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Abstract

In this paper we investigate relations between various types of logarithmic space bounded
reducibility notions on nondeterministic space bounded complexity classes. It turns out
that differences exist between almost all completeness notions under different reducibility
notions for almost all complexity classes considered.



1 Introduction

An important concept in structural complexity theory is the notion of resource bounded
reductions. Since the first use of polynomial time bounded Turing reductions by Cook [2]
and shortly thereafter the introduction of polynomial time bounded many-one reductions
by Karp [6], considerable effort was put in the investigation of properties and the com-
parison of different reductions and corresponding completeness notions. In 1975 an exten-
sive survey of different types of reductions—and differences between these reductions on
DEXT (= UnewDTIME(2"))—was given by Ladner, Lynch and Selman [7].

Berman and Hartmanis [1] introduced in 1979 “P-isomorphism” in order to investigate
a structural similarity between all natural <E,-complete sets for NP. It turned out that all
well-known NP-complete sets [3] are P-isomorphic, hence they conjectured that all NP-
complete sets with respect to <Zreductions are P-isomorphic (the Berman-Hartmanis
conjecture [1]). In 1987 Watanabe [9] proved almost all possible differences between the
corresponding polynomial time completeness notions on DEXT.

Probably because of the implications on the P L NP question—direct results on
differences between polynomial time reductions on NP immediately solve the problem—the
bulk of the research was devoted to time-bounded reductions and especially polynomial-
time bounded reductions have received a great deal of attention. Much less is known about
space-bounded reductions. Though obviously a notion at least as powerful as polynomial
time bounded reductions, the logarithmic space bounded reduction has received far less
attention in the past. This is the more peculiar since logarithmic space bounded reductions
are useful for proving completeness results where polynomial time bounded reductions are
not. Logarithmic space bounded reductions may be used for proving completeness of
certain classes in P, thereby making the existence of an efficient parallel algorithm highly
improbable [2].

We can only guess for the reason of this underexposure of logarithmic space bounded
reduction to research efforts. One reason may be that the comparison of polynomial
time bounded reductions was mainly directed to a setting of exponential time—a setting
in which the differences both in properties and in importance are much less apparent—
another may be that the observations needed to show differences between different loga-
rithmic space bounded reductions on interesting complexity classes were missing.

Recently, Immerman [4] and independently Szelepcsényi [8] proved that many nonde-
terministic space bounded complexity classes are closed under complementation. It turns
out that this closedness under complementation is exactly the observation needed to show
that many of the results derived by Watanabe for DEXT go through for nondeterministic
space bounded classes and logarithmic space bounded reductions. Following the lines of [9]
we derive these results in the present paper.

2 Preliminaries

Let ¥ = {0,1}, and let £* denote the set of all words over ¥. A language is a subset of
¥*. For any string z, || denotes the length of z and for any set S, let ||S|| denote the
cardinality of S. For any set A the set AS™ is {z € A | |2| < n}. We assume a pairing
function computable in logarithmic space from ¥* X ¥* to X*. Let Azy. < z,y >, be such
a function.



We will use the following shorthands:
oEIo n : for infinitely many n.

¥ n : for all but finitely many n.
We will also refer to the latter as : for almost all n.

Our machine model is a standard multi-tape nondeterministic S(n) space bounded
Turing machine acceptor. A Turing machine may or may not be an oracle machine.
The space used by the oracle tape as well as the input and output tape is not charged
to the computation. We assume a standard enumeration of logarithmic-space bounded
deterministic Turing machines My, Ma,..., and a universal Turing machine My ,which
on input < i,z > simulates M; on input z. We use MA(z) to denote the execution of
M on input z relative to oracle set A. Q(M,z, A) denotes the set of queries made by
MA4(z) during its computation. For any NTM (nondeterministic Turing machine) and set
A, L(M) denotes the set of strings accepted by M and L(M, A) denotes the set of strings
accepted by M relative to oracle set A. L(M)(L(M, A)) will be called the language of M
(relative to A).

In the sequel let S(n) be any space constructible function, which satisfies the following
property:

Jim inf 27 _ o
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To obtain model-independent results we assume that all complexity classes are closed
under constant factor space-overhead. By NSPACE(S(n))we mean the complexity class
specified by nondeterministic S(n) space- bounded Turing machines. We use LOGSPACE
as an abreviation for DS PACE(log(n)).

