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Abstract

In complexity theory we must cope with the discrepancy between a machine based
foundation of complexity notions and a machine independent intuition on what com-
putational complexity means. This discrepancy is resolved by investigating to which
extent machine models simulate each other in an effective and efficient manner. Two
theses are introduced which express the right kind of invariance needed. The invariance
thesis states that reasonable sequential models simulate each other with polynomial
overhead in time and constant factor overhead in space. The parallel computation
thesis states that parallel time is the equivalent of sequential space.

Rather than using these theses as absolute truths we use them as heuristic tools
by which two machine classes of well-behaved devices are separated from the more
irregular devices. The first machine class consists of the sequential devices which obey
the invariance thesis whereas the second machine class consists of the parallel devices
which satisfy the parallel computation thesis.

Our survey of existing machine models takes us from the weakest universal models
introduced by the mathematicians to the most powerful parallel models considered
today where time no longer is a complexity measure.

*to appear in: J. van Leeuwen (ed.), Handbook of Theoretical Computer Science, North Holland, Ams-
terdam, 1989
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Chapter 1

Introduction

1.1 The invariance of complexity theory

This chapter deals with the subject of machine models and simulations. Machine models
are a necessary ingredient of any formal theory on computational complexity. If one wants
to reason about such properties as the time and space consumed by algorithms solving
problems, then one needs to stipulate what time and what space one is talking about.
The conventional way of talking about time and space within theoretical computer science
is based on the implementation of these algorithms on rather abstract machines, called
machine models. The alternative would be to talk about the same measures but then
applied to real life computers. This would make the results dependent on technology and
real life peculiarities rather than insight and mathematical experience. Moreover, it can
be argued that the models provide a reasonable approximation of what one might expect
if real life computers were used indeed. Finally, one always can perform experiments on
real computers if one wants to do so; by doing so one just stops being a theoretician and
one becomes an empirical computer scientist instead.

Still, even if we base complexity theory on abstract instead of concrete machines the
arbitrariness of the choice of the model used remains. It is at this point that simulations
enter our theory. If we present mutual simulations of one model on another and give
estimates for the time and space overheads suffered by performing these simulations we
show in fact that complexity in these two models doesn’t differ by more than this overhead
in the relevant time and space measures. The sizes of these overheads provide information
which indicates to which extent assertions about complexity are machine based and to
which extent they become machine independent.

In order to appreciate the existence of many machine models we consider the state
of affairs in general computation theory. In this theory we know a large variety of com-
puting devices or formal calculi for effective computation. This divergence has not lead
to a proliferation of computation theories due to the basic observation that the resulting
formalisms are equivalent in the following sense: each computation in one formalism can
be simulated in the other formalism as well. Computation theory originated from the need
to show that specific problems were unsolvable by effective means. The above equivalence
now suffices for providing the researchers freedom in choosing their model. For if one can
prove that a problem is unsolvable in one particular model it is also unsolvable for all
other formalized computing devices to which this particular model is related by a pair of



mutual simulations.

Another consequence of this state of affairs is that one can work in constructive mathe-
matics without having to bother about the precise formal model of effective computability
used. The existence of a single formal concept in many disguises has allowed us to re-
turn to our informal, intuitive style of working, relying on what has become known as the
inessential use of CHURCH’S THESIS: whatever is felt to be effective can be brought within
the scope of our formal models. The basic models themselves remain on the shelve to be
used if when needed. They are also useful for educational purposes; their discovery has
become history [23] [59].

Church’s thesis is the kind of assertion of which the validity seems to be based on the
lack of counterexamples. History has shown that all proposed models indeed are equivalent
in the manner as explained above. Alternative models of computation are dreamt about
in science fiction. I leave the question on whether the human brain can be modeled by
one of our standard models or not to the philosophers and the neurophysiologists. In this
chapter I restrict myself to models for which Church’s thesis indeed is valid.

When in the early sixties the theory of computational complexity was founded [43]
the subject of machine models was revived. Models which had been shown to be compu-
tationally equivalent became distinct again since they could be separated by their time
and space behavior. Also a large collection of new models was introduced, based on the
experience in the world of practical computing.

The classical models from recursion theory, like the unary Turing machine [22] [130]
and Minsky’s multi-counter machine [81] [119] turned out to be too unwieldy for modeling
real-life computations. Depending on the nature of the objects one likes to manipulate in
the computations (numbers (non-negative integers) or alphanumeric strings), two models
have obtained a dominant position in machine-based complexity theory. The off-line multi-
tape Turing machine [1] represents the standard model for string oriented computation and
the random access machine (RAM) as introduced by Cook and Reckhow [21] has become
the idealized von-Neumann number cruncher. But other models entered the theory as
well and they were absorbed without much problems. At the same time during the early
seventies theoretical computer science became aware of the fact that some complexity
notions seemed to have a model independent meaning. The most important of these
notions had to do with the characterization of feasibility.

Characterizing a problem to be feasible in case it can be solved in polynomial time
(as was done for the first time by Edmonds [26]) requires that one identifies the machine
on which this time is measured. On the other hand, if it can be shown that reasonable
machines simulate each other with polynomial time overhead, it follows that the particular
choice of model in such a definition of feasibility is irrelevant, as long as one remains within
the realm of reasonable machine models. And indeed such polynomial time overhead
simulations are abundant in the textbooks [1] [75] [138].

The fundamental problem which was discovered during this period is the P Ll NP
problem, which asks for the power of nondeterminism. Are there problems which a non-
deterministic machine can solve in polynomial time which can’t be solved in polynomial
time by a reasonable deterministic device? Stated otherwise: is it reasonable to assume
that we have nondeterministic devices at our disposal?

The fundamental complexity classes like P and NP became part of a fundamental hier-
archy, together with classes like LOGSPACE, NLOGSPACE, PSPACE, EXPTIME,....
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And again theory faced the problem that each of these classes has a machine-dependent
definition and that efficient simulations are needed in order to show that these classes are
in fact machine-independent and represent fundamental concepts.

It seems therefore that complexity theory, as we know it today is based on the following
assumption:

INVARIANCE THESIS: Reasonable machines simulate each other with polynomially bounded
overhead in time and constant factor overhead in space.

A further development arose out of the study of parallelism. It turned out that there
was a deep connection between time in the parallel world and space in the sequential
world. This relation is known under the name PARALLEL COMPUTATION THESIS. The
thesis states that whatever can be solved in polynomially bounded space on a sequential
device can be solved in polynomially bounded time on a parallel device and vice versa.
Using the notations which will be developed below this thesis is expressed by the equation
PSPACE =|| PTIME.

This chapter of the handbook of theoretical computer science deals with the evidence
which has been gathered for the validity of the above two theses. As I mentioned before
the study of simulations with polynomially bounded time overhead is a traditional subject
in textbooks on introductory complexity theory. The additional clause on constant factor
space overhead seems to have been taken for granted and/or self evident. However, as
we will see in chapter2 of this chapter this issue is not as evident as it seems to be. The
situation with respect to the parallel computation thesis is again better; there are many
results in the literature which show the thesis to be valid for some particular parallel model
but on the other hand the thesis has been under attack as well.

For the interpretation of the invariance thesis it makes a difference whether one re-
quires that a single simulation achieves both bounds on the overheads involved (orthodox
interpretation) or whether one accepts a liberal interpretation which allows for a time-
efficient simulation and an entirely different space-efficient simulation (which then may
turn out to require an exponential overhead in time). As long as one investigates space or
time bounded complexity classes independently the liberal interpretation suffices in order
to make the classes in the fundamental hierarchy machine independent. Stockmeyer [126]
has argued that one reason for using the Turing machine model in the foundation of com-
plexity theory is precisely the invariance it provides. On the other hand nearly all efficient
simulations known in the literature achieve both bounds at the same time. Since classes
defined in terms of simultaneous time and space bounds are introduced and studied as
well, I believe that the orthodox interpretation is the correct one. It is also evident that
on the basis of the orthodox interpretation a subject like structural complexity theory [3]
obtains a sound machine-independent basis.

The escape in defending these theses clearly is presented by the word reasonable. This
can be easily inferred from the observed behavior of the theoretical computer science
community when faced with evidence against the validity of the invariance thesis. For
example, when in 1974 it was found that a RAM model with unit-time multiplication
and addition (together with bitwise Boolean operations) became as powerful as a parallel
device this model (the MBRAM) was thrown out of the realm of reasonable (sequential)
machines, and it was considered to be a parallel device instead.

It seems therefore that the standard strategy is to adjust the definitions of reasonability
when needed. The thesis becomes a guiding rule for specifying the right class of models



rather than an absolute truth. Therefore this thesis, once being accepted, will never be
invalidated. This strategy is made visible if we exchange the word reasonable by some
more neutral phrase. I have proposed for this purpose the use of the notions of machine
classes. The FIRST MACHINE CLASS consists of those sequential devices which satisfy the
invariance thesis with respect to the traditional standard device: the Turing machine. The
SECOND MACHINE CLASS consists of those (parallel or sequential) devices which satisfy the
parallel computation thesis [131] [132].

Not all devices we encounter in the literature are included in one of these two machine
classes. The classical mathematical models like the unary Turing machine and the multi
counter machine are to weak to keep in pace with the first machine class members. There
are intermediate models which could be located in between the two classes, and there are
parallel models which are even more powerful than the second machine class members,
up to the models which accept everything in constant time. But so far I have not found
reasons for introducing a third machine class at this level.

In the course of this chapter these devices will be introduced and their power will be
explained and clarified. We will do so in a rather informal manner. Machine models are
explained rather than defined formally, and their behavior is explained in words rather than
in terms of computation sequences. An outline of the formal aspects of a theory of machine
models will be given in the sequel of this chapter. Our treatment moreover necessarily will
be incomplete. The reader who wants to obtain an impression on the extension of the field
of machine models and related subjects is referred to the encyclopaedic volume written by
Wagner and Wechsung [138], a book which had not yet appeared when the proposal for
the present chapter was drafted.

1.2 Formalization of machine models

1.2.1 Machines and computations

A machine model M is a class of similarly structured devices M;, called machines, which
can be described as mathematical objects in the language of set theory. It is common to
define these objects as a tuple of finite sets. For example, for the standard single tape
Turing machine we will present a definition as a seven-tuple consisting of three finite sets,
one finite relation and three elements in these sets.

The above set theoretical object provides only partial information on how the machine
will behave and what its computations will look like. Common in these definitions is the
presence in the tuple of a finite object, called program or finite control, which is supposed
to operate on a potentially infinite structure called memory. One possible structure for
the memory is a depository for finite chunks of information consisting of symbols from
one or more finite sets called alphabets; these alphabets are specified by being members
of the tuple which defines the machine. In an alternative structure the memory is filled
with finite sets of numbers, which are in general taken to be elements from the set of
nonnegative integers w. The memory is modeled as a regular structure of cells where this
information is stored. This structure is mostly a linear and discrete order but alternative
regular structures like higher dimensional grids or trees are also allowed.

Although the structure of cells modeling the memory is infinite in principle, it will
always be the case that only a finite part of the memory is used. In the formalization this



is achieved by storing a special value (some selected blank symbol which is listed as such
in the tuple, respectively the number 0) in those locations where nothing has happened
so far.

The finite control is represented as a program in a suitable type of a rather primitive
assembly code. Typically there will be instructions for fetching information from or storing
information in memory, for modifying the visible cells in memory, for testing of conditions
and performing conditional or unconditional jumps in the program, and for performing in-
and output. In the example of the Turing machine model all these types of instructions
have been fused into a single read-test-write-move-goto instruction; for models like the
RAM the program does indeed resemble a primitive assembly code.

For the purpose of in- and output two special sections of memory are dedicated; one
from which information is read one symbol at a time and one by which information is
communicated to the outside world, again one symbol at a time. With regard to the
input section of memory two interpretations offer themselves. One can regard the input
characters as entities which offer themselves for being processed only once like signals
received from another galaxy; if one wants to read the input symbol for a second time
one must first store it in some other part of the memory. This leads to the mode of on-
line computations. If on the other hand the input symbols are permanently available for
inspection and can be read as often as one likes (presumably in some other order than
the sequential order of the input string itself) one uses the mode of off-line computations.
Some models, like for example the single tape Turing machine, have no separate in- or
output devices at all; here the input is stored in memory at the start of the computation
and the result can be retrieved from memory when the computation has come to an end.

In order to present a formalization of computations we first need the concept of a
configuration of the machine. A configuration is a full description of the state of a machine
and its memory. Typically a configuration will consist of a location in the program in the
finite control, the structure and contents of the finite part of the memory which has
participated in the computation so far, and descriptions of the states of the in- and output
sections of memory. For all components of memory the configuration must moreover
indicate on which cells the interaction between finite control and memory is currently
taking place.

Next one introduces the so-called transition relation between two configurations. Con-
figuration C, is obtained by a transition from configuration C, notation C; F Cj, if
performing a single instruction of the program in the finite control of the machine takes us
from C; to Cp. Computations are described by the reflexive and transitive closure -* of
this relation . The word computation refers primarily to the sequences of configurations,
connected by - which establish the presence of a pair consisting of two configurations in
F*. The word may refer also to the pairs in F* themselves.

At this point the distinction between deterministic and nondeterministic machines
can be made. For a deterministic machine there exists for every configuration C; at most
one configuration Cy such that Cy I C,, whereas for nondeterministic devices there may
exist several such configurations C3. For virtually all devices in the literature the source of
nondeterminism is the fact that the program itself indicates that more than one instruction
can be performed in the given configuration, and this leads to bounded nondeterminism:
the number of possible configurations C, is finite and bounded by a number dependent on
the machine’s program only. Unbounded nondeterminism is obtained if also the interaction



with the memory can be nondeterministic. For example on a RAM one could consider an
instruction which loads a random integer in a memory location. In this chapter we will
restrict ourselves to bounded nondeterminism.

Given the transition relation one next introduces initial, final, accepting and reject-
ing configurations. Initial configurations are characterized by an initial state in the finite
control (selected as such in the tuple describing the machine), a memory which is blank
except for the input, an empty output memory, and all communication devices between
program and memory located at some standard position. The input z completely deter-
mines an initial configuration for machine M; which we denote by C;(z). A configuration
C is called final if there exists no configuration C’ such that C - C'. If the state in the
finite control in a final configuration equals a specific accepting state—which is designated
as such in the tuple describing the machine—the final configuration is called accepting;
otherwise the configuration is called rejecting. There exist alternative ways of defining
configurations to be accepting or rejecting: for example, sometimes it is required that in
an accepting configuration the contents in memory are reset to some ”clean” situation.

A full computation is a computation which starts in an initial configuration and which
does not terminate in a non-final one; either the computation is infinite in which case it is
called a divergent computation or it terminates in a final configuration. The computation
then is called accepting or rejecting depending on whether its final configuration has this
property.

Machine computations can be used for several purposes. Machine M; recognizes the
language L(M;) consisting of those inputs z for which an accepting computation starting
with C;(z) exists. Machine M; accepts the language D(M;) consisting of those inputs z for
which some terminating computation starting with C;(z) can be constructed. The machine
M; finally computes a relation F(M;) consisting of those pairs (z,y) which consist of an
input  and an output y such that there exists an accepting computation which starts in
Ci(z) and which terminates in a configuration where y denotes the contents of the output
memory.

In the above formalization there exists only one finite control—or program—which
is connected to the memory by possibly more than one device. As a consequence the
machine will execute one instruction at a time (even in the case of a nondeterministic
machine where several instructions can be performed only one of the possible instructions
is chosen for execution). We emphasize this feature of the model by calling the above
machine model a sequential machine model. A Parallel machine model is obtained if we
omit in the above definition the condition that there exists just one finite control. In a
parallel machine finite control is replaced by a set of processors the size of which may
become infinite in the same way as memory is infinite: the number of processors has no
fixed bound, but in every configuration only a finite number of them have been activated
in the computation so far. Each processor has its private channels for interacting with
memory. It can be the case that large amounts of memory are accessible to all processors
(shared memory) or that processors have their own local memory.

The condition that only one symbol at a time gets communicated between the input or
output section of memory and the finite control is relaxed for the case of parallel machine
models. In parallel models processors also have the possibility to exchange information
directly by communication channels without the use of intermediate passive memory. In
an extreme case like the cellular automata model [128] there exist only processors and



their finite state controls have taken over the role of the memory.

Transitions for a parallel processor are the combined result of transitions within each of
the active processors. In one formalization a global transition is obtained as the cumulative
effect of all local transitions performed by the active processors which operate at the same
time (synchronous computation). An alternative formalization is that processors proceed
at their own speed in some rather obscure way (asynchronous computation). In both cases
two or more processors can interfere with each other while interacting with shared memory;
this holds in particular when one processor attempts to write at a location where another
processor is reading or writing at the same time. It belongs to the precise definition of
a parallel model to stipulate what will happen if those read /write conflicts arise, and
whether these conflicts may arise at all during a legal computation.

1.2.2 Simulations

Given the above global description of machines and computations we next have to explain
what we mean by a simulation of machine model M by a machine model M. Intuitively
a simulation of M by M’ is some construction which shows that everything a machine M;
in M can do on some input z can be performed by some machine M. ; in M' on this input
as well. The evidence that the behavior on input z is preserved should be retrievable from
the computations themselves rather than just from the input/output relations established
by the devices M; and M .

As it turns out it is rather difficult to provide for a more specific formal definition
for this concept which at the same time is sufficiently general; as soon as one proposes a
definition one finds examples of simulations which are not covered by this formal definition.

A first problem is, that it is quite conceivable that M’ cannot process the input z at
all, since the structure of the objects which can be stored in the input part of memories
of the two machines may be quite different. If M; is a Turing machine which operates
on strings and M] is a RAM operating on numbers the sets of possible inputs for the
two devices are disjoint. In order to overcome this hurdle one therefore allows that M’
operates on some suitable encoding of the input z rather than on z itself. The encoding
has to be of a rather simple nature, in order to prevent spurious interpretations which
would allow for the recognition of non-recursive sets using simulations.

Next one could introduce a relation between configurations Cy of M; and C; of M}
which expresses the fact that C; represents the configuration C;. Let us denote such a
relation by C; ~ Cs. Ideally one would have for a simulation a condition like:

(Cl FC3ANC) = Cz) = 304[(02 FCyANCs = 04)]

This kind of lock-step simulation turns out to be far too restrictive for incorporating
existing simulations. For example, such simulations are doomed to preserve the number
of steps in a computation, and it is therefore no wonder that many simulations presented
in this chapter will violate this condition.

A next attempt is to require:

(01 FCsANCL = Cz) = 304[(02 F*Cy ACs = 04)]

Still this is far too restrictive. For example it requires that each configuration of M; has
its analogue in the computation of M/ and that the general order of the computation by



M; is preserved by the simulation. The first requirement will turn simulations into an
asymmetrical concept which is not unreasonable. The second condition would however
exclude such constructions as backward reconstruction, or recursive simulations where
earlier configurations are re-computed many times. The famous simulation which proves
Savitch’s theorem [104] on the relation between deterministic and nondeterministic space
bounded complexity classes represents a typical example of such a simulation and it would
be a pity if this simulation would be excluded by a definition.

A next attempt will consider an entire computation of M; and require that for each
configuration C; occurring in its computation there exists a corresponding configuration
C, in the simulating computation of M;. This extension would allow both backward and
recursive simulations but still it would exclude simulations where the entire transition
relation of M; becomes an object on which the computation of M/ operates and where the
effect of M; on some input z is simulated by letting M. evaluate the reflexive transitive
closure of this transition relation. As we will see in chapter 3 and 4 this latter type of
simulation will turn out to be quite common in the theory of parallel machine models.

