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Nondeterminism, Fairness and a Fundamental Analogy

Edith Spaan, Leen Torenvliet and Peter van Emde Boas!

Departments of Mathematics and Computer Science, University of Amsterdam,
Nieuwe Achtergracht 166, 1018 WV Amsterdam

Abstract

In this note we propose a model for unbounded nondeterministic computation which pro-
vides a very natural basis for the structural analogy between recursive function theory
and computational complexity theory: P: NP = REC : RE At the same time this model
presents an alternative version of the halting problem which has been known for a decade
to be highly intractable.
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1 Introduction

Structural complezity theory is often presented as the theory in which the results ob-
tained for classes of languages recognized by Turing machines are transferred to a re-
source bounded setting. Notions like reduction, simplicity, immunity, the arithmetical
hierarchy, relativizations etc. were all first defined in recursive function theory and later
(relativizations of) these notions were introduced in complexity theory.

All of this work was inspired by the frustration originating from the difficulty of the
fundamental problem in computational complexity theory which has become known as

the P = NP problem. It is now an 18 year old unresolved problem whether the class
of languages recognized by nondeterministic Turing machines in polynomially bounded
time is equal to the class of languages recognized by deterministic Turing machines in
polynomial time.

The applications of ideas from the theory of recursive functions in this area originates
from a formal analogy which might be expressed by the formula: P : NP =2 REC : RE
where the symbols REC and RE denote the class of recursive and recursively enumerable
sets respectively.

In the theory of recursive functions life is easy. It is known since the days this theory
was created that REC # RE . The Halting problem (HALT) is the best known example
of a set in RE which is not a member of REC.

On the other hand it is not clear that this separation has anything to do with the
P L NP problem at all. In recursion theory the classes REC and RE are introduced
by specifying a mode of accepting sets and not on the distinction between determinism
and nondeterminism. Sets in REC are specified by machines which always terminate and
which recognize their input by final state. Sets in RE are specified by machines which do
not necessarily terminate and which accept their input by halting.

In automata theory it is shown that for both classes the choice of machine model is
irrelevant; moreover it does not make a difference whether the machines are deterministic
or nondeterministic. The situation is similar to the world of finite automata where de-
terministic and nondeterministic machines determine the same family of sets: the regular
sets. Note that for the remaining classes in the Chomsky hierarchy the situation is dif-
ferent. For the PDA’s it is known that the nondeterministic machines determine a larger
class than the deterministic ones. For the remaining class, the LBA’s, the problem is
still unsolved, as for the polynomially time bounded machines (but in this case we have
recently learned that at least the nondeterministic class is closed under complementation
[11] [17].)

The present note arose out of a discussion between two of the authors provoked by the
self evident observation uttered by one of us that in the world of unbounded computation
nondeterministic devices are more powerful than deterministic ones as exemplified by the
inequality REC # RE. According to the argument the nondeterministic devices could
guess and verify the halting computations which a deterministic device cannot produce.

As indicated above this argument must be false in traditional recursion theory since
the conclusion is incorrect. On the other hand, if it were correct, it would provide a very
natural basis for the analogy between P and NP in the resource bounded case and REC
and RF in the unbounded case which has inspired the subject of structural complexity
theory from its earliest start. It would therefore be nice if the incorrect argument above



could be made valid. In this note we will propose a new interpretation for the sets accepted
by nondeterministic devices which achieves this purpose. This interpretation will provide
the fundamental analogy between complexity theory and recursion theory with its most
natural basis: both sides of the equation P : NP & REC : RFE invoke the difference
between determinism and nondeterminism.

2 Origin of the nondeterministic Turing Machine

When examining standard textbooks on recursive function theory like [14] [15] the reader
will find that in traditional recursive function theory there is no such thing as a nonde-
terministic Turing Machine. The analogy of the the P L NP problem does not exist in
recursive function theory. Rogers [14] even requires the Turing machine to be deterministic:

...Finally, the device is so constructed that it behaves according to a finite list
of deterministic rules...(p 13)

It is an interesting problem to find out where and when the concept of a nondetermin-
istic Turing machine was introduced in computation theory. The possibility of having a
program containing more than one instruction for a given state/symbol pair is considered
in Turing’s original paper [18], but he seems to consider this possibility to be an abbera-
tion of the notion of computability, where the resulting ambiguity has to be resolved by
an external operator.

