Institute for Language, Logic and Information

GENERAL LOWER BOUNDS FOR THE
PARTITIONING OF RANGE TREES

Michiel H.M. Smid

ITLI Prepublication Series
for Compuation and Complexity Theory CT-88-02

33(%%

University of Amsterdam

nstitute for Language, Logic and Information
nstituut voor Taal, Logica en Informatie

GENERAL LOWER BOUNDS FOR THE
PARTITIONING OF RANGE TREES

Michiel H.M. Smid
Centre for Mathematics and Computer Science
Amsterdam

Received April 1988

Correspondence to:

Faculteit der Wiskunde en Informatica Faculteit der Wijsbegeerte
(Department of Mathematics and Computer Science) or (Department of Philosophy)
Roetersstraat 15 Grimburgwal 10

1018WB Amsterdam 1012GA Amsterdam

General Lower Bounds for the
Partitioning of Range Trees

Michiel H. M. Smid*
April 1988

Abstract

When storing and maintaining a data structure in secondary memory it
is important to partition it into parts such that queries and updates pass
through a small number of parts. In this way the number of disk accesses and
the amount of data transport can be kept low. This paper presents general
lower bounds for partitioning range trees, which improve previous results.
It is shown e.g. that if a d-dimensional range tree for a set of n points is
partitioned into parts such that each update passes through at most g(n)
parts, there must be a part of size at least %(ﬁ)-)dnl/ 9(n) (log n)4-1.

1 Introduction

This paper continues the study of the maintenance of range trees in secondary
memory (see Overmars et al. [3], Smid et al. [4]). The range tree is an efficient
data structure solving the orthogonal range searching problem, a problem having
many applications in e.g. computer graphics and database design.

Definition 1 Let S be a set of points in d-dimensional space, and let ([z; : y1],[z2 :
Ya],. .., [Ta : yd]) be some hyperrectangle. The orthogonal range searching problem
asks for all points p = (p1,P2,...,Pa) tn S, such that z; < p; < y1,22 < pp <
Y252 Zd < Pa < Yd-

We assume in this paper that the data structure solving the range searching prob-
lem is too large to be stored entirely in main memory, a situation that very often
occurs in databases. Therefore the structure has to be stored in secondary mem-
ory, and, in order to answer queries and to perform updates, parts of the data

*Bureau SION, Centre for Mathematics and Computer Science, Kruislaan 413, 1098 SJ Amster-
dam, The Netherlands. This work was supported by the Netherlands Organization for Scientific

Research (NWO).

structure have to be transported from secondary memory to core, and vice versa.
Hence, it is necessary to partition the data structure into parts, such that queries
and updates pass through only a small number of parts (hence only a small amount
of data has to be transported). In this paper we shall only consider updates.

Definition 2 A partition of a dynamic data structure, representing a set of n
points, is called an (f(n), g(n))-partition, if

1. Each part has size at most f(n).
2. Each update passes through at most g(n) parts.

It follows from this definition that the structure can be stored in secondary mem-
ory, such that each update requires at most g(n) disk accesses, and at most g(n)
parts, each of size < f(n), have to be transported. In [3], several partition schemes
are given for range trees, obtaining different trade-offs between f(n) and g(n). In
[4], lower bounds for partitions are given. As an example, it is shown there that for
an (f(n), k)-partition of a d-dimensional range tree, where & is a positive integer
such that n > 2%, we have f(n) > Z-1:(})4 1nl/k(logn)?¢ 1. Clearly, this result
remains valid if £ is a function of n. So let g(n) be an integer function such that
1 < g(n) < logn. Then for an (f(n), g(n))-partition of a d-dimensional range tree,
we have f(n) > Z_4—(;(—1,;7) d-1p1/9(7) (log n)4~1. In the present paper we improve
the lower bounds in [4]. E.g. we show that for an (f(n), g(n))-partition of a d-
dimensional range tree, f(n) > 7127(3(13) 4p1/9(7) (log n)4-1. The ideas to prove these
general lower bounds are similar to those in [4] (indeed we use several lemmas
from that paper).

