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1. Introduction.

Every finite field has cardinality p" for some prime number p and some positive integer
n. Conversely, if p is a prime number and n a positive integer, then there exists a field
of cardinality p®, and any two fields of cardinality p™ are isomorphic. These results are
due to E. H. Moore (1893) [10]. In the present paper we are interested in an algorithmic
version of his theorem, in particular of the uniqueness part.

We say that a finite field is explicitly given if, for some basis of the field over its prime
field, we know the product of any two basis elements, expressed in the same basis. Let,
more precisely, p be a prime number and n a positive integer. Then by explicit data for a
finite field of cardinality p® we mean a system of n® elements (ai;x)?; x—; of the prime field
F, = Z/pZ, such that Fy becomes a field with the ordinary addition and multiplication

by elements of Fp, and the multiplication determined by

n
€i€; = Z Ai5k€k,
k=1

where ej, €2, ..., €, denotes the standard basis of F} over F,. For example, if we know
an irreducible polynomial f € F,[X] of degree n, then such explicit data are readily
calculated, since Fp[X|/fFp[X] is a field of cardinality p®. Conversely, given explicit data

for a field of cardinality p®, one can find an irreducible polynomial f € F,[X] of degree n
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by means of a polynomial time algorithm, see Theorem (1.1) below. By polynomial time
we mean that the time used by the algorithm—i. e., the number of bit operations that it
performs—is bounded by a polynomial function of logp and n. It is supposed that the
elements of F,, are represented in the conventional way, so that the field operations in F,
can be performed in time (log p)°(V).

It is not known whether there exists a polynomial time algorithm that, given p and
n, constructs explicit data for a finite field of cardinality p™. If the generalized Riemann
hypothesis is valid then such an algorithm exists [1, 4]. Also, V. Shoup has shown [11] that
the problem can be reduced to the problem of factoring polynomials in one variable over
finite fields into irreducible factors. For the latter problem no polynomial time algorithm
is known, even if the generalized Riemann hypothesis is assumed; there does exist an
algorithm that runs in time (pn)°(!), see [5, section 4.6.2], so for small p the problem
is solved. If random algorithms are allowed, then both the problem of constructing finite

fields and the problem of factoring one variable polynomials over finite fields have perfectly

satisfactory solutions, both from a practical and a theoretical point of view; see [7].

Theorem (1.1). There exists a polynomial time algorithm that, given a prime number
p, a positive integer n, and any of (a), (b), (c), constructs the two others:

(a) explicit data for a field of cardinality p";

(b) an irreducible polynomial in Fy[X] of degree n;

(c) for each prime number r dividing n, an irreducible polynomial in F,[X] of degree r.

The only non-trivial assertion of this theorem is that (c) suffices to construct (a) and (b).
If for each prime number r that is at most n an irreducible polynomial in F,[X] of degree
r were known, then (a) and (b) could be constructed using auxiliary cyclotomic extensions
of Fp. In our proof, which is given in section 9, we work with auxiliary cyclotomic ring
extensions of Fp, which can be constructed without any hypothesis. The other assertions
of the theorem are proved in section 2.

We now come to the uniqueness part of Moore’s theorem. Suppose that two finite
fields of the same cardinality are explicitly given, can one find an isomorphism between

them in polynomial time? The isomorphism is to be represented by means of its matrix
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on the given bases of the fields over the prime field.

For this second problem the same results have been obtained as for the first problem.
Thus, a polynomial time algorithm exists if the generalized Riemann hypothesis is true, as
was shown by S. A. Evdokimov [4]. Also, the problem can be reduced to factoring polyno-
mials in one variable over finite fields. To see this, write the first field as F,[X]/fF,[X];
then finding an isomorphism is equivalent to finding a zero of f in the other field. This
solves the problem if p is small, and also if random algorithms are allowed, as is the case

in practice. In the present paper we prove the same result without any restriction.

Theorem (1.2). There exists a polynomial time algorithm that, given explicit data for

two finite fields of the same cardinality, finds an isomorphism between them.

The proof uses the same technique as the proof of Theorem (1.1). The result of Evdokimov
that we just mentioned depends on auxiliary cyclotomic extensions of Fj, and it is to
construct these that the generalized Riemann hypothesis is needed. In our proof we use
ring extensions, which can be obtained for free.

The contents of this paper are as follows. In section 2 we discuss what can be done if
explicit data for a finite field are available, and we define what is meant by explicit data
for field extensions and field homomorphisms. In section 3 we show how normal bases can
be found in polynomial time. Normal bases are not absolutely vital for our purposes, but
they provide an elegant solution to a technical problem that comes up later (see (5.6)),
and the result is of interest in itself as well. In sections 4, 5 and 6 we do not deal with
algorithms at all. Section 4 is devoted to algebraic properties of certain cyclotomic ring
extensions that need not be fields. A special role is played by the Teichmiller subgroup
of the group of units of such a ring extension. In section 5 we show that knowing an
extension of given prime degree of a finite field is equivalent to knowing a generator of
this Teichmiiller subgroup. Conversely, such a generator can be used to make prime power
degree extensions, as we show in section 6. It is clear that such results can be used to
make prime power degree extensions out of prime degree extensions, and thus complete
the proof of Theorem (1.1). Before we carry this through, we have to deal with certain

exceptional cases. The case that the given prime equals the characteristic of the field is
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dealt with, by well known techniques, in section 7. A second exceptional case is considered
in section 8. In this section we show that techniques from linear algebra can in certain
cases be used to solve problems of a multiplicative nature. As an application we solve, in a
theoretical sense, a minor problem that comes up in primality testing. Finally, in section 9
we formulate and prove theorems that are slightly more general than Theorems (1.1) and
(1.2).

