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Abstract

In this paper we show that for various nondeterministic machine models space is a more
powerful resource than time. The main results are that nondeterministic T(n) time-
bounded single-tape Turing machines can be simulated by /T (n) space-bounded Turing
machines in T'(n) time, and that T'(n) time bounded nondeterministic queues can be simu-
lated by /T'(n)log T(n) space-bounded single-tape Turing machines in time T(n)/T(n) X
log? T(n). The second result is a consequence of the planarity of the computation graph
(which we also show) and a special version of the planar separator theorem. Therefore
similar results can easily be derived for closely related models.



1 Introduction

Determining the relationship between recognizing power of resource-bounded machine
models is a central and long-standing open problem in computational complexity theory.
The study of different machine models for sequential computation is essential to obtain
a model-independent complexity theory, or to translate results obtained for one model
directly to other models without proving them again.

Many theorems have been proved on the relation between different variants of the
Turing machine model. For a Turing machine (TM for short) time is measured by the
number of transitions in a computation and space is measured by the number of different
cells visited by the head(s) during the computation. As far as space is concerned all
different models can simulate each other with constant factor overhead. Results concerning
time complexity show that all different multitape TMs can be represented by two-tape TMs
if one allows for a logarithmic time overhead (See theorem 12.6 in [4]). The single-tape
TM forms an exception here since if the Turing machine does not have a separate input
tape there is a quadratic lower bound known for the recognition of palindromes (See
theorem 10.7 in [3]). W. Maass [13], M. Li and P. Vitanyi [10], Z. Galil, R. Kannan, and
E. Szemeredi [1] proved following more general lower bounds for Turing machines with an
extra input tape, viz.,

o There is a language that is accepted by a deterministic two work-tape TM in linear
(even real) time but which requires time £(n?) on any deterministic one work-tape
TM [13] [10].

o There is a language that is accepted by a deterministic two work-tape TM in lin-
ear (even real) time but which is not accepted in time n?/log? nloglogn by any
nondeterministic one work-tape TM [13]. This result is minorly improved by [10] to
Q(n?/lognloglogn) and significantly improved by Galil, Kannan, and Szemeredi [1]
to Q(n?/log. . .logn) for any positive integer s.
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o There is a language that is accepted by a deterministic TM with 2 pushdown stores
or one queue but which requires (n?) on any one work-tape deterministic TM [10].

For a survey of above results, see [11]. The present paper investigates the relation
between time and space for some machine models. It is obvious that any TM that consumes
S(n) space to perform a computation must use up Q(S(n)) time. On the other hand:

Any language accepted by a T'(n) time bounded multitape TM can be accepted
by a T'(n)/logT(n) space bounded multitape TM

as is shown in [6]. For single-tape TMs even sharper bounds are known [5].

¢ Any language accepted by a single-tape TM in time T'(n) > n? can be accepted by
a single-tape TM in space \/T'(n).

¢ Any language accepted by an off-line TM in time T'(n) > n? can be accepted by an
off-line TM in space /T (n)logn.

In their paper [7] Ibarra and Moran showed that these simulations (which up till then
required exponential time) can also be time-efficient; in particular:



1. Any language accepted by a single-tape TM in time T'(n) > n? can be accepted by
a single-tape TM in space 1/T(n) and time T?(n).

2. Any language that is accepted by an off-line TM in time T'(n) > n can be ac-
cepted by an off-line TM in space bounded by /T(n)logn and time bounded by

VIS (VI + ).

logn

3. Any language accepted by a single-tape nondeterministic TM (NTM) in time T'(n) >
T2(n

n for any

n? can be accepted by a single-tape NTM in space S(n) and time
VT (n) < S(n) < T(n).

4. Any language accepted by an off-line NTM in space S(n) and time T?(n) (1 + 'STnZT)
for any /T (n)logn < S(n) < T(n).

The start (and inspiration) of the present paper is a sharpening of their result 3. We
show for machines operating within reasonably well-behaved time bounds that:

Theorem 1 Any language accepted by a single-tape NTM in time T(n) can be accepted
by a single-tape NTM in space \/T(n) and time T(n) provided that T(n) > n? and \/T(n)
is fully time- and space constructible.

