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Abstract

We give a data structure for the union-find problem, in which each UNION
resp. FIND operation takes O(k) resp. O(log;, n) time, where k is a parameter,
such that 2 < k < n. This data structure is in the class of structures defined
by Blum, and for k = Q((log n)€) for some € > 0, it is optimal in this class.
We also show how a copy of the data structure can be maintained efficiently
in secondary memory, which makes it possible to reconstruct the original
structure in case of a system crash.

Keywords: Analysis of algorithms, data structures, reconstruction prob-
lem, shadow administration, union-find problem:.

1 Introduction

One of the basic problems in the theory of algorithms and data structures is the
Union-Find Problem. In this problem we are given a collection of n disjoint sets
S1,82,...,8,, each containing one single element, and we have to carry out a
sequence of operations of the following two types:

1. UNION(A,B,C): combine the two disjoint sets A and B into a new set
named C.

2. FIND(z): compute the name of the (unique) set that contains z.

These operations have to be carried out on-line, i.e. each operation has to be
completed before the next one is known. The union-find problem has received
considerable attention. Tarjan showed in [3] that a sequence of m UNION and
FIND operations can be carried out in total time O(m a(m+n,n)+n) using O(n)
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space, where « is a functional inverse of Ackermann’s function. Furthermore, he
introduced in [4] a machine model—the pointer machine—on which all known
algorithms solving the union-find problem can be implemented. Tarjan showed
that on such a pointer machine, any algorithm for the union-find problem needs
Q(m a(m + n,n) + n) time for performing m UNION and FIND operations. See
also [5].

In this paper we are interested in the single-operation time complexity of the
union-find problem. Until recently, only algorithms were known having single-
operation complexity 2(logn). (In this paper all logarithms without a subscript
are to the base 2.) That is, there is always either a UNION or a FIND operation
that needs Q2(logn) time. In [1], Blum gives a data structure of size O(n), in
which each UNION operation can be performed in O(k + log, n) time, and each
FIND operation in O(log, n) time. Here k is a parameter, possibly depending
on n. Blum also gives a very general class B of data structures—containing all
implementations on Tarjan’s pointer machine—for which he proved the following
theorem.

Theorem 1 (Blum) Let DS be any data structure from the class B. Suppose that
every UNION operation can be performed in O(k) time. Then there 1s a FIND

operation that needs time
0 logn
logk +loglogn /

As a corollary of this theorem we see that for each data structure in class B,
there is always either a UNION or a FIND operation that takes Q(logn/loglog n)
time.

In Section 2 we shall give a variant of Blum’s structure, having the same
complexity. That is, we give a structure of size O(n), in which each UNION resp.
FIND operation takes O(k + log, n) resp. O(log, n) time. Next, in Section 3, we
adapt this structure such that each UNION operation can be carried out in O(k)
time, whereas the size of the structure and the time for a FIND operation remains
the same. This structure is in Blum’s class B. Hence it follows from Theorem 1
that this structure is optimal—in class B— if k£ = Q((log n)¢) for some € > 0.

The improved data structure consists of a number of trees—each set is stored in
one such tree—and has the property that for a UNION operation we only have to
visit the roots of two trees, together with their—at most k— direct descendants.
Furthermore, a FIND operation does not change the structure. This property
leads to an efficient solution to the reconstruction problem: Suppose that the
data structure is stored in main memory. Then, after a system crash or as a
result of errors in software, all information will get lost. Therefore, we store
in the safe secondary memory a copy of the data structure, the so-calledshadow
administration. Due to the just mentioned property, the copy in secondary memory
can be maintained efficiently after a UNION operation.




The reconstruction problem first appeared in Torenvliet and van Emde Boas [6],
where the reconstruction of trie hashing functions is investigated. For a more
thorough introduction to the reconstruction problem the reader is referred to Smid
et al. [2], where it is shown that for several classes of data structures efficient
shadow administrations exist.

In order to be able to analyze the efficiency of a shadow administration, we
have to model the structure of secondary memory. In this paper we shall use the
Indezed Sequential Model of [2]. In this model, the file in secondary memory is
divided into blocks. There is the ability of replacing a block by another one, and
to add a new block at the end of the file. Note that this model is realistic in
practice; it corresponds to the notion of indexed sequential files. The model will
be described more precisely in Section 4. In that section, we will show how a copy
of the improved union-find structure can be maintained efficiently in secondary

memory.

2 A variant of Blum’s structure

Before we give the data structure that solves the union-find problem, let us first
specify the model of computation. As usual, we take the random access machine
(RAM), the memory of which is modeled as an array. A data structure is composed
of ‘indivisible pieces of information’ of constant size, such as pointers, integers,
etc. Each such indivisible piece will be stored in one array location. We consider
a pointer to be an absolute address of an array location.

