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Abstract

It is shown how dynamization techniques can be used to design dynamic
versions of the deferred data structures of Karp, Motwani and Raghavan.

Keywords: Analysis of algorithms, deferred data structures, membership
problem, balanced binary trees.

1 Introduction

The theory of searching problems is concerned with the design of algorithms and
data structures that solve these problems efficiently. In the static case, we are
given a data set S of n elements, and we are asked to answer a sequence of queries
about this set.

Normally, we build a data structure storing S, and perform the queries on this
structure. If P(n) resp. Q(n) denote the building time of the structure resp. the
time to answer one query, a sequence of k queries takes time O(P(n) + k x Q(n)).

Often a single query can be solved in O(n) time, by just walking along the
set S. So a sequence of k queries can be solved in this way in total time O(k x n).

Clearly, the first solution is only efficient if k is sufficiently large, whereas the
second solution is only efficient for small values of k.

This leads to the problem of designing a strategy for solving a sequence of
queries, where the length of this sequence is not known. So we are given a set n
objects, and we have to perform an unknown number of k queries. The queries
have to be carried out on-line, i.e. each query must be answered before the next
one becomes available.

Karp, Motwani and Raghavan [5,7] consider this problem, and they give a
technique, which they call deferred data structuring. In this technique, the search

*Bureau SION, Centre for Mathematics and Computer Science, Kruislaan 413, 1098 SJ Amster-
dam, The Netherlands. This work was supported by the Netherlands Organization for Scientific
Research (NWO).



structure is built ‘on-the-fly’ during query answering. Each time a query is an-
swered, parts of the data structure that do not exist at that moment, but that
are necessary to answer the query, are built. These parts can then be used to
answer future queries. They show e.g. that using this approach a sequence of k
membership queries can be solved in total time O(nlogk) if k < n. They also
show that this is optimal: The number of comparisons needed to perform k < n
membership queries is (nlogk). (In fact they prove that this lower bound even
holds in the off-line case, i.e. in case the queries are known in advance.) Remark
that by using a balanced binary search tree, the first mentioned solution takes
total time O((n + k) logn), whereas the second solution takes O(k x n) time. So
neither of these solutions achieves the lower bound for many values of k.

In [5], the authors ask for deferred data structures for dynamic data sets in
which insertions and deletions are allowed concurrently with queries.

In this note we show that it is often possible to design dynamic deferred data
structures by using well-known dynamization techniques. The ideas are illustrated
by considering dynamic deferred structures for the membership query problem. We
show that deferred binary search trees—if properly chosen—can be maintained as
in the ordinary case, i.e. by means of rotations. We also adapt the partial rebuild-
ing technique of Lueker [6], to get another maintenance algorithm for deferred
search trees. Finally, we give a trivial solution, based on the ideas of decompos-
able searching problems and global rebuilding (see Bentley [2] and Overmars [9]).

2 The membership query problem

2.1 The static deferred binary search tree

In this subsection we first repeat the static solution of [5] for the membership
problem.

Let S be a set of n elements drawn from some totally ordered universe U. We
are asked to perform—on-line—a sequence of membership queries. In each such
query we get an element ¢ of U, and we have to decide whether or not ¢ € S.

The algorithm that answers these queries builds a binary search tree as follows.
Initially there is only the root, containing the set S. Consider the first query g.
We compute the median m of S, and store it in the root. Then we make two
new nodes v and v. Node u will be the left son of the root, and we store in it
all elements of S that are smaller than m. Similarly, v will be the right son of
the root, and we store in it the elements of S that are greater than m. Then we
compare the query object ¢ with m. If ¢ = m we know that ¢ € §, and we stop.
Suppose ¢ < m. Then we proceed in the same way with node u. That is, we find
the median of all elements stored in u, we store this median in u, we give u two
sons with the appropriate elements, and we compare ¢ with the new median. This



procedure is repeated until we either find a node in which the ‘local’ median is
equal to ¢, in which case we are finished, or end in a node storing only one element
not equal to ¢, in which case we know that ¢ € S.

Clearly, the first query takes time O(n+n/2+n/4+--:) = O(n), since in each
node we have to find a median, which takes linear time [3,10]. During this first
query, however, we have built some structure that can be used by future queries:
in the second query, we have to perform only one comparison in the root to decide
whether we have to proceed to the left or right son. In fact, in any node we visit
that is visited already before, we spend only one comparison.

This is the general principle in deferred data structuring: If we do a lot of work
to answer one query, we do it in such a way that we can take advantage from it in
future queries.