The above attempts show how hard it is to define a simulation as a mathematical
object and still remain sufficiently general. The initial definition seems to be the best one
can provide, and I leave it to the reader to develop a feeling for what simulations can do
by looking at the examples given in the sequel and elsewhere in the literature.

1.2.3 Complexity measures and complexity classes

Given the above intuitive description of a computation it is hardly a problem to define
the time taken by a terminating computation: take the number of configurations in the
sequence which describes this computation. What we have done here is to assign one time
unit to every transition. This measure applies both to sequential and parallel models.

In models where a single transition may involve manipulation of objects from an infinite
set (like in the case of a RAM) this approach (uniform time measure) may turn out to
be unrealistic, and one uses a measure where each transition is weighted according to the
amount of information manipulated in the transition; the logarithmic time measure for
the RAM represents an example.

A crude measure for the space consumed by a computation is the number of cells in
the memory which have been affected by the computation. A more refined measure takes
also in account how much information is stored in such a cell. It is moreover tradition not
to charge for the memory used by the input and the output, in case the corresponding
sections of the memory are clearly separated from the rest of the memory. This convention
is required for talking about functions which can be computed in logarithmic space, as
is the case with the important notion of a logspace reduction. However, in structural
complexity theory [3] the alternative, where output is charged is used as well; it leads to
a theory which differs from the one obtained in the usual interpretation.

Having assigned a time and space measure to an individual computation, the next
topic is to assign such measures to a machine. The way these measures are extended
depends on what the machine is intended to do with the input: recognize, accept or
compute. Moreover, one is interested not so much in the dependence of time and space
on the precise input = but rather in a more global relation between time and space of
computation and the length of the input z which is denoted by |z|.
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The length |z| of the input depends on the encoding of  for the particular machine
at hand. It is common that z represents some mathematical object like a number, a
vector or an even more complex object like a finite graph. Traditionally one looks at codes
where strings over a finite alphabet denote themselves, and where numbers are denoted
using a binary or decimal notation (unless it is explicitly stated that a unary notation is
used). Since we may assume in general that inputs are represented using an alphabet of
at least two symbols, it is the case that the number of inputs z of length n increases as
an exponential function in n.

Definition 1 If f(n) is a function from the set of non-negative integers w to itself, machine
M; is said to terminate in time f(n) (space f(n)) in case every computation on an input z
of length n consumes time (space) < f(n). The deterministic machine M; accepts in time
F(n) (space f(n)) if every accepting computation on an input of length n consumes time
(space) < f(n). The nondeterministic machine M; accepts in time f(n) (space f(n)) if for
every accepted input of length n an accepting computation can be found which consumes
time (space) < f(n).

Definition 2 A set of inputs L is recognized in time f(n) (space f(n)) by machine M;,
if L = L(M;) and M; terminates in time f(n) (space f(n)) . The set L is accepted in time
F(n) (space f(n)) by machine M; if L = L(M;) = D(M;) and M; accepts in time f(n)
(space f(n)).

An alternative definition is to let L be recognized by M; in time f(n) (space f(n)) in
case I = L(M;) for a machine which accepts in time f(n) (space f(n)) . This definition
turns out to be equivalent to the one given for nice models and nice functions f(n) for
which it is possible to shut-off those computations which exceed the amount of resources
allowed. In the general case the definitions become different.

Definition 3 The set of languages recognized by some machine model M in time f(n)
(space f(n)) consists of all languages L which are recognized in time f(n) (space f(n)) by
some member M; of M.

We denote this class by M—TIME(f(n)) (M—SPACE(f(n))).

The class of languages recognized simultaneously in time f(n) and space g(n) will be
denoted M—TIME&SPACE(f(n),g(n)). The intersection of the classes M—TIME(f(n))
and M—SPACE(g(n)) consisting of the languages recognized in both time f(n) and space
g(n) will be denoted M—TIME, SPACE(f(n),g(n)).

Standard functions for resource bounds in this theory are logarithms!, polynomials,
exponential functions and their combinations. These functions involve machine or simu-
lation dependent constants which are denoted by k in the sequel. In general we consider
sequences of such functions, describing the generic behavior of still larger classes of orders
of magnitude. We will look in particular to the following sequences F:

Log {k - log(n)|k € w}
Lin = {k-nlk€cw}

1all logarithms in this paper are to the base 2
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Pol = {k-n*+klkecuw}
Ezpl = {k-2*"|k € w}
Ezp = {k-n*kecw}

Next we define that a set L is recognized (accepted) in time (space) F if it is recognized
(accepted) in time (space) f for some f € F. For a machine model M this leads then to
the following fundamental complexity classes:

Definition 4

M—-LOGSPACE = {L|L is recognized by M; € Min space Log}
M-PTIME {L|L is recognized by M; € Min time Pol}
M—PSPACE = {L|L is recognized by M; € Min space Pol}
M—EXPLTIME = {L|L is recognized by M; € Min time Ezpl}
M—EXPTIME = {L|L is recognized by M; € Min time Ezp}
M—-EXPLSPACE = {L|L is recognized by M; € Min space Ezpl}
M—-EXPSPACE = {L|L is recognized by M; € Min space Ezp}

The above classes clearly are machine dependent. It is possible, however, to obtain the
hierarchy of fundamental complexity classes as indicated in the introduction by selecting
for M the model of standard off-line multi-tape Turing machines as described for example
in [1). Denoting the deterministic Turing machines by T and their non-deterministic
counterpart by NT we obtain:

Definition 5
LOGSPACE = T-LOGSPACE NLOGSPACE

NT-LOGSPACE

P = T-PTIME NP = NT-PTIME
PSPACE = T-PSPACE NPSPACE = NT-PSPACE
EXPTIME = T-EXPTIME NEXPTIME = NT-EXPTIME

EXPSPACE = T-EXPGSPACE NEXPSPACE = NT-EXPSPACE

From the elementary properties of the Turing machine model we now obtain the hier-
archy

LOGSPACE C NLOGSPACE C P C NP C PSPACE = NPSPACE C

C EXPTIME C NEXPTIME C EXPSPACE = NEXPSPACE ...

Moreover, all the fundamental complexity classes mentioned above have obtained their
standard meaning; note however the notational distinction between the classes described
by exponential bounds with linear and polynomials in the exponent, and compare with
the definitions used in the chapter by D.S. Johnson [56]. All inclusions represent notorious
open problems in complexity theory, except for the equalities PSPACE = NPSPACE and
EXPSPACE = NEXPSPACE which follow from Savitch’s theorem [104]. The P L NP
problem is included as the most notorious of these open problems.
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1.2.4 Simulation overheads and the machine classes

Having defined the standard notions of complexity we return to the quantitative aspects
of simulations. The unanswered question from chapter 1.2.2 what does it formally mean to
be a simulation remains open but we now can at least quantify the simulation overheads
by:

Definition 6 We say that model M’ simulates M with time (space) overhead f(n) , if
the following holds:

for every machine M; of M there exists a corresponding machine M "(i) of M’ such
that M ”(i) simulates M; , and such that moreover for every input z of M; , if ¢(z) is the
encoded input of M ,'(i) which represents z, and if ¢(z) is the time (space) needed by M;
for processing z, then the time (space) required by M ”(i) for processing ¢(z) is bounded
by f(t(=)).

Notation: M < M'(time f(n)) or M < M'(space f(n))

In this definition processing stands for either recognizing, accepting, rejecting the in-
put or evaluating some ( possibly partial and/or multi-valued) function on this input.
As explained before the encoding c(z) must be recursive (and even of a reasonably low
complexity). If s(4) is recursive as well the simulation is said to be effective. In ab-
stract complexity theory [10], it is shown that simulations can be made effective, and that
recursive overheads always exist.

If F denotes a class of functions the above definition can be extended to stating that
the model M’ simulates M with time (space) overhead F in case the simulation holds for
some overhead f € F.

Notation: M < M'(time F)) ot M < M'(space F)

This enables us to identify some important classes of simulations:

M < M' (time Pol) polynomial-time simulation
M < M’ (time Lin) linear-time simulation
M < M’ (space Lin) constant factor space overhead simulation

Special cases of a linear time simulation are the so-called real-time and constant-delay
simulation. These simulations behave according to one of the attempted definitions which
we presented in chapter 1.2.2 , where the configurations of M are represented by corre-
sponding configurations of M’ preserving the order; moreover the number of configurations
of M' between the representatives of two successive representations of M configurations
is bounded by a constant in the case of a constant-delay simulation; for the real-time
case this constant equals 1. For machine models like the Turing machine which have a
constant factor speed-up property it is possible to transform a constant-delay simulation
into a real-time simulation. We denote the existence of such a real-time simulation by

M < M' (real — time)

If a single simulation achieves both a time overhead f(n) and a space overhead g(n)
this can be expressed by the notation:

M < M (time f(n) & space g(n))

If both overheads can be achieved but not necessarily for the same simulation we
express this fact by the notation:

M < M' (time f(n), space g(n))
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Again these notations are extended to classes of functions where needed.

If simulations exist in both directions, achieving the same overheads we replace the
symbol < by the equivalence symbol ~. For example M ~ M ! (time Pol), expresses the
fact that the models M and M’ simulate each other with polynomial time overhead.

The above machinery enables us to define what I mean by the first machine class and
the second machine class.

Definition 7 Let T be the model of Turing machines and let M be another machine
model. Then M is a first class machine model if T ~ M (time Pol & space Lin). We say
that M is a second class machine model if M—PTIME = PSPACE.

So first class machine models are exactly those models which satisfy the invariance
thesis under the orthodox interpretation, whereas second class machines are those devices
which make the parallel computation thesis true.

This chapter illustrates how we have turned these two theses from dogmatic specifica-
tions of the truth about machine models into a heuristic tool for classifying machines. It
would be nice if all models which have been proposed in the literature would turn out to
be either first or second class, but as it turns out that is not the case. On the other hand
it would be disappointing if would be the case that, beside the Turing machines, there
exist no other first class machine models. This would present strong evidence that our
intuitive approach towards complexity theory where we are used to migrate freely from
Turing machines to RAM’s and vice versa is unsound. Since we believe that what we
are doing in our daily life when practising complexity theory is basically correct this is
another unlikely result of our investigations. The truth turns out to be somewhere in the
middle.

The first class machine models are precisely the machines for which the fundamental
hierarchy:

LOGSPACE C NLOGSPACE C P C NP C PSPACE = NPSPACE C

C EXPTIME C NEXPTIME C EXPSPACE = NEXPSPACE ...

represents the complexity hierarchy for this model. Here the liberal interpretation of the
invariance thesis would suffice also. However, for the models considered in this chapter it
is the case that a model which satisfies the liberal interpretation of the invariance thesis
for all modes of computation also satisfies the orthodox interpretation. Therefore we use
the orthodox reading for the definition of the first machine class. For us the first machine
class represents the class of reasonable sequential devices.

For the second machine class it is questionable whether thes devices can be considered
to be reasonable at all. It seems that the marvelous speed-ups by the parallel models
of the second machine class require severe violations of basic laws of nature [136] [137];
stated otherwise, if physical constraints are taken into account, all gains of parallelism
seem to be lost [17] [117]. So naturalness can never be a motivation for selecting precisely
this particular class of parallel devices to become the representative one. Instead the
motivation is drawn from the intrinsic stability of this class, its large number of members,
and the variety of mechanisms by which its power can be obtained. And, as we shall see
in the sequel, there exists at least one second machine class model which is a reasonable
model of a device we use in our daily life [123].
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1.2.5 Reductions and completeness

For lack of a better definition we have chosen a notion of simulation where one machine
model simulates another model as soon as the second model can do everything the first
model can do. We did stipulate when we presented this definition that this property
should be inferred from the behavior of the machines and not just on the basis of the
input-output relationship. If the latter condition is omitted we approach a notion which
plays a crucial role in complexity theory: the notion of a reduction.

Even though the concept of a reduction as described for example in D.S. Johnson’s
contribution to this handbook [56] is defined in terms of the input-output behavior of
machines only, it turns out that the study of reductions is a valuable tool for establishing
the existence of simulations. In fact we will invoke in the study of parallel models frequently
the argument that any device which solves some PSPA CE-complete problem in polynomial
time must embody at least the power of the second machine class models.

In this section I will present this technique and I will explain why it is not in violation
of the constraints on simulations which I have stipulated in chapter 1.2.2.

First we need the notion of a reduction. This concept originates from the theory
of recursive functions. There it deals with the relative computability of one set given
another set for free. In complexity theory relative computability is exchanged against
relative feasibility but the technical notions remain more or less the same.

Definition 8 Let A and B be subsets of * and T* respectively, and let f be some
function from X* to T*. We say that f reduces A to B , notation A <,, B by f , in case
11(B) = 4.

The above notion of a reduction is the well known many-one reduction from recursive
function theory. There exist many more reducibilities but for our purposes this notion
suffices. In the context of complexity theory the mapping f is subjected to the additional
restriction that f can be evaluated in polynomial time (with respect to the length of the
input). This additional condition is expressed by the notation A <P B. If f satisfies the
even stronger condition that f can be evaluated in logarithmic space one speaks about a
logspace reduction.

In recursion theory the reduction A <,,, B establishes the connection that A is recursive
provided B is and consequently if A is undecidable then so is B. In complexity theory
such a reduction A <P B establishes the fact that A is easy in case B is, and consequently
that B is hard provided A is hard.

It is not difficult to see that almost all fundamental complexity classes in the hierarchy

LOGSPACE C NLOGSPACE C P C NP C PSPACE = NPSPACE C
C EXPTIME C NEXPTIME C EXPSPACE = NEXPSPACE...

are closed under polynomial-time reductions. So we have for example the basic observa-
tion that (B € PA A <f B) = A € P. Exception with respect to this property are
the classes EXPLTIME and NEXPLTIME which are not closed under polynomial time
reductions; this is due to the fact that the composition of 2" with a polynomial p(n) yields
a function 2P(®) which is a member of Ezp rather than Ezpl. Only at the LOGSPACE
and NLOGSPACE level one needs the stricter condition that the reductions are logspace
reductions.
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Given the notion of a reduction the concepts of hardness and completeness are defined
by:

Definition 9 Let B be some set in £*, let X be some class of sets and suppose that
A <P B for every A € X, then B is called X-hard; if moreover B € X the B is called
X-complete.

The best-known instances of these notions are the concepts of NP-completeness and
PSPACE-completeness. Cook’s theorem [18] established in 1971 the NP-completeness of
the set SATISFIABILITY whereas the existence of PSPACE-complete problems follows
from [125].

It turns out that the original computational behavior of machines can be encoded in
the specific decision problems which are shown to be hard or complete in the literature.
This implies that some machine model M which can solve instances of such a complete
problem in polynomial time can simulate all devices in the corresponding machine class.

In order to understand this observation we first observe that with hindsight the exis-
tence of complete problems for the fundamental classes in our hierarchy is easy to obtain.
For example, a very simple NP-complete problem is given by the universal language:
Lyp = {(M;,z,w)| nondeterministic Turing machine M; accepts z in time < |w|}. If we
replace time by space and consider deterministic in stead of nondeterministic machines we
obtain similarly a universal language Lpspacr for PSPACE.

These universal languages are encoded by so-called master reductions into combinato-
rial problems. For example, in the proof of Cook’s theorem [18] one constructs for every
triple (M;, z,w) a propositional formula &(M;, 2, w) such that a satisfying truth-value as-
signments to its propositional variables corresponds to an accepting computation of M;(z)
of length < |w|. From the solution of the combinatorial problem the original computation
can be reconstructed. Other examples of master reductions are based on the use of tiling
problems [65] [103] (a construction that works both at the level of NP and PSPACE), but
also Reif’s ingenious construction of a skeleton which can only be removed from a closet
in case some accepting PSPACE-bounded computation exists is an example of a master
reduction [96].

Furthermore virtually all reductions which are used in proofs establishing hardness or
completeness of specific problems have the property that they are parsimoneous: they
transform not only solvable instances into solvable instances but also solutions into solu-
tions. The property of master reductions that solutions encode accepting computations
is therefore preserved under parsimoneous reductions. Finally the traditional complete
problems have the property that one can compute efficiently a solution as soon as one is
capable of establishing the existence of such solutions.

All these specific properties of the traditional complete problems together now yield the
observation that solving some complete problem establishes the existence of simulations.
From deciding the solvability of some combinatorial encoding of some machine computa-
tion one first computes the solution to the combinatorial problem and subsequently one
obtains the original computation by decoding this solution. Therefore we obtain for exam-
ple that, if M solves a PSPACE-complete problem in polynomial time then all polynomial
space bounded machines can be simulated by M with polynomial time overhead. This
observation will be used frequently in chapters 3 and 4 of this paper. It leads occasionally
to much shorter proofs for the power of some parallel models than the proofs originally
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given by the designers of these models.
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Chapter 2

Sequential models

2.1 Turing machines

Turing machines have established themselves as the standard machine model in contem-
porary complexity theory. Only in the related area of analysis of algorithms this role is
taken over by the RAM model. In the next section we present a formal definition of the
basic version of the Turing machine model. I will abstain from giving formal mathematical
definitions of the alternative variants of Turing machines. An informal explanation of the
additional bells and whistles by which the basic model is extended will suffice in order
to explain what these models are about. The additional features deal with the structure,
dimension and number of tapes, the numbers of heads on a tape, restrictions on the use
of tapes, or the availability of head-to-head jumps. Every particular selection of some
particular set of available features leads to another version of the Turing machine model.

This basic machine model already shows a huge proliferation of subspecies. One might
ask therefore why this model is so popular, and how it is possible that complexity theory
as a whole seems not to suffer from the variability of this model.

It becomes clear at this point that I have still some unpaid debts. In chapter 1.2.4
I have defined the first machine class using Turing machines as a reference class, but, as
indicated above, there exists no such standard model but an entire family of models. So I
must first provide the reader with a specific model of the Turing machine which will serve
as basis for the definition of the fundamental classes in chapter 1.2.4. For this version I
follow the widespread convention of selecting the familiar version where all tapes are one
dimensional, where one has one head on each tape, and where one has two special purpose
tapes: one read-only input tape, and one write-only, one-way output tape; the remaining
k > 2 two-way infinite tapes are called work-tapes.

On the basis of this choice one must investigate whether the other Turing machine
models satisfy the invariance thesis. These models must simulate each other with poly-
nomial overhead in time and constant factor overhead in space; moreover the required
simulations must achieve both overheads at the same time. Such simulations will make it
clear that the concept of the first machine class indeed does not depend on the particular
type of Turing model chosen.

Hence there remains just one troublesome question: Is the invariance thesis indeed
true for all Turing models?
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2.1.1 Description of the Turing machine models

In the Turing machine model the memory is structured in the form of a finite collection of
tapes which consist of tape-cells each capable of storing a single symbol from the work-tape
alphabet . The cells are arranged in the structure of a finite dimensional grid in Euclidean
space. So cells have addresses which can be represented by integer vectors. For each tape
there exist one or more communication devices connecting the finite control to the tape.
These devices are called heads. Each head is positioned at some tape cell. Several heads
may be located at the same cell.

In the program of the Turing machine the various types of instruction have been
integrated into a single type: the machine reads the ordered set of symbols on the work-
tapes which are currently scanned by the ordered sequence of heads. Depending on these
symbols and the internal state of the finite control, the machine will overwrite the scanned
symbols with new ones, move some (possibly all) of the heads to an adjacent cell on the
corresponding tape and proceed to a new state in the finite control.