2 On single-tape Turing machines

2.1 The standard model

The key idea in the space-efficient simulation for Turing machines is that instead of replay-
ing the entire computation chronologically, the computation can be divided into chunks
of moves during which the tape head is in a certain block on the tape. Dividing the tape
in blocks of more or less the same length (but < /T(n)) we can replay the computation
block by block, and accept if in some block an accepting configuration is reached. Con-
sistency between blocks is guarded by writing down de direction and state of the Turing
machine upon entering and leaving the block. The fact that this administration of states
and directions and the storage of the tape block needs about the same space then makes
the entire simulation space efficient. Thus there are two important concepts which we will
describe briefly: The partition of the tape, and the “trace of the computation”.

Definition 1 A sequence P = P, P, ... is a legal partition of a semi-infinite tape F if for
each 1:

e P; is a block of a finite number of consecutive cells of F.
e P;,, is directly to the right of P;.
o each cell of F belongs to a uniqe F;.

Now for a division of the tape into blocks and a computation of machine M we can
define the trace of a computation. The concept is simple: Each time the head crosses the
border between two consecutive blocks, the direction and state of the machine are denoted



in a pair (d,q). Furthermore we keep the trace ordered so that the entire sequence of
crossings pertaining to block 4 is denoted (chronologically) before the sequence pertaining
to block j, whenever i < j. Separator symbols may make discrimination between pairs
belonging to P; and P;y; possible. Now:

Definition 2 Let M be a single-tape TM and w be in £*. Let P be a legal parti-
tion of the tape of M. Then for each nonnegative integer n the trace of M on input
w with respect to P after n steps (denoted by TRACE(M,w, P,n)) is a finite sequence
(d}q), ..., (di,g}),- -, (d*, g*) where d € {—,—} and ¢ is a state of M and is defined
as follows:

1. TRACE(M,w, P,0) is the empty sequence.

2. If M’s head does not cross a border between two consecutive blocks of P during the
n’th move then TRACE(M, w, P,n)= TRACE(M,w, P,n— 1).

3. If M’s head does cross a boundary during the n’th move then the two blocks in the
trace corresponding to the two blocks in P change. In both blocks the pair (d, ¢) is
added to the sequence. (Note that entrance or exit of the tape head is determined
uniquely by parity. Then e.g. « is interpreted as “the tape head enters coming from
the block immediately to the right” in the case of an entrance pair and as “the tape
head exits to the left” in the case of an exit pair).

As the trace is actually a double administration of events, we define the length of a
trace to be the number of pairs in the trace divided by 2 and rounded upwards. Since the
first entrance pair is always (—, go) it may wlog be omitted.

It is easy to see that for a computation of length T(n) the length of a computation
trace corresponding to a partition in which all blocks have length /T'(n) is about /T (n).
We can get this precise if we allow the first block to have a different length.

Definition 3 Let s > 1 and 1 < j < s. Then the j’th legal partition of size s is the
partition (P, P1, P2) defined by:

e P, consists of cells 1,2,...,7.

e Fort > 0, P, consists of cells j + (¢t — 1)s + 1 through j +¢ X s.

Now from [7] we borrow the following lemma:

Lemma 1 Let M be of time complezity T(n). Let w be in £*, |w| = n. For each j,
1 < j < /T(n) let PJ be the j’th legal partition of size \/T(n) and let £; be the length of
TRACE(M,w, P?). Then there is a jo such that 1 < jo < /T (n)

and ¢;, < \/T(n).