Although the algorithms presented in this paper are not necessarily inefficient, I do
not expect that in practice they can compete with the probabilistic algorithms referred
to above. Accordingly, I have refrained from estimating the running times of the various
algorithms precisely, and from optimizing the algorithms from either a theoretical or a

practical point of view.

2. Explicit data.

Let p be a prime number, n a positive integer, and (a,'jk)?,j’k___l explicit data for a field of

cardinality p"”. Denote by E the field with underlying set F} that is determined by these

data, as described in the introduction. We say in this situation also that (aijk)?; x—; are

explicit data for the field E. By e, ..., ep We denote the standard basis of F;} over Fp.
Given such explicit data, the unit element 1 of E is characterized by the property

l-e; = e;. If we write 1 = ), z;e;, with 2; € Fp, then it follows that (2:)™, is the unique

solution of the system of linear equations

2":&. Lo 1 ifk=1,
,1‘”“— 0 ifk#1
1=

over F,,. This system can be solved in polynomial time by the usual techniques from linear
algebra. The divisions in the field F, that are needed by these techniques can be performed
by means of the extended Euclidean algorithm [5, section 4.5.2]. It follows that the unit
element of E can be determined in polynomial time.

Once the unit element is determined, we can in a similar way find the inverse of any
given non-zero element a € E as the solution of za = 1, which can again be viewed as a
system of n linear equations over F,. We conclude that the field operations in E can all

be performed in polynomial time.



By repeated squarings and multiplications, we can calculate ok for any a € E and
any positive integer k in time (n + logp + log k)o(l). This leads to an alternative method
to calculate 1 and a~?, since 1 =¢f ~! and a~! = a?"~2 for a # 0.

If m is a positive integer, and (b;;x)7 x—, are explicit data for a field F of cardinality
p™, then by explicit data for a field homomorphism from E to F we mean a matrix
(¢ij)1<i<m, 1<j<n With entries from F, such that the map F7 — F* sending (:cj);-‘=l to
(3o5=1 cijzs) 2y is a field homomorphism ¢: E — F. We say in this situation also that
(cij)1<i<m,1<j<n are explicit data for the field homomorphism ¢. For example, explicit
data for the unique field homomorphism F, — E are readily derived from the coordinates
z; of the unit element of E.

Calculating e}, ..., €&, we can find in polynomial time explicit data for the Frobenius
automorphism o: E — E that sends each a € E to oP. Likewise explicit data can be found
for each power of o.

We next determine the subfields of E. These are in one-to-one correspondence with
the divisors d of n. Notice that these divisors can all easily be found in time (1), Let
d be a divisor of n. Then we can calculate the matrix of the F,-linear map E — E that
sends each a € E to o%a — «, and using techniques from linear algebra we can find a basis
for the kernel of this map, which is precisely the unique subfield of E of cardinality .
Expressing the product of any two basis elements of this subfield as a linear combination
of the same basis, we then obtain explicit data for a field of cardinality p?, as well as for
the inclusion map of this field to E. All this can be done in polynomial time.

Let r be a prime number and ¢ a positive integer such that r* divides n. Applying
the above to the divisors rt and rt~! of n we can find bases of the subfields of degree r!
and r*~! over F,. Checking the basis elements of the former field one by one, we can find
an element 3 of the field of degree r? that is not in the field of degree r*=1. Then 8 has
degree rt over Fp, so gt = Z:;Bl ¢;B* for certain uniquely determined ¢; € Fp, which can
be found by solving a system of linear equations. The polynomial X rt_ E:f__;l ¢; X" is the
irreducible polynomial of 3 over Fp. It is irreducible in Fp[X] and of degree rt. Taking

=1 we see that, in Theorem (1.1), we can construct (c) from (a) in polynomial time.

Let d be any divisor of n, and write d as a product of prime powers r* that are pairwise

6



t as above. It is well

relatively prime. For each r, let 8 = f, be an element of degree r
known that the degree of ¥ = Y, B, over F, is then equal to [], r* = d. (It clearly divides
d; to show that it actually equals d, it suffices to remark that for each r the degree rt of
Br =~ — Er,#r B, divides the lcm of the degrees of y and the §,».) As above we can use
~ to determine an irreducible polynomial in F,[X] of degree d. Applying this to d = n we
see that (a) in Theorem (1.1) can be used to construct (b).

We already saw in the introduction how (b) in Theorem (1.1) can be used to construct
(a), and once one has (a) one can construct (c) as above. The remaining part of the proof

of Theorem (1.1), namely how to construct (a) and hence (b) starting from (c), is given in

section 9.

In the following section we shall see that explicit data for a finite field can also be used
to determine a normal basis for that field over a subfield in polynomial time. This is
done by means of an algorithm that, as many algorithms in this paper, depends heavily
on techniques from linear algebra. These techniques allow one to deal with problems of
an additive nature. Multiplicative problems, such as recognizing or determining primitive
roots, and computing discrete logarithms [8, chapter III|, are much harder, and no good
way is known to solve them, even if random algorithms are allowed.

There is another, even more fundamental, algorithmic problem concerning explicit
data for finite fields for which currently no polynomial time algorithm is known. This is
the problem of deciding, given positive integers p and n with p > 2 and a system of n3
elements (aijk)7?; =1 Of Z/pZ, whether these form explicit data for a field of cardinality
p". For n = 1 this problem is equivalent to primality testing: given an integer p > 2, decide
whether p is prime. For this problem no polynomial time algorithm is known. There is
one if the generalized Riemann hypothesis is assumed, and also if random algorithms are
allowed [8, chapter V]. Using the techniques of this section one can show that primality
testing is the only obstacle: there is a polynomial time algorithm that, given p, n, (ai;k)
as above, either proves that they do not form explicit data for a field of cardinality p™, or

proves that if p is prime they do.

