Institute for Language, Logic and Information

TOWARDS IMPLEMENTING RL

Sieger van Denneheuvel
Peter van Emde Boas

ITLI Prepublication Series
For Computation and Complexity Theory CT-88-11

University of Amsterdam

53R



Lo

nstitute for Language, Logic and Information
s Instituut voor Taal, Logica en Informatie

TOWARDS IMPLEMENTING RL

Sieger van Denneheuvel
Peter van Emde Boas
Department of Mathematics and Computer Science, University of Amsterdam

Received December 1988

Correspondence to:

Faculteit der Wiskunde en Informatica Faculteit der Wijsbegeerte
(Department of Mathematics and Computer Science) or (Department of Philosophy)
Roetersstraat 15 Grimburgwal 10

1018WB Amsterdam 1012GA Amsterdam



Towards implementing RL
Sieger van Denneheuvel & Peter van Emde Boas

Logic and computation theory group
Depts. of Mathematics and computer science, Univ. of Amsterdam.
Nieuwe Achtergracht 166, 1018 WV Amsterdam

Abstract. The integration of numerical constraints and logic programming requires a
constraint solver. If constraints and logic programming are furthermore to be integrated
with database technology such a constraint solver must be extended so that large amounts
of data can be handled efficiently. The integration of these three technologies is the goal
of the project reported on in this paper.

1. Introduction

Relational databases, Spreadsheets and Logic Programming are three technologies aimed at
processing information in a knowledge based way - users are enabled to express
information about the world to be represented in the information processing system in a
understandable, structured way. The three technologies have moreover in common that
they may be explained using a mathematical model based on relations. Furthermore the
three techniques exist in the actual practice of information processing. There exists however
no information processing system which integrates them into a joint relational system.

The potential for such an integrated system has been investigated in the context of the
Rules Technology project led by Peter Lucas at the IBM San Jose Research Center; see for
example [HANSS87]. For this purpose the second author had developed in 1985 a
language, called RL together with a semantic model for its interpretation.

In this paper some issues are described on the way to implementing RL. A system RLO
was built to see if implementation of an RL system is feasible. An important part of this
system is the constraint solver which will be discussed in the subsequent sections. Many
aspects of RL have not been implemented in the RLO system. In this paper only those
features are described that are present in the current implementation of the RLO system. In
the RLO system we specifically aim at the integration of algebraic equational constraints and
database processing. Although this eliminates a large number of other interesting
RL features it suffices for exploring new techniques of knowledge processing. For more
complete information on RL we refer to [ROES87], [VEMDS86a] and [VEMDS5]. For
information on the evaluation of clausal rules on relational databases we refer to
[VEMDS6b].

2. The RL language

In the RL language knowledge can be represented in three different types of rules: tabular
rules, clauses and constraints. Corresponding to these types of rules there are three areas
of technology that support that style of knowledge processing in isolation: database
systems, Logic Programming Systems and spreadsheets. Below we will introduce these
rules in RLO syntax with an example.



A main goal of RL is to integrate these three technologies in one system. This integration is
achieved by providing a relational semantics for these three types of rules. All types of
rules determine relations, but the various types of rules interact in a non-trivial way. For
more information see [VEMDS86a]. Another goal of RL is modularization for managing and
organizing a large collection of rules in a structured way.

The RL language is a declarative representation of knowledge. This means that the user
who wants to express knowledge in RL rules should not have to worry about control
issues in the representation, but only needs to specify what he believes is true in the
represented domain.

The representation of the rules should also be auditable in the sense that the written text can
be inspected by a non-technician in order to convince himself that the rules in the system
indeed represent those in the world outside. With the auditability of RL two goals may be
achieved.

In the first place the authority problem for expert systems (why should we ever believe the
answer of an expert system) is reduced to trusting the underlying inference engine because
the domain expert can verify the correctness of the rules. Since the RL language is
declarative rather than imperative, this verification can be done without specific knowledge
about the method of inference. Some expert systems, for example OPS5[BROWS86],
require the knowledge engineer to know details about the implementation of the inference
method (inference engine) in order to verify correctness of rules.

Furthermore auditability results in a domain expert who may understand how a problem
domain has been represented in RL rules. If the knowledge engineer is the same person as
the domain expert (I.E., has both active and passive competence about RL) then no tedious
communication between them is needed which is a benefit for expert system development.