Proof: The proof is an elementary application of the pigeon hole principle, and is left to
the reader.O

Now we are ready to present the simulation. A Turing machine M operating in time
T(n) is simulated by a Turing machine M’ operating in time T'(n) and space /T'(n). (Con-
stant factors are swept frequently under the carpet in the sequel by grace of speedup and



compression theorems.) The idea is quite simple. First the tape is divided into two blocks
of size \/T(n). (This can be done since /T'(n) is fully time- and space constructible.)
The first block will be used to simulate the actions of the Turing machine. The second
contains a guessed computation trace as described in definition 2. If the guessed trace
threatens to become longer than /T(n) then M’ halts and rejects. The machine accepts
if the guessed trace ends in an accepting configuration and the trace can be verified. The
verification consists of two parts.

1. The local verification

This is the verification per block worktape. It starts by making the first part of the
worktape blank, except when the first and maybe the second block are simulated.
(This is the input which is of size < T(n) and is divided between the first and second
block of simulation depending on the guessed j for which the j’th legal partition was
guessed?)

Now repeat until the block of trace items pertaining to the present block is exhausted:

e Fetch a next entrance pair (d, ¢) from the trace part.

e Simulate M’s program starting from the left or the right side of the block (as
indicated by d) in state g, until M attempts to leave the tape block.

o Check that the exit state and direction correspond to the exit pair written down
in the trace part.

Obviously the starting conditions for each block can be realized in time \/T(n). So
the total time spent does not exceed T'(n). The simulation of M’s program totalled
over all blocks cannot exceed T'(n) for obvious reasons. Each time a new entrance
pair is fetched or and exit pair is verified the head has to travel a distance of at most
2,/T(n). As there are only /T(n) pairs to be checked this cannot cost more that
T(n) steps.

2. The global verification

This part checks that the computation trace is a consistent log of the movements of
the tape head between blocks.

Starting with the first pair (d, ¢) in the the trace (which is the first exit pair of the
input block). It marks a pair, goes to the next unmarked pair (d’,¢') of the block
given by d in this pair (which must be the first pair of block 2 for the pair (d, ¢)) and
checks that the direction and state of the two pairs (remembered exit pair and found
entrance pair) compare. Then the next exit pair is found immediately to the right
of the just checked entrance pair, and the corresponding entrance pair can be found
in the block given by d. In this way the entire trace is checked for consistency, and
the machine accepts if it finds an accepting state during this process?. The distance
between two pairs does not exceed /T(n) and this distance has to be crossed at

lwe don’t move the symbols belonging to the second block since this may take (T(n)) time and
complicate the proof. Instead the extension of the input over two blocks may require assigning j < 4/T(n)
extra cells of worktape to the simulation, but this will disappear in the constant factor

2As the global verification is in chronological order it can immediately halt on this event



most /T (n) times. Therefore the total time spent in the global verification is also
at most T'(n).

This concludes the proof of theorem 1

Note: The local and global verification described in the proof above can easily be
intertwined without loosing correctness. Each time an exit pair is verified, an entrance
pair can be checked off in one of the adjacent blocks of the trace. As noted before the
discrimination between entrance and exit pairs can be made by parity, the entrance pairs
in the adjacent block pertaining to the presently checked block are determined uniquely
by d, and they are stored in chronological order.

Note: The simulation above is obtained for weakly time-bounded machines. By insert-
ing a Martin Fiihrer-like clock [2] the result can also be obtained for strongly time-bounded
models. This is in fact what is done by Lorys and Liskiewicz who obtained the result of
theorem 1 independently (but later) in their paper [8].

2.2 Sublinear-space models

The reason for having the restriction 7'(n) > n? in theorem 1 is of course that the input
string (which has length n) is found on the tape at the start of the computation. Hence
all cells occupied by the input have to be charged to the computation. On the standard
Turing machine model therefore one can never talk about memory occupation less than
n.

For this reason space on (single-tape) Turing machines is usually measured on a slightly
different machine model. It is a standard one-tape Turing machine machine with an extra
read-only tape on which initially the input is written. Cells occupied on this input tape
are not charged for in counting space usage.

These “single”-tape machines come in two flavors. There are machines with a head
on this input tape which can move in two directions—these are called off-line Turing
machines—and there are machines with a head on this tape that can only move to the
right—these are called on-line Turing machines.