It is convenient to have relative versions of our definitions, in which the base field is an
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explicitly given finite field E as above rather than F,. Let ! be a positive integer. By
explicit data for an I-th degree field extension of E we mean a system of I3 elements
(cijk)fﬁ,j,k=1 of E = Fp, such that E' becomes a field with the ordinary E-vector space

structure, and the multiplication determined by

1
'l E ool
k=1

where €}, €}, ..., €] denotes the standard basis of E' over E. Denote this field by F. As
above, we can determine the unit element of F, aﬁd consequently view E as a subfield of F.
We shall refer to the explicit data a;;i for the field E together with the c;;x as explicit data
for the field extension E C F. The notion of explicit data for E-homomorphisms—i. e.,
field homomorphisms between extensions of E that are the identity on E—is defined in
the obvious way.

In the above situation, one can identify F with F;', using the basis (eieff)lsisn,ls <
of F over Fyp, and one can readily calculate explicit data both for F as a field of cardinality
p™ and for the inclusion map E — F. Conversely, if explicit data for a field F of cardinality
p™ and for a field homomorphism ¢: E — F are given, then F can be viewed as a field
extension of E via ¢, and one can calculate explicit data for this field extension. The
precise formulation and proof we leave to the reader.

In the remainder of this paper our language will be less formal, but not less precise. For
example, when we speak of constructing a finite field, or an extension, or a homomorphism,
then we mean constructing explicit data for a finite field, an extension, or a homomorphism.
Likewise, if we say that an algorithm is given a finite field, we mean that explicit data for
that finite field form the input of that algorithm. Computing an element of a given finite
field means calculating the coordinates of that element on the given basis of the field over

the prime field.



3. Finding a normal basis.

If E C F is a finite Galois extension of fields, with Galois group G, then a normal basis
of F over E is a basis of F as a vector space over E of the form (ca)secc. A well known

theorem asserts that such a basis exists [12, section 67].

Theorem 3.1. There exists an algorithm that, given an extension E C F of finite fields,

finds a normal basis of F over E in time (log #F)°().

Proof. Let E C F be finite fields, and write ¢ = #FE and | = [F : E|. Denote by o the
automorphism of F that maps each o € F to af. This is a generator of the Galois group
of F over E.

It is convenient to use the following notation and terminology. It is taken from |9,
section 1], to which we refer for background information. For f =}, a:X ' € E[X] and
o € F we define

foa= Z ai-oia.
T

This makes the additive group of F into a module over the polynomial ring E[X]. Let
o € F. Then the set {f € E|X]: f o & = 0} is an ideal of E[X] containing X' — 1, so it is
generated by a uniquely determined divisor of X ! — 1 with leading coefficient 1. Let this
divisor be denoted by Ord(a), the Order of a. From

fica= faoa<= fi = f2 mod Ord(a)

it follows that the set E[X]oa = {foa: f € E[X]} is a vector space over E of dimension
deg Ord(c). Since it is the same as the E-linear span of {o*e : 0 < i < I}, it follows that «
gives rise to a normal basis of F' over E if and only if its Order has degree !, which occurs
if and only if Ord(a) = X' — 1.

Suppose now that the extension E C F is explicitly given. For any o € F the
degree of Ord(a) is the least non-negative integer k for which o*a belongs to the E-
linear span of {o'a : 0 < ¢ < k}, and if oka = Zfz_ol c;o'a for that value of k, then

Ord(a) = Xk — Ef;ol ¢;X*. This description of Ord(a) makes it clear that there is a

polynomial time algorithm that determines Ord(a) for any given a € F.
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We now describe an algorithm to find a normal basis of F over E. Let a be any element
of F (for example, & = 0). Determine Ord(e) by the method indicated above. (x) If
Ord(a) = X*—1 then a gives rise to a normal basis, and the algorithm stops. Suppose that
Ord(a) # X' — 1. Calculate the element g = (X’ —1)/Ord(e) of E[X]. As we shall prove
below, there exists 8 € F with g o 8 = a. Determine such a.ni element (; this can be done
by means of techniques from linear algebra, since the equation go 8 = c can be formulated
as a system of ! linear equations over E. Determine Ord(f). If deg Ord(8) > degOrd(c),
then replace a by 8 and go to (*). Suppose that degOrd(8) < degOrd(a). As we shall
prove below, there exists a non-zero element v € F with g oy = 0, and any such 7 has
the property deg Ord(a + ) > degOrd(e). Determine such an element v by means of
linear algebra, replace a by a + v, determine the Order of the new «, and go to (x). This
completes the description of the algorithm.

We next prove the assertions made in the description of the algorithm. Let a be
any element of F, and let 6 be an element that gives rise to a normal basis of F over
E. Then there exists f € E[X] with f o6 = a. From Ord(a) o a = 0 it follows that
(Ord(a)f) o 6 = 0, so Ord(e)f is divisible by X! — 1. Therefore f is divisible by the
polynomial g = (X' — 1)/Ord(e), and with f = gh we now see that g o (h 0 §) = a. This
proves the assertion on the existence of 8. Suppose now that Ord(a) # X' — 1. Then
Ord(e) 0 6 # 0, and g o (Ord(e) o §) = (X' —1) 0 6 = 0. This proves the assertion on the
existence of 4. Let next 3, v be such that go 8 = «, degOrd(B) < degOrd(a), v # O,
goy = 0. We prove that deg Ord(a++) > deg Ord(c). From gof = «a it follows that Ord(c)
divides Ord(f), so the hypothesis deg Ord(8) < deg Ord(e) implies that Ord(e) = Ord(B).
From Ord(g o 8) = Ord(f) it follows that g is relatively prime to Ord(«a), and the same is
then true for the divisor Ord(y) of g. This implies that Ord(a + ~) = Ord(a)Ord(v), and
from ~ # 0 it now follows that degOrd(a + 7) > degOrd(a). This proves the assertions
made in the algorithm.