Another purpose of the RL project is efficiency in handling large amounts of data. This is
to be achieved by an integration with database technology. In this respect the RL project
shares its motivation with the work reported on in [VEMDS86b]. In OPSS5, which is an
efficient expert system, the knowledge engineer has to bother about restructuring rules in
order that efficient evaluation is possible. For example in [BROWS86] explicit guide lines
are given to avoid big cross products in rules. In RL these same issues (e.g. processing
joins effectively) arise but are ideally handled by the database query optimizer and not by
the knowledge engineer. Other achievements of current database technology like security
and recoverability become available as well when the system is integrated with a database
system which implements these features.

In [VASSS85],[VASS83] four strategies for database access from expert systems are listed:

(1) Elementary Database access within an expert system

(2) Generalized DBMS within an expert system

(3) Loose Coupling of the expert system with an external DBMS
(4) Tight Coupling of the expert system with an external DBMS

The RL expert system seems to fit best in classification (4), since the database
requirements are not known in advance and the RL system works with an external -

database.

As an example of knowledge represented in RL consider the following description for a
parallel circuit of two resistors:



/* r tot= circuit resistance, v_tot= circuit voltage

il
_ em——————
___________ l rl | —————————————
r e |
O=————————— + Fomm o
r e I -=>
——————————— | r2 |-—————————- i tot
—_ e———————
i2

*/

rlmodule electronics.
/* domain declarations */
real:v_tot,i tot,r tot,rl,r2,il,i2,v,1i,r, maxwatt.
/* tabular rules */
experimentdata (v_tot,rl,r2)==]
[9,1200,400],
(10,1200, 4001,
[11,1200,400],
[12,1200,400]7.

/* clauses */

ohmlaw(v,i,r) when v=i*r,

circuit(v_tot,i_tot,r tot,il,12,rl,r2) when
ohmlaw(v_tot,il,rl) and v_tot*il<=maxwatt
and ohmlaw(v_tot,i2,r2) and v_tot*i2<=maxwatt
and i_tot=il+i2
and ohmlaw(v_tot,i tot,r tot)

and maxwatt = 0.25
endmodule.

fig. 1

In the above representation of the circuit both the physical laws of basic electricity theory
and the practical condition that the resistors should not be overloaded are expressed in

terms of simple algebraic equations.

The RLO system has the capability to determine in the above example for every tuple in the
experimentdata the values of all remaining variables in the program. Also in the context of a
typical database access the tabular rule defining experimentdata may be replaced by a
rule like

experimentdata (v_tot,rl,r2)== EXTERNAL/X12.b34
which describes the import of some database table known to the system by its file-id

X12.b34 into the RLO program; the system now has to determine the other values for every
row in this database table (or any subset we like to submit) accordingly.



In the above example we know from elementary physics that the values given in the table
experimentdata fully determine all quantities. How should the knowledge system
determine that this indeed is the case? Had we known in advance that the values v-tot,
rl,and r2 are the input data, a simple spreadsheet application expressing our knowledge
about the solution of this physical problem would have done the job. In the RLO system we
want the system to be capable to figure out this determinedness. The system can moreover
switch from one set of fully determining quantities to another. Replacing the above rule by:

experimentdata(il,rl, r2)== EXTERNAL/X12.b35

will not disable the system. The system should be as reversible as the ideal relational
database; regardless the input values specified, the system should infer everything which
can be inferred from these input data (and nothing it should not infer). This requirement of
reversibility has led us to the constraint solving problem described below.

3. Constraint solver problem specification

The basic problem that needs to be handled by a constraint solver might be given as follows
(Var(X) denotes the set of variables in X):

Input:
System of algebraic constraints: Cstr
List of known variables: K
List of unknown variables: U
List of wanted variables: W

KuU=Var(Cstr), KNU=0 ,WcU

Output:
List of solutions:

Soln={x=elxe U,ee Expr}
List of conditions:
Cond= { ¢l c € Cexp or c=true orc=false }

The system of equations and conditions in the output must be equivalent to the original
system in the sense that the sets of solutions are equal:

Soln U Cond <==> Cstr

The output must also be as informative as possible (note that returning the input unmodified
satisfies the specification as given so far). This is expressed by the following two
conditions:

(1) Forallce Cond: Var(c)c K
(2) Forallxe W: x=e € Soln A Var(e)c K

The first condition ensures that the condition part only references known variables. The

second condition enforces that all wanted variables appear in the solution and that indeed
wanted variables are expressed in known variables only.