In the simplest version of the Turing machine the machine is represented by a tuple
M = (K, %, P, qo,45,b,A). The machine has only a single one-dimensional tape, with tape
alphabet %, and a set of internal states K. The program P of the finite control consists of
a set of quintuples (g, s,¢’,8',m) € K xEx K x X X A. Here the set A = {L,0, R} denotes
the set of possible head moves : Left, stay put or Right . The meaning of this quintuple
is: if in state g the head is scanning symbol s then print symbol 8!, perform move m
and proceed to state ¢’. The states go and ¢y are two special elements in K denoting the
initial and the final state respectively. The symbol b is a special tape symbol called blank
which represents the contents of a tape-cell which never has been scanned by the head.

In this single tape model there is no special input or output tape. The input is written
on the unique tape in the initial configuration with the unique head scanning the leftmost
input symbol. If one wants this model to produce output one obtains such output by
an ad-hoc convention from the final configuration (for example, the output consists of all
non-blank tape symbols written to the left of the head in the final configuration).

If we denote configurations of the single tape machine in the format $T*K¥*$, with the
state symbol written in front of the currently scanned tape symbol, the transitions between
two successive configurations are described by a very simple context sensitive grammar.
In this grammar one includes for example for the instruction (g,3,¢",8', R) the production
rules (gst, s'g"t) for every t € X, together with the rule (gs8$, s'q'b$) for the blank symbol
b. Similar rules encode the behavior of left-moving instructions or instructions where the
head doesn’t move. This transformation of the program into a grammar has the properties
that a one-one correspondence is established between computations of the machine and
derivations in the grammar. This syntactic representation of the computations opens the
way to encode Turing machine computations in a large variety of combinatorial structures,
like tilings [42] [65] [103] or regular expressions [124], leading to a large collection of master
reductions in computation theory. The popularity of the single tape model is, among other
reasons based on this use in reductions and other simulations.

In the more complicated models the set X is replaced by a power ©* where k denotes
the number of tapes. The set of moves becomes also a k-fold Cartesian product, where
moreover each set of moves is adjusted to the dimension of the tape the corresponding
head is moving on. In case several heads are moving on a single tape a new coordinate
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must be added in order to let the heads ”feel” that they are looking at the same square:
the coincidence pattern of the heads which can be modeled as a partition of the set of
heads.

The coordinates of an instruction can always be split in an observation and an action
part: in the above case the first state and symbol represent the observation and the rest
represents the action. If a single observation can lead to at most one action the machine is
deterministic and otherwise the machine is nondeterministic. Nondeterminism of Turing
machines is bounded by definition since the set of possible actions is bounded by the size
of the program which is finite.

Tapes being completely homogeneous, it is unimportant where in the initial configu-
ration a head is positioned on a work-tape, provided the entire work-tape is blank, and
that (in the case of many heads on a tape) all heads are located at the same cell.

Since it serves no purpose to read left of the first input symbol on a read-only input
tape, and since the output tape (if present) is one-way it can be presumed that in- and
output tapes are semi-infinite; their cells are indexed by the non-negative integers. The
model can restrict work-tapes to be semi-infinite as well.

There exist several restricted types of work-tapes which have obtained special names:
A stack is a semi-infinite work-tape with the special property that whenever the head
makes a left move, the previous contents of the cell are erased (popping the stack). After
a write the head can move right (pushing a symbol on the stack). The head can not move
left of the origin but it can feel the bottom of the stack and in this way test whether the
stack is empty. A queue is a semi-infinite tape with two right-only heads. The first head is
a write-only head, whereas the second one is a read-only head. The second head therefore
can read (only once) everything the first head has written before. Also a queue can be
tested for emptyness. A counter is a stack with a single letter alphabet. Its purpose is
to count a number n by storing a string of n copies of its tape symbol; the counter can
test whether the number equals zero by checking whether the stack is empty. The push
and the pop move of a counter now correspond to an increment and a decrement of the
integer stored in the counter.

For higher dimensional tapes there are several possible choices for the set of possible
head-moves. It makes a difference whether the heads can move only along the edges in
the grid or whether they can proceed in diagonal steps as well. Other moves which have
been considered are fast rewinds (a head proceeds in one step to its original position) or
head-to-head jumps (one head moving in one step to the position of another).

2.1.2 Simulation overheads

Most results on simulations of enhanced Turing machines on more simple ones are well-
known and documented in the literature. I will list a number of results of this type and
make a few comments. I use the notation < introduced in definition 8 which must not
be confused with the reducibility from chapter 1.2.5. I will omit in this list the trivial
real-time constant factor space simulations which exist between a Turing machine model
and a more enhanced version: adding new features will never increase time- or space
consumption as long as the additional features are not used.

Rather than specifying the entire model, I will just mention the relevant features in
the formulation of the overheads. Below I also provide a key reference.
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Theorem 1 The extensions of the Turing machine model mentioned above can be simu-
lated by more elementary features with the following overheads:

1—tape < 2—stacks (real — time & space Lin)

1—stack < 2—counters (time Ezpl & space Ezpl)

1—tape < 2—counters (time 22*™ & space 22"7)

m—counters < 1—tape (real — time & space Log)

m—tapes < 1—tape (time k- n? & space Lin)

m—tapes < 2—tapes (time k- n -log(n) & space Lin)

multi—headtapes < single—headtapes (real — time & space Lin)

multi—headtapes + jumps < single—headtapes (real — time & space Lin)

© ® NS S, o

2—dimtapes < 1—tape (time Pol & space k - n?)
2—dimtapes < 1—tape (time Pol & space k - n - log(n))

~
S

. 2—dimtapes < 2—tapes (time k - n®/? & space k - log(n))

~
~

12. 2—dimtapes < 1—tape (time Pol & space Lin)

Proof: The results 1) and 2) together imply 3) with 4 counters and a single exponential
blow-up in time and space. But in fact two counters suffice (at the price of one more
exponential blow-up). These results are due to Minsky and they imply that two-counter
machines are universal [81].

Result 4), which is less well-known is due to Vitanyi [135]; see also [118] for a tutorial
exposé of this result. It is based on an oblivious simulation of a single counter on a single
tape, where oblivious means that the position of the heads of the simulator depends on the
number of steps in the computation so far only and not on the contents of the tape. The
simulation uses a redundant number representation and an extremely ingenious method of
simulating a recursive procedure without a stack. It is easy to see that—given an oblivious
simulation of one counter—one can as well simulate k counters on the same tape, without
loss of space or time.

Result 5) can be found in most textbooks [51], whereas 6) which is due to Hennie and
Stearns [48] again is based on an oblivious simulation of a single tape on two tapes. This
simulation uses a technique of tape segmentation where a tape is decomposed in regions of
exponentially increasing sizes, which are located farther and farther away from the current
head position and which are serviced with an exponentially decreasing frequency.

Result 7) originally was given by Fisher, Meyer and Rosenberg [30]. Later improve-
ments require less tapes for the simulation (Leong and Seiferas [64]. The extension 8) with
jumps has a long history but this problem was wrapped up finally by Kosaraju [61].

An overlooked case, as far as the invariance thesis is concerned is given by the sim-
ulations of multi-dimensional tapes on single-dimensional ones. The standard textbook
simulations of two dimensional tapes on single dimensional tapes ( 9) and 10) ) require
more than constant factor space overheads, in combination with time overheads k - n®
and k - n? - log(n). The same is true for the time-efficient simulation 11) by Stoss [127]
(also presented in [13]) which again is based on tape segmentation. The only reference
known to me where the simulation 12) with a constant factor space overhead is given is
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Hemmerling’s report [47]; the only textbook I know which contains this result and this
reference is the text by Wagner and Wechsung [138].

Simulation 12) is based on the so-called history method. The idea is to store address-
content records but not using absolute but relative addresses related to the adjacent records
on the simulated tape. This requires that the entire visited region of the higher dimensional
tape is traced by a path which visits every cell, from every cell proceeds to one of its
neighbors on the grid, and finally is not longer than a constant multiple of the number of
cells visited. It should therefore not visit a cell more than a constant number of times.
Tt turns out that a full traversal of a depth-first search tree in the subgraph of the grid
which represents the visited area of the tape has these properties.

The simulations 9) -12) all extend to higher dimensions. The time overheads in 9),10)
and 11) become k - nd+! k- n? - log(n) and k - n2-1/d . log(n) respectively, whereas the
space overhead in 9) becomes n?. The space bounds in 10) and 11) and both bounds in
Hemmerling’s simulation are independent of the dimension. O

2.1.3 Other Turing machine simulations

An important property of the Turing machine model is the constant factor speed-up both
in space and time. By replacing the tape alphabet ¥ by its k-th power ¥* one can compress
k symbols into a single square. This makes it possible to design a machine which works k&
times as fast and uses k times less space. This transformation is a reverse of the simulations
which prove that a tape alphabet with two symbols is universal, since in this simulation
arbitrary symbols are encoded by binary strings.

Clearly the anomaly of the constant factor speed-up disappears if one assigns a weight
to every step or tape-square of a Turing machine proportional to the amount of information
processed. After compressing k symbols into one the manipulation of the symbol would
become k times as expensive in a weighted time measure. Also the amount of information
stored in a single symbol would be multiplied by the same factor k. There has been
proposed a space measure called capacity which accounts for this anomaly [15]. On the
other hand the constant factor speed-up is very convenient - one can get rid of all constant
factors implied by O(f) terms.

The above constant factor speed-up for time and space is a well known property of
Turing machines. What is less well known is the original proof given by Hartmanis and
Stearns [46]. Most proofs you can find in textbooks start with a pre-processing stage
were the input is condensed (k symbols into one); this pre-processing requires linear time
provided the machine has two tapes; otherwise pre-processing requires quadratic time
which leads to a constant factor speed-up in time which holds only for time bounds larger
than n2. Next the original computation is simulated, but in order to be certain that in a
single move of the simulation one can simulate k steps of the original computation one must
scan the neighborhood first and subsequently perform some updates to this neighborhood
as well. This then leads to a speed-up where k moves are simulated by 6 moves. Hence,
in order to achieve a speed-up by a factor k one must condense the tape by a factor 6 - k
rather than k. In the original proof one keeps one block of the tapes in the finite control
and this allows a k moves for 1 move simulation.

Another important question is whether overheads as indicated in the above theorem
are optimal or not. Traditional folklore has the result that simulation of two tapes on a
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single one requires quadratic time overhead, since palindromes can be recognized in linear
time on two tapes, but for a single tape model time Q(n?) is needed, as can be shown
by a crossing-sequence argument. Note that this result does not imply anything on the
optimality of a square overhead for simulating two work tapes by a single work tape or
related problems. Such problems have been solved only recently using the technique of
Kolmogorov complexity; see for example [66] [67] [73] [74] [87].

The following result expresses some well known relations between different resources:

Theorem 2 The Turing machine model satisfies the following inclusions

1. T—TIME(f(n)) C NT-TIME(f(n)) C T—TIME(2*{(™)
2. T—SPACE(f(n)) C NT-SPACE(f(n)) C T-SPACE(f(n)?)
3. T-TIME(f(n)) C T—SPACE(f(n)/ log(f(n)))

Proof: Relations 1) and 2) provide the known bounds on the relation between determinism
and nondeterminism. For the time bounded classes the bounds are essentially trivial. The
second inclusion in 2) represents Savitch’s theorem [104]. For the case of linear time it is
known that the first inclusion in 1) is a proper one [88]. If beside a time bound f(n) also
a space bound s(n) is known Wiedermann [141] has recently improved the upper bound
in 1) to:

NT-TIME & SPACE(f(n), s(n)) € T-TIME(f(n)- s(n)* - 2*(")
This also improves upon the time bound which results from the proof of Savitch’s theorem:
NT—TIME & SPACE(f(n), s(n)) C T—TIME(2"*(™)eslf(m))

Result 3) represents the unique result which indicates that space may be a more pow-
erful resource than time, but beware: the proof given by Hopcroft, Paul and Valiant [50]
is valid for one-dimensional tapes only. The result extends to higher dimensional Turing
machines but then it requires a new proof [90]. There exist also versions for the RAM
model [89] and for the Storage modification machine [41].

The proof of 3) involves several techniques: first the Turing machine computation is
made block-respecting with a block-size k(n) ~ f(n)?/3; this means that both time and
tapes are divided into segments of size k(n) such that segment boundaries are only crossed
at the end of a time slot. The overhead for this part of the simulation is linear in time and
space. Computing onwards for one block of time now only requires knowledge of the tape
segments scanned at the beginning of a block period. The initial configurations of these
blocks are collected into a computation graph which turns out to be a directed graph with
indegree m + 1 where m equals the number of tapes. A correspondence is made between
solutions of a pebble game on this directed graph and space efficient simulations of the
original computation. The fact that the graph of m := f(n)'/? nodes can be pebbled with
m/ log(m) pebbles now yields the logarithmic gain in space efficiency in 3). O

For the case of single tape Turing machines , denoted T, a better bound is known:

T1-TIME(f(n)) C T1-SPACE(y/f(n))
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provided f(n) > n?; see [86].

The result requires a constructibility condition on the timebound f(n). Contrary to the
Hopcroft, Paul and Valiant theorem the space-efficient simulation can be made polynomial
time as well: Ibarra and Moran [52] have shown that

T1—TIME(f(n)) C T1-TIME & SPACE(f(n),+/f(n))

The above result extends also to the case of a Turing machine with a two-way read-only
input tape and one one-dimensional work tape. The simulation overheads become slightly
different, due to the fact that the position of the input head must be stored. The space
overhead there becomes /f(n) - log(n). The time overhead remains polynomial f(n)?,
but the constructibility condition is still required.

Another difference with the Hopcroft, Paul and Valiant result is that the simulation
extends to nondeterministic models as well. Ibarra and Moran [52] have shown that:

T1-NTIME(f(n)) C T1-NTIME & SPACE(f(n)*/2,1/f(n))

Recently this result was further improved [70] [129]

T1-NTIME(f(n)) C T1—NTIME & SPACE(f(n),+/f(n))

The modified proof uses nondeterminism for a guess-and-certify strategy comparable
to the strategies used in several efficient simulations of parallel models. It is interesting to
combine the above result with the breadth-first simulation of Wiedermann. One obtains
a result with a sublinear function in the exponent [141]

T1-NTIME(f(r)) C T1~NTIME(f(n)? - 2¢VF())

2.2 Register machines

2.2.1 The variety of models of register machines

Register machines [21] have become the standard model in computation theory for the
analysis of concrete algorithms. On the one hand these register machines can be recognized
as the model of a standard computer which has been reduced to its minimal essential
instruction repertoire. On the other hand these devices don’t suffer from a doom hanging
over all real computers: they have neither finite word length nor finite address space.

The popularity of the model seems to be based on the fact that, even though no real-
life RAM’s exist, all models seem to be equipped with a highly efficient compiler for some
ALGOL like language, which enables the authors of the various textbooks to use whatever
high level language features they feel to be required for the description of their algorithms.
It is clear that, in order to lead to realistic estimates on the complexity of the algorithms
dealt with, some knowledge on the efficiency of the compiled code is presupposed but I
won’t go into the details of this issue. The model is sufficiently alike to real computers
that we can rely on the collective experience of the designers of the compilers for real life
programming languages.
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In the basic RAM model the machine consists of a finite control where a program is
stored, one (or more) accumulator register, denoted Acc, an instruction counter, and an
infinite collection of memory registers R[0], R[1],.... The accumulator and the memory
registers have an unbounded wordlength, but in any configuration a finite number will be
stored in these registers.

The instruction repertoire of the RAM (and that of other machines we will meet in
the sequel) can be divided in four categories:

1. instructions which influence the flow of control:

2. instructions for input and output: read and print.

3. instructions for transport of data between accumulator and memory.
4. instructions performing arithmetic.

Instructions of the first type are the unconditional instructions goto, accept, reject, halt,
and various types of conditional jumps (if condition then goto, if condition then skip);
here the condition is a simple test (Acc = 0? , Acc > 07 , Acc = R[i]? yo-.). The
meaning of these instructions is self-explanatory and they indicate themselves where the
next instruction which will be executed is located in the program. For all other types
of instruction the next instruction in the program is also the instruction which will be
executed after completion of the previous one.

Depending on the precise model the transput instructions either can load entire integers
to and from arbitrary registers, or these transports can require the accumulator as an
intermediate storage location (read Acc,print Acc). An even more restricted form of
transput is the model where a read instruction will input a single bit from the input
channel and performs a conditional jump to a subsequent instruction label, depending on
whether the bit equals 0 or 1.

The name RAM (random access machine) indicates the main feature in the instruc-
tions of the third type: the use of indirect addressing. There exist three types of load
instructions and two types of store instructions:

LOADD i Acc = 1
LOAD i Acc := R[i] STORE i R[i] = Aecc
LOADI i Acc := R[R[i]] STORE i R[R[i]] := Acc

In the weakest model the only arithmetical instructions is the Increment instruction:
Ace := Acc+ 1. The standard model has both addition and subtraction, where the
second argument is fetched from memory: ADD j  Acc := Acc+ R[j]. More powerful
models extend this arithmetic with multiplication and division. For these powerful models
it also becomes possible to treat the register contents as bit-strings rather than numbers;
in this interpretation we have instructions for concatenation of bit-strings and bit-wise
Boolean operations.

In the sequel we will denote by SRAM the model which only has the successor instruc-
tion; RAM denotes the standard model with addition and subtraction, whereas MRAM
also has the multiplication and division. If the bitwise Boolean instructions are also avail-
able we introduce another B in the name (for example MBRAM). Prefixing with N denotes
nondeterminism.
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As with the Turing machines we have a huge collection of different models, but, as
it turns out, also for every model at least two different methods of measuring time and
space consumption of a RAM computation. In the uniform measure every instruction
is counted as one step, regardless the size of the values operated on. In the logarithmic
measure every instruction is given a weight equal to the sum of the logarithms of all the
quantities involved in the instruction; this includes the lengths of addresses involved in
direct or indirect addressing.

Nondeterminism can be incorporated in the model by legalizing a hideous error made
by the beginning programmer: the multiple use of a label. If the machine jumps to a
label which occurs twice in the program one of the occurrences of the label is chosen
nondeterministically and the execution of the program continues there.

In real life computers a major breakthrough was von Neumann’s idea to replace the
specially wired program in the finite control by a program in memory which might even be
modified by the computer during the course of its computation. A similar idea brings us to
the RASP model [21] (random access stored program). Here the memory has been divided
into the registers with even and with odd addresses. Two adjacent registers together store
an instruction, with the operation code in the even addressed register and the operand
address in its odd neighbor. By writing in such an odd location the machine can obtain
the effect of indirect addressing without having it in its instruction repertoire. It has
been shown that for the purpose of complexity theory the RAM and the RASP are fully
equivalent (they simulate each other in real time with constant factor space overhead) and
therefore I will not consider this RASP model in the sequel. The proof can be found in
textbooks like [1].

It should be observed that even the weakest model (the successor RAM) remains
universal as a computing device and that it even remains to be so when the instructions for
indirect addressing are removed. In this case all addresses accessed during a computation
are represented explicitly in the program. This model is equal to the register machine used
as a model for basic recursion theory by Shepherdson and Sturgis [119]. The machine will
use only a fixed finite set of its registers during the computation, and can be described
as a finite control equipped with a fixed number of counters. Minsky has shown that two
registers suffice for universal computing power [81]. On the other hand that very same
result shows that the uniform space measure is not a proper complexity measure; it fails
to obey the Blum axioms [10] which prohibit that with a fixed bounded set of resources
you can compute everything.

