOP SINC WILL ACHI DSHI SECU ONTO APPR
CURI TOUR OGRA MPRO TANC ATEL FRIE SAPP ABIL AINT
EACE EYKJ RTUN PROP NCER WEST IZON ENDS LICY ARCH
UCIN SPAC ABOR VERN NALL OPOS AVIK ALLY NCLU OUSY
STAN ISAR HUMA UNAT STRI EDUC UCLE REOT AREA SELF
TSEL KJAV CLEA BORA OSPH MSTA RIEN NDSH NMEN CATA
UTUA RELA LIMA REYK ICAN SHIP EACT RONG MPLE ATEG
TRUG ASTR TIPU POLI FIGU OLIC YKJA ORIZ MENT LEAR
AGAI SOVI MOSP OOPE USSR JAVI OTYP CLUD IMPR DOFF
IEND SPHE PSET ITHD ORTU PAST UBLY FICI EXTE TUNA
POSS ERNM PEAC UNFO ESEA INCE OSIT CUMS MUTU STIP
SCUS BODY EGIC UGGL REAC IMPS STRO REAT NTOU AGRE
ISSU REST GOVE ERST PHER OPER GTON OLIT TLES SUPP

4-Gram Feature Map of Query in Neural Filter

The same holds for the 5-gram simulation: speed and memory requirements were about the
same as for the trigram simulation. The possibility to represent almost 5-grams eliminates the
need to develop a large dictionary of known words. 5-grams can be used in any language
without a-priori knowledge.

STABI TRICT PERIT ALLIS REOTY DERST REATY TSELF SECUR MAINT
VERYT ALISM TEGIC POLIC OLITI PARTY ANTLY AGREE POWER JAVIK
ECURI ORIZO NFORT CIRCU NSIDE OMPLE STRUC CURIT ACEFU ETELY
LITAR MMEDI REDUC EACEF NDOFF NDSHI ATEST SCUSS GUARD UCLEA
EDUCT WERFU EREOT EMAIN FIRML RDINA UALIT WEAKN MPROV RELAT
REMAI COURT BORAT PURSU SUPPO SSARY RUGGL PLETE PEACE EFEND
ESSAR RADIC DEVEL OWERF XTRAO SOVIE QUALI CESSA ORTUN EARCH
ISAPP TUNAT UMSTA ANGER EYKJA URITY DESTR VELOP THDRA CLEAR
FRAGI HUMAN OPMEN SINCE TRUCT ERFUL TASTR NEGOT IENDS EOTYP
ESTRU CIALI LABOR DEFEN ILITA RTUNA OBODY TIPUL IALIS ATEGI
LITIC XIBIL COMPL OVIET EGOTI MALIZ ECESS LIMIN ARTIC PMENT
QUIPP GOODW KJAVI MPLET YKJAV AKNES IRCUM INCLU BLATA UMANI
PRINC WEAPO STRIC VERNM UCING RMITT XTEND LIMPS TMOSP ONTOU
PURPO HORIZ SOCIA APPRO CLIMA ERICA EAPON OCIAL EVERY IRMLY
DISPL ERYTH NECES EQUIP EVELO EQUAL STAND PROPO REYKJ OSPHE

5-Gram Feature Map of Query in Neural Filter
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To convince the reader even more, the next two pictures hold n-gram feature maps for 6- and
7-grams. All calculated within the same amount of memory and at the same speed.

XXXXXXX RIENDS ROSPER SECURI xxxxxxX COURSE xxxxxxx SOVIET ECURIT XXXXXXX XXXXXXX XXXXXX
NEGOTI xxxxxxx TREATY ANDOFF ONTOUR OLITIC OCIALI LIMATE XXXXXXX XXXxxxx WERFUL EQUIPP
PARTIE APPROA SOCIAL xxxxxxxXx IALISM CIRCUM SEARCH NDSHIP ROGRAM INCIPL REDUCT MSTANC
TURNAR XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX ORDINA REYKJA STRONG INCLUD ITSELF
POWERF xxxxxxx IMMEDI xxxxxxX ACEFUL xxxxxxx ATIONS xxxxxxx TRATEG SPERIT xxxxxxx RMITTE
PEACEF KJAVIK DANGER STEREO xxxxxxXx POLITI xxxxXxX ODWILL xxxxxxX XxxxxxX TROPHE OWERFU
XXXXXXX DISPLA XXXXXXX ACHIEV ASTROP xxxxxxXX DEVELO xxxxxxx ELOPME xxxxxxx QUALIT PROPOS
CURITY IRCUMS xxxxxxX NSIDER HIGHER xXxXxxxxXxX MERICA XXXXXXX XXXXXXX ISAPPO YKJAVI HORIZO
CUMSTA XXXXXXX RGETIC xxxxxxx TANTLY REMAIN NOBODY DEFEND EQUALI VIOUSY IENDSH REOTYP
FIRMLY SUPPOR ECESSA CONNEC DEPLOY ORTUNA ENOUNC PPROAC HINGTO UCLEAR EVERYT PPOINT
XXXXXXX ATMOSP XXXXXXX XXXXXXX PROGRA xxxxxxx EYKJAV MPLETE HUMANI PROSPE VERYTH XXXXXX
TUNATE XXXXXXX SHINGT UNATEL NUCLEA RTUNAT CLIMAT FRIEND PRINCI OSPHER ITHDRA GLIMPS

6-Gram Feature Map of Query in Neural Filter

ENDSHIP XXXXXXX XXXXXXX XXXXXXX XXXxXXxxX PRINCIP xxxxxxx ERGETIC POLITIC GREATES EQUALIT OMPLETE
AINTAIN RESTRIC ENEFICI XXXXXXX XXXXXXX PROSPER HINGTON xxxxxxX MAINTAI PARTIES PERMITT SUCCESS
KXXKXXX XXXXXXX ADMINIS RDINARY CONNECT POWERFU YKJAVIK XXXXXXX XXXXXXX XXXXXxX AORDINA NTEREST
KXXXXXX XXXXXXX BVIOUSY REDUCIN PROGRAM xxxxxxXX EVERYTH NTIBALL STRATEG UTUALLY xxxxxxX NECESSA
RCUMSTA XXXXXXX XXXXXXX XXXXXXX QUALITY xxxxxxx DYNAMIS NRESTRI NDEPLOY xxxxxxx ISAPPOI ITHDRAW
XXXXXXX FRIENDS XXXXXXX XXXxXXX EREOTYP REYKJAV ECESSAR TUNATEL TANDOFF TASTROP XXXXXXX XXXXXXX
TRCUMST XXXXXXX COMPROM xxXxXxX YNAMISM PEACEFU LATIONS xxxxxXX XxXXxxXX ECURITY ESEARCH XXXXXXX
FLEXIBI TRUMENT CONTOUR XxXxxXXXX AMERICA xxxxxxx TMOSPHE IENDSHI ASTROPH xxxxxxx DISPLAY DISAPPO
NUCLEAR ROSPERI EACEFUL XXXXXXX XXXXXXX APPOINT COMPLET CUMSTAN ATANTLY ATMOSPH xxxxxxx MERICAN
NTIRELY EEMENTS xxxxxxx RIENDSH LLISTIC ANYTHIN OWERFUL xxxxxxx ATASTRO UMSTANC APPROAC PPOINTM
SOCIALI CLIMATE xxxxxxx UCCESSF TLESSNE SECURIT OSPERIT OVEMBER xxxxxxX EYKJAVI xxxXxxx AGREEME
KXKKKXK KXXXXKK XXXXXXX XXXXXXX XXXXXXX STEREOT SUPPORT STROPHE ORDINAR xxxxxxX SHINGTO PPROACH

7-Gram Feature Map of Query in Neural Filter

In all the above simulations, the best size for n seemed to be the average word length of the
language (best means the most efficient trade off between computational efforts and retrieval or
representation quality).
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Results for the Neural Filter Algorithm Based on N-Grams with Spaces

J.C. Scholtes

The n-grams as shown above are all without the incorporation of spaces. In the next
simulations the spaces were used too, to gain a better insight in the contextual relations between
words. Without spaces one actually only determines keyword parts. By incorporating the

spaces, relations between words are taken into account as well. Without these relations, n-

grams are nothing more than a keyword search method without a dictionary of predetermined

keywords. The spaces are represented by /. This is due to the fact that this is the next ASCII
character after the Z, which facilitates programming.

