Institute for Language, Logic and Information

MAINTAINING
MULTIPLE REPRESENTATIONS
OF DYNAMIC DATA STRUCTURES

Michiel HM. Smid
Mark H. Overmars
Leen Torenvliet
Peter van Emde Boas

ITLI Prepublication Series
for Computation and Complexity Theory CT-88-03

34(539¢

University of Amsterdam

properties and general techniques have been found. For example, general tech-
niques exist for turning static data structures that do not allow for insertions and
deletions of objects into dynamic structures that do allow for such operations (see
e.g. Overmars [9]).

In most studies it is assumed that the data structure is stored only once in the
main memory of a computer and that all operations are performed on this one
structure. In many situations, however, we store the structure more than once
and have a multiple representation of the data structure. For example, normally
a data structure that is stored in main memory will be stored in secondary mem-
ory as well, because system errors or program errors might otherwise destroy the
information. Such a shadow administration does not have to support the same
operations as the main structure. Only insertions and deletions have to be per-
formed. Hence, it might be advantageous to structure it in a different way. (See
Smid et al. [13] for examples of such shadow administrations.)

When we have a network of processors, each having its own memory, there are
situations in which each processor holds its own copy of a particular data structure.
Changes to the data structure have to be made in all copies. When the update
time is high this is an unfavourable situation. We’d better dedicate one processor
the task of maintaining the data structure and broadcasting the actual changes
to the other processors. Again we have a situation in which there is a multiple
representation of the data structure. One data structure that should allow for
updates, and a set of other structures that answer queries. Of course, the query
data structures must be structured in such a way that they can perform updates,
but they get the update in a kind of ‘preprocessed’ way that might be easier to
handle.

In this paper we study such multiple representations of data structures. The
one structure that performs the updates will be called the central structure. The
other structures that allow for queries are the client structures. We study how
to organize the central structure for different types of query problems, how to
structure the client structures that sometimes can store less information, and what
type of information has to be sent from the central structure to the clients. It will
be shown that, after ‘preprocessing’ an update by the central structure, the clients
can often perform the update more efficiently. Also, in some situations the client
structures can be smaller than the central structure.

Besides possible practical applications, the results give insight in which parts
of data structures are only necessary for performing updates and can, hence, be
removed in the client structures. The results also show what portions of data
structures are actually changed when performing updates. This might have ap-
plications in storing dynamic data structures in write-once memories (e.g. optical
disks).

The paper is organized as follows. In Section 2 we describe the general frame-
work we use to describe solutions for the multiple representation problem, and we

2

introduce complexity measures to express the efficiency of solutions. In Section 3,
we study binary trees as our first example where the client structures store less
information than the central structure. It is also shown that we can gain a con-
stant factor in the update time of the client structures. In Section 4, we consider
order decomposable set problems. We show that in several cases the client struc-
tures can be of size asymptotically less than the central structure. In Section 5
we present some simple techniques for decomposable searching problems. These
techniques lead to solutions in which the client structures can be updated very
fast.

Since in general an update will change only a small part of a data structure, it
might be possible to send only those parts of the structure that have been changed.
In [10,11] the problem of how to partition a range tree into parts of small size, such
that an update changes only a few parts, is studied. The techniques developed
there can of course be applied here. In that paper, however, it is assumed that
the partition is stored in secondary memory, which is supposed to be divided into
blocks of some predetermined size. Furthermore, the only allowed operation in
secondary memory is to replace a block by another one. So in secondary memory
no computing is possible. Since in our case the client structures are stored in
an environment where computing is possible, we can replace much smaller pieces
than just parts of some predetermined size. Hence we can send only those pieces
that actually have changed. We will consider this idea thoroughly in Section 6,
where we will show that this is indeed possible. (Here the main problem is that we
want to avoid searching in the client structures—which might take a lot of time—in
order to determine the positions where the data structure has to be changed.) The
results of Section 6 are illustrated in Section 7 with some examples. We show e.g.
that we can maintain a class of range trees, such that the central structure needs
O((logn)?) time for an update, whereas each client structure can be updated in
O((logn)?~1) time. We finish the paper in Section 8 with some concluding remarks.

2 The general approach

In this section we shall give a precise statement of our problem, and we introduce
the model in which solutions will be given. We also give complexity measures to
express the efficiency of the solutions.

There is a network of processors, the clients, each having its own memory.
Each of these clients contains the same data structure DS—the so-called client
structure—solving some searching problem. Now each client uses its structure DS
to solve queries. Updates have to be performed in all the client structures. In
order to be able to perform these updates fast, we store in one of the processors a
data structure DS', the central structure. Now an update is performed as follows.
We first perform the update in the central structure DS’. During this update

we (hopefully) obtain information that makes it possible to update the client
structures more efficiently than by just directly updating them. Then we send
information about the update through the network to the clients, and using this
information each client adapts its structure DS. We express the complexity of an
update of the client structures by the amount of data that is transported to each
client, and by the amount of computing time that the client structure needs to
perform the update.

Note that we have introduced a multiple representation of the data. We have a
number of copies of the same data structure DS, solving some searching problem.
Furthermore, there is a data structure DS', that is used to ‘preprocess’ updates,
such that the client structures can be updated more efficiently. On the client
structures, queries and preprocessed updates are performed, whereas on the central
structure only updates are carried out. Later on we shall see that it is not necessary
for the client structure and the central structure to be identical. Therefore we use
different notations for these structures.

The complexity of the client structure DS is expressed by the following func-
tions (n is the number of objects represented by the structure):

e S(n): the amount of space needed to store the structure DS,
e Q(n): the time required to answer a query using DS,
e F(n): the amount of data that is transported to DS in an update,

e G(n): the amount of computing time needed to update DS, using the infor-
mation received from the central structure.

Note that G(n) = Q(F(n)), since a client receives an amount of F(n) data, and
it has to store it somewhere. Also the total time needed to update the structure
DS is O(F(n) + G(n)) = O(G(n)).

The complexity of the central structure DS’ is given by the usual measures,
and they are denoted by:

e S'(n): the amount of space used by DS',

I'(n): the time needed to insert an object into DS’,

D'(n): the time needed to delete an object from DS’,

if the insertion and deletion times are equal, we denote this common update
time by U'(n).

(There is no query time here, because on the central structure no queries are

performed.)
The problem to be investigated in this paper is the following. We are given
a searching problem. The main goal is to design a client structure DS for this

4

searching problem, such that when an update is given in some preprocessed form,
this update can be performed efficiently. Ideally, the size of this preprocessed form
and the time to perform the update using this information—i.e. the values of F(n)
and G(n)—are much smaller than the time needed to perform the update directly
in the structure. A second goal is to design a central structure DS’ in which the
updates can be preprocessed efficiently. In this paper, however, we shall emphasize
the design of the client structure DS.

3 Binary trees

Suppose that the client structures have to solve the member searching problem.
A well known dynamic data structure for this problem is a balanced binary search
tree, e.g. an AVL-tree, or a BB[a]-tree. Such a tree allows member queries and
insertions/deletions to be performed in O(logn) time, if n is the number of objects
stored in the tree. Internal nodes of these trees contain balance information. E.g.
in an AVL-tree each internal node contains the difference of the longest path in
its left subtree and the longest path in its right subtree (which is -1, 0 or 1). If an
object is inserted in or deleted from the tree, all nodes are determined that do not
satisfy the balance property anymore, and then by a local restructuring technique
(mostly single and double rotations), balance is restored in these nodes. Clearly,
this balance information is only used to update the tree; in case member queries
are performed, this information is superfluous.