With every replacement of o, the degree of Ord(e) increases by at least 1. It follows
that the algorithm runs in polynomial time. The correctness of the algorithm is clear.

This proves Theorem 3.1.

If a gives rise to a normal basis of F over E, and o is as above, then for each divisor d of |
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the element Zé{__dl o*®a has degree d over E. This leads to an alternative proof of the part

of Theorem (1.1) that was proved in section 2.

4. Cyclotomic extensions.

Let K denote a field and r a prime number that is different from the characteristic of K.
In this section we study an r-th cyclotomic ring extension of K. The group of units of a
ring R with 1 will be denoted by R*.

Denote by K[¢] the ring

r—1

K[x)/(Q_ X)) K[X],

1=0
and let ¢ denote the residue class of X. The dimension of K[¢| over K equals r —1, a basis
being given by (¢)iZ2, or, alternatively, by (¢*)iZ{. Note that ¢ has order r in the group
K|[¢]*, and that for each integer a not divisible by r there is a unique ring automorphism
pa of K[¢] that is the identity on K and for which pa¢ = ¢®. The set of all p,’s forms a
group, which we denote by A. Clearly there is a group isomorphism A = F; that maps p,

to @ mod r; so A is cyclic of order r — 1. The group A allows us to recover K from K ¢], as

follows. For a group G acting on a set S, we write S = {z € S : 0z = z for all 0 € G}.
Proposition (4.1). We have K[¢|® = K.

Proof. The basis (¢!)IZ; of K[¢| over K is transitively permuted by A. Therefore an

element z of K[¢] belongs to K[¢|® if and only if all coefficients of z on that basis are

equal. This is the case if and only if  is a K-linear multiple of the element E:;ll ¢*, which
equals —1. This proves (4.1).
Let k be a positive integer, and € an element of a multiplicative group for which

¢™ = 1. If a is an integer, then one easily checks that the element

k-1
a
€

only depends on € and the residue class of @ mod r; in particular, it does not depend on the
choice of k. We write €2(®) for this element. Note that e“(2) = (e¥(%))«(°) if @ = be mod r.

We define the Teichmiiller subgroup Tk C K[¢]* by
Tx = {e € K[¢]* : € has r-power order, and po€ = (@) for all p, € A}.
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To explain the terminology, we remark that w is often called the Teichmiiller character.

Notice that ¢ € Tk.
Proposition (4.2). Every finite subgroup of Tk is cyclic.

In particular, if K is finite then Tk is cyclic.

Proof. Let M be any maximal ideal of K[¢|, and let L = K[¢]/M. This is a field
extension of K, so every finite subgroup of L* is cyclic. Therefore it suffices to show that
the restriction of the natural map ¢: K[¢] — L to Tk is injective. Let € € Tk, ¢(€) = 1.
Write e = ), ci¢t, with ¢; € K, and let n = ¢(¢); this is a primitive r-th root of unity in
L. For each p, € A we have 3, cin® = ¢(pa€) = $(e*(®)) = ¢(e)“(®) = 1. This shows
that the polynomial 1 — Y, ¢;X* € L[X] vanishes at all primitive r-th roots of unity in L,
so it is divisible by Y.7_5 X* (in L[X], and hence in K[X]). Therefore 1 —¢ =0, so e = 1,
as required. This proves (4.2).

Let ¢ € K[¢|, and let s be a positive integer that is a power of . We denote by
K[¢][¢}/®] the ring

K[IY1/(V* - )KEIIY),
and by ¢1/¢ the residue class of Y in this ring. It contains K[¢], and a basis of K [¢][e!/*]

8

*—o- The dimension of K|¢] [c1/%] over K equals

1

as a module over K[¢] is given by ((cl/“’)")
s(r—1).
Assume, moreover, that ¢ € Tx. Then c!/¢ is an element of r-power order of

K[¢][c!/#]*, so for each a € Z there is a well defined element (c!/¢)~(2),

Proposition (4.3). The action of A on K[¢| can in a unique way be extended to an

action of A as a group of ring automorphisms of K|¢|[¢!/®] such that each p, € A maps
cl/s to (cl/s)w(a)'

Proof. Let a € Z — pZ. The ring homomorphism K[¢][Y] — K][¢][c}/?] that equals p,

on K[¢] and maps Y to (c!/#)“(®) has Y — ¢ in its kernel, because ¢ € Tk. Therefore it

induces a ring homomorphism from K|[¢|[c!/*] to itself, which we again call p,. This ring

homomorphism is clearly uniquely determined by its effect on K|[¢| and cl/s. Tt follows
'

that p; is the identity and that pgrp.r = ps if a’a” = a mod p, so that each p, is an

automorphism. This proves (4.3).
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Proposition (4.4). Suppose that ¢y, ¢z are elements of Tk of the same order. Then there
is a ring isomorphism K|¢][c/®] — K[¢][c3/®] that is the identity on K[¢] and respects the

action of A.

Proof. By (4.2), the elements c;, c2 generate the same subgroup of Tx. Let ¢; = cg, with
ged(j,7) = 1. As in the proof of (4.3), one constructs a ring homomorphism ¢: K[¢] /] —
K[¢][cl/®] that is the identity on K[¢] and sends ¢}/* to (ci/*)7. Checking the effect on
the basis elements (ci/ *)t of K|¢] [ci/ ®] over K[¢] one sees that this is an isomorphism. Let
pa € A. To prove that ¢(paz) = pad(z) for all z € KJ¢] [ci/ ®], one remarks that this is
obvious for z € K[¢] and for z = ¢}/*, and that these generate K¢] [c}/?] as a ring. This
proves (4.4).

