Institute for Language, Logic and Information

A THEORY OF LEARNING SIMPLE CONCEPTS
UNDER SIMPLE DISTRIBUTIONS AND
AVERAGE CASE COMPLEXITY
FOR THE UNIVERSAL DISTRIBUTION
(PRELIMINARY VERSION)

Ming Li
Paul M.B. Vitanyi

ITLI Prepublication Series
for Computation and Complexity Theory CT-89-07

&3
&S
3

University of Amsterdam

Instituut voor Taal, Logica en Informatie
Institute for Language, Logic and Information

Faculteit der Wiskunde en Informatica Faculteit der Wijsbegeerte
(Department of Mathematics and Computer Science) (Department of Philosophy)
Plantage Muidergracht 24 Nieuwe Doelenstraat 15
1018TV Amsterdam 1012CP Amsterdam

A THEORY OF LEARNING SIMPLE CONCEPTS
UNDER SIMPLE DISTRIBUTIONS AND
AVERAGE CASE COMPLEXITY
FOR THE UNIVERSAL DISTRIBUTION
(PRELIMINARY VERSION)

Ming Li
Computer Science Department, University of Waterloo
Paul M.B. Vitanyi
Department of Mathematics and Computer Science, University of Amsterdam
Centre for Mathematics and Computer Science, Amsterdam

Received October 1989

A Theory of Learning Simple Concepts Under Simple Distributions
and Average Case Complexity for the Universal Distribution

(Preliminary Version)

Ming Li*

Computer Science Department, University of Waterloo
Waterloo, Ontario, Canada N2L 3G1.
(mli@water.waterloo.edu)

Paul M.B. Vitanyi

Centrum voor Wiskunde en Informatica
Kruislaan 413, 1098 SJ Amsterdam

Universiteit van Amsterdam
Faculteit Wiskunde en Informatica

(paulv@cwi.nl)

“The human mind, encouraged by the success of its solutions, becomes conscious of its
independence. It evolves from itself alone, often without any appreciable influence from
without, by means of logical combination, generalization, specialization, by separating and
collecting ideas in fortunate ways, new and fruitful problems, and appears then itself as the
real questioner.” [D. Hilbert, Mathematical Problems, 1900]

Abstract

We treat two distinct topics which are related
through the use of the so-called universal distribu-
tion. In the first part we develop a learning theory
where ‘simple’ concepts are easily learnable. In
Valiant’s learning model, many concepts turn out to
be too hard (like NP hard) to learn. Relatively few
concept classes were shown to be learnable polyno-
mially. In practice, almost nothing we care to learn
appears to be not learnable. To model the intuitive
notion of learning more closely, we impose a reason-
able restriction on Valiant’s model. We assume that
learning happens under an arbitrary simple distribu-
tion, rather than an arbitrary distribution as
assumed by Valiant [V]. A distribution is simple if
it is dominated by a recursively enumerable distribu-
tion. Such an assumption appears to be not very
restrictive in a practical sense. Most distributions
we customarily deal with are recursive or can be
approximated or dominated by recursive or recur-
sively enumerable ones, hence they fit our assump-
tion. We systematically develop a general theory of
learning under simple distributions. In particular
we show a completeness result: one can learn under
all simple distributions, iff one can learn under one
fixed simple distribution, the ‘universal’ distribution.
We use this completeness result to obtain new

learning algorithms and several quite general new
learnable classes. These classes are more general
than the classes known to be polynomially learnable
in Valiant’s original model.

In the second, short, part we show that for essen-
tially all algorithms, if the inputs are distributed
according to the universal distribution, then the
average case complexity is of the same order of
magnitude as the worst-case complexity.

Note: A brief version of this paper appears in:
Proceedings 30th Annual IEEE Symposium on Foun-
dations of Computer Science, held Oct. 30 - Nov. 1,
1989, Research Triangle Park, North Carolina. The
first part of this paper was also presented at 2nd
Annual ACM Workshop on Computational Learning
Theory, held July 31 - August 2, 1989, Santa Cruz,
California.

* The first author is supported by the NSERC operating
grant OGP0036747. He performed part of this work while
at the Computer Science Department, York University,
North York, Ontario, Canada.

1. Introduction to Learning Theory Part

Valiant [V] has proposed a learning theory, where
one wants to learn a concept in polynomial time,
within a certain error, under all distributions on the
examples. But many subsequent investigations
resulted in negative, hardness, or equivalence results
[G2,A2,KLPV,PW,KV,PWLPV]. There are at least
two problems with Valiant’s proposal in [V]:

(1) Under all distributions, many concept
classes, including some seemingly simple ones, are
not known to be polynomially learnable or known
not to be polynomially learnable if NP+RP,
although some concept classes are polynomially
learnable under some fixed distribution.

(2) In real life situations, it is sometimes
impossible to sample according to underlying distri-
butions.

Item (1) is counterintuitive for a proposed
theory of machine learning; in fact it shows that
Valiant’s requirements for learning are too harsh.
In practice, we usually do not have to make such a
general assumption. For this reason, several authors
have proposed to study Valiant learning under fixed
distribution [KLPV,N,BI]. Then some previously
(polynomially) unlearnable classes become learnable.
For instance, the class of u-formulae is polynomially
learnable under the uniform distribution. However,
the assumption of any special distribution is obvi-
ously too restrictive and not practically interesting.
Then what is a reasonable assumption? Here, we
want to formulate a more feasible and yet general
(but somewhat imperfect) theory, complementing
Valiant’s learning model, where ‘simple’ things are
easily learnable. In practical learning system designs,
when something is not known to be polynomially
learnable in Valiant’s model, it may be polynomially
learnable under our assumptions. Apart from this,
our proposed notion of learning will, to some extent,
also deal with item (2).

1.1. Reasonable Assumptions

We propose to study Valiant learnability under all
simple distributions, which properly include all recur-
sive and recursively enumerable distributions.
Surprisingly, such class of distributions not only is
general but also possesses many nice mathematical
properties for learning. The semi-computable distri-
butions include al! distributions we have a name for:
uniform distribution, normal distribution, geometric
distribution, Poisson distribution, ---. Under the
assumption of learning under arbitrary unknown
simple distributions, we will systematically develop a
theory of learning for simple concepts that intui-
tively should be polynomially learnable.