So take a class of balanced binary search trees, that can be maintained by
means of single and double rotations. We consider these trees as leaf search trees,
i.e. the objects are stored in the leaves. Let T' be a tree in this class, and let T" be
a copy of T' without the balance information in its nodes. This tree T will be the
central structure, in which updates are preprocessed, and the tree T will be the
client structure. Clearly, the tree T' contains enough information to allow member
queries to be carried out in logarithmic time.

Suppose object p is to be inserted or deleted in the structures. Then we first
insert or delete p in the central structure T". This gives us a path in 7", from the
root to an appropriate leaf, along which (possibly) rotations have been carried out.
We encode this path by a string s = (r1, by, 72,b2,...,7%,), Where k is the length
of the path. Starting at the root of the tree, r; indicates what kind of rotation,
if any, has to be performed there. That is, r; contains information whether a
left single rotation, a right single rotation, etc. has to be carried out, or that no
restructuring operation is necessary. Next, b; tells us whether the next node on
the path lies to the left or to the right of the root. Then r; tells us what kind
of rotation has to be carried out in the second node of the path, and b, says in
which direction the path proceeds, and so on. Note that O(k) = O(logn) bits
are sufficient to represent the string s. Now we send to each client structure the

object p together with information whether it has to be inserted or deleted, and
the string s. Using p and s, the client structures T are updated. Note that we
know exactly which path in T we have to walk down, and where on this path
restructuring operations have to be carried out. So we do not have to decide in
each node—by means of a comparison of p with the value stored in one of the two
sons of the current node—in which direction to proceed. Hence this will save for
each client structure O(log n) comparisons in the update procedure.

The complexity of this solution is as follows. The central structure has size
O(n), and an update takes O(log n) time. Each client structure has also size O(n).
In this last bound, however, the constant factor will be smaller. Member queries
can be solved in the client structures in O(logn) time. To perform an update,
an object p and a bitstring s of length O(logn) have to be sent to the client
structures, and for each of these structures O(logn) computing time is needed to
adapt it. Again the constant factor is smaller than in the update time of the central
structure, since for the client structures we save O(logn) comparisons. So at the
cost of a slight increase in the amount of data that is transported to the client
structures—by sending an additional string of O(logn) bits—we have decreased
the constant factors in the complexity bounds for the client structures, compared
to the constants in the bounds of the central structure.

Remark that the client structures can be used for solving other searching prob-
lems, as long as the balance information of the nodes is not necessary. Examples
are the one-dimensional range searching problem, where we are given a range [a : b,
and where we have to report all points lying in this range. Such a range query can
be answered, without needing balance information of the nodes, in O(logn + t)
time, where ¢ is the number of points in the range. Another example is the one-
dimensional nearest neighbor searching problem. Here we are given a point p, and
we have to report the point in the tree that is closest—in absolute value—to p.
Clearly, such a query can be answered, again without using balance information,

in O(logn) time.

4 Order decomposable set problems

In [9] a class of so-called order decomposable set problems has been defined. In a
set problem we are given a set of objects, and we are asked some question about
this set. To be more precisely, if 77 and T; are sets, then a set problem is a
mapping PR : P(T;) — T,. Here P(T;) denotes the power set of Ty. For example,
in the convex hull problem, we are given a set S of points in the d-dimensional
euclidean space, and we are asked to compute the convex hull of S. Here Tj is the
set of all points in d-dimensional space, and T; is the set of all convex polytopes.

In this section we want to solve the problem of maintaining the answer to a
set problem under insertions and deletions of objects. We restrict ourselves to

set problems, the answers of which can be merged efficiently. That is, once the
answers for two—in some way separated—halves of a set are known, the answer
for the entire set can be obtained fast. For such a class of set problems, we can
maintain the answer for the entire set, by decomposing the set into subsets, and
by maintaining the answers for these subsets.

Definition 1 A set problem PR : P(T1) — T3 is called C(n)-order decomposable,
if there is an order ORD on Ty, and a function O : T3 X Ty — T3, such that for
each set S = {p; < p» < ... < p,}, ordered according to ORD, and for each ,
1 <1< n, we have

PR({pl’- --apn}) = D(PR({pla- . .,p;}),PR({le,.. -apn})):

where the function O takes C(n) time to compute.

For example, as was shown by Preparata and Hong [12], the three-dimensional
convex hull problem is O(n)-order decomposable, where ORD is the order accord-
ing to z-coordinate.

Let PR be a C(n)-order decomposable set problem. We briefly recall a dynamic
data structure solving PR (for details, see [9]). Let S be a set of cardinality n,
for which we want to maintain the answer to PR. We store the objects of S,
ordered according to ORD, in the leaves of a BB|a]-tree. Internal nodes of this
tree contain information to guide searches. Also, each internal node v of this
binary tree contains the answer to PR of the objects of S that are in the subtree
of v. That is, if S, is the set of objects in the subtree of v, then node v contains
a representation of PR(S,). Hence, the root of the tree contains PR(S), the
answer to PR of the entire set S. The following theorem gives the complexity of
this dynamic data structure. For a proof, see [9] (there it is also shown how the
amount of space can be reduced without affecting the update complexity, if the
sizes of the answers PR(S,) are large, and for certain values of C(n)).

Theorem 1 For a C(n)-order decomposable set problem, there ezists a dynamic
data structure of size S(n) and update time U(n), given by:

O(n) if C(n) = O(n®) for some 0<e< 1,
o(C(n)) if C(n) = Q(n'*€) for some e > 0,
O(C(n)loglogn) if C(n) ts at least linear,

O(n + C(n)logn) otherwise.

_J o(C(n)) if C(n) = Q(n®) for some € > 0,
2. U(n) _{ O(C(n) logn) otherw)z'se.) 7

1. S(n) =

Note that the data structures presented here have the property that just a small
part of the structure is used for query answering—the answer to the problem is

stored in the root of the tree—whereas the rest of the structure is only used to
update this answer efficiently.

Therefore, we take for the client structures the answer PR(S) to the set problem
for the entire set S, and we take for the central structure the full dynamic data
structure. Updates are first performed on the central structure. Then we replace
each old client structure by the new answer to the set problem. The result is given
in the following theorem. (We use the notations introduced in Section 2.)

Theorem 2 For a C(n)-order decomposable set problem, there exists a client
structure, that maintains the answer to the set problem, with complezity

1. S(n) = O(PR(n)),
2. F(n) = O(PR(n)),
3. G(n) = O(PR(n)),
where PR(n) is the size of the answer to the set problem for a set of n objects.

Proof. The proof follows from the above discussion. [

It follows from these two theorems, that for many values of C(n), the client
structures have asymptotically lower complexity than the central structure has.
For example, in the three-dimensional convex hull problem—which is ©(n)-order
decomposable—the central structure has size O(nloglogn), whereas the client
structures have size only O(n).

5 Decomposable searching problems

A searching problem can be seen as a mapping PR : Ty X P(T;) — Ts, where
T,,T; and T3 are sets of objects. For example, in the member searching problem,
Ty = T, T3 = {true,false}, and PR(z,S) = (z € 9).

In this section we consider so-called decomposable searching problems, as in-
troduced by Bentley [1]. For this class of searching problems a query for a set can
be answered efficiently by merging the answers for a partition of the set.

Definition 2 A searching problem PR : Ty X P(T;) — T3 is called decomposable,
if there 1s a function O : T3 X Ts — T3, such that for each partition S = AU B of
any subset S of Tz, and for each query object = in Ty, we have

PR(.’B, S) = D(PR(.’E,A),PR(:D,B)),

where the function O can be computed in constant time.