The ring K[¢] studied in this section need not be a field. It is one if and only if
S2i—5 X* is irreducible in K[X]. If K is finite, this is the case if and only if #K is a

primitive root modulo r.

5. Prime degree extensions.

In this section we let E be a finite field, ¢ its cardinality, and r a prime number different
from the characteristic of E. By m we denote the order of (¢ mod r) in the group F;, and
we let the positive integers t, v be such that ¢™ —1 = urt and u Z 0 mod r. The notation

R*, Tg, E[¢][¢'/7]? is explained in the preceding section.

Theorem (5.1). The group Tg is cyclic of order r*, and if ¢ generates Tg then E [¢][e}/m)A

is a field extension of E of degree r.

This theorem is proved at the end of this section. It tells us how to obtain a field exten-
sion of degree r from a generator of the Teichmiiller group Tg. Our next result tells us,
conversely, how to obtain a generator of T from a field extension of degree r.

Let F be a field extension of E of degree r, and let a be an element of F' that gives

rise to a normal basis of F over E (see section 3). We define 8, v € F[¢] by

r—1 r—1
; im _ rt
= ¢t y=]]et06*").
1=0 a=1
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Below we shall see that ﬂ“"“ = 1, so the expression a” appearing in the definition of ~
may be taken modulo ri*1.

Notice that we can view E[¢] as a subring of F[¢].
Theorem (5.2). The element ¢ = 4" belongs to E[¢|*, and it generates Tg. Moreover,
there is a ring isomorphism E[¢][c!/7] = F[¢] that is the identity on E[¢], maps cl/7 to ~,
and respects the action of A. It induces a field isomorphism E[¢][c!/T]| = F.
Proof. The field F is Galois over E, and its Galois group is generated by the automorphism
of F that sends every z € F to z9. Denote by 7 the m-th power of this automorphism.

This is still a generator of the Galois group of F over E, because gcd(m,r) = 1. We extend

7 to a ring automorphism of F[¢] by 7¢ = ¢. For z € F[¢] we have
(5.3) Tz =1z <=z € E[¢].

To see this, write z = E:;é ci¢t, with ¢; € F. Then 7z = z if and only if 7¢; = ¢, for each
i, if and only if ¢; € E for each i, if and only if z € E[¢].

For every z € F[¢] we have

m

(5.4) re=z%".

For z € F and for z = ¢ this is clear, and these generate F[¢] as a ring.

We can rewrite the definition of 8 as

r—1
B = Z dria.

1=0
From a straightforward computation we find that
(5.5) 8=¢"'B.

We show that

(5.6) B € F[¢]"

Since F[¢] is finite it suffices to prove that 8 is not a zero divisor. Because (rfe)iZ3 is

a basis of F' over E, it is also a basis of F[¢] over E[¢|, and therefore z3 # 0 for all
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z € E[¢],  # 0. To extend this to all z € F[¢], z # 0, it suffices to prove that every ideal
of F[¢], in particular the ideal {z € F[¢] : z8 = 0}, is generated by an element of E[¢];
or, equivalently, that every irreducible factor of z:;g X* in E[X] remains irreducible in
F[X]. This is obvious, because the degree of any such irreducible factor is relatively prime
to [F : E]. This proves (5.6).

From (5.5), (5.4), and (5.6) it follows that 89" ~! = ¢~!, so the element § = g%
satisfies 6™ = ¢! and 6™"" = 1. Using the notation introduced in section 4 we can

therefore rewrite the definition of v as
r—1
v=[] ea*(6“*).
a=1
Using that p;1(¢¥(2)) = ¢ one finds that
(5.7) o=
From this one sees that 4 has order rt*!, and, using (5.4), that

(5.8) Ty = ¢¥A.

An easy computation, which is the multiplicative analogue of the argument that proves
(5.5), shows that
Py = ~ () for all pp € A,

so that v € Tr. Hence ¢ = A" also belongs to Tr. It has order rt. From
(re) /e =¢¥ "1 = =1

and (5.3) it follows that ¢ € E[¢|, and therefore ¢ € Tg. The order of any element of T
divides g™ — 1, by (5.3), and since it is also a power of r it actually divides r*. With (4.2)
it follows that ¢ is a generator of Tg. This proves the first two assertions of (5.2).

To prove the remaining assertions, we consider the ring homomorphism E[¢][Y] — F([¢]
that is the identity on E[¢] and sends Y to 4. Clearly Y™ — ¢ is in the kernel of this
map. We prove that it generates the kernel. For this it suffices to show that E:;é divt,
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with d; € E[¢], vanishes only if all d; are zero. Applying all powers of 7 to the relation
Y 1= div' = 0, and using (5.8), we find that

r_l . . .
Y digtiy =0
t=0

for all integers j (mod r). Now let k € {0,1,...,r — 1}. Multiplying the j-th relation by
¢~k%7 and summing over j we then see that rdiy* = 0. Since r+* is a unit this implies that
di = 0, as required.

It follows that an injective ring homomorphism ¢: E[¢|[¢}/"] — F[¢] is induced. Since
both rings are r(r —1)-dimensional over E the map 4 is surjective. This proves the existence
of the first ring isomorphism in (5.2).

Let po € A. For all z € E[¢] one trivially has ¢(paz) = pa¥(z), and the same equality
holds for = = ¢!/T because p, raises both ¢!/ and « to the power w(a).

This proves that 1 respects the action of A. Passing to the A-invariants and applying

(4.1) one concludes that an isomorphism E(¢] [¢/7]2 = Fis induced. This proves (5.2).
The following lemma will be needed in the next section.

