
THE POINTWISE VIEW OF DETERMINACY:
ARBOREAL FORCINGS, MEASURABILITY, AND

WEAK MEASURABILITY

BENEDIKT LÖWE

Abstract. We prove that for all standard arboreal forcing no-
tions P there is a counterexample for the implication “If A is de-
termined, then A is P-measurable”. Moreover, we investigate for
which forcing notions this is extendible to “weakly P-measurable”.

1. Introduction

The use of coding techniques is ubiquitous in the theory of Determi-
nacy: we code countably many reals as one, finite sequences as natural
numbers, and basic open sets as finite sequences.

A consequence of this fact is that many proofs using Determinacy
don’t look at the set under investigation but at some coded or decoded
version. Since most of the literature on determinacy works with the
assumption that a whole pointclass (which is normally respected by
the coding) is determined, this is not a problem.

As soon as we drop the talk about pointclasses and move on to
individual sets, we start getting into trouble:

If we ask whether a given determined set has nice properties (for
example, the Baire property), we tend to get unpleasant answers: In
general, determined sets can be as nasty as you want them to be.
Determinacy is a very local property.

This paper is part of a project trying to understand the actual con-
sequences of determinacy better. The difference between pointwise and
classwise views of determinacy is of importance for higher set theory
(it is, e.g., one of the differences being homogeneously Suslin and being
determined that the first property has pointwise consequences whereas
the second has only classwise consequences), and the present author
has used counterexamples like the ones constructed in this paper in
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[Lö01] to show that the usual proof of Turing determinacy will not
work under the assumption of imperfect information determinacy.

The Baire property in the above example is just one of many regular-
ity properties derived from forcing notions. The corresponding algebras
and ideals have been investigated long before the advent of forcing
in [Ma35], and since then they have been the subject of a consider-
able amount of research. As a short reference list, we mention [Ell74],
[ÃLaRe95], [ÃLa96], [Br95], [Lö98] and [BrLö99].

Among these forcing notions, we tend to distinguish between so-
called “topological forcings” with the property that the forcing condi-
tions form a topology base, and the “non-topological forcings”.

In this paper, we shall look at the interplay between determinacy
and the set algebras defined by those non-topological forcings. We
shall show that for any given forcing notion P (subject to certain non-
triviality restraints), it is not the case that any determined set A lies
in the algebra of measurability defined by P. Furthermore, we look
at the notion of weak P-measurability (which is classwise equivalent
to P-measurability) and determine which forcing notions P allow us to
construct counterexamples to pointwise implications from determinacy
to weak P-measurability by a Bernstein construction.

2. Definitions and Standard Constructions

Since this paper is about distinguishing properties of single sets from
properties of classes of sets, let’s introduce a way of addressing this
difference:

If Φ and Ψ are predicates of subsets of ωω, we say that Φ follows
pointwise from Ψ if for all sets A the implication “Ψ(A) → Φ(A)”
holds. We say that Φ follows classwise from Ψ if for all boldface
pointclasses Γ we have the following implication:

“if we have Ψ(A) for all A ∈ Γ, then we have Φ(A) for all A ∈ Γ”

(where a boldface pointclass is a pointclass closed under continuous
preimages; cf. [Mo80, pp. 19 & 27]).

As we mentioned in the introduction, most of the work on determi-
nacy and regularity properties focuses on classwise implications. We
shall look at the fact that pointwise implications do not hold, i.e., we’ll
construct determined sets which don’t have regularity properties.

Obviously, in order to construct sets which don’t have regularity
properties, we shall need the Axiom of Choice which will be assumed
tacitly throughout this paper.
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This paper uses the standard notation and the standard definitions
of set theory of the reals, [BaJu95], Descriptive Set Theory [Mo80] and
the theory of forcing [Ku80]. The reals are identified either with Baire
space ωω or with Cantor space 2ω. In general, we look at spaces Nω

where 2 ≤ N ≤ ω.