For example, the member searching problem is decomposable with O = V.
Another example is the orthogonal range searching problem. Here we are given a
set S of points in d-dimensional space, and an axis-parallel hyperrectangle ([a; :
bi],[az : bs),...,[aq : ba]), and we have to report all points p = (p1,...,pa) in S,
such that a; < p; < by,...,a89 < pg < bg. This problem is decomposable with
O = U. Note that since we require the sets A and B to be disjoint, we can take
the union of PR(z, A) and PR(z, B) in constant time.

A number of techniques have been developed to design dynamic data structures
for decomposable searching problems. It turns out that especially in the case where
only insertions are performed efficient structures can be designed. See Bentley [1],
Bentley and Saxe [2| or Overmars [9)].

Let PR be a decomposable searching problem, and let DS be a dynamic data
structure solving PR. We consider the case in which only insertions are performed.
Let S(n) be the size of the structure DS, and let Q(n) be the query time of DS.
We assume that S(n)/n and Q(n) are non-decreasing, and that S(n) and Q(n)
are smooth.

To maintain a multiple representation for PR we proceed in the following way:
Let the client structure consist of a copy of the structure DS, together with a list
of objects. The central structure consists of the structure DS. Initially, the list of
objects in the client structure is empty, and all structures DS are up to date. Let
n be the initial number of objects. Consider an insertion of an object p. First we
insert p in the central structure. If p is already present, then nothing has to be
done (note that in this case the client structures do not have to know that anything
happened). If p is a new object, we add it to the list of each client structure. After
Q(n) objects are inserted in this way—hence each client structure contains a list of
@(n) objects—a copy of the central structure—which is up to date—is sent to the
clients. Each old client structure is then replaced by this new structure, and the
list of objects is initialized again as an empty list. If m is the number of objects
that are present after these Q(n) insertions, we repeat this procedure, now with a
sequence of Q(m) insertions.

Queries are solved in a client structure as follows. First we query the data
structure DS. Next we query the at most Q(n) objects in the list of most recently
inserted objects, by considering each of them separately. Then all answers obtained
are merged using the function [J. (Note that all objects in the list are different,
and are not present in the data structure DS.)

Theorem 3 Let DS be a data structure for a decomposable searching problem PR,
of size S(n) and query time Q(n). There exists a client structure solving PR, with
performances:

1. The size of the client structure is bounded by O(S(n)).
2. F(n) =0O(S(n)/Q(n)) on the average, for an insertion.

3. G(n) = O(S(n)/Q(n)) on the average, for an insertion.
4. The query time of the client structure is bounded by O(Q(n)).

Proof. The client structure consists of a copy of the data structure DS as it is at
the beginning of a sequence of insertions, together with a list containing the—at
most @Q(n)—insertions performed so far. Insertions and queries are carried out as
described above. The size of the client structure is bounded by the size of DS
and by the number of objects in the list. Let N be the number of objects that
are currently present, and let n be the number of objects that were present at the
beginning of the sequence of insertions. Then the size of the client structure is
bounded by O(S(n) + Q(n)) = O(S(N)): Because for a decomposable searching
problem obviously @(n) = O(n), and since S(n)/n is non-decreasing, we have
Q(n) = O(S(n)). Finally, since n < N < n+ Q(n) = O(n), and since S(n)
is smooth, the bound on the space complexity follows. In a sequence of Q(n)
insertions, the total amount of data that is transported to a client structure, is
bounded by O(Q(n)+ S(n)) = O(S(n)). Hence the average amount of data that is
transported for an insertion is O(S(n)/@Q(n)). The total computing time for Q(n)
insertions into a client structure, is also bounded by O(Q(n) + S(n)), since a new
object can be inserted to the list in constant time, and since it takes O(S(n)) time
to receive and write a data structure of size S(n). Hence G(n) = O(S(n)/Q(n))
on the average for an insertion. Finally, the query time of the client structure is
bounded by O(Q(n)), because the structure DS can be queried in Q(n) time, and
by the definition of a decomposable searching problem, the objects in the list can
be queried in O(Q(n)) time. O

In the above theorem, the insert complexity for the client structures is an
average case complexity. We shall show now how these bounds can be turned
into worst case bounds. The idea is to spread out the transport of the large data
structure over a number of insertions. In the sequel we assume that if object p is
to be inserted, it is not present yet. As we saw already, if the object is present,
the client structures do not have to know that anything happened. We denote by
DS, the data structure DS representing a set of n objects.

The client structure consists of a data structure DS, and two lists of objects.
The central structure consists of a structure DS and one list of objects. Let k
be the initial number of objects. Then both the client structure and the central
structure contain an up to date data structure DS and all lists are empty. During
the first Q(k) insertions, we add the new objects to one of the lists of the client
structures (each time we add it to the same list). Furthermore, all these insertions
are performed in the central structure DS.

Hence after the first Q(k) insertions, the client structures consist of a data
structure DSy, representing the objects that were initially present, a list of the
Q@(k) most recently inserted objects, and an empty list. The central structure

10

consists of an up to date structure DS g(x), and an empty list.

Let n = k + Q(k), i.e. n is the number of objects that are currently present.
Consider a sequence of Q(n) insertions. During the first Q(r)/2 insertions, we add
the new objects to the initially empty lists of the client structures, and we send
the central structure DSy, q) = DS, to the clients: Each update we send a part
of DS, of size O(S(n)/Q(n)). Then, after these Q(n)/2 insertions, each client
structure contains a data structure DSy, and a list of the @(n)/2 most recently
inserted objects. Now we throw away the old client structures DS and we set the
old list of @ (k) inserted objects to the empty list. In the central structure we add
the Q(n)/2 new objects to the list. Note that the central structure DS, cannot
be affected during these insertions.

The final Q(n)/2 insertions are performed as follows. The new objects are
added to the non-empty list of the client structure. In the central structure, we
perform in each update the current one, and one update from the list of updates.
(Note that the order in which we perform the updates in the central structure
does not matter, since all updates are insertions. If, however, also deletions were
possible, the updates had to be carried out in chronological order. See Section 6.4.)
Afterwards the list of the central structure is set to the empty list.

So after the entire sequence of Q(n) updates, the client structure contains a
data structure DSy, a list of the Q(n) most recently inserted objects, and an empty
list. The central structure consists of an up to date structure DS, .q(») and an
empty list. Hence we are in the same situation as @(n) updates ago, and we can
continue in the same way.

Queries in a client structure are solved, by querying the data structure DS,
and by walking along the two lists of objects. Then using the function O, the
answers are merged to get the final answer to the query.

The result is given in the following theorem.

Theorem 4 Let DS be a data structure for a decomposable searching problem PR
with worst case complezity S(n), I(n) and Q(n). There exists a client structure
solving PR, with performances:

1. The size of the client structure is bounded by O(S(n)).

2. F(n) = 0(S(n)/Q(n)) in the worst case, for an insertion,

8. G(n) = O(S(n)/Q(n)) in the worst case, for an insertion,

4. The query time of the client structure is bounded by O(Q(n)).

Furthermore, the size and the insertion time of the central structure are bounded
by O(S(n)) and O(I(n)).