It is easy to see that on these machines a simulation of the standard model does not
need the restriction T'(n) > n?. We will show this for the weakest of the two models, the
on-line TM.

Theorem 2 Any language accepted by a single-tape NTM in time T(n) can be accepted
by an on-line NTM in space \/T(n) and time T(n) provided that \/T(n) is fully time- and
space constructible.

Proof: Use the same simulation as in the proof of theorem 1 with the exception of the
initialization of the blocks. If the input is not yet exhausted (i.e. if the symbol under the
input head isn’t a blank) a next chunk of /T (n) cells is read off the input tape and stored
in the simulating block of the work tape.

Note that this theorem is by no means a sharpening of the results mentioned in the in-
troduction since it is a result on simulation between two different machine models whereas
the results of Ibarra and Moran are about simulations of on(off)-line machines on on(off)-
line machines. It is of course more interesting to have results on these type of simulations



and therefore we will investigate the meaning of the simulation described in theorem 1 for
these models. We begin with the off-line model.

The main problem we have with the simulation of an off-line NTM on an off-line NTM
is keeping track of the position of the input head. While simulating the computation on
a single block of the partition, the input head may move to the left or to the right. But
between two steps in the trace during the local verification of the trace, the input head
may have in the simulated computation visited several other cells and as a consequence
may not be in a position adjacent to the position taken upon previously leaving the block.
The only solution we see at present to this situation is storing in the computation trace the
position of the input head upon entering and leaving the block for a cost of another logn
tape cells per pair. For the local verification this means that for each fetched entrance pair
the input head must be positioned. This means traveling a distance of < n steps while
keeping and updating a counter of size logn. This can be done in time nlogn time. As
there are < /T(n) entrance pairs, keeping n < /T (n) this means that the total time for
the local verification kan be kept below T'(n)logn. The global verification is again done
by checking pairs, but now the tape head has to travel a distance of \/T(n)logn (Note
that the comparison of input head positions can be done bit by bit, so there’s no need for
keeping a counter.) This means that the total cost of the global verification also amounts
to T(n)log? n. From this we get:

Theorem 3 Any language accepted by an off-line NTM in time T(n) > n? can be accepted
by an off-line NTM in space \/T(n)logn and time T(n) log? n.

For the on-line model the situation is just a little more complicated. Of course the
head can move between exiting and reentering the simulated block but all reads performed
in the local verification between two consecutive fetches of entrance pairs can be found in
a consecutive block of cells on the input tape since the head of the simulated machine can
move only to the right. Moreover these “blocks of reads” are consecutive if the entrance
pairs are placed in chronological order, as is done in the global verification. Therefore
we propose expanding the entrance pairs in the computation with a (guessed) string of
symbols that represent the reads that take place between entering and leaving the block.
As no more than n reads can take place (and T'(n) > n?), the length of the computation
trace is increased by at most a factor 2. On the other hand obtaining the (guessed) read
symbols during the local verification may imply a travel of the tape head over a distance
of 2 X /T(n) cells, but this event can occur only n times in the entire local verification.
Therefore it presents O(T(n)) extra work, and this vanishes.

During the global verification the guessed strings must be checked against the input.
At the beginning of the global verification the input head is still positioned on the first cell
of the input tape. Each time a new entrance pair occurs, its string is matched against the
next block of input tape cells by simultaneously moving the input- and worktape head.

Altogether we obtain:

Theorem 4 Anylanguage accepted by an on-line NTM in time T(n) > n? can be accepted
by an on-line NTM in space /T(n) and time T(n).

The door is now open for a number of inter-model simulations. (On-line on off-line and
vice versa, On-line on standard model etc.) We don’t however see any nice new insights



other than the ones given above to speed up these simulations or make them more space
efficient then the ones above so we abstain from describing these for the moment.