xxx [EV [EQ WAS CAT BER RYT
DAN [AT [AB LET xxx SEC FAC
ONS NEG OAC NES OUR xxx EAT
OOP N[G N[S LIS NEC ACT UCT
I[(T IPP Y[A H[W RST EXT ITS
NGT Y[G F([D LOV GOV ARC NDS
L[T G[S T[R D[F xxx ORC OSS
GET [IT C[S GGR DEF CUR [CL
[EX LIC DIS DUC CES CIP TRO
LUD [(US RUC HAL TEL TMO BAL
PUL ERO REL REO TYP RYO GEN
NFO IAL EAK FEN RAN HIN LIM
N[P IGH xxx xxx CUM RIN PEN
xxx RTH SSR SSU ONN GAI DMI
xxx DSH HDR [GU HOI [FI [RE
[TR [DE [HA [LI L([U [SU [WE
NCE OCI NTE KJA PEA LAB [QU
OTI NGE OKE NNE OYM PER NER
LLY PLE [LA PME OVI OFF OGR
OPM OPE [PE M[F PRI PSE OWE

WID
UES
NAT
IET
NST
[sT
NTO
[EL
GTO
PRO
LAY
LIZ
HUM
GRE
FRI
ORA
[WA
GUA
[FR
[PR

SYS [NE [MA TIC WES T[W K[C L[R INK
FIG RIC HER TER TES xxx POW PPR GOT
MED IEV GUR VER RAW FAV xxx xxx AND
URT FUS UAR EAR EQU EGI IMA EFU A[W
UCC ARD ERF EAS EVE M[A ELA ACE CIA
ECT ESS ERS EAC xxx I[E MLY xxx CEF
[SH IRC YTH xxx ABO AKN AIN EEM REY
[SO [FO GGL EGO ATO ISP EYK MEN MAI
OSP [DO xxx UPP EXP EAP UIP MIN YKJ
OBO [CO V[P ELO ALK ACH IZO Y([N YON
ORM [AM xxx CHO S[H UCL UGG ILL [PO
[IN [UN [ON SHO C[E AGG RCO DOO OMP
[MI [MO TON T[N DWI THI C[N CON RNM
xxx SOC T[I XTE TSE RTU SHI V[I R[N
FRU SWE SAR TRA TRI TEN CCE ALI R[I
[GA C[C SSF TRU RFU xxx SSA SPE XPE
A[B ALT xxx ARY AVI REM QUI R[E C[A
Y[R xxx ARM ISM URI ERN ISA RSE HIE
ELS Y[D AGR ITA ATM USY ICY GHE GLI
FOR BOR ECE ATI USA ITY ETE FLE CLE

INC
END
UNR
ANG
QUA
RMI
RML
FUL
ION
N[N
OPO
L([L
H[N
R([U
T(U
T(A
T[F
S[G
XXX
F[R

MOS OOD
INT OIC
ENT NIT
ANS FIR
RMA VIE
ANI ENE
UNF UNA
IMM EMA
MOM IOU
NOU MPS
ROP OOR
LOP D[P
SPH SOV
DOF ROW
TOU BOD
D[G TOT
THD T[D
R[(T R[S
R[R U[F
ROA R[A

As in the earlier simulations, the window size can be increased easily to 7-grams (or higher).

3-Gram with Spaces Feature Map of Query in Neural Filter

Below a map for the 7-gram with spaces and the 8-grams with spaces are given.

XXXXXXX
[FORC[E
UCT [ELI
WID[RAN
RTUNATE
[APPROA
XXXXXXX
SSARY [G
Y [CATAS
XXXXXXX
[TREATY
TMOSPHE

RFUL[US
ZON [GLI
UL[LABO
[INTERN
XXXXXXX
UALLY [A
[CIRCUM
Y[ITSEL
R[APPRO
XAXKXXXX
XXXXXXX
SOCIALI

[MUTUAL
[GAIN[S
XXXXXXX
[PROSPE
[STANDO
XXXXXXX
VOR [ IMM
VERNMEN
[REMAIN
TEST[PO
UNFORTU
[NEGOTI

[WEAKNE xxxxxxx TRU[HOP
RN[CLIM TRONG([S RICAN([W
TY [GENE ROV [INT WITHDRA
[ARM[FO XXXXXXX
ST [SHOW xxxxxxx UR[MUTU
TH[NECE XXXXXXX XXXXXXX
T[SDI[P SSR[ARM [DEFEND
[ELS[CL UCING[S YTH[NEC
RPOS[AC STRUGGL USSR[AR
TICL[TR STROPHE RYTH[NE
[PERMIT RIENDSH
[PRINCI [PEACEF

[SOCIAL

RESEARC
T [ INTER

SHOW [ST
XXXXXXX
RANG [PE
ROSPERI
[AGREEM
[SECURI
SECURIT
[GLIMPS
ROPOS[R
T [FIRML
[EVERYO
T [DESTR

UARD [GA
[CONNEC
TEND [FR
[UNFORT
XXXXXXX
XXXXXXX
XXXXXXX
VIK[MOM
RY [GUAR
[DOOR[R
XXXXXXX
SS [PEAC

[NECESS

UIR[APP

[POWERF

TYP[CON
SHIP([CO
SPERITY

[IMPLEM [HALTI[N
xxxxxxXx TUNATEL UL[USSR
[EXTEND RM[FORC
xxxxxxx URITY[D T[NUCLE
REACT[R TRATEGI RATEGIC
[IMPROV [USSRI[A
TABILIT XxxXXxXX SARY[GU
[NUCLEA RTICLIT
[STRONG RTY[TRE
[FIRMLY R[REMAI
U[HOP[N T[DEPEN [DESTRU
[UN[SUP TTED[LA Y[GUARD

XXXXXXX
[TALK[C
S [CONTO
XTEND [F
R[EXTEN
XXXXXXX
TALK[CO
TEST [RE
RMLY [DE
RD[GAIN
[REYKJA
KXXXXXXX

7-Gram with Spaces Feature Map of Query in Neural Filter
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8-Gram with Spaces Feature Map of Query in Neural Filter

Results of Neural Filter Algorithm based on a Markov Chain over Keywords and N-Grams 7

Now, an nth order Markov chain over both words or large n-grams is presented. First, the
learning text is preprocessed to determine the words or n-gram present. As long as the system
is not out of memory, the model stores words or n-grams and assigns random codes to them.

Next, combinations of three words are taught to the neural net. Suppose a statistical method:
then one needs either (number of words)3 memory elements or sophisticated count, order,
normalization, generalization and association methods [Brown et al., 1990], [Jelinek, 1989 &
1991a-c]. Here, the same amount of memory is used at the same learning speed as in the
character trigram method. The map shown below is a small part of a large 15 x 15 feature map.

INTERESTS-DISARM-PARTY IMPROV-INTERN-CLIMATE ATMOSPHER-NUCLEAR-STANDOFF
FAVOR-OUR-TALK DON-ARM-RAC AGREEMENT-ATMOSPHER-NUCLEAR
DISARM-ACHIEV-PEAC WEAPON-DEVELOPMENT-DENOUNC TRU-DYNAMISM-TALK
DENOUNC-REL-PRINCIPL INTERN-POLITIC-SOVIET AGREEMENT-NONDEPLOYMENT -SPAC
FORTH-WID-RANG-EQUIPP EVERYTH-NECESSARY PARTY-TREATY-ENTIRELY
ENTIRELY-INTERN-POLITIC STRENGTHEN-PROV-AGREEMENT ITSELF-DOUBLY-IMPOSS
PEAC-PROSPERITY-OBVIOUSY SUPPORT-MAINTAIN-ABM REDUCT-COMPLET-DESTRUCT ’
ARM-FORC-EQUIPP TRU-HOP-N WEST-SHOW-STRONG

Upper Left Part (3x8) of Tri-Words Feature Map of Query in Neural Filter

To derive this map, the learning text was preprocessed so all possible non-relevant words were
determined. Two hundred eighty one words were found in the text on the Nuclear Weapons
Restriction Talks. A list of these words is given on the next page.

7 The results for the markov chain over keywords were about the same as the ones over large n-grams. The only
difference was in the need to define a dictionary in advance. Therefore these two algorithms are described in the

same paragraph.
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Words Used in 3-Word Neural Filter.