Proof. It follows from the above that in each insertion we send an amount of
0(S(n)/Q(n))+0(1) = O(S(n)/Q(n)) data, and for each client structure we have

11

to spend O(S(n)/Q(n)) + O(1) = O(S(n)/Q(n)) time to receive and write this
data. Hence both F(n) and G(n) are bounded by O(S(n)/Q(n)) in the worst case.
Also, the query time of the client structure is O(Q(n)). Clearly, the performances
for the central structure are increased by at most a constant factor. [J

There are other techniques to obtain efficient solutions to the multiple repre-
sentation problem. We can e.g. consider sequences of more than Q(n) insertions.
Then the most recently inserted objects are stored in a small data structure, to
ensure that the query time remains O(Q(n)). In this way the values of F(n) and
G(n) can be decreased. This idea will be worked out below.

Let PR be a decomposable searching problem, and let DS be a dynamic data
structure solving PR. The size and the query time of DS are denoted by S(n)
and Q(n). As before, we assume that S(n)/n and Q(n) are non-decreasing, and
that S(n) and Q(n) are smooth.

Let f(n) be an integer function, such that Q(n) < f(rn) < n. The client
structure consists of two data structures DS; and DS, and a list of objects. The
central structure contains the structures DS; and DS,.

Initially, all structures DS;, and the lists in the client structures, are empty.
Each structure DS, stores the n objects that are present at this moment.

Consider a sequence of f(n) — 1 insertions. We insert the new objects in the
central data structure DS;. In the client structure we add the new objects to the
list. Every Q(n)-th insertion, the central structure DS; as it is that moment is
sent to the client structure (where it replaces the old DS;), and the list of objects
is set to the empty list. Hence during these f(n) —1 insertions, the client structure
consists of a list of at most Q(n) objects, and of two data structures DS; and DS,.
The structure DS, represents at most f(n) objects. At each moment, the objects
represented by these three structures form a partition of all the objects that are
present at that moment.

In the f(n)-th insertion, we build a new structure DS, storing all objects that
are present at this moment, and send it to the clients. Also, all structures DS,
and all lists are made empty. If m is the number of present objects at this moment
we repeat this procedure, now with a sequence of f(m) insertions.

Clearly, the size and the query time of the client structure remain O(S(n)) and
O(Q(n)). Furthermore, the average values of F(n) and G(n) are both bounded
by O(S(f(n))/Q(r) + S(n)/£(n).

We can generalize this solution as follows. Let k& be a positive integer, and
let fi(n) be integer functions, ¢ = 0,1,...,k, such that Q(n) = fo(n) < fi(n) <
fa(n) < ... < fr-1(n) < fi(n) = n. Then the client structure contains a collec-
tion of data structures DS;, + = 1,2,...,k, and a list of at most Q(n) objects.
The central structure contains the structures DS;, 7 = 1,2,...,k. Each DS; will
represent at most f;(n) objects. Initially, all structures DSy, ..., DS;_1, and all
lists, are empty. Each structure DS} stores the n objects that are present at this

12

moment.
Consider a sequence of fi_;(n) insertions. In the j-th insertion, we do the

following. If there is an ¢, 0 < ¢ < k—1, such that § = 0 mod f;(n), determine the
maximal such :. Then build a new structure DS;;;, storing all objects that were
present in the old central structures DS;, ..., DS;;1, and add it to the central
structure. Also, the old central structures DSy, ..., DS; are made empty. Next,
send this new structure DS;.; to the clients, where it replaces the old DS;;.
Finally, all structures DSy, ..., DS; and the lists are made empty. If there is no ¢
such that § = 0 mod f;(n), add the new object to the list of the client structures,
and insert the new object in the central structure DS;.

It is not difficult to see, that indeed each DS, represents at most f;(n) objects,
and that the list in the client structure contains at most Q(n) objects. Also, each
DS; is sent to the clients at most once every f;_;(n) insertions.

After these fx—1(n) insertions, all structures DSy, ..., DSk_1, and all lists,
are empty again, and each structure DS} stores the objects that are present at
this moment. (Note that in the fi_;(n)-th insertion, the maximal value of ¢ in the
above update procedure is k£ — 1.) So we can proceed in the same way, now with
a sequence of fx_1(m) insertions, where m is the current number of objects.

In this way the average values of F(n) and G(n) are bounded by

S(Ai(r) | S(h() | . S(a(n) | S()
Q) T TAM T That))

Since we assumed that S(n)/n is non-decreasing, it follows that this sum is
bounded above by
Ly femaln))

Sm) (fi(n) falm) .
n (Q(n)+f1(n)+ P e Rl

Now take f;(n) = [n‘/ k(Q(n)) k]. Then the average values of F(n) and G(n)

are bounded above by
P S(n) (n)1/ k
n \Q(r))

In the same way as before these average case bounds can be turned into worst
case bounds. The result is expressed in the following theorem, the proof of which
is left to the reader.

Theorem 5 Let DS be a data structure for a decomposable searching problem PR
with complezity S(n) and Q(n). Then for each positive integer k there exists a
client structure solving PR, with performances:

1. The size of the client structure is bounded by O(S(n)).
2. F(n) =0(k ﬂnﬁ(q—?ﬁ)l/lc) in the worst case, for an insertion,

13

3. G(n) =O(k ﬂn'—'l(m";j)l/k) in the worst case, for an insertion,
4. The query time of the client structure is bounded by O(k X Q(n)).

We shall illustrate this result with an example. In the nearest neighbor search-
ing problem, we are given a set S of n points in the plane, and a query point p,
and we are asked to find the point in S that is closed to p with respect to the
euclidean distance. Clearly, this problem is decomposable. There exists a data
structure for this problem of size O(n) such that queries can be solved in O(logn)
time, see e.g. Kirkpatrick [4]. Applying Theorem 5, we obtain

Theorem 6 Letk be a positive integer. For the nearest neighbor searching problem
in the plane, there exists a client structure, with performances:

1. The size of the client structure is bounded by O(n).

2. F(n) =0(k (E%)l/") in the worst case, for an insertion,

8. G(n) =0(k (k,Zn)l/k) in the worst case, for an insertion,

4. The query time of the client structure is bounded by O(k logn).

It is clear that the technique presented in this section only allows insertions
to be carried out. In some cases, however, deletions can also be performed. For
example, we can restrict ourselves to a subclass of the decomposable searching
problems, the so-called decomposable counting problems. Roughly speaking, a
decomposable counting problem is a decomposable searching problem where the
function O has an inverse, that can also be computed in constant time (see [2,9]).
An example is the orthogonal range counting problem. Here we are given a set S
of points in the plane, and an axis-parallel query rectangle, and we are asked how
many points of S are in the rectangle.

For decomposable counting problems we can design a full dynamic data struc-
ture by maintaining two structures. In one structure new objects are inserted,
whereas a deletion is performed by inserting it into the other structure. A query
is solved by querying the two structures, and by ‘subtracting’ the two obtained
answers from each other, using the inverse of the function O.

For decomposable counting problems, the following analogue of Theorem 5 can
be proved.

Theorem 7 Let DS be a data structure for a decomposable counting problem PR
with complezity S(n) and Q(n). Then for each positive integer k there exists a full
dynamic client structure solving PR, with performances:

1. The size of the client structure is bounded by O(S(n)).

2. F(n) =0(k ﬂf)-(a-&y)l/k) in the worst case,

3. G(n) =0(k %—'fl(qu’;y) 1/%) in the worst case,

4. The query time of the client structure is bounded by O(k x Q(n)).

14

6 A general technique

6.1 Introduction

Consider again our strategy with respect to the member searching problem of
Section 3. In this solution, we send in each update a string of O(logn) bits to the
client structures, where the string contains an encoding of the path to the node
where the update is carried out, together with information about what kind of
rotations have to be performed. In order to update the client structure, we follow
the path, insert or delete the object, and perform the rotations. Clearly, this
procedure takes O(logn) time. If we consider, however, how many nodes in the
tree are changed in this update, we see that O(1) of them are changed due to the
insertion or deletion, and the rest of them are changed due to rotations. Therefore,
if O(1) rotations are carried out, only O(1) nodes of the tree are changed. (Note
that a client structure does not contain balance information. Otherwise, O(logn)
nodes were changed.) So if we could avoid to walk down the path, it could be
possible to update the client structure in only O(1) time.