We also consider deterministic logarithmic-space bounded Turing transducers and their
standard enumeration. T; denotes the ith logarithmic-space bounded Turing transducer
and also the partial function from X* to L*. Here we also assume a standard universal
Turing transducer Ty, which on input < 7,z > computes T; on input z. Let FL be the set
of all total functions in {T;}iemv.

The ordered pair << ai,...,ar >,a > is called a truth-table condition of norm k if
< ay,...,ar > is a k-tuple (k > 0) of strings in * and a is a k-ary Boolean function [7].
The set {ai,...,ax} is called the associated set of the tt-condition. A function fis a
truth-table function if f is total and f(z) is a truth-table condition for every  in ¥*. For
any tt-functionf and any z in £*, Ass(f,z) denotes the associated set of f(z). For any
space constructible function ¢, f is called a ¢( n)-bounded truth-table function, if for every
2 in I*, the norm of the tt-condition f(z) is bounded by ¢(|z|). If a function f is a k-tt
function for some integer (k > 0) then we call f a bounded truth-table (btt-) function.
We say a tt-function is a disjunctive truth table (dtt-) function if, for any z in ¥*, the
Boolean function of the tt-condition is disjunctive. As mentioned above, the space used
by the oracle tape, is not charged to the computation, this means that the space used by
the associated set is neither charged to the computation.

It is now time for some definitions.

Definition 2.1 Let A;, Ay C ¥*.



1. A; is logspace many-one reducible to Ay (<I129°Pace-reducible), if there exists a func-
tion f, computable in logarithmic space, such that ¢ € A; iff f(z) € A.

2. A, is logspace truth-table reducible ( <logspace_reducible) to A, if there exists a log-
arithmic space-bounded tt-function f such that a(xa,(a1)...xa,(ak)) = true iff
z € Ay, where f(z) is << ay,...,ar >,a > and x4, 18 the characteristic function
of the set A,.

3. Ay is logspace Turing reducible (' Slifg’mce-reducible ) to A if there exists a logarithmic
space-bounded deterministic Turing machine M such that Ay = L(M, A;).

4. Ay 1s logspace btt-reducible (Sz‘:f”’““-reducible) to Ay if Ay gi‘;g”"’“Az by some
btt-function.
logspace

5. A; is logspace disjunctive reducible (Sfi"g’p“ -reducible) to Ay if Ay <y Ay by
some dtt-function.

Definition 2.2 Let <!°9°Pac¢be any of the above reductions.

1. A set A is <logspace_hard for some complezity classC if, for all B € C , B is <[e9space.
reducible to A.

2. A set A is <log*pace_complete for some complezity class C if A is <legspace_ hgrd for
Cand A€C.

We use standard NSPACE(S(n))-complete sets w.r.t. <l°9*Pecereductions. [5]

Definition 2.3 For any complecity classC, a set A is C-immune if for every set L, L C A
and ||L|| = Ro, L ¢ C.

3 Structure of complete sets in NSPACE

Let <legspace he any of the reductions introduced in the previous section. We will exam-
ine if <logspace_complete sets in NSPACE(S(n)) have an infinite subset, induced by some
function f. We call a function f length increasing if for almost all z: |f(z)| > |z|. One
way to show that a set has such an infinite subset is to construct a function f—which is
length increasing—such that {f(0") | n € IN} C A. More formally:

Definition 3.1 Let M be a deterministic logarithmic-space bounded oracle machine and
let A be an oracle set such that M witnesses a <!°9space_reduction and not for every input

z, Q(M,A,z) = 0.

1. We say that a function f is generated by M and A iff, f maps almost all z € X* to
some element of Q(M, A, z).

2. Fm = {f | f is generated by a logarithmic-space bounded oracle machine which
corresponds to some <I199°Pace_reduction}.



3. Fbit = {f | f is generated by a logarithmic-space bounded oracle machine which
corresponds to some Sé‘t"t"’pa“-reduction}.

4. Ftt ={f | f is generated by a logarithmic-space bounded oracle machine which cor-

responds to some <\29°P**_reduction}

5. FT = {f | f is generated by a logarithmic-space bounded oracle machine which
corresponds to some Sfll?g”'“ “¢.reduction}

6. Let Fr be any of the above classes. A set A has an Fr-subset if there ezists a
function f € Fr, which is total and length increasing, such that for almost all ¢ €
¥, f(z) € A

Remember that FL denotes the set of all total functions, computable in logarithmic space,

so instead of Fm we use FL.
We will show that every <le9space_complete set in NSPACE(S(n))has an Fr-subset.

