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1. Introduction

This article is a report on research in progress into the structure of diagrams of fragments of
intuitionistic propositional logic IpL with the aid of automated reasoning systems for larger
calculations. A fragment of a propositional logic is the set formulae built up from a finite
number of propositional variables by means of a number of connectives of the logic. The dia-

gram of that fragment is the set of the equivalence classes of its formulae partially ordered by
the derivability relation. Another way of looking at it is as a free algebra on a finite number of
generators. When, in the case of intuitionistic logic, one takes all connectives, the fragment
becomes a free pseudo-Boolean algebra (Rasiowa-Sikorski, 1963) on a finite number of gen-
erators. It is well-known that the free pseudo-Boolean algebra on even one generator is infi-
nite; it is called the Rieger-Nishimura-lattice (Rieger 1949, Nishimura 1960). Diagrams with-
out v are always finite, as was in essence first proved by Diego (1966). Besides the connec-
tives used standardly, fragments may contain more complex connectives; in the following e.g.
fragments with —— and <> are studied.

Before describing more precisely the content of the research a few historical remarks are in
order. In 1963, D. de Jongh and H. Kamp developed programs for deciding derivability in
IpL using Kripke semantics (Kripke, 1965) and Beth's semantic tableaux (Beth, 1955).
These programs were too time-consuming to be of any real use in studying diagrams.
L. Hendriks (1980) picked up the study of diagrams with an Algol 68 program, and improved
results were obtained by H. van Riemsdijk (1985) with the aid of a Pascal program, both us-
ing Kripke semantics and Beth tableaux. The latter was able to construct diagrams of up to a
hundred elements which is not yet completely outside of the range of manual calculations. The
amount of time and memory needed made it almost impossible to extend the technique to
larger fragments. Larger models can be attacked with a method developed by N.G. de Bruijn.
In 1975 he has introduced the concept of exact model for the study of diagrams in intuitionistic
logic for fragments with implication, conjunction and negation (De Bruijn, 1975a). He im-
plemented his ideas in an Algol 60 program, describing a decision procedure for derivability in
the fragment of three propositional variables with — and A (De Bruijn, 1975b).

In the present article, in Sections 2 and 3, de Bruijn's concept of exact model is developed in
the more familiar context of Kripke-models and simplified. Exact models are immediately fit to
obtain the diagrams of [A, —]-fragments. However, the 2-variable [A, —]-diagram contains
18 elements and hence can be produced manually, whereas the 3-variable [A, —]-diagram al-
ready contains more than 6-10'* elements and cannot be completely produced by a computer
program, so, although the structure of the 3-variable [A, —]-diagram is clarified by its 61-
point exact model, it is useful to study subdiagrams of it. De Bruijn (1975a) gave some ideas
and results concerning the diagrams of [—]-fragments and [A, —, —]-fragments within the
diagrams of [A, —]-fragments. His ideas are transposed to Kripke-models and extended to



fragments with <> and —™. In Section 4, the theory developed is used to give algorithms to
compute the exact models of several fragments contained in [p, q, A, =, 7] and to construct
the corresponding diagrams. Since even the smaller of these diagrams are relatively large (the
smallest one, [p, q, <>, 7], has 169 elements) it is necessary to develop methods for ob-
taining a global overview of the diagrams. One method is to determine in what manner the
intuitionistic diagram is a refinement of the diagram in classical logic for the same fragment.
Algorithms to do the latter are described. The results obtained are given in Section 5. The pro-
grams themselves have been added as an appendix. Section 6 sketches the plans for the con-
tinuation of the investigations.

It will be obvious from this introduction that we are heavily indebted to the mathematical work
of N.G. de Bruijn. We thank Henk van Riemsdijk of the Mathematics and Computer Science
Department of the Free University of Amsterdam for his contributions in exploring the
algorithms and computer programs for computing diagrams, and also John Tromp of the
Centre of Mathematics and Computer Science in Amsterdam who helped us by making the
first programs using the exact models as a tool. Finally we thank Albert Visser of the
Department of Philosophy of the University of Utrecht for suggesting lemma 3.1.1 to us.

2. Preliminaries.

2.1. Fragments.
The language of intuitionistic propositional logic is defined as usual, starting with the

propositional variables (atoms) p, q, T, p;, ..., and using the connectives A, v, — and —.
Formulae of IpL are denoted by A, B, C, A, ... . For an axiomatization of IpL, we refer to
Troelstra (1973).

A fragment [py, ..., Pm> C1» ..., Cn] Of IpL is a subset of the set of formulae of IpL built up
from the propositional variables py, ..., pm and using only the connectives ci, ..., ¢,. We
shall consider here only the connectives A, v, —, ™, 7 and <>, where the last two are
defined by ——A =—(—A) and A< B=(A - B) A (B —> A). Sometimes, when the
generating propositional variables are irrelevant, we denote a fragment by [c,, ..., cpl.