The solution is to send to the client structures the inserted or deleted object,
together with the positions in the tree where changes—and what kind of changes—
have to be carried out. Since there are binary trees that can be maintained in
logarithmic time with only O(1) rotations in the worst case (see [7,8]), this will
give us a solution where the client structures can be maintained in constant time.

This is the main idea of the general technique that will be worked out in this
section. We will achieve our result in a number of steps. First we give a solution
in case the data structures do not exceed some given size. Next we extend this
solution to a general one having a low average case complexity. Then we turn
these average case bounds into worst case bounds.

Let PR be a searching problem, and let DS (resp. DS') be the corresponding
client structure (resp. central structure). The performances of DS are denoted
by S(n) and Q(n), and those of DS' by S'(n) and U'(n) (see Section 2 for these
notations). We assume that DS is a substructure of DS'. That is, DS is a part
of DS', containing enough information such that queries can be solved fast. For
example, if DS’ is a balanced binary tree, then we can take for DS this tree without
the balance information of the nodes. Updates are performed as before. That is,
first the central structure DS' is adapted, then information is sent to the client
structures, and finally the client structures DS are adapted. Let C(n) denote
the amount of data that is changed in the client structure DS in an update. We
assume that all these complexity measures and S(n)/n are non-decreasing and
smooth.

We shall transform this multiple representation into another one, such that each
transformed client structure has size O(S(n)), update complexity F(n) = O(C(n))

15

and G(n) = O(C(n)), and in which queries can be solved in O(@Q(n)) time. The
idea is to send in each update only the changes of the client structure DS. In order
to avoid searching for the positions in the client structure where the changes have
to be carried out, we also send these positions. Therefore, we implement the data
structures as arrays. (We assume that our processors are random access machines,
the memories of which are modelled as an array. Hence we can indeed implement
the data structures as an array.) We take care that each part of DS is stored in
the same position in all computers. If such a part has to be changed, we only send
the index in the array where this part is stored. Then, in each client structure,
we can find in constant time the position where the change has to be carried out.
This implementation will be described more precisely in the next section.
We finish this section with the following lemma.

Lemma 1 The complexity measures introduced above satisfy

1. S(n) S S'(n)’
2. 8'(n)/n=0(U'(n)),
3. S(n)/n = 0(C(n)).

Proof. Since DS is a substructure of DS', we have S(n) < S'(n). We can build
the structure DS’ by performing n insertions into an initially empty structure,
which takes at most U'(1) + U'(2) +--- 4+ U'(n) < n x U'(n) time. During these
n insertions we have built a structure of size S'(n), and hence we have spent at
least S'(n) time. This proves that S'(n) = O(n x U'(n)). In the same way we
can build the structure DS. The total amount of data that has changed during n
insertions, is at most C(1) +C(2) +---+ C(n) < n x C(n). Since at the end there
is a structure of size S(n), it follows that S(n) = O(n x C(n)). O

6.2 A fixed size solution

Let N be an integer, the maximal number of objects that can be represented by our
data structures. We use in this section—and in the following ones—the notations
introduced in Section 6.1.

We have a client structure DS and a central structure DS’', and we want to
implement these structures as arrays. These data structures are composed of
‘indivisible pieces of information’ of constant size, such as pointers, integers, etc.
Each such indivisible piece will be stored in one array location. Since the data
structures represent at most N objects, we take a client array A of S(N) entries,
containing DS, and a central array A' of S'(N) entries, containing DS'. If n is the
current number of objects, S(n) entries of the client array and S’(n) entries of the
central array are occupied. We assume that the first S(N) entries of the central
array are identical to those of the client array. Clearly, this can always be achieved.

16

Finally, we introduce two stacks FE and FE' of free entries. In FE we store those
indices of the first S(IV) entries of the client array A, that are unoccupied. So the
client structure is stored in the client array locations {1,...,S(N)} \ {¢| € FE}.
Similarly, the stack FE' contains those indices of the last S'(N) — S(NN) entries
of the central array A' that are unoccupied. The purpose of these stacks is to
perform our own memory management.

Now the transformed client structure consists of the array A, that contains
information to answer queries. The transformed central structure consists of the
array A', containing in its first S(NV) entries the array A, and in the other locations
information that is used to preprocess updates. Also, the central structure contains
the stacks FE and FE' of free entries.

Suppose we want to insert or delete object p. We assume that there is room
in the arrays for a new object. Then we first perform this update in the central
structure. If we need new entries, we take them from the appropriate stack FE
or FE', and if entries become unoccupied, we put them on the stack where they
belong. Clearly, this update procedure takes O(U'(n)) time. Next we send all
changes on the client structure, i.e. the indices of the entries in the array A that
are changed together with the changes themselves. Using this information, each
client structure is adapted. Since the indices of the entries that have to be changed
in the client array are known, this array can be updated in time proportional to
the number of changed entries. So in our notation we have F(n) = O(C(n)) and
G(n) = O(C(n)). Note that the client structures do not need to contain the stack
FF of free array indices: the entire memory management is arranged by the central
structure. Clearly, at each moment the client structure is up to date and, hence,
it can be used to answer queries.

Theorem 8 Let DS be a client structure solving some searching problem, with
complezity S(n), Q(n) and C(n). Let DS' be the corresponding central structure,
with complezity S'(n) and U'(n). We can transform these structures into a multiple
representation, such that each client structure

1. has size O(S(N)),

2. has a query time bounded by O(Q(n)),

8. has F(n) = 0(C(n)),

4. has G(n) = 0(C(n)),
where N is the mazimal number of objects that can be represented by the structures,

and n s the current number of objects. Furthermore, the central structure has size
O(S'(N)), and its update time is bounded by O(U'(n)).

Proof. The size of the central structure is bounded by O(S'(N)) for the array
A', and by O(|FE| + |FE'|) = O(S'(NV)) for the stacks. Hence the total size of

17

the central structure is bounded by O(S'(N)). The other bounds follow from the
above discussion. [

If we know in advance, in some way, that the number of objects does not vary
too much, this will be an efficient solution. If, however, the number of objects
becomes too large, after a number of insertions, our arrays will become too small.
Similarly, after a number of deletions, a large part of the arrays will become empty,
and so the amount of space will become too large. In these cases the solution, of
course, is to rebuild the structures.

6.3 An efficient average case solution

Suppose that the data structures initially represent n objects. We store each
structure in an array that can store a data structure of gn objects. In this way
there is room in the structures for n/2 insertions. So in the notation of the
preceding section, we take N = %n The client structure consists of the array A of
length S(N). The central structure contains the array A’ of length S'(N), and the
stacks FE and FE', of size at most S'(N). The information is stored in these data
structures as in the previous section, and updates are performed in exactly the
same way. As soon as the number of objects becomes either -;-n or ;in, we rebuild
our data structures. That is, if m is the number of objects at that moment,
we build a new array A' and new stacks FE and FE', that are large enough to
contain a data structure for -23-m objects, and we send the subarray containing the
first S(3m) entries of A'—this subarray will be the new client structure A—to
the clients, where this new array replaces the old one. Then we proceed in the
same way. Note that this rebuilding can be done in O(S'(n)) time: we have to
put the array A’ into a new one, and we have to make new stacks for the new
free array locations. This can be done by just walking along the O(S’(n)) array

entries. (Remark that n = O(N) = ©(m).)