J.C. Scholtes

FLEXIBILITY
ERECT
EXTRAORDINARY
EXPENS

ERA
DISCUSS
AGRICULTUR
ACQUIR
WITHDRAW
WEAPON
TEST
REDUCT
PROVINCE
PROGRESS
PREC
LIMITA
IVAN
INTERESTS
INERTNESS
IOFF
FULFILL
EROD

EDIT
CONCLUS
WISH

WOUL

UPON

USSR
UNIVERS
TURNAROUND
PRODUCT
PREVENT
KINGSBURY
INDEFINITELY
HAMMER
HIGHER
GROMYKO
AR

WANT
WHETHER
TARGET
POLITIC
NONDEPLOYMENT
MAINTAIN
LABORATORY
ILYICH
IsSsuU

INPUT
HOSTILITY
GOLD
GENUIN
DESPIT
AWARD

Then, the text was processed again and trigrams on words were determined and fed into the
feature map. After a number of passes, the map holds a proper representation of the learning
text. The values stored in the neural weights are summarized on the next page. Elements are

represented from the upper left corner of the map down to the under right one.
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3-Word Elements Represented by a 15x15 Map (Summarized for reasons of space)
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An interesting question concerns the convergence of the map toward a proper representation of
the text. Therefore, two methods have been used. First the values of the sensors are graphed in
such a way, the self-organizing character becomes clear. Second, the evolution of the error as
function of the learning cycles was monitored during the learning process.

Two sensor values, &; and &, can be drawn in an (x,y) graph, where x is represented by the
value of &, and y by &,. By interconnecting neighbouring neurons, self- organization is

represented by a perfect rectangular figure if the distribution of the input values is comparable
to the size and form of the feature map. If one works with artificial codes (not natural, but
assigned from look up tables) and the number of used codes differs from the dimension of the
map, regular, but different figures develop. The pictures below represent two sensors from the
first trigram simulation and the last word simulation. In the trigram simulation (left), the codes
used were (0.0, 0.5, 1.0). This map is well organized. In the word simulation (right) 10
different sensory values were used. But, only a certain part was used by the word coding
procedure (910 codes were available, only 2503 were used). Therefore the graph is slightly
smaller on one sight (not used codes). Here too, one can observe a regular structure (albeit less
then in the trigram case), indicating some form of self-organization.

Sensor Value Graph Trigrams (§;, &)

27



Neural Nets and Their Relevance in Information Retrieval J.C. Scholtes

‘\""
QY
D

2

N

N ALSRENS K
POPEGSRASNY
A AN RANY
A RSN
L St BRSSO
ANV S @ITON SN

NI
Nz

<

Sensor Value Graph Words (§;, &)

Please notice, these graphs represent only 2 sensors of 9. All other graphs looked similar.®

By measuring the error during the learning process: liw,(t) - x()l, an insight in the convergence
properties of the neural net can be obtained. First, one has to understand that this neural net is
used as a selection- and ordering device. Due to a smaller size than needed, only the most
frequent n-grams are remembered (or learned properly), all others are forgotten, or overruled.
Therefore, the average error will remain high (due to non frequent n-grams). In the first graph
the total error in time is plotted (see next page). The global character of the graph is decreasing.
The high errors on the right are non-frequent trigrams that must be forgotten (these are errors
of n-grams which are continuously being bounced out).

Error (Iw(t) - x(t)]) During Learning Process

Error

Learn Cycles

8 These graphs clearly indicate that the distribution of the n-gram and keyword clusters is completely different
from the topology of the feature map. Therefore it is very difficult to interpreted the topological map of
language. Future research concentrates on other types of feature maps, which must be able to represent such
distributions better. In this report we try to use a two-dimensional, rectangular, and homogeneous feature map
for the representation of a (probably) non-dimensional, randomly connected, and clustered input: language.
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The next graph plots the error if it is smaller than 0.05. By plotting these bars, one sees that the
frequency of perfect hits increases in time: the density of bars is much higher at the right side of
the graph than at the left. This indicates that the model is getting better at representing n-grams.

The number of small errors increases as the learning continues.

Matches < 0.05 During Learning Process

0.05
0.045
0.04
0.035

0.03
Match Quality (low

is better) 0.025

0.02
0.015

0.01

0.005

0 Jd

Number of Cycles

The following graph represents the cumulative number of perfect hits (> threshold) in time. In
the beginning, there are no hits at all. At a certain time, the number increases exponentially
(self-organization starts). At the end, the number of hits stays constant (resulting in a linear
increase of the cumulative value). These three graphs indicate that the net does indeed learn
certain n-grams and it gets better at this task, the longer it learns, up to the moment the maximal
capacity of the map is reached. From then on, only the most frequent ones will be learned.

Cumulative Number of Perfect Matches During Learning Process
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Retrieval Results of the Neural Filter
Retrieval Results of the Neural Filter Based on N-Grams

The selection quality is a measure that cannot be given freely without being impartial. During
the simulations, many reasonable decisions were made by the selection algorithm. Much
depends on the threshold, but the selections were as least as good as the statistical ones. Still,
the neural ones where much easier to implement, where the statistical ones required much
programming. The generalizations made were very interesting, although, it must be admitted,
this was not implemented in the statistical algorithm (due to the large amount of efforts that it
would have taken).

On the next page, an overview of the results for the 4-, 5- and 6-grams is given. Per paper, a
short description of the contents can be found. On the right hand, retrieval values are given.
The smaller the values, the higher the correspondence.

The retrieval phase uses several different functions. The proposed function (average error per
n-gram in the retrieval phase) separates related text parts clearly from non-related. Yet, the
differences are quit small. That's what makes the Pravda interesting as a corpus®. There is
much noise from words like comrade, socialism, hero, etc., making the retrieval phase more
difficult (these words were not eliminated, but should have been). By counting the average
error per n-gram as well as the number of perfect hits, a better discrimination function is found.
Generalizations caused by both the n-gram formalism and the Kohonen feature maps could be
observed during the retrieval phase.

The retrieval values (see following page) can be plotted in a graph. The lines represent (from
lower to upper part of graph) the retrieval values for 50 text parts of the Pravda of the 4-gram,
5-gram, 6-gram and 8-gram analyses. Low values indicate low errors and thus high
correlation. The first article is the same as the learning text (because not all n-grams are taught
to the neural map, a number of errors remains) It might be clear that the separation becomes
better as the window size gets larger. This graph is based on the first selection rule: the
normalized total error per text part. This is in fact a very negative approach.

Retrieval Values (RV) Information Filter (4-, 5-, 6-, and 7-

grams)
1.2
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9 Others say the Pravda is a very bad corpus for information retrieval research because the language used
involves syntax without semantics: the articles mean nothing, its just propaganda. however, we prefer the other
view stating that the Pravda has a lot of noise, making it boring to read and therefore a useful application of IR
techniques.
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# Subject Retrieval Values on Nuclear Query

4-gram S-gram 6-gram J-gram .
0* Weapons talk & socialist medals 0.237318 0.509591 0.662473 0.689539
1 New years wish of M. Gorbachov 0.289728 0.488024 0.632248 0.744335
2 A day in the life of a museum director 0.341379 0.617132 0.884395 1.097080
3 Soviet Literature 0.322802 0.585385 0.823094 1.052009
4 A day in the life of ... 0.354099 0.657095 0.893633 1.052009
5 A 2nd world war hero 0.343971 0.640814 0.868803 1.139508
6* Nuclear weapon talks 0.313828 0.586899 0.777539 1.128579
7* Peace demonstrations 0.290589 0.546081 0.755270 0.951315
8 New years wishes 0.338634 0.613795 0.840996 0.961775
9 World news 0.310629 0.590616 0.782714 1.003833
10 A fairy tale 0.349794 0.647462 0.882928 1.122699
11 On rabbits 0.338259 0.639136 0.878360 1.101719
12 Poem on carnival 0.345716 0.638410 0.934767 1.126669
13 Central comittee new years wishes 0.314312 0.569742 0.787559 1.023176
14 Labour news 0.321815 0.586252 0.818649 1.075319
15 On construction in the USSR 0.332173 0.530753 0.748884 0.940438
16 On transportation affairs 0.333690 0.626034 0.869077 1.116766
17 (Communist) party life 0.334771 0.621255 0.855764 1.085567
18 Space lift-off 0.325455 0.599938 0.825772 1.046907
19 Poem on nature 0.340744 0.625286 0.841849 1.118814
20 Story on a smoking teacher 0.314774 0.588360 0.828015 1.041139
21+ USSR on foreign media 0.273380 0.524630 0.692393 0.799374
22+ Nuclear weapons talk 0.288171 0.559702 0.720814 0.926369
23 On Afghanistan 0.313803 0.573072 0.792759 0.986893
24 On African countries 0.336627 0.579585 0.790675 0.969926
25 Economy: USA and EEC 0.309720 0.593978 0.788340 0.908930
26 Peoples Dreams 0.311645 0.588900 0.783028 0.915919
27* Satire on US Military 0.322035 0.619409 0.815802 0.968615
28 Story on Italy 0.345008 0.637252 0.892476 1.120427
29 Carnival 0.337170 0.618419 0.838955 1.085120
30 Driving a car in the USSR 0.338137 0.588304 0.844606 1.032986
31 The party's social policy 0.302633 0.542491 0.750042 0.939680
32 Economy news 0.329482 0.587417 0.814469 1.045905
33 Around the world news 0.323436 0.605049 0.853771 1.068712
34 Work circumstances 0.312763 0.585953 0.830122 1.019806
35 Automation in baking industry 0.307923 0.583181 0.848865 1.076185
36 Nature 0.344264 0.634208 0.859321 1.130220
37 The good old past 0.331045 0.628162 0.877461 1.117062
38 Theatre 0.341568 0.649438 0.896636 1.123436
39 Cambodia 0.341709 0.617094 0.844380 1.064060
40 Life in France 0.337273 0.619542 0.895881 1.149020
41 A letter to Santa 0.328580 0.628589 0.845106 1.096221
42 Sports 0.312252 0.646526 0.852348 1.076769
43 Industrial reports 0.316586 0.568280 0.795445 1.011926
44* Nuclear weapons talks 0.293399 0.560232 0.762709 0.981953
45 Gasoline 0.339407 0.579052 0.828988 1.021601
46 Product quality 0.324115 0.596635 0.842714 1.082056
47 On justice 0.331254 0.615968 0.857014 1.112873
48 On genetics 0.327425 0.593382 0.815307 1.043186
49+ Nuclear Weapons 0.286680 0.552238 0.706248 0.859771