But first we need a theorem.

Theorem 1 Let A be any set in NSPACE(S(n)). There exists a set Ly € NSPACE(S(n))
C NxXZ*such that: if IM; : L4 Slz‘.’g’p %€ A by M; then for almost all z there exists a y in
Q(M;, A, < i,z >) N A such that |y| > |z|. That is if L4 is 5’1‘39”"‘“.4 by some M; then
for almost all input z , M; queries a y to A, which is larger (in length) than |z|.

Proof: Let {M;};cv be an enumeration of logarithmic-space bounded oracle machines.
We define L 4 as follows:

< i,2 >€ L4 & the simulation of Mg“SK"’”'uses <(S(<iz>1))
tape cells and
< i,z >¢ L(M;, ASI<i=>1),

Since A € NSPACE(S(n)), there exists a nondeterministic S(n)-space bounded Turing
machine M4, which accepts A. Immerman [4] and Szelepcsény [8] showed independently
that nondeterministic space is closed under complementation. Therefore the complement
of A (&) is also in NSPACE(S(n)), and is recognized by a nondeterministic S(n)-space
bounded Turing machine M—. We are first going to construct a machine that recognizes
T4 Note that < i,z >€ I iff simulation of M; uses more than S(| < 4,z > |) tape cells
or < i,z >€ L(M;, ASI<é2>]). Consider the following machine M :

input < 2,z >

mark off S(| < ¢,z > |) tape cells.

Simulate M; on input =

if M; queries a then
if |a| > | < i,z > | continue computation of M; in the NO state !
else guess if a is in 4 or in A and run M4 or M- on input a.
if it rejects then REJECT

else if M4 accepts then continue M; in the YES state

To check if |a| > | < i,z > |, we use a counter keeping track of the number of symbols written on the
oracle tape between two queries



else if M~ accepts then continue M; in the NO state.
ACCEPT iff M; accepts or simulation of M;
uses more then S(| < ¢,z > |) tape cells.
end.

It is easy to see that L(M) is in NSPACE(S(n)). Hence the complement of L(M) is
also in NSPACE(S(n)), by some machine M. So < i,z >¢ L(M) iff < i,z >€ L(M) iff
< i,z >€ L. This shows that L4 is in NSPACE(S(n)).

Suppose for a contradiction that M is a logarithmic-space bounded oracle machine
such that Ly = L(Mj, A), i.e. Ly is Sé,‘.’g’p“ereducible to A, via M;. Let z be a string
such that the simulation of M; uses < S(| < 7,z > |) tape cells. Then there exist at least
one y in Q(M;, A, < j,z >) N A such that |y| > |z|.

Suppose otherwise. That is, the length of each element of Q(Mj, A, < j,2>)NAis
< |z]. Then Mf5|<”z>l(< jz>) = M;“(< j,z >), and < j,z >€ L(Mj,AS|<j,m>l) iff
< j,z >€ L(Mj,A). Thus < j,z >€ Ly iff < j,2 >¢ L(M;, A). Which contradicts the
fact that L4 = L(M;,A). B

Corollary 1 Every <¥9°P**_complete set in NSPACE(S(n)), has an FT-subset.

Proof: Let A be a <P9°P**“.complete set in NSPACE(S(n)). We now construct the

set L4 w.r.t. A in the same way as in theorem 1. Since A is gé?g’pace-complete for
NSPACE(S(n)), we can now apply theorem 1 : For almost all z there exists a y, in
Q(M;, A, < i,z >) N A such that |y,| > |2|. We now define the following function g :

g(z) = Yz if y, exists
some element of A otherwise

The function g is total and length increasing because for almost all z € £*, |g(z)| > ||,
and g(z) € A. Furthermore g € FT, which proofs the corollary. X

Corollary 2 Let A C ¥*.

1. If A is <09°Pace_complete for NSPACE(S(n)), then A has an Ftt-subset.
2. If A is <[59°P***_complete for NSPACE(S(n)), then A has an Fbtt-subset.
3. If A is <legspace_complete for NSPACE(S(n)), then A has an FL-subset.

Proof: The proof is similar to the proof of corollary 1 and is left to the reader. ®

Corollary 3 Every <!0sspace_complete set for NSPACE(S(n))is not LOGSPACE-immune.