2.1. Arboreal Forcings. We look at (symmetric) regularity proper-
ties derived from arboreal forcing notions (as introduced in [Lö98]).

A forcing notion P is called arboreal on N if it is isomorphic to a
family of pruned trees on N ordered by inclusion. This is equivalent to
saying that the forcing conditions are closed sets in Nω. For each tree
P we let [P ] be the set of all branches through P . For a finite sequence
s ∈ ω<ω, we let [s] := {x ; s ⊆ x} be the set of all branches through
the tree of all sequences compatible with s.

As usual in forcing, in most situations we shall assume that the
forcing notions are nonatomic, i.e., that for each P ∈ P there are
incompatible Q and R with Q ≤ P and R ≤ P . (This corresponds to
the generic reals not belonging to the ground model, cf. [Ku80, Lemma
VII.2.4].) Most of the forcings have an even stronger property: We call
P strongly nonatomic if that for each P ∈ P there are Q and R with
Q ≤ P and R ≤ P and [Q] ∩ [R] = ∅.

If we talk about arboreal forcing notions, we always keep in mind the
standard examples from [Je86], [BaJu95], [Br95], [Lö98], and [BrLö99]:
Cohen forcing C, Hechler forcing D, Eventually different forcing E,
Sacks forcing S, Miller forcing M, Laver forcing L, Willowtree forcing
W, Silver forcing V, Matet forcing T, and Mathias forcing R (the defi-
nitions can be found in the above mentioned papers and monographs;
for E, check [BaJu95], for W and T, check [Br95, Lö98]). Among these,
S, V and W are arboreal on 2, the others are arboreal on ω.

Let A be a subset of Nω and P an arboreal forcing on N . We call A
weakly P-measurable if there is a P ∈ P such that either [P ] ⊆ A
or [P ] ⊆ Nω\A. We call A P-measurable if for each Q ∈ P there is a
P ≤ Q such that either [P ] ⊆ A or [P ] ⊆ Nω\A.

Both P-measurability and weak P-measurability are symmetric con-
cepts: If A is (weakly) P-measurable, then its complement is (weakly)
P-measurable as well. It is clear that P-measurability implies weak
P-measurability pointwise. Brendle and the present author show in
[BrLö99, Lemma 2.1] that the converse holds classwise.

Two remarks are in order:

(1) These notions of measurability do not necessarily generate a σ-
algebra. For this, we need some sort of fusion property (cf. [Je86,
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Definition I.3.6]) which holds for the mentioned standard examples.
Since this is irrelevant for the investigation at hand, we shall not discuss
it here.

(2) Some arboreal forcing notions P generate a topology, i.e., their
conditions form a topology base. In this situation, we have a different
candidate for a natural algebra defined by P: the σ-algebra of sets hav-
ing the Baire property in the topology generated by P. More often than
not, this algebra is more natural than the algebra of the P-measurable
sets: Look at Cohen forcing where C-measurability translates into “for
each open set there is an open subset contained in A or contained in the
complement of A”. Clearly, the set of rationals doesn’t have this prop-
erty. This means that the C-measurable sets do not form a σ-algebra,
and they don’t include all Fσ sets.

In these cases (among our standard examples, this happens for C,
D, E and R) we define the corresponding regularity property to be the
Baire property associated to the topology. We will not deal with a
situation like this in this paper.

2.2. Determinacy. If T is a tree on N and t ∈ T , we say that

• T doesn’t split at t if t has exactly one immediate successor,
• T fully splits at t if for all n ∈ N , ta〈n〉 ∈ T .

A tree σ ⊆ N<ω is called a strategy for player I on N if it doesn’t
split at any node of even length, and fully splits at every node of odd
length. A tree τ ⊆ N<ω is called a strategy for player II on N if it
doesn’t split at any node of odd length, and fully splits at every node
of even length.

A set A is called determined if it contains the branches of a strategy
σ for player I (i.e., [σ] ⊆ A, in that case, we call σ a winning strategy
for player I) or its complement contains the branches of a strategy
τ for player II (i.e., [τ ] ⊆ Nω\A, in that case, we call σ a winning
strategy for player II).