3 On the planar separator theorem

Lipton and Tarjan [12] proved an interesting theorem on planar graphs. It turns out that
in any in graph G having n nodes that can be embedded in the plane, a subset S of \/n
nodes can be singled out with the property that this subset partitions the remaining nodes
of G into two subsets G; and G both of size about n such that any path going from a
node in G to a node in G runs through a node of S.

For our purposes we need a special form of this planar separator theorem. Basically
we want to have a division of G into chunks of size about /n, with separators of size
\/n between the chunks. This makes it possible to verify a guessed graph of size n on a
single-tape Turing machine in about /n space. It is not clear that any given planar graph
has this property. However for any given planar graph G there is graph G’ having this
property and is “close enough” to G to fit our purposes.

Theorem 5 For any planar graph G with n nodes of mazimal degree c there is a planar
graph G' with the property that:

1. G' can be divided into 24/n — 1 subsets {V1,...,V 7} and {S1,...,5 5 1} of size
O(4/n) such that:

(a) There are no edges between nodes in V; and nodes in V; unless i = j.
(b) There are no edges between nodes in V; and S; unlessi=j ori=j+1.
(c) There are no edges between nodes in S; and S; unlessi =j or j =i+ 1.

2. G' is constructed from G by (repeatedly) transforming edges into paths of length 3.

Proof: Start with G. Find a planar separator S of size /n dividing G in W{ and W7
both of size about % X .

Next find a separator T in the planar graph WY of size 1/ X n dividing it into Wy
and W3 both of size 3 x n. Continue this process until W} is of size < \/n. Recursively
we thus create a tree-like structure representing a partition of G into subsets. The leaves
represent subsets of G of size < \/n and the internal nodes represent “separators” of size
\/g in which £ € O(log n) stands for the level of the internal node in the tree.

To avoid confusion we will use the names ‘separator’ and ‘leaf’ for the nodes in the
tree reserve the word ‘node’ for nodes in G and G'.

Now from the construction we may easily infer that there are no edges between nodes
in subsets represented by separators and leaves on different paths in the tree. They have
a common “ancestor-separator”. Hence the only edges that can present a conflict with
the situation we want to achieve run from “higher order” separators to “lower order”
separators, or from separators to leaves. These edges may spoil the linear construction we
may get from flattening the tree in an inorder, since they connect nodes that should be
separated. The indicated repair for this situation is inserting extra nodes into the “lower
order” separators crossed by these edges, break up the edge such that it runs through such
a node, and argue that the number of thus inserted extra nodes is tollerable.



As the degree of any node in G is bounded by ¢, the number of edges emanating from
separator T cannot exceed ¢ X |T'|. Hence for any separator To on a path in the tree the
splitting up of edges that run across such a separator cannot mean an addition of more
than Y7 ¢ X |T| extra nodes where the sum is taken over all ancestors of To. This means

that for any separator there can be at most Ei":go” ¢ X /31 extra nodes necessary. Hence

any separator contains at most O(/n) nodes after this operation, and the conditions of
the theorem are met. O

A computation graph of some machine model’s computation on a given input is a
graphical representation of this computation. E.g., for a single-tape Turing machine the
computation can be represented by nodes in which tape symbols and the state of the
machine are stored. The nodes in the graph represent tape cells and steps in time. A cell
on the tape is represented by a node in the graph for each time it is visited by the tape
head. There is an edge between nodes i and j if they represent the same tape cell c and
j represents “the next time” that tape cell c is visited by the head, and there is an edge
between i and j if j represents the tape cell that is visited immediately after visiting the
tape cell represented by 4. For locality of consistency check needed in corollary 1 below it
seems necessary that there’s also room for an integer in the node in which the number of
the tape cell can be stored.

The computation graph for a Turing machine may be checked by pairwise comparison
of nodes. It is consistent if and only if for all nodes that are connected by edges that mean
that they represent the same tape cell—and hence bear the same number—the difference
in symbol is consistent with the program (The head is present by definition, and the
state of the machine is also information present in the node), and all nodes connected by
time-edges must have the direction and state transition consistent with the program.