Lemma (5.9). Let F be a field extension of E of degree r, and let € € Tr be any element
satisfying € = ¢. Then all conclusions of (5.2), with 4 replaced by ¢, are valid.

Indeed, all we used about v was that A" =¢ and v € Tr.

Proof of (5.1). Since E is a finite field, we can choose a field extension F of E of degree
r. Applying Theorem (5.2) we find a generator ¢ for Tg, and in the proof we have seen
that ¢ has order rt. Therefore T is cyclic of order rt. By (4.4), the ring E[¢]|[c}/7]* does
not depend on the choice of the generator ¢ of Tg, up to isomorphism, and by the last

assertion of (5.2) it is a field. This proves (5.1).
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6. Prime power degree extensions.

k. In

Let E, q, r, m, t be as in the previous section, let h be a positive integer, and s = r
this section we shall see that the results from the previous section carry over to extensions
of degree s, provided that we make the assumption s = 2 or rt > 2; thus only the case

r=2,5>4,q=3mod 4 is excluded.

Theorem (6.1). Suppose that s = 2 or rt > 2, and let ¢ be a generator of Tg. Then
E[¢][c'/#]” is a field extension of E of degree s.

The proof is given at the end of this section.

Let F be a field extension of E of degree s, and denote by E’ the unique subfield of
F with [F : E'] = r. Let a be an element of F that gives rise to a normal basis of F' over
E' (see section 3), and let B, v € F[¢] be as in the previous section, but with E replaced
by E'; so

r—1 r—1
i ims/r _ u’
=Y ¢, =] et ((8*)),
1=0 a=1
where v’ is the largest divisor of #E’* that is not divisible by r.

Theorem (6.2). Suppose that s = 2 or rt > 2. Then the element ¢ = ~° belongs to
E[¢]*, and it generates Tg. Moreover, there is a ring isomorphism E[¢|[c¢'/®] = F¢] that
is the identity on E[¢], maps c¢'/® to ~, and respects the action of A. It induces a field

isomorphism E[¢][c!/*]A = F.

Proof. By (5.2) we may assume that s is not prime. Then our hypothesis implies that

rt > 2. We consider the chain of fields
E=Ey,CcE,C...CEy_1=E CEpL=F,

in which each field has degree r over the preceding one. Let ¢; denote the cardinality of
E;. From ¢; 11 = ¢! it follows that all ¢; are congruent modulo r, so they all have the same
multiplicative order m modulo r. Also, from r* # 2 it follows that the number of factors r
in ¢™ — 1 equals t + ¢, for 0 <7 < h. Applying (5.1) to each E; we see that the group Tg;

is cyclic of order rt**, so in the sequence of groups
Tg =Tg, CTg, C...CTg,_, =T CTg, =TF
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each group is of index r in the next one. Applying (5.2) to the extension E’' C F we find
that 4" is a generator of Tgs, so for each ¢ the element '7" generates Tg, _,. In particular,
the element ¢ = 4° generates Tg.

From (5.9), with € = ~™, it now follows that each Ex_;[¢] is, as a ring, generated by
Epn_i—1[¢] and 4™ . Combining this for all 7, one concludes that F[¢] is, as a ring, generated
by E[¢] and 4. Therefore the ring homomorphism E[¢|[Y] — F[¢] that is the identity on
E[¢] and sends Y to « is surjective. The element Y — ¢ is in the kernel, so a surjective ring
homomorphism E[¢|[¢!/%] — F[¢] is induced. Comparing dimensions over E one concludes
that it is an isomorphism. As in the proof of (5.2) one shows that it respects the A-action

and induces an isomorphism E[¢][c!/%]* = F. This proves (6.2).

One derives (6.1) from (6.2) in exactly the same way as (5.1) was derived from (5.2).

7. Artin-Schreier extensions.

In this section we deal with extensions of degree equal to the characteristic of the field,
using Artin-Schreier theory [6, Chapter VIII, Theorem 6.4]. The following result already

appears in [1].

Theorem (7.1). There is an algorithm that, given a finite field E of characteristic p,
constructs a p-th degree field extension F of E in time (plog #E)°(M),

Proof. Let p: E — E be the F,-linear map sending each z € E to zP — z. Since p maps
F, to 0 it is not bijective, so there exists a € E that is not in the image of p. Also, such
an a can be found by applying linear algebra over F,. Let f € E[X] be the polynomial
XP_— X —a. We claim that f is irreducible, so that F = E[X]/fE[X] is an explicitly given
extension field of E of degree p.

To prove the claim, let « be a zero of f in an algebraic closure of E. Then all zeros
of f are the elements a + %, with 1 € Fp. Any two zeros of f generate the same field, so
they have the same degree over E. Therefore all irreducible factors of f in E[X] have the
same degree. Since f is of prime degree p this implies that either f is irreducible or splits
into p linear factors. The latter possibility is excluded because a was chosen such that f
has no zero in E.

This proves Theorem (7.1).
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Theorem (7.2). There is an algorithm that, given two field extensions Fy, F; of degree

p of a finite field E of characteristic p, constructs an E-isomorphism Fy — F3 in time
(log #F1)°M).

One way to prove the theorem is to use the reduction to the problem of factoring poly-
nomials in one variable that was mentioned in the introduction. This gives rise to a
polynomial time algorithm because the characteristic is bounded by the degree. I present
an alternative solution, which is more in the spirit of the other arguments in this paper.
Proof. Let Fy, Fy be two explicitly given extensions of E of degree p, and let a, F
be as in the proof of (7.1). Since we know that the fields F and F; are E-isomorphic, the
element a must be in the image of the map p,: F; — F; sending each z to z? — z. By
means of linear algebra over F, one can find, in polynomial time, an element a; € Fy with
af — a; = a. An explicit E-isomorphism F' — F; is now obtained by sending X* mod f to
aof, for 0 < ¢ < p. Likewise, one constructs an E-isomorphism F — Fj. Combining these

isomorphisms one obtains the desired E-isomorphism Fy — F3. This proves (7.2).