The diagram < diag(F), = > of a fragment F is the collection of equivalence classes of F
under the relation = (logical equivalence, defined by A =B iff AFB and B A), partially
ordered by the derivability relation k. We say that fragment F contains fragment G (F € G)
if the diagram of F contains (modulo logical equivalence) the diagram of G. Two fragments
are called equivalent (F = G) if they contain each other. As an example, we give the diagram

of [p,q, A, =] (fig.1).
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Figure 1. The diagram of [p, q, A, —].

The numbers of the nodes refer to the equivalence classes of the following formulae:

1: p—p 10: (p—q)—p

2: ((g=p)—9—q 11: (p—>9)—q)—p

3: (p—>9)—>({(q—p)—p) 12: (p—>9)—9) A ((q—p)—p)
4: ((p—9)—p)—p 13: ((q—p)—p)—9q

5:q—-p 14: (q—p)—q

6: (p—q)—q 15:p

7: (((@—p)——9) A (p—9)—p)—p)  16: (p—q) A (q—p)

8: (q—p)—p 17:q

9:p—q 18:pAq

The diagram of [p, g, —] is a subdiagram of fig. 1, obtained by omitting the nodes 7, 12, 16
and 18. Another subdiagram of Fig. 1 is the diagram of [p, q, <>], which consists of the
points 1, 2, 4,7, 10, 14, 15, 16 and 17, with the following new formulae:

2: (p>q)>p)<>q (analogously for 4)
7: (p>9)=p)=<>(((qp)>q)<>p)
10: (pq)<>q (analogously for 14)



Figure 2. The diagrams of [p, q, =] and [p, q, <>].

Given a collection of propositional constants P = {py, ..., pm} (m 2 2), there are twenty-
seven different (i.e. non-equivalent) fragments F based on a subset of {A,v, —,,
—, <>}. They are shown in fig. 3, as a partial ordering.

Equivalences between fragments are caused by the definability of some connectives in terms
of others; besides the definitions for — and <>, we have

AAB=A©B)« (AvB)
AAB=A (A—>B)
A—->B=(AAB)«~ B
A—->B=A<(AvB)

In fragments containing —, the presence of — is equivalent to that of 1, for TA=A—1
and L = (p—p). For technical reasons it is sometimes convenient to consider L as primi-

tive and — as defined. Finally, sometimes T is written for —.L.

As stated above, the diagram of [p, L, v, —] is the infinite so-called Rieger-Nishimura-lat-
tice. This lattice can be embedded in the diagram of [p, q, v, —], so six of the twenty-seven
fragments mentioned above have infinite diagrams, viz. those containing both v and —. In
this paper, we confine ourselves to some of the other fragments which do have a finite dia-
gram. The number of equivalence classes in each of the fragments with two propositional
variables is given in table 1, together with the corresponding numbers for classical logic and
some known numbers for three variable case.
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Table 1

Connectives classical logic intuitionistic logic
number of atoms:

1 2 3 1 2 3
AV T 4 16 256 oo oo oo
AV 4 16 256 7 683
A>T 4 16 256 6 2134
AT 4 16 256 4 23
o 4 8 16 6 538
v 4 16 256 oo oo oo
v 4 16 256 7 385
- 4 16 256 6 518
- 2 4 6 3 6 9
AV T 2 8 128 5 oo oo
AV T 1 4 18 2 19
A — T 2 8 128 4 676
AT 1 3 7 2 8
< T 2 4 8 4 169
Vv — 2 6 38 5 oo oo
v 1 3 7 2 9
— 2 6 38 4 252
- 1 2 3 2 4 6
AV > 2 8 128 2 oo oo
AV 1 4 18 1 4 18
A= 2 8 128 2 18 623 662 965 552 330
A 1 3 7 1 3 7
“ 2 4 8 2 9
V- 2 6 38 2 oo oo
% 1 3 7 1 3 7
- 2 6 38 2 14 25 165 802




2.2. Partially ordered sets.
Finite partially ordered sets will be used for the interpretation of formulae of IpL. From now

on X=<X,<> is a finite p.o. set, unless stated otherwise. As usual, we write < for the
strict order associated to <; analogously, < stands for strict set inclusion, i.e. Y cZ iff
YCZ and Y#Z.

We define:

P'X)={YCSXIVyeYVx2y(xeY)} (upward closed subsets)
Yo={xlxeXAxeY} (complementation)
int(Y)={ylVx2yxeY)} (upward interior)

It is easy to see that £2“(X) is a topology on X with int as interior operation. So we have

range(int) = range(cl) = £"(X)
(Y)Y ccl(Y)

in(Y) =Y iff Ye o"X)
int(YNZ) = int(Y) N int(Z)

The depth d(x) of an element of X is inductively defined by
d(x) :=max{d(y) | y > x} + 1, where max(@)=-1.

It is obvious that x <y implies d(x) > d(y).