For the case of finite automata the introduction of the nondeterministic variant as we
know it today is claimed by Rabin and Scott [13]. Information concerning the scientific
climate during these years when automata theory was created can be found in the historic
survey written by Greibach [9]. According to Greibach the Rabin and Scott paper was
preceded by a paper by Chomsky and Miller [5] which contains the nondeterministic
finite automaton in a rather hidden way. Introduction of nondeterminism was crucial for
the machine based characterization of the two middle levels of the Chomsky hierarchy.
Compare the Kuroda paper [12] which brings the problem of characterizing the context
sensitive languages to an end: with hindsight one concludes that there really was no
problem if only the people had thought nondeterministically ....

It seems therefore that the notion of a nondeterministic machine was introduced not
before the end of the 50’s (see the time table in [3]) and we strongly suspect that the con-
temporary proliferation of the use of the nondeterministic model is inspired by automata
theory and computational complexity theory rather than by recursive function theory.

Even today, with an experience of several decades of thinking nondeterministically, it
is still quite common to develop recursive function theory on the basis of deterministic
devices only. The reason for not considering nondeterministic machines in the unbounded
case is of course the fact that in this case a deterministic Turing machine can recompute
the entire computation tree of a nondeterministic machine in a breadth first way (See
exercise 7.3 in [10]).

With respect to the fundamental analogy between recursive function theory and struc-
tural complexity theory mentioned in the introduction this state of affairs is less fortunate.

As the general feeling is that, if the P 2 NP will be resolved at all, then it will be in the



direction of P # NP, such a simulation of nondeterministic computation is not very agree-
able in a world in which we like computational complexity theory to behave as Lilliput [16]
in the world of recursive function theory.

Given the difficulty of solving the P X NP problem we have considered to modify
the realm of recursive function theory instead. We propose in the following section the
adoption of an alternative acceptation convention for the nondeterministic version of the
Turing machine model for recursive function theory such that the difference we suspect
between determinism and nondeterminism in complexity theory can easily be established
in the unbounded case.

3 The Model

The dilemma mentioned above finds its roots in the acceptation convention for Turing
machines. If we allow infinite computations, and say that a Turing machine rejects its input
in case of an infinite computation, a deterministic Turing Machine can simply unravel the
computation tree of a nondeterministic Turing Machine in a breadth first manner. If the
computation tree has a finite accepting branch, then the deterministic machine will find
this branch in finite time. If the branch does not exist the breadth first search simulation
will diverge and consequently the machine will not accept its input.

If we don’t allow for infinite computations and recognize by accepting state then the
deterministic machine has even less trouble. It can simulate the nondeterministic com-
putation in a depth first way and find out if there’s an accepting computation. If there
does not exist an accepting branch the machine will sooner or later discover that it has
explored all branches in the tree without finding an accepting one. Due to the bounded
nondeterminism of the Turing Machine model we can infer from Konig’s lemma that the
existence of arbitrarily large branches entails the existence of an infinite branch as well,
and this is not allowed for a halting nondeterministic device.

The way out of this dilemma is both elegant and obvious. Of course we don’t allow
infinite computations. Hence the deterministic machine has to accept or reject its input in
finite time. The nondeterministic machine has to say yes or no to its input in finite time
also. However, in order to exploit the power of nondeterminism we give the nondetermin-
istic machine the choice between a countable number of computations. The acceptation
convention for nondeterministic machines is then standard. The machine accepts if and
only if an accepting computation on the input exists.

Precisely, the acceptation condition is defined as follows:

Definition 1 a Turing Machine M is said to accept the language L C T* iff:
e its computation on any input o € ¥* is finite
¢ there exists a computation of M on input o that halts in an accepting stateiffo € L

And we achieve unbounded nondeterminism within these limits by:

Definition 2 A computation of a (nondeterministic) Turing Machine is called unfair iff it
holds for an (infinite) suffix of this computation that if the machine is in configuration §



infinitely often, and {§ — 61,8 — 8,} are elements of the transition relation then § — §;
is never chosen in the computation.

A (nondeterministic) Turing machine is called fair if it produces no unfair computa-
tions.