In the output Expr denotes expressions that can evaluate to a value and Cexp denotes
expressions that can evaluate to a truth value.



If false is in the Cond list then some inconsistency was derived. The constraints set can
then not be solved. For example if 0=1 was derived this would evaluate to false.
However if t rue is in Cond then some redundancy in the constraints was derived. This
means that there was a redundant constraint in the constraints from Cstr. For example if
0=0 was derived this would evaluate to t rue. The inference process of the solver does not
allow the derivation of a trivial redundancy for example by substituting an equation in
itself.

4. Classification of constraint solvers

Constraint solvers can be classified according to the type of problem they are supposed to
deal with. For example, when K = & condition (1) and (2) from section 3 turn into the
conditions:

(3) For all c € Cond : Var(c)=0J

(4) Forallxe W: x=e€ Soln A Var(e)=J

Condition (3) states that no variables are present in the condition so that if there is a
condition in Cond then it is either true or false. Condition (4) states that for all the wanted
variables there is a variable-free solution so it must be a value.

Condition (2) can be weakened by allowing unknown variables in the answer, provided
they are not on the wanted list:

(5) Forallxe W: x=e€ Soln A Var(e) c Ku U\WW

With these conditions constraint solvers can be separated in the following classification:

@ Restricted constraint solver: (3) and (4) hold (K=J)
(I)  Solution constraint solver: (3) and (5) hold (K=0)
I) Condition constraint solver: (1) and (2) hold

(IV) Condition/solution constraint solver: (1) and (5) hold

Clearly (I) represents the most restricted type of a constraint solver and (IV) the most
general. The intermediate types (II) and (III) are mutually incomparable.

5. Integrating constraint solvers and databases.
Solving a set of constraints is essentially a two stage process:

6)) Determine solvability of the constraints
(ii) If found solvable then solve the constraints

In this section we will describe how these two tasks can be performed when the constraints
are to be repeatedly solved for a large collection of instances presented in a database table.
The table contains the possible combinations of values for variables that are to be
processed. These variables will form the set of known variables K . Each row (called tuple
in the following) from this data table is one combination and assigns one value to each
variable in K.



A restricted constraint solver (the least general in this classification) can be used for solving
our basic problem in the following way: Simply take one possible combination of values
for variables from K. Add equations x=n to the constraint set for all variables x in K and
their associated values n. This reformulated problem can now be solved by a restricted
constraint solver. Unfortunately the process of constraint solving must be repeated for all

tuples from the data table.

In the above strategy the restricted constraint solver answers the question whether
constraints are solvable by yes or no. If (3) and (4) hold and no inconsistency was found
the answer is yes and the constraints are solved for the particular known values. This
results in a unique solution. In the case of a solution constraint solver also an undetermined
solution may result where parameters (only unknowns) are present in the answer.

In the case of a condition constraint solver the data table can be processed more effectively.
The solver is called once for all tuples with K set to the variables from the data table. When
the variables of K are fixed to values of a particular tuple, the actual computation of a value
for an unknown is turned into simple evaluation of an expression (namely the expression
given in the solution list for the unknown). In the case of a condition/solution constraint
solver these expressions still may contain unknown variables which are not on the wanted
list. The solution indicates that the system is undetermined, but it has been solved formally;
by the time additional information arrives which specifies the remaining unknown values
the solution is completed by straightforward evaluation of expressions.

The condition constraint solver answers the question wether constraints are solvable by a
condition instead of a {yes,no} answer. The condition can contain (only) known variables
and evaluation of the condition yields the yes or no answer. So the actual checking of
solvability for a particular tuple is turned into simple evaluation of an expression (namely
the condition).

In the following we will represent the results of a query to a condition constraint solver as
follows:

SELECT Vars

FROM Relation
IF Condition
THEN Solution

The select slot contains the variables to be computed and the from slot the possible
tables from which the data is taken. The if and then slot correspond to the condition and
solution lists from the solver output respectively. In the following the select and from
slots will sometimes be omitted. Note that the above output format suggests the appropriate
format of a database query. This is intentional. The constraint solver may produce as its
output a syntactically well-formed query which, if processed on the connected database,
produces the solutions searched for. This query consists of a select followed by an
extension of the retrieved tuples by a suitable set of calculates producing the values for the
quantities which have been solved formally.