It is an integral part of the proposed approach
to also deal with the problem of inability of sam-
pling according to underlying distributions. In real
life the samples are sometimes (or often) provided
by some mechanical or artificial means or good-

willed teachers, rather than provided according to its
underlying distribution. Naturally the simpler exam-
ples are provided first. The simpler the example, the
more likely it is chosen. Think of the situation
where you are the teacher who provides examples of
a DFA to a learner. What strings do you choose
first? With high probability you choose things like
A,0,1,00,0 rather than 11010111000010100110
(obtained by flipping a quarter on a Friday night).
In the subconscious mind of the teacher, she tries to
help the students. The teacher, with no idea of how
the students are programmed, teaches ”+” by using
example "1+1=2" first rather than
”5697+1692="7389". She uses good examples from
her past experiences. So the sampling distribution
and the real distribution may be quite different. The
notion of a sampling distribution where ‘simple’
examples have high probability, and ‘complex’
examples have low probability, we capture by the
single ‘universal’ recursively enumerable distribu-
tions (rather, semimeasures) m and M, or an
effective z-timelimited approximation m,. We con-
ceive of these distributions as being precomputed
and stored once, and henceforth accessible from a
table**.

Consider another situation where a robot
wants to learn but there is nobody around to pro-
vide it with examples according to the real distribu-
tion. Because it does not know the real distribution,
the robot just has to generate its own examples
according to its own (computable) distribution and
experiment to classify these examples (See [RS].
For example, the robot wants to learn a finite-state
automaton concealed in a black box (with resetting
mechanism and observable accepting/ rejecting
behavior).

1.1.1. Outline

First we deal with discrete sample spaces. We first
derive a completeness result: there exists a ‘universal
simple’ distribution such that something is learnable
under this single distribution iff it is polynomially
learnable in Valiant’s sense under all ‘simple’ distri-
butions, provided we sample according to the
‘universal’ distribution. We use this completeness
result as a novel tool to obtain new non-trivial
learning algorithms for several (old and new) classes
of problems, in this model. These classes were not
known to be polynomially learnable under Valiant’s
more general assumptions, some were even NP-
complete. For example, the class of DNF’s such

** One may speculatively think that this coincides with the
following imaginary brain model: A child inherits from her
parents a “table” of distribution m(x). The child "samples”
the outside world according to her own “subconscious”
mind and learns. Each generation, the table evolves to be
more perfect and approximating to m(x). Our theory then
guarantees that the child with the better table has more
ability to learn.

that each monomial has Kolmogorov complexity
O (logn), the class of k-reversible DFA of Kolmo-
gorov complexity O (logn), and the class of k-term
DNF, are polynomially learnable under our assump-
tions. We then turn to continuous sample spaces.
While each discrete concept class is learnable in
unbounded time, this is not the case for concept
classes over continuous sample spaces. Using the
‘universal’ semimeasure, we show that a concept
class is learnable under a simple (semi)measure iff it
is learnable under the ‘universal’ semimeasure. (This
result holds both if we sample according to the sim-
ple (semi)measure itself, or according to the ‘univer-
sal’ semimeasure.)

2. Preliminaries

Definition 1. (1) Let X be a set. A concept is a sub-
set of X. A concept class is a set C C2* of con-
cepts. An example of a concept ¢ EC is a pair (x,b)
where b =1 if x Ec and b =0 otherwise. A sample is
a set of examples.

(2) Let ¢ €C be the target concept and P be a
distribution on X. Given accuracy parameter €, and
confidence parameter 8, a learning algorithm A draws
a sample S of size m,(¢,8) according to P, and pro-
duces a hypothesis h = h,(S) € C.

(3) We say C is learnable if for some A4 in
above, for every P and every ¢ €C,

P(hAc>e¢) < 6,

where A denotes the symmetric difference. In this
case we say that C is (,0)—learnable, or pac-
learnable (probably approximately correct).

(4) C is polynomially learnable if A runs in
polynomial time (and asks for polynomial number
of examples) in 1/8, 1/¢, and the length of the con-
cept to be learned.

Remark. A different model as used by
[V,KLPV] assumes separate distributions over posi-
tive and negative examples. These models are basi-
cally equivalent. Also see [HLW] for an on-line
model.

Definition 2. Let Q be the set of rational
numbers, and let S be a countable (ie., discrete)
sample space (like the natural numbers). A function
f:S—(—o0,00] is recursively enumerable, or simply
enumerable, if the set

{(x,r):x€S, reQ, r<f(x)}

is recursively enumerable. (Such functions are also
called ‘semicomputable’.) A function is called co-
enumerable if —f is enumerable. (Another,
equivalent, definition is: function f is enumerable iff
there is a recursive function with rational values
g"(x) nondecreasing in n, with f (x)=1lim,_, »g"(x).)
A real function f is recursive if it is enumerable and
co-enumerable. For example, the Kolmogorov com-
plexity K(x |y) (defined below) is co-enumerable.
But it is not recursive.

We call a function w: S—[0,1] a semimeasure
if
Swkx) <1
x€ES

We call it a measure, or a probability distribution
over the space S if equality in (2.1) holds.

Definition 3. An enumerable semimeasure p is
called universal if it multiplicatively dominates every
other enumerable semimeasure p/, i.e., p(x) = cp’(x)
for a fixed constant ¢ independent of x.

Theorem A. [Levin] There is a universal enu-
merable semimeasure.

Proof. As this proof, and that of Theorem B,
to our knowledge are not (easily) accessible else-
where, we include our versions based on [G] in
Appendixes 1 and 2. [J

We now fix a universal semimeasure and
denote it by m(x). Any positive function w(x) such
that 3 w(x)<1 has to converge to 0. However,
m(x) converges to 0 slower than any positive recur-
sive function which converges to 0. Obviously, this
also implies that m(x) cannot be recursive.