2.3. Models.
A model X =<X,<,atom > of IpL is a p.o. set X together with a monotonic mapping
atom which maps elements of X on sets of atoms of IpL. Forcing of formulae in X is de-

fined as usual:

xlFp iff peatom(x)

xI- AAB iff xIFA and xI-B

xI-AvB iff xIFA or xI-B

xlFA—-B iff Vy>x (ylFA implies yl-B)
xIF—A iff Vy2>x (YFA)

This is the well-known Kripke forcing definition. For the defined connectives —— and <

we have:

xlF—A iff Vy2x3z2y (zIFA)
xIFAeB iff Vy2x (ylFA iff yl-B)

We also put

XIFA iff VxeX (xIFA)
A,, ..., AplFB iff, for all models X: XIFAA ...A A, implies XIFB



Forcing is sound and complete, i.e. Ay, ..., AnFB iff A, ..., AplF-B. It is even complete
w.r.t. the class of finite models, so

if XIFA for all finite models X, then FA.

This fact shall be used later on, in 3.2.
Given a model X, we define the mapping val(A) := {xe X | xIF A} of formulae A of IpL on
elements of 0 "(X). One straightforwardly verifies

val(p) = atom(p)

val(AAB) = val(A) N val(B)
val(AvB) = val(A) U val(B)
val(A—B) = int(val(A)° U val(B))
val(—A) = int(val(A))

If X is a model, then we call < %X), &> the diagram of X (notation: diag(X)). By
soundness, we have

(*) if A=B,then val(A) =val(B); if AFB, then val(A) < val(B).

We now consider the relation between the diagram of a fragment and the diagram of a model.
Let F be a fragment and X be a model. By (*), we can consider valg : diag(F) — diag(X)
as a well-defined order-preserving mapping. We put

diag(F) < diag(X) if valg is injective,
diag(F) 2 diag(X) if valr is surjective,
diag(F) =diag(X) if valg is bijective.

If diag(F) = diag(X), we call X an exact model of F.

3. Construction of exact models.

3.1. Basic lemmas.

Not all finite fragments have an exact model: this can be seen by observing that the diagram of
amodel is of the form £"(X) and hence a (complete) lattice which is join-representable (i.e.
where every element is the supremum of the join-irreducible elements below it), and that there
are fragments whose diagram is not a join-representable lattice. Consider e.g. the diagrams of
[p, g, =] and [p, q, ¢<>] described in 2.1: neither of them is a lattice. In general, only the

fragments containing A have exact models, and in the sequel we focus on two of these, viz.
[A, =] and [A,—,]. First we derive some general properties of formulae in these

fragments. The next lemma (3.1.1) was suggested to us by A. Visser.



3.1.1. Lemma. i) Let xe X be non-maximal and let A be a formula without v. Then
(1) atom(x) =[1{atom(y) |y >x} implies Vy>x (ylFA) & xIFA.

ii) Let A be a formula without —. Then, for all xe X:

2) {plp occursin A} Catom(x) = xIFA.

Proof. i) Induction over the complexity of A. A prime is trivial, A = BAC is easy. For
A =B—C we argue as follows. Assume Vy >x (ylF(B—C)),ie. Vy>xVz2y (zIFB =
zIF C); this is equivalent to Vy >x (ylFB = yl-C). We want xI-(B—C),i.e. Vy2x (ylFB
= ylF C), so we only need xI B = xI- C. But this holds, for if xI- B, then
Yy >x (ylFB), so Vy > x (ylC), hence (by induction hypothesis) xI-C. A =B is treated
likewise. '

ii) Easy. O

3.1.2. Lemma. Let F be some fragment, and let X =< X, <, valg> be a model with valg

surjective.
i) If v ¢con(F), then

(3) atom(x) < [1{atom(y) | y>x} for all non-maximal xe X.
ii) If — ¢ con(F), then
(4) atom(x) c atom(F) for all x € X.

Proof. i) By the monotonicity of atom, we already have atom(x) < [1{atom(y) | y>x}, so as-
sume atom(x) = [1{atom(y) |y >x} for some non-maximal x. Let A be a formula of F
with valg(A) = {y |y > x}. By 3.1.1(i), we have xe {y |y > x}, so contradiction. This

proves (3).

ii) Assume that F does not contain —, and let B be a formula of F with valg(B) =@. If
there is an x €e X with atom(x) = atom(F), then (by 3.1.1(ii)) x € valg(B). Contradiction, so
this x does not exist. O

Remark. (4) is a consequence of (3) without the restriction to non-maximal x (reading

atom(F) for MN@).
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3.2. Exact models for [A, —].
Now let F = [p, ..., Pn» =, A] be given: we define a model Xg =< Xf, <g, valg> and
show that it is an exact model for F. Xg is defined in n stages Xy, ..., X, which satisfy

xe Xy © llatom(x)ll =k
X, yeXf and x<y = xeXy,yeX) with k<1

We denote every x€Xg by xyp with Y= {yeXfrlx<;y}, P=atom(x). Now for
k=n-1,...,0, we put

Xg:={xyplYe goi(U{Xl lk<1<n-1}), P c atom(Y), lIPll =k };
here atom(Y) :=1{atom(y) | ye Y}, with (1@ = {py, ..., pn}.
As an illustration, we give a picture of Xg for F =[p, q, A, =] infig. 4.
P q
1 2

3 @4 5

Figure 4. The exact model of [p, q, A, —].