The use of indirect addressing leads to two less desirable effects. It becomes possible
to use registers in a very sparse way, leaving big gaps in the memory where nothing has
happened. It also becomes less reasonable to presume that at the start of the computation
all registers are properly initialized at zero; what if someone else has used the machine
before you? If you have to initialize your memory who is going to pay for this? Both
these problems have been considered and solved [1], but as we will see below it is not clear
whether the solutions proposed which show that you can get around these problems with
constant factor overheads in time and space are measure-independent.
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2.2.2 Time measures for RAM’s

As indicated above there exist two time measures for the RAM model. In the uniform
measure every instruction is counted for one unit of time. In the logarithmic measure
every instruction is charged for the sum of the lengths of all data manipulated implicitly
or explicitly by the instruction. This length is based on a size function on numbers based
on the binary logarithm with some ad-hoc clause for the small values 0 and 1:

size(n) = if n < 1 then 1 else [log(n)] + 1 fi

For example, the cost of an ADDI j instruction, with the effect Acc := Acc+ R[R[]]]
will be something like size(z) + size(j) + size(R[j]) + size(R[R[j]]), where z denotes the
current value of the accumulator Acc.

In the sequel the use of uniform or logarithmic measure will be indicated by prefixing
in complexity class denotations the words TIME or SPACE with U and L respectively.

It is clear that a computation in the uniform time measure costs less than in the
logarithmic measure. The gap between the two measures may become as large as a mul-
tiplicative factor equal to the size of the largest value involved in the computation. How
large this value can grow depends on the available arithmetic instructions. This leads to
the following simulations:

Theorem 3 The uniform and the logarithmic time measure are related by

1. SRAM-Utime < SRAM—Ltime(time n - log(n))
2. RAM—-Utime < RAM—Ltime(time n?)
3. MRAM-Utime < MRAM—Ltime(time Ezp)

The same inclusions hold for the corresponding nondeterministic classes. As can be
seen the gap between uniform and logarithmic measure for the MRAM is so large that
no simulation with polynomial time overhead can be guaranteed. Indeed, the MRAM in
the uniform time measure has to be discarded from the realm of reasonable models: it is
a member of the second machine class [9].

It is an elementary programming task to see that the bitwise Boolean instructions can
be simulated in time polynomial in the length of the operands by the models which don’t
have them. This leads to the inclusions:

Theorem 4 The simulation overheads for the bitwise Boolean instructions are given by

. SBRAM-Utime < SRAM-Utime(time n - log(n))
SBRAM-Ltime < SRAM—Ltime(time n - log(n))
BRAM-Utime < RAM—Utime(time Pol)
BRAM-Ltime < RAM—Ltime(time Pol)
MBRAM-Utime < MRAM—Utime(time Pol)
MBRAM-Ltime < MRAM—Ltime(time Pol)

S N
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Proof: For 1) and 2) the standard tricks to translate between numbers and their bit-
patterns don’t work; one must explicitly store and manipulate the binary strings in arrays.
The simulation 5) is not an invocation of the above observation but a rather deep result
about the second machine class [9]: bitwise Boolean instructions are not needed for the
power of parallelism in the presence of both addition and multiplication. The remaining
simulations are straightforward and left to the reader. Again the results hold also for
nondeterministic models. O

The absence or presence of multiplicative and parallel bit-manipulation operations is of
relevance for the correct understanding of some results in the area of analysis of algorithms.
Frequently for the analysis of concrete problems with low complexities it is assumed that
the machine used can perform innocent looking multiplicative instructions on small values,
since these instructions occur as well on real world computers. It is also common to use
the uniform time measure. At the same time one is interested to obtain complexity bounds
which are precise up to logarithmic factors. It is therefore relevant to know to which extent
these complexity bounds depend on the precise instruction repertoire provided.

Assume by way of example that we are given the instructions which perform left-
and right shifts of bit-patterns (multiplications and divisions by powers of 2). Assume
moreover that we are allowed to perform these operations on arguments < n*, where
n denotes the largest value in the input and k denotes a fixed constant. It turns out
to be possible to obtain a large collection of other multiplicative or bit-manipulation
instructions at a time overhead O(1) in the uniform time measure by use of the basic
technique of table look-up. Any operation can in principle be stored in a table of size n?¥;
the restricted multiplication allows us to simulate indexing in an n* x n* two-dimensional
array, and therefore the operator can be performed in time O(1), once the table has been
precomputed. But for many specific operations of a sufficiently “local” nature the same
result can be obtained using a table of size O(n) (or even size O(/n)) by splitting the
operands in pieces of length log(n)/2 or even shorter and reconstructing in constant time
the entire result from the piecewise results by some suitable combining function which
depends on the instruction. Since the table size becomes negligible compared to n so
does the time required for precomputing its values. The parallel bit-wise logical operators
and ordinary multiplication have this locality property, and so does the instruction which
counts the number of 1-bits in a binary number.

This observation is a generalization of the strategy used by Schmidt and Siegel in [110].
It shows that there hardly exists such a thing as an “innocent” extension of the standard
RAM model in the uniform time measure; either one only has additive arithmetic, or one
might as well include all reasonable multiplicative and/or bitwise Boolean instructions on
small operands at once.

The relation between the various RAM models and Turing machines can be obtained
from a number of well known results found in the textbooks. There exist a number of
improvements which are less well known. First the overhead for simulating a Turing
machine on a RAM:

Theorem 5 The various RAM models simulate the Turing machine model with polyno-
mial time overhead

1. T < SRAM-Utime(time real — time)
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2. T < SRAM-Ltime(time k - n - log(n))

3. T < RAM—-Utime(time k - n/ log(n))

4. T < RAM-Ltime(time n - loglog(n))

The first of these simulations is due to Schonhage and results as a corollary of his
results on Storage modification machines [114]. The second simulation is standard and
can be found for example in the textbook by Aho, Hopcroft and Ullman [1]. Result 3) is
an observation by Hopcroft, Paul and Valiant [49] which was not presented in the journal

version [50] of that conference paper. The fourth simulation was given by Katajainen,

Penttonen and van Leeuwen [58].
Next the overheads for the reverse simulations:

Theorem 6 Overheads for simulation of various RAM models on a Turing machine are
given by

SRAM-Utime < T(time n? - log(n))

RAM—Utime < T(time n®)

MRAM~-Utime < T(time Ezp)

SRAM-Ltime < T(time n?)

RAM—Ltime < T(time n?)

RAM-Ltime < T(time n?/loglog(n))

MRAM—Ltime < T(time Pol)

NS S e N

The above results are obtained by allocating address/value pairs of the RAM on Tur-
ing machine work-tapes and estimating the time needed for processing these structures.
Clearly most time in the simulation is spent by searching for a record on the linear tape.
The first two simulations are due to Cook and Reckhow [21]. For simulation 3) there
seems to be no alternative for an exponential time overhead simulation due to the possible
growth of the length of the values involved. Results 4) and 5) again are due to Cook and
Reckhow [21]. Simulation 6) is obtained by slightly rearranging the information contained
in the RAM registers on the tape such that the shorter data are closer to the left end
of the tape and are therefore easier to access. This result is due to Wiedermann [139].
Result 7) is easy.

If higher dimensional tapes are used the overheads are reduced to the effect that a
factor n? in the simulation overhead for a linear tape can be replaced by n't1/¢ where d
denotes the dimension of the work-tapes used [138].

2.2.3 Space measures for the RAM

It is well known that RAM space should not be measured by counting the number of reg-
isters used. Minsky’s result—a two counter machine has universal computing power [81]—
shows that counting the number of RAM registers used during a computation does not
yield a complexity measure satisfying the Blum axioms [10]. Still it is the case that this
uniform space measure is commonly used in the theory of analysis of algorithms. This use
can be justified on the basis that in concrete algorithms the intermediate results stored in
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registers always are bounded in terms of the input values: either by a polynomial, or by
a simple exponential function. Estimating the sizes of intermediate results therefore rep-
resents an essential part of the analysis of algorithms in the area of algebraic and number
theoretical computations, since the above assumptions need justification.

In the theory of machine models every RAM register is charged for the size of its
contents. Such a size function is invoked in the definition of the logarithmic time measure
anyway, so why not use the same function for the space measure as well. But even then,
having available such a size function, there are several ways to proceed. A rather crude
way is to charge every register used for the size of the largest value produced during the
entire computation. A more refined method is to charge every register for the largest value
stored there during the entire computation. The latter heuristic leads to an expression:

mazaddr
space = Y, size(i, max(s)) (%)
1=0

where mazaddr is the index of the highest address accessed during the computation, and
max(3) is the largest integer ever stored in R[i] during the computation. In the above
expression for the space measure I have added the additional parameter ¢ to the size
function sizes in order to make it possible to consider size functions which depend on the
address of the register.

An even more refined method would be to look at individual RAM configurations.
Charge every register used in some configuration for the size of the value currently stored
there and compute the sum of these register costs for the registers which are currently
used. The maximum of this sum, taken over all the configurations then would become the
space measure. In this measure a copy of a large value which is repeatedly transported
from one register to another one, after which the first register gets cleared is counted only
twice, whereas in the measure expressed by the above formula 7 it gets charged for every
register it visits. This difference, however, turns out to be non-problematic, and therefore
I will restrict myself to space measures described by the above expression ¢. See Wagner
and Wechsung [138] for several more alternative ways of defining space measures for the
RAM.

The traditional RAM model supports the use of uninitialized storage: registers which
have never been accessed before store the value 0. It is quite possible that there are
registers with index in the range 0, ..., mazaddr which are never accessed during the
computation, and therefore in the above formula something must be said about the space
consumed by those unused registers. In a survey paper [105] W. Savitch considers the size

function:
sizew(i,z) = if z < 1 then 1 else [log(z) + 1] fi = size(z) (#2)

The resulting measure charges unused registers for an amount of one bit for the value
0 stored there. As a consequence it becomes possible to consume exponential space during
polynomial time by performing a program like:

addr := 1; for ¢ from 1 to n
addr := addr + addr;
Rladdr] :=1
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od;

A more generally accepted measure (see for example [1]) uses the same size function
for used registers but gives the unused registers for free:

size,(%,2) = if R[i]is unused then 0 else size(x) fi (#2)

This measure solves the anomaly stated above but introduces a new problem which
seems to have been overlooked in the literature: How to simulate a RAM on a Turing
machine with constant factor overhead in space?

The standard trick of storing address-value records on a work tape requires addi-
tional space for the addresses, whereas a sequential allocation of all registers in the range
0,..., mazaddr requires space proportional to Savitch’s measure #. So none of the two
proposed measures leads to invariance of space in an evident way. Hence, taking the stan-
dard simulation of a RAM on a Turing machine, as a point of departure we arrive at the
following size measure:

sizey(i,z) = if REGI[i]is unused then 0 else size(i) + size(x) fi (#v)

We claim that size, represents the intuitively correct way of measuring space on a
RAM. Tt is however not the definition of the logarithmic space measure for RAM’s one
encounters in the literature. Most textbooks provide either no formal definition at all, or
they provide a definition based on size,. This is most likely explained by the emphasis
in these textbooks on time complexity. In the interesting case of a register access within
an instruction using indirect addressing, the size of the address is charged for in the time
measure. This is achieved by charging for the contents of the register used for the indirect
addressing in the course of assigning a time measure to this indirection, but by doing so
this charge has not become an intrinsic part of the cost the register which is reached by
the indirection itself.

Basing the RAM space measure on sizep 1 has several advantages. In the first place
we observe that the constant factor space overhead for simulation of a Turing machine on
a RAM remains intact, although the standard simulation which stores tape cells in con-
secutive registers has to be abandoned. This simulation would introduce an Q(S. log(S))
space overhead due to the lengths of the addresses of S registers. But by using the stan-
dard trick of “one tape = two stacks”, and by storing a single stack in a single register, a
simulation with constant factor space overhead is obtained (at the price of increasing the
time overhead by a factor S or S? depending on the time measure used). So our proposal
validates the invariance thesis.

Another advantage of the use of sizey is connected with the simulation of uninitialized
storage as suggested in [1], exercise 2.12. When using size, the space overhead becomes
Q(S.1og(S)), whereas it is a constant factor space overhead when using sizep. A similar
observation can be made about the standard method of compacting sparsely used registers
into a dense set by the creation of address-value pairs on the RAM itself.

Having chosen the right measure the space complexity of the RAM becomes fully
equivalent to that of the Turing machine, and therefore I abstain from mentioning any
specific further simulation results.
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2.2.4 The problematic simulation of a RAM on a Turing machine

The reader might ask at this point whether the difference between size, and sizep is
really important. Surprisingly it is. As is shown in [121] [122] the invariance thesis,
which is evidently valid if we use the measure based on sizes, becomes problematic if the
definition based on size, i is used. Using the extremely complicated simulation which I
will sketch below, it is shown that for deterministic off-line computations a Turing machine
can simulate a RAM based on size, with constant factor overhead in space. However, since
this simulation requires exponential overhead in time, this is insufficient to show that the
RAM model (again with the standard size, space measure) is a first-class machine model!
It can be shown that for on-line computations a constant factor overhead simulation does
not exist, and the case of nondeterministic computations presents us with a wide open
problem.

In this section I present a sketch of this complicated simulation. The straightforward
simulation does not work here since no space is available for the address parts of the
address-value records which must be stored on the work-tape of the Turing machine. On
the other hand, the problem evaporates as soon as the size of the data stored in RAM
memory exceeds or is just proportional to the space needed by these addresses. Therefore
the problem will only arise in the unlikely situation where small chunks of data (say char-
acters) are stored in registers with large addresses, encoding in this manner information
about the address rather than about the data itself. This situation is illustrated by the
following recognition problem:

Lo={wi fwa i ... fwr fwo | wi € {0,1}* Awo € {w; |1<i<k}} (v)

It is not hard to see that on a RAM the above language can be recognized on-line
by reading the words w; as addresses, and storing a 1 in the corresponding registers. If
we consider the typical case where the k words w; in the input have length |w;| = m,
the above algorithm will consume space O(m + k) on a RAM with space measure based
on size,, whereas it requires space O(m - k) if the measure based on sizep is used. The
latter amount of space is a provable lower bound for Turing machine on-line recognition,
since the Turing machine on-line acceptor must write a full description of its input on its
work-tapes before it can process the last word wg. Clearly this lower bound argument
collapses if off-line processing is allowed, and it is not difficult to construct an off-line
Turing machine acceptor which runs in space O(m + log(k)).

The space measure based on size, seems to underestimate the true space consumption
when one uses a sparse table. If such a situation arises in actual computing, the problem
may be solved by hashing techniques. Hashing will map a sparse set of logical addresses
on a much denser set of physical addresses. Hence, rather than storing the address-value
pairs directly, we represent the addresses by their hash codes for a suitable hash function,
and reconsider the resulting space requirements. Two observations now can be made:

e In order for the computations not to be disrupted by confusion of registers the
hash function used should be perfect with respect to the addresses used during the
computation; it should be a 1-1 function if restricted to those arguments on which
it will be evaluated.
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e If the actual number of addresses used during the computation equals k, and if the
hash function has a range c- k for some constant c, the physical address-value records
can be allocated sequentially on a work-tape, so the hash codes no longer need to
be stored. Using a variable size format for the remaining value records, it can be
achieved that inside this hash table an amount of space is consumed proportional to
the space as measured by the size, space measure.

The above idea leads to the following problem on perfect hashing which must be solved:
Given a set A of k elements of a Universe U = {0,...,u — 1} of size u. Find a perfect
hash function f which scatters this set A completely into a hash table of size c- k for some
fixed constant c.

Functions satisfying the above requirements evidently exist as set theoretical objects.
But for the problem at hand, these functions themselves should satisfy some space re-
quirements as well. In the above situation, the RAM to be simulated may quite well
consume no more space than O(k + log(u)), and consequently, the manipulation of the
hash function should not require more space than O(k + log(u)) as well. Otherwise the
advantage gained by its use will be lost during its manipulation. So the final constraint
on the above function f reads:

e the hash function f should be of program size O(k + log(u)) and require space
O(k + log(u)) for its evaluation.

Hash functions satisfying the first two requirements were constructed in a very explicit
manner by Fredman, Komlés and Szemerédi [34], but their construction did not satisfy the
last requirement. Mehlhorn [78] showed that for the program size the upper bound could
be met and even be improved to a tight ®(k + loglog(u)) bound, but his function required
far more space for evaluation. In [121] [122] C. Slot and the present author succeeded in
matching the Mehlhorn bound in combination with an O(k + log(u)) evaluation space.
The required space-efficient logical-to-physical address translation therefore exists. See
also [35] [53] [79] and the more recent paper by Schmidt and Siegel [110] where perfect
hash functions are constructed which achieve the Mehlhorn bound and can be evaluated
in unit time on a RAM.

The next question is how the simulator can ever hope to find a suitable perfect hash
function. Since we are looking for a deterministic simulation the method of guessing a
hash function and using it is not allowed. One has to try out a large collection of hash
functions and select a good one. Being good here means being perfect with respect to
the set of addresses in the simulated computation. Whether a hash function is good
must be certified. In the process of certification it is not possible to make a list of all
addresses encountered and keeping track of possible collisions under the hash function,
since this will re-introduce the space consumption we a trying to eliminate. However, it
is possible within the available space bounds to check for every slot in the range of the
hash function that there exists at most one address which is hashed onto this slot. Since
the computation is deterministic this process can be repeated for every slot individually.
This explains why the simulation breaks down for both probabilistic and nondeterministic
modes of computation. Under these modes of computation one never knows whether a
second run of the computation will access the same registers as the first run.

As long as the hash function has not obtained its certificate of being perfect, the
simulation has to cope with the possibility that the hash function is in fact not perfect
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and that the simulator therefore may confuse registers. It may provide wrong answers, it
may consume far more space than it should, and it may even diverge on bounded memory.
The first problem is not a serious problem since the answer of the simulation will be not be
trusted before the hash function has been certified, and the second problem can be solved
using Savitch’s trick of incremental space [104]. It is the third problem which causes the
greatest trouble. Since the space consumption O(k + log(u)) may turn out to be o(log(n))
where n denotes the input length, detection of loops on bounded storage by counting is
not allowed. Luckily this problem has been solved already by Sipser [120], who proposed
a simulation by backward search from the accepting configuration, and by this simulation
loops are prevented and no extra space is consumed.

Details of the above simulation and the theory on perfect hashing on which it is based
can be found in [122]. I hope that the sketch above suffices to convince the reader that the
simulation is quite complicated, requires a lot of re-computations, causes an exponential
time overhead, and fails to solve the problem for alternative modes of computation. As
such it provides no evidence that the invariance thesis is satisfied if the RAM space
measure is based on size, iti. This measure should therefore be replaced in the literature
by the measure based on sizep tv.

2.3 Storage modification machines

The Storage modification machine (SMM) is a model introduced by Schénhage in 1970.
The model is similar to the model proposed by the Soviet mathematicians Kolmogorov
and Uspenskii (KUM) in 1958 [60], but for a precise comparison I refer to the discussion
in Schoénhage’s paper. For the purpose of this chapter I will base myself on the 1980
version published in SIAM. J. Comput. [114]. The author advocates his model as a model
of extreme flexibility and therefore it should serve as a basis for an adequate notion of
time complexity.

The model resembles the RAM model as far as it has a stored program and a sim-
ilar flow of control. Instead of operating on registers in memory it has a single storage
structure, called a A-structure. Here A denotes a finite alphabet consisting of at least
two symbols. A A-structure S is a finite directed graph each node of which has k = A
outgoing edges which are labeled by the k elements of A. The main difference between
the SMM and the KUM can now be explained: the KUM operates on undirected instead
of directed graphs.