Proof: Let C be any <legspace_complete set for NSPACE(S(n)). Consider the set L¢
and a many one reduction from L¢ to C via machine M¢. Applying theorem 1 it follows
that for almost all # Mg queries a y to C such that |y| > |2| and y € C. So the set
{Q(M¢, 0™, C)| n > no} for some ng large enough, is an infinite subset of C. Consider the
following machine M, which accepts this subset:



input z
n = |z|
for all n/, ng < n' < n do
run Mg on input 0%
if Q(M¢,0",C) = z then ACCEPT
end do
REJECT

Since Mg is a logarithmic-space bounded oracle machine it is easy to see that M is
also a logarithmic-space bounded machine. Furthermore M accepts if and only if z € c
and ||L(M)|| = No. K

Corollary 4 Every <losspace_complete set for NSPACE(S(n))has infinitely many subsets
{B;}icv, which are € LOGSPACEand || B;|| = Ro.

Proof: Corollary 3 states that every <!29°Pe°-complete set has an infinite subset €
LOGSPACE. Let A be a <logspace_complete set for NSPACE(S(n))and let By be such
an infinite subset. Consider the set 435 = A\Bp. A; is € NSPACE(S(n))and 4, is
<logspacecomplete via the following reduction from A to Aj;:

input z
if 2 € By then output a fixed y ¢ 4;
else output 2

end

Now we can apply corollary 3 again on A;. This process can be repeated infinetely often
and will generate the subsets {B;}icv as promised.&®

4 Differences between complete sets in NSPACE

At this point we have obtained some useful properties of NSPACE(S(n))-complete sets.
For example every <logspace_complete set in NSPACE(S(n)) has an FL-subset. Hence

to construct a Sl;f;p 2ce_complete set, which is not <!9*Pace.complete it is sufficient to

construct a set, which is Sé"j’;p“ce-complete, but has no FL-subsets. This can be done by
straightforward diagonalization. The aim of the diagonalization is to put g(z), for every
length increasing function g € FL and for almost all z, in the complement of D, whilst
on the other hand D must be Sfft'f’p %®_complete. We will construct the set D by stages.
This is done with the help of a function b : IN — IN . At each stage we define the set
D, = {z € D| b(n—1) < |2| < b(n)} and D = Up>oDn- This yields the following

theorem.

Theorem 2 There ezists a <y9P*-complete set D in NSPACE(S(n)), which is not
<logspace_complete.



Proof: Recall that {T;};cmv is an effective enumeration of nondeterministic logarithmic-
space bounded Turing transducers. Let C = L(M,) be a standard <logspace_complete set
in NSPACE(S(n)). D is defined by the following construction:

Requirements : Vf € FL[O‘;’ n |f(0O")| > n =>3m f(0™) ¢ D]
Construction:
stage O:

stagen+1
n' = b(n—1)
__J Ty0™) if the simulation of T; uses < S(n) tape cells
=11 otherwise
(here 7 is the first element of the pair < 4,j >= n.)
if y #7 and |y| > n' then

b(n) := |y|
D, := {0z,1z| b(n— 1) < |2| + 1 < b(n) and =z € C}\{y}
else

b(n):=bn—-1)+1
D, := {0z| |z| + 1 = b(n) and z € C}
end-if
end construction

Consider the following machine M:

Let a =0 or 1.
input(az)
if M.(z) rejects then reject
else Simulate stage construction until 4(n) > |az| is reached?
if b(n) = |az| then
if y =7 and a = 0 then accept else reject
else if az = T;(0") then reject else accept
end

It is clear that L(M) is in NSPACE(S(n)). Let g be a function in FL such that for almost
all z, |g(z)| > |z|. Then there exists a % such that T; computes g. Because T; satisfies the
requirements it follows that g(z) is not in D for infinitely many z and D does not have
an FL-subset. Every <logspace_complete set in NSPACE(S(n))has an FL-subset (corollary
2), so D is not <!99*pace. complete for NSPACE(S(n)). Since for every ¢ € C 1z or 0z is

in D, C is Sé‘;f’p“e-reducible to D by the following reduction f:

2t is not necessary to compute b(n) completely. If during the computation of b(n), b(n) becomes bigger
than |az| it is the right n. Furthermore, the value of n cannot exceed |az|.



Ve. f(z) =<< 0z,1z >,a > and
a(z,y)=2zVy.