A tree T on N will be called a substrategic I-tree (substrategic
II-tree) if there is a strategy σ on N for player I (for player II) such
that T is a perfect subtree of σ. We call T a substrategic tree if T
is either a substrategic I-tree or a substrategic II-tree. The set of all
substrategic trees (for a given N clear from the context) will be denoted
by ssT. The sets of substrategic I-trees (II-trees) will be denoted by
ssTI (ssTII). Note that every strategy is a substrategic tree.

If T is a substrategic I-tree there is a unique NT ∈ ω such that for
all nonempty t ∈ T , we have t(0) = NT . If T is a substrategic II-tree,
then for all n there either is a unique number MT,n such that for all
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t ∈ T with lh(t) ≥ 2 and t(0) = n we have t(1) = MT,n or 〈n〉 /∈ T . In
the latter case we let MT,n be undefined.

It is important to note that the numbers NT and MT,n are not
changed by enlarging or shrinking the tree:

Observation 2.1. If T, T ∗ ∈ ssTI and T ⊆ T ∗, then NT = NT ∗ .
If T, T ∗ ∈ ssTII and T ⊆ T ∗, then MT,n = MT ∗,n whenever MT,n is
defined.

Proof: Obvious. q.e.d.

A finite sequence s ∈ ω<ω is called compatible with a tree T if
s ∈ T . If s is compatible with T , we call T↑s := {t ∈ T ; t ⊆ s or s ⊆ t}
the truncation of T at s. All truncations of strategies for player I
(player II) are substrategic I-trees (substrategic II-trees).

If T is a substrategic I-tree and C ⊆ ωω, we call C isolated from T
if all elements of C differ from T in the first digit, i.e., if for all x ∈ C,
we have x(0) 6= NT . If T is a substrategic II-tree and C ⊆ ωω, we call C
isolated from T if all elements of C differ from T in the second digit,
i.e., if for all x ∈ C, we have that MT,x(0) is defined and x(1) 6= MT,x(0).
We introduce the notation Isol(C, T ) for “C is isolated from T”.

Observation 2.2. The following are easy combinatorial properties of
substrategic trees:

(i) If T, T ∗ ∈ ssT, S is isolated from T and T ∗ ⊇ T , then S is
isolated from T ∗ as well.

(ii) If T and S are substrategic trees and T 6⊆ S, then [T ]\[S]
contains a perfect set.

Proof: Part (i) follows from Observation 2.1 and the fact that being
isolated from T only depends in NT or {MT,n ; n ∈ ω}.

As for (ii), since T is perfect, T↑s is a perfect tree for s ∈ T\S, hence
[T↑s] is a perfect subset of [T ]\[S]. q.e.d.

The question whether determinacy implies P-measurability classwise
has been dealt with in [Lö98] where the present author shows that
there are games corresponding to the forcing notions whose determi-
nacy gives the appropriate measurability. In most cases, these games
use real moves, so the determinacy in the sense defined above may not
be enough to get the wanted classwise implications. For a notion of
P-measurability, having an integer game associated with it seems to
be a strong property as the analysis of Zapletal [Za∞] suggests. This
seems to be connected to the famous open problem whether the Axiom
of Determinacy AD implies the Ramsey property for all sets of reals
[Ka94, Question 27.18].
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3. Measurability

If our question is whether determinacy implies measurability point-
wise, we get the expected answer: “In all interesting cases, no.”

We need a technical lemma which is just an abstract version of Bern-
stein’s theorem:

Lemma 3.1 (General Bernstein Construction). Let κ be any infinite
cardinal, A be any set, and 〈Sα ; α < κ〉 be any sequence of sets such
that for each α, the set Sα\A has cardinality κ or greater. Then there
are disjoint sets X and Y with

(1) X ∩ A = ∅, Y ∩ A = ∅,
(2) for each α, X ∩ Sα 6= ∅, and
(3) for each α, Y ∩ Sα 6= ∅.

