Institute for Language, Logic and Information

MULTIPLE REPRESENTATIONS OF
DYNAMIC DATA STRUCTURES

Michiel H.M. Smid Mark H. Overmars Leen Torenvliet
Peter van Emde Boas

ITLI Prepublication Series
for Computation and Complexity Theory CT-88-08

(R

University of Amsterdam



i Institute for Language, Logic and Information
Instituut voor Taal, Logica en Informatie

MULTIPLE REPRESENTATIONS OF
DYNAMIC DATA STRUCTURES

Michiel H.M. Smid
Centre for Mathematics and Computer Science, Amsterdam

Mark H. Overmars
Department of Mathematics and Computer Science, University of Utrecht

Leen Torenvliet Peter van Emde Boas
Department of Mathematics and Computer Science, University of Amsterdam

Received October 1988

Correspondence to:

Faculteit der Wiskunde en Informatica Faculteit der Wijshbegeerte
(Department of Mathematics and Computer Science) or (Department of Philosophy)
Roetersstraat 15 Grimburgwal 10

1018WB Amsterdam 1012GA Amsterdam



Multiple Representations of
Dynamic Data Structures

Michiel H.M. Smid* Mark H. Overmars' Leen Torenvliet}
Peter van Emde Boast

October 24, 1988

Abstract

We investigate two versions of the problem of maintaining multiple repre-
sentations of dynamic data structures. In the first version, we maintain copies
of the same data structure among a number of processors. In the second ver-
sion, which is dual to the first one, we maintain a shadow administration in
secondary memory, that contains information for the data structure in main
memory to be reconstructed after e.g. a system crash. For both versions,
we give a general and realistic model to describe solutions. We give general
solutions that are especially applicable to data structures in which an update
changes only a small part.

1 Introduction

The design of efficient data structures for solving searching problems is an impor-
tant part of algorithm design. Many types of data structures exist, storing different
types of objects and allowing for different types of queries. Data structures and
searching problems have been studied in great detail and many properties and gen-
eral techniques have been found. For example, general techniques exist for turning
static data structures that do not allow for insertions and deletions of objects into
dynamic structures that do allow for such operations (see [4]).

In most studies it is assumed that the data structure is stored only once in
the main memory of a computer and that all operations are performed on this

*Bureau SION, Centre for Mathematics and Computer Science, Kruislaan 413, 1098 SJ Amster-
dam, The Netherlands. This author was supported by the Netherlands Organization for Scientific
Research (NWO).

tDepartment of Computer Science, University of Utrecht, P.O.Box 80.089, 3508 TB Utrecht,
The Netherlands.

*Departments of Mathematics and Computer Science, University of Amsterdam, Nieuwe Achter-
gracht 166, 1018 WV Amsterdam, The Netherlands.



one structure. In many situations, however, we store the structure more than
once—possibly on different storage media—and have a multiple representation of
the data structure.

Consider for example the following case. When we have a network of processors,
each having its own memory, there are situations in which each processor holds its
own copy of a particular data structure. Changes to the data structure have to be
made in all copies. Therefore, we dedicate one processor the task of maintaining
the data structure and broadcasting the actual changes to the other processors.
Here we have one data structure that should allow for updates, and a set of other
structures that answer queries. Of course, the query data structures must be
structured in such a way that they can perform updates, but they get the update
in a ‘preprocessed’ way that might be easier to handle. The structure that performs
the updates will be called the central structure. The other structures are the client
structures. Note that since the central and client structures do not have to support
the same operations, they might be structured in a different way.

As another example, consider the following cases. If a data structure is stored
only in the main memory of a computer, all information will get lost after system
or program errors. Also, after the regular termination of an application program
that uses a data structure, the copy of this structure that is stored in main memory
can get lost.

In these cases we again represent the data more than once. That is, besides the
data structure in main memory, we also store information in secondary memory
from which it is possible to reconstruct the original data structure. This shadow
administration does not have to support the same operations as the main structure.
Only insertions and deletions have to be performed, whereas on the main structure
also queries have to be carried out. Furthermore, we only require that the shadow
administration contains information to make it possible to reconstruct the main
structure. Therefore, this shadow administration might be structured in a different
way than the original data structure itself.