Retrieval Values for Negative Selection (50 first papers from Pravda. #1 is the Learning Set)

* Somehow related to the query (checked manually for correlation in subject).
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If we use the second retrieval function (a more positive one), the results are even better (see
next graph). By counting the number of (almost) perfect hits and comparing the normalized
value with a threshold (perfect retrieval is 100% in graph), the 7-gram learn text has a 90%
retrieval valuel®, Even a small paragraph mentioning the subject resulting in an already high
peak in the graph.
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Not all papers of the Pravda have been scanned by hand. Even if this would have been done, it
is really hard to express the amount of correlation in meaning. In many cases, it i quite easy to
interpret the results in a different way!!. Therefore, some related as well as some unrelated
articles were inserted randomly in the test set. The model found them all with the proper
retrieval values. Besides the inserted articles, all other articles found related to the query were
in fact on the nuclear weapons talks between the USA and the USSR and not on conventional
weapons, Chernobyl, other nuclear power plant, etc.

The determination of the most efficient retrieval function is a domain for study in itself.
Obvious experiments can be done about combining a negative and positive learning rule. More
mathematically based correlation functions can be incorporated, etc. This is a main topic of
future research. Pointers can be found in the literature on statistical pattern recognition
[Sammon, 1969], [Duda et al., 1973], [Small et al., 1974], [Fu, 1977], [Croft, 1977, 1980,
1981], [Bokhari, 1981], [Devijver et al., 1982], [Voorhees, 1985], [Siedlecki, 1988].

10 This is quit high because the original learning text contains more words than the neural map can store.
Therefore not all n-grams are remembered. Exactly these n-grams are responsible for the retrieval error. If we
take a negative approach (the first retrieval function), this percentage will be much larger than in the case of a
positive one. This is why the second retrieval function works better.

11 A standard IR evaluation techniques compares the documents selected by hand with the documents selected by
the computer. Here such experiments are not carried out due to the large amounts of time they consume, but
future research does not exclude this method of evaluation. Moreover, a standard benchmark data collection
would be very interesting. The author is not aware of the existance of one.
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Retrieval Results of the Neural Filter Based on NGrams with Spaces

Similar simulations as above were done on the neural filter map trained with normal characters
as well as spaces. By doing so, the map is also capable of expressing a correlation between
word relations in the training and test text.

The number of possible n-grams held by the text increases dramatically as we incorporate
spaces (without spaces a word of m characters (m>n) holds m-n different n-grams, with
spaces a word of m characters (m>n or m<=n) holds m+n-1 different n-grams. Therefore, the
size of the map must be larger compared to the case without spaces to remember the same
amount of relevant n-grams. If the map is too small, too many n-grams will be bounced out.

The simulations were compared to the ones without spaces for the number of perfect hits
(positive selection) as well as the error retrieval value (negative selection).

Retrieval Comparision Number Perfect Hits 7-Grams With and
Without Spaces
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#Hits 50
40
30
20
10

Paper Number

Without Spaces ——=—=~ With Spaces

In the case with spaces, the number of perfect hits is much smaller than in the case without
spaces. At first sight this might look bad, but at second sight, the difference between the more
and the less correlated papers is larger than before. Therefore, selection thresholds are easier to
set. See the next graph for a plot of the number of hits with respect to the number of hits of the
training text. The papers which are exactly on the same subject (and not just a little bit
correlated) have a very high relative number of hits. Ones which are only a little related have a
much lower retrieval value.
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Relative Number Perfect Hits Neural Filter 7-Grams With
Spaces
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Below, the retrieval results of the negative selection functions of the algorithm with and the
algorithm without spaces. Clearly, higher order n-grams only work in positive selection
functions. Due to the high filtering effect (only very specific n-gram combinations are known
and therefore recognized) and the normalization, almost all retrieval values are equal, even in
the case of the 7-grams.

Retrieval Comparision Retrieval Value (RV) 7-Grams With and
Without Spaces
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Retrieval Results of the Neural Filter Based on Keywords or Large Preselected N-Grams

The retrieval of n-grams on keywords has one tremendous advantage over the n-gram on
characters: it is incredibly fast (40 MBytes Pravda in 5 hours on a PC). Because the system
only knows 281 keywords (all the non-trivial words in the learning text), all other words don't
have to be fed into the feature map, they are ignored. If on the other hand, proper word
combinations are encountered, their retrieval value can be examined by feeding the word n-
gram in the feature map. Due to the small amount of known keyword combinations, the
threshold for a perfect match must not be too high.

In the following graph, the retrieval vales for the 7-gram characters and the 3-gram words are
compared with each other. The 3-word retrieval is measured for three cases: a high, medium
and low threshold. The high threshold resulted in one perfect match for the most correlated
papers. All others equal zero. The medium threshold was a little better, but the low threshold
worked best. One can see clearly that the 3-gram on words peaks less frequently than the 7-
gram on characters, but if it peaks, it peaks high. This large difference between more and less
related papers makes it easy to set a threshold.

This method filters sometimes too much, but if one really wants only the most correlated
objects from a large amount of data, this method can do so in such a selection. Moreover, the
same holds here as with the n-gram character filter with spaces: it should be used in
combination with other, less strong filters to achieve a high quality filtering mechanism.
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Complexity Comparisons Neural Filter

The next graph summarizes the results in a quantative way. Beside the quality of the retrieval,
the amount of computational power needed is interesting too. Especially since this research is
in between statistical pattern recognition (fast) and symbolic linguistics (slow).

Experimental Results: Derivation of Complexity

Below, the graph holds an abstract representation of the experimentally derived complexity
results (in time and space). The horizontal axis holds the logarithmic function of the amount of
memory needed. The vertical one holds the logarithmic function of the required processor
capacity. The numbers in the shadowed boxes represent the order of the Markov chains and the
two colours represent the neural and statistical implementations. The long stretched circles from
the statistical methods indicate an approximation of the implementation space for algorithms.

One can either a add large amount of memory or use direct addressing methods. Another
method is to implement hashing techniques, ordering and generalization algorithms, etc.,
which take less memory, but probably more processor time (maybe not as drastically as
indicated here, but there is definitely a trade-off which has comparable proportions as indicated
in the graph). The form of the statistical areas is mainly due to the flexibility one has when
implementing statistical algorithms.

The area of the neural implementation is much smaller, caused by the uniform data
representation and the lack of procedural flexibility (i.e., making up a procedure to solve a local
problem). However, the amount of memory and processor capacity needed increases
considerably more slowly than with the statistics. For higher order problems the neural
solutions are even faster, although all comparisons are based on simulations and not on parallel
hardware (e.g., transputers or even neural chips).

Neural versus Statistical NGrams

Log(Speed)

1 l 1
| | | I
2 3 4 5
Log(Memory)

Statistics N Neural Net

s ]
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Theoretical Results: Mathematical Derivation of Complexity

The graph presented in the previous section suggests an exponential complexity for the
statistical n-gram algorithm and a linear complexity for the neural one. Here, the experimentally
derived results will be proven correct by determining the complexity of both algorithms. In the
statistical as well as the neuronal algorithm, the complexity is determined on basis of a serial
implementation. The fact that the neuronal algorithm can be parallilized easily is ignored
completely.