X and Y are called Bernstein components for A and 〈Sα ; α < κ〉.

Proof : The sets X and Y are constructed by recursion. In each
step β, designate two elements xβ and yβ. Write Xα := {xβ ; β < α}
and Yα := {yβ ; β < α}. Both of these sets have α many elements (in
particular, less than κ many). Consequently, the set Sα\(A∪Xα ∪ Yα)
has still cardinality κ, and we are allowed to pick two new elements xα

and yα.
Finally, set X :=

⋃

α<κXα and Y :=
⋃

α<κ Yα. q.e.d.

Theorem 3.2. If P is an arboreal forcing such that [P ] has cardi-
nality continuum for all P ∈ P, then determinacy does not imply P-
measurability pointwise.

Proof : We claim the following:

There are a strategy σ and a P-condition Q such that for all P ≤ Q,
the set [P ]\[σ] has cardinality continuum.

Proof of Claim: Suppose that τ and Q ∈ P are such that the car-
dinality of [Q]\[τ ] is strictly less than 2ℵ0 (if these don’t exist, there
is nothing to be shown). This means that [Q] ∩ [τ ] must have cardi-
nality 2ℵ0 because [Q] = ([Q] ∩ [τ ]) ∪ ([Q]\[τ ]) and [Q] has cardinality
continuum.

Now take any strategy σ with [τ ] ∩ [σ] = ∅. Clearly, for any P ≤ Q,
[P ] ∩ [σ] ⊆ [Q]\[τ ], so [P ]\[σ] must have cardinality continuum for
cardinality reasons. q.e.d.(Claim)

We fix σ and Q as in the Claim.
Let 〈Pα ; α < 2ℵ0〉 be an enumeration of the set {P ; P ≤ Q}.

We can apply Lemma 3.1 to [σ] and 〈[Pα] ; α < 2ℵ0〉 in order to get
Bernstein components X and Y .
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Now let B := [σ] ∪X. Then Q witnesses that neither B nor Nω\B
is P-measurable: every condition below Q has a branch through both
B and its complement.

But if σ was a strategy for player I, then B is determined. If, on
the other hand, σ was a strategy for player II, the complement of B is
determined. q.e.d.

Corollary 3.3. For all mentioned non-topological forcing notions P (S,
M, L, W, V, T), determinacy does not imply P-measurability pointwise.

Proof : All mentioned forcings are strongly nonatomic and all
strongly nonatomic forcings have perfect sets as conditions. Thus the
result follows from Theorem 3.2. q.e.d.

4. Weak Measurability

The situation for weak P-measurability is much more complicated
and there are not always counterexamples to pointwise implications.

So we have to be careful, and our of means of classifying forcings
is a measure called fatness. We shall be able to show that we have
definitive answers for fatness zero and uncountable fatness and that
all classical examples of arboreal forcing notions have one of these two
values.

The situation of other values of fatness is more subtle, and we shall
give examples of (not too natural) forcing notions that show that for
finite or countable fatness the relationship between determinacy and
weak measurability is unclear.

Fix any κ ≤ 2ℵ0 . We call an forcing notion P that is arboreal on
N κ-fat if there is a strategy σ on N such that for all P ∈ P the set
[P ]\[σ] has cardinality at least κ.

We shall now define the notion of fatness:

• We say that P has fatness n for some natural number n if P is
n-fat but not n+ 1-fat.

• We say that P has fatness < ℵ0 if P is n-fat for all natural
numbers n but not ℵ0-fat.

• We say that P has countable fatness if P is ℵ0-fat but not
ℵ1-fat.

• We say that P has uncountable fatness if P is ℵ1-fat.

The conspicuous gap (we don’t distinguish between different un-
countable values of fatness) is easily explained:

Proposition 4.1. If P has uncountable fatness, then it is 2ℵ0-fat.
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Proof : Suppose P is ℵ1-fat as witnessed by a strategy σ. Then the
sets [P ]\[σ] are uncountable for all P ∈ P. But both [P ] and [σ] are
closed sets, so their difference is Borel. By Hausdorff’s theorem [Ke94,
Theorem (13.6)] every uncountable Borel set contains a perfect set, so
all of these sets are actually of cardinality continuum. Consequently,
σ witnesses that P is 2ℵ0-fat. q.e.d.