In this paper, the two problems just mentioned will be studied. We shall give
easily analyzable models in which solutions will be described. We give general
techniques to design efficient solutions that are widely applicable. For specific
solutions we refer the reader to [12,13], where efficient solutions for certain classes
of searching problems are given; to [14], where a shadow administration for trie
hashing functions is given; to [5,6,8,11], where the problem of maintaining range
trees in secondary memory is studied; and to [9], where the union-find problem is
investigated.

Clearly, both problems are related to each other. In both cases there is one
structure on which the updates are performed. After this update, the other struc-
tures that are stored on other media are updated. This is done by transporting
data to these other structures. The actual update procedure for the other struc-



tures is somewhat different for both problems. A shadow administration is stored
in secondary memory, which is divided into blocks. The only operation allowed
here is to replace a block by another one. So in secondary memory no computing
is possible. The client structures, however, are stored in a random access machine,
on which computing is possible. This makes it possible to replace much smaller
pieces of information than just blocks of some predetermined size.

The problems are ‘dual’ to each other: In the first problem, there is a cen-
tral structure on which only updates are performed. After this central structure
is adapted, we transport data to the client structures that makes it possible to
update them. These client structures are also used for answering queries. In the
second problem there is a main structure on which queries and updates are per-
formed. After an update has been carried out in the main structure, information
is transported to secondary memory, and the shadow structure is updated. In this
shadow structure no queries are performed.

Efficient solutions to the problems have applications in the following areas:

e The theory of databases.

e Computational geometry. Since in this area often data structures are used
that require more than linear space, it might be possible to improve upon
the storage requirements.

e Storing dynamic data structures in write-once memories. The results to the
problem of designing efficient client structures give insight in which parts of
data structures are actually changed when performing updates.

e Multiprocessing. A system in which several processors execute distinct tasks,
and communicate through message passing, might be even more sensitive to
crashes than a uni-processor system. To protect a calculation against failure
of processors, checkpoints are built in on several places of the calculation. If
a checkpoint is reached, the state of all processors, and the interconnection
pattern, is transported to secondary memory. If the system crashes, the
calculation can be continued from the last reached checkpoint.

e Paging data structures. Techniques to maintain shadow administrations in
secondary memory can sometimes be used in cases where the data structure
does not fit in main memory and, hence, has to be stored in secondary
memory. For an example, see [5,6].

The paper is organized as follows. In Section 2, we introduce a general model
in which solutions to the problem of designing efficient client structures will be
described. A general technique is given that is particularly useful for data struc-
tures in which the size of the changes in an update is much smaller than the time



needed to find these changes. In Section 3 we give the model we use to describe
solutions for the reconstruction problem. Again, a general technique is given that
is useful in cases where an update changes only a small part of the shadow ad-
ministration. In Section 4, we give a class of problems for which both versions of
the multiple representation problem have efficient solutions. In Section 5 we give
some concluding remarks.

2 Maintaining data structures in a network

2.1 The model

We first introduce the general model in which solutions to the problem of designing
central and client data structures will be described.

1. There is a network of processors, the clients, each having its own memory.
Each client contains a copy of a data structure DS, the client structure, and

uses it to solve queries.

2. One of the processors contains a central structure DS'.

We assume that all processors are random access machines. An update is per-
formed as follows. We first update the central structure DS'. During this update
-we obtain information making it possible to update the client structures efficiently.
Then we send this information to the clients. Using the received information each
client adapts its structure DS.

The complexity of the client structure DS is expressed by its size, query time
and update time. This update time is split in transport time, which is proportional
to the amount of data that is transported to the client structure, and computing
time, which is the time the client needs to perform the update, using the received
information. Note that this computing time is at least proportional to the trans-
port time, since the client has to write the received information somewhere. (We
assume that the central processor does not have direct memory access (DMA).)

The complexity of the central structure DS’ is given by the usual measures, i.e.
the size of the structure and the update time. (There is no query time, because in
the central structure no queries are performed.)

2.2 A general technique

We will sketch a technique that is applicable to an arbitrary structure.

Let DS be the client structure, and let DS’ be the corresponding central struc-
ture. Denote the size of DS (resp. DS') by S(n) (resp. S'(n)). We assume that
DS is a substructure of DS'. That is, DS is a part of DS’, containing enough



information such that queries can be solved fast. Let UI be that part of DS’ that
is not in DS. (Here UI stands for update information.) For example, if DS’ is a
balanced binary tree, we can take for DS this tree without the balance information
of the nodes, and for UI the balance information. (See the examples below.) Let
C(n) denote the amount of data that is changed in the client structure DS in an
update.