It is not hard to check that the diagram of [p, q, A, =], given in fig. 1, is isomorphic to the
diagram of this exact model. The exact model of [p, q, 1, A, =] has 61 points: the levels 2
and 1 are given in fig. 5. The diagram of this exact model has 623 662 965 552 330 points
(De Bruijn 1975a), and the size of the exact model of [p, q,1, s, A, =] is of the same order
of magnitude.

P g pr A
/\/\ e 00
p q p rdq r-p q r

Figure 5. The first two levels of the exact model of [p, g, 1, A, =].
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Let F=[p1, ..., Pn» A, =], XF as defined above.We shall show that diag(F) 2 diag(Xg),
i.e. val: diag(F) — diag(Xp) is surjective. This is done by giving, for every x € X, a for-

mula y, € F which satisfies
val(y,) = {y € X | not(y <x)};
as a consequence we have, for any Y € §£"(X), /\{\px IxegY)} eF and
val(A\ {yx 1x2 YD) =N{{ylnot(y<x)} Ixe Y} =yl Vx2y (xeY)} = Y,

so val is surjective.
Before defining Wy, we introduce two abbreviations.
newatom(x) := [1{atom(y) | y >, x }—-atom(x)
ANA,, ..., Ay = N (Ao A, 11<i<k)
By the definition of Xp, we have newatom(x) # @ for all xe X. In the sequel, q =qx is an

arbitrary element of newatom(x): the particular choice of q will be irrelevant, since it will
only be used in contexts where Anewatom(x) holds, and it is easy to see that Anewatom(x)

implies q&>q' forall g, q' € newatom(x).

We now simultaneously define ¢x and Wy, with induction over n—latom(x)II:
Ox := /\atom(x) A Anewatom(x) A A {yy—qly> x]}
AN {wz I not(z2x) and atom(z) 2 ({atom(y) | y>, x} }
Yxi=¢0x—q
Remarks. (1) A similar procedure was used in De Jongh 1980, Def. 2.8 (and in De Jongh'ﬂ
1968, 1970) for all connectives. In De Bruijn (1975a) one finds essentially the same definition

for .
(2) The last conjunct of ¢x can be denoted by AN {y.1zeZ} with Z:= {z|not(z 2 x) and

atom(z) 2 MN{atom(y) | y >, x} }. This Z is a downward closed subset of X and can be re-

placed by Z':={z!z is a maximal element of Z} € goi(X) in the definition of ¢,, since
z22z' implies ¢, ¢,.

For the example F =[p, q, A, =] given above in fig. 4, this comes down to

¢ =p Vi =p—q
¢.=4q © Y=q-p

¢ =(@P—q-p V:=((p—9—-p)—-p
¢, =pq V= (pq)—p

¢s=(@q-p)—q9 Vs=(q-p)—9—q
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3.2.1. Lemma. For all x,yeX we have

) yk& ey2x

i) ykKFyy ©y<x

Proof. Simultaneous induction over n—llatom(x)ll. We denote the four conjuncts of ¢, by

O1x5 ---»> Pax» TESPECtivEly: SO Oy = P1x A Oox A O3 x A Oy x. Now, using the induction hy-
pothesis for (7) and (8):

(5) ylF ¢,x = atom(y) 2 atom(x)

©6) yIF ¢,x = Vz2y (atom(z) N newatom(x) = @ v atom(z) 2 newatom(x))
7yl ¢:x = Vz2y(qeatom(z) v Vu>; x (z<u))

8) ylF ¢sx = Vz2y (atom(z) 2 atom(x) U newatom(x) — z = X)

(i) «: it suffices to check (5-8) for y := x. This is easy.

=: Let y I ¢x. We distinguish two cases.
a) q eatom(x): then by (6) with z:=y we have atom(y)2 newatom(x), so by (5) and (8)
with z:=y we get y=2x. '
b) q ¢ atom(x): then Vu2>x (y <u) by (7) with z :=y, so y <x; by (5), we get y=x.
(ii) =: x ¥y follows from Yy = ¢px— q, xIF¢x and xHq.

&: Assume ylvyy, ie. 3z 2y (zIF 0x A zI¢Qq), so by induction hypothesis Fz>y (z=>x
A q ¢ atom(z)); but this means Jz >y (z=x), ie. x2y. O

So we have diag(F) 2 diag(XF), and it remains to show that valg is injective in order to
conclude that Xpg is an exact model of F. This comes down to demonstrating that X is
complete w.r.t. F, which is a consequence of the completeness of IpL for finite models men-
tioned in 2.3 and the following lemma.