6. Solver inference engine

The task of the inference engine of a conditional constraint solver is to produce the Cond
and Soln lists from the previous section from the list Cstr of constraints. The inference
method is based on substitution. It roughly works as follows. Choose an equation E from
the set Cstr and select a variable x occurring in E (the combination of E and x is called an
(E,x) pair in the following). Then try to isolate the variable x in the equation E (i.e. write
the equation in the form x=e ,with x not occurring in e). If this is successful then eliminate
x from the system Cstr and Soln by substituting e for x. Remove E from Cstr and add x=¢
to the list Soln. So now the number of constraints in Cstr is reduced by one. Repeat this
process until no constraints in Cstr remain, in which case Cond is set to {}, or until in the
constraints from Cstr no (E,x) pair can be found that can be isolated. In this case Cond is
set to the current value of Cstr.

In the above process elimination does not mean that the unknown is necessarily evaluated
to a value or expressed in known variables. It is possible that the expression substituted for
the unknown still contains unknown variables. Also a variable is only considered for
isolation if it is not a variable from K so known variables are not substituted in the process.
The description given here is a simplified version of the algorithm actually used in the
solver.

6.1 Isolation methods

In the isolation step several possible heuristic methods can be applied. For isolation to
succeed the number of occurrences of x in an equation E must be reduced to one.
Simplifying E is an effective heuristic method. Simplification is also important when a
transformation to x=e has succeeded because the expression € must be reduced as far as
possible (before it is substituted in the other constraints to eliminate x).

The effectiveness of the solver largely depends on the heuristic methods used for isolation,
simplification, and the conflict resolution strategy (i.e. choosing the best (E,x) pair when
more alternatives are possible).

If several (E,x) pairs are in the conflict set then it may be profitable not to just pick one at
random but to search for an optimal (E,x) pair. However selecting this optimal pair from all
pairs in the conflict set may be quite costly. So a strategy is needed to reduce the size of the
conflict set and to find a suboptimal solution. In the current implementation heuristic
strategies are used to choose an (E,x) pair from the conflict set.

6.2 Explanation support

For use in an expert system the inference engine should have some kind of explanation
available for the derivation of its results. A simple change to the basic inference procedure
can provide this explanation. Initially each original constraint in Cstr is associated with an
unique number. As the inference process proceeds the new constraints inferred are also
assigned a unique number. With each derived constraint a derivation tree is constructed that
is composed of numbers of constraints that were used in the derivation. In a derivation tree
the leaves are the original constraints for which no further explanation is recorded.

The justification set for a derived constraint is the set of all original constraints (i.e. leaves
of the derivation tree) that were used for the derivation. The justification set is a flat
structure and may be meaningful for the user because its elements may be found in the
source RL text.



The above administration improves on having no explanation at all, but the resulting
explanation set is not guarantied to be minimal. Especially in the case where an
inconsistency or a redundancy was inferred, the user should have a comprehensible
explanation. In the RLO system it is possible to have these minimal explanations by giving
the user the possibility to invoke the solver to obtain a minimal explanation set.

7. Some queries for the circuit example

In this section the simple circuit from the beginning is taken as an experiment. The queries
below illustrate how known variables can be used to analyse a constraint system. Suppose
voltage is applied to the example circuit then the current through the circuit and the total

resistance of the circuit can be calculated:

?-show circuit (9,1 tot,r tot,1200,400).

IF empty
THEN r tot=300
i tot=0.03

With other variables given, an answer can also be computed:

?-show circuit(v_tot,0.03,r tot,1200,400).
IF empty
THEN r tot=300

v_tot=9

In the constraints written down for the circuit the law for parallel resistors is not given
directly, but the total resistance can nevertheless be computed. Now suppose we apply
various voltages to the two resistors as specified in the experimentdata table. In the
table (see fig.1) the voltage is slowly increased and the resistors stay the same. Surely at
some high voltage the circuit will break down. Let's run the experiment:

?-show experimentdata(v_tot,rl,r2)
and circuit(v_tot,i tot,r tot,rl,r2).