We shall implement this multiple representation, such that an update of the
client structure requires O(C(n)) transport and computing time. Also the other
performances of the structures remain asymptotically the same.

Our processors are random access machines, the memories of which are mod-
eled as arrays. Each entry in the array has a unique index. Data structures are
composed of ‘indivisible pieces of information’ of constant size, such as pointers,
integers, etc. Each such indivisible piece will be stored in one array entry.

In the central computer, we store the structure DS’ such that DS and UI are
in non-interfering parts of the memory. The client structure DS is stored in the
client’s memory, such that each ‘indivisible piece of information’ is located in the
same position as its corresponding piece in the central memory. Note that data
structures contain pointers, which we consider to be indices of array entries. By
storing pieces of DS in each memory in the same positions, these pointers indeed
‘point’ to the correct object.

Suppose we want to perform an update. Then we first update the central
structure. Next we send to each client the indices of all entries that are changed,
together with the new contents of these entries. Using this information, each client
structure is adapted. Since the indices of the entries that have to be changed in the
client structure are known, it can be updated in time proportional to the number
of changed entries. So the update of each client structure takes O(C(n)) transport
and computing time. Note that the memory management of the client computers
is arranged by the central structure. Clearly, at each moment the client structure
is up to date and, hence, can be used to answer queries.

Let us give an example of this technique. Suppose we want to solve the member
searching problem. An efficient data structure for this problem is the balanced
binary search tree. Since balance information is only used for performing updates,
the client versions of the tree do not need this balance information: Updates are
first performed in the central structure. Then the nodes where rotations—and
what kind of rotations—have to be performed are known.

Now take the binary tree from the class of aBB-trees; see Olivié [3]. These
trees can be maintained by performing at most three rotations in the worst case.
Hence in the client structure, an update changes only a constant amount of data.
(In the central structure the balance information in the nodes has to adapted after
an update, hence in this structure O(logn) data will change.)

Our technique gives client structures, in which updates can be performed



in constant transport and computing time, whereas the central structure needs
O(logn) time. Using this result we can define a class of range trees [1], such that
the corresponding client trees can be updated in O((logn)¢~1) transport and com-
puting time, whereas the central tree needs O((logn)?) time. (d is the dimension
of the stored points.)

3 The reconstruction problem

3.1 The model

For the reconstruction problem, i.e. the problem of designing a shadow adminis-
tration for a given data structure, we use the following conceptual model.

1. DS is a dynamic data structure, stored in main memory.

2. SH is a shadow administration—stored in main memory—from which DS
can be reconstructed.

3. In secondary memory, we store a copy CSH of SH.

4. There might be some extra information INF that is used to update SH
and CSH efficiently. Since this information is not needed to reconstruct the
structures, it is only stored in main memory.

Note that in practice SH often is not necessary and changes can be made
immediately on CSH. The distinction between SH and CSH makes it easier to
estimate time bounds.

An update is performed as follows. First the structures DS, SH and INF are
updated. Then CSH in secondary memory is updated.

The updates of DS, SH and INF take place in main memory, which is a random
access machine. The complexity is expressed in computing time.

To update CSH, data in secondary memory has to be updated. We assume
that the file in secondary memory is divided into blocks of some fixed size. Each
block has a unique address. We can access a block directly, provided its address
is known. To update a file, we can replace a number of (physically) consecutive
blocks by at most the same number of blocks. Also, we can add a number of new
blocks, at the end of the file.

The copy CSH is updated by transporting data from main memory to sec-
ondary memory. More precisely, CSH is updated, by replacing all blocks that
have to be changed by the corresponding updated parts of SH. The complexity
of this transport process is given by the number of disk accesses that has to be
done—for each segment of consecutive blocks we transport, we have to do one disk
access—and by the transport time, which is proportional to the total amount of



data that is transported. Remark that the number of disk accesses depends on
the way CSH is stored in secondary memory.

After a system crash, the contents of main memory will get lost. Therefore, we
transport CSH to main memory, where it takes over the role of the lost SH. Then
we reconstruct from SH the structures DS and INF. The entire reconstruction
procedure takes one disk access, O(S¢su(n)) transport time, where Scgy(n) is the
size of CSH, and an amount of computing time. Note that this computing time is
Q(Scsu(n)), since the shadow administration has to be written in main memory.
(We assume that secondary memory does not have DMA.)