Range trees are defined in Section 2 and we give an algorithm to insert and
delete points. The notion of range trees we use in this paper is the same as
in [4]. We do not require trees to be balanced. As the lower bounds we prove
apply to any tree (rather than to some trees) in the class of range trees, the
bounds also hold under the usual definition, i.e. for range trees having BB|e]-
trees as underlying structure. (Moreover, the bounds are more general and would
also apply if we for example would use AVL-trees as underlying structure.) In
Section 3, we prove the lower bound for binary search trees or, equivalently, for
one-dimensional range trees. In Section 4, we give a lower bound for so-called
restricted partitions of multi-dimensional range trees, which turns out to be tight
(except for constant factors). Then, in Section 5 the general lower bound for multi-
dimensional range trees will be presented. We conclude the paper with some final
remarks in Section 6.

The following notations will be used in the rest of the paper. First, logarithms,
and powers of logarithms, are given in the usual way, i.e., we write log n, (log n)?,
etc. (in this paper, logn denotes the logarithm to the base 2). Furthermore, the
k-th iterated logarithm is written as follows. If k = 1, then (log)'n = logn. If

k > 1, then (log)*n = log ((log)"‘ln). The function log* n is defined by log*n =
min{k > 1|(log)*n < 1}.

If we have a partition of a range tree into parts, then the size of a part is
defined as the number of nodes it contains.

2 Rg/ng’/e trees

In this section we define range trees, and we give an algorithm to insert and delete
points.

A binary search tree, or just binary tree, is a rooted tree, in which each node
has zero or two sons. In this paper, binary trees are used as leaf search trees.
That is, if we use a binary tree to represent a set S of real numbers, we store the
elements of S in sorted order in the leaves of the tree. Internal nodes of the tree
contain information to guide searches. The binary tree is the underlying structure
for range trees (see Bentley [1], Lueker [2], Willard and Lueker [5]).

Definition 3 Let S be a set of points in d-dimensional space. A d-dimensional
range tree T, representing the set S, is defined as follows.

1. Ifd =1, then T 1s a binary tree, containing the points of S in sorted order
in 1ts leaves.

2. Ifd > 1, then T consists of a binary tree, called the main tree, which contains
the points of S in its leaves, ordered according to their first coordinates. Also,
each internal node v of this main tree contains an associated structure, which
ts a (d — 1)-dimensional range tree, representing those points of S which are
tn the subiree rooted at v, taking only the second to d-th coordinate into
account.

Note that in our definition, we do not impose any balance condition on the binary
trees. All results in this paper apply as well for balanced as for unbalanced range
trees.

Let T be a d-dimensional range tree, representing the set S, and let v be a
node of T' (v is a node of the main tree, or of an associated structure, or of an
associated structure of an associated structure, etc.). Let S, be the set of those
points of S, which are in the subtree of v. Then node v is said to represent the
set S,.

For an algorithm, solving the orthogonal range searching problem using range
trees, we refer the reader to [1,2,5]. The update algorithm for these trees is as
follows. Suppose we want to insert or delete point p in the range tree. Then we
search with p in the main tree to locate its position among the leaves, and we
insert or delete p in all associated structures we encounter on our search path.
If these associated structures are one-dimensional range trees, we apply the usual

insertion/deletion algorithm for binary trees (possibly with rebalancing); otherwise
we use the same procedure recursively. Finally, we insert or delete p among the
leaves of the main tree.

In this paper, we consider two types of partitions of range trees. A partition of
a d-dimensional range tree, where d > 1, is called restricted if only the main tree
is partitioned, whereas associated structures are never subdivided. In a restricted
partition, a node of the main tree and its associated structure are contained in
the same part. The second type of partitions we consider, are those in which also
associated structures are divided into parts. In the rest of this paper, the term
partition (without the adjective restricted) indicates a partition of this second

type.