Let S be a set of n elements for which we want to solve the union-find problem.
That is we want to maintain a partition of S under a sequence of UNION and
FIND operations, where initially each set in the partition contains exactly one
element. We store each set in the partition in a UF (k)-tree, defined as follows.

Definition 1 Let k be an integer, 2 < k < n. A tree T is called a UF (k)-tree, if

1. the root of T has at most k sons,

2. each node in T has either 0 or more than k grandsons (a grandson of a node
v 15 a son of the son of v),

3. all leaves of T' have the same depth.

As mentioned already, we store each set A in the partition of S in a separate
UF (k)-tree. The elements of A are stored in the leaves of the tree. In the root, we
store the name of the set, the height of the tree, and the number of its sons. Each
non-root node contains a pointer to its father. Finally, the root of the tree contains
a pointer to each of its sons, and a pointer to an (arbitrary) leaf. Note that the
root contains at most k£ + 1 pointers. A UF(k)-tree storing a set of cardinality
one, has two nodes, a root and one leaf.



To perform an operation FIND(z), we get the leaf containing element z. Then
we follow father-pointers until we reach the root of the tree, where we read the
name of the set containing z.

It remains to give the UNION-algorithm. In order to perform the operation
UNION (A, B,C), we get the roots r resp. s of the trees containing the sets A resp.
B. We distinguish three cases.

Case 1. The trees containing A and B have equal height, and the total number
of sons of r and s is < k.

Assume w.l.o.g. that the number of sons of s is less than or equal to the number
of sons of r. We change the father-pointers from all sons of s into pointers to r,
and we store in r pointers to its new sons. Next we discard the root s, together
with all its information. Finally, we adapt in r the number of its sons and the
name of the set.

Case 2. The trees containing A and B have equal height, and the total number
of sons of r and s is > k.

In this case we create a new root ¢. In this new root, we store two pointers to
r and s; a pointer to a leaf of the new tree (we can take the corresponding pointer
stored in r); the name of the new set C; the height of the new tree, which is one
more than the corresponding value stored in r; and the number of sons, which is 2.
In the old roots r and s we discard all information, and we add pointers to their
new father t.

Case 3. The tree of B has smaller height than the tree of A.

We find in the tree of A a node v such that the subtree of v has equal height as
the tree of B. This node v can be found by following the pointer from r to a leaf,
and then by walking up in the tree. Then we change the father-pointers from all
sons of s into pointers to v. (This makes sure that all leaves remain on the same
level.) We discard the root s, together with all its information. Finally, we adapt
the name of the set stored in r. Note that the height of the tree and the number
of sons of r does not change.

The following theorem gives the result.

Theorem 2 Let k and n be integers, such that 2 < k < n. Using UF (k)-trees,
the unton-find problem on n elements can be solved, such that

1. each UNION takes O(k + log, n) time,

2. each FIND takes O(log, n) time,

3. the data structure has size O(n).
Proof. The time needed to perform a FIND operation is bounded above by the

height of a UF (k)-tree. It follows from Definition 1 that if level ¢ in a UF (k)-tree
contains any nodes, it contains at least kl¥/2] of them. (Here the root is at level 0.)



Since such a tree has at most n leaves, its height is at most 1 + 2[log, n]. Hence
a FIND operation takes O(log, n) time in the worst case.

It is easy to see that the given UNION-algorithm correctly maintains UF (k)-
trees. Note that we can determine in constant time in which of the three cases
we are, since all relevant information for deciding this is stored in the roots. It
is clear that Case 1 and 2 of the UNION-algorithm take O(k) time in the worst
case. In Case 3, it takes O(log, n) time to find the node v, whereas the rest of this
case can be carried out in O(k) time.

Clearly, the size of a UF (k)-tree is linear in the number of its leaves, which
shows that the entire data structure has size O(n). O

3 An improved data structure

We saw in Section 2, that it takes O(k-+log, n) time to perform a UNION operation
on UF(k)-trees. In this time bound, the O(log, n) term is due to the fact that in
Case 3, we have to search the node v, the subtree of which has equal height as the
tree containing B. Clearly, if we take for v an arbitrary son of the root of the tree
of A, the time for each UNION operation will be bounded by O(k). It remains to
prove then, however, that the height of the trees does not increase.

Definition 2 Let k be an integer, 2 < k < n. A tree T is called an IUF (k)-tree,
where the I stands for improved, if '

1. the root of T has at most k sons,

2. each node in T has either 0 or more than k grandsons.

Again, we store each set A in the partition of S in a separate IUF (k)-tree. As
before, the elements of A are stored in the leaves of the tree; in the root, we store
the name of the set, the height of the tree, and the number of its sons. Also each
non-root node contains a pointer to its father, and the root contains pointers to
all its sons. (Now we do not need a pointer from the root to a leaf.)