As we anticipated, forcings with fatness zero or uncountable fatness
can be handled quite easily. Before we prove this, let us note that all
natural forcing notions seem to have either fatness zero or uncountable
fatness:

Observation 4.2. Sacks forcing S and Miller forcing M have fatness
zero. Laver forcing L, Willowtree forcing W, Silver forcing V and
Matet forcing T have uncountable fatness. As an aside, note that
all mentioned topological forcings, C, D, E, and R have uncountable
fatness as well.

Proof : For S and M, this is clear, since each strategy on 2 is a
Sacks condition and each strategy on ω is a Miller condition.

Uncountable fatness for the other forcings has to be checked by pick-
ing the strategy cleverly that does the job. (In the case of Matet forcing
this depends on the definition: Matet forcing has fatness continuum
only in its strictly increasing variant.)

As a simple example let us discuss Laver forcing L. In this case,
it doesn’t matter what strategy we pick: Fix a strategy σ. We will
show that for each Laver tree L, the set [L]\[σ] has uncountably many
elements. There is s ∈ L ∩ σ such that s has exactly one immediate
successor in σ (if not, [L] ∩ [σ] = ∅ and there’s nothing to be shown).
But then let s∗ be any immediate extension of s which is not in σ but
in L (there are infinitely many of those). [L↑s∗] is a perfect set that’s
disjoint from [σ], and hence [L]\[σ] ⊇ [L↑s∗].

Since we didn’t give the definitions of the forcings, it doesn’t make
sense to go into details here. We leave it to the reader to play around
with those combinatorial objects (which is not too hard). q.e.d.

The most common values zero and continuum are easy to handle:

Proposition 4.3. If P has fatness zero, then weak P-measurability
follows pointwise from determinacy.

Proof: Having fatness zero means in particular that P is not 1-fat,
so for all strategies σ there is a P-condition Pσ whose branches are
completely contained in [σ].
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Thus if [σ] ⊆ A, then [Pσ] ⊆ A, and if [τ ] ⊆ Nω\A, then [Pτ ] ⊆
Nω\A. Hence any determined A is weakly P-measurable. q.e.d.

Theorem 4.4. If P has uncountable fatness, weak P-measurability
does not follow pointwise from determinacy.

Proof : We have to construct a determined set which is not weakly
P-measurable:

By Proposition 4.1, P is 2ℵ0-fat, i.e., there is a strategy σ with the
property that for all P ∈ P, [P ]\[σ] still contains 2ℵ0 reals. We now ap-
ply Lemma 3.1 to [σ] and the sequence 〈[Pα] ; α < 2ℵ0〉 of P-conditions.
Let X and Y be Bernstein components.

Finally, let B := [σ] ∪ X. Clearly, B cannot contain the branches
through an element of P as witnessed by Y . But X witnesses that the
complement of B cannot contain the branches through an element of P.
Consequently, neither B nor its complement are weakly P-measurable.
But if σ is a strategy for player I, then B is determined, and if σ was
a strategy for player II, the complement of B is determined. q.e.d.

Corollary 4.5. Weak Sacks measurability and weak Miller measur-
ability follow pointwise from determinacy. This is not true for weak
Laver, Willowtree, Silver or Matet measurability.

Proof : This is now clear from Observation 4.2, Proposition 4.3 and
Theorem 4.4. q.e.d.

5. Finite and countable fatness: Pointwise Implications

Proposition 4.3 and Theorem 4.4 settle the cases of fatness zero and
of uncountable fatness.