The above notion of fairness originates from the theory of concurrent processes; see for
example [1] [8]. In fact there exist a number of different fairness notions in the literature.
The notion we use is called strong fairness in [1]. The guarded loop programs considered
in that paper can be related to our Turing machine programs by considering a Turing
program to be represented by a single guarded loop where for every quintuple in the
program a branch is provided which is guarded by the corresponding state/symbol pair.
Such a loop terminates when all guards evaluate to false which is precisely the case if for
the current state/symbol pair no instruction is provided in the program. It is easy to see
that under this translation our fairness notion does correspond with strong fairness in [1].

It is known that the notion of fairness has to be enforced from outside the model.
‘There is nothing within the Turing Machine program which prevents the machine from
performing an infinite unfair computation. The fairness notion is invoked in order to
exclude some infinite computations, and in this way, by clever programming, forcing in
fact all computations to become finite.

The traditional example illustrating this mechanism is Dijkstra’s random number gen-
erator [6]. This machine initializes a counter at zero and next performs a loop where
either the counter is incremented or a termination flag is set to true. The second choice
will make the machine halt on the next move. By requiring the machine to be fair the
unique infinite computation which increments the counter forever is excluded.

Without loss of generality we can assume that our nondeterministic machines perform
nondeterministic moves at every step, and that the number of possible successor configura-
tion is bounded by two (deterministic moves are incorporated by making a choice between
two copies of the same transition).

We can moreover construct a universal machine both for the deterministic and non-
deterministic version of the machines, which will simulate all other machines. In the
nondeterministic case the fair computations of the universal machine correspond to the
fair computations of the simulated devices. The latter result is less evident than it seems to
be: it requires some mechanism by which the universal machine can ensure fairness with
respect to a finite but unbounded number of state/symbol pairs given just the fairness
with respect to the state/symbol pairs of the universal machine itself. As will be indicated
in the sequel the theory presented in [1] suffices for performing such a construction.

Now enter a well-known language.

Definition 3 For a suitable universal Turing machine U, the language HALT C ¥* =
{o € T*|o when interpreted as a deterministic TM program by U halts on input ¢ when

interpreted as a string}
The difference between determinism and nondeterminism now is easily established.

Theorem 1 There ezists a fair nondeterministic Turing machine which accepts HALT
by the acceptation convention given in definition 3

Proof: The nondeterministic machine M has a single nondeterministic transition and
works as follows. It enters state §. From § it continues nondeterministically in one of two



successor states: either it writes a 0 on its worktape or otherwise its starts to simulate.
If the machine chooses to start simulating it will simulate the input when interpreted as
a program on itself for a number of steps which is bounded by the number of symbols
written previously on the worktape. If the simulated machine halts and accepts within
this number of steps then M halts and accepts also, else M halts and rejects.

It is easily seen that an accepting computation of M can exist if and only if the input
is an element of HALT. Otherwise all possible computations are rejecting.

As M is a fair machine however, it must at some time take the second possibility of the
nondeterministic choices and enter a finite computation. Hence all possible computations
of M are finite. O

So there is a fair nondeterministic machine which accepts HALT by the acceptation
conventions given in definition 3.

By simple diagonalization (just as in any textbook) it is shown that by the same
acceptation convention no deterministic machine accepting HALT can exist. A claimed
deterministic M; device that accepts HALT is converted to a machine M, (;) which loops
if and only if M; accepts its input. Now consider the behavior of M, (; on input M, (;:
If M,(;) stops on input M,; then M; would accept M,(;), hence M,(; would diverge.
On the other hand if M, ;) diverges on input M,(; then M; would reject in which case
M, ;) stops (and rejects). So we have constructed a machine which stops if and only if it
diverges, a contradiction.

Theorem 1 states—since HALT is <,, complete for R E—that for any language L € RE
there exists a fair nondeterministic machine that accepts L. On the other hand:

Theorem 2 If L is accepted by a fair nondeterministic Turing machine, then L € RE.

Proof: Suppose L = L(M) then M is a fair nondeterministic Turing machine that halts
on any o € X*. Moreover M has an accepting computation on input o if and only if
o € L. A deterministic machine trying to find out if 0 € L does not have to decide if all
fair computations of M on o stop. They do so by definition hence it suffices to explore
M’s computation tree (breadth first) and find out if there is an accepting computation.
If such a computation exists then M accepts, o € L and ¢ can be reported as a member
of L. Thus a deterministic machine can for an ever growing number of steps explore M’s
computation tree for an ever growing number of ¢ and report those o for which it finds
an accepting computation. O

4 Halting behavior of fair nondeterministic machines

It is not hard to generalize the above construction for the Halting problem for the nonde-
terministic machines; rather than writing the length of the computation to be simulated
in unary the machine accepting the halting problem will write a trace for the nondeter-
ministic choices on its worktape. Simulation of the machine will consume this trace in no
more step than its length since at every step of the simulated machine a nondeterministic
choice is presumed.