3 A lower bound for binary search trees

Let g(n) be an integer function such that 1 < g(n) < logn. In [4] it is shown
that if a binary leaf search tree is partitioned into parts, such that each path from
the root to a leaf passes through at most g(n) parts, there must be a part of size
at least 5=y n'/%("). In terms of Definition 2, for an (f(n), g(n))-partition of a
binary tree, we have f(n) > W%ﬁnl/ ("), (This result is stated in [4] only for
constant functions g(n). It is clear, however, that the bound remains valid for
non-constant functions g(n).) In this section we shall improve this lower bound.
We first give the following lemma.

Lemma 1 For any non-negative integer k, we have

k
(5) < K< K,
€

where e is the basis of the natural logarithm.

Proof. The proof follows from a straightforward calculation: Ink! = % ,Inz >
Y, i nzdr=[fInzdr=klnk—k+1> klnk—k = kInX. Hence k! > (¥)*.

The other inequality is trivial. O

We need the following lemma from [4]. (We remind the reader to our notion
of the set of points represented by a node, see Section 2.)

Lemma 2 Let T be a binary tree with n leaves. Let m > 1 be a real number.
Then the number of nodes in T, representing at least m leaves, is at least = — 1.

If we take for T' a balanced binary tree, we see that this bound is tight (except for
constant factors). Lemma 2 enables us to prove our first lower bound. Clearly, for
a binary tree from a class of O(log n)-maintainable trees— e.g. an AVL-tree—there
exists a (1,O(logn))-partition: put each node in a separate part. Therefore, it is
sufficient to consider only (f(n),g(n))-partitions of binary trees with g(n) < logn.

4

Theorem 1 Let g(n) be an integer function, such that 1 < g(n) < logn. Let T
be a binary leaf search tree representing n points. Suppose the tree T' ts partitioned
into parts, such that each update passes through at most g(n) parts. Then there is
a part of size at least

1/g(n)
(_”_) 1 o~ & _q,
g(n)! g(n)

Proof. Let m; = g(ﬂffz)“/ 9(n) for 0 < 5 < g(n) — 1. We first show that the m;’s

are at least 1. Clearly, mg =n > 1.
Let 0 < ¢ < 1g(n). Then, by using Lemma 1,

m; = nl—i/g(n) M > nl—i/g(n) (y(n)) > \/;,: (g)z .
: €

1 - et

Since ¢ < 1g(n) < Llogn, it follows that \/n > 2¢, and hence m; > (%) > 1.
2 - 2 e
Let 2g(n) < i < g(n) — 2. Again using Lemma 1, we get

1/g(n) .
m; . n 1+1 1/ 1
= _— > 9(n) > —p1/e(n) > 1.
(7+1) (g(n)’) 2 T n > 5 >1

Also
nl/g(n)

e 1/g(n)
Myn)-1 = 9(n) | — > g(n) ———=n"9" > 1,
g(n)-1 g(n) (g(n)') g(n) a(n)
Hence for 2g(n) < ¢ < g(n) — 2, we have
Mg 2> Miyg > My 2 ... 2 Myp)—1 > 1.

Let P; be the following property:

v; is a node in T, representing at least m; points. Ilp,Il;,...,II; is a
sequence of ¢ 4+ 1 different parts of the partition. Each update in T,
passing through v;, passes through Il, I1,,...,II;.

Now execute the following algorithm:

vg := root of T}
I, := part of the partition containing vo;
1 :=0;
QED := false;
{ property P; holds }
while 7 # g(n) — 1 A not QED
do { property P; holds }
Let S be the set of all nodes below v; representing at least m;,; points;

if S C Uj-=0 IT;

then QED := true

else v;;; := anodein S\ UJ_0
II;,, := part of the partltlon containing Vit1;
t:=1+1
{ property P; holds }

fi

od.