Definition 4. A set of finite strings is a prefix-
code if no element is a proper prefix of any other
element. We consider a special type of three tape
Turing machines with one-way input tape, one-way
output tape, and a two-way work tape. The input
tape contains an unbounded string of zeros and
ones, and the initial segment scanned by the
machine by the time it halts is called the program.
The (self-delimiting) descriptional complexity Kr of
x, relative to Turing machine 7' (which by construc-
tion halts on programs that form a prefix-code), and
binary string y (which is put on the work tape ini-
tially), is defined by

Kr(x|y) = min{|p |:p €{0,1}*, T(.y)=x},
or oo if such p do not exist.

There is a Turing machine U (like a universal
Turing machine), such that for each Turing machine
T, there is a constant cr, such that for all x and y,
we have Ky(x | y) < Kr(x | y) + c7. This definition
is invariant up to a constant with respect to different
universal Turing machines. Hence we fix a reference
universal Turing machine U, and drop subscript U
by setting K(x |) = Ky(x | y). K(x) is defined as
K(x |¢). We refer the reader to our survey paper
[LV1].

Definition 5. [Solomonoff, Levin] The universal
prior probability Py(x) of a finite binary string x is
defined as

@1

Pix)= 3 2-lpl
Up)=x
The next theorem connects the (self-

delimiting) Kolmogorov complexity to the universal
distribution m.

Theorem B [Levin]. — logm(x) =

—log Py(x) +0(1) = K(x)+0O(1).
Proof. See Appendix 2. [J

. The universal prior probability dis-
tribution m(x) multiplicatively dominates any enu-
merable distribution.

Since the set of programs of U is a prefix-code
(no program is a proper prefix of any other pro-
gram), we have 3 271”1 <1 by Kraft's ine-
quality (see any text‘%ook on information theory or
[LV1,LV2]). Therefore, Py(x) is a semimeasure.
Following Solomonoff, we can view P, as follows.
On the input tape of U, one supplies a random
coin-flip sequence. By Theorem B, the probability
of outputting a string x is m(x) (up to a constant
factor). Obviously this procedure is non-recursive.
However, using this procedure dovetailing the com-
putations for all programs p of length < |x |, and
adding 2~ P! for each program p of which the com-
putation halts, we can compute m(x) from below.
By Theorem B, it suffices to start only programs p
such that |p| <K(x) (and K(x), it is known,
satisfies K(x)<|x| +2log|x| +O(1)). So we
may need to start exponentially many programs in
terms of length |x |. But, if x is ‘simple’, that is,
K(x)=0(log | x |), then we only need to start poly-
nomially many computations (namely, for programs
p with |p | <K(x)) to compute m(x) exactly. We
provide a time bounded version of the above discus-
sion in one of the next sections.

We will also need Chernoff’s bounds for
independent Bernoulli trails which is stated below
(See [AV]). Assume that we perform a sequence of
n independent Bernoulli trails with probability of
success p each time. Let m denote the number of
successes. Then, for a<1,

Pm—mp>anp)<e 2 ', 22

1.

3 (2.3)

Definition 6. A distribution P (x) is simple if it
is (multiplicatively) dominated by a enumerable dis-
tribution Q(x). That is, there is a constant ¢ such
that for all x,

P(np —m>anp)<<e B

cQ(x)=P(x).

The first question is how large the class of
simple distributions is. It certainly includes all enu-
merable distributions and hence all distributions in
our statistics books. We next show that containment
is proper and not vacuous.

Lemma 1. There is a non-enumerable distribu-
tion that is simple.

Proof. Consider the distribution
c/x? ifxeA
P(x) = 0 otherwise

The constant ¢ is determined such that 3 P(x)=1.

Now if we choose A as a non-r.e. set, P(x) is not
enumerable. But P(x) is multiplicatively dominated
by the recursive distribution Q (x)=¢/x? for all x

and c’=-:—2 is such that 3 Q(x)=1. By trivial

modification of above, we can also guarantee that
20(x)=P(x) forall x. O

Lemma 2. There is a distribution which is not
simple.

Proof. We define a probability distribution
f(x) which exceeds x m(x) for infinitely many x.
Then by Theorem A, f(x) is not simple. Let /(x)
be the greatest monotonic lower bound on m(x), i.e.,
I(x)=1inf {m(y):;y=x}. (I/(x) is approximately
1/(xlogxloglogx...).) Let u(x) be the least mono-
tonic upper bound on m(x), ie, u(x)= sup
{m(y):y=x}. (It can be shown that u(x) is not
recursive - it goes to zero slower than any recursive
function.) The desired function f(x) is defined as
follows. For each x =y, of a triple y;,y,,y3 such
that w@)=m(), Iy =mpy), and
u(y3)=m(y3), y3—y; mMminimal, we set
f(x) = u(x). For all remaining x, we set f (x) =0.
By this definition, for infinitely many x we have
f(xX)=u(x) while m(x)=1I(x). Therefore,
f(x)>xm(x) for infinitely many x. (In fact, the
ratio u(x)//(x), and hence sup f (x)/m(x), rises fas-
ter than any recursive function). [

Motivation. In a practical situation, if one can
dominate the real distribution by a recursive distri-
bution, then the theory we develop in this paper can
be used to learn. Take a simple example, if the real
life distribution is almost uniform, then it is possible
to dominate such a distribution by a uniform distri-
bution which is recursive. It is well-known that
many real life distributions obey recursive distribu-
tions: the distribution of flying bombs hitting south
London during World War II, the number of tele-
phone connections to wrong numbers (during the
1920’s), the number of a-particles emitted by a
radioactive substance reaching a given portion of
space during iime t, all obey Poisson distribution
pik ;A)=e"‘% [F]. It is important to notice that
when some real distributions can be approximated
(hence dominated) by recursive distributions with

high probability, it is sufficient for our learning pur-
pose.

3. Distribution-Free Learning when the Distribution
is Simple: Discrete Case

In this section all concept classes we deal with are
over discrete sample spaces.