3.2 A general technique

For the reconstruction problem, a general technique exists, that is similar to the
one in Subsection 2.2. The technique consists of sending to secondary memory
all changes to the shadow administration SH. These changes are not carried out,
they are only stored in secondary memory. To reconstruct the data structure DS,
we transport the file from secondary memory to main memory. Then we perform
the updates in the shadow administration, and finally the structures DS and INF

are reconstructed.

Let DS be a data structure and let SH and INF be the corresponding shadow
administration. Let S(n), U(n), C(n) and R(n) denote respectively the size of
SH, the total update computing time of SH and INF, the amount of data that
is changed in SH after an update, and the computing time needed to reconstruct
the structures DS and INF from SH. Note that R(n) = 2(S(n)).

We shall implement this multiple representation, such that the entire shadow
structure can be updated in O(U(n)) computing time, one disk access and O(C(n))
transport time. Also, the other performances remain asymptotically the same. In
this new representation the shadow administration in secondary memory is not an
exact copy of the one in main memory.

Again, main memory is modeled as an array, the entries of which have unique
indices. In each array entry we store an ‘indivisible piece of information’.

Let m be the initial number of objects. Initially, SH is stored in the first S(m)
entries of main memory. Further, main memory contains DS and INF. In sec-
ondary memory we store—in contiguous blocks of size O(C(m))—the copy CSH.
As in Subsection 2.2, initially CSH is an exact copy of SH, i.e. each indivisi-
ble piece is located in the same positions in both memories. Finally, we store in
secondary memory an initially empty list UF. (UF stands for update file.)

Consider a sequence of S(m)/C(m) updates. Note that S(m)/C(m) < m.
Each update is performed in the structures DS, SH and INF, as usual. After
each update of the structure SH, we send the indices of all changed entries of
SH, together with the new contents of these entries, to secondary memory. These



changes—of total size O(C(m))—are stored in contiguous blocks at the end of the
list UF. The structure CSH is not affected during the updates. So the update of
the shadow administration takes O(U(m)) computing time, one disk access and
O(C(m)) transport time.

Suppose we want to reconstruct the structures during these updates. Then we
transport CSH and UF to main memory, where we store CSH in the first S(m) po-
sitions. Hence pointers in CSH indeed ‘point’ to the correct objects. Next we carry
out the at most S(m)/C(m) updates using the list UF. Since we know the indices
of the entries in CSH that have to be changed, each update takes O(C(m)) com-
puting time. Hence all updates together take O(C(m) x S(m)/C(m)) = O(S(m))
computing time. After these updates, the resulting structure CSH contains the up
to date shadow administration. Hence it can take over the role of SH. Finally, we
reconstruct from SH the structures DS and INF in R(n) computing time, where
n is the current number of objects.

Hence the entire reconstruction algorithm takes one disk access, O(S(m)) =
O(S(n)) transport time and O(S(m) + R(n)) = O(R(n)) computing time.

After these S(m)/C(m) updates, we build all structures anew. Then we con-
tinue in the same way with a sequence of S(m')/C(m') updates, where m' is the
number of objects at that moment.

Clearly, the space requirements in main and secondary memory do not increase
asymptotically. Also, it can be shown that the average update complexity of the
shadow administration is bounded by O(U(n)) computing time, one disk access
and O(C(n)) transport time, where n is the current number of objects. These
average case bounds can be turned into worst case bounds, see [10]. (Then, the
number of disk accesses per update increases to two.)

We apply this technique to range trees with a slack parameter; see Mehlhorn [2].
In such a range tree—with slack parameter m—for a set of n points, range queries
can be solved in time O((log n)?2™/m +t), if t is the number of reported answers.
The structure has size O((nlogn)/m), and can be built in O(nlog n+ (nlogn)/m)
time. Here the first term is the time needed to sort the n points to both coor-
dinates, whereas the second term is the actual building time. Therefore, let the
shadow administration SH consist of two lists, one containing the points ordered
to z-coordinate, and the other containing the points ordered to y-coordinate. The
structure INF consists of two balanced binary trees, having the points in the lists
in sorted order in their leaves. Each leaf of such a tree contains a pointer to the
corresponding point in the list. Clearly, SH and INF can be updated in O(logn)
time. In SH, an update changes only a constant amount of data.