8. Taking roots.

This section is devoted to the case that was excluded in Theorems (6.1) and (6.2). Shoup
[11] has a very elegant way to deal with this case. Our approach is less efficient, but it is
of interest in itself because it shows that linear algebra can, in certain situations, be used
to take roots in finite fields in polynomial time.

If E is a finite field of odd cardinality ¢, then an element a € E has a square root in
E if and only if a(3+1)/2 = q. It follows that in the case ¢ = 3 mod 4 every square a € E
has a(9+1)/4 a5 one of its square roots. Hence there is a polynomial time algorithm to take
square roots in finite fields of which the cardinality is 3 mod 4. The following theorem
implies, more generally, that there is a polynomial time algorithm to take square roots in

finite fields whose characteristic is 3 mod 4.
Theorem (8.1). There is an algorithm that, given a finite field E of characteristic p, an
element a € E and a positive integer e satisfying

p"=1mode, gcd(e, (p* —1)/e) =1 for some positive integer h,
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decides whether there exists b € E with b® = a, and constructs such an element b if it

exists, in time (log(e#E))°).

Proof. Let ¢ = #E. We may clearly restrict to the case that a # 0. Let it first be
assumed that an integer h as in the statement of the theorem is known, with ph < q. Let
¢ = a(P"—1)/e_ If ¢ is an e-th power, then c is a p* — 1-th power, so there exists a non-zero

element z such that

h
P = cz.

This equation is Fp-linear in z, so by means of linear algebra we can decide whether it has
a non-zero solution, and find one if it exists.
If there is no such z, then a is not an e-th power. Next suppose that z is non-zero

and satisfies the equation. Then

L1 = g =1)/e.

Using the extended Euclidean algorithm one can find integers u, v with ue+v(p"—1)/e = 1.

The element b = a*z?(P*—1)/¢ then satisfies

h_ h_
be = auexu(p 1) _ aue.av(p 1)/e _ a,

as required.

To remove the assumption about h, one replaces e by ¢/ = gcd(e,g — 1) and h by
the multiplicative order h’ of p modulo ¢’. From ¢ = p™ = 1 mod €’ it follows that h’
divides n, so indeed ph' < q. We claim that ged(e’, (p* — 1)/¢') = 1. To prove this,
note that A’ divides k, so (p* — 1) /e’ divides both (e/e’)-(p* — 1)/e and (¢ —1)/e’. From
ged(e/e!, (¢ —1)/€') = 1 it follows that (p* —1)/e’ divides (p* — 1) /e, which is coprime to
e and hence to e/. This establishes the claim. If a is an e-th power then it is clearly an
e’-th power. Conversely, if a = b¢ then with e’ = u'e + v’(g — 1) we obtain a = (b“')e.

This proves (8.1).

Corollary (8.2). There is an algorithm that, given a finite field E of characteristic p =
3 mod 4 and an element a € E, decides whether there exists b € E with b> = a, and

constructs such an element b if it exists, in time (log #E)o(l).

Proof. Take e =2, h =1 in (8.1). This proves (8.2).
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Corollary (8.3). There is an algorithm that, given a finite field E of characteristic p =
3 mod 4, finds an element of the multiplicative group E* of E of which the order is the
largest power of 2 that divides #E*, in time (log #E)°().

Proof. Starting from a = —1, repeat taking square roots until this is no longer possible.
This clearly yields an element as desired. The number of iterations equals the number of

factors 2 in #E*, which is less than (log #E)/ log2. This proves (8.3).

Corollary (8.4). There is an algorithm that, given a finite field E of characteristic p =

3 mod 4, constructs an extension field of E of degree 2 in time (log #E)°),

Proof. If z is the element constructed by the algorithm of Corollary (8.3), then E[X]/(X2—
2)E[X] is a field extension of E of degree 2. This proves (8.4).

The following explicit formula is of interest. Let E be a finite field of cardinality g,
where ¢ = 3 mod 4. Then E(i), with i? = —1, is a quadratic extension of E. Let the map
f:E(i) — E(i) be defined by f(z) = (1 + £)(@~1)/2, Then for every integer m > 2 for
which 2™ divides #E(i)* the element f™~Z%(i) has multiplicative order 2™. This follows
by induction on m from the fact that f(z)? = z~! for all z with z9+! =1.

The final result of this section solves, in a theoretical sense, a problem that comes up

in primality testing [3, (11.6)(a); 2, section 5].

Corollary (8.5). There is an algorithm that, given a positive integer p that is 3 mod 4,
finds an element u € Z/pZ with the property that, if p is prime, the Legendre symbol

(£24) equals —1, in time (log )™

Proof. Assume first that p is prime. Using the above formula one can find an element
z of Fp(i)* of order equal to the largest power of two dividing p? — 1. We claim that
u = z— 2z~ ! has the required property. To see this, notice that z2°*! has order 2 so is equal
to —1. Hence the irreducible polynomial (X — 2)(X — 2P) of z over F,, equals X2 —uX —1.
Since the polynomial is irreducible, its discriminant u? + 4 is not a square in Fy,.

For general p, the computations leading to u can be carried out in (Z/pZ)[Y]/(Y?+1)
instead of Fp(i). This proves (8.5).
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9. Proofs of the theorems.

The following theorem clearly implies Theorem (1.1).