Definition 7. The learning algorithm samples
according to m(x), if in the learning phase the algo-
rithm draws random samples from m(x).

We can formalize this in different ways. The
following two implementations are equivalent.

(1) The learning algorithm is equipped with an

m(x) oracle that supplies samples according to m(x).
Intuitively, this is natural in a teacher-student situa-
tion, or auto-learning by non-random experiments.
In such circumstances samples with low Kolmo-
gorov complexity are drawn with high probability.
(Cf. Introduction)

(2) The algorithm has access to an m table in
the form of a division of the real interval [0, 1) into
nonintersecting halfopen subintervals I, such that
UZL=[01. For eah x, the Ilength
| I | = m(x)/ zy m(y). Define the cylinder T, as the
set of all infinite binary strings starting with r. To
draw a random example from m, the algorithm uses
a sequence ryry - - -+ of outcomes of fair coin flips
until the cylinder T',, r = ryr; - - - ry, is contained in
some interval I,. It is easy to see that this pro-
cedure of selecting x, using a table m and random
coin flips, is equivalent to drawing a random x
according to distribution m. The table m is of course
nonrecursive. However, in certain learning algo-
rithms we consider only examples of fixed length n,
which allows us to precompute a timelimited version
of m, cf. below.

This model for learning has the following com-
pleteness property.

Theorem 1. A concept class C is polynomially
learnable under the universal distribution m(x), iff it
is also polynomially learnable under any unknown sim-
ple distribution, P, provided the samples are drawn
according to m(x).

Proof. P(x) is dominated by some enumer-
able distribution Q(x). Q(x) is in turn dominated
by m(x). Hence, there is a constant ¢ >0 such that
for all x,

cm(x)=P(x)

Assume C is learnable (in time ¢) under distri-
bution m(x). Then one can run the learning algo-
rithms with error parameter €/ ¢ in polynomial time.
Let err be the set of strings that are misclassified by
the learned concept. So with probability at least
1-8

> mx) <elc

x Eerr

Hence

> P(x)<c 3 m(x)<e
x Eerr x Eerr

Therefore, if the underlying distribution is P(x)
rather than m(x), we are still guaranteed to ‘pac-
learn’ C (in time {), if sampling according to m(x).
O

In the next sections we show how to exploit
this completeness Theorem to obtain new learning
algorithms. After all, if we know the sample space
has a simple distribution, then we can learn using
any learning algorithm for the specific distribution
m(x). The latter distribution has the remarkably

-5-

convenient property that in a polynomial sample all
examples of logarithmic complexity occur with pro-
bability near one.

The constant ¢ relates to the size of the
machine that computes P, that is, if P(x) is
enumerated by the ith Turing2 machine in the stan-
dard enumeration, then ¢ = i“. As another remark,
obviously, Theorem 1 also holds if we replace m by
any distribution Q that dominates P.

Since m assigns higher probabilities to
simpler strings, one could suspect that after polyno-
mially many examples, all simple strings are sam-
pled and the strings that are left unsampled have
only very low (inverse polynomial) probability.
However, the next theorem shows that this is not the
case.

Theorem 2. Let S be a set of n° samples drawn

according to m . Then
1
(logn)’ |

> m(x) = Q
x€ES
Proof. Consider the first n°*2 strings. These
strings have Kolmogorov complexity at most
(c +2)logn +2oglogn+0(1) each. The total pro-
bability for these strings, excluding S, is at least

%,(nc+2 __nc)ﬂ [

3.1

1 |_gl
nc+2(logn)2 (logn)2

By using more efficient prefix coding, equation (3.1)
can be improved to

> m(x) = Q

x&S

1
[lognloglognlogloglogn e]
|

Remark. This says that we cannot just do
polynomial sampling and hope to do trivial learning
by listing the examples in a table, if error e.g.
€ < n~!is expected.

3.1. Polynomial Time Setting

Now let us consider polynomial time computable
distributions. Again, all textbook distributions we
know are polynomially computable. Call a distribu-
tion polynomial simple if it is dominated by a poly-
nomial time computable distribution. In all of the
discussion below all Kolmogorov complexity
(including the related notion m) can be replaced by
its polynomial time bounded version. We will gen-
erally use distribution m(x). But all the results
apply equally to the polynomially bounded m,.

It is convenient to formulate in terms of distribution
functions p:{1,2, - - - }—[0,1], where u(x) is the pro-
bability of all instances not exceeding x. Its density
p'(x) = p(x)—p(x — 1) is the probability of example
x. In the discrete setting all concepts are learnable
with unbounded amount of time (by exhaustive
sampling) [BI]. We deal with polynomial time lear-
nability.

Remember that m(x)=2"X®+0M QOpe
naturally wants to replace this by a time bounded
version as follows.

Theorem 3. If distribution p is computable in
time t(n), then there is a constant ¢, such that for all
x:

—logu'(x) = —logc + Ky m)(x),

where p'(x) = p(x)—u(x — 1) and KA(x) is the f-time
bounded Kolmogorov complexity of x.

Proof. Let p be computable by M, and let
¢=|M |%. Notice that Exp,’(x)< 1. We wish to
show that K, (x) < —logp'(x) + logc. Without a
polynomial bound, a proof similar to that of the
optimality of the Shannon-Fano code would be
sufficient. But we have to deal with the time bound
here.

We will divide the real interval [0,1] into
subintervals such that the code word p (x) for source
word x ‘occupies’ [u(x —1), p(x)]. The binary inter-
val determined by the finite binar?' string 7 is the
half open interval [0.r, 0.r +27I"T) corresponding
to the set of reals (cylinder) T, consisting of all reals
0.r.... The encoding function f assigns to x the code
corresponding to a maximum binary interval within
[s(x — 1), u(x)), of length p'(x), and this code has at
most —logu'(x) +2 bits.

We have to give polynomially encoding and
decoding algorithms. The encoding algorithm is
trivial: since p is computable in time f(n), given
source word x, its code word p (x) can be computed
from p(x —1) and p(x) in O (¢(n)) time. In order to
compute p~!, the decoding function, given a code
word p (x), we proceed as follows.