Remark that Definition 2 does not imply anymore that the heights of these trees
are bounded above by 1+ 2[log, n], since the leaves do not have to be positioned
at the same level. However, the trees that are made by the UNION -algorithm to
be described below have heights bounded by 1 + 2[log, n].

The FIND-algorithm for IUF (k)-trees is the same as for UF (k)-trees.

Suppose we have to carry out the operation UNION (A, B,C). Let r resp. s
be the roots of the trees containing the sets A resp. B. As before, we distinguish
three cases.

Case 1. The trees containing A and B have equal height, and the total
number of sons of r and s is < k. This case is handled in the same way as Case 1

of Section 2.



Case 2'. The trees containing A and B have equal height, and the total number
of sons of r and s is > k. Also this case is handled as Case 2 of Section 2.

Case 3'. The tree of B has smaller height than the tree of A.

Let v be an arbitrary son of r. Then we change the father-pointers from all sons
of s into pointers to v. The root s, together with all its information, is discarded.
Also, we adapt the name of the set stored in r.

First note that the given algorithm correctly maintains IUF (k)-trees. Further-
more, it is clear that each UNION operation takes O(k) time, since in Case 3', the
node v can be found in constant time. Also, the size of the data structure is still
bounded by O(n). It remains to show that the heights of the trees are bounded

by O(log;, n).

Suppose we are given a collection of n disjoint sets Sy, Sa,...,Sy,, each contain-
ing one single element, and consider a sequence of UNION and FIND operations.
Let UF be the data structure, consisting of UF (k)-trees, if we perform these op-
erations according to the algorithm of Section 2. Furthermore, let IUF be the
data structure consisting of IUF (k)-trees, where the operations are carried out as
described in the present section.

So if U;er Ai is a partition of the n elements at some moment in the sequence
of operations, there are two data structures. First, there is a structure UF = {T; :
¢ € I}, where each T; is a UF (k)-tree storing the set A;. Also, there is a structure
IUF = {T} : i € I}, where each T} is an IUF (k)-tree storing A;. Now each UNION
operation is performed—in parallel—on both UF and IUF.

Lemma 1 At each moment, the trees T; and T} have the same height, and the roots
of these trees have the same number of sons. To perform a UNION operation, if
we are in Case j for the structure UF, we are in Case j' for IUF, for j =1,2,3.

Proof. Initially, each tree T; and T contains two nodes, one root and one leaf.
Hence at the beginning the statement is true.

Then the lemma can easily be proved by induction on the number of performed
UNION operations, using the following observation. Whether we are in Case 1, 2
or 3 of the UNION -algorithm of the structure UF, depends only on the height of
the trees and on the number of sons of the corresponding roots. The same holds for
the structure IUF. Then by checking the UNION -algorithms, the lemma follows

easily. O

Theorem 3 Let k and n be integers, such that 2 < k < n. Using IUF (k)-trees,
the union-find problem on n elements can be solved, such that

1. each UNION takes O(k) time,
2. each FIND takes O(log, n) time,



3. the data structure has size O(n).

Proof. We have seen already that a UNION operation takes O(k) time, and that
the size of the data structure is bounded by O(n). It follows from Lemma 1 and
the proof of Theorem 2, that the height of an IUF (k)-tree, made by the given
UNION -algorithm, is at most 1 + 2[log, n|. Hence each FIND operation takes

O(log, n) time. O

Since the given data structure is contained in Blum’s class B, introduced in [1],
Theorems 1 and 3 yield

Corollary 1 The data structure of Theorem 8 1s optimal in Blum’s class B of
structures for the union-find problem, for all values of k satisfying k = Q((logn)¢)
for some € > 0.

4 An efficient shadow administration

In this section we shall show how we can maintain efficiently a copy of the data
structure of Theorem 3 in secondary memory. In this way we are able to recon-
struct the original data structure—that is stored in main memory—after e.g. a
system crash. The structure stored in secondary memory is called the shadow
administration.

First we introduce our model of secondary memory, the so-called Indezed Se-
quential Model of [2]. In this model, a file in secondary memory is divided into
blocks of some fixed size. There is the ability of direct block access: it is possible
to access a block directly provided its physical address is known. To update a file,
the following operations are allowed:

1. We can replace a block by another block, or a number of (physically) con-
secutive blocks by at most the same number of blocks.

2. We can add a new block, or a number of new blocks, at the end of the file.

Now the file in secondary memory is maintained by replacing all blocks that have to
be changed by the corresponding updated parts of the structure in main memory.
The complexity of this operation is expressed by the number of disk accesses that
has to be done (for each segment of consecutive blocks we have to replace, we have
to do one disk access) and by the total amount of space that has to be transported
from main memory to secondary memory.