However, by looking back at this generalization a curious problem is uncovered. The
universal simulator invoked in this construction performs much better than the original
nondeterministic devices simulated. The fairness condition will force all computations
into termination. In doing so the simulator will never generate an accepting branch which
does not belong to the original device but the nonterminating behavior of the machines
has vanished into thin air.

Since our fairness condition does not enforce all computations to become terminating
it becomes necessary to specify what it means that a nondeterministic machine halts on

some input.

Definition 4 The fair nondeterministic machine M; halts on input ¢ provided all fair

computations of M; on input o terminate.
And an analogy to HALT:

Definition 5 For a suitable Universal Turing Machine U we define the language HALTN C
¥* = {o € X*|o when interpreted as a nondeterministic TM program by U halts on input
o when interpreted as a string}

This immediately invokes the problem of determining whether we have introduced an
animal that can eat itself tail-first. In other words can there be a fair nondeterministic
device accepting HALTN? An analogous, but unfortunately somewhat less transparent
diagonal argument shows this is not the case.

Theorem 3 There’s no fair nondeterministic Turing machine that accepts HALTN.

Proof: Suppose there exists such a machine M;. Then on input o € £* all (fair) com-
putations of M; terminate, and moreover M; has an accepting computation if and only if
all fair computations of o on input o terminate. WLOG M has only one accepting state.
Now we can construct from M; a fair nondeterministic machine M,(;) by copying M;’s
program, but replacing the accepting state by a (deterministic) loop. Let us examine the
behavior of M,(;) on input M,;).

If all fair computations terminate, then M; would have accepted the input M, ;.
Hence M, ;) has a computation which enters the former accepting state and then loops
deterministically. Since this computation makes only a finite number of nondeterministic
moves, it is a fair infinite computation. On the other hand if there exists an infinite fair
computation of M, (;) on input M, (;) then M; rejects input M, ;) this means by definition
that all fair computations of M; on input M, ;) are finite but none of these computations
ends in the accepting state. But that means that the only state in which M, ;) can diverge
fairly can never be reached, whence all fair computations of M, ;) on input M, ;) are finite.
The conclusion is that M, ;) has a fair diverging computation on input M, ;) if and only
if all fair computations on this input are finite, a contradiction. O

5 Scheduling for an upper bound

So far our new model has yielded results which fit nicely into recursive function theory
as we know it. The deterministic version of the halting problem can’t be solved by de-
terministic machines whereas it can be solved by their nondeterministic sisters. These



nondeterministic devices have their own version of a halting problem HALTN which can’t
be solved by these nondeterministic devices. So there remains the question: How big
then is the problem HALTN ? It would fit nicely in the analogy if the problem HALTN
could be shown to be complete for the class IIJ. It is not difficult to invent a reduction
from the problem TOTAL, known to be complete for IIJ to HALTN but a correspond-
ing upper bound can not be found. In fact it turns out that the answer to the above
question has been known in the literature for a decade: HALTN is complete for the class
1T} [2] [4] [7]. This result illustrates the true complexity of deciding the halting behavior
of fair nondeterministic computations.

The striking difference with the standard model can be explained as follows. In the
traditional interpretation it follows by Konigs lemma that the fact that all possible com-
putations of a nondeterministic machine halt entails the existence of a finite upper bound
for the length of these computations. Therefore the nondeterministic version of the halting
problem is in £ and in fact £ complete. In our new interpretation we only have that all
fair nondeterministic computations must end, so the computation tree may contain unfair
infinite branches whence Konigs lemma is no longer applicable.

Using a lemma from [1] (lemma 3, as extended on page 85/86) we first sketch a proof
for a I} upper bound for the problem HALTN.