Decoding Algorithm.
(1) Setk:=1.
(2) Repeatly set k:=2k until p(x) lays in or left

of interval [uw(k —1), p(k)]. Set u:=k and
1:=k/2.

(Binary search) Let m =(u+0)/2. If p(x)
corresponds to a maximum binary interval in
[s(m —1), p(m)), then return x =m. Otherwise
set u:=m if p(x) lays left of u(m —1) and set
1:=m if p (x) lays right of u(m).

(€)

This procedure is similar to a binary search, and it
takes at most

loj
(x]) = $e(1 2 1) < Ot

(where n = |x |) time to find x if #(n) is a polyno-
mial.

This completes our encoding of x using distri-
bution p. Notice the constant ¢ comes in because we
needed the machine which computes p to specify
each x. Hence

Kumx) < —logp'(x)+logc.
(]

We denote the #-time bounded version of m
by m,’. That is, m,’(x) = m,(x) — m,(x —1), where

m(x)= 327
y<sx

Lemma 3. The probability m/(x)=2""* can
be generated in time polynomial in t, provided
K,(x) = O(log | x |).

Proof. Again use a universal Turing machine
with one input tape and one output tape. On the
input tape it is provided a random coin-flip
sequence. The universal machine finds the first ini-
tial segment of the coin-tossing sequence which con-
stitutes a program in a prefix-free code. Such a pro-
gram must be in form of (n,(n),p). If this is not the
case, discard the code. Otherwise simulate the pro-
gram as follows: Simulate p for #(n) steps. If p stops
within #(n) steps, then print the output of p, other-
wise print 0" on the output tape. Thus the probabil-
ity of generating a string x is approximately
27 %0xD 7 1f K,(x) = O(log | x |), we can try all pro-
grams p of length |p | < K,(x), and have the whole
process of determining m,’(x) = 275® run in time
polynomial in ¢(|x |). O

In time polynomial in ¢ (n) we can find all x of
length n with K,(x) = O(logn), and determine their
probabilities m,’(x). However, for us the following
corollary is more important.

. To compute a table
m’y(x +1),..,mp(x +2") takes time O(p(n)2"),
with p(n) is polynomial in n. In other words, we
can divide [0, 1) into 2" half open disjoint intervals
I, with |I,| = m',(y)/(my(x +27) — my(x)), such
that U, L =00,y =5+ 1.x+2n

Hence, if we want to learn a concept class
using examples of fixed size n, sampling according
to m’,, we can precompute the interval representation
of the table (as in the Corollary) once and for all,
and use it to sample according to m, by means of a
sequence of fair coin flips as explained earlier.

3.2. Learning under m(x): log n - DNF

We have established that learning under the univer-
sal distribution is important since if one can pac-
learn under the (time-bounded) universal distribu-
tion, then one can pac-learn, using the same algo-
rithms, under any enumerable distribution by using
the (time-bounded) universal distribution and sam-
pling or asking queries according to it. Are there
classes of concepts which are not (known to be)
learnable under all distributions (in the sense of
Valiant) but which are learnable while sampling
according to m? We first consider a class for which
it is not known whether it is Valiant learnable.

DNF stands for ‘disjunctive normal form’. A
DNF is any sum m;+m,+...+m, of monomials,

where each monomial m; is the product of some
literals chosen from a universe x, . ..,x, or their
negations xy, . ..,X,. A k-DNF is a DNF where
each monomial consists of at most k literals. Recall,
that k-DNF is learnable in Valiant’s sense [V]. One
is inclined to think that also (n —k)-DNF is learn-
able, or the sum of monomial terms such that every
3rd variable is true, or every 7th element is true, ...
like Zixlx,-...x nvi}i» Where i ranges from 1 to f(n)
for some sublinear function f. Or more generally,
expressed in a DNF form:

XX 9) " Xy (G2
[

the sum taken over a set of total recursive functions
¢ of cardinality polynomial in n, ¢(i)<n for
i = 1,..,n, should also be learnable. It is not known
whether such formulae are Valiant learnable. We
show they are learnable in our sense.

Let us write logn-DNF to denote DNF formu-
lae over n variables, where each monomial term is of
Kolmogorov complexity O (logn), and the length of
the formula does not exceed a polynomial in n.
This is a superset of k-DNF (it contains all formulae
of the form (3.2)).

Theorem 4. logn-DNF is polynomially learn-
able under m(x).

Proof Sketch. Let f(x,, --*,x,) be a logn-
DNF where each term has Kolmogorov complexity
<clogn. If m is a monomial of f, we write m € f.
Sample n¢, for ¢ > c +1, examples. With high pro-
bability (using the Chernoff formulas (2.2) and (2.3))
all examples of the following form will be drawn.

For each monomial term m of f, the example
vector that satisfies m and has zero values for
all variables not in m, denoted by 0,; the
example vector that satisfies m and has one
values for all variables not in m, denoted by
L.

Now we approximate f by the following learning

procedure.

Learning Algorithm

(0) Sample n° examples according to m(x). Let
Pos (Neg) be the set of positive (negative)
examples sampled.

For each pair of examples in Pos, construct a
monomial which contains x; if both vectors
have ‘I’ in position i, contains X; if both vec-
tors have ‘0’ in position i, and does not con-
tain variable x; otherwise.

Among these monomials delete the ones that
are inconsistent with negative examples in
Neg. The remainder forms a set S. Therefore,
S contains only monomials which do not
imply any negative samples in Neg.

Let E,,={x | m(x)=1}, that is, E,, is the set
of positive examples implied by monomial m.

)

@

(€)

Use a greedy set cover algorithm to find a
small set of monomials m € S, such that
U E. covers all positive examples in Pos.

We have to prove the correctness of the algo-
rithm.

Claim 1
{m|mef}CS.