As mentioned already in Section 2, the data structure consists of ‘indivisible
pieces of information’, each of which is stored in main memory in one array lo-
cation. Also recall that we consider a pointer as an absolute address of an array
location in main memory. We store a copy of the data structure in secondary



memory as follows. We reserve a number of blocks of some predetermined size
(see below), and we distribute the structure over these blocks. Together with
each indivisible piece of information we store its absolute address in main mem-
ory. Hence the size of the structure in secondary memory is at most twice as
large as the structure in main memory. In order to reconstruct the original data
structure—e.g. after a system crash—we transport the entire file to main memory,
and each indivisible piece of information is stored in the array location where it
was before the crash. This guarantees that each pointer ‘points’ to the correct
position in main memory. It is clear that reconstruction takes an amount of data
transport and an amount of computing time which are linear in the size of the

data structure.

So in order to store a copy of the data structure JUF—consisting of IUF (k)-
trees—we first have to choose a blocksize. Since the root of an IUF(k)-tree has
at most k sons, the total size of this root together with all its sons and all the
information stored in these nodes (i.e. pointers, name of the set, height of the
tree and the number of sons), and all their addresses in main memory, is bounded
above by ck for some constant ¢. Also, there is a constant ¢’ such that the size of
the entire data structure IUF, together with all their addresses, is at most ¢'n.

Now we reserve in secondary memory H—k"-l blocks of size 2ck. The copy of the
data structure IUF will be stored in these blocks. We call a block free if at least
half of the block is empty. The following lemma can easily be proved.

Lemma 2 There is always at least one free block.

Initially we have n trees, each of them having two nodes, a root and a leaf.
We store these trees in main memory. Also copies of the trees are distributed
over the reserved blocks. (For each tree the root and its son, together of course
with their array locations in main memory, are stored in the same block.) In each
tree in main memory, we store in its root the address of its copy in secondary
memory. Finally, we maintain in main memory a stack containing the addresses
of all free blocks. By Lemma 2, this stack is never empty. Note that the amount
of space in main memory remains bounded by O(n). Also, the stack will only be
used for updating the structure in secondary memory efficiently; it is not used for
reconstructing the original data structure. Therefore this stack may get lost after
a crash.

Since a FIND operation does not change the data structure, such an operation
does not affect the shadow administration.

A UNION operation is first performed on the structure in main memory ac-
cording to the algorithm of Section 3. Then the shadow administration in sec-
ondary memory is adapted. We take care that at each moment the following
holds:



Invariant: For each IUF(k)-tree in the structure, the root and all its
sons, together with all the information stored in these nodes, and all
their array locations in main memory, are stored in the same block in

secondary memory.

Clearly, this invariant holds initially. In the sequel we shall not state each time
explicitly that if we put information in a block, we also store with it its array
location in main memory. It is clear how this can be done.

Suppose we have to carry out the operation UNION (A, B,C). Let r resp. s be
the roots of the trees containing the sets A resp. B.

Case 1'. The trees containing A and B have equal height, and the total number
of sons of r and s is < k.

Assume w.l.o.g. that the number of sons of s is less than or equal to the
number of sons of r. In the block containing r we remove this root and all its sons.
(Remark that we can read the address of this block in the root r that is stored in
main memory.) If this block becomes free, we put its address on the stack. In the
block containing s we do the same. Next we take the address of a free block from
the stack, and in that block we store the root, together with its sons, of the new
tree. If this block remains free we put it back on the stack. In main memory, we
store in the root of the new tree, the address of the block containing its copy.

Case 2'. The trees containing A and B have equal height, and the total number
of sons of r and s is > k.

In the block containing r we remove this root, together with all the information
stored in it. If the block becomes free, we put its address on the stack. In the
block containing s we do the same. Then we store the new root, together with its
sons r and s and all the information that these three nodes contain, in a free block,
that we take from the stack. If this block remains free it is put back on the stack.
In main memory we store in the new root the address of the block containing its
copy.

Case 3'. The tree of B has smaller height than the tree of A.

In the block containing r we change the name of the set from A into C. In
the block containing s, we change the pointers of the sons of s, and we remove
the root s together with all its information. If this block becomes free we put its
address on the stack.

The following theorem summarizes the result.

Theorem 4 Let k and n be integers, such that 2 < k < n. For the data structure
of Theorem 3, solving the union-find problem on n elements, there is a shadow
administration

1. of size O(n),



2. that can be maintained after a UNION operation at the cost of at most three
disk accesses and the transport of O(k) data.

Furthermore, the original data structure can be reconstructed at the cost of one
disk access, the transport of O(n) data, and O(n) computing time.

Proof. The proof follows immediately from the above discussion. [
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