N Number elements (possible occurrences)

n Order Markov chain (window size)

T Number n-grams in training text

S Number sensors per window

r Number neurons in update region

L Learning factor (the number of times the
training set is passed)

P Number of most frequent n-grams

Cm Memory complexity (space)

Ce Computational complexity (time)

Used Symbols

Both algorithms filter the strings before they are processed. Because the statistical as well as
the neural algorithm do this step, it is not interesting for a complexity comparison (except if it
was the most expensive step in the calculation, which it isn't here). The following steps are
important for the difference in complexity between these two types of algorithms. The
statistical algorithm has to count the n-grams, order the table on frequency, and normalize the
frequencies to probabilities before any query can be made. Thereafter, selections can be made
by comparing a filter n-gram vector with the n-gram vectors of the free-text data base: the
retrieval phase. The neural algorithm has two phases, a learning phase and a retrieval phase.
By comparing the calculations steps and the memory needed, an insight in the quality of both
algorithms can be obtained.

Two cases are being separated:

. All n-grams are being calculated, ordered and normalized. In the retrieval phase all n-
grams are used.

. Only the p best n-grams are selected from the entire n-gram vector. These elements are
being normalized and used in the retrieval phase.

The reason for this separation might be clear. In the first case, many elements equal zero.
Therefore, a calculation based on the p best elements of the n-gram vector probably evolves to
the same selection outcome. By using only the p best elements, the complexity can be reduced
considerably. For both cases, the statistical as well as the neuronal complexity is calculated.
First, we determine the complexity of the statistical algorithm in the case all n-grams are used
in the calculation.

The complexity of the n-gram counting varies between two values. If one uses N™ memory
elements, every n-gram can be updated directly by addressing is as: Z(char,))*26". However, if n

gets large, one definitely runs out of memory and a table holding the n-grams that occurred as
well as their frequencies must be used. By ignoring the non-occurring n-grams, memory can
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be saved. The worst search algorithm in such a table is a binary one. Sophisticated hashing
techniques probably result in a smaller value. Therefore the number of calculations needed in
the counting phases shall be somewhere in between T and T-In(NT). The Ordering phase is the
most intensive one. If all n-grams are being ordered, the number of calculations needed in the
Quick Sort algorithm is N-In(NT). Finally the normalization phase uses N! steps. Every table
element must be divided by the total number of counted elements. More advanced
normalization methods may substitute the frequency of occurrence with a probability for each
n-gram in a certain language, stipulating the non-frequent ones. The total number of
calculations for the learning phase is the summation of the above mentioned values. In the box
below, the result of this concatenation can be found.

The highest order term in this equation holds the complexity of the algorithm. All the other
ones are negligtable in the long run. In other words, the ordering phase determines the

complexity, the others are less important. Therefore, the complexity equals O(x™In(x1)). The
retrieval phase has the same number of calculations increased with a term for the matching

process. The complexity is of the same order: O(x™In(x1)). The amount of memory needed is
somewhere between g and N1, where g is the number of n-gram elements unequal zero. For
large texts, Cpy, probably reaches NI

Ccount T <C¢ < T-In(N")

Corder Cc =N In(N™)

Chormalize Cc=N"

Ciotal learn = Ccount *+ Corder + Cnormalize =>

Ctotal learn T + N® In(N®) + N < C¢ < In(N™) + NT In(N™) + NP =>

Cprocess text

Cc = Ox™In(x™))

T + N In(N™) + NP < C < In(NT) + N In(N™) + N

Cmatching Cc=N"

Ctotal retrieve= Cprocess text + Cmatching =>

Chotal retrieve T+ NUIn(N™)+ N"+N"< C.< In(N)+N In(N?)+ NP+ NP =>
Ce= Ox™In(x")) = Ox™-x™)

Cmemory Cp=N" =>
Cc = O™

Complexity for Statistical Algorithm: All N-Grams Used

If all n-grams must be ordered, a number of neurons between g and N must be used, where g
is the number of n-gram elements unequal zero. For large texts, this value reaches N1,

therefore, NI neurons are used in the determination of the complexity. In the learning phase,
the number of calculations equals the times the learning set is passed, multiplied by the number
of trigrams, multiplied by the number of calculations needed to learn one n-gram. This last term
is determined by adding the calculations for the determination of the best element on the map

and the update of the weights within on region. To compute the best neuron, s-n sensors of NI
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neurons must be evaluated. To update the weights, s-n sensors of r neurons must be updated.

Following from the equation in the box below, the complexity of the learn process is O(x™-n).
In the retrieval phase, the update term r and the number of times the learning set passed the
training procedure are eliminated, resulting in less calculations, but with the same complexity.
The number of memory cells needed is larger than in the statistical algorithm. There ought to be
a neuron for every possible n-gram. Every neuron has n windows of s sensors, resulting in a

complexity of O(x-n).

# neurons = NI

Clearning Ce= L-T-N2sn + L-T-rsn =
CC = O(xn'n)

Ctotal retrieve Cc=T-N%sn =
Cc = O(x"n)

Cmemory Cp =Nlsn -
Cm = O(x™n)

Complexity for Neural Algorithm: All N-Grams Used

Because the bigger part of the n-grams equals zero, it's quite silly to use all n-grams. The
ordering phase is responsible for the largest part of the calculations. Therefore, this is the place
to optimize our algorithms. By extracting the p best n-grams, the number of calculations in the

ordering phase is reduces to N™In(p); the number of elements times a binary search in an
ordered best-n-gram table. The complexity value derived from the equation in the box then

equals O(x™), a factor n less. The same holds for the complexity of the retrieval phase. The
amount of memory needed depends on the method used in the counting phase. This value

varies between p and N,

39



Neural Nets and Their Relevance in Information Retrieval J.C. Scholtes

Ccount T < CC < ln(Nn)

Corder C¢ =N"In(p)

Chormalize Ce=p

Ciotal learn = Ccount + Corder + Cnormalize =>

Cotal learn Cc =T +N"In(p) + p <C¢ < In(N™) + N In(p) + p =>
CC = O(xn)

Cprocess text CC = T + Nrl ln(p) + p < CC < ln(Nn) + Nn ln(p) + p

Cmatching Cc=p

Ctotal retrieve= Cprocess text + Cmatching =>

Ctotal retrieve Cc=T+N'In(p) +p+p <Cc <In(N") + N In(p) + p +p =>
CC = O(xn)

Cmemory P< Cm < Nn =>
1 <Cpy < O(x™)

Complexity for Statistical Algorithm: p Best N-Grams Used

However, in the neural algorithm, the number of used n-grams is determined by the number of
neurons in the map (every neuron can hold up to one n-gram). All less frequent n-grams are
absorbed by the more frequent ones. If p neurons are used, the number of calculations needed
in the learning phase reduces dramatically to O(n). The same holds for the retrieval phase. The
amount of neurons needed is of the order n.

# neurons = P
Clearning Cc=L-T-p'sn+rsn =
Cc = On)

Ciotal retrieve Cc=T-psn =
CC = O(n)

Cmemory Cc =psn =>
Cm = On)

Complexity for Statistical Algorithm: p Best N-Grams Used

Below, the various complexity values are combined in a table. In the brute force comparison
algorithms (the statistical as well as the neuronal), the order of calculations is exponential with
respect to the window size. The neural algorithm is a bit better, but uses a little more memory
than the statistical one. Therefore, it will be hard to increase the context sensitivity of such
systems. On the other hand, if only the 'p best n-grams' algorithms are used, the statistical
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algorithm has an O(x™) complexity, where the neural one has an O(n). This is an exponential
versus a linear complexity, both with an up to exponential and a linear memory usage. Here,

J.C. Scholtes

the neural algorithm definitely outperforms the statistical one for large n's (= 4). Please be
aware that the neural complexity calculations are based on serial simulations and not on parallel
ones. If the Kohonen feature maps would be implemented in large neural chips, the results
would be even better 12,

Complete Sort

Select p best n-grams

Learning Retrieval Learning Retrieval
Speed Mem Speed Mem Speed Mem Speed Mem
Statistics Ox"n) o™ || ox"n o™ | o™ || <ox™ || o™ || < o™
Kohonen Net ox™n) Jlox"n ]| ox'"m [[ox"m [ om || om || ow || ow

Moreover, one has to realize that these results are strictly theoretical. They only hold in the long
run. In the beginning, the statistics outperform the neural algorithm, but as n grows, the neural
algorithm surpasses the statistical one. This is mainly due to the sorting phase in the statistical

algorithm. One can optimize this, but the complexity remains exponential, were the neural
algorithm remains linear.