We now describe the algorithm in more detail. Each node v in the structure
contains a list L(v) of elements, two variables N(v) and key(v), and two pointers.
Some of these values may be undefined. The value of N(v) is equal to the number
of elements that are stored in the subtree with root v. The meaning of the other
variables will be clear from the algorithms below. (Strictly speaking, the variable
N(v) is not needed in the static case.)

Initialization. At the start of the algorithm there is one node, the root r.
The list L(r) stores all elements of S. The value of N(r) is equal to n, which is
the cardinality of S, and the value of key(r) is undefined.

Expand. Let v be a node having an undefined variable key(v). In this case,
the list L(v) will contain at least 2 elements, and the value of N(v) will be equal
to |L(v)|. The operation ezpand is performed as follows:

First we compute the median m of L(v), and we determine the sets S; = {z €
L(v):z <m} and S, = {z € L(v) : ¢ > m}. Then we set key(v) := m, L(v) := 0.
Next we make two new nodes v; and v,. Node v; will be the left son of v, so
we store in v a pointer to v;. If [Si1| > 1, we set L(v;) := Sy, N(v1) := |Si],
key(v;) := undefined. If |S;| = 1, we set L(v) := 0, N(v1) := 1, key(v1) := s,
where s is the (only) element of S;. (Of course, if S; = 0, we do not create the
node v;.) Similarly for v,.

Answering one query. Let ¢ be a query object, i.e. we want to know whether
or not ¢ € S. Then we start at the root, and we follow the appropriate path in the
deferred tree, by comparing ¢ with the values of key in the nodes we encounter. If
one of these key values is equal to ¢ we know that ¢ € S and we are finished.

If we encounter a node v having an undefined variable key(v), we expand
node v, as described above. Then we proceed our query by comparing ¢ with the
value of key(v). If ¢ = key(v), we know that ¢ € S, and we can stop. Otherwise,
if ¢ < key(v), we expand the left son of v, and we continue in the same way. If
this left son does not exist, we know that ¢ ¢ S. Similarly, if ¢ > key(v).



The following theorem gives the complexity of the algorithm. For a proof, see
[5], or Subsection 2.2.

Theorem 1 ([5]) A sequence of k membership queries in a set of n elements can
be solved in total time O(nlogk) if k < n, and O((n + k)logn) if k > n.

2.2 Dynamic solutions

We only consider sequences of at most n queries, insertions and deletions. Clearly,
this suffices, since after n operations we will have spent already (n log n) time.
Therefore, in the n-th operation, we can build a complete data structure—in
O(nlogn) time—and continue in the standard way.

Consider the deferred tree of the preceding subsection. At some point in the
sequence of queries, the structure consists of a number of nodes. Take such a
node v.

Suppose key(v) is defined. Then the list L(v) is empty, the value of N(v) is
equal to the number of elements of S that are stored in the subtree with root v,
and the value of key(v) is equal to the median of all elements stored in this subtree.

If key(v) is undefined, node v contains a list L(v) storing a subset of S (those
elements that ‘belong’ in the subtree of v), and the variable N(v) has the value
|L(v)|, which is greater than one.

Suppose we have to insert an element z. Then we start searching for z in the
deferred tree, using the key values stored in the encountered nodes. In each node v
we encounter, we increase the value of N(v) by one, since the element  has to be
inserted in the subtree of v.

If we end in a leaf, we insert z in the standard way, by creating a new node for
it, and we set the variables L, N and key to their correct values. (A node v in the
deferred tree is called a leaf if N(v) = 1. So a node that is not expanded—such a
node does not have any sons—is not a leaf.) Note that if z is already present in
the deferred tree, we will have encountered it.

Otherwise, we reach a node w with an undefined key value. Since we have to
check whether z is already present in the structure, we have to walk along the list
L(w). (The list L(w) is not sorted.) If z is a new element we add it to the list, and
increase N(w) by one. Note that this will take O(]L(w)|) time. Hence a number
of such insertions would take a lot of time. Then, our general principle—if we do
a lot of work, we do it in such a way that it saves work in future operations—is
violated. Therefore, after adding = to the list L(w), we expand node w. So if we
again have to insert an element in the subtree of w, the time for this insertion will
be halved.

Clearly, we have to take care that the deferred tree remains balanced. We will
consider this problem below.



A deletion of element = is performed in a similar way. We start searching for z.