First note that this algorithm terminates. Suppose that after the algorithm is
completed, QED has the value true. Then there isan 7,0 < 7 < g(n)—2, such that
P; holds, and all nodes below v; representing at least m;,; points, are contained
in U —o L. Smce by Lemma 2 — which may be apphed since m;;; > 1 — there
are at lea,st — 1 such nodes, it follows that |U II;| = E; —o |IL;| > —-1.
Hence there is a. part in the partition of size at least

. 1/g(n)
S (1))
z+1,_0 2+1 Mit1 g(n)!

Otherwise, QED has the value false, and since the algorithm terminates, we
must have ¢ = g(n) —1. Also property P,,)—; holds. So we have a node v = Vg(n)-1
representing at least m(,); points, and we have a sequence Ilo, IIy, . .., Iy -1 of
g(n) different parts of the partition, such that each update through node v passes
through these g(n) parts. Since each update in the tree passes through at most

g(n) parts, it follows that all nodes in the subtree of v are contained in U§(="3‘1 I1;.

Hence IUf(_':,) L] = ;!(:'3‘1 [TL;| > my(n)-1. It follows that there is a part of size

m+1

at least
g(n)-1

Z (n 1/g9(n)
My(n)-1 > | —— -1
g(n | "—g(n) olm)=1 g(n)!)

(and we can set QED := true).
The approximation (Hﬁﬁ)l/g(”) ~ Re;ynl/"(”) follows from Stirling’s formula.

This proves the theorem. O

Consider again the proof of Theorem 1. We started with a sequence my,...,

my—1 of real numbers, such that mo = n, and m; > 1 for all 7 (we write k = g(n)).
Then we showed that the partition contains a part of size at least min{-2+) m—m_: -

1), kmk 1} for some 0 < 7 < k—2. Since 7 can take any value between 0 and k — 2,
it follows that the partition contains a part of size at least

1m1

1 m, 1 my_, 1
o, o (o), (22—, —— —1), —ms_1}.
mln{ml = 72 my,)’3 mg 1), "k —1"my_q 1)’Icm’c i} (1)

Clearly the proof remains valid for any such sequence mg, my,...,mi_1. (Note
that the condition m; > 1 is important, since otherwise Lemma 2 may not be

6

applied. Also, the condition my = n is necessary to make property P, hold after
the initialization of the algorithm.) Therefore it might be possible that for some
other choice of the numbers m; a better lower bound follows. We shall show that
this is not the case. That is, the value of Equation (1) is at most () 1/k for any
sequence of real numbers my = n,m; > 1,my > 1,...,my_; > 1. Take such a
sequence my,...,Mg_1. Lhere are two possibilities.

There is an 4, 0 < ¢ < k—2, such that m; < 2(&)7/* and m;;, > ﬁ!—(ﬂ)(‘“)/k.

Then "
1 m < (n)1/"
3. + 1 m"+1 - ﬂ ’

and hence the value of Equation (1) is at most (2)V/.
Otherwise, for each 7, 0 < 7 < k — 2, we have that if m; < iﬁ,(%)‘/", then

Miy1 < (;:1)1(%!‘)(#1)/‘:- Since mg = n < ﬁ(%)o/k, it follows that m; < %(%)Wc,

and hence m, < %(%)2/", ceeymp_1 < (kfl)!(’—:f)("“l)/’“. We conclude that

1 1 n (RN\EVE Nk
— < - = = (=
km"‘l—k(k—n!(n) (k!) ’

hence the value of Equation (1) is bounded above by (Z).

4 A lower bound for restricted partitions

In this section we prove a tight lower bound for restricted partitions of range
trees. We remind the reader to the notion of a restricted partition (see Sec-
tion 2), and to our notation for iterated logarithms (see Section 1). The lower
bound of this section improves the following one (see [4]): Let g(n) be an inte-
ger function such that 1 < g(n) < log*n. For a restricted (f(n),g(n))-partition
of a d-dimensional range tree (d > 2), where (log)*™n > 16, we have f(n) >
(3)@-2(s(")-1) L, (log n)?-%(log)*n. (Again this lower bound is valid for non-
constant functions g(n), although it is stated in [4] only for constant functions.)
First we recall a lemma from [4].