Theorem (9.1). There exists an algorithm that, given a finite field E of characteristic p, a
positive integer n, and any of (a), (b), (c), constructs the two others in time (n log #E)°M);
(a) explicit data for a field extension of E of degree n;

(b) an irreducible polynomial in E[X] of degree n;

(c) for each prime number r that divides n but that does not divide the degree [E : F,,

an irreducible polynomial in E[X]| of degree r.

The proof that each of (a) and (b) suffices to construct the two others is the same as the
proof for the case that the base field is F, see sections 1 and 2. In this section we prove

that (c) can be used to construct (a) and hence (b). We need the following lemma.

Lemma (9.2). Given a finite field E, a prime number r, and a field extension F of E of

degree r, one can construct a field extension of F of degree r in time (log #F)o(l).

Proof. Let p, q denote the characteristic and the cardinality of E, respectively. First
suppose that r # p, and let the case r = 2, ¢ = 3 mod 4 be excluded. Using (3.1) we can
construct an element o € F that gives rise to a normal basis of F' over E. Given o, we
can calculate the elements 3, v of F[¢| that are defined in section 5. By (5.2), the element
¢ = 4" is a generator of Tg, and there is a ring isomorphism E [¢][c}/7] = F[¢] that induces
an isomorphism E[¢][c!/"]4 = F. Also, the ring F' = E[¢][c'/""]® is a field extension of
E of degree r2, by (6.1). It is clear that explicit data for the field extension E C F’ are
readily calculated from the definition of F’. Since we can view E[¢][c!/"] as a subring of
E[¢][eV/ r*], by identifying ¢/" with (c!/ r*)r, we can identify F with a subfield of F’. The
degree of F' over F' equals r, as required.

In the cases that we excluded the subfield E of F is not even needed. If r = p, then
it suffices to apply (7.1) to F instead of E. If r = 2 and ¢ = 3 mod 4, then p = 3 mod 4,
so we may apply (8.4). This proves (9.2).

Proof of (9.1). Let E and n be given, as well as an irreducible polynomial of degree r

in E[X], for every prime number r that divides n but that does not divide [E : Fp]. We
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construct an n-th degree extension of E by induction on the number of primes dividing
n, counting multiplicities. We may clearly assume that n > 1. Let r be a prime number
dividing n, and suppose that a field extension F’ of E of degree n/r has been constructed.
It will suffice to construct an r-th degree field extension of F’/. We distinguish two cases.

In the first case, r divides the degree [F’ : Fp]. Then F’ has a subfield E’ with
[F' : E'] = r, and E’ can be determined by the methods of section 2. Applying (9.2) to
the extension E' C F' we see that we can construct a field extension of F’ of degree r, as
required.

In the second case, r does not divide [F’ : Fp]. Then in particular r does not divide
[E : F,], so by hypothesis an irreducible polynomial f € E[X] is given. Because [F': E|
is not divisible by r either, f is still irreducible in F’[X]. Therefore F = F'[X]/fF'[X] is
the required field extension of F’ of degree r.

This proves Theorem (9.1).
The following theorem clearly implies (1.2).

Theorem (9.3). There is an algorithm that, given a finite field E, a positive integer n,
and two field extensions Fy, Fy of E of degree n, constructs an E-isomorphism Fy — F3

in time (log #F;)°(1).
We first deal with the case that n is a prime number.

Lemma (9.4). Given a finite field E, a prime number r, and two field extensions Fi, F;

of E of degree r, one can construct an E-isomorphism Fy — F; in time (log # )00,

Proof. By Theorem (7.2) we may assume that r is different from the characteristic of E.
Applying Theorem (5.2) we can, as in the proof of (9.2), construct generators cy, ¢z of Tg
and E-isomorphisms E[g][c;/ "4 = F;, for ¢ = 1, 2. Thus it suffices to construct a ring
isomorphism E|¢] [ci/ "= E [g][c;/ "] that is the identity on E and respects the action of A.

Inspecting the proof of Proposition (4.4) one sees that this can be done if an integer j is

known with ¢; = ¢}.

Finding 7 is done by the following well known iterative procedure. Let ¢ be such that

#Tg = rt. First put 7 = 1. (%) Determine the smallest non-negative integer k for which

23



(cl/cjz')'k = 1. If £ = 0 then one has ¢; = cg, and we are done. If kK > 0, then (cl/cg)"‘_l

is an element of order r of Tg, so there is a unique integer ! € {1, 2, ..., r — 1} such that
y k—1 t—1
(cr/ey)”  =e¢y .

This integer ! can be found by a direct search. Now replace j by 7 + Irt—k and start again
at (*). To justify this algorithm one remarks that the value of k is initially at most ¢, and
that it decreases by at least 1 in every iteration step. The search among the powers of
c’;_l is simplified by the fact that they coincide with the powers of ¢, because e =¢
(see (5.7)). Since also ¢t'”" = ¢, the initial value of k is actually at most ¢ — 1.

This proves (9.4).

Proof of (9.3). Let E be a finite field, n a positive integer, and F, F2 two explicitly given
field extensions of E of degree n. To find an E-isomorphism F; — F3, one first finds prime
numbers r; such that n = ryry---ry,, which can easily be done in time nO(1) Next one

determines, by the methods of section 2, chains of fields

E-:EoCElC"‘CEm_lCEm:Fl,

E=E,CE,Cc---CE,,_, CE] =F,

such that [E; : E;—1] = [E! : E!_;] = r;i for 0 < ¢ < m. Using (9.4), one constructs
successively E-isomorphisms E; — E!{, E; — Ej, ..., E,, — E},. This proves Theorem
(9.3).

The algorithms given in the proofs of (9.1) and (9.3) can in many cases be made more
efficient by working with field extensions of which the degree is a prime power rather than

a prime number.
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