There exists a designated node a in S, called the center of S. There exists a map p*
from A* to S defined as follows: For the empty string € one has p*(¢) = a, and otherwise
p*(wa) = the end-point of the edge labeled a starting in p*(w). The map p* does not
have to be surjective; however, nodes which can not be reached by tracing a word w in A*
starting from the center a will turn out to play no subsequent role during the computations
of the SMM, and therefore nodes may as well be assumed to have disappeared when they
become unreachable.

The program of the storage modification machine consists, similar to the RAM pro-
gram, on the one hand of flow of control instructions (goto, accept, halt, . . .), and transput
instructions (read and print - in this case a read will input a single bit and act like a
conditional jump, depending on the value of the bit read), and on the other hand instruc-
tions which operate on memory - in this case a A-structure S. There exist three types of
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instructions of the latter type:

1. new w: creates a new node which will be located at the end of the path traced by
w; if w = € the new node will become the center; otherwise the last edge on the path
labeled w will be directed towards the new node. All outgoing edges of the new node
will be directed to the former node p*(w)

9. set w to v: redirects the last pointer on the path labeled by w to the former node
p*(v); if w = € this simply means that p*(v) becomes the new center; otherwise the
structure of the graph is modified.

3.if v=mw (ifv # w) then...: the conditional instruction (conditional jump
suffices); here it is tested whether the nodes p*(v) and p*(w) coincide or not.

Simple it may look like the effect of a storage modification machine in action is ex-
tremely hard to trace. An alternative name for the machine, coined by Knuth, is pointer
machine, and indeed: its semantics is as complicated as any pointer based algorithm. The
model suffers from the paradozes of assignment:

e After new w it is not necessarily true that p*(w) denotes the new node
e the Hoare formula p*(v) = z {set w to v} p*(w) = z is invalid

These problems—related to the issue of proving correctness of SMM programs—are how-
ever not related to the complexity properties of the model which form the subject of this
chapter.

2.3.1 Complexity measures for the SMM

In order to discuss complexity we need a time and a space measure. For the time measure
there exists only one candidate: uniform time measure. One might consider to charge an
instruction according to the length of the paths traced during the instruction, but since
the arguments of the instructions are denoted explicitly in the program this length is a
constant, independent of the A-structure currently in memory. Therefore such a weighted
measure will differ from the uniform measure by no more than a constant factor which is
fully determined by the program.

Schonhage has not introduced a space measure. The reasonable candidate seems to
be the number of nodes in the current A-structure, and, in fact, this corresponds to the
definition given in [41]. This definition has, however, some problematic aspects. There
exist simply too many A-structures of n nodes. Schonhage presents for the number X (k, n)
of A-structures of n nodes over an alphabet A of size k the following estimates:

n-k—n+1

nk-ntl o (k n) . n
" _X(k,n)g( n n-k+1

From the above estimate it follows that in space n one can encode O(n - k - log(n)) bits of
information rather than O(n - log(k)) bits as on n squares of a Turing machine tape with
alphabet A. This leads to a similar situation as we have seen in chapter 2.2.4: consider
the following on-line recognition problem:
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Ly = {}...}Tx & v = w | I;}j...} I encodes a straight-line SMM program such that
after performing it p*(v) = p*(w)}

It is evident that an SMM can recognize this language in space O(n) where n de-
notes the number of new instructions in the straight-line program I1f...4Jx. On the other
hand a Turing machine on-line recognizer must have written a full description of the A-
structure generated by program I1f...§ Iz when it reads the &-symbol, and therefore by an
information theoretical argument it must have consumed by that time space Q(n- log(n)).

This example leaves open the situation for the case of off-line computations but it
is not difficult to see that also there O(n) nodes on an SMM are capable of storing as
much information as O(n -log(n)) tape squares on a Turing machine. The basic technique
consists of a A-structure which represents a cycle of O(n) nodes with in each node a pointer
to some other node in the cycle. The latter pointer stores in this way O(log(n)) bits of
information, and it is a matter of simple programming to show that this representation can
be used and updated, using no more than O(log(n)) additional nodes. A similar technique
works also for the KUM. For more details see [133].

More recently it has been shown by Luginbuhl and Loui [71] that the above gain in
space can actually be obtained with a constant factor overhead in time by using a complete
binary tree in stead of a cycle. The paths toward the leaves encode the O(log(n)) bits
stored in this node and it is easy to see that they can be read-out with constant factor time
overhead, provided that there after the crossing of the border between two tape blocks of
size O(log(n)) the simulated Turing machine can compute onwards for at least O(log(n))
steps. This additional property can be obtained with constant factor overhead in time as
well; compare with the idea of making a Turing machine computation block respecting in
the proof of the time vs. space theorem of Hopcroft, Paul and Valiant [50].

Based on the above observation one obtains the space measure n - log(n) for a A-
structure of n nodes. Under this measure the SMM can be simulated with constant
factor space overhead on a Turing machine and vice-versa. An alternative is to make the
dependence on k explicit by assigning an n-node A-structure over an alphabet A of size k
the measure n-k-log(n). This measure has been proposed by Borodin e.a. [15], where they
call this measure the capacity. Introducing the factor k in this space measure is similar
to charging each tape cell on a Turing machine for log(k), where k is the size of the tape
alphabet. Note, however, that this choice for a space measure would destroy the constant
factor speed-up property for Turing machine space.

2.3.2 Simulations for the SMM model

Schénhage [114] has compared his model both with (multi-dimensional) Turing machines
and with some RAM models in the uniform time measure. The results are:

Theorem 7 The SMM is related to other sequential models by

1. SMM ~ SRAM-"Utime(real — time)
2. T < SMM(real — time)

As a consequence, the SMM can be simulated on a standard RAM in the logarithmic
time measure with 7 - log(n) time-overhead. The simulations for 1) are straightforward.
In the proof Schonhage introduces another simplified RAM model, the main advantage of
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which is that the instruction code is address free (instead the model uses a special purpose
address register). This reduced RAM model again is real-time equivalent to the SRAM
in the uniform time measure.

Recently Schonhage [116] has published a corresponding lower bound which shows
that there exists a gap between the SMM model and the RAM in the logarithmic time
measure. He proves that storing a bitstring in a RAM requires nonlinear time, even if
reading is for free and if arbitrary arithmetic instructions are available.

Simulation 2) is easy for one-dimensional Turing machines. In the higher dimensional
case a tape-segmentation trick is used.

A final advantage claimed for the SMM model is that it supports an implementation
of integer multiplication which runs in linear time. So if everybody in the area of analysis
of algebraic and numerical algorithms would embrace this model all occurrences of the
multiplication complexity function M(n) could be replaced by simple O(n) expressions.
Attractive it might look like, it seems that this proposal so far has few followers in the
literature. For a discussion on the connection between theoretical fast multiplication
algorithms and practical machines I refer to the recent note by Schonhage in the EATCS
bulletin [115].

There are a few theoretical results known about the SMM model. In [41] Halpern e.a.
prove a version of the Hopcroft, Paul, Valiant result that time T(n) can be simulated in
space O(T(n)/log(T(n))). For this purpose they use the space measure determined by
the number of nodes, which, as we indicated above, differs from Turing machine space by
a logarithmic factor. Since the time measure seems to differ from Turing machine time by
the same logarithm one still can maintain that it is a similar result.

More recent is the result presented by Schnitger [111] which seems to indicate that
there exists a non-linear gap in time between the SMM and the KUM. Since the main
distinction between these two models is that Schonhage uses a directed graph as storage
structure, where Kolmogorov and Uspenskii use an undirected graph, the implicit bound
of A on the out-degree for the SMM becomes a bound on the indegree for the KUM as
well. Therefore there can’t exist too many short paths leading to some particular node.
Schnitger introduces a well designed on-line real-time recognition problem which exploits
this feature, and establishes a non-linear lower bound for this problem on the KUM,
depending however on some unproven conjecture about communication complexity.

The SMM represents an interesting theoretical model, but, in the context of the above
observations, its attractiveness as a fundamental model for complexity theory is question-
able. Its time measure is based on uniform time in a context where this measure is known
to underestimate the true time complexity. The same observation holds for the space
measure for the machine; under the plausible definition of the space measure the SMM
does not belong to the first machine class as defined in chapter 1.2.4. This problem can be
solved by the introduction of a logarithmic space measure where an n-node A-structure is
charged for space n -log(n), but such an unnatural definition for the space measure would
make the model even less attractive.

2.4 Networks and non-uniform models

All machine models discussed so far have the property that a single machine, or a single
program operates on inputs of arbitrary length. Occasionally the machine, in performing
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some simulation, will first have to decide the length of the input, and then, after having
set up the proper simulation parameters, the “real” simulation will start.

Networks are a typical representative of an alternative approach to the complexity of
decision problems and/or function evaluation. In this approach the complexity investi-
gated is of a more structural kind. Given some problem, say deciding membership in the
language L, one first reduces this problem to a family of finite problems L, = LN X"
These finite problems are easy with respect to machine computations since their solution
can be programmed using table-look-up. Instead one investigates the size s,, of the devices
which solve these finite problems. The quantity s, as a function of the input size n now
becomes a measure of the complexity of the problem L.

From the perspective of computation on arbitrary length input z the process of com-
putation now clearly is decomposed in two steps: from the input length n = |z| one
determines the n-th device M,; next z is processed by M, in order to produce the re-
quired answer.

Intuitively the time complexity of L is bounded by the complexity of these two stages
together. But note that neither of these two stages has a time complexity which is mea-
sured by s, as a function of n; for the first stage on obtains at best a lower bound:
retrieving an object of size s, requires time (s,). For the second stage s, seems not to
be related at all to the time required to operate M, on z.

At this point we are saved by some restrictions which are enforced in order to make the
theory meaningful. The first restriction is that the mapping n = M, is uniform (it should
be computable in polynomial time and/or logspace). The second restriction is that the
devices M, are extremely easy to evaluate, as is for example the case with both formulas
and networks.

Without the first condition it is possible to have undecidable problems with trivial
network complexity: take any undecidable problem U C w, and consider the language Ly
defined by = € Ly < |z| € U. For every length n there exist very simple devices which
accept or reject all inputs of length n; it is the problem of deciding which of the two to
use which is undecidable.

There exists a meaningful alternative for making the mapping n => M,, uniform; one
can also consider Turing machine computability relative to some suitable oracle. See
Schnorr [112] or Karp and Lipton [57] for more details.

Without the second restriction that the devices are extremely simple to operate the
theory cannot provide any complexity bounds above log(n): take a universal Turing ma-
chine with a program for L; this is an object of constant size. If one adds a description of
the length n in log(n) bits one can obtain a finite device prepared for dealing with inputs
of length n. Asymptotically, the log(n) bits of n dominate in the description of the size of
this object.

There exists an extensive literature on the subject of network-like models and non-
uniform complexity. A detailed treatment falls outside the scope of this chapter. I will
restrict myself therefore to a few results which connect this theory to the machine models
introduced elsewhere in this chapter. For more details I refer to the source references. An
example of a textbook on complexity theory which is based on network-like models is the
1976 text by Savage [102]. Information on the role of nonuniform complexity in structural
complexity theory can be found in chapter 5 of [3].
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2.4.1 The network model

A logical network or Boolean circuit is a finite labeled directed acyclic graph. Input nodes
(output nodes) are nodes without ancestors (successors) in the graph. Input nodes are
labeled with the names of input variables z1,...,2,. The internal nodes in the graph
are labeled with functions from a finite collection, called the basis of the network. Here
the condition is enforced that the number of ancestors of an internal node is equal to
the number of arguments of its label; moreover a suitable edge labeling establishes a 1-1
correspondence between these ancestors and the arguments of this label.

By induction one defines for every node in the network a function represented by this
node: for an input variable labeled by z; this is the projection function (21,-.-,20) — 25
an internal node with label g(y1, . . ., y») for which the k ancestors represent the functions
hi(21,---,2n),- - -, he(21,. . ., ) Tepresents the function g(Pa(Z1,- -1 Zn)s - s Be(®1, .-+, 20))-
A function f(21,...,2,) is computed by the network iff it is represented by an output node.

The most important size functions for networks are:

e depth: the length of a longest path in the graph between an input node and an
output node

e size : the total number of nodes in the graph

It used to be common to restrict oneself to networks over a basis of logical functions
consisting of monadic and binary functions only: There exists four monadic functions,
among which only the negation function is important. There exist 16 binary logical func-
tions, among which the and, the or, and the zor are the best-known ones in the network
theory. Implication is another function but its role in network theory is incomparably
small compared to its role in logic and mathematics. It is a known result that there ex-
ist binary functions like the nand function, which form a complete basis by themselves.
Still the most common network basis consists of three functions: and, or, and not. If the
negation is omitted the network only represents monotone functions and will be called a
monotone network. Networks with unbounded fan-in and and or nowadays are also being
considered.

Every node in the network can be ancestor of an arbitrary number of successors. If the
number of successors is restricted to 1 the network becomes a tree, and one talks about a
formula rather than a circuit.

The complexity measures introduced below depend on the logical basis, and on the
fact whether one deals with networks or formulas. In the latter situation one speaks about
formula complexity rather than network complexity . The logical basis is implied by the
context; default is the standard three element basis, and it is moreover not hard to see
that for network complexity the effect of the choice of a basis is at most a constant factor
in depth and size; for formulas the story is different, see [63] [93]. If unbounded fan-in
is disallowed in the basis the constant factor in size remains but a logarithmic penalty in
depth may occur.

For a given finite collection of logical functions fi(z1,..., Zp), .- Ju(®1,...,25) the
network complexities size(fi, ..., fr) and depth(f1,..., f) are defined to be the minimal
size or depth of a network such that the entire set is computed by this network. If F,
for n € w is a family of n-argument functions it is possible to investigate size(¥,) and
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depth(F,) as a function of n. If L is a language over {0, 1}* then the network complexities
of L are defined as the network complexities of the family F,, where F,, for every n consists
of the characteristic function L, of the set L n {0,1}™

The following elementary results are known:

Theorem 8 For arbitrary languages L the following estimates hold

=~

size(Fp) < §Fn - 2"

2. size(Fyp) < ﬂ%éf for §F, =1,n> N(e)
3. depth(F,) <n+1

4. depth(F,) < size(Fy)

5. size(Fn) < §Fn- 2depth(Fn)

Result 1) is easy and results 4) and 5) are trivial. Result 2) is the upper bound
established by Lupanov [72], and result 3) has been obtained by McColl and Paterson [76].
It is known that the bound in 2) is asymptotically tight; by enumeration of all possible
networks one shows that there for every § > 0 only a fraction of all functions can be
computed by a circuit of size < 27(1 — §)/n since there are not enough of those small
circuits. It is a much harder problem to prove lower bounds in network complexity for
explicit functions. There the largest lower bound in the literature for network complexity
shown for an individual explicit function equals 3 - n + o(n) [11]. For formula complexity
one has an 0(n?/log(n)) lower bound [82]. For monotone networks exponential lower
bounds for specific functions have been established in 1985 [2] [95].

It is generally assumed that establishing lower bounds for network complexities is
about the strongest statement one can make about the intractability of some problem. It
is also the most difficult task faced by the complexity theorist, and so far progress has
been much smaller than one might hope for.

2.4.2 Relation with Turing machine complexity

The finite control of a Turing machine can be considered to be some finite automaton which
can be implemented using a Boolean network. The size of this network tells something
of the complexity of the program of the machine, whereas the depth of this network
indicates how fast the machine can perform a single step of its computation, assuming that
the machine has to be implemented using logical gates. Still these connections between
networks and Turing machines are not the ones investigated in the literature; there one
considers the relation between time and space measures for languages recognized by Turing
machines and the network complexity for these languages as defined in the previous section.

Consider the time-space diagram which encodes the complete computation of some
Turing machine M; on some input of length n. Without loss of generality we can assume
that the M; consumes both maximal time and space on every input of length n, so the
size of this diagram does not depend on the precise input. The structure of the diagram is
such that it is filled with characters, and that each character is determined completely by
the characters located at a small local set of neighbors. These dependencies are directed
forward in time. It is not hard to design a Boolean network of size proportional to the
size of the time-space diagram which evaluates (an encoding of) the character at position
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(s, t) in the space-time diagram by an amount of circuitry for this location which depends
of the program only. In this way one obtains the following result from [102]

Theorem 9 size(L,) < P-T(n)-S(n)

where T(n) and S(n) denote time- and space complexity of the Turing machine and P
denotes its size.

In the above simulation a large amount of circuitry is wasted for calculations the
purpose of which is to copy the contents of an unvisited tape cell from one configuration
to the next. These local circuits could be eliminated, provided one would know in advance
where the heads are residing on the tapes. But that is the problem which has been solved
by the Hennie-Stearns simulation where a k-tape Turing machine was obliviously simulated
on a two-tape machine. Exploiting that idea one obtains the following improvement from
Pippenger and Fischer [92], or Schnorr [112]

Theorem 10 size(L,) < P - T(n) -log(T(n))

It follows from the construction that both results are proved using a uniform family
of circuits. Conversely, it is not hard to see that for logspace-uniform networks, a Turing
machine can construct the network and subsequently evaluate in time polynomial in the
size. A tighter bound has been established by Pippenger [91]. There exists also a tight
relation between the depth measure and the space complexity of Turing machines. For
spacebounds s(n) > log(n) which are constructible in space O(max(log(n),log(s(n))))
Borodin [14] has shown

Theorem 11 depth(L,) < O(s(n)?) , when L € NSPACE(s(n))

Moreover for these functions s(n) circuits of depth s(n) can be evaluated in space O(s(n)).

More recently networks have become used as a tool for characterizing complexity of
parallel computation as well. This connection has lead to the introduction of three hier-
archies of classes

e NC} = the class of languages L recognized by logspace uniform networks of poly-
nomial size and depth O(log(n)¥)

e AC) = the class of languages L recognized by logspace uniform unbounded fan-in
networks of polynomial size and depth O(log(n)¥)

o SCi = T-TIME & SPACE(Pol,0(log(n)*))

The families NCi, ACy and SC}, form a hierarchy within P. The first two hierarchies,
moreover can be combined to a single hierarchy:

NCyCACeC...C NCrCACLC NCps1 C ...

The NC and SC hierarchies have been named after Nick Pippenger and Steve Cook
respectively. See Cook [19] [20] for further details.
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Chapter 3

The second machine class

This chapter is dedicated to a survey of the second machine class which consists of those
models which satisfy the parallel computation thesis. This thesis states that parallel time
and sequential space are polynomially related. As will be seen in the sequel models don’t
have to use parallelism in order to become a second machine class member. The alternating
models in chapter 3.2 are sequential devices with a modified mode of acceptance, whereas
the models in chapter 3.3 are sequential devices which operate on huge objects in unit
time. The really parallel models first appear in chapter 3.4 . As will be seen in chapter
4 the boundaries of the second machine class in the realm of parallel machines become
rather vague. Slight modification of the rules of the game leads to even more powerful
models. There are also weaker models of parallel devices, one of which is introduced in
chapter 4.1 .

The current literature on parallel models is growing explosively and consequently in a
chapter like the present one only a fraction can be covered. I am quite aware of the fact that
even some main stream developments in the theory of parallel computation are not covered
at all. T have not dealt with parallel models consisting of RAM’s or finite state devices
in an arbitrary interconnection pattern [39], models for systolic computation [40] [77],
cellular automata [128], or the subject of relative quality of one interconnection pattern
with respect to another [36] [62] [80]. I have not looked into the relation between parallel
models and network resource bounds [19] [20]. The subject of write-conflict resolution
methods is only mentioned [25] [28] [29] [68]. I have also paid no attention to what
happens if additional resource bounds are enforced on parallel devices, like polynomial
bounds on the number of processors used or other hardware bounds [24]. The reader
interested in such subjects is referred to the indicated literature.