Proof. Since for each monomial m in f, 1, and
0,, both have low Kolmogoro complexity, they are
sampled with high probability, by standard calcula-
tion. >From 1,, and 0,,, one forms m in step (1) of
the algorithm. So with high probability, for each
monomial m of f, we have m €S. By using polyno-
mially more samples, we also have with high proba-
bility forallmef,meS. U

Of course, many other monomials may also be
in S. Finding all of the original monomials of f pre-
cisely is NP-hard. For the purpose of learning it is
sufficient to approximate f. We use the following
result due to Johnson [J] and Lovasz [Lo],

Claim 2. Given sets A, - - -,A,, such that
Ul-14;,=A={1, ---,m}. If there exist k sets

With high probability,

4;, - A, such that 4= U%_,4,, then it is pos-
sible to find in polynomial time / = O (klogm) sets
A;, -+ ,A; such that A=U}_,4;. O

Let f have k monomials. These kX monomials
cover the positive examples in the sense that
Pos C U, ¢fE,,. By Claim 2, we can use about
O (kn) monomials to approximate f and cover posi-
tive examples in Pos in polynomial time. Then
Occam’s Razor theorem [BEHW] implies that our
algorithm learns logn-DNF in the sense of
Definition 1. [1

Remark. Notice that we draw examples from
{0,1}" according to m(x). There are 2" such vectors
but there are 3" monomials of n variables. Hence
one cannot trivially encode each monomial term
into binary vectors of length n and get all the low
complexity terms by sampling. An interesting open
question: is logn-decision list polynomially learnable
under m(x)? A logn-decision list is a decision list of
Rivest [R] with each term having Kolmogorov com-
plexity O (logn).

3.3. Learning under m(x): Simple DNF

Using the idea of the previous section, we can also
learn a more general class of DNF’s where each
term may have very high Kolmogorov complexity.
Let us define a DNF formula f to be simple if, for
each term m of f, there is vector v,, that satisfies m
but satisfies no other monomials of f and
K (v,,)=0 (logn). Obviously, simple DNF’s can con-
tain many high Kolmogorov complexity terms. The
learning algorithm for the class of simple DNF’s
goes as follows. (Since the basic ideas used are simi-
lar to those in the previous section, we skip the
details.)

Learning Algorithm.

(0) First we sample enough (polynomially many)
examples.

(1) For each positive example, construct the

corresponding monomial of size n.

For each monomial m constructed in step (1),
mark variable x; in m if there is a negative
example that would satisfy m if the ith bit is
complemented. In m delete the unmarked vari-
ables. Remove those monomials that are
satisfied by some negative examples.

Use the set cover algorithm to choose a small
set of monomials that cover all the positive
examples (as in the proof of Theorem 4).

@

(©)

For each monomial m in f; there is a vector v,, that
satisfies only m and no other monomials in f. Hence
if one flips a bit in v,,, that corresponds to a vari-
able in m, it becomes a negative example of Kolmo-
gorov complexity O(logn). From this v, and
corresponding negative examples (which will all be
sampled with high probability), one forms m. There
will also be many other monomials. But since all
the true monomials of f are in the set, we can cover
all positive examples using about |f |logn monomi-
als in polynomial time. Hence using Occam’s Razor
theorem, we have learned in the sense of Definition
L.

34. Learning Under m(x): Simple Reversible
Languages

A deterministic finite automaton (DFA)
A =(0,90,F,4,8) consists of a set of states O, a
finite nonempty input alphabet 4, an initial state g
and a set of final states F C Q, and a transition
function 8: Q XI — Q. A is O-reversible if it has only
one final state (|F| =1, and its reversal AR is
deterministic. (A% is obtained from A by reversing
each transition in A and exchange the initial and the
final state of A.) An alternate definition would be
that A is O-reversible if it is deterministic with one
initial state and one final state and for no ¢, and ¢,
is 8(¢1,a)=8(g2,a) for some a EA. A language L is
O-reversible if it is accepted by a O-reversible DFA.

Many languages/DFA’s are O-reversible and
of low Kolmogorov complexity. Examples are, for
fixed n, the language L, = set of strings of length at
least n and containing an even number of zeroes,
and the language L,={0*V | k,j=n}.

Recall that a nondeterministic finite automa-
ton (NFA) is like a DFA with ¢, replaced by
ICQ, and 8:QXA—>2° We generalize 0-
reversibility as follows. A k-reversible DFA is a
DFA A such that in (the possibly nondeterministic)
AR if two distinct states g,,q, are initial states or
41,92 €8(g3,a) for a EA, then no string u of length
k satisfies both 8(¢,,u)#* @ and 8(qy,u) 7 &. (This
guaranties that any nondeterministic choice in the
operation of A® can be resolved by looking ahead k

symbols past the current one) A language is k-
reversible if it is accepted by a k-reversible automa-
ton.

For each fixed n, Ly={0¥1" | k=n, m=>1}
and Ly={0"1¥ | k=n, m=1} are l-reversible and
have O (logn) Kolmogorov complexity. (The con-
struction of the corresponding automata is left as an
exercise) We say a path from the initial state to a
final state is simple if it has Kolmogorov complexity
O(logn). A k-reversible DFA A is simple if each
state of A lies on a simple path.

Example. We give some examples of simple k-
reversible DFA’s. Firstly, the set of k-reversible
DFA’s of Kolmogorov complexity O (logn) are sim-
plee. To see this, consider A such that
K(A)=clog|A|. We show that every state of A is
on a simple path of Kolmogorov complexity at most
(c+1log |A|. Without loss of generality, assume
that every state of A is reachable from the initial
state. (If this is not the case, we can just delete those
obsolete states from A) We have assumed that A
can be specified in clogn bits. Fix an enumeration
of the paths from the initial state to final states of A
such that each path contains at least one more new
state. There are at most |A| such paths since each
path must contain at least one new state which is
not contained in the previous paths. Obviously,
each such path can be specified using A, that is,
clogn bits, and the index of the path in logn bits.
Hence the Kolmogorov complexity of each such
path is at most clogn + logn. Every state is on at
least one of these paths by construction.