3.2.2. Lemma. Let X be a finite model.
i) Define (with induction over the depth of x) x* := <atom(x), {y*|y>x}> and put
X* .= {x*|x € X}. Then X* is (isomorphic to) a subset of X, and

XIFA < X*|FA for all formulae A of IpL.

ii) Define X':= {xe X | x maximal or atom(x) < [1{atom(y) | y > x} }. Then
XIFA & X'IFA forall formulae A of IpL without v.

iii) Let P be a set of propositional variables. Define X" := {xe X | atom(x) < P}. Then
XIFA & X"IFA forall formulae A in [P, A, v, —].

Proof. i) By proving Vx e X (xIFA < x*[- A) with induction over A.
ii) By lemma 3.1.1(i)
iii) By lemma 3.1.1(i). O
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3.2.3. Lemma. X is complete w.r.t. formulae of F.

Proof. Assume K A, where A is a formula of F. Then there is a finite model X with
XJ A. By lemma 3.2.2, we have ((X*))"M} A, and one easily verifies that ((X*)")" isa
submodel of Xg, so Xgl¢A. O

Now we may conclude:

3.2.4. Theorem. Xg is the exact model of F = [py, ..., pn, A, =]

3.3. Exact models for [A, —, ).

We now take — into consideration and do the same as in 3.2 for F' =[p,, ..., Pn, =, A, 7
we define a model Xp =< X, <p, valgr > and show that it is an exact model for F'. The
treatment follows the lines of 3.3. X = X is defined exactly as in 3.3, but now in n+1
stages Xp, ..., Xo.

As an example, the model Xp for F' =[p, q, A, =, 7] is given in fig. 6. The numbers at the
nodes are for later use (section 4). Its diagram has 2134 points (De Bruijn 1975a). The exact
model of [p,q, 1, A, =, ] has 6423 points, of which 6386 in level 0; the size of its dia-
gram still awaits computation (it is greater than 101990,

Pal 15

o | 4
6

Figure 6. The exact model of [p, g, A, =, 7.

diag(F') 2 diag(Xp) is shown using the following lemma, with ¢x and Yy defined by

O = Aatom(x) A /\{ —p | p € newatom(x) }
Yx i= T0x

for maximal x, and
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O = /\atom(x) A Anewatom(x) A AN {yy— qly ePred(x)}
A\ {y, | not(z>x) and atom(z) 2 N{atom(y) | y € Pred(x)} }
Yx =0x—q

for non-maximal x.
Remark. This definition of ¢4 and yx follows directly from the one in 3.2 if we add L to

the atoms of F', with Vx e X (L ¢ atom(x)): observe that L € newatom(x) iff x is maxi-
mal. We shall use this to reduce the proof of the next lemma to that of 3.2.1.

We work this out for the model in fig. 6, giving yx (modulo logical equivalence) for some of
the points; the other y's and ¢'s can be obtained easily from these. First two abbreviations.

Vp:i=—p->p
AvpB:=((A->p)AB-D)—>Dp

VYis = T(pAQ)

v, = (PAWYs— Q) = q = p—=>Vg

Vi, = 7(pATQ) = po>TTYq

Yy = 2(TpATQ)

Y, = W AWu—p)—=p = (P> 9—p) = (P> "9—p)

Vi = (W= p) A Wu—p) = p = -V vp (p— )

Vs = (W= Pp) AVYis) = p = 7q—Vp

¥s = (W= P) A Wis—> P) AYy) = p = PV = (P~ 79 vy p— )
Ve = (P DAWs—D)—>p = (pe-Vp

3.3.1. Lemma. For all x,yeX we have

i) yIFox © y2x;

i) ykFy © y<x

Proof. As for 3.2.1, reading A—l for —A. O

3.3.2. Lemma. Xg is complete w.r.t. formulae of F'.

Proof. Analogously to 3.2.3: if KA, then (X*)'}¢ A, for some finite model X, and (X*)'is a
submodel of Xp. O
Concluding:

3.3.3. Theorem. Xg is the exact model of F' =[py, ..., Pn, A, =, 7.
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Although many of the other finite fragments (i.e. different from [A, =] and [A, =, ]) do
not have exact models (see 3.1), their diagrams can often be considered as subdiagrams of the
exact models constructed above. This will be exploited in the sections 4 and 5.

4. Algorithms.

4.1 Computation of a diagram using an exact model.
If F is a fragment and E is its exact model, then E can be used in the computation of the dia-

gram of any fragment contained in F. An algorithm to perform this computation is MakeDia—
gram. The algorithm consists of two steps, an initial step corresponding to the valuation for
the atoms in the fragment, and an iteration step systematically constructing the formula classes
in the diagram of the fragment and the open (i.e. upward closed) sets associated to them.

In the construction a heap of Elements is used, each Element being a pair consisting of a
formula (representing a formula class) and a subset of E. The heap will simply be called Heap
and will be equipped with two pointers called HeapTop and HeapPointer.

In the initial step Heap is loaded with the atomic formulae of the fragment and the subsets of
E associated to each of them. HeapPointer is set to the bottom of the Heap and HeapTop
will point to the top of the Heap.