For machine models that have a planar computation graph for which consistency can
be checked through pairwise comparison of nodes theorem 5 has the following implication.

Corollary 1 Any computation which has a planar computation graph of n nodes, in which
each node can be described using S(n) € O(logn) tape cells and for which the consistency
of the computation graph can be checked by pairwise comparison of nodes can be simulated
on a single-tape NTM in space /nlogn and time n\/nlog’n

Proof: According to theorem 5 the computation graph can be transformed to a planar
graph with the structure V3,...,V £, 51,.. ., S /a-1- Some nodes in S; are not part of the
original computation graph these nodes are used for “passing through information”, i.e.
two nodes v; and v; of the original computation graph are connected by a path of these
nodes. If the segment that contains v; comes before the segment that contains v; then all
of these intermediate nodes contain the information of v;.

Now consistency of the computation graph can be verified by the following process:

1. Guess V3, and S; and load them on a tape. Note that for each node a pointer giving
the location of connected nodes takes up O(logn) space.

2. Verify the part loaded by pairwise comparison of nodes. This involves keeping and
updating a counter of size logn under the head for a cost of log? n time, checking
off pairs for a cost of the square of the number of tape cells occupied.



3. Guess a next part of the graph consisting of a new V; and S; if the tape contains a
treated block that has no edges in common with part then this part of the tape can
be reused. Hence there are never more than 3 blocks of size \/nlogn tape cells in
use. Now repeat step 2 with the new blocks. Once V 5 is thus verified the entire
computation graph is verified and we can accept if and only if we have found an
accepting configuration on the way.

O

An immediate corollary to this is that the single-tape Turing machine operating in
time T'(n)—and having therefore a computation graph of T'(n) nodes which can be stored
in O(log T(n)) cells per node—can be simulated on a single-tape Turing machine in space
/T(n)log T(n), but in view of theorem 1 this is not surprising. It is however surprising
that the corollary holds for any machine model for which the computation graph can be
proven to be planar. In the next section we will show a particular nice example of this.

4 Example: The single-queue machine

In this section we will show that the computation graph belonging to a computation of
a machine with a single queue data structure is planar, and therefore the single queue
satisfies the conditions of corollary 1. A queue can be thought of as a Turing machine
with an input tape and a single work tape. Instead of a single read-write head on the work
tape however the queue has a separate read and a separate write head, initially positioned
on the leftmost cell of the semi infinite work-tape. The queue can write a symbol on the
tape, after which the write-head moves to the right, or it can read a symbol from the
work-tape, after which the read head moves to the right. If the queue attempts to read
when the positions of read and write head are equal, then the computation aborts.

M. Li [9] has shown that a single queue machine operating in time T'(n) can be sim-
ulated on a single tape in time T'(n)/T(n)/log(T(n). Therefore theorem 1 means that
a single que can be simulated on a single tape NTM in space \/ T(n)y/T(n)y/logT(n) in
time T'(n)\/T(n)y/log(T(n)). However we can show that the single queue has a planar
computation graph and that we can therefore obtain a simulation of a single queue on a
single tape NTM which is substantially more space-efficient.

The computation graph of the single queue consists of three types of node.

1. Nodes in which a read (from the queue) is executed.
2. Nodes in which a write (to the queue) is executed.
3. Nodes in which neither a read nor a write is executed.

All three types of node can execute a read-from-the-input instruction. This corresponds
to a change of position for the input head. Of course there are also the two flavors (on-
and off-line) here. Nodes are connected via edges if they represent consecutive steps in
time or a symbol is written on the queue in one node which is read from the queue in the
second.

Consistency of the computation graph can be checked as follows.



1. Nodes that are connected via time edges must contain state descriptions that are
consistent with the program. Positions of read and write head for the queue must
be equal unless the a read-to-the-queue or write-to-the-queue is performed3.

2. Nodes that are connected via read-write edges must contain the same queue-symbol.
Moreover the position of the read head described in the read node must agree with
the position of the write head in the write node.