This proofs that D is <l°9’p“e complete. ®
Corollary 5

1. For any integer k > 1, there ezxists a <logspace ., mplete set which is not <logspace.
k—d m
complete for NSPACE(S(n)).
logspace

2. For any integer k > 1, there exists a <97 *°-complete set which is not <logspace.
complete for NSPACE(S (n)).

Using the same technique we can construct a set, which is Sfl"g’p %¢¢_complete, but not

logspace
<pis -complete.

Theorem 3 There ezists a <9P*-complete set D for NSPACE(S(n)), which is not

logspace
<ot -complete.

Proof: Let bin(é) = the binary representation of i, and ¢(i,2) = 0™bin(i)z, for z €
¥*, 1 < i < |z| and |0™bin(¢)z| = 2|z|. Let C be a standard <logspace_complete set for
NSPACE(S’(n)) and C; = {c(3,2)[1 < i < |z| and z € C }. For every z in C, we put at
least one element of C,, in D, so D can be <; logspace_. mplete. On the other hand we must
ensure that, for every length increasing functlon f in Fbit, f(z) is not in C, for almost all
z. Finally D = U,,>0 Dn.

Requirements : Vf € Fbtt[o‘vc; n |f(0™)] >n =3 mf(0™) ¢ D]

Construction :
stage 0
b(0):=0
Do = 0
stagen+1
n':=b(n-1)
{y| vy € Ass(T;,0”) A |y| > n'} if the simulation of T;
Y = uses < S(n) tape cells
T otherwise

(here i is the first element of the pair < ,j >= n.)
if Y #1 and 0 < ||Y|| < n'/2 then
b(n) := length of longest element of Y’
ni={z| z€ C, and n' < |2| < b(n)}\Y

else

b(n):=n'+2

D, := {c(0,z)| n' < 2|z| < b(n) and z € C}
end-if

end construction



Using a similar approach as we did in the proof of theorem 2 it is easy to see that D
is in NSPACE(S(n)). Note that it is not necessary to store the set Y it is enough to
use a counter to keep track of the number elements in Y. Furthermore suppose D has an
Fbtt-subset. Then there exists a length increasing function g in Fbtt, and a k-tt function
(k > 0) f in FL such that g(z) € Ass(f, z) for all . The number of elements in Ass(f, z)
is bounded by k. There exists a ¢ such that T; computes f. Because T; satisfies the re-
quirements it follows that g(z) is not in D for almost all , which contradicts the fact that
D has an Fbtt-subset. therefore is D not Sé’:f’p“e-complete. Since for ever z € C there is
at least one element of C, in D, C'is _<_fi°g’p ac¢_reducible to D by the following tt-function f :

Vz.f(z) =<< ¢(0,2),...,¢(m,z) >,a > and
a(ay,...,@m) = a1V ...V @y , where m = [z|.

So D is Sfi"g”’““-complete.ﬁ

Corollary 6 There ezxists a <logspace_iomplete set D for NSPACE(S(n)),which is not
tt

logspace
pit -complete.

5 Conclusions

In the previous sections we proved that several differences exists between logspace reduc-

tions. This can be generalized in the following way:
Instead of looking at logspace reductions we can also look at R(n) -space reductions, where
R(n) is any space constructible function with the following property:

.. R(m) . . . log(n) _
NSt TR R

All the previous obtained results also go through with respect to this kind of reduction.
Now the question rises whether there is a difference between a g’;.’g”’" “¢.complete set and

a <HEn)-space . mplete set. We conjecture that this difference exists, i.e. there exists a
set D € NSPACE(S(n)), which is <B(n)-space . mplete, but is not <'29*P***_complete for
NSPACE(S(n)).

Furthermore the results also go through in DSPACE(S(n))because the construction of
the set L4 (theorem 1) is also possible in DSPACE(S(n)). Other deterministic classes are
also worthwhile to investigate on differences between logspace reductions. It is not clear if
these differences exist in P (deterministic polynomial time), because it is not known if P
— LOGSPACE. On the other hand for any deterministic time class, 2 P, these differences
exist.

Watanabe [9] also proved that differences between disjunctive versus conjunctive poly-
nomial time tt -reductions in DEXT exist. And that differences between polynomial tt
-reductions and polinomial Turing reductions exist. We conjecture that this is also true
for logspace reductions in NSPACE(S(n)).
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