Notice that if K(A) = O(logn), it is still possi-
ble that A may have very random paths. For exam-
ple, the automaton which accepts all strings of
length n has Kolmogorov complexity O (logn), but it
actually contains a path for every string of length n.
In particular, it contains a path of Kolmogorov
complexity n. On the other hand, one can construct
(left to the reader) a simple O-reversible DFA which
has Kolmogorov complexity much larger than logn
(like Q(log?n)).

In the general Valiant distribution free setting,
it is not known whether the class of O-reversible
languages is learnable. Angluin [A1] shows that the
set of k-reversible languages can be identified in the
limit in the Gold paradigm. In general a DFA is
learnable by membership queries and equivalence
queries [A1] in polynomially.

Theorem 5. The class of simple k-reversible
automata is polynomially learnable under m .

Proof. We first show how to learn a simple
O-reversible DFA under the universal distribution.

Claim 1. The class of O-reversible DFA of
Kolmogorov complexity O (logn) is learnable.

Proof. The algorithm uses the ideas in [Al],
[BF], [M].

Learning Algorithm.

(1) Randomly sample n°*2 positive examples.
Construct the trivial tree DFA from these
examples.

(2) Merge all the final states in above tree.

() repeat

if there are states p,g €Q such that on
input a €A, p,q lead to the same state,
then merge p and ¢

until no more merges.

We prove that this algorithm correctly infers the
underlying DFA A with high probability. Each
positive example represents a path from g, to gy
where some states may be repeated because of loops
in A.

By the use of Chernoff bounds (2.2) and (2.3),
with high probability, all simple paths are sampled.

Claim 1.1. Given all simple paths of A, A can
be inferred from the above algorithm.

Proof. All states of A are presented at least
once in the tree constructed above. It is up to the
algorithm to merge them correctly. Now between
any two simple paths, P, and P, if there is a tran-
sition from a state @ on P, to a state b on P,, then
the path from g, to a via P, then to b then to ¢, via
P, is also simple, hence also given, hence the above
merging process will add a transition from a to b
correctly. Since this applies to all transitions, eventu-
ally A will be correctly inferred. Then the non-
simple strings, which are also_sampled since they
may have higher than 1/(logn)* probability in total,
will also fit into the structure. Notice that all above
merges do not introduce mistakes since we are deal-
ing with O-reversible DFA’s. [1

Claim 2. For each k, the class of simple k-
reversible DFA is learnable.

Proof. A simple generalization of the algorithm
and the proof in Claim 1 shows that simple k-
reversible languages are polynomially learnable
under m, for each fixed k. [J

We show how to learn the class of simple k-
reversible languages for all k. The algorithm is
given as follows:

for k=1 to o0 do
Apply the algorithm for learning -
reversible language to learn a k-
reversible DFA;
Draw a polynomial set of examples to
test the inferred automaton against;

if the DFA learned is consistent with
(1 — ¢) fraction of the test set

then output this DFA
else continue with the next k value;

The correctness and complexity analysis are
standard. (Note that k <n, where n is the number
of states of the inferred DFA.) Notice that it is not

-9-

necessary that the correct k-reversible DFA is
learned, but by Occam’s Razor lemma [BEHW] we
have achieved our purpose of learning. Analysis is
standard and omitted. (]

Remark. Claim 1 in the proof of Theorem 5
explains several successful early experiments by
Feldman [F] and Miclet [M]. The examples were
supplied by humans, hence likely to be simple (and
therefore with high probability according to m), and
the O-reversible automata they wanted to infer were
all simple.

3.5. Learning under m(x): Previously NP-complete
Cases

The previous two subsections provided several
classes that are polynomially learnable under the
universal distribution, and hence in our sense under
all simple distributions, and which are not known to
be polynomially learnable in the general Valiant
model. The purpose of this subsection is to demon-
strate a class that was shown to be not polynomially
learnable in Valiant’s sense, unless P = NP, but
which is polynomially learnable under m(x).

We have defined DNF before. A monomial in
a DNF is monotone if no variable in it is negated.
A k-term DNF is a DNF consisting of at most k
monomials. In [PV] it was shown that learning a
monotone k-term DNF by k-term (or 2k-term) DNF
is NP-complete (See also [KLPV]).

Theorem 6. Monotone k-term DNF is polynomi-
ally learnable by monotone k-term DNF under m.

Proof. Assume we are learning a monotone
k-term DNF f(xl, '-',x,,)=m1+ s tmy,
where m;’s are the kX monotone monomials (terms)

of f.

Learning Algorithm.

0. Draw a sample of n¥ examples, k¥’>k +1. Set
DNF g:= @. (g is the DNF we will eventu-
ally output as approximation of f))

1. Pick a positive example a=(ay, - ,a,).
Form a monotone term m such that m
includes x; if @, = 1.

2. for each positive example a = (a,,...,a,) do: if
a; =0 and deleting x; from m violates no
negative examples, delete x; from m.

3. Remove from the sample all positive examples
which are implied by m. Set geg+m. If
there are still positive examples left, then go to
step 1, else halt and return g.

We show that the algorithm is correct. Let us
write m; C m for two monotone monomials if all the
variables that appear in m; also appear in m. At
step 1, the monomial m obviously implies no nega-
tive examples, since for some monomial m; of f we
must have m; Cm. Step 2 of the algorithm keeps
deleting variables from m. If at any time for no

monomial m; Ef holds m; C m, then there exists a
negative example that contains at most k 0’s such
that it satisfies m but no m; of f. This negative
example is of Kolmogorov complexity at most
klogn, hence by the Chernoff formulae (2.2) and
(2.3), with high probability it is contained in the
sample. Hence at step 2, with high probability,
there will be an m; such that m; Cm. Hence we
eventually find a correct m; (precisely) with high
probability. Then at step 3, we remove the positive
examples implied by this m; and continue on to find
another term of f. The algorithm will eventually
output g =f with high probability by standard cal-
culations. [J

Remark. Notice that this is not an approxima-
tion algorithm like the ones in the previous sections.
This algorithm outputs the precise monotone for-
mula with high probability.