For the class of models covered in the survey I establish a tight connection between
simulations of sequential devices and transitive closure algorithms which perform in essence
a brute force try-out everything simulation. This connection will be explained in chapter
3.1. Since all efficient simulations presented in chapters 3 and 4 of this chapter are based on
this connection the “unreasonableness” of the parallel models presented is clearly exposed.
If parallel models are efficient by simulating sequential devices in such a crude manner
something must be wrong. Still the very same connection enables me to place these models
in a common perspective.
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3.1 PsrAck and transitive closure

PSPACE is the class of those languages which can be recognized in polynomial space on
some sequential device, in particular on a standard single-tape Turing machine. There
exists a generic translation between space bounded computations and paths in a suitably
constructed configuration graph. For reasons of simplification we will assume from now
onwards that all spacebounds are (log(n)). For a given input z, a given Turing machine
M and a given space bound S we can form the graph G(z, M, S) of all configurations c of
machine M which use space < S; an edge connects two configurations ¢; and c; if there
is a one step transition from c; to c,. This graph has the following properties:

1. For every input ¢ and space bound S there exist an unique node corresponding to
the initial configuration on input z

2. Assuming that a suitable notion of acceptance has been chosen the accepting con-
figuration is unique

3. The number of nodes in the graph G(z, M, S) is bounded by some exponential func-
tion 2¢5, where the constant ¢ depends on M but not on =

4. The graph G(z, M, S) can be encoded in such a way that an S-space bounded Turing
machine on input z and a description of M can write the encoding of G (z,M,S) on
some write-only output tape

5. If M is deterministic, then every node in G(z, M, S) has outdegree < 1; if M is
nondeterministic then the outdegree of some nodes can be > 2, but for a suitable
restriction of the Turing machine model the outdegree can be assumed to be < 2 as
well

6. The input z is accepted in space S by M iff there exists a path from the unique
initial configuration on input z in G(z, M, S) to an (or with a suitable restriction
on the model, the unique) accepting configuration. This path can be assumed to be
loop-free, and therefore its length can be assumed to be 2¢§

The above properties suggest the following universal algorithm for testing membership
in languages in PSPACE : assume that L is recognized by M in space n*, then in order
to test whether z € L we first construct G(z, M, |z|*), next we compute the reflexive
transitive closure of this graph, and finally investigate whether in this transitive closure
there exists an edge between the unique initial configuration on  and the unique accepting
configuration. Although it seems that this is a rather expensive method for simulating a
single computation, it is exactly this transitive closure algorithm which is hidden in almost
all proofs that some particular parallel machine obeys the parallel computation thesis.

3.1.1 Transitive closure algorithms and PSPACE-complete problems

Various designs of a transitive closure algorithm lead to various insights. In the first place
we can represent the graph G(z, M, S) by a Boolean matrix A(z, M, S) where 1 denotes
the presence of an edge and 0 denotes the absence of an edge. The row and column indices
denote configurations. Clearly these configurations can be written down in space S; the
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total number (and therefore also the size N of the matrix A(z, M, S )) is exponential in
S; N = 25 . If we moreover let A(z,M,S)[i,i] = 1 for all i < N, then the transitive
closure of M can be computed by c- S squarings of A(z, M, S) using the Boolean matrix
multiplication. If N3 processors are available each squaring can be performed in time
O(S) (needed for adding N Boolean values), so the entire transitive closure algorithm
takes time O(S?). If moreover a time bound T’ on the computation is given this time is
reduced to O(S - log(T)), due to the fact that no paths longer than T edges have to be
investigated. Finally, if the parallel model has a concurrent-write feature the time needed
for adding the N Boolean values can be reduced to O(1), and in this case the time for the
transitive closure algorithm becomes O(log(T)). Note however that, in order to perform
this algorithm, the matrix A(z, M, S) must be constructed first.

Next we investigate the following recursive function path(w, 4, j) which evaluates to
true in case there exists a path from node ¢ to node j of length 2% :

proc path = (int w,node i,j) bool:

if w=0 then i = j or edge(i,j)

else
bool found := false ;
forall node n while not found

found := found or ( path(order-1,i,n) and path(order-1,n,j) )

od;

found

fi;

Existence of an accepting computation can be evaluated by the call path(c.S,init Jfinal),
where init and final are the unique initial and final configurations in G(z, M, S); given a
time bound 7T the initial parameter w can also be chosen to be log(T) . With recursion
depth c- S (respectively log(T) ) and parameter size O(SS) this recursive procedure can be
evaluated in space O(S2) (respectively O(S - log(T))) ; this is the main ingredient of the
proof of Savitch’s theorem [104] which implies that PSPACE = NPSPACE:

Theorem 12 If the language L is recognized by some nondeterministic Turing machine
in space S(n) > log(n), then it can be recognized by some deterministic Turing machine
in space S(n)?

A third formulation of the transitive closure algorithm yields the PSPA CE-completeness
of the problem QUANTIFIED BOOLEAN FORMULAS (QBF) [125] :

QUANTIFIED BOOLEAN FORMULAS:

INSTANCE: A formula of the form Q121 ...Qn2z.[P(21,...,24)],
where each Q; equals V or 3, and where P(z1,...,2»)

is a propositional formula in the boolean variables z1, ..., 2.

QUESTION: does this formula evaluate to true?

Theorem 13 The problem QUANTIFIED BOOLEAN FORMULAS is PSPACE-complete
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Proof: The idea is to encode nodes in G(z, M, S) by a boolean valuation to a sequence
of k := ¢’ - S boolean variables. From the proof of Cook’s theorem which establishes the
NP-completeness of SATISFIABILITY ( see [18] or [37]) one obtains the existence of a
propositional formula Py in 2 - k variables Po(z1,...,2k,Y1,---»Yk), Where the variables
21,...,2 encode node i, the variables 1,...,y, encode node j and Py expresses that
i = j or there exists an edge from ¢ to j.

One now can define by induction a sequence of quantified propositional formulas Py
such that Py(21,- .., 2k, Y1, - - -, Yk) €Xpresses the presence of a path of length < 2¢ between
node 7 and node j. In a naive approach the formula P; would include only existential
quantifiers, and P; would include two copies of P4_1; by a standard trick from complexity
theory we reduce the number of occurrences of Pj_; in Py to one ; this trick, however,
introduces universal quantifiers:

Py(21,- - hy Y1y -, Yk) = 3z1,. .. ze[Vug, . o ur[Vor, .o, vk
((u1y. - rue = 21,...,2k A Viyerey Uk = 21, -+, 2k) V
(u1,e oy U= 21,---52k A Uiy Ve = Yly---rYk))
= Pi1(u1,--., Uk V1, .-, 0)]]]

Substituting for zi,...,2k and y1,..., ¥, the codes of the initial and final node in
G(z, M, S) in Px(z1,..., 2k, ¥1,---,Yk) Where K = c- S denotes the logarithm of the size
of G(z, M, S) we obtain a closed quantified Boolean formula, the truth of which expresses
the existence of an accepting computation. It is not difficult to see that Pk is a formula
of length O(k2?) in O(k?) variables, since K = ©(k). Here we have counted each variable
as a single symbol ; clearly a representation in a finite alphabet will introduce another
factor log(k) in the length of the formula. From this one concludes that QBF is PSPACE-

complete. O

The PSPACE-completeness of QBF explains the alternating nature of a number of
known PSPACE-complete problems. SATISFIABILITY is the prototype of a solitaire
game, where the player has to look for some configuration with a particular property or
for a sequence of simple moves leading to some particular goal state, but the alternating
quantifiers turn QBF into a two person game. Two players Elias and Alice in turn choose
the truth values to be assigned to existentially or universally quantified variables in the
order of their nesting inside the formula. Elias tries to establish the truth of the formula
whereas Alice tries to show that the given formula is false. The truth of the entire formula
is equivalent with the existence of a winning strategy for Elias in this game.

Starting with this game-theoretical interpretation of QBF several authors have inves-
tigated the end-game analysis of games inspired by real life games. A useful intermediate
game is GENERALIZED GEOGRAPHY [109]; from there one can reach HEX on arbi-
trary graphs and even HEX on the traditional hexagonal board ; see [27] [97]. For people
interested in the position of CHECKERS, CHESS and GO: these games are not on the
list because, after earlier PSPACE-hardness results [32] [69], they turn out to be even
more difficult than PSPACE [33] [98] [99].

From the above one should not conclude that in general solitaire games are at most
NP-hard; beside the earlier PSPACE-completeness of the BLACK PEBBLE GAME [38],
one has nowadays examples of group theoretical problems which have been shown to be
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PSPACE-hard [54] [55]. Together with problems which encode PSPACE-bounded com-
putations in a more direct way (like Reif’s GENERALIZED MOVER’S PROBLEM [96])
this has led to an interesting zoo of PSPACE-complete problems. It should, however, be
no longer a surprise that alternation forms a fundamental concept in one of the machine
models in the second machine class.

3.1.2 Establishing membership in the second machine class

Suppose that we are faced with some parallel or otherwise powerful machine model & and
that we want to prove that X is a member of the second machine class: X — PTIME =
X—NPTIME = PSPACE. The above observations provide us with some tools for proving
this result.

The inclusion PSPACE C X — PTIME can be shown by inventing a polynomial time
algorithm on X which solves a PSPACE-complete problem like QBF. An alternative is
to show that on X one can implement one of the transitive closure algorithms from the
previous chapter in polynomial time.

For the inclusion X — NPTIME C PSPACE one uses in most cases a guess and ver-
ify method. A nondeterministic machine is used to guess a trace of an accepting &'-
computation on the given input. Such a trace consists of instructions executed and mem-
ory values stored during this computation but in general not all information stored in
memory during the X-computation can be written down in polynomial space. Therefore
one writes down enough information from which the remaining memory contents can be
reconstructed. The reconstruction is done by a recursive procedure which reflects the ma-
chine architecture of model X'; the recursive procedure tells how the memory contents at
time ¢t depend on those at time ¢t — 1. Care has to be taken that all arguments for this
procedure and also its values can be written down in polynomial space.

Using the trace and the recursive procedure it becomes possible to certify the trace as
being consistent: for every conditional instruction the correct branch has been selected.

If one has established for two models X and X’ that they are both members of the
second machine class, one has indirectly shown that X and X’ simulate each other with
polynomial overhead in time. In the literature only a few instances of direct simulations
establishing such polynomial time overheads are given. One example is the refined analysis
of the power of various models of vector machines by Ruzzo in the unpublished report [100],
where explicit overheads for simulation of alternating Turing machines and vector machines
are given. Another example can be found in the paper by van Leeuwen and Wiedermann
on array processing machines [134] where time overheads for simulation on the SIMDAG
and a reverse simulation are determined.

3.2 The alternation model

3.2.1 The concept of alternation

The concept of alternation [16] leads to machine models which obey the parallel compu-
tation thesis without providing any intrinsic parallelism at all. As a computational device
an alternating Turing machine is very similar to a standard nondeterministic sequential
Turing machine; only the definition of accepting the input has been modified.

46



Since the machine is nondeterministic the computation can be represented as a com-
putation tree the branches of which represent all possible computations. The leaves—the
terminal configurations where the machine halts—are designated to accept or to reject as
usual on basis of the designation of the included state as being accepting and rejecting.
For a standard nondeterministic machine such a computation tree is considered to repre-
sent an accepting computation as soon as a single accepting leaf can be found. But for
the alternating machine the notion of accepting is slightly more complicated .

The main idea is to equip states in the Turing machine program with labels ezistential
and universal. Configurations inherit the label of the state included in this configuration.
Next one assigns a quality accept, reject or undef to every node in the computation tree
according to the following rules:

1. The quality of an accepting (rejecting) leaf equals accept (reject)

2. The quality of an internal node representing an ezistential configuration is accept if
one of its successor configurations has quality accept

3. The quality of an internal node representing an ezistential configuration is reject if
all of its successor configurations have quality reject

4. The quality of an internal node representing a universal configuration is reject if one
of its successor configurations has quality reject.

5. The quality of an internal node representing a universal configuration is if all of its
successor configurations have quality accept

6. The quality of a node with one successor equals the quality of its successor

7. The quality of any node the quality of which is not determined by application of the
above rules is undef

Clearly the quality undef arises only if the computation tree contains infinite branches,
but even nodes which have infinite offspring can obtain a definite quality since, for example,
an accepting son of an ezistential node overrides the undef label of another son.

By definition an alternating device accepts its input in case the root node of the
computation tree, representing the initial configuration on that input, obtains the quality
accept.

The above treatment is a minor simplification of the presentation in [16] in so far as
that the feature of negating states is not included. It should be clear that the notion of
an alternating mode of computation makes sense for virtually every machine model and
is not restricted to Turing machines. For example, it makes sense to consider alternating
finite automata, alternating PDA’s etc. For every device some power may be gained by
proceeding to the level of alternation but whether the gain is substantial depends on the
specific model considered. For example, in the case of finite automata, the languages rec-
ognized by alternating finite automata are still regular languages; the gain is a potentially
doubly exponential reduction of the size of the automaton.

Time ( space ) consumed by an alternating computation is measured to be the maximal
time (space) consumption along any branch in the computation tree. Another complexity
measure which was considered by Ruzzo [101] for the alternating Turing machine is the
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minimal size of an accepting computation tree. An accepting tree is a subtree of the
full computation tree which yields a certificate that the input is accepted; it includes all
successors of a universal node but for an ezistential node only one successor with quality
accept must be included in the accepting computation tree. This measure is related both
to nondeterministic time in the sequential model and parallel time and leads to various
interesting classes with simultaneous resource bounds. I refer to the paper for more details.

3.2.2 Relation with sequential models

The alternating device, being an incarnation of a standard device in disguise, clearly
inherits the simulation results for the first machine class devices. As a consequence there
exists a device independent hierarchy for alternating classes:

ALOGSPACE C APTIME C APSPACE C AEXPTIME

Its behavior like a parallel machine model now is expressed by the following results which
provide us with far more than the parallel computation thesis requires for becoming a
second machine class member:

Theorem 14 The alternating Turing machine model is related to the sequential hierarchy
by the equality
APTIME = PSPACE

but the other classes are shifted versions in the sequential hierarchy as well:
ALOGSPACE = P,APSPACE = EXPTIME, AEXPTIME = EXPSPACE.

Note that the alternating devices have no nondeterministic mode of computation.
Proof: I will give a short indication why the above equalities are true. First consider the
inclusion APTIME C PSPACE. It suffices to show that the quality of the initial config-
uration in a polynomial time bounded computation tree can be evaluated in polynomial
space. Clearly this quality can be evaluated by a recursive procedure which traverses the
nodes of the computation tree. This procedure has a recursion depth proportional to the
running time of the alternating device, whereas each recursive call requires an amount
of space proportional to the space consumed by the alternating device. Hence the space
needed by the deterministic simulator is proportional to the space-time product of the
alternating device, which in turn is bounded by the square of the running time.

The reverse inclusion PSPACE C APTIME follows as soon as we show how to QBF
in polynomial time on an alternating machine. This is almost trivial: let a machine guess
the valuation for the quantified variables where the universally (existentially) quantified
variables are guessed in a universal (existential) state; these values are guessed in the order
of the nesting in the formula. Next the formula is evaluated in a deterministic mode and
the machine accepts (rejects) if the result becomes true (false) .

The equality AEXPTIME = EXPSPACE is obtained by a standard padding argument
from the equality shown above.

The inclusion ALOGSPACE C P is shown as follows: note that a logspace-bounded
alternating device for a given input has only a polynomial number of configurations. These
configurations can be written on a work-tape. The terminal configurations obtain a quality
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based on the included state. Next by repeatedly scanning the list of configurations the
quality of intermediate configurations can be determined by application of the rules 2)-6)
. This scanning process terminates if during a scan no new quality can be determined.
Since during each sweep either at least one quality is determined or the process terminates,
and since the time needed for a single sweep is bounded by the square of the size of the
list of configurations the running time for this procedure is polynomial.

The reverse inclusion P C ALOGSPACE is shown as follows. Assume that the lan-
guage L is recognized in time T(n) by a standard single tape Turing machine M. It
suffices to show how an alternating device can recognize L in space log(T(n)). Consider
therefore the standard computation diagram of the computation of M on input z. This
diagram can be represented in the form of a K x K table of symbols, where K = T(|=|)-
The top row of this table describes the initial configuration on input z, and the bottom
row describes the final configuration which should be an accepting one. Each intermediate
symbol is completely determined by the three symbols in the row directly above it since
the machine M is deterministic.

The alternating device now guesses the position in the bottom row of the occurrence
of an accepting state, and certifies this symbol by generating in a universal state three
offspring machines which guess in an existential state the symbols in the three squares
above it. These guesses are certified in the same way, all the way up to the top row,
where guesses are certified by comparison with the input z. The amount of space required
by this procedure is proportional to the space required for writing down the position of
the square considered in the diagram, which is O(log(T(|2|))). Since the machine M
is deterministic, only those guesses which are correct can be certified (to be shown by
induction on the row number) and therefore the guesses are globally consistent. This last
observation breaks down for nondeterministic devices M and therefore we cannot obtain
the inclusion NP C ALOGSPACE in this way.

Again by a simple padding argument one obtains the equality APSPACE = EXPTIME,
as an easy consequence of the equality ALOGSPACE = P. O

3.3 Sequential machines operating on huge objects in unit
time

The first machine model for which the validity of what later was to become known as the
parallel computation thesis has been established is the vector machine model of Pratt and
Stockmeyer [94], shortly later succeeded by the MRAM of Hartmanis and Simon [44] [45].
These models have in common that their power originates from the possibility to operate
on objects of exponential size in unit time.

All these models are derived from the RAM model with uniform time measure by
extending the arithmetic with new powerful instructions. In the vector machine this
extension consists of the introduction of a new type of registers, called vectors, which can
be shifted by amounts stored in the arithmetical registers of the RAM. The contents of
the vector registers can also be subjected to parallel bitwise Boolean operations like and,
or, or zor. This makes it possible to program the concatenation of the contents of two
vectors and to perform various masking operations. The MRAM model was obtained by
realizing that shifting a vector amounts to multiplication or division by a suitable power
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of two. Hence the separation between vectors and arithmetic registers is an inessential
feature in the model; the same power can be achieved by introducing multiplication and
division in unit time, preserving the bitwise Boolean operations.

Restrictions of the model have been investigated. For example one can forsake one
of the two shift directions (right shift of one register is simulated by left shifting all the
others); as a consequence one can drop the division instruction, which yields the MRAM
model as proposed in [44]. More recently it has been established that the combination
of multiplication and division, in absence of the bitwise Boolean instructions suffices as
well [9] [113]. This result shows the power of a purely arithmetical model.

In this section I will illustrate the power of these models by a model which has been
obtained by moving in the other direction: stressing the pure symbol manipulation in-
structions and dropping the powerful arithmetic. This is the EDITRAM model proposed
in [123] as a model of the text editor you may have in mind while editing texts behind
your terminal. I will present an outline of the proof of the validity of the parallel com-
putation thesis for the EDITRAM and indicate the connection with the proofs for the
earlier models.