For all Element s below the HeapPointer, Elements are created in accordance with the
connectives available in the fragment. If the subset associated to one such a newly constructed
Element does not appear as one of the subsets associated to an Element in the Heap, the

new Element is added to the Heap. Then the HeapPointer is reassigned to the next E1-
ement in the Heap to repeat the iteration step. This process comes to a halt when Heap-—
Pointer equals HeapTop. All formula classes of the fragment will then be represented in
the Heap and their ordering can be read off from the inclusion relation of the associated open
sets.

In the algorithm below, the a[i] (1 <i< n) represent the atomic formulae of the fragment and
the s[i] the subsets associated to the a[i].
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MakeDiagram:
Begin
¢ Initial Step ¢
For i:=1 to n
Do
Heap[i]:=<al[i]l,s[i] >
Found(s[i])
od
Heap Top:=n
HeapPointer:=1
¢ Iteration Step ¢
While HeapPointer < HeapTop
Do
¢ 1f negation is in the fragment ¢
<x,y >:=NegElement (Heap [HeapPointer])
If Not (Available(y))
Then AddHeap (< x,y>)
Fi
¢ fi ¢
For i:=1 to HeapPointer
Do
¢ repeat for each other connective © ¢
<x,y>:=9Element (Heap[i]),Heap[HeapPointer])
If Not Available(y)
Then AddHeap (< x,y >)

Fi
¢ end repeat ¢
od
HeapPointer:=HeapPointer+l

od
End MakeDiagram.

In the iteration step the clause for ° is repeated for each connective © in the fragment. The
functions ConElement, ImpElement and NegElement, corresponding to conjunction,
implication and negation respectively, will be spelled out below. The © -Element functions
corresponding to — and <> are easily derived from these basic functions.

The procedure Found and a corresponding Boolean function Available keep track of the
subsets found in one of the Heap Elements. If subsets are represented as integers (arrays
of bits), Found might set a flag in a Boolean array F and Available would then test
whether the flag for the set (or integer) given has already been set. The procedure AddHeap
simply adds the element to the heap and adjusts the HeapTop pointer.

ConElement (< Forma, Seta >,<Formb,Setb >: Element) : Element
Begin
x:= (Forma AFormb)
y:= SetanNSetb
Return < x,y >
End ConElement.
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ImpElement (< Forma, Seta >,<Formb,Setb >: Element) : Element
Begin
x:= (Forma— Formb)
y:= Interior (Complement (Seta)U Setb)
Return.< x,y >
End ImpElement.

NegElement (< Forma,Seta >: Element) : Element
Begin
x:= (TForma)
y:= Interior (Complement (Seta))
Return <x,y >
End NegElement.

In the algorithms for these functions we assume some kind of implementation of set intersec-
tion, union and complement to be available. With the integer representation of sets in many
programming languages these can be implemented with Or, And and Not.

The function Interior uses the partial ordering of the exact model E. The body of its algo-
rithm is in fact a kind of representation of this ordering. As an example we will look at the ex-
act model of [p,q, A, —, ] as it is given in fig. 6. The elements of E are represented by the

e[i] (1<1<15).

Interior (Seta: Set) : Set
Begin

x:= Complement (Seta)
If e[l5]ex
Then x:= xU {e[5],e[6],e[7],el[l1l1l],e[14]}
Fi
If e[ll]lex
Then x:=x U {e[2],e[3]}

Fi

If e[l2]ex

Then x:=xU {e[3],e[4],e[5]}
Fi

If e[13]lex

Then x:=x U {e[7],e[8],e[9]}
Fi

If e[l4]lex

Then x:=xU {e[9],e[10]}

Fi

Return Complement (x)
End Interior.

Note that we used the closure operation to obtain the interior of the complemented set. The
reason for this is that to construct the interior directly eleven tests would be needed instead of
the five used above, and almost invariably more tests are needed to construct the interior di-
rectly than the closure; this is a consequence of the fact that many more formulas are almost
intuitionistically valid then are (almost) intuitionistically contradictory. The membership test
a €b could be implemented as b= {a}Ub. In case sets are interpreted as integers, a set of
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elements (and hence also the union of a singleton and a set) is a simple Or-application to the

corresponding integers.

4.2 Evaluating formulas, a decision procedure for derivability.

The next algorithm, MakeSet, is a function taking as its argument a formula of a fragment
(not containing disjunction) and returning the corresponding open subset in an exact model. It
is assumed that the fragment is contained in the fragment of the exact model. MakeSet could
be used as a simple decision procedure for the formulae of the fragment. A formula A is
derivable in IpL iff MakeSet(A)=E. In De Bruijn (1975b) a comparable decision procedure is
implemented in an Algol 60 program.

The s[i] and a[i] are used as in MakeDiagram and the function Interior is assumed to be
available. In the algorithm below we assume the exact model used to be the model of a frag-
ment containing negation. In case negation is lacking its clause should be omitted.