12 Moreover, by using methods as proposed by [Kelly, 1991] and [Koikkalainen et al., 1989] the search for the

Best Matching Unit (BMU) can be done with the aid of a binary tree, storing the weight vectors in an ordered

fashion. Then, the complexity in speed decreases from O(n) to O(In n). The complexity in space increases from

O(n) to O(n’ In n).
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Simulations and Results Neural Interest Map

A vector representing text distribution features can be derived for every paper in the data base.
Such a vector then represents a fingerprint of a data base object. Fifty papers were scanned en
their corresponding vectors were taughed to the neural in the following simulations. The
Kohonen learning mechanism is just standard. No special features were used. Two aspects are
pointed out before the simulations are discussed. First, these simulations differ from the ones
as proposed by [Gersho, 1990a-b], [Wermter, 1991] and [Lin et al., 1991] in that the former
use very restricted text parts for the derivation of the feature vectors (mostly titles) and that the
methods are based on a custom well optimized hand-made keyword selection. Here, the
keywords are derived from the text in the objects automatically and the feature vectors are
based on keyword distributions in the learning text. Therefore, the vectors have very high
dimensions and must be trained for long times. The result is a fully automatic (neural)
clustering mechanism.

The Neural Filter simulations could still be implemented on a high end PC. These Neural
Interest Map required a more powerful computational basis. This was due to several reasons.
First the simulations needed many more training cycles. These learning cycles on their own
took longer because they were based on larger vectors (500 to 2500 dimensional). However,
the main reason why the PC was no longer suited for the simulations was that the PC could not
calculate with large enough precision to garantuee convergion. One definitely needed the
extended precision calculations of the Sun IPC to organize the elements in the map based on
very small differences in vector dimensions. Sometimes, even the Sun floating point were not
good enough, and the map could not converge. This was especially the case with the n-gram
based simulations.

Preprocessing Keywords and N-Grams

Before the vectors can be taught to the neural map, they have to be derived from the free-text
data base in the first place. This can be done by some preprocessing programs. As an initial
step we derive the m most frequent words used in all the text parts. Next, the word distribution
of these m words in the n text parts must be calculated. The distribution can be expressed in
various forms:

. The occurrence can be measured (0 equals no occurrence, 1 equals the keyword occurs,
the number of times it occurs is ignored).

. The word frequency can be normalized with respect to the total number of keywords in
all text parts.

. The word frequency can be normalized with respect to the maximum occurrence of this

specific keyword in all the text parts.

. The word frequency can be normalized with respect to the total occurrence of this
specific keyword in all the text parts.

Once the n vectors of m dimensions have been derived, they are taught to the neural net in a
random way. After a certain training time, the neural net holds a representation of the relations
between the papers in the data base. Related papers shall be stored in neighbouring neurons.

When we substitute the keywords by n-grams (with spaces), a language independent clustering
method results. First, the n most frequent n-grams are determined. Next, the distribution of
these n trigrams in m text parts is examined. The obtained vectors can be normilized in the
same different ways as the keywords are (see above). The n-gram vectors are much larger than
the keyword vectors. In general, we taught only those n-gram dimensions that were unequal
zero. To increase performence, the number of n-grams can be reduces even more. However,
this can limit the cluster information. The normalized n-gram distribution vectors (one per text
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part) are taught to the Kohonen feature map in random sequence. After learning,the map holds
related papers in neighbouring areas.

As with many computational linguistic problems, the solution of the clustering problem lies in
the proper choices of the data representation.

Results Interest Map Based on Keywords and Large Preselected NGrams

In the simulations of the Neural Interest map based on keyword frequencies, a 10 by 10 map
with 500 input sensors per neuron was used. The maps were trained somewhere between
5.000 up to 15.000 train cycles.The following maps were found:
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Although the above three maps hold some interesting relations, the overall conclusion is that
they are quite wrong. The papers zero, one and fourty nine are all on nuclear weapons
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restriction talks. Zero and 1 are in neighbouring regions, but 49 never is. The papers 25, 32,
34 are all on economical issues, etc. The vectors used were too much related due to the small
values caused by the normalizations used. The coding that did work well was the one where
each dimension represented one word. If a word occurred in the text part, the dimension equals
one, otherwise it equals zero. By eliminating the frequency of occurrence, the vectors became
more distinguishable and therefore better learnable. The picture on the next page shows the
map obtained after 15.000 training cycles.

20
XAXXXXX
23

23
XXXXKXX
2

3
XXXXXXX
5
XXAXXXXX

XXXKXXX
18
XXXXXXX
XXXXXXX
36
XXAXKXXXX
XXXKXXX
4
XXXXXXX
6

22 21
XXXXXXX 19
35 XXXXKXXX
XXXXXXX 33
XXXXXXX XXXXXXX
12 11
13 14
XXXXXXX 15
7 XXXXXXX
9 8

24

XXXXXXX
38

XXXXXXX
XXXXXXX
10

XXXXXXX
XXXXXXX
XXXXXXX
XXXXXXX

XXXXXXX 48 48 XXXXXXX 47

46 XXXXXXX XXXXXXX 49 AXXXKKXKX
37 XXXXXxx 40 XXXXXXX 0
XXXXXXX 39 XXXXXXX 41 XXXXXXX
34 XXXXXXX 42 XXXXXXX 1
XXXXXXX 44 XXXXXXX 43 XXXXXXX
17 XXXXXXX 45 XXXXXXX 32
XXXXXXX 16 XXXXXXX 31 XXXXXXX
26 XXXXXXX 29 XXxxxxx 30
XXXXXXX 25 27 28 XXXKXXXX

10 by 10 Interest Map of 500 Keywords: 01 Vectors: 0: Word does not occur, 1 Word Occurs

Translated to what the areas mean (by using the table with short document descriptions), the
neurons are related to the following objects:

Smoking

Afganist
Afganist

Museum
Literat.

War

Space

Nature

Art

N Weap N Weap
Nature
Baking
World
Poem
New Year Labour
Constr.
Peace

Africa

Quality

Theatre 0l1ld Past

Rabbits Story

N. Weap N. Weap New Year

Working
Com. Pty

Dreams

Genetic Genetic Justice
SDI
France SDI
Cambodia

Sports

Santa
New Year
Indust
Gasoline
Transp. Soc.
Carnival
Economy Ec.Mil.

N Weap
Economy

Cars
Ec.Italy




Neural Nets and Their Relevance in Information Retrieval J.C. Scholtes

There are two clusters related to war. One on the bottom left which holds documents on
conventional warfare. The upper left cluster is based on the more scientific SDI warfare. Why
these two clusters are so far separared is not clear. On the right side, a large cluster with
economical documents can be found, Within this group, smaller neigbourhoods hold
transportation cluster, socialism clusters and quality (a hot item in the USSR) clusters. The
more manual labor based economical documents are on the left side. Surrounded by a cluster
for Art and one for Nature (e.g., Africa). This can be translated to the following global area
topics:

Labour

Economy f Nature

Science % Industry /] Space

% School

Although some groups are still separated for reasons which are not clear yet, the overall
impression is that this map holds the semantical relations between the documents.
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Results Interest Map Based on Trigrams

The words in the simulations just mentioned were derived automatically, so the step to n-grams
isn't that large. By incorporating spaces, relations between words can be characterized by n-
grams. Because the system cannot learn to much n-grams, the m most frequent n-grams can be
taught only. This set of n-gram vectors must be derived first, resulting in an exponentially
complex problem with respect to the size of n. Therefore, only simulations for n is 3 are carried
out. Because the differences between the vectors were very small and the vectors very large,
one cannot use the real frequencies of trigram occurrences in the training set. Therefore, the
real frequencies were substituted by 0 and 1's, as in the simulations above. The map formed
organized itself after long training times. The results are comparible to the keyword based
organizations, although it takes much longer to derive them.

Retrieval Neural Interest Map

The retrieval is always based on the calculation of a keyword or n-gram vector with classical
methods. The keyword mathc is quite fast, because one only needs to calculated the frequency
of known words. Normally, the distionary is of restricted size. By incorporating advanced
hashing techniques, the elements can be updates quickly.

More difficult is the derivation of a n-gram vector per document. Although one also has a
restricted feature space, it is much larger than the keyword space. Moreover, search times are
longer for n-grams than for keywords (see Neural Filter results for a motivation).

Once the vector has been determined, it can be fed forward in the feature map to derive the Best
matching Unit (BMU). This BMU represents the document most correlated with the vector.
The neurons within a certain euclidean distance hold related documents. However, one needs
the BMU as well as the cluster boundaries to make a responsible desicion on the measure of
correlation between documents. An example is given in the picture below.
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If the vector x correlates best to the BMU with weight w at neuron (i,j), then all neurons in
positions ( it3, j£35) are supposed to be related (dark circle). If we have a map as indicted
above, all documents within a certain euclidean distance are related. The neuron (i,j) is then
related to all interests in the same way. However, even if we take 8 small, this is not always
thruth. What if the neuron at the feature map looks like the one derived in the Interest Map. If
the BMU seems to be the neuron at position (i,j) (see picture below).