Theorem 9 Let DS be a client structure solving some searching problem, with
complezity S(n), Q(n) and C(n). Let DS' be the corresponding central structure,
with complezity S'(n) and U'(n). We can transform these structures into a multiple
representation, such that each client structure

1. has size O(S(n)),

2. has a query time bounded by O(Q(n)),

3. has F(n) = O(C(n)), on the average,

4. has G(n) = O(C(n)), on the average.

The central structure has size O(S'(n)), and its average update time is bounded by
o(U'(n)).

18

Proof. The bounds on the amount of space used by the structures follow from
Theorem 8, and from the fact that N—the maximal number of objects that can be
represented—and n—the current number of objects—satisfy n = ©@(N). Clearly,
the query time for a client structure remains O(Q(n)). Since the structures are
rebuilt at most once every n/2 updates, the average values of both F(n) and G(n)
are bounded by O(C(n) + S(n)/n), which is O(C(r)) by Lemma 1. In the same
way it follows from Theorem 8 and Lemma 1, that the average update time of the
central structure is bounded by O(U'(n) + S'(n)/n) = O(U'(n)). O

6.4 An efficient worst case solution

In this section we assume that the update time U’(n) of the central structure and
the amount of data C(n) that an update changes in the client structure are worst
case bounds. We shall show how the average case bounds of the preceding section
can be made into worst case bounds. The idea is to spread out the construction
of the new structures over a number of updates. The technique is related to the
global rebuilding technique in [9]

Let m be the number of objects initially represented by the data structures. Let
! be an integer, such that gm <! < 3m. We first describe the update algorithm
for the client structure; later we shall consider the central structure. The client
structure consists of the array A of length S(l), as before.

Consider a sequence of m/2 updates. (Note that the array A has room for at
least m /2 new objects.) We split this sequence into 3 phases.

First phase: The first phase consists of the first m/4 updates. These are
performed as before. That is, the changes of the client structures, together with
the positions in the array A where the changes have to be carried out, are sent
to them, and using the received information, each client structure is adapted. So
after the first phase, the client structures are up to date.

Let mo be the number of objects that are present after the first phase, and let
lo = 2mg. (We use [y to estimate the number of objects that are present after the
third phase.)

Second phase: The second phase consists of the next m/8 updates. These
updates are performed as in the first phase. Also, a new client array Ag is built
in the central computer during the first m/16 updates of this second phase. This
array has length S(lo), and it stores the client data structure as it was after the first
phase. (Later we shall describe how the central computer builds this new array;
we now just assume that it is there.) This new array is sent to the clients during
the last m/16 updates of the second phase. In each update we send an amount of
O(S(l)/m) = O(S(m)/m), which is bounded by O(C(m)) by Lemma 1.

After the second phase, the client structure consists of an up to date array A
and an array Ag, containing the client structure as it was after the first phase.
We also assume that the central structure contains a list of the updates in the

19

second phase, i.e. a list containing the m /8 objects, and for each object information
whether it has to be inserted or deleted.

Third phase: This phase consists of the final m/8 updates. These updates
are carried out on the up to date client array A, as before. In order to make the
new array Ag up to date, we perform on this array with each update, two updates
from the list of updates from the second phase. (Note that these updates have
to be performed in chronological order, since the same object can be inserted and
deleted several times!) Then we remove the two updates we just carried out from
the list, and the actual update is added at the end of the list.

After this final phase, the client array Ao is up to date, and the old array A is

discarded.

So we end with a client structure consisting of an array Ao of length S(lo). Let
n be the number of objects that are represented by the structures at this moment.
If we can show that %n < lp < 3n, then we are in the same situation as at our
starting point, i.e. before the first phase, and hence we can proceed in the same

way.
At the beginning the data structures represented m objects, and after the first
m /4 updates there were mg objects. It follows that
3 5
-m < < -m.
4m Smo S 4m
After the third phase, i.e. after another m/4 updates, there are n objects. Hence

1 1
mo—ZmSnSmo—l—Zm.

Clearly, m and n are related by

lm <n< §m
2 2
It follows that
3 1 3 3 3 1 3
lo=2my = 3o + 5o > 3o + g™ = §(m0 + Zm) > 3™

and 1
lo=2mo < 2(n + Zm) <2n+n = 3n,

which shows that we are indeed in the same situation as at our starting point.

The central structure consists of two copies of each of the structures A', FE
and FE', and one copy of a list L (we use the notations of the preceding section).
All m/2 updates are carried out on one of A', FE and FE'. Hence at each moment
the central structure contains an up to date data structure. In the second phase,

20

in each update we add the object together with information whether it has to be
inserted or deleted, to the list L.

It remains to describe what happens with the other structures A’, FE and FE'.
In the first phase the updates are performed on these structures as usual. During
the first m/16 updates of the second phase we convert them into new structures
Al, FE, and FE|. Here A} is an array of length S'(lo) that will contain the data
structure as it is at the beginning of the second phase, and FE, and FE| are
the corresponding stacks of free entries in this new array. This converting can
be performed in O(S(lp)) = O(S(m)) time. In each of the m/16 updates we do
an amount of O(S(m)/m) of this converting. It follows from Lemma 1 that the
update time for the central structure remains O(U'(n) + S(m)/m) = O(U'(n)),
where n is the current number of present objects.

During the next m/16 updates of the second phase, the first S(ly) entries of
the array Aj—which contain the new client array Ao—are sent to the clients, as
described above. Also, the structures A}, FE, and FEj are copied; each update
we do an amount of O(U’'(n)) work. During the third phase, we perform each
update, two updates from the list L, on both copies of each of the structures Ay,
FE, and FEj, and we add the actual update at the end of L. (Again we remark
that the updates have to be carried out in chronological order.) After this third
phase, the structures A', FE and FE' are discarded. We end with two copies of
each of the structures Aj, FE, and FE|. Hence we are in the same situation as
before the first phase.

Before we summarize the result, we remark that a client structure contains at
any moment an up to date data structure, that can be used to answer queries.

Theorem 10 Let DS be a client structure solving some searching problem, with
worst case complezity S(n), Q(n) and C(n). Let DS' be the corresponding central
structure, with worst case complexity S'(n) and U'(n). We can transform these
structures into a multiple representation, such that each client structure

1. has size O(S(n)),

2. has a query time bounded by O(Q(n)),

8. has F(n) = O(C(n)), in the worst case,

4. has G(n) = O(C(n)), in the worst case.
The central structure has size O(S'(n)), and its worst case update time is bounded
by O(U'(n)).

Proof. The size of the central structure is bounded by O(S'(n) +n) = O(S'(n)),
where the O(n) term is due to the list of updates. The rest of the proof follows
from the above discussion. [

21

7 Examples

As we have seen in Section 6, we can bound the update time for the client structures
by O(C(n)), which is the size of the changes in the structure. Hence our goal
is to design structures for searching problems for which C(n) is small. It is not
important whether the changes can be found efficiently (although this would make
the amount of work on the central structure small).