MakeSet (Forma: Formula) : Set

Begin
If Forma=al[il]
Then x:=s[i]
Elif Forma = "Formb
Then x:= Interior (Complement (MakeSet (Formb)))
Elif Forma = (FormbAFormc)
Then x:=MakeSet (Formb) N MakeSet (Formc)
Elif Forma = (Formb — Formc)
Then x:=Interior (Complement (MakeSet (Formb) U MakeSet (Formc) ) )
Elif Forma = (Formb ¢ Formc)
Then x:=Interior (Complement (MakeSet (Formb) U MakeSet (Formc) ) )

NInterior (Complement (MakeSet (Formc)UMakeSet (Formb) ))

Else Error
Fi
Return x

End MakeSet.

4.3 Embedding classical diagrams into the intuitionistic ones.
Diagrams tend to be large in intuitionistic logic, and hence one likes to find ways to get some

global overview of the diagram. One way of doing this is by partitioning the set of formula
classes by collecting those equivalence classes together which contain classically equivalent
formulae. We shall call such a set of equivalence classes which are classically equivalent a
component. In classical propositional logic all formulae are equivalent to a formula in the
[A, 7]-fragment. We assume such a representation to be given for the classical fragment con-
tained in the intuitionistic one we want to partition.

The algorithm ClassicalPartition will take the Heap constructed in MakeDiagram
together with a formula, ClassForm, as its input and make a new heap of Elements,
Component, of all formula classes in the diagram of the fragment equivalent with Class—
Form in classical logic (together with the subsets associated to them in the exact model). We
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use the subset ClassSet of E associated with ClassForm to test for classical equivalence,
using the well-known fact that a formula A is a tautology of classical logic iff 7A is a theo-
rem of intuitionistic logic.

‘ClassicalPartition (ClassForm: Formula)
Begin
ClassSet :=MakeSet (ClassForm)
For i:=1 to HeapTop
Do
x:=Interior (Complement (Heap[i] -Set))
x:=Interior (Complement (x))
If x=ClassSet
Then AddComponent (Heap[il])
Fi
od
End ClassicalPartition.

Here Heap [i] - Set denotes the subset of E in the Element Heap[i], and AddCompo-
nent is defined as AddHeap above. The ordering of the equivalence classes in Component
can again be derived from the inclusion relation of the associated subsets in the exact model E.

4.4 Drawing a Diagram.
A heap like Heap or Component could simply be listed, but a more instructive picture of a

diagram or component can be obtained by a kind of topological sorting of such a heap: levels
are assigned to the elements, starting with level zero for all elements not containing any other
element in the heap and working upwards increasing the level to n+1 for each element con-
taining an element of level n. (An element Elementa is said to contain an Elementb if
Elementa - Set isincluded in Elementb - Set.) After this sorting the elements within a
level can be ordered according to their relationships with elements above or below. Using
these orderings a neater picture of the diagram may be constructed. The levels and the ordering
within each level can be used as co-ordinates in drawing the elements of the diagram after
which the elements are joined by lines indicating the partial ordering (see figs. 1, 2). The
structure of larger diagrams may however sometimes be clarified better, when one applies the
above procedure to some subdiagrams and then shifts these subdiagrams around till the pat-
tern, which is a kind of diagram too, becomes clearer (see fig. 7).

4.5 The construction of exact models.

The construction of exact models for intuitionistic fragments [p;, ..., Pn, A, =, 7] is outlined
in the algorithm MakeModel below. Each element x in the model will be a pair < A, B > with
A a subset of {py,...,pn} and B the set of predecessors of x. In its initial step the algorithm
introduces elements with no predecessors for all subsets of {py, ..., pn}. In the iteration step
of the algorithm independent subsets F of the set of elements already constructed (i.e. no ele-
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ment in the subset is a predecessor of any other) give rise to new elements if the intersection of
their subsets C € {p;, ..., Pn} is non-empty. For every proper subset of C a new element will
be introduced, having the elements of F and their predecessors as its predecessors. An algo-
rithm for exact models of fragments not containing negation is obtained from MakeModel by
omitting, from the initial step, the element corresponding to {p, ..., pn} itself.

In the algorithm we use a heap of Elements, each consisting of a subset of the alphabet
{p:> ---,Pn} and a subset of the set of elements (pointers). The heap will be called Heap again
and HeapPointer and HeapTop will function as before. At the start of the iteration step
HeapPointer will be set to the bottom of the Heap. Heap [i] -Prop will denote the
subset of propositional variables of the i-th element in the heap, and Heap [i] -Pred will
denote the set of predecessors of the i-th element.

All the subsets of {p,, ..., pn} are constructed in the initial step, and then used again in the it-
eration step. (See the procedure AddSubsetElement below.) The part of the heap con-
taining these 'basic' elements will be indicated by a pointer BasicTop.