Lemma 3 Consider a d-dimensional range tree (d > 2), representing n points.
Let m > 1 be a real number. For each node v of the main tree, the weight wt(v) of
v 1s defined as the total number of leaves in the associated structure of v (here we
count the leaves tn the main tree of the associated structure, 1n associated structures
of the associated structure, etc.). Then

2
E wt(v) > —;n(logn)d"z log ﬁ, if n>|m]+1,
v:v represents >m points d! m

where the summation runs over all nodes in the main tree, representing at least m
points.

Note that the bound in Lemma 3 is tight (except for constant factors): equality
is obtained if all binary trees involved are balanced.

Corollary 1 A d-dimensional range tree (d > 2), representing n points, has size
at least Zn(logn)**.

Proof. This follows from Lemma 3 by taking m = 1. O

It follows from Corollary 1 that in a restricted partition of a d-dimensional
range tree, there is a part—the part containing the associated structure of the
root of the main tree—of size {2(n(logn)?~2). Hence in a restricted (f(n),g(n))-
partition, we always have f(n) = Q(n(logn)?~%). In [3] it is shown that there
exist d-dimensional range trees that can be maintained efficiently (that is, they
have the same performances as balanced range trees, see Willard and Lueker [5]),
that can be partitioned into a restricted (O(n(logn)? %),log* n + O(1))-partition.
Therefore it is sufficient to consider only restricted (f(n),g(n))-partitions with
g(n) <log*n + O(1).

Theorem 2 Let g(n) be an integer function, such that 1 < g(n) < log*n. Let T
be a d-dimensional range tree (d > 2), representing n points, where (log)g(")n >8
and %logn > (d — 1) loglogn. Suppose T is partitioned, in the restricted sense,
into parts such that each update passes through at most g(n) parts. Then there is

a part of size at least
11

2 d!
Proof. Letm;=(i+1)n (igl{-(-;i'-‘— for 0 <17 < g(n) — 1. Note that the iterated

log)s(n)—tn

logarithms exist since 1 < g(n) < log* n. Then

n (logn)?~% (log)*™n.

9(r)
(log)™n S " 2,

My(r)-1 = g(n) n logn ~ logn —

and

me _ i1 (ogn 1 (log)-i-in
=3 — > — > 2,
miy1 t+2 (log)d™-in = 2 (log)sm—in =

since for N = (log)*("~*n, we have %%— > 2. (Note that N > (log)*("n > 8.) It
follows that all m; are at least 1, and that m; > 2m,q > mi 1 +12> [myyq] + 1.

Let P; be the following property:

v; is a node in the main tree of T, representing at least m; points.
Iy, I1;,...,II; is a sequence of z + 1 different parts of the partition.
Each update in T, passing through v;, passes through Il,, II;, ..., II;.

Now execute the following algorithm:

vg := root of the main tree;
II, := part of the partition containing vy;
1 :=0;
QED := false;
{ property P; holds }
while 7 # g(n) — 1 A not QED
do { property P; holds }
Let S be the set of all nodes in the main tree below v;, representing
at least m;,; points;
if S C U_;‘:o IT;
then QED := true
else v;y; := anode in S \ Uj—o IT;;
IT;4; := part of the partition containing v;,;;
t:=t+1
{ property P; holds }
fi
od.

Suppose that after the algorithm is completed QED has the value true. Then
there is an 7, 0 < 7 < g(n) — 2, such that P; holds, and all nodes in the main tree
below v; representing at least m;,; points, are contained in U;':o II;. By Lemma 3,
all these nodes together with their associated structures — and hence U;_, II; —

have size at least
m;

2
—m.(l)4-2 |
d! m; (log m) 8 mMit1

(Since m;y; > 1 and m; > |m;y4]| + 1, Lemma 3 may be applied. Note that we
apply Lemma 3 to the tree having v; as its root, which is a d-dimensional range
tree, representing at least m,; points.) We have

(log)*("n)

(log)s(n)—in
n
Z lOg ((log)g(n)_in)

n
= log (log n)