The BMU is positioned exactly at the border of multiple interests. The reason why these
interests are neighbouring is not because they are related, but because they are forced to
interconnect due to the dimension reduction properties of the feature maps. If we use the
euclidean distance as a selection criterion, the documents selected are not the proper ones.
Some interests which are neighbouring have nothing to do with each others.

So, the only way to make a reasonable decision is by incorperating the BMU as well as the
cluster boundaries. This is a big disadvantage, because then one has to determine the cluster
boundaries manually. These desicions take much work, are very personal and therefore
subjective and sensitive to errors 13,

More on this problem can be found in the next sections.

13 Currently, the possible automatic determiniation of cluster boundaries is under investigation. By measuring
the distance between the weights of two neighboring neurons (the Euclidean as well as the Cosine), a feature
map landscape can be calculated which holds high values for non-related neighboring neurons, also called
fractions in the homogenuity of the distribution. These hills might then be incorporated as clustrer boundaries in
the selection process to avoid selection of non-related objects.
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Discussion

This section discusses several items in the field of neural information retrieval. To get a better
overview, the subjects are organized under different headings.

Neural Nets for Information Retrieval & Information Retrieval for Neural Nets

Information retrieval, being a clear pattern recognition problem, has mainly been benefiting
from statistical pattern recognition technologies. The enormous amounts of data to be
processed actually didn't allow any other methods within practical limitations. As time passed
by, many researchers tried to increase the level of analysis without blowing up the
computational needs. Due to this constraint, the information retrieval tool box could never use
any linguistic theory. Therefore, the used algorithms are restricted to local surface analyses.

Recent research in connectionist natural language processing showed interesting self-
organizing models that can learn finite state grammars and simple semantical relations from
unformatted data. Moreover, these neural devices showed remarkable competetance in
clustering and classification tasks of incomplete data sets. All these properties are well known
functional demands for information retrieval systems. This combined with the implicit
parallelism makes one wonder why the research toward neural nets in information retrieval still
is restricted to such a small school, although the number of papers appearing in literature is
increasing [Belew, 1986], [Personnaz et al, 1986], [Doszkocs et al., 1990], [Gersho, 1990a-
b], [Kwok, 1990], [Kwok, 1991], [Rose, 1990], [Allen, 1991], [Scholtes, 1991d-g & 1992a-
c], [Wermter, 1991], [Lelu, 1989, 1991], [Hingston et al., 1990], [Wettler, 1989,1990],
[Mozer, 1991], [Rapp, 1991], [Bochereau Laurent et al., 1991], [Brachman et al., 1988],
[Eichman et al., 1991, 1992], [Jung et al., 1991], [Van Opdorp et al., 1991].

Beside the positive contribution from neural nets to information retrieval, there is also a return.
Information retrieval has a long and well known history in statistical pattern recognition. Many
problems have indeed been solved by using such methods. Comparisons of such results with
new results in neural information retrieval give us an entry to gain a much better insight in the
exact relation between neural nets and other classical pattern recognition solutions. Because, if
neural nets are such good pattern classifiers, where does one position it with respect to the
known pattern recognition theories.

Even more interesting is the contribution of information retrieval to NLP. Because information
retrieval problems are often much simpler, they clarify neural bottle-necks much easier than
NLP problems, thus contributing to the development of better neural models for NLP.

Information Retrieval With N-Grams

A major drawbacks of a keyword-matching system is the need for a dictionary, and the lack of
context. Markov chains over words solve the latter, but need enormous amount of memory (at
least in statistics). N-grams seems to provide an acceptable solution for a reasonable price.
They are not sensitive to noise (see examples), they can be used without predefined linguistic
knowledge, and they can be derived automatically.

By varying n between 3 and 7 a proper contextual analysis is derived without the usage of
dictionaries. If one incorporates spaces in such a higher order model, n-grams with starting and
trailing spaces hold information on words transitions, thus implementing syntactical and (low
level) semantical relations [Brown et al., 1990], [Jelinek, 1989 & 1991a-c].

Here, the n-grams are used in the filtering as well as the clustering algorithm. Especially in the
filtering solution do they do very well. The ability to represent 7-grams without any
computational pain definitely improves recognition rates. The n-gram over n-gram simulations
showed even better results. On the other hand, the application of n-grams in the clustering
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algorithm wasn't that easy. It needed more computational power than expected. However, by
using various optimization techniques, the results were easier derived than if the simulations
had to be hand-coded.

Statistical versus Neural Information Retrieval

Normally, statistics is faster than neural nets. Here, some opposing results are found in the
case of the neural filter. Where the statistics are either exponential in time or space, the neural
algorithm scales linear. If one wants to use higher order n-gram analyses to avoid dictionaries,
suffix preprocessing, and other language dependencies, linear scalability is an essential
property. The most obvious statistical algorithm does not fulfil this demand.

Recent claims that all neural net solutions can be implemented with regular statistics at higher
speed and with more flexibility, seem true at first sight. But, there are cases in which the
statistical solution loses the competition is lacking, as shown by the complexity comparisons in
the neural filter experiments.

The flexibility one has in statistical models (local optimization) lacks in neuronal modelling.
However, once an efficient neural algorithm has been developed, it can be scaled smoothly to
much larger dimensions of the problem. Moreover, neuronal models have many implicit
properties, such as inherently built-in generalization and association, which one must define
explicitly (the draw back of flexibility) in statistical ones. So even if one constructs an
algorithm that is as efficient as the neural one, then one still has to hand code many functions
that neural nets already provide.

Please note again that the complexity calculations are based on serial simulations only.
However, the fact that the neural algorithm can be parallelized efficiently, should not be
forgotten. All Neural Filter simulations are implemented on a 386 PC with 600 Kbytes
(available) RAM.

The Filter and Interest Map as Hashing Functions and Semantic-Cognitive Maps

In this paper, algorithms from two different perspectives have been presented. The neural filter
algorithms learn a (static) query and match it against a dynamic text. This algorithm
outperforms the statistical one in speed and quality.

Which selection rule suites best in a certain application depends much on the person using it.
The n-gram on character filters is capable of filtering large amount of data, but cannot
specifically indicate which ones are the best. The n-grams on words and the models that
incorporate spaces can discover high correlations within times equal (or even faster) to the low
level n-gram filters, but eliminate all non so closely related papers. Most of the time,
combinations of such selection functions work best: negative to filter the noise and positive to
indicate possible candidates.

If one studies the behaviour of the Neural Filter, the question arises what the exact relation with
another well-known addressing technology is: hashing. On the one hand, the relation is very
clear: neural nets are large (calculating) associative memories, able to store elements efficiently.
On the other hand, the reason why certain elements are stored and others are eliminated is not
clear yet [Boyer et al., 1977], [Bozinovic et al., 1982], [Harrison, 1971], [Knuth et al., 1977],
[Larson, 1988], [Mclllroy, 1982].

The Interest Map stores various n-gram and vectors from more static text and matches this
neural map against (dynamic) queries. Here, the use of neural nets does not have the same
amount of success as the neural filter, although the latter is a very well generalizer. Future
research should determine whether statistics can be outperformed here as well .
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The relation between the Neural Interest map and well known semantical and cognitive maps
obvious in a certain way. However, the Kohonen feature map is just a small step in the
direction of the functional requirements as ment in literature. One should not overestimate the
power of feature maps. Especially the problems related to the cluster boundaries (due to the
dimension reduction) are quite hard to solve.

Higher Order Linguistics & Knowledge Representation

A main problem of information retrieval has been the dilemma that higher level analyses were
not available at reasonable prices. Recent research in connectionist neural nets showed how to
learn complicated finite state grammars with recurrent neural nets. By learning word
sequences, neural nets were able to learn regular grammars. Although these grammars are the
simplest possible, they can definitely increase recognition performence. However, the infinite
Markov models learn very slow and are quite unstable. But, it seems that most information
retrieval systems are aided sufficiently with a restricted Markov model (such as trigrams over
words). The fact that neural nets can learn these relations in linear time, opens a scala of new
possibilities for neural nets in information retrieval.

So much for the treatment of structural analysis in IR. Another important problem is to
incorporate meaning in IR. Yet, there is no real meaning involved in the algorithms proposed.
There are the contextual relations incorporated in the n-gram representation. By generalizing
over these contextual structures, simple semantic relations can be derived. However, real
meaning and the interpretation of conceptual structures is something more complicated, and
seems not to be taken lightly or solved solely by means of n-grams.