First suppose we find a node v with key(v) = z. Then we search in the left
subtree of v for the maximal element y. Clearly, we know the path that leads to
this maximal element. If we end in a leaf, we interchange = and y, i.e., we set
key(v) = y, and the key value of the leaf is set to . Then we delete this leaf in
the standard way. During the search we decrease the N values in all nodes we
encounter by one. If we do not end in a leaf during our search for y, we reach a
node w with an undefined key value. Then we remove y from the list L(w), we set
key(v) = y, and we expand node w. Just as in the insertion algorithm, if we again
have to delete an element in the subtree of w, the time for this deletion is halved.

If we do not encounter a node v with key(v) = = during our search for z, we
might reach a node v with an undefined key value. If = is present in the deferred
tree, it is stored in the list L(v). So we delete z from this list, and we expand
node v.

Remark that if z is not present in the tree we will find this out. Again we have
to consider the problem of balancing the deferred tree.

There are various types of balanced binary search trees that can be maintained
after insertions and deletions. The oldest are the AVL-trees [1]. The balance
condition for these trees depends on the exact heights of subtrees. Since in our
deferred trees, several subtrees are not complete during the sequence of operations,
their exact heights will not be known. So AVL-trees seem not appropriate for
deferred trees.

There is, however, a class of balanced trees, for which the balance criterion
depends only on the size of its subtrees. For our deferred trees, the size of each
subtree—whether it has been completely built already or not—is known at each
moment: it is stored in the variable N(v).

Definition 1 (Nievergelt and Reingold [8]) Let a be a real number, 0 < a <
1/2. A binary tree is called a BB[a]-tree, if for each internal node v, the number
of nodes in the left subtree of v divided by the total number of nodes in the subtree
of v lies in between o and 1 — a.

In this definition, nodes that contain only a small number of nodes in their
subtree—say at most 5—do not have to satisfy the balance condition.

It was shown by Blum and Mehlhorn [4], that for a proper choice of a, the
BB|a]-tree can be maintained after insertions and deletions in logarithmic time by
means of single and double rotations.

Our deferred search tree will be a BB[a]-tree. That is, for each internal node v
for which the value of key(v) is defined, we require that o < N(v)/N(v) <1 — a,
where v; is the left son of v. (Again, nodes that contain only a small number of
elements in their subtree do not have to satisfy this balance condition.)



Updates are performed as described above. After the insertion or deletion, we
walk back to the root of the deferred tree. Each node we encounter that does not
satisfy the balance condition is rebalanced by rotations, as described in [4]. If a
node is involved in a rotation that does not ‘exist’, i.e. its key-value is undefined,
we first expand it. Therefore, the time for rebalancing after one single update can
be linear. However, as was to be expected, future updates—and queries—take
advantage from this.

Theorem 2 A sequence of k < n membership queries, insertions and deletions in
a set of initially n elements can be performed in total time O(nlogk).

Proof. Let f(n,k) denote the total time to perform a sequence of k queries and
updates in a set of initially n elements, with the above algorithms. Then

f(n,k) < gmax, {F(n/2, k) + £(n/2 k = )} + O(n) + O(k).

Here the term O(n) is the time required to expand the root of the deferred tree,
which takes linear time (see [3,10]) and which has to be done only once. The term
O(k) is the total number of comparisons made in the root in the k operations to
guide searches, and the time to carry out rotations in the root. If k; operations
visit the left subtree of the root, we spend a total amount of time there bounded
by f(n/2,k:1), since the left subtree initially contains n/2 elements. In the right
subtree we spend f(n/2,k — k1) time. It can easily be shown that the solution of
this recurrence satisfies f(n,k) = O(nlogk + klogn). This proves the theorem,
since the function z/logz is increasing. [J

There is another technique to achieve the result of Theorem 2. It is a general-
ization of the partial rebuilding technique [6,9)].

Suppose we have a perfectly balanced BB[a]-tree storing a set of n elements.
Here perfectly balanced means that for each internal node the sizes of its left and
right subtree differ by at most one.

We can perform updates in this tree as follows. If we want to insert or delete
an element, perform this update in the usual way. This gives a search path from
the root to the leaf where the update has been carried out. Now walk back to
the root, and find the highest node v that does not satisfy the balance condition
of Definition 1 anymore (if such a node does not exist we are finished). Then
rebalance the tree by replacing the entire subtree of v by a perfectly balanced
subtree.

Clearly, if v is high in the tree this takes lot of time. In this case, however,
it takes a lot of updates before node v is again the highest node that is out of
balance.