= logn — loglogn.

logm; = log ((z +1)n

Then by using the inequality (a — 8)%2 > a%? — (d — 2)a® 3b for real numbers
a > b > 0—which can easily be proved by induction on d—we get

(logm;)*? > (logn — loglogn)¢?
> (logn)* % — (d — 2)(logn)* 3loglogn
> %(log n)* 2,

9

since we assumed that 3 logn > (d — 1) loglogn > (d — 2) loglog n. Furthermore,

Y g(n)—i-1
log (z +1 (log) n)

i+2 (log)sM—in

1 (log)9(™—i-1p
log | - ——~——
2 (log)9(®~in
= (log)*™n — (log)*™~+1p —1

1 .
> E(log) g(”)—’n,

m
log
Mit1

Y

since for N = (log)?™~*n > (log)*™n > 8, we have N —log N — 1 > N/2.
It follows that there is a part in our partition of size at least

1*’>1

2
1L 2 . AL
i+1',90 = i+1d!) Miy1
1 2 B
>) M5 (log n)+? (log)g(") n
= ;;, (logn)d ? (log)™n.

Otherwise, QED has the value false, and since the algorithm terminates, we
must have ¢ = g(n) —1. Also property Py(n)_; holds. So we have a node v = vy(n)_;
in the main tree, representing at least my,)-; points, and we have a sequence
Mo, Iy, ..., Ig(n)-1 of g(n) different parts of the partition, such that each update
through node v passes through these g(n) parts. Since each update in the tree
passes through at most g(n) parts, it follows that all nodes in the subtree of v,
together with their associated structures, are contained in Ug(:g—l II;. Since this
subtree is a d-dimensional range tree, representing at least m(,)_1 points, it follows
that (apply Lemma 3 with m = 1, which is allowed since myn)—1 > 2)

g(n)-1
U I > d' — Mg(n)—1 (log mMy(m)—1) "

In the same way as above, we have

log my(n)-1 > logn — loglogn,

and hence
logmym-1)"' > (logn — loglogn)d?!
9(n)
> (logn)* ' — (d —1)(logn)* *loglogn
> ~(logn)*,

10

since %logn > (d — 1) loglog n. Hence there is a part of size at least

g(n)-1 1 2 111 iz o(n)
(n) l U l () dl -y My(n)-1 5 (IOg n) > 5 a n (log n) (log) n
7=0 .

(and we can set QED := true). This proves the theorem. [J

Remark. The lower bound in Theorem 2 is tight. That is, there exist d-
dimensional range trees, having asymptotically the same complexity as balanced
range trees (see Willard and Lueker [5]), that can be partitioned into a restricted
(O(n(log n)? 2(log)*(™n), g(n))-partition. For details, see [3]. Note that this result
is given in [3] only for constant functions g(n) = k. Since the constants in the
complexity bounds are independent of k, the result remains valid for arbitrary
functions g(n) with 1 < g(n) < log" n.

5- A lower bound for general partitions

In this section the lower bound for general partitions is proved. Just as in the
previous sections, we first recall the lower bound from [4]. Let g(n) be an in-
teger function such that 1 < g(n) < logn. For an (f(n),g(n))-partition of a
d-dimensional range tree, we have f(n) > Z F(%m(g(—lny)d“l n1/9(") (log n)4~1. The
proof of the following lemma also comes from [4].

Lemma 4 Consider a d-dimensional range tree (d > 2), representing at least n
points. Let S be a subset of these points, of cardinality n. Let m > 1 be a real
number. Then the total number of nodes in the range tree (in the main tree, or in
an associated structure, or in an assoctated structure of an associated structure,
etc.), representing at least m points of S, is at least 3% (log 2)4°1, ifn > |m|+1.
As in the previous sections—Dby taking all binary trees balanced— we see that this

bound is tight (except for constant factors).