Synonyms can be added to a neural filtering model by comparing the input text with some
synonym networks, resulting in a synonym group. Then, this group can be compared to the
query. The other way around is also possible for the Interest Map. The derivation of the
synonym groups can be done completely unsupervised from flat strings with e.g., the
algorithm proposed in [Scholtes, 1991a-c], where substitutional (semantical) identical words
are clustered in neighbouring regions of a recurrent Kohonen map. Of course, there are also
various other mechanisms available to solve this problem. This also indicates an answer to the
problem of meaning. What kind of meaning do we want: complex logic, or simple
generalizations? The addition of microfeatures can probably solve the largest part of the
problem. But they introduce many new problems. Therefore, these low level semantics seem to
be a better alternative for the time being.

Other research focuses on knowledge representation structures for information retrieval. The
early connectionist models were mainly used for such applications. Only recently have neural
nets been used for clustering tasks. A possible use of such clustering neural nets for
knowledge representation is in the use of hierarchical feature maps, where relations between
objects and classes of objects is catched in the hierarchical structures. Another solution can be
found in [Allen, 1991], who uses a simple recurrent network (SRN) to teach semantical issues
to a back-propagating net.
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Problems of Feature Maps

There are some serious problems with the feature maps as used in these simulations. First there
is the neural filter. We do use this property of the feature map during the learning phase, but it
results in strange and sometimes unwanted effects. Frequent n-grams disappear and non-
existing ones appear. However, if we eliminate the neighbourhood effects and thus implement
a form of Principle Component Analysis (PCA) [Oja et al., 1988, 1991], the non-frequent n-
gram are no longer thrown out of the feature map 14. If we reduce the neighbourhood effects,
the model converges much slower and ends up representing the n-gram distribution less

welll5. So even if we don't explicitly use them (or don't exactly understand them), the
neighbourhood effects seem to have a significant role.

Next, how do we interprete a topological map of n-grams or keywords. We do not use this
property of Kohonen feature maps in the retrieval phase because we do not know how! This
problem is closely related to some assumptions we made about the underlying probability
distribution. The Kohonen Feature Map requires a predefined network structure (e.g., fixed
dimension, fixed rectangular or hexagonal connection structure and fixed square, triangular,
circular but continuous homogeneous topology). If we consider the map used in these
simulations we do in fact presume that language is two-dimensional, rectangular and
homogeneously distributed, which is of course not true.

This problem is even more clear in the case of the interest map. After the training phase, related
objects must be in related neighbourhoods. However, what if a paper is on the border of
multiple clusters. If this neuron is selected as the Best Matching Unit (BMU) on the Kohonen
feature map, then the Euclidean distance does not represent a proper measure of correlation.
One has to incorporate the cluster boundary knowledge in the classification decision. Such
cluster boundaries must me derived by the model itself and not by an external supervisor.

Future research concentrates on the development of learning algorithms which automatically
construct feature maps that do fit the underlying probability distribution. These algorithms
should develop a feature map in an n-dimensional space with various interconnecting schemes
and form different maps representing clusters of interest [Fritzke, 1991a-b] [Martinetz et al.,
1991]. These maps can then be combined in a hierarchical network which models the interest
of an individual automatically from free text.

Adaptation

In this paper, the Kohonen map used is forced to converge by a decreasing region size and is
therefore not adaptive to a slowly changing environment. By changing the learning rule, better
learning functions can be developed, resulting in an adaptive neural model of someone's
interest that changes slowly in time.

14 According to Professor E. Oja, the underlying distribution function of the n-grams is much too clustered to
use PCA's or comparable methods. Such mechanisms only work properly for very homogeneous data sets of
noisy natural data.

15 According to Professor T. Kohonen, it is really difficult to understand what is happening on the feature map.
However, if the neighbourhood function has been eliminated in other applications, learning slowed down and the
cluster boundaries on the feature maps were much more discontinuous. So, even if you don't understand the
topological map, you can still use the neighbourhood effects to to end up with a smooth representation of the
probability function of the learning set.
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Kohonen Feature Maps, Back Propagation and Other Neural Paradigms

Is the Kohonen feature map the best neural model for the simulations carried out? There are
many other neural models. The early neural information retrieval used localist knowledge
representations (one neuron for one concept). Recent efforts showed the application of feed-
forward and recurrent back-propagating nets. Kohonen feature maps are just recently invoked
in IR applications. Hopfield nets and other associative memories have also been used, but only
rarely.

In general, clustering and generalization problems are best solved with self-organizing nets,
such as the Kohonen feature map, the Simple Recurrent Network (SRN), and ART. Mapping
problems or function approximations can best be done by a feed-forward back-propagating
neural net. Temporal processing can best be done by an SRN or any other recurrent model.
Associative memory problems might be solved be either neural net: BP, Kohonen, ART, etc.
Of course, these applications can also be solved with other net types, but the nets mentioned
are the most natural choices.

Information Retrieval is a clustering problem. Based on a selection of specific features (e.g., n-
grams or keywords), a representation of an object is derived by feature extraction. The objects
are categorized in clusters by the retrieval function. Main issue is the determination of such
features, so the difference between clusters is as big as possible (or, as little as overlap as
possible, since overlap causes the classification error). Because the Kohonen feature maps are
the computationally most effective self-organizing nets, they are in fact the best neural net for
such problems.

However, it is also possible to use an SRN to teach a representation in the neural filter. A
disadvantage of the application of an SRN in the neural filter is the fact that the model
implements a infinite order Markov chain by using recurrent fibres. This is just much too
sophisticated. If we use a regular BP net with a window, the net does not form a representation
as good as the Kohonen feature map. The representation is much more discontinuous.

Moreover, it is hard to structure the input set. In the case of the neural interest map, either the
SRN or the Kohonen feature map does well. Both run out of addressing space and both have
shown to be pretty good in such clustering problems. An advantage of the Kohonen feature
map might be a faster and more stable convergence. Recent simulations of SRN's in IR
showed very long training times. However, the cluster boundary determination problem is
much harder in Kohonen feature maps than in the SRN. Future Kohonen net types might solve
this problem.

If one wants to learn a specific mapping or function approximation, then back-propagation

seems to be the best choice. However, one has to realize that most IR problems are clustering
problems and not mapping problems, making BP a second choice.
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Future Research

Future research concentrates on different items. First there is the implementation of higher
order linguistic structures based on the Data Oriented Parsing (DOP) paradigm. Next, the
incorporation of knowledge representation structures implemented by hierarchical feature maps
shall be evaluated. Finally, network types that adapt themselves to the underlying probability
function are evaluated on their usefulness in information retrieval.

Data Oriented Parsing

In the DOP paradigm, words as well as their syntactical and semantical categorizations are
stored in an efficiently implemented data base. Parsing consists of matching (partial) sentences
to known sentence structures in the data base. The exact matching algorithm and efficient
implementation are main topics in this research. For the moment, high order Markov chains
represent the temporal aspects of the sentences and complicated mathematics implement the
matching functions. The research carried out here shows that certain neural nets are very well
suited to implement such information efficiently. Therefore, a model incorporating sentences
and their syntactic categories in information retrieval is begin developed and evaluated at the
very moment [Scha, 1990].

Hierarchical Feature Maps

Many researchers have used the concept of hierarchical feature maps to represent relations
between concepts [Miikulainen, 1990a,b]. However, the main problem is the connections
between the feature maps; how does one define them and how are they incorporated in the
learning process [Kangas, 1990], [Samarabunda et al., 1990], [Stotzka et al., 1990], [Tacker
et al., 1990], [Ichiki et al., 1991], [Kohonen, 1991].

On the other hand, if the maps are derived (manually or automatically) they provide a great tool
for the integration of knowledge structures in information retrieval. These feature maps might
be on their own, they can be combined with the automatic derivation of synonym groups, as
carried out in [Scholtes, 1991a-c], or they can be incorporated in the DOP simulations.

More on the classic ideas in hierarchical document organization can be found in [Jardine et al.,
1971], [Willet, 1979, 1984, 1988]

Growing Net Structures

The most promising and most important future research in neural information retrieval is the
evaluation of growing net structures. By automatically deriving the best (clustered) structure
for a specific probability distribution, the effects of the neighbourhoods in the neural filter as
well as the problems with the cluster boundaries in the neural interest map may be solved in an
elegant way [Fritzke, 1991a-c], [Martinetz et al., 1991].

Genetic Algorithms in Information Retrieval

To avoid the very undeterministic character in Neural Net applications (the model either works
or not, local optimizations are hard or impossible), an increased interest in genetic IR can be
spotted. Here, only some pointers are mentioned. Detailed discussion is outside the scope of
this paper [Bennett et al., 1991], [DeJong et al., 1989], [Sharma, 1989], [Siegelman et al.,
1991]
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