3. Nodes that contain a read-from-the-input-tape instruction must have a change of
position of the input head consistent with the program. Note that for this purpose,
the position of the input head must be held in all nodes and changes in this position
must also be checked during the verification of the time edges.

It is now clear that O(log T(n)) tape cells are enough to describe nodes of a computa-
tion graph of a single queue operating in time T'(n) on a single-tape Turing machine, and
that consistency can be checked via pairwise comparison of nodes. Depending on an on-
or off-line situation an overall check for consistency with the input has to take place. This
can cost an overhead of as much as T(n) X n X log? n in the off-line case. However since
this overhead is already consumed by the time overhead of corollary 1 in case n < /T'(n)
we can ignore this. To meet the conditions of corollary 1 we only need to show that the
computation graph of a single queue is planar. For this we have a simple and elegant
proof.

Theorem 6 The computation graph of a single queue can be embedded in the plane.
Proof: Divide the nodes of the computation graph into three sets.

1. V; is the set of nodes that execute a write-to-the-queue instruction.

2. V4 is the set of nodes that execute a read-from-the-queue instruction.

3. V3 is the set of remaining nodes.

We assume that all three sets are ordered chronologically. Now the entire computation
graph can be embedded in the plane as follows.

e Nodes in V; are laid along the positive x-axis in chronological order towards +co.

e Nodes in V, are laid along the negative x-axis in chronological order towards —oo.

Nodes in V; are connected to nodes in V; via read-write edges that run in the positive
y-halfplane. It is quite easy to see that these edges can never cross. In the negative
y-halfplane edges run that connect nodes in V; with nodes in V; or V3 (and vice versa)
according to their chronological order. It is also quite easy to see that these edges can never
cross. Finally the nodes in V3 are placed on the edges that run in the negative y-halfplane—
thereby of course replacing such edges by an edge-node-edge triplet—in chronological order
between the right pairs of nodes in V; and/or V5. O

From theorem 6, the possibility of local verification and corollary 1 we then get.

31f there are (as in the case of the Turing machine) more than one type of edges present in the nodes
(each of which must be validated by pairwise comparison) this step may be repeated several (but always
a constant number of) times
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Corollary 2 Any language accepted by a single queuve in time T(n) > n? can be accepted
by a single-tape NTM in space /T(n)logT(n) and time T(n)\/T(n)log? T'(n)

5 Conclusions

Corollary 1 may set the stage for numerous simulation results on a single-tape Turing
machine. Once planarity of the computation graph is proven, and the graph can be
checked locally for consistency the simulation is given. A first candidate may be the two-
stack machine which also has a planar computation graph [14]. It is however annoying
to say the least that theorem 1 presents a sharper result than can be obtained from the
planarity of the computation graph and corollary 1. It may be possible to get rid of the
polylog factors in time and space overhead. The overhead in space stems from the fact that
the nodes of a computation graph for a single-tape Turing machine seem to need counters
to keep track of the head position. The overhead in both time and space stems from
the fact the pointers in a graph of \/n nodes need logn space. Now if an argument can
be found for storage of the graph in such a way that consistency can be checked without
keeping track of the head position, and nodes can be laid on the tape such that the relative
addresses—i.e. pointers—cannot become too large (preferably of constant size) then the
polylog overhead vanishes. The /T (n) time overhead stems from the fact that pairwise
comparison of nodes needs quadratic time. Therefore time T(n) is spent in the pairwise
verification of sections of the computation graph. To get the result of theorem 1 it seems
that an observation is needed that allows a linear check of a section of the computation
graph for a cost of /T(n). Only if such obstacles are overcome then the general result
can become as sharp as the result in theorem 1. Much work remains.

The question of whether the time overhead can be completely abolished in the non-
deterministic case is particularly interesting since it either shows a difference between
determinism and nondeterminism for the particular model—if the time overhead can not
be abolished for the deterministic model—or it shows a real difference between time and
space for the model, in case it can. It is at present unclear if the results in this paper have
any deterministic counterparts. This therefore also remains an object of further research.
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