Theorem 3 Let g(n) be an integer function, such that 1 < g(n) < logn. Let T be
a d-dimensional range tree (d > 2), representing n points. Suppose this range tree
is partitioned into parts, such that each update passes through at most g(n) parts.
Then there s a part of size at least

d
2 (1 1/4(n) -1
T (g(n)) n (logn)**.
Proof. Let m; = n'~/9(") for ¢ > 0. Let P; be the following property:

S; is a subset of the set of points represented by T, of cardinality at
least m;. Ilo,II4,...,II; is a sequence of ¢ + 1 different parts of the
partition. Each update in T, passing through a point of S;, passes
through Ily, ITy, . .., II; (note that there exist such updates).

11

Now execute the following algorithm:

1 := 0;
Sp := set of all points represented by the range tree;
II, := part of the partition containing the root of the main tree;
QED := false;
{ property P; holds }
while 7 # g(n) — 1 A not QED
do { property P; holds }
Let V be the set of all nodes representing at least m;,; points of S;;
ifV c Ui I
then QED := true
else w := a node in V' \ Uj_o IT;;
Si+1 := the set of all points in S;, represented by w;
IT;4, := part of the partition containing w;
t:=1+1
{ property P; holds }
fi
od.

Suppose that after the algorithm is completed QED has the value true. Then
there is an 7, 0 < 7 < g(n) — 2, such that P; holds, and all nodes representing
at least m;,; points of S;, are contained in Uj':O IT;. Since |S;| > m;, it follows
from Lemma 4 that there are at least 2 — (log %)d"l such nodes. (Note that
miy1 > 1, and that [miyq| +1 < 2myy; < my, since g(n) < logn. Hence Lemma 4
may be applied.) Hence

-1
m;
> = — .
| U il > d' <log mi+1)

j=0

This proves that there is a part of size at least

1 2 my m; %!
> - -] l £
z—l-IIJL_JO T 14+1d ' myy, (Ogmgﬂ)
1 d—1
— l/g(n) log n d—1
d (y(n)) (logn)

d
> 3 1 n'/9(") (logn)?-1.
— dl'\g(n)

Otherwise, if QED has the value false, we must have ¢ = g(n) — 1. Also
property Pyn)-1 holds. So we have a set § = Syn)-1 of points of cardinality
at least my(,)-1, and a sequence Ilo, ITy,. .., II)1 of g(n) different parts of the

12

partition, such that each update passing through a point of S, passes through
these g(n) parts. Since each update in the tree passes through at most g(n) parts,
it follows that all nodes representing at least one point of S, are contained in

§(='2_1 II;. By Lemma 4 there are at least Z|S|(log|S|)* ! nodes representing at
least one point of S. (Here we apply Lemma 4 with m = 1, which is allowed since

|S| > my(ny—1 > 2.) Hence

g(n)-1

2 _ 2 d-1
I LJO HJI 2 E IS' (lOngl)d ! 2 Emg(n)—l (Iogmg(n)—l) .

It follows that there is a part of size at least

p -t 1 2 -1 2 (1)¢
—_— Y = — —_— l/g(n) -1
e [,'L=Jo I, > o) @ Mg(n)-1 (log mg(n)—].) @ \am n (logn)

(and we can set QED := true). This finishes the proof. O

Consider again the proof of Theorem 3. We write k = g(n). We started with a
sequence My, . .., M of real numbers such that mo =n, m; > 1, m; > |mq|+1
for all 7, and m;_3 > 2. Then it was shown that the partition contains a part of
size at least

2 1 m; m; *! 1
— X min{- | : —mu_q (1 A Lt
d! {z+1 Miy1 (og m.-+1) kT 1 (logme—1) "},

for some 7z, 0 < ¢ < k — 2. Since ¢ can take any value between 0 and k — 2, there
is a part of size at least (we omit the factor %)

. mo mo\4 1 1 my my 41 1 my_» my—g\ "7
min{ — (log— — — (log — e g log ,

my my ’ 2 ms mgo -1 Mp_1 Mp—1

1 -

7 k-1 (logmi_1)* ' }. (2)
Just as in Section 3, it might be possible to improve the lower bound in Theorem 3
by taking another sequence my, . ..,m;_;. We shall show that in this way the lower
bound can only be improved by a constant factor. More precisely, we shall prove
that for any sequence my, . .., my_; of positive real numbers, where m¢o =n, m; > 1

and m; > m;4, for all 7, the value of Equation (2) is at most

d
e(1 + loge)*? (%) n'/*(log n)? 1.