SELECT v_tot,rl,r2,i tot,r_tot
FROM experimentdata (v_tot,rl,r2)
IF empty

THEN r tot= rl*r2/(rl+r2)

i tot= v_tot/rl + v_tot/r2
v_tot,rl,r2,r tot,i tot
[9,1200,400,300,0.03]
[10,1200,400,300,0.033]

In the output data table the rows correspond to the rows from the experiment data table.
Obviously some rows are missing. In the missing rows the constraints were not satisfiable
(i.e. the non-smoking condition was violated) so they do not appear in the answer to the
query. The exact breakdown voltage can be calculated symbolically:



?-show circuit(v_tot,i tot,r tot,rl,r2)
and known (rl) and known(r2) and known(v_tot).

This query leads to a correct but huge expression which we omit due to the page limit.

Finally if a general relationship between r_tot, r1 and r2 must be found the solver can be
directed to find such a relationship by making just these variables known:

?-show circuit(v_tot,i tot,r tot,rl,r2)

and known (r_tot) and known(rl) and known(r2).
IF rl*r tot+r2*r tot-rl*r2=0

THEN empty

The solver has inferred the law for parallel resistors. Note that this output does not satisfy
the requirements for a condition constraint solver ( conditions (1) and (2) from section 3 )
because none of the wanted variables are expressed in known variables. Nevertheless in
such cases we would not want to reject the answer because it is informative for the user.
The difference between known variables and unknown variables is subtle but important.
Consider the following two queries with wanted variables i_tot and r_tot:

?-show circuit(v_tot,i tot,r tot,rl,r2).
?-show circuit(v_tot,i tot,r tot,rl,r2)
and known(v_tot) and known (rl) and known(r2).

In the first query a symbolic solution will probably not express the wanted variables in the
other variables and the constraint system is undetermined (i.e. there are too many variables
and too few constraints to solve them). In the second query the inference process of the
solver is directed to a solution expressing i_tot and r_tot symbolically in terms of v_tot,r1
and r2 and the constraint set is not undetermined.

8. Recursive constraints.

Although in RL recursion is only permitted for clausal rules and not for constraints, the
modularization in the language supports the combination of various rule types in a way
which makes it possible to define recursive constraints. In order to investigate the problem
of solving such recursive constraints RLO supports them in a more straightforward manner.

For evaluation of recursive clauses a standard method is iteration on results [NAQV84]. In
this approach the result of an iteration is computed from the result of the previous iteration.
The iteration process is started on the empty relation. When the results of two subsequents
iterations are the same, iteration stops and the result of the recursive clause is obtained. In
[VEMDS86b] and [NAQV84] it was pointed out that the iteration on results approach may be
quite inefficient for example because the 'selection before join' heuristic can not always be
used in optimization of the recursive query.



In [VEMDS86b] an alternative general approach for optimizing recursive relational queries,
called iterative compilation, is introduced. In this approach the next iteration is calculated
from the definition of the previous iteration instead of the result of the previous iteration.
Each iteration is optimized separately and its result is saved. The iterative compilation
method makes it possible to optimize, since for instance a select operator can be pushed
further down in the relational algebraic tree. Since our strategy for constraint solving
involves syntactical manipulation of the constraints this compiled iteration seems
appropriate for the integration of recursive clauses with constraint solving as well.

If the constraint system is given in a recursive clause then a legal request would be to find
one solution of the constraint system. Recursion can then be stopped when a solution is
found. Another legal request would be to find all solutions to a given query. In this case
the system must continue to look for more solutions if a solution was found. Since there
may be an infinite number of solutions the depth of the query must be bounded.

We illustrate the method by the following example where the predicate mortgage is
recursively defined (example from [LASS87]):

/* p= principal amount, i= interest rate, b= balance,
mp= monthly payment, time=duration loan */
CONSTRAINT SYSTEM:
mortgage (p,time, i,b, mp) when
time <= 1 and b+mp=p*(1+i).
mortgage (p,time, i, b, mp) when
l1<time and mortgage (p*(l+i)-mp,time-1,1i,b,mp).

fig 2.
Suppose a salesman wants to know the relation between the monthly payment and the

principal amount.

?-show (mortgage (time, i,b, p, mp)
and time=5 and 1i=0.1 and b=0 , 10).

IF empty

THEN b=0,
i=0.1,
mp=p*0.26379
time=5

This can be done with a solution constraint solver (the unknown p appears in the answer
for mp). Now the salesman wants to solve the system not for one particular time value but
for time as a known variable. This can be done with a condition constraint solver:

10



?-show (mortgage (time, i,b,p,mp) and known (time)
and known (p) and i=0.1 and b=0 , 3).