In order to understand the argument some explanation about this lemma is required.
We already indicated that our Turing programs could be represented in the guarded com-
mand language of [1] in such a way that our fairness notion corresponds to strong fairness
in the paper. Lemma 3 states that there exists a systematic transformation Ts;pong of
guarded loop programs S into deterministic programs T'sirong(S) Where the program S
is extended with random assignments of the form z :=?, such that removing the random
assignments from a computation of Tgirong(S) Will produce a fair computation of S and
such that all fair computations of S can be obtained in this way. The random assign-
ments are used in order to generate input to a deterministic scheduler which will guide
the computation of the original program along a fair course.

For our application to Turing machines this lemma entails that it suffices to consider
programs with a single nondeterministic choice which is subjected to a fairness condition.
It suffices to have a subroutine which generates a random integer and which is guaranteed
to terminate. Dijkstra’s random number generator presents us such a subroutine. Given
the subroutine the Apt/Olderog scheduler does the rest of the job.

A consequence is the observation that HALTN belongs to II}. All fair computations
of the original program terminate provided all computations of the transformed program
terminate regardless the output of the random number generator. This output can be
represented by an infinite sequence of integers w. The halting behavior now can be ex-
pressed by a sentence For every sequence w there exists a number of steps k after which
the machine, when scheduled according to w must halt. Clearly this is a II}-sentence.

By this reduction we also can explain the lacking argument for the construction of the
universal machine for fair nondeterministic Turing machines. By use of a scheduler the
universal machine can live with a single nondeterministic choice in its random number
generator. The rest of its simulations are performed deterministically.

The I} lower bound has been obtained originally by Chandra [4], but a very sim-
ple proof is given by Apt and Plotkin [2]. They provide a reduction from the problem
WFTREE defined to be the set of (indices) of total characteristic functions of well-founded



infinitely branching trees, which is a well known II}-complete set.

The authors consider a transformation T'(Z) which transforms a program M; into a
program Mr(;) which operates as follows: First Mr(;) generates by a random assignment
z :=7 an argument and evaluates M;(z) ; when this evaluation has terminated the program
generates, using random assignments a branch <>, < n; >, < ny,n3 > , .... , subjecting
every node encountered as input to M; and terminates when it locates a node which is
rejected by M;.

The transformed program may diverge during the first stage in case M; does not com-
pute a total function. So the termination during the first stage tests for the II3-complete
property TOTAL. During the second stage the transformed program may moreover diverge
by traversing an infinite branch in the tree, which will not exist if the tree is well-founded.
So overall termination of Mr(;) will test for the II}-complete property WFTREE. Again
the lemma from Apt and Olderog will provide us the equivalence between halting of pro-
grams with random assignment and fair termination of finitely branching nondeterministic

programs.

6 Conclusions

In this note we have, albeit by artificial means, established a model for recursion theory
in which determinism differs from nondetermism. Surprisingly, the fairness notion known
from concurrency theory had to be dragged in. Our fair nondeterministic machines have
sufficient power for recognizing sets in RE by final states and, as we have seen in the
previous section, sets in arbitraryly high levels in the arithmetic hierarchy and beyond
there by halting.

Does the above hardness result mean that our new interpretation of nondeterminism
has overshoot its target ? It is just a question whether the halting problem as considered
(all fair computations must terminate) is felt to be relevant or not. In the traditional
interpretation this problem turns out to be reducible to the usual version (there exists at
least one terminating computation) and that version has not become harder for our new
model. But Chandra [4] has made a strong case for considering the halting behavior of a
program to be an intrinsic part of its ontology.

It is obvious that fairness is a serious restriction on nondeterminism in the sense that
it can really prevent latent diverging computations by forcing them to abort. In our
application the essential ingredient is the use of fairness for guessing the length of an -
accepting computation without risking infinite computations. Random assignment would
have achieved the same purpose (but random assignment does not belong in the world of
Turing Machine computations—it is more at home in the world of the RAM). And, as we
have seen, random assignment and fairness represent two sides of the same medal.

Lately it has become popular to inflict all kinds of restrictions on nondeterminism in
the polynomial time bounded case, thus introducing classes like UP, FEWP, MAJORITY ,
and even classes of nondeterministic programs governed by threshold functions. Of course
if P = NP then all these classes collapse to P. But if not, what are then precisely
the restrictions on nondeterminism by saying that a nondeterministic option may not be
ignored for more than a constant or logarithmic number of times? I.e., what about fair
nondeterministic computation in Lilliput?
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