3.3.1 The EDITRAM model

In the EDITRAM we extend the standard RAM with a fixed finite set of text-files.
Standard arithmetic registers can be used as cursors in a text-file. Beside the standard
instructions on the arithmetic registers the EDITRAM has instructions for:

1. reading a symbol from a file via a cursor

2. writing a symbol into a file via a cursor

3. positioning a cursor at the end of a file (thus computing its length)

4. positioning a cursor into a file by loading an arithmetic value into the cursor
5. systematic replacement of string! by string2 in a text-file

6. concatenation of text-files

7. copying of segments of text-files as indicated by cursor positions

8. deletion of segments of text-files as indicated by cursor positions.

In the systematic string replacement instruction 5) the arguments string? and string2
are to be presented by literals in the program; substitution of the contents of an entire
text-file for a single character would allow a doubly exponential growth of the size of
text-files, which is more than we are aiming for.

The time complexity of the model is defined by using the uniform time measure for
the arithmetic registers. So an edit instruction is charged one unit of time. A reasonable
alternative would be to use the logarithmic time measure with respect to the arithmetic
registers. Then an edit instruction would be charged according to the logarithm of the
values of the involved cursors, and its cost therefore is proportional to the logarithm
of the length of the (affected portion of) the text-file. Since in our model the growth
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of a text-file is at most exponential the two measures will be polynomially related. This
observation no longer would be valid if we would allow that entire text-files are substituted
for strings by the replace operation; the doubly exponential growth of the text-files will
require exponential time in the logarithmic measure so the uniform and the logarithmic
measure no longer are polynomially related.

3.3.2 The EDITRAM is a second machine class device
Theorem 15 The EDITRAM is a second machine class device

Proof: In order to verify that the EDITRAM obeys the parallel computation thesis
we must prove the two inclusions EDITRAM—NPTIME C PSPACE and PSPACE C
EDITRAM-PTIME.

The proof of the first inclusion is characteristic for the proof of this inclusion for similar
models. Given an input we must test in polynomial space whether the given EDITRAM
machine will accept this input or not. But by Savitch’s theorem 12 our simulation may be
nondeterministic. Therefore we first guess the trace of some accepting computation and
write it down on some work-tape. The accepting computation being polynomially time
bounded we can write down the sequence of instructions in the program of the EDITRAM
which are executed. Moreover, since the length of the values of the arithmetic registers
is linearly bounded by the time, we can also maintain a log on the register values in
polynomial space.

We cannot maintain a log on the contents of the textfiles, since their length may
grow exponentially. Instead we introduce a recursive procedure char(time, position, teztfile)
which evaluates to the character located at the given position in the given textfile after
performing the instruction at the given time. The arguments of this procedure can be
written down in polynomial space, due to the fact that the growth of the length of a
textfile is bounded by a simple exponential function in the time (both systematic string
replacement and concatenation will at most multiply the length of a textfile by a constant).
Given this procedure it is possible to certify that the trace written on the work-tape indeed
represents an accepting computation.

From the meaning of the individual instructions one can obtain a recursive procedure
which expresses the value of char(time,position,teztfile) in terms of similar values after
the previous instruction at time time-1. In the case where the present instruction is a
systematic string replacement we face the problem to figure out where the character at
the given position was located before the replacement. Since this requires information on
the number of occurrences of the replaced pattern preceding this position in the given
textfile, the entire textfile, up to the given position must be re-computed by recursive
calls. This is the most complicated case in the description of this recursive procedure. For
details I refer to [123].

The total space required by the evaluation of this procedure is bounded by the product
of the size of an individual call (which we indicated to be polynomial) and the recursion
depth (which is bounded by the running time of the EDITRAM computation being sim-
ulated, which was also assumed to be polynomial). This completes the proof of the first
inclusion.

Next we consider the inclusion PSPACE C EDITRAM—PTIME. It suffices to show
how to solve the PSPACE-complete problem QBF in polynomial time on a determin-
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istic EDITRAM. Consider a given instance Q121 ...QnZa[P(21,. .., z,)] of QBF. Our
algorithm is performed in three stages:

Step 1: Remove the quantifiers in the order of their nesting from inside to outside by
programming the transformations:

VailP(.. .2, )] = (P(..,0,..) AP(...,1,...))
3zi[P(..., 25 )] = (P(-s0,..) VP(...,1,..)

Clearly each transformation preserves the truth of the involved formula; the involved
formula P is a quantifier free formula, due to the order of the quantifier eliminations.
After elimination of all quantifiers a formula of exponential size is obtained which still is
equivalent to the given instance of QBF.

Step 2: Evaluate the resulting formula by systematic string replacements of the type:

(ovo) = 0 (0v1) = 1 (1vo0) = 1 (1vl) = 1
(0A0) = 0 (0A1) = 0 (LA0) = 0 (1A1l) = 1
(-0) = 1 (-1) =0 (0 =0 (1) =1

These transformations can be produced by local systematic string replacements.

Step 3: Check whether the resulting literal equals 0 or 1 .

Note that after a single cycle through the replacements in step 2 the depth of the
involved propositional expression has been decreased by at least 1. If the depth of the
propositional kernel of the given instance was k, then after the transformations of step
1 the depth of the intermediate formula is k + n ( n being the number of quantifiers
eliminated) . Therefore the number of iterations in step 2 is polynomial.

It remains to show how to perform the transformations in step 1 . Clearly it suffices
to locate and read the innermost quantifier and to form the conjunction or disjunction of
two copies of the propositional kernel provided the quantified variable has been replaced
by 0 and 1 respectively in these copies. But since our EDI TRAM program allows only
literal strings as arguments in systematic replacement instructions we must program the
later substitutions. We design therefore a subroutine which copies the string of characters
representing variable z; into a special purpose text-file (this encoding will include some
binary representation of its index %), and next subjects all occurrences of variables in the
propositional kernel P to a treatment of systematic replacements which will turn all oc-
currences of z; into a special pattern, and which will leave all other variables undisturbed.
Then by substituting 0 or 1 for the special pattern, the required substitutions are obtained.
For details of this subroutine see [123]. This completes the proof of the second inclusion.
O

In order to prove the first inclusion for the case of the vector machine and the MRAM
a similar recursive procedure can be defined which evaluates the contents of a given bit
of a given vector or a given bit of a given arithmetic register at some given time. In the
vector machine the size of a vector grows exponentially but not worse, whereas for the
MRAM all arithmetic registers may grow exponentially in length. Due to the presence of
carries the simulation of a multiplication becomes as complicated as the case of a string
replacement in the EDITRAM. Divisions have been reduced to multiplications inside the
MRAM model itself at an earlier stage of the proof. Also the length of register addresses
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remains bounded by the standard trick enabling the machine to use consecutive registers
in its memory. In general these simulations achieve the required space-bound at the price
of a huge consumption of time; the same values are computed over and over again by the
recursion.

The proofs of the corresponding second inclusion for the cases of vector machines and
MRAM’s invoke a direct simulation of the transitive closure algorithm by subroutines
which build the matrix A(z, M, S) into a register and which compute its transitive closure
by iterated squarings. A main ingredient is the programming of a routine which builds a
bit-string consisting of the 2K bit-strings representing the first 2K integers, separated by
markers, and of bit-strings to be used as masks for extracting a given bit-position from
these integers in parallel in a single instruction. The idea of simplifying these proofs by
invoking QBF as a PSPACE-complete problem was also used in [9)].

3.4 Machines with true parallelism

In this section we consider models which provide observable parallelism by having multiple
processors operate on shared data and/or shared channels. In these models computation
can proceed either synchronously (all processors perform a step of the computation at the
same time, driven by a local clock) or asynchronously (each processor computes at its own
speed).

There exists a number of possible strategies for resolving the write conflicts which arise
when several processors attempt to write in the same location of shared memory. In the
priority write strategy the processor with the lowest index will succeed in writing in such
a shared location and the other values will be lost. Other strategies which have been
investigated are ezclusive write (no two processors can write in the same global register
at all), common write (if two processors try to write different values at the same time in
the same register then the computation jams but writing the same value is permitted) ,
and arbitrary write (one of the writers becomes the winner but it is nondeterministically
determined which one). For yet another approach to multiple writes see [25]. The compu-
tational power of the parallel RAM models based on these resolution strategies has been
compared in [28] [29] [68] under the unrealistic assumption that the individual processors
have arbitrary computing power. In these investigations the priority model has established
itself as the most powerful one.

There are several methods of controlling the creation of parallel processors. Some
models have a large or even infinite collection of identical processors which operate in
parallel. In other models processors by their own action can create a finite number of new
processors running in parallel, and in this way an arbitrary large tree of active processors
can be activated as time proceeds.

Alltogether there are a large number of possible models and variations thereof. In this
chapter I will discuss only a few of these models which indeed can be shown to obey the
parallel computation thesis. As will become clear in chapter 4 some minor modifications
of the models suffice to increase the power of these machines.

Curiously enough there exists no proposal for a parallel version of the SMM. It seems
that this possibility has never been investigated from a complexity point of view. A parallel
version of the KUM has been introduced in the Soviet literature already 25 years ago; this
Kolmogorov-Barzdin’ machine has been described by Barzdin’ [4] [5] [6] but mainly for
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its computational properties like the existence of a universal machine and the problem of
giving a precise formulation of the involved parallel transformation of a graph (predating
the literature on graph grammars). In two papers with Kalnin’sh [7] [8] which appeared
10 years later these computational investigations were continued. In this collection of
papers there is one paper which in particular deals with complexity issues: in (6] it is
established that a higher dimensional grid cannot be simulated on a lower dimensional
one with constant factor overhead in space. As such the construction of a parallel version
of the SMM which behaves like a second machine class member remains an interesting
but doable exercise.

3.4.1 The SIMDAG model

In the SIMDAG model [39] (Single Instruction, Multiple Data AGregate) there exists a
single global processor which can broadcast instructions to a potentially infinite sequence
of local processors, in such a way that only a finite number of them are activated. The
mechanism to keep the number of processors activated in a single step finite uses the sig-
nature of the local processors. Each local processor contains a read only register, called
signature, containing a number which uniquely identifies this local processor. The global
processor, in broadcasting an instruction includes a threshold value, and any local pro-
cessor with a signature less than the threshold value transmitted performs the instruction
while the others remain inactive.

Since the global processor can at most double the value of its threshold during a single
step it follows that the number of sub-processors activated is bounded by an exponent in
the running time of the SIMDAG computation.

The local processors operate both on local memory and on the shared memory of the
global processor, where write-conflicts are resolved by priority; the local processor with
the lower index becomes the winner in case of a write-conflict.

For a device like the SIMDAG it is necessary to restrict the power of the arithmetic
instructions involved. Otherwise—as we will see in the sequel—the machine may become
too powerful.

In the SIMDAG model the instruction repertoire for local and global processors in-
volves additive arithmetic and parallel Boolean operations, combined with restricted shift-
ing (division by 2). The writing of data in global storage by local processors is made
conditional by stipulating that writing the value 0 is suppressed. In this way the or of a
list of Boolean values computed by the local processors can be computed in a single write
instruction by letting each local processor write a 1 in a fixed register in global memory if
its bit equals 1, whereas the value 0 is not transmitted to the global memory.

Based on the above incomplete description I can sketch why the parallel computation
thesis is true for the SIMDAG model.

Theorem 16 The SIMDAG model is a member of the second machine class

Proof: The inclusion SIMDAG—NPTIME C PSPACE is shown by an argument similar
to that used for the corresponding inclusion in case of the EDITRAM.

The trace of a nondeterministic SIMDAG computation can be guessed and be written
down on a work-tape in polynomial space. Next one defines a pair of recursive procedures
global(time,register) and local(time,register, signature) which evaluate to the value stored
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at the given time in the given register of the global and given local processor respectively.
The arguments of these recursive procedures can be written down in polynomial space
(due to the restrictions on the arithmetics of the SIMDAG) and the recursion depth
is bounded by the running time of the SIMDAG computation. Using these recursive
procedures the guessed trace of the SIMDAG computation can be certified to be a correct
accepting computation. As before the time needed for the simulation is very large due to
the re-computation of intermediate results.

The converse inclusion PSPACE C SIMDAG-PTIME is shown by presenting an im-
plementation of the transitive closure algorithm which runs in polynomial time.

This algorithm first loads the K x K matrix A(z,M,S) which was introduced in
chapter 3.1 in global memory. For convenience assume that K is a power of 2. The
matrix is constructed by letting processor i + K - j evaluate the entry A(z, M, S)[3, jl- By
inspecting its signature the processor (using the Boolean operations and the division by 2
as a shift operator) can determine first the values of and j and next unravel these values
as bit-patterns in order to see whether the two encoded Turing machine configurations are
equal or are connected by a single step. By a global write the matrix is loaded into global
memory.

After formation of the matrix the transitive closure is computed by iterated squaring.
Each squaring is computed by letting local processor i + K - j + K - K - k read the values
of A(z, M, S)[i,k] and A(z, M, S)[k,j] , form the and of these two values and write the
result (conditionally) in A(z, M, S)[,]. This requires a constant number of steps.

After these squarings the existence of an accepting computation is determined by the
global processor by inspecting the proper matrix entry of A(z, M, S). O

3.4.2 The array processing machine

Our next model, the array processing machine (APM) was proposed by van Leeuwen and
Wiedermann [134]. It has been inspired by the contemporary vectorized supercomputers.
This machine has the storage structure of an ordinary RAM but contains besides the tra-
ditional accumulator also a vector accumulator which consists of a potentially unbounded
linear array of standard accumulators.

The array processing machine combines the instruction set of a standard RAM with
a new repertoire of vector instructions which operate on the vector accumulator. These
instructions allow for reading, writing, transfer of data and arithmetic on vectors of match-
ing size which consist of consecutive locations in storage and/or an initial segment of the
vector accumulator.

Each operation on the vector accumulator destroys its previous content. Conditional
control on a vector operation is possible by the use of a mask which consists of an array
of Boolean values (0 or 1) of the same size as the vector operands; the vector instruction
now is performed only at those locations corresponding to occurrences of 1 in the mask.
A complete address for a vector operation therefore may consist of four integers: lower
and upper bounds of the vector argument and the mask respectively.

The power of parallelism is provided to the model by the time measure used: uniform
time or logarithmic time, where every vector instruction is charged according to its most
expensive scalar component. So in a vector LOAD the logarithmic time complexity is
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proportional to the logarithm of the upper bound of the operand and/or mask plus the
logarithm of the largest value loaded into the vector accumulator.

In their paper [134] the authors prove that the above array processor is a member of the
second machine class by providing mutual simulations with respect to the SIMDAG, where
it turns out that the simulations require polynomial (more specifically nt) overhead. In
both directions the simulations require non trivial programming techniques, and a parallel
O(log?(n)) implementation of Batcher’s sort is an essential element of the simulation.

Inspection of the model shows that a proof that the APM obeys the parallel com-
putation thesis can be easily obtained by the techniques used for other devices in this
chapter.

Theorem 17 The APM model is a member of the second machine class

Proof: To prove PSPACE C APM—PTIME one can show that QBF can be solved in
polynomial time on an APM ; here the main ingredient is the construction of n vectors in
storage of length 2™ where vector j contains the value of bit j in the binary representation
of the numbers 0...2" — 1. Using those vectors one can evaluate a given propositional
kernel in linear time using the vector instructions , and the resulting vector can be folded
together according to the quantifiers in order to provide the final result.

For the converse inclusion: APM — NPTIME C PSPACE the usual technique of
writing down a computation trace and certifying it by means of a recursive procedure will
work. The detour via PSPACE implies the existence of mutual polynomial time overhead
simulations of SIMDAG and APM but it does not provide explicit simulation overheads
as indicated above. O

3.4.3 Models with recursive parallelism

As an example of a parallel machine of a different character I mention the recursive Turing
machine introduced by Savitch [106]. In this model every copy of the device can spawn
off new copies which start computing in their own environment of work-tapes, and which
communicate with their originator by means of channels shared by two copies of the
machine.

A similar model, based on the RAM is the k— PRAM described by Savitch and
Stimson [108]. In this model a RAM-like device can create up to k copies of itself, which
start computing in their local environment, while their creator is computing onwards.
These copies themselves can create new offspring as well. Data are transmitted from
parent to child at generation time by loading parameters in the registers of the offspring.
Upon termination a child can return a result to its parent by writing a value in a special
register of the parent which is read-only for the parent. The parent can inquire about this
register whether his child has already written into it; if he reads the register before the child
has assigned a value to it, the parent’s computation is suspended. Using these features a
parent can activate a number of children and consume the first value which is returned,
aborting the computations of the remaining children which have not yet terminated.

Clearly models based on such local communication channels are much slower in broad-
casting information to a collection of sub-processors and in gathering the answers. How-
ever, the validity of the parallel computation thesis is not disturbed by this delay due to
the fact that the slowdown is at worst polynomial: in order to activate an exponential
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number of processors by spawning off sub-processors polynomial time suffices in case a
complete binary tree is formed; the time consumed for activating this tree usually is poly-
nomial in terms of the time consumed by writing down the data to be processed by the
sub-processors.

It is not difficult to see that the above models support an implementation of the recur-
sive version of the transitive closure algorithm from chapter 3.1 which runs in polynomial
time. This explains why PSPACE is contained in the || PTIME class for these models.
The time overhead which used to be n? before becomes now n® due to the fact that the
recursive algorithm contains also a loop over all intermediate nodes. This loop would re-
quire exponential time if performed sequentially, and therefore it is replaced by a recursive
expansion where a call at order w produces an exponential number of calls at order w—1.
The recursion depth of the procedure now becomes log?(n) instead of log(n).

The same recursive expansion trick is used in order to show that for these models
| NPTIME C|| PTIME. A single nondeterministic computation of length T is replaced by
9T Jeterministic computations relative to a choice string which is different for every copy.
Transforming this idea into a complete proof exposes a number of complications. The final
proof for this inclusion yields an (n®) time overhead for elimination of nondeterminism.
For the details I refer to the papers [106] [108].

A crucial difference between the SIMDAG model and the recursive models is that
in the SIMDAG model the local processors, if they are active at all at some time, all
execute the same instruction on data which may be different. As a consequence it is
possible to write down the trace of executed instructions of a SIMDAG computation in
polynomial space. In the recursive models each processor, once being activated, performs
its own program except for the impact of communication with its parent or its offspring. It
becomes therefore impossible to write down the complete computation trace in polynomial
space if an exponential number of processors is activated.

This has consequences for the proof of the inclusion || PTIME C PSPACE for these
models. Rather than writing down the entire trace of the computation and certifying it
by a recursive procedure, the entire genealogical tree of machine incarnations is searched
by a recursive procedure. Recursion depth is bounded by the polynomial bound on the
running time of the parallel machine. A polynomial bound on the size of the recursive
stack frames is obtained from the fact that the machine has no powerful arithmetic. It
is crucial at this place that the communication between parent and offspring is entirely
local; if offspring can write in global memory the proof breaks down.

A further complication results from the fact that a parent can abort some of its children
before they have terminated; evaluating the result produced by such a child may lead to a
divergent computation. Therefore all devices are extended with a counter keeping track of
global synchronous time. Such counters are needed anyhow in order to let a parent know
which one of its two children was the first to terminate. Again I refer for more details to
the full papers [106] [108].

One obtains the feeling that the models in this section are less “stable” than the
powerful sequential models or the synchronous SIMDAG. This is also illustrated by the
results in the final chapter of this report.
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Chapter 4

Parallel machine models outside
the second machine class

In this chapter I discuss several models which can not be classified as being either first or
second class devices. First I discuss a parallel model which is much weaker than the models
in the previous chapter. Next I will discuss the models which are more powerful than the
second machine class members, including a model claimed to perform all computations in
constant time.