IF time<=1

THEN b=0,
i=0.1,
mp=p*1.1,

IF time<=2 and time>1
THEN b=0,
i=0.1,
mp=p*0.57619,

IF time<=3 and time>2
THEN b=0,
i=0.1,
mp=p*0.40211

In the examples the query depth was restricted to a maximum by the extra argument in the
show command.

9. Extension with rules

It should be possible to extend the standard inference system with rules so that the
knowledge about operators is extended. For this purpose two types of rules can be added
to the constraint solver to make use of the new operators in the same may as the standard
operators: reduction rules and isolation rules. The first type represents the simplifications
that can be made for the operator (such as actually evaluating the operator to an element of
the domain). The second type of rules is used when a variable is isolated in an equation and
relates the new operator to other operators to accomplish the isolation.

The two types of rules have the following syntax:

@) reduce Head to Body when Condition
(ii) isolate Head to Body when Condition

For the head and the body of the reduction rule the usual restrictions from term rewriting
systems are in effect. The conditions of both reduction and isolation rules have the form of
a conjunct of goals that are evaluated in a Prolog like fashion. They are used as a test that
must succeed for the rule to be applicable. Also the conditions can be used to interface with
the underlying Prolog system. This is important because not all operators can be
represented naturally and efficiently in the above two types of rules. The head and body of
an isolation rule are equations that are equivalent if the condition is met.

Example:

reduce max(x,x) to x.
reduce max(x,y) to x when

number (x) and number(y) and x>=y.
reduce max(x,y) to y when

number (x) and number(y) and x<y.
isolate atb=c to a=c-b.

11



The first rule says that the maximum of identical expression simplifies to the expression
itself and the second and third rule specify how the operator is evaluated if its arguments
are numeric. The three rules could be merged into one rule if an appropriate Prolog

predicate pmax was defined:

reduce max(x,y) to z when pmax(x,y,z).

Operator overloading can be used in this approach because the operand types are tested
dynamically when the operator is evaluated (late binding). Also a single rule may be used to
represent a reduction for several argument types, so minimizing duplication of rules (for
example the first rule of the max operator can be used for both numbers and strings).

10. Conclusion

Integration of constraints and logical rules in conjunction with a database system seems to
be possible if a constraint solver is extended with the ability to deal with known variables.
With this extension a solver does not only produce solutions but can also generate a
condition that represents solvability of the constraint system. Heuristic rules are necessary
to keep the solving process efficient.

The current RLO system is written in PROLOG and runs on a Gould computer. The queries
and answers figuring as examples in this paper were adapted from the output of this current

version.

12



References.

BROWS86
HANSS87

LASS87

NAQVg4
ROESS87
VASS85

VASS83

VEMDS5

VEMDS86a

VEMDS86b

Brownston, L., Farrel, L., Kant, E. & Martin, N.,

Programming Expert Systems in OPSS5, Addison Wesley, (1986)
Hansen,M.R., Hansen,B.S., Lucas,P. & van Emde Boas,P.,

Integrating Relational Databases and Constraint Languages,

Rep IBM Research, RJ 5594 (56904), (1987).

Lassez, C., Constraint Logic Programming, a new general framework

for developing languages more powerful than traditional logic programming
languages, Byte , 12 (9), 171-176, (1987).

Nagqvi, S.A. & Henschen, L.J., On Compiling Queries in Recursive First
Order Databases, J. ACM 31(1), 47-85, (1984)

Roessingh, M.J., RL losgelaten op aanwijzing 111,

Rep. FVI-UvA 87-18 , Dec. 1987.

Vassiliou, Y., Clifford, J. & Jarke, M., Database access requirements of
knowledge based systems, Query Processing in Database Systems,
Kim,W. et al. eds., pp. 156-170, (1985).

Vassiliou, Y., Clifford, J. & Jarke, M.,

How does an expert system get its data?, Proc. 9th VLDB Conference,
Florence Nov 1983, pp. 70-72, (1983).

van Emde Boas, P., RL, a Language for Enhanced Rule Bases Database
Processing, Working Document, Rep IBM Research, RJ 4869 (51299),
Oct. 1986.

van Emde Boas, P., A semantical model for integration and modularization
of rules, Proceedings MFCS 12, Bratislava Aug 1986, Springer Lecture
Notes in Computer Science 233, pp. 78-92, (1986).

van Emde Boas, H. & van Emde Boas, P., Storing and Evaluating
Horn-Clause Rules in a Relational Database, IBM J. Res. Develop. 30 (1),
80-92, (1986).