We adapt this partial rebuilding technique to deferred data structures. Again
the data structure is a deferred BB[a]-tree. Updates are performed as described



above. Now, rebalancing is carried out as follows. After the insertion or deletion,
we walk back to the root of the deferred tree to find the highest node v that is
out of balance. Then we dismantle the subtree with root v. That is, we collect all
elements that are stored in this subtree, and put them in the list L(v). Further-
more, we set key(v) := undefined. (The value of N(v) is already equal to |L(v)].)
Finally we discard all nodes below v. Such a dismantling operation takes O(N(v))
time.

Lemma 1 Consider a node v at the moment it gets out of balance. Let N be the
number of elements that are stored in the subtree of v at that moment. Then there
must have been > (1 — 2a)N — 2 updates since v was ezpanded.

Proof. The proof can be found in [9, page 53]. Note that v was in perfect balance
at the moment it was expanded, since we always split the list L(v) along the
median. [J

Let g(n,k) denote the total time to perform a sequence of k membership
queries, insertions and deletions in a set of initially n elements, using the just
described dismantling technique.

By Lemma 1, there is a constant ¢ such that the root of the deferred tree cannot
get out of balance in a sequence of < c¢n updates. So in a sequence of k < cn
queries and updates, the root of the tree is expanded exactly once. The total time
we spend in the root in such a sequence is therefore bounded by O(n + k) = O(n).
If k, operations are performed in the left subtree, we spend an amount of time
there bounded by g(n/2, k1), since the left subtree initially contains n/2 elements.
Similarly, we spend an amount of time g(n/2, k—k;) in the right subtree. It follows
that

g(n,k) < JJex, {9(n/2,k1) + g(n/2,k — k1)} + c1n if k < en,

for some constant c;.

Clearly, each query or update takes O(m) time if m is the number of elements.
So a sequence of k operations take O(k(n+ k)) time, since the number of elements
is always < mn + k. It follows that

g(n,k) < cok? if k > en,

for some constant ¢;. (This upper bound will be overly pessimistic. In fact, by a
more careful counting argument it should be possible to decrease this bound.)

It can easily be shown by induction that g(n, k) = O(nlog k+k?). So a sequence
of k < y/n queries and updates takes O(nlogk) time.

After /n operations, we have spent already §2(nlogn) time. Therefore, we
build—in O(nlogn) time—a binary tree for the elements that are present at this
moment. The future operations are performed in this complete structure in the
standard way.

This gives an alternative proof of Theorem 2.
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Finally, we give yet another proof of Theorem 2. The method is based on the
ideas of decomposable searching problems and global rebuilding [2,9].

We maintain two structures M and I. The main structure M is a static deferred
binary search tree in which we store the n elements that are initially present. Each
node v in this deferred tree for which the key-value is defined, also has a boolean
variable b(v), which says whether or not key(v) is present. The structure I is
an ordinary—i.e. non-deferred—balanced binary search tree, in which we store all
new points. Initially, I is empty.

Suppose we have to insert element z. Then we do a membership query in the
deferred tree M. If we find z, say in node v, we set b(v) := true. Otherwise, we
insert  in I in the standard way.

A deletion of element z is performed as follows. First we do a membership
query in the deferred tree M. If we find z, say in node v, we set b(v) := false. So
we do not delete z, we only ‘cross it out’. If we do not find z in M, we delete it
from the tree I in the standard way.

To perform a query z, we first query the deferred tree M. If we find z, say in
node v, we infer from b(v) whether or not z is present. If we do not find z, we
perform a membership query in the tree I.

Suppose we perform a sequence of k < n operations in this way. In the tree M
we perform k queries. By Theorem 1, the total time we spend there is O(nlogk).
In the tree I we perform a sequence of at most k queries and updates. Clearly,
each such operation takes O(log k) time, since I stores at most k elements. Hence
we spend O(klogk) time in the tree I. It follows that the total time for k < n
operations is bounded by O(nlogk + klogk) = O(nlogk). This yields a third
proof of Theorem 2.

3 Concluding remarks

We have shown that known dynamization techniques can be used to design dy-
namic deferred data structures. We have illustrated this by means of the mem-
bership query problem.

An important problem in the design of dynamic data structures is to keep the
structure balanced. By using BB[a]-trees, we do not need the complete structure
to know whether a node is out of balance or not. So BB[a]-trees are the appropriate
trees for dynamic deferred data structures.

The ideas given in this note can easily be extended to other searching problems.
For example, for decomposable counting problems (see [9]) we can generalize the
last solution of Subsection 2.2. This leads to a dynamic deferred solution of the
ECDF-problem in [5].

The dismantling technique, which was an adaptation of the partial rebuilding
technique [6,9], can be applied to get other dynamic deferred data structures. As



an example, using this technique we again get a dynamic deferred ECDF-tree.
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