4.1 A weak parallel machine

The parallel Turing machine, (abbreviated PTM), introduced by Wiedermann [140] should
not be confused with the devices introduced by Savitch under the name recursive Turing
machines [106]. In both cases one considers a Turing machine with a nondeterministic
program where a choice of possible successor states leads to the creation of several devices,
each continuing in one of the possible configurations. Where in Savitch’s model the entire
configuration is multiplied, it is the case that in Wiedermann’s model only the finite
control and the heads are multiplied, thus leading to a proliferation of Turing automata
all operating on the same collection of tapes.

Wiedermann’s device consists of a finite control with k d-dimensional work-tapes, the
first of which contains the input at the start of the computation. Each control has one head
on every tape. The program of the device is a standard nondeterministic Turing program
for a machine with k d-dimensional single-head tapes; however, instead of choosing a next
state when facing a nondeterministic move the machine creates new copies of its control
and heads, which go on computing on the same tapes. There are no read conflicts; write
conflicts are resolved by the common write strategy: if two heads try to write different
symbols at the same square the computation aborts and rejects; if two heads try to write
the same symbol his symbol is written and the heads move on.

An accepting computation is a computation where every finite control that is created
during the computation halts in an accepting state.

The crucial observation which makes this model weaker than the true members of the
second machine class which we have met in the previous chapter is related to the achievable
degree of parallelism. Although the machine can activate an exponential number of copies
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of itself in polynomial time, these copies operate on the same tapes and therefore only a
polynomial number of essentially different copies will be active at any moment in time. If
two finite controls are in the same internal state and have their heads positioned on the
same tape squares, their behavior will be equal from that time onwards; hence these two
controls actually merge into a single unit. This leads to an upper bound of ¢- § k on the
number of different controls being active at the same time, where ¢ denotes the number of
states in the program and S denotes the space used by the device. Since space is bounded
by time this leads to a polynomial bound on the number of different copies.

Based on this observation it becomes possible to simulate this parallel machine by
a standard deterministic Turing machine with polynomial time overhead: the simulator
maintains on some additional work-tape a list of all active finite controls with their head
positions, and by maintaining a pair of old and new work-tapes the machine can process
the updates of each control in sequence, taking care of the needed multiplication of controls
and checking for write conflicts.

It can not be inferred from this simulation that the device is a standard first class
machine, since it is not clear whether the above simulation can be modified in such a way
that the space overhead becomes a constant factor. For the special case of a single tape
parallel machine a constant factor space overhead is achieved by storing with each tape
cell the set of states achieved by heads scanning this cell; this set (being a subset of the
fixed set of states of the machine) can be written down in an amount of space which is
independent of the length of the input. But for the case of more tapes or more heads on
a single tape it is not sufficient to mark the tape cells by the states in which they are
scanned, since one must also know which heads belong together to a single finite control,
and this requires the encoding of head positions for each device. Therefore the naive
simulation as indicated above requires space O(S* -log(5)).

Wiedermann observes that one can recognize the language of palindromes with a PTM
with two one-dimensional tapes, where the first tape is a read-only input tape, in space
O(1) if the space of the input tape is not counted. Still the heads on the read-only input
tape may multiply, thus storing information on this tape by their positions. It seems
therefore unlikely that a constant factor space overhead simulation is possible since palin-
dromes cannot be recognized in constant space by a standard machine. This particular
example, however, seems to depend on the particular interpretation of the space on the
input tape not being counted, and an example where the input head is common for all
copies of the finite control seems to be required for a more convincing separation result.

These simulations show that P = PTM—PTIME and that PSPACE = PTM—PSPACE;
the PTM model therefore does not obey the parallel computation thesis, unless P =
PSPACE.

The PTM model has the interesting property that for several practical problems in
P an impressive speed-up by pipelining can be achieved, even though the device is not a
second machine class member. For details I refer to [140].

4.2 Beyond the second machine class

There exist in the literature several models which seem to be more powerful than a second
class machine. Fortune and Wyllie [31] have described a hybrid of the SIMDAG with a
parallel machine based on branching, called P-RAM in [31] and called MIMD—RAM in my
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carlier survey [131]. For this model it has been established that MIMD-RAM—-PTIME =
PSPACE and MIMD-RAM-NPTIME = NEXPTIME.

Savitch [107] has defined a model based on an MRAM which creates parallel copies
by branching, called the LPRAM, and proves that LPRAM—-PTIME = PSPACE and
LPRAM—-NLOGTIME = NP.

N. Blum has written a short note arguing against the parallel computation thesis [12].
His claim is based on a pair of models called the PRAM and the WRAM respectively.
These models resemble the SIMDAG but instead of the priority strategy for write conflicts
he uses the exclusive write strategy in the PRAM and common write strategy in the
WRAM. For these models he claims the results NEXPTIME C WRAM—-PTIME and
EXPTIME C PRAM—PTIME. The correctness of his claims is questionable since his
proof requires the presence of powerful arithmetic as well.

Below I give a sketch of these models and the simulations involved.

4.2.1 The MIMD-RAM

The MIMD—RAM which was introduced by Fortune and Wyllie [31] as a hybrid between
the SIMDAG and the k—PRAM described in chapter 3.4. In the MIMD-RAM a machine
can create offspring by forking, where the offspring will perform the instructions of its own
program. Upon creation the offspring machine will start executing at the first instruction
in its program. The subsequent course of the computation is influenced by the initial value
of the accumulator which has been set by its creator. The machine has standard additive
RAM arithmetic.

Each offspring processor has its own local memory. The machines communicate further-
more by global memory. Global and local memories are standard RAM memories. Each
device can both read and write in its local memory using the standard RAM instructions.
For passing information upwards processors write in global memory. Simultaneous reads
from global memory are allowed, but simultaneous writes are prohibited. The machine
accepts if the oldest copy accepts by halting with 1 in its accumulator.

In the model a special input convention is used which supports the reading of an input
of length n in time O(log(n)), so sublinear running times become meaningful.

The MIMD—RAM has the property that its deterministic version is a true second ma-
chine class device whereas its nondeterministic version provides us with a full exponential
speed-up in time. This is expressed by the following result

Theorem 18 The MIMD—RAM model obeys the following equations

1. MIMD-RAM—-PTIME = PSPACFE and
2. MIMD-RAM—-NPTIME = NEXPTIME.
Before starting the proof I first introduce an NP-complete problem which we will

use in order to establish one of the required inclusions. This is the problem BOUNDED
TILING [103], called SQUARE TILING (GP13) by Garey and Johnson [37]

BOUNDED TILING:

INSTANCE: a finite set W of tiles (squares with colors given on their edges),
and an N X N square V with a given coloring on the 4 - N unit edge segments
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on the border of V'

QUESTION: : is it possible to tile the square V' with copies of the tiles in W (without
rotations or reflections) such that each pair of adjacent tiles have matching colors on
their common edge, and such that the tiles adjacent to the border of the square V
have colors matching the given coloring of the border on their exterior edges ?

Proof: The proofs for these equalities can be sketched as follows:

PSPACE C MIMD—RAM-PTIME: one proof consists of simulation of a 2— PRAM
where the channels have been replaced by global registers. Another proof consists of a
version of the transitive closure algorithm for the computation graph. Simultaneous writes
are prevented by designing a fan-in algorithm for evaluation of the and or or of O(S) bits.
In both cases the resulting program is a deterministic MIMD—RAM program.

MIMD—RAM—-PTIME C PSPACE: Due to the restrictions on the arithmetic in time
T at most 2T machines are created, each operating on at most 2T registers and operate
on values bounded by 2T. This implies that all arguments for a recursive procedure
val(i, j, t) , which yields the value of register j in device i at time ¢, can be written down
in polynomial space. A similar procedure can be obtained for the contents of the global
memory. However, it is no longer possible to write down in polynomial space the entire
trace of the computation since each device performs its own instructions. Instead the
trace of the computation is built together with the tree of recursive calls; a certain value
is present in some register as a result of the execution of previous instructions which
have been executed because of the presence of certain values in other registers at some
earlier time etc. It is not hard to see that an alternating RAM can evaluate this recursion
guessing and certifying the trace at the same time. From the fact that the MIMD—RAM
involved is deterministic it follows that only the true values and instructions performed
can be certified. It also follows that this alternating RAM consumes time polynomially
bounded by T. Hence the above inclusion follows.

MIMD—RAM—NPTIME C NEXPTIME and MIMD-RAM-NLOGTIME C NP:
These inclusions can be shown by brute force simulations: the overhead in simulating
a nondeterministic MIMD—RAM computation by writing down an entire record of its
computation is at most exponential in time.

NP C MIMD-RAM-NLOGTIME and NEXPTIME C MIMD-RAM-NPTIME:
These inclusions are shown by designing a nondeterministic MIMD—RAM algorithm which
recognizes an NP-complete problem in logarithmic time. This yields the first inclusion
and the second will follow by a similar argument or by a padding argument. For the
NP-complete problem we select the problem BOUNDED TILING.

An instance of BOUNDED TILING can be solved by a nondeterministic MIMD-RAM
which operates as follows: first it creates N2 copies, each covering a single unit square
inside V. This requires time O(log(N)). Next in a nondeterministic move each processor
guesses the tile to be placed on its square. This is the unique nondeterministic move in
the entire program. Subsequently, using the global memory, each processor exchanges
its tile with the processors representing its neighbors, and certifies whether the choices
match. The result is obtained by a standard fan-in communication of the bits computed
in this way. Evaluation of the match requires constant time; the fan-in procedure requires
O(log(N)) steps. O

61



4.2.2 The LPRAM

The LPRAM is a model introduced by Savitch [107]. It is a hybrid between the k—
PRAM and the MRAM, since it combines the recursive parallelism of the k— PRAM
with the powerful arithmetic of the MRAM. Communication is by channels only as in the
k—PRAM.

Theorem 19 The LPRAM satisfies the equations

1. LPRAM—-PTIME = PSPACE and
2. LPRAM—-NPTIME = NEXPTIME.

Proof: PSPACE C LPRAM—-PTIME : trivial; don’t use the vector instructions.

LPRAM—-PTIME C PSPACE : by a standard guess and verify method. The same
alternating verifier can be used as in chapter 4.2.1 , but since the vector instructions
allow for exponential growth of values the certification of values should proceed at the bit
level rather than at the register level. This is the same trick as is used for the inclusion
MRAM —NPTIME C PSPACE in the papers by Pratt and Stockmeyer [94] and Hartmanis
and Simon [44] [45].

LPRAM—NPTIME C NEXPTIME and LPRAM—NLOGTIME C NP : These inclu-
sions again are obtained by a brute force simulation.

NP C LPRAM—-NLOGTIME and NEXPTIME C LPRAM-NPTIME: These in-
clusions are again proved by implementing a nondeterministic LPRAM -algorithm for
BOUNDED TILING which runs in logarithmic time: the machine first creates a tree
of N2 offspring processors which guess a tile for some unit square inside V. These guesses
are communicated to the oldest processor by a fan-in procedure, where along the way the
exponential growing information is stored using the vector instructions. Next the same
information is distributed once more over N2 processors in such a way that each processor
obtains a cell with its four neighbors. These N2 processors then check whether the tiles
match and finally the results are communicated to the oldest processor by a bounded
fan-in procedure. O

4.2.3 Extending the SIMDAG with powerful arithmetic

In this section we consider a hybrid of a SIMDAG with the MRAM. To my knowledge
such a model has never been formally introduced in the literature, but implicitly it seems
to have been considered.

Starting point here is a more refined analysis of the running time of the transitive
closure algorithm in chapter 3.3.1. Such an analysis shows that the total running time
consists of three contributions:

1. O(log(K)) = O(S) for evaluation of the matrix size K
2. O(S) for unraveling the configurations and computing A(z, M, S)
3. O(log(T)) = O(S) for computing the transitive closure of A(z, M, S)
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This more refined analysis explains why the power of the arithmetic in the model
is a crucial factor in establishing whether the model is a second machine device or not.
Assume that we can use multiplication in unit time, the first contribution is reduced to
O(loglog(K)) = O(log(S)); given more powerful parallel Boolean instructions the unrav-
eling can be distributed over O(S) processors and therefore the contribution for step 2
becomes O(log(S)) as well. As a consequence for the resulting PSIMDAG (for powerful
SIMDAG) model one obtains NEXPTIME C PSIMDAG—-PTIME. Hence it is unlikely
that such a model obeys the parallel computation thesis, unless PSPACE = NEXPTIME.

The above ideas form the basis for the objections against the parallel computation
thesis as put forward by N. Blum [12]. However, in his paper he only considers the
third phase of the above algorithm: the computation of the transitive closure itself in
log(T) steps. It should be clear that in a model where addition is the only arithmetic
available steps 1 and 2 still will require time O(S). But given a suitable set of powerful
arithmetical instructions the required speed-up of steps 1 and 2 from O(S) to O(log(S5))
become possible. It seems therefore that his model requires such strong arithmetical
instructions, but this makes his claims much weaker, given the fact that models showing
this kind of behavior had been proposed before by Fortune and Wyllie and by Savitch.

Remember that Blum’s models resemble the SIMDAG but instead of the priority
strategy for write conflicts the exclusive write strategy is used in the PRAM and common
write strategy in the WRAM. For these models Blum claims the following results:

Theorem 20 When equiped with powerful arithmetic the Blum models satisfy:

1. NEXPTIME C WRAM — PTIMFE
2. EXPTIME C PRAM — PTIME.

Proof: Taking the computation of the transition matrix for granted, given the powerful
arithmetic, the first inclusion claimed by Blum: NEXPTIME C WRAM —PTIME, follows
from the fact that in the transitive closure algorithm only 0’s and 1’s need to be written,
and the writing of a 0 can be suppressed. So in the case of a multiple write the writes will
be consistent. Since a bound T on the running time of the simulated machine is given we
know that instead of the transitive closure the T-th power of the transition matrix can be
computed.

The second inclusion: EXPTIME C PRAM—PTIME, follows by realizing if the ma-
chine is deterministic all powers of the transition matrix have the property that every row
contains at most a single non-zero entry. From this it follows that during a squaring every
matrix element A(z, M, S)[4, ] will be written by at most one processor. Note that also
step 2 of the algorithm must be modified in order to have the required fan-in of O(S)
bits of local information into a single matrix element: this can be obtained at the price
of an additional time of O(log(S)). So Blum’s construction is valid on the PRAM for
deterministic computations. O

4.2.4 Arbitrary computations in constant time

Intuition in computation theory states that, whatever model of a computing device one
selects, it should always remain true that running time on this model behaves like a
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complexity measure [10]. Hence in particular it should never be possible to perform
arbitrary complex computations in constant time.

A model which violates this very mild restriction has been described in the literature.
We find the model in the context of an analysis of the correct interpretation of the parallel
computation thesis by Ian Parberry. These ideas, which were originally presented in his
Ph.D. Thesis [83], have been published recently in SIGACT News [84]; for similar results
with slightly improved resource bounds see (85].

In his discussion Parberry considers a parallel RAM model which runs fully syn-
chronously. The number of active processors is determined at the start of the computation.
Each processor has beside the standard additive arithmetic some shifts or multiplication
like instructions which enable processors to extract bits from bit-strings at arbitrary loca-
tions. The processors communicate via a global memory. Each processor has a read-only
register initialized at its index.

Resources considered are time T, storage S (counted in RAM words), word-size W
(both in local and global storage), and number of processors n: T(n), S(n), W(n) and
P(n).

The model resembles the SIMDAG with two major differences: in the first place, rather
than having all processors being activated by a single central processor, all processors
with index < P(n) are activated at time ¢ = 0 and remain so till all have halted. The
result of the computation can be found by inspecting register 0 in global memory. The
second difference is that the model is non-uniform: some quantities like P(n) and derived
quantities are given to all processors in advance.

Having done so we have given the machine sufficient power to perform the transitive
closure algorithm from chapter 3.3.1 in constant time. Remember the three contributions
of the running time analysis introduced in chapter 4.2.3 above; here T'(n) and $(n) denote
the time and space bounds on the Turing machine computations on input z with |z| = =,
and K (n), the size of the transition matrix A(z, M, 5'(n)) equals 2¢’ - S'(n) for a suitable
constant ¢’.

1. O(log(K (n))) = O(S'(n)) for evaluation of the matrix size K(n)
2. O(S'(n)) for unraveling the configurations and computing A(z, M, S'(n))
3. O(log(T"(n))) = O(S'(n)) for computing the transitive closure of A(z, M, §'(n))

Step 1 becomes O(1) due to the non-uniformity involved. Quantities like the space
S'(n) and time T'(n) for the Turing machine to be simulated are given in advance, as are
the number of processors P(n) which will be invoked.

Step 2 and step 3 are combined. In the simulation by Blum a team of 0(S'(n))
processors is called upon in order to decompose the index of processor i- K (n)+ j into bits
and pieces in order to determinate whether A(z, M, S'(n))[4, j] equals 0 or 1. So the index
of a processor is analyzed whether it represents a legal transition between two successive
transitions of the machine which is simulated. In Parberry’s simulation this idea is carried
to the extreme: the index of a processor is analyzed whether it represents the coding of
an entire accepting computation. The length of a string coding of such a computation
becomes O(S’(n).T'(n)), hence the total number of indices analyzed in this way becomes
2¢-T'(n)-5'(n) for some constant c. The analysis of one such index can be performed by
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breaking it into bits and pieces: given a coding like the one used in time-space diagrams
of Turing machines, a team of T'(n) - S'(n) processors can perform the comparisons of
the coded configurations at time ¢ and time ¢ 4+ 1 in time O(1); as Parberry indicates T
processors in a single team already suffice. One must check furthermore that the initial
configuration at time ¢ = 0 represents a proper configuration on the real input but that
can be done in a similar way.

The result obtained in this way is that the simulation time becomes O(1) at the price
of using P(n) = 2¢T'(")5'(") . T'(n) processors and word-size W(n) = O(T"(n) - §'(n)).

By a similar proof Parberry shows that if you can simulate with word-size W(n) a B(n)
time bounded deterministic Turing machine in time B’(n) on his model one can use this
simulation as a tool for speeding-up a T”(n) time-bounded deterministic Turing machine
computation with word-size O(W (n) + B(n) + log(T(n))) to time O(T(n)/B(n) + B'(n));
the second term in the time analysis of the simulation is the time required to set up
a transition matrix structure for computing B(n) steps in time O(1) by table look-up,
whereas the first term measures the time needed for simulation of T'(n) steps in blocks of
B(n) steps each.

This brings Parberry to his analysis of how the above simulations support in fact the
parallel computation thesis: a “reasonable” parallel device should satisfy the constraint
that W (n) is polynomially bounded by T(n) and that (as a consequence) P(n) is bounded
by some expression 2¢T(n)* for some constant k. The result above shows that within
these bounds arbitrarily large polynomial speed-ups can be obtained with “reasonable”
devices, but the speed-up to constant time is possible only at the price of violating this
“reasonability” criterion.

To my opinion Parberry’s result shows once more the hideous power of shifts and
multiplicative instructions. Also the non-uniformity of the model makes it suspect. If
quantities like T'(n), S/(n) or P(n) must be computed from the input the O(1) time
bound is invalidated.
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the Wagner and Wechsung book saved me from having to put together the encyclopaedic
survey I envisioned when I started drafting this chapter. Looking back I know that I could
never have completed it along that road within the 60 pages allowed to me.

Finalizing this chapter would have been impossible without the real-time assistance
of L. Torenvliet during the process of having the Mac Write document transformed into
IATEX and having the result being processed on our machine.
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