This leaves the cases of fatness n (for n > 0), of fatness < ℵ0 and
of countable fatness. As we mentioned, these cases are less interest-
ing, since all canonical examples have either fatness 0 or uncountable
fatness. As it turns out, in all three mentioned cases, we do get non-
structure results, and generic forcings with these values of fatness tend
to be somewhat odd. It would be interesting to ask whether there are
any natural examples of forcings with these values of fatness, or –in
contrast– whether we can find a natural property of forcings (that all
forcings used in applications share) that implies that the fatness of all
forcings with this property is either zero or uncountable.

Although at the moment, we don’t have a candidate for such a prop-
erty, we can show that strong nonatomicity excludes two of the prob-
lematic values for fatness:
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Proposition 5.1. If P is strongly nonatomic and P is not ℵ0-fat, then
P has fatness zero.

Proof: Take some n such that P is n-fat and a strategy σ witnessing
this. Towards a contradiction, assume that n > 0. Since P is not ℵ0-
fat, there must be some P ∈ P such that S := [P ]\[σ] is finite, say it
has k elements.

We can use the strong nonatomicity to split P into subconditions
{Pi ; i < k + 1} such that the sets [Pi] are pairwise disjoint. Since σ
was witnessing that P is n-fat, each S ∩ [Pi] must contain at least n
elements. So, Card(S) ≥ n · (k + 1), and since n > 0, this contradicts
Card(S) = k. q.e.d.

Let us look at canonical examples for forcings of finite and countable
fatness. All trees will be trees on ω from now on.

For the case of forcings with fatness < ℵ0 we need to fix a parti-
tion of the substrategic I-trees by defining χ(T ) := NT + 1. If T is a
substrategic II-tree, we set χ(T ) = 1. Note that this function has the
property that if T ⊆ T ∗, then χ(T ) = χ(T ∗) by Observation 2.1.

We define

Gn := {[T ] ∪ S ; T ∈ ssT, Isol(S, T ),Card(S) = n},

G<ℵ0
:= {[T ] ∪ S ; T ∈ ssT, Isol(S, T ),Card(S) = χ(T )},

Gℵ0
:= {[T ] ∪ S ; T ∈ ssT, Isol(S, T ),Card(S) = ℵ0, rkCB(S) = 0}.

In this definition, rkCB denotes the Cantor-Bendixson rank function.
rkCB(S) = 0 means that S has no limit points. In particular, S is
closed.

Theorem 5.2. Gn is a nonatomic forcing notion of fatness n. Deter-
minacy implies weak Gn-measurability pointwise.

Proof: (1) Let’s first show the nonatomicity: We take any P :=
[T ] ∪ S for T ∈ ssT. Since T is a perfect tree, we find proper perfect
subtrees T0 and T1. Now P0 := [T0] ∪ S and P1 := [T1] ∪ S witness
nonatomicity.

(2) It is clear that Gn is not n + 1-fat, since for every strategy σ
and every set S isolated from σ and with n distinct elements, the set
P := [σ] ∪ S is a condition, and S = P\[σ] has n elements.

(3) For every strategy σ and every P ∈ Gn, the set P\[σ] has at
least n elements: Let P = [T ] ∪ S where T ∈ ssT.

If T is a subtree of σ, then S is isolated from σ by Observation 2.2
(i). So, P\[σ] = S.
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If T is not a subtree of σ, then by Observation 2.2 (ii), [T ]\[σ] ⊆
P\[σ] contains a perfect set.

Thus, Gn is n-fat.

(4) Suppose that A is determined but not weakly Gn-measurable.

Case A: There is a strategy σ for player I such that [σ] ⊆ A. With
any set of pairwise distinct elements {x1, . . . , xn} such that xi(0) 6= Nσ,
we can construct a Gn condition P := [σ] ∪ {x1, . . . , xn}. Thus (we
are assuming that A doesn’t contain a condition) A cannot contain n
such elements. But this means that there is an infinite set of natural
numbers M such that A ∩ [〈m〉] = ∅ for all m ∈M .