13



The ITLI Prepublication Series

1986
86-01

86-02 Peter van Emde Boas

86-03 Johan van Benthem

86-04 Reinhard Muskens

86-05 Kenneth A. Bowen, Dick de Jongh

86-06 Johan van Benthem

1987
87-01 Jeroen Groenendijk, Martin Stokhof

87-02 Renate Bartsch

87-03 Jan Willem Klop, Roel de Vrijer
87-04 Johan van Benthem

87-05 Victor Sdnchez Valencia

87-06 Eleonore Oversteegen

87-07 Johan van Benthem

87-08 Renate Bartsch

87-09 Herman Hendriks

1988

Logic, Semantics and Philosophy of Language:

LP-88-01 Michiel van Lambalgen

LP-88-02 Yde Venema

LP-88-03

LP-88-04 Reinhard Muskens

LP-88-05 Johan van Benthem

LP-88-06 Johan van Benthem

LP-88-07 Renate Bartsch

LP-88-08 Jeroen Groenendijk, Martin Stokhof
LP-88-09 Theo M.V. Janssen

Mathematical Logic and Foundations:
ML-88-01 Jaap van Oosten

ML-88-02 M.D.G. Swaen

ML-88-03 Dick de Jongh, Frank Veltman
ML-88-04 A.S. Troelstra
ML-88-05 A.S. Troelstra

Computation and Complexity Theory:
CT-88-01 Ming Li, Paul M.B.Vitanyi

CT-88-02 Michiel H.M. Smid

The Institute of Language, Logic and Information

A Semantical Model for Integration and Modularization of Rules
Categorial Grammar and Lambda Calculus

A Relational Formulation of the Theory of Types

Some Complete Logics for Branched Time, Part I
Well-founded Time, Forward looking Operators

Logical Syntax

Type shifting Rules and the Semantics of Interrogatives
Frame Representations and Discourse Representations

Unique Normal Forms for Lambda Calculus with Surjective Pairing

Polyadic quantifiers

Traditional Logicians and de Morgan's Example
Temporal Adverbials in the Two Track Theory of Time
Categorial Grammar and Type Theory

The Construction of Properties under Perspectives

Type Change in Semantics:
The Scope of Quantification and Coordination

Algorithmic Information Theory

Expressiveness and Completeness of an Interval Tense Logic
Year Report 1987

Going partial in Montague Grammar

Logical Constants across Varying Types

Semantic Parallels in Natural Language and Computation
Tenses, Aspects, and their Scopes in Discourse

Context and Information in Dynamic Semantics

A mathematical model for the CAT framework of Eurotra

Lifschitz' Realizabiility

The Arithmetical Fragment of Martin Lof's Type Theories with
weak Z-elimination

Provability Logics for Relative Interpretability

On the Early History of Intuitionistic Logic

Remarks on Intuitionism and the Philosophy of Mathematics

Two Decades of Applied Kolmogorov Complexity
General Lower Bounds for the Partitioning of Range Trees

CT-88-03 Michiel H.M. Smid, Mark H. Overmars Maintaining Multiple Representations of

Leen Torenvliet, Peter van Emde Boas

CT-88-04 Dick de Jongh, Lex Hendriks
Gerard R. Renardel de Lavalette

CT-88-05 Peter van Emde Boas
CT-88-06 Michiel HM. Smid

CT-88-07 Johan van Benthem

Dynamic Data Structures
Computations in Fragments of Intuitionistic Propositional Logic

Machine Models and Simulations (revised version)
A Data Structure for the Union-find Problem
having good Single-Operation Complexity

Time, Logic and Computation

CT-88-08 Michiel H.M. Smid, Mark H. Overmars Multiple Representations of Dynamic Data Structures

Leen Torenvliet, Peter van Emde Boas

CT-88-09 Theo M.V. Janssen

CT-88-10 Edith Spaan, Leen Torenvliet
Peter van Emde Boas

CT-88-11 Sieger van Denneheuvel
Peter van Emde Boas

Other prepublications:
X-88-01 Marc Jumelet

Towards a Universal Parsing Algorithm for Functional Grammar
Nondeterminism, Fairness and a Fundamental Analogy

Towards implementing RL

On Solovay's Completeness Theorem