Take such a sequence my,...,m;_1. There are two possibilities.

13

There is an ¢, 0 < ¢ < k—2, such that m; < ﬁ(l‘,;’)‘/" and m;q > ('.:1)!(-’,‘;!)(”1)/".
Then, by using Lemma 1,

m;

n \1/k e
<(: — <(s —nl/k
my S 1) (k!) @) g

and hence (note that log m—’:': > 0, since m; > myy)

d-1 . d-1
- 1 m log i < £ pi/k log 1+l en'/*
1+ 1 mi4+1 mit1 k k

< i—nl/k (log (e nl/k))d—l .

Hence the value of Equation (2) is at most £n'/*(log(e n/¥))4-1,
Otherwise, for each 7, 0 < 7 < k — 2, we have that if m; < %(%)"/k, then
miy < (H_—"lﬁ(%-)("“)/ k. In the same way as in Section 3 it follows that my_; <

= (&)*-1)/k = k (2)1/F < en'/k. Here the last inequality follows from Lemma 1.

Hence (note that log my_1 > 0)

%mk—1 (log mk_l)d—l < _lz_nl/lc (10g (e nl/k))d—l .

Again we conclude that the value of Equation (2) is at most £ n/*(log(e n!/¥))4-1.
Now since

(log (e nl/k))d"1 S (log n'’* 4 log e) .
~ 1 -1
= (log nl/")d ! (1 + lo:%)
< (log nl/")d—l (1+ loge)d 1,

—where the inequality follows from the fact that logn!/* > 1 or, equivalently,
k < logn—it follows that the value of Equation (2) is at most

€ 1/k 1/k) 41 a1 (1)* 1/k -1
En/ (log(en)) < e(l+loge) (E n'/*(logn)**,

which proves our claim.

6 Conclusions

We have given several lower bounds for the problem of maintaining a range tree
in secondary memory. These lower bounds are of the following type: Given a
partition of a range tree into parts of size at most f(n), such that each update

14

passes through at most g(n) of these parts, give a lower bound for f(n). We have
studied two types of partitions. In the so-called restricted partitions, only the
main tree is divided into parts, and each node of this main tree is contained in
the same part as its associated structure. We have shown that for a restricted
partition of a d-dimensional range tree, we have f(n) = Q(n (log n)4~%(log)?("n).
As is shown in [3], this lower bound is tight. For general partitions we have proved
that f(n) = ﬂ((;ﬁ)dnl/g(“)(log n)4-1).

Acknowledgements

I would like to thank Mark Overmars, Leen Torenvliet and Peter van Emde Boas
for reading preliminary versions of this paper, and for some helpful suggestions.

References

[1] J.L. Bentley. Decomposable Searching Problems. Inform. Proc. Lett. 8 (1979),
PP. 244-251.

[2] G.S. Lueker. A Data Structure for Orthogonal Range Queries. Proc. 19-th An-
nual IEEE Symp. on Foundations of Computer Science, 1978, pp. 28-34.

[3] M.H. Overmars, M.H.M. Smid, M.T. de Berg and M.J. van Kreveld. Maintain-
ing Range Trees in Secondary Memory, Part I: Partitions. Report FVI-87-14,
University of Amsterdam, 1987.

[4] M.H.M. Smid and M.H. Overmars. Maintaining Range Trees in Secondary
Memory, Part II: Lower Bounds. Report FVI-87-15, University of Amsterdam,
1987.

[5] D.E. Willard and G.S. Lueker. Adding Range Restriction Capability to Dy-
namic Data Structures. Journal of the ACM 32 (1985), pp. 597-617.

15