7.1 Binary search trees

Most classes of balanced binary search trees, such as AVL-trees, BB[o]-trees, etc.,
have the property that in an update O(logn) rotations are necessary to rebalance
them. Hence for such trees, an update changes O(logn) nodes. Binary trees from
the class of aBB-trees, as introduced by Olivié [7,8], however, have the interesting
property that they can be maintained in logarithmic time, by at most a constant
number of rotations (if & € {}, 1}).

So let T be an aBB-tree, where o € {}, 3}, without the balance information
of the nodes. Suppose T contains a set of n objects in its nodes. In this tree,
member queries can be solved in O(logn) time. By the above mentioned result of
Olivié, we can maintain T' by means of O(1) rotations. Hence an update changes
only O(1) nodes in T. (Note that if the tree would contain balance information,
an update would change O(logn) nodes, since then the balance information would
have to be adapted.) Applying Theorem 10, we get

Theorem 11 For solving the member searching problem, there exists a client
structure with complezity

1. S(n) = O(n),
2. Q(n) = O(logn),
8. F(n) =0(1),
4. G(n) =0(1).

Furthermore, the central structure has size O(n), and can be maintained in O(log n)
time.

In the solution just given we stored the objects in the nodes of the tree. There
are applications, however, in which we want to store the objects in sorted order
in the leaves of the tree. Then, in order to be able to search in the tree, we have
to store information in the internal nodes to guide these searches (in each node
we must decide in some way whether we proceed to the left or to the right son).
Suppose we store in each node the maximal element in its subtree. Clearly, we can
use this information to solve member queries in time proportional to the longest
path in the tree. If we now delete the maximal element in the tree, then in each

22

node on the rightmost path the search information has to be changed. Therefore,
if the tree is balanced, an update changes O(logn) nodes. So we have to take care
what ‘search information’ we store in the internal nodes.

Suppose now that we store in each internal node v, the maximal element in
the left subtree of v. Note that this maximal element is stored in the unique leaf
that is reached by making one step to the left in node v, followed by a maximal
number (possibly none) of steps to the right. It is not difficult to prove that in
this case an update changes O(1) nodes, if we do not rebalance the tree.

So let T be an aBB-tree, containing a set of n elements in sorted order in
its leaves, without balance information. Each internal node contains the maximal
element in its left subtree. Then, in T member queries can be solved using the
search information of the internal nodes in O(logn) time. Now let a € {3,1}.
Then it follows from the above that an update changes only O(1) nodes in T.
(Note that the search information in a node is changed iff the maximal element in

its left subtree is changed.) Applying Theorem 10, we get

Theorem 12 For solving the member searching problem, we can take for the client
structures a leaf search tree, having complexity

1. S(n) = O(n),

2. Q(n) = O(logn),

3. F(n) =0(1),

4. G(n) = 0(1).
Furthermore, the central structure has size O(n), and can be maintained in O(logn)
time.

In the next section we shall use aBB-trees to design an efficiently maintainable
class of data structures solving the orthogonal range searching problem.

7.2 Range trees

The orthogonal range searching problem, was mentioned already in Section 5.
Bentley [1], Lueker [5] and Willard and Lueker [14] designed an efficient data
structure for this problem, the so-called range tree, that can be maintained in
O((logn)?) time. In this section, we show that by modifying the balance conditions
somewhat, we get a class of d-dimensional range trees, for which an update changes
only O((logn)?!) nodes.

We define range trees as follows. (For the definitions of BB[a]-trees and aBB-
trees, we refer the reader to Nievergelt and Reingold [6], Blum and Mehlhorn [3],
and Olivié [7,8].)

Definition 3 Let S be a set of points in the d-dimensional euclidean space. A
d-dimensional range tree T, representing the set S, is defined as follows.

23

1. If d = 1, then T is an aBB-tree, containing the points of S in sorted order
in 1ts leaves.

2. If d > 1, then T consists of a BB[o!|-tree, called the main tree, containing
in i1ts leaves the points of S, ordered according to their first coordinate. Each
node v of this main tree contains an associated structure, which is a (d—1)-
dimensional range tree for those points of S that are in the subtree rooted at
v, taking only the 2nd to d-th coordinate into account.

So in our notion of range trees there are two kind of binary trees. The trees
representing points in multi-dimensional space belong to the class of BB[a/|-trees,
and the trees representing one-dimensional points belong to the class of aBB-trees.
Note that all trees are used as leaf search trees.

Let T be a d-dimensional range tree, and suppose we want to insert or delete a
point p. Then we search with p in the main tree to locate its position among the
leaves, and we insert or delete p in all the associated structures we encounter on
our search path (if these associated structures are one-dimensional range trees, we
apply the update algorithm for aBB-trees using rotations; otherwise we use the
same procedure recursively). Next we insert or delete p among the leaves in the
main tree, and we walk back to the root. During this walk, we rebalance the main
tree: each node that is out of balance is rebalanced by means of rotations. Note
that we have to rebuild the associated structures of the nodes that are involved
in these rotations, and this will take a lot of time when these structures are large.
However, it turns out that the average time to update T in this way, will be low.

The following theorem gives the complexity of range trees. For a proof, we
refer the reader to [1,5,9,14].

Theorem 13 Let S be a set of n points in d-dimensional space. Then a d-
dimensional range tree, representing the set S, has size O(n(logn)® 1), and can
be built in O(n(logn)® 1) time. In this tree, updates can be performed in time
O((logn)?%) on the average, and orthogonal range queries can be solved in time
O((logn)? +t), where t is the number of reported answers, without using the bal-
ance information stored in the nodes.

Let T be a d-dimensional range tree for a set of n points, without the balance
information. We store in internal nodes of the trees search information as in Sec-
tion 7.1 (note that our trees are leaf search trees). We take for the one-dimensional
structures aBB-trees with a € {%, %—} It was stated that the average update time
of T is bounded by O((logn)?). We shall show now that the average number of
nodes that are changed in T in an update is bounded by O((logn)¢~1). Let C(n,d)
denote this average number.

Lemma 2 C(n,d) = O((logn)%1).

24

Proof. We have seen in Section 7.1 already that C(n,1) = O(1). Let d > 1.
To perform an update we start in the root of the main tree, and we update its
associated structure. This changes on the average at most C(n,d—1) nodes. Then
we repeat the same procedure for the appropriate son of the root, which is the root
of a range tree for at most (1 — ')n points. Hence this changes on the average at
most C((1 — o')n,d) nodes. If the root of the main tree gets out of balance, we
perform a rotation and, hence, we have to rebuild the associated structures of the
sons of the root. Since these associated structures are (d — 1)-dimensional range
trees, this changes O(n(logn)? %) nodes. It was shown by Blum and Mehlhorn [3]
that for a proper choice of o' the root of the main tree gets out of balance at most
once every ()(n) updates. Hence the average number of nodes that are changed
due to our visit of the root of the main tree is bounded by O((logn)?2). It follows
that C(n, d) satisfies the following recurrence:

C(n,d) < C(n,d— 1) + C((1 — ')n,d) + O((log n)*2).
This proves the lemma. O

So we have a class of range trees that can be maintained in time O((logn)?)
on the average, whereas in the structures without balance information an update
changes only O((logn)%!) nodes, also on the average. Hence, by Theorem 9, we
have

Theorem 14 For solving the orthogonal range searching problem, there exists a
client structure with complezxity

1. S(n) = O(n(logn)?1),

2. Q(n) = O((logn)? +t), where t is the number of reported answers,
8. F(n) = O((logn)*') on the average,

4. G(n) = O((logn)*') on the average.

8 Conclusions

We have studied the problem of maintaining multiple representations of dynamic
data structures: Suppose there are a number of processors, each containing the
same data structure. Then updates have to be performed in all these structures.
In order to save time, we first ‘preprocess’ the update in a central structure.
Then we broadcast information about the update to the processors, and using this
information each of these processors adapts its structure.