Now pick n + 1 distinct elements {k0, . . . , kn} from M . Take any
strategy σ∗ for player I with Nσ∗ = k0 and any elements {x1, . . . , xn}
with xi(0) = ki (for 1 ≤ i ≤ n). Clearly, [σ∗] ∪ {x1, . . . , xn} is a
condition and it’s contained in ωω\A. Contradiction.

Case B: We have a strategy τ for player II such that [τ ] ⊆ ωω\A.
This case is very similar to Case A:

We look at all sequences of length two. Of these infinitely many
are not in τ . Any element of ωω starting with one of these is isolated
from τ , so ωω\A cannot contain n pairwise distinct elements starting
with one of those. That means there are infinitely many sequences s of
length two such that ωω\A∩ [s] = ∅. Take n+1 sequences {s0, . . . , sn}
like this, find a substrategic tree T such that [T ] ⊆ [s0] and elements
{x1, . . . , xn} with si ⊆ xi (for 1 ≤ i ≤ n). Then [T ] ∪ {x1, . . . xn} is a
condition that’s contained in A. Contradiction. q.e.d.

Theorem 5.3. G<ℵ0
is a nonatomic forcing notion of fatness < ℵ0.

Determinacy implies weak G<ℵ0
-measurability pointwise.

Proof: The proof is close to the proof of Theorem 5.2 and we use
the numbering (1) to (4) from there. The proof of nonatomicity (1) is
the same.

(2) It is clear that G<ℵ0
is not ℵ0-fat. If we take any strategy σ and

a set S of χ(σ) many points isolated from σ, then P := [σ] ∪ S is a
condition, and S = P\[σ] has χ(σ) (i.e., finitely) many points.

(3) We shall now show that G<ℵ0
is n-fat for every natural number

n. We fix a strategy σ for player I with χ(σ) = n. Then the proof of
(3) in Theorem 5.2 shows that σ witnesses that G<ℵ0

is n-fat.
(4) Again, the proof from Theorem 5.2. In Case A, we have a

strategy σ with [σ] ⊆ A and find an infinite set M of natural num-
bers such that [〈m〉] ∩ A = ∅. Let m0 be the least such number, and
{m1, . . . ,mm0+1} a set of m0 + 1 pairwise different numbers from M
(all different from m0). If we pick any strategy σ∗ for player I such
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that Nσ∗ = m0, then for any choice of xi ∈ [〈mi〉] (for 1 ≤ i ≤ m0 +1),
the set [σ∗] ∪ {x1, . . . , xm0+1} is a condition that lies completely in the
complement of A.

In Case B, we have an infinite set of sequences s of length two
such that ωω\A ∩ [s] = ∅. We pick two of them, say s0 and s1, find
a substrategic II-tree T such that [T ] ⊆ [s0] and pick x ∈ [s1]. Then
[T ] ∪ {x} is a condition that’s contained in A. Contradiction. q.e.d.

Theorem 5.4. Gℵ0
is a strongly nonatomic forcing notion of countable

fatness. Determinacy implies weak Gℵ0
-measurability pointwise.

Proof: Again the proof is along the lines of the proof of Theorem
5.2.

(1) In this case, the forcing is strongly nonatomic, since we can
split up every infinite internally isolated set into two infinite internally
isolated disjoint sets. (This is where we need rkCB(S) = 0. Note that
we are essentially using that Gℵ0

lives on ω—in the space Nω for N < ω
there is no infinite set with rkCB(S) = 0 due to König’s Lemma and
the pigeon hole principle.)

(2) The forcing is clearly not ℵ1-fat, since for each strategy σ there
is a countable internally isolated set S that is isolated from σ, hence
P := [σ] ∪ S is a condition, and S = P\[σ] is countable.

(3) The proof that Gℵ0
is ℵ0-fat follows exactly the corresponding

proof for Gn in Theorem 5.2.
(4) Proving that weak Gℵ0

-measurability follows pointwise from de-
terminacy also is exactly as in the proof of Theorem 5.2. If we assume
that A is determined but not weakly Gℵ0

-measurable, A must be dis-
joint from infinitely many basic open sets generated by sequences of
length one or two (depending on which player wins the game on A). Use
these to construct a condition that witnesses weak Gℵ0

-measurability.
q.e.d.