Hence our technique gives a shadow administration of optimal size O(n), that
can be maintained at the cost of O(logn) computing time, two disk accesses and
O(1) transport time in the worst case. Reconstruction takes one disk access, O(n)
transport time and O((n log n)/m) computing time. Now take m = loglogn. Then



the reconstruction computing time is bounded by O((n logn)/loglogn), which is
asymptotically smaller than the time needed to build the range tree from scratch.
Also, the size of the shadow administration is asymptotically smaller than that of

the data structure itself!

4 Order decomposable set problems

It turns out that for specific classes of problems efficient solutions for both versions
of the multiple representation problem can be designed. In this subsection we
consider one such class, the order decomposable set problems.

In a set problem we are given a set of objects, and we are asked some question
about this set. More precisely, if 73y and T, are sets, then a set problem is a
mapping PR : P(T;) — T,. Here P(T;) denotes the power set of Tj. For example,
in the convez hull problem, we are given a set S of points, and we are asked to
compute their convex hull. Here T3 is the set of points in euclidean space, and T3
is the set of all convex polytopes.

We restrict ourselves to set problems, the answers of which can be merged
efficiently. That is, once the answers for two separated halves of a set are known,
the answer for the entire set can be obtained fast. For such a class of set problems,
we maintain the answer for the entire set, by decomposing the set into subsets,
and by maintaining the answers for these subsets.

Definition 1 A set problem PR : P(T,) — T is called M(n)-order decomposable,
if there is an order ORD on Ty, and a function O : Ty X Ty — T3, such that for
each set S = {p1 < ps < ... < pn}, ordered according to ORD, and for each 1,
1<17<n, we have

PR({pla- --apn}) = D(PR({pla'"9pi})’PR({pi+la-- -7pn}))a

where the function O takes M(n) time to compute.

For example, as was shown by Preparata and Hong [7], the three-dimensional
convex hull problem is O(n)-order decomposable, where ORD is the order accord-
ing to z-coordinate.

Let PR be an M(n)-order decomposable set problem. We sketch a dynamic
data structure solving PR (for details, see [4]). Let S = {p; < p; <...< p,} bea
set, ordered according to ORD), for which we want to maintain the answer to PR.
Let f(n) be an integer function, such that 1 < f(n) < n. Partition S into subsets
Sy ={p1,---,Ps(m)}> S2 = {Ds(n)41>- - - P2s(n) }» - -

The data structure DS consists of the following. Each set S; is stored in a
balanced binary tree T;. Let r; be the root of T;. These roots are ordered according
tory <ry, <rsg<... and we store them in the leaves of a balanced binary tree
T. Each node v of T contains the following additional information. Suppose the

9



subtree of T' with root v has r;,ri11,...,7; as its leaves. Then node v contains the
answer to the set problem PR for the set S;U S;; U...US;.

It will be clear how this structure can be built using the divide-and-conquer
principle.

An insertion of an object p is performed by walking down tree T to find the
appropriate root r;, and by inserting p in the tree 7;. Then we rebuild the answer
PR(S;) and walk back to the root of T. During this walk we rebuild for each
node we encounter its additional information by merging the answers stored in its
left and right sons. The deletion procedure is similar. By rebuilding the entire
structure after f(n) updates, it will remain balanced.

An efficient client structure. Clearly, DS has the property that a very
small part of it is used for query answering—the answer to the problem is stored
in the root of T—whereas the rest of the structure is used only to update this
answer efficiently.

Therefore, we take for the client structure the answer PR(S) to the set problem
for the entire set S, and we take for the central structure the full dynamic structure
DS. Updates are first performed in the central structure. Then the new answer
to the set problem is sent to the clients, where it replaces the old answer.

We apply the above to an O(n)-order decomposable set problem, e.g. the three-
dimensional convex hull problem; for other examples see [4]. Let f(n) = [n/logn].
Then the central structure has size O(nloglogn) and an update takes O(n) time
on the average. The client structure, however, has size only O(n), and an update
takes O(n) transport and computing time on the average.

An efficient shadow administration. Consider DS again. In general, the
total size of all trees T; and all answers PR(S;) is bounded by O(n). As soon as
we have these parts, the rest of the structure can be built very fast: We only have
to merge the answers to obtain the tree T' with the partial answers in its nodes.