MakeModel
Begin
¢initial step ¢
For i:=1 to n
Do
AddHeap (< {p;},D>)
For j:=1 to Heaptop-1
Do
AddHeap (<Heap[j] ‘PropU{pi}, T >)
od
AddHeap (<D, D >)
BasicTop :=Heap Top
¢iteration step ¢
While BasicTop<Heap Top
Do
MakeSubsetElement ({Heap [HeapPointer] })
HeapPointer:=HeapPointer+1
od
End MakeModel.

The MakeSubsetElement procedure recursively searches for all independent subsets

(under some constraints) in a given subset.

MakeSubsetElement (Subseta: set of Element)
Begin
AddSubsetElement (Subseta)
For i:=1 to Heaptop
Do
If Independent (Heap[i], Subseta)
Then MakeSubsetElement (SubsetaU{Heap[i]})
Fi
od
End MakeSubsetElement.
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The Boolean function Independent checks whether the union of an element x and an
independent set A is an independent set; the procedure AddSubset adds elements for these
sets.

Independent (Elementa: Element, Subseta: set of Element) : Boolean
Begin

Result := Not (Elementae Subseta Or Subseta = )
Intersection:={p;;..,Pn}
i:=1
While Result And i<HeapTop
Do

If Heap[i]eSubseta
Then Intersection:=IntersectionMHeap([i] -Prop
If Elementa€Heap[i] -Pred Or Heap[i]€Elementa-Pred
Then Result:=False
Fi
Fi
od
Result:=Result And Not (Intersection NElementa-Prop=Y)
Return Result
End Independent.

The elements for these independent subsets are added to the heap by the procedure AddSub-
setElement.

AddSubsetElement (Subseta: set of Element)
Begin
Intersection:={pPi,..,;Pn}
For i:=1 to BasicTop
Do
ToAdd:=True
For j:=1 to Heap Top

Do
If Heap[]jl€Subseta
Then
If Heap[i]-Prop CHeapl[j]- -Prop
Then Intersection:= Intersection MHeap[]j] - -Prop
Else ToAdd:=False
Fi
Fi
od
ToAdd:=ToAdd And Not (Heap[i] -Prop = Intersection)
If ToAdd
Then AddHeap (< Heap[i]-Prop,Subseta >)

Fi
0d
End AddSubsetElement.
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In these MakeModel algorithms it is assumed that the AddHeap procedure will not add an
element twice, i.e. the element <A, B > will not be added if <A, B > is already present in the
heap.

5. Results.

Using a program implementing the MakeDiagram algorithm the diagrams of a number of
fragments contained in [p, q, A, =, 7] were constructed. The number of equivalence classes
obtained in each of these fragments was (afterwards) proved correct 'manually’, also by
means of the theory developed in Section 3. The results are summarized in Table 1. The dia-
gram of the [p, q, <>, ™]-fragment is shown in fig. 7.

The classical partitioning of the fragments is shown in Table 2. A number of features are re-
markable and warrant further theoretical study. Among them are the following. The compo-
nents corresponding to p and p—q (and symmetrically, to g and q—p) turn out to be isomor-
phic in all fragments in which both are non-empty. The same holds for pvq and T. In
[p,q, —, ] the components for p, q, p— q and q— p do have an exact model of their own,
a set of five independent elements. In [p, g, —, 7] the exact models for these components are
sets of six elements. In [p,q, —, ] and [p,q, —, ] the components for pAq and p <> q
are isomorphic copies of the diagram of [p,q, A, —]. In [p,q, =, ] and [p,q, —, ] the
components corresponding to p<>q are isomorphic to the diagram of [p, q, <>].
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(1) Using the 61-point exact model for the [p, q, 1, A, —=]-fragment for computations of sub-

diagrams just as above the 15-point exact model for the [p, q, A, 7, —]-fragment has been

used.

(2) More careful study of the diagrams of the fragments obtained above to get a better

theoretical understanding of their structure, perhaps with more general applications to intu-

itionistic logic.

(3) Construction of the 6423-point exact model for the [p, q, 1, A, 7, —>]-fragment and ap-

plying it.

(4) Generalizing the concept of exact model to the (finite) fragments containing v but not —

and studying these fragments.
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(5) Getting good theoretical descriptions of the subdiagrams of the diagrams of the
[P1s --+» Pn> A, 7, = ]-fragments, e.g. the [py, ..., Pn,» 7 =1 P15 +ovs Pnss 7 =1,
[P1s «ees Pro A, 7 =1, [P1s -+ -5 Poos <21 and [py, ..., Pp, 7, <>]-fragments.

(6) The study of the validity of the interpolation property for the different fragments. In Re-
nardel de Lavalette (1987) it has been shown for all the fragments here except the ones con-
taining <> (without —) and the ones with — that the interpolation theorem holds. For the
remaining fragments known methods fail. From the diagrams obtained, some good candidate
formulae for a counterexample to the interpolation property might be found, or otherwise it
may become clear that "small" counterexamples do not exist. In fact, from the diagrams with
two propositional variables it has already be checked that for none of the above fragments a
counterexample A(p, Q) B(q, r) exists; so a study of the fragments with three variables is
indicated.

(7) Automatic drawing of diagrams.
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