In this way there are two different types of structures. First there are the
client structures, that are stored in the processors. These client structures con-
tain information such that queries can be answered efficiently. Also, preprocessed

25

updates can be carried out fast on these client structures. The other structure is
the central structure, in which the updates are preprocessed. It turns out that it
is not necessary that the client structures are exact copies of the central structure.
For example, often a dynamic data structure contains information that is only
used for efficiently updating it. Since the client structures can use the information
gathered during the update of the central structure, they do not need to have this
information in their structure. A typical example is a dynamic data structure that
maintains the answer of an order decomposable set problem. The main part of
this structure is used to perform updates, whereas only a relatively small part of
it contains the answer to the set problem.

We have given a powerful general technique that solves the multiple represen-
tation problem, such that a client structure can be updated in time proportional
to the size of the changes in this structure. As an example, we have shown that
there is a class of range trees that can be maintained in O((logn)?) time, whereas
in the version of this tree containing no balance information, only O((logn)?!)
nodes are changed in an update. Hence by applying this general technique, we
can maintain the client version of the range tree in O((logn)?!) time.

There remain several problems and directions for further research:

In order to apply our general technique, data structures are needed for which
C(n)—the amount of data that is changed in an update—is small. It would be
interesting to have more examples of such data structures.

In the present paper, we performed single updates in the data structures. Is
it possible to carry out sets of updates more efficiently, than by just performing
them one after another?

We have seen some techniques to solve the multiple representation problem for
decomposable searching problems. It might be possible to design other schemes
for these problems.

Finally, one could investigate other multiple representation problems. For ex-
ample, what to do if the client structures do not necessarily have to represent the
same set of objects?

References

[1] J.L. Bentley. Decomposable Searching Problems. Inform. Proc. Lett. 8 (1979),
pp. 244-251.

[2] J.L. Bentley and J.B. Saxe. Decomposable Searching Problems I: Static to
Dynamic Transformations. J. of Algorithms 1 (1980), pp. 301-358.

[3] N.Blum and K. Mehlhorn. On the Average Number of Rebalancing Operations
in Weight-Balanced Trees. Theor. Comp. Sci. 11 (1980), pp. 303-320.

26

[4] D.G. Kirkpatrick. Optimal Search in Planar Subdivisions. SIAM J. Comput-
ing 12 (1983), pp. 28-35.

[5] G.S. Lueker. A Data Structure for Orthogonal Range Queries. Proc. 19-th
Annual IEEE Symp. on Foundations of Computer Science, 1978, pp. 28-34.

[6] J. Nievergelt and E.M. Reingold. Binary Search Trees of Bounded Balance.
SIAM J. Computing 2 (1973), pp. 33-43.

[7] H.J. Olivié. A Study of Balanced Binary Trees and Balanced One-Two Trees.
Ph.D. Thesis, University of Antwerp, Department of Mathematics, 1980.

[8] H.J. Olivié. A New Class of Balanced Trees: Half Balanced Binary Search
Trees. RAIRO Informatique Théorique 16 (1982), pp. 51-71.

[9] M.H. Overmars. The Design of Dynamic Data Structures. Springer Lecture
Notes in Computer Science, Vol. 156, Springer Verlag, 1983.

[10] M.H. Overmars and M.H.M. Smid. Maintaining Range Trees in Secondary
Memory. Proc. 5-th Annual STACS, Springer Lecture Notes in Computer
Science, Vol. 294, Springer Verlag, 1988, pp. 38-51.

[11] M.H. Overmars, M.H.M. Smid, M.T. de Berg and M.J. van Kreveld. Main-
taining Range Trees in Secondary Memory, Part I: Partitions. Report FVI-
87-14, University of Amsterdam, Department of Computer Science, 1987.

[12] F.P. Preparata and S.J. Hong. Convez Hulls of Finite Sets of Points in Two
and Three Dimensions. Comm. of the ACM 20 (1977), pp. 87-93. ‘

[13] M.H.M. Smid, L. Torenvliet, P. van Emde Boas and M.H. Overmars. Two
Models for the Reconstruction Problem for Dynamic Data Structures. Report
FVI-87-13, University of Amsterdam, Department of Computer Science, 1987.

[14] D.E. Willard and G.S. Lueker. Adding Range Restriction Capability to Dy-
namic Data Structures. Journal of the ACM 32 (1985), pp. 597-617.

27

The ITLI Prepublication Series

1986

86-01

86-02 Peter van Emde Boas

86-03 Johan van Benthem

86-04 Reinhard Muskens

86-05 Kenneth A. Bowen, Dick de Jongh
86-06 Johan van Benthem

1987

87-01 Jeroen Groenendijk, Martin Stokhof
87-02 Renate Bartsch

87-03 Jan Willem Klop, Roel de Vrijer
87-04 Johan van Benthem

87-05 Victor Sanchez Valencia

87-06 Eleonore Oversteegen

87-07 Johan van Benthem

87-08 Renate Bartsch

87-09 Herman Hendriks

1988

The Institute of Language , Logic and Information

A Semantical Model for Integration and Modularization of Rules
Categorial Grammar and Lambda Calculus

A Relational Formulation of the Theory of Types

Some Complete Logics for Branched Time, Part I

Logical Syntax

Type shifting Rules and the Semantics of Interrogatives

Frame Representations and Discourse Representations

Unique Normal Forms for Lambda Calculus with Surjective Pairing

Polyadic quantifiers

Traditional Logicians and de Morgan's Example
Temporal Adverbials in the Two Track Theory of Time
Categorial Grammar and Type Theory

The Construction of Properties under Perspectives
Type Change in Semantics:

The Scope of Quantification and Coordination

Logic, Semantics and Philosophy of Language:

LP-88-01 Michiel van Lambalgen
LP-88-02 Yde Venema

LP-88-03

LP-88-04 Reinhard Muskens
LP-88-05 Johan van Benthem
LP-88-06 Johan van Benthem
LP-88-07 Renate Bartsch

Algorithmic Information Theory

Expressiveness and Completeness of an Interval Tense Logic
Year Report 1987

Going partial in Montague Grammar

Logical Constants across Varying Types

Semantic Parallels in Natural Language and Computation

Tenses, Aspects, and their Scopes in Discourse

LP-88-08 Jeroen Groenendijk, Martin Stokhof Context and Information in Dynamic Semantics

Mathematical Logic and Foundations:
ML-88-01 Jaap van Oosten
ML-88-02 M.D.G. Swaen

Computation and Complexity Theory:
CT-88-01 Ming Li, Paul M.B.Vitanyi
CT-88-02 Michiel H.M. Smid

Lifschitz' Realizabiility
The Arithmetical Fragment of Martin L6f's Type Theories with

weak I-elimination

Two Decades of Applied Kolmogorov Complexity

General Lower Bounds for the Partitioning of Range Trees

CT-88-03 Michiel H.M. Smid, Mark H. Overmars Maintaining Multiple Representations of

Leen Torenvliet, Peter van Emde Boas

CT-88-04 Dick de Jongh, Lex Hendriks
Gerard R. Renardel de Lavalette

Dynamic Data Structures
Computations in Fragments of Intuitionistic Propositional Logic