This leads to the following shadow administration. The structure CSH consists
of the trees T; and the answers PR(S;). (Since the shadow structure consists only
of parts of DS itself, we do not need the structures SH and INF.) We divide
secondary memory into parts of consecutive blocks, such that each part can contain
an answer PR(S;) and a tree T;, for a set S; of cardinality at most 2f(n). Then we
store in each such part an answer PR(S;) and its corresponding tree T;. In each
leaf r; of T, we store the address of the corresponding structures T; and PR(S;) in
secondary memory.

After an update, only one tree T; and one answer PR(S;) will have changed
and, hence, have to be transported to secondary memory. Remark that we know
from the update of the structure DS the position in secondary memory where
these changed structures have to be written. After f(n) updates, all structures
are rebuilt.

10



We again apply the above to an O(n)-order decomposable set problem. Let
f(n) = [n/logn]. Then we get a shadow administration of size O(n). An update
takes one disk access and an average amount of O(n/logn) transport time. Re-
construction of the structure DS takes O(nloglogn) computing time, since the
tree T has depth O(loglogn), and on each level we spend O(n) time to merge the
answers stored one level below it.

Again we have a shadow administration of size that is asymptotically smaller
than that of the data structure itself (which has size O(nloglogn)), and the origi-
nal data structure can be reconstructed in asymptotically less time than by build-
ing it from scratch (which would take O(nlogn) time).

5 Concluding remarks

We have studied two dual versions of the problem of maintaining multiple repre-
sentations of data structures, and we have given basic models to describe solutions.
For both versions we have given a general technique to obtain solutions, in which
the transport time in an update is bounded by O(C(n)), which is the size of the
changes in the client structure or in the shadow administration. So this technique
is particularly useful for structures where C(n) is small compared to the time
needed to find the changes. We have given some examples of such structures. It
would be interesting, however, to have more of them.

We have given techniques that are applicable to order decomposable set prob-
lems. There are also several techniques that can be applied to the related class of
decomposable searching problems. See [12,13].

There remain some problems and directions for further research:

In this paper, we perform single updates in the data structures. Is it possible
to carry out sets of updates more efficiently, than by just performing them one

after another?
Finally, one could investigate other multiple representation problems. For ex-
ample, what to do if the client structures do not necessarily have to represent the

same set of objects?

References

[1] G.S.Lueker. A data structure for orthogonal range queries. Proc. 19-th Annual
IEEE Symp. on Foundations of Computer Science, 1978, pp. 28-34.

[2] K. Mehlhorn. Data structures and algorithms, volume 8: multi-dimensional
searching and computational geometry. Springer Verlag, 1984.

[3] H.J. Olivié. A new class of balanced trees: half balanced binary search trees.
RAIRO Informatique Théorique 16 (1982), pp. 51-71.

11



[4] M.H. Overmars. The design of dynamic data structures. Springer Lecture
Notes in Computer Science, Vol. 156, Springer Verlag, 1983.

[5] M.H. Overmars and M.H.M. Smid. Maintaining range trees in secondary
memory. Proc. 5-th Annual STACS, Springer Lecture Notes in Computer
Science, Vol. 294, Springer Verlag, 1988, pp. 38-51.

[6] M.H. Overmars, M.H.M. Smid, M.T. de Berg and M.J. van Kreveld. Main-
taining range trees in secondary memory, part I: partitions. Report FVI-87-14,
University of Amsterdam, 1987.

[7] F.P. Preparata and S.J. Hong. Convez hulls of finite sets of points in two and
three dimensions. Comm. of the ACM 20 (1977), pp. 87-93.

[8] M.H.M. Smid. General lower bounds for the partitioning of range trees. ITLI
Prepublication Series CT-88-02, University of Amsterdam, 1988.

[9] M.H.M. Smid. A data structure for the union-find problem having good single-
operation complexity. ITLI Prepublication Series CT-88-06, University of Am-
sterdam, 1988.

[10] M.H.M. Smid. General techniques for maintaining shadow administrations.
In preparation.

[11] M.H.M. Smid and M.H. Overmars. Maintaining range trees in secondary
memory, part II: lower bounds. Report FVI-87-15, University of Amsterdam,

1987.