6. Finite and countable fatness: Pointwise
Non-implications

We will now modify the canonical examples of Section 5 to get ex-
amples for pointwise non-implications. It is interesting to see that our
examples do not use the Bernstein construction and thus do not use
the Axiom of Choice.

In addition to the isolation properties defined in Section 2.2 we define
a notion of being properly isolated:

Each tree T has a leftmost bit:

`T := min{t(0) ; t ∈ T}.
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For substrategic I-trees T , the leftmost bit `T is equal to NT .
Let T be a substrategic tree and S be a countable or finite set. We

write S = {xi ; i ∈ ξ} where ξ ≤ ω. We call S properly isolated from
T (in symbols: PIsol(S, T )) if S is isolated from T and xi(0) = `T +i+1
(for i ∈ ξ). Note that PIsol(S, T ) implies that rkCB(S) = 0.

We define

G∗
n := {[T ] ∪ S ; T ∈ ssT,PIsol(S, T ),Card(S) = n},

G∗
<ℵ0

:= {[T ] ∪ S ; T ∈ ssT,PIsol(S, T ),Card(S) = χ(T )},

G∗
ℵ0

:= {[T ] ∪ S ; T ∈ ssT,PIsol(S, T ),Card(S) = ℵ0}.

Proposition 6.1. G∗
n, G∗

<ℵ0
, and G∗

ℵ0
are nonatomic.

Proof: This is exactly as in (1) of the proofs of Theorems 5.2, 5.3
and 5.4. Note that we do not get strong nonatomicity as in Theorem
5.4 (1), because the requirement of proper isolation prevents us from
splitting up the set S. q.e.d.

Currently, we have no example of a strongly nonatomic forcing P
with countable fatness such that determinacy doesn’t imply weak P-
measurability pointwise. (For fatness n and < ℵ0, Propositions 5.1 and
4.3 tell us that such a thing can’t exist.)

Proposition 6.2. G∗
n has fatness n, G∗

<ℵ0
has fatness < ℵ0 and G∗

ℵ0

has countable fatness.

Proof: The proof of the upper bound is identical to the proof of
number (2), in Theorems 5.2, 5.3 and 5.4: We can easily supplement
any strategy σ with a set S meeting the requirements of the definition
to produce a condition [σ] ∪ S witnessing that the forcings are not
n+ 1-fat, ℵ0-fat, or ℵ1-fat, respectively.

For the lower bound take any strategy σ for player I. We will show
that σ witnesses that G∗

n is n-fat (the proof for the other two forcings
is similar):

If P = [T ] ∪ S is a G∗
n-condition, P\[σ] is uncountable if T is not a

subtree of σ as in step (3) of the proof of Theorem 5.2. If T ⊆ σ, then
by Observation 2.1, NT = Nσ, but for substrategic I-trees, we have
`T = NT . Thus, S is also properly isolated from σ, and in particular,
it is disjoint from σ, so P\[σ] = S. q.e.d.

As our counterexample, we simply let

A :=
⋃

{[〈n〉] ; n is even}.

Obviously, A is determined since player I controls the game with payoff
A with his first move.
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Proposition 6.3. Let n > 0. Then A is a determined set which is not
weakly G∗

n-, G∗
<ℵ0

-, or G∗
ℵ0
-measurable.

Proof: Any condition P (for all of the three forcings) has the prop-
erty that there are x, y ∈ P with y(0) = x(0) + 1. (This is where we
need n > 0; note that the definition of χ makes sure that the additional
set S is never empty.) But clearly, neither A nor ωω\A can contain such
a set. q.e.d.

Corollary 6.4. For P ∈ {G∗
n,G∗

<ℵ0
,G∗

ℵ0
}, determinacy does not imply

weak P-measurability pointwise.

Proof: Obvious from Proposition 6.3. q.e.d.
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