[12] M.H.M. Smid, M.H. Overmars, L. Torenvliet and P. van Emde Boas. Main-
taining multiple representations of dynamic data structures. ITLI Prepublica-
tion Series CT-88-03, University of Amsterdam, 1988.

[13] M.H.M. Smid, L. Torenvliet, P. van Emde Boas and M.H. Overmars. Two
models for the reconstruction problem for dynamic data structures. Report
FVI-87-13, University of Amsterdam, 1987.

[14] L. Torenvliet and P. van Emde Boas. The reconstruction and optimiza-
tion of trie hashing functions. Proc. 9-th International Conf. on Very Large

Databases, 1983, pp. 142-156.

12



The ITLI Prepublication Series

1986
86-01

86-02 Peter van Emde Boas

86-03 Johan van Benthem

86-04 Reinhard Muskens

86-05 Kenneth A. Bowen, Dick de Jongh

86-06 Johan van Benthem

1987
87-01 Jeroen Groenendijk, Martin Stokhof

87-02 Renate Bartsch

87-03 Jan Willem Klop, Roel de Vrijer
87-04 Johan van Benthem

87-05 Victor Sanchez Valencia

87-06 Eleonore Oversteegen

87-07 Johan van Benthem

87-08 Renate Bartsch

87-09 Herman Hendriks

1988

Logic, Semantics and Philosophy of Language:

LP-88-01 Michiel van Lambalgen
LP-88-02 Yde Venema

LP-88-03

LP-88-04 Reinhard Muskens
LP-88-05 Johan van Benthem
LP-88-06 Johan van Benthem
LP-88-07 Renate Bartsch

LP-88-08 Jeroen Groenendijk, Martin Stokhof

LP-88-09 Theo M.V. Janssen

Mathematical Logic and Foundations:
ML-88-01 Jaap van Oosten
ML-88-02 M.D.G. Swaen

ML-88-03 Dick de Jongh, Frank Veltman
ML-88-04 A.S. Troelstra

Computation and Complexity Theory:
CT-88-01 Ming Li, Paul M.B.Vitanyi
CT-88-02 Michiel H.M. Smid

The Institute of Language, Logic and Information
A Semantical Model for Integration and Modularization of Rules

Categorial Grammar and Lambda Calculus
A Relational Formulation of the Theory of Types

Some Complete Logics for Branched Time, Part I
Well-founded Time, Forward looking Operators

Logical Syntax

Type shifting Rules and the Semantics of Interrogatives
Frame Representations and Discourse Representations

Unique Normal Forms for Lambda Calculus with Surjective Pairing

Polyadic quantifiers

Traditional Logicians and de Morgan's Example
Temporal Adverbials in the Two Track Theory of Time
Categorial Grammar and Type Theory

The Construction of Properties under Perspectives

Type Change in Semantics:
The Scope of Quantification and Coordination

Algorithmic Information Theory

Expressiveness and Completeness of an Interval Tense Logic
Year Report 1987

Going partial in Montague Grammar

Logical Constants across Varying Types

Semantic Parallels in Natural Language and Computation
Tenses, Aspects, and their Scopes in Discourse

Context and Information in Dynamic Semantics

A mathematical model for the CAT framework of Eurotra

Lifschitz' Realizabiility

The Arithmetical Fragment of Martin Lof's Type Theories with
weak Z-elimination

Provability Logics for Relative Interpretability

On the Early History of Intuitionistic Logic

Two Decades of Applied Kolmogorov Complexity

General Lower Bounds for the Partitioning of Range Trees

CT-88-03 Michiel H.M. Smid, Mark H. Overmars Maintaining Multiple Representations of

Leen Torenvliet, Peter van Emde Boas

CT-88-04 Dick de Jongh, Lex Hendriks
Gerard R. Renardel de Lavalette

CT-88-05 Peter van Emde Boas
CT-88-06 Michiel H.M. Smid

CT-88-07 Johan van Benthem

Dynamic Data Structures
Computations in Fragments of Intuitionistic Propositional Logic

Machine Models and Simulations (revised version)
A Data Structure for the Union-find Problem
having good Single-Operation Complexity

Time, Logic and Computation

CT-88-08 Michiel H.M. Smid, Mark H. Overmars Multiple Representations of Dynamic Data Structures

Leen Torenvliet, Peter van Emde Boas