4. Distribution-free learning when the distribution is
simple: Continuous Case

We consider continuous sample spaces, e.g.,
S = {0, 1}*® consisting of all one-way infinite binary

strings. A semimeasure (or distribution) p on S

satisfies (with ¢ the empty word and x € {0, 1}*):
Mo <1, 6}
p(x) = w(x0) + p(x1). (i)

The meaning* of p(x) is the combined probability
(measure) of the set of elements, or cylinder, T, C S
defined as T, = {xy:y €S}. A semimeasure is a
measure if equality holds in (i) and (ul) For exam-
ple, consider the measure A(x) =2 |*/. That is, the
measure of the cylinder T,, of all elements of S
which start with x, is A(x). This defines the Lebes-
gue measure, or uniform measure, on interval [0, 1].

While for discrete sample spaces all concept
classes are Valiant learnable (although not all are
polynomially learnable), this is not the case for con-
tinuous sample spaces. We define the notion of
‘simple’ semimeasure and that of universal enumer-
able semimeasure, over a continuous sample space,
and show that all concept classes are learnable over
each simple semimeasure D iff they are learnable
under the universal semimeasure. In contrast with
the discrete case w.r.t. polynomial learning, here we
do not need to require that the learning algorithm
samples according to the universal measure. Due to
the space limitation, we can only give a rough idea
of what is going on in this section.

A monotonic machine M is a three tape

* Note that this definition is different from our definitions
for discrete sample space N. Obviously, m does not satisfy
(ii) if we interpret the arguments as natural numbers. The
relation is somewhat more sophisticated. Here we only point
out that here we mean by u(x) the measure of a set of ele-
ments (starting with x), while in the discrete case we intend-
ed the probability P(x) of the single element x.

-10 -

machine similar to the three tape machine we
defined before, but now for all finite p, g, we have
M(pq) = M(p)r for some r. Instead of universal
distribution m, consider here its continuous version
M(x) which is the probability for the set
T,={xy|y€{0,1}® U{0,1}"} under the reference
universal monotonic machine if the input is pro-
vided by random coin flips. Each enumerable sem-
imeasure over & can be defined this way w.r.t. an
appropriate monotonic machine.

A semimeasure D over Q is simple if it is dom-
inated by a enumerable semimeasure E, i.e., if
there is a d >0 such that E(x) >d D(x) for all x.
(As above, E(x) and D (x) are the measures of T';.)

Theorem C [Levin]. M is a maximal enumer-
able semimeasure, i.e., for each enumerable semimeas-
ure D over this domain there is a constant d > 0 such
that M(x) > d D(x). (For details, see [ZL].)

Theorem 7. A concept class C is learnable under
M(x) iff it is learnable under each simple semimeas-
ure.

Proof Idea. The “if” part is trivial. We only
need to prove the “only if” part. We use some
definitions and results from [BI]. According to [BI]
C, is an e—cover of C (w.r.t. distribution D) if for
every c €C there is a ¢ €C, which is e-close to ¢
(i.e. D(cAc)<e). A concept class C is finitely cover-
able if for every e >0 there is a finite e-cover C, of
C.

Lemma 4 [BI] C is finitely coverable w.r.t D iff
C is learnable w.r.t. D.

Proof. We briefly give the main idea of the
proof of Benedek and Itai.

Only If Part. Assume that C is finitely cover-
able under D. We show C is learnable under D. This
is done by encoding the finite cover set C’ of C into
the learning algorithm and choosing the concept
from C’ which make the least amount of error with
respect to the drawn data in the learning phase. By
standard application of Chernoff bound this algo-
rithm learns with sufficient data.

If Part. Assume that f learns C under D using
sample of size / with error <e with probability
>1—48. We show C is finitely coverable under D.
Let n=n(D,C,¢) be the cardinality of the smallest
2¢-cover of C under D (n may be infinity).

Choose a set C, CC of n pairwise 2¢-far con-
cepts. This is possible because the smallest 2e-cover
has size n, and C,, can be constructed by each time
choosing a concept that is 2e-far to other concepts in
C already until | C, | =n (or keep going if n = 00).

Let x:(xl, et ,x,) and
L=(L;, ---,L)€{0,1}’. Then (x,L) is the sample
of size I, where L; is the label for data x;. If x;Ec
iff L;=1, then we denote this L by L.. For c €C, let

1 if D(f (x, L)Ac)<e
grlex L= {O otherwise

Consider the sum
S

S [glexL,edD. ™

ceC, x
By hypothesis, Prp(gdc,x,Lc,e)=1)>1-8 for ran-
domly drawn sample (x,L;) from D, we obtain
S>(1—8)n. Also we have

s< 3 > glexLedD
ceC, x Le{o1)

= > gloxLedD.
x Le(0,1) c€C,

Since concepts in C,, are 2e-far, for every (x,L)
there exists at most one c¢EC, such that
gloxLeo=1 Thus

Q-m<sS<f(3

x Le{o,1)
Hence ! = log((1—8)n). When n=oco, this implies
that f has to take an infinite sample. Hence finitely
learnable means finitely coverable. [

A similar proof works also for M(x). So if one
can learn C under M(x), then one can finitely cover
C w.r.t. M(x).

Let D be a simple distribution, and d >0 such
that M(x) =d D(x) for all x. Then, any finite ed-
cover of C w.r.t. M(x) is also a finite e-cover w.r.t.
D. Using Lemma 4 again, it follows that C is learn-
able wr.t. D. O

Remark. Note that this is a strong statement
since we are saying that if one can learn under
M(x), then one can also learn under any simple dis-
tribution (semimeasure) D, while sampling according
to D.

Obviously, by the proof, if a concept class C is
finitely coverable with respect to M(x), then it is
also finitely coverable and hence learnable under
any simple distribution D (x).

Is anything that is learnable under all simple
distributions also learnable under all distributions?

Theorem 8. There is a concept class that is
learnable under all simple distributions but not learn-
able under all distributions.

Proof. Let the concept class C be the class of
all finite sets of cylinders I'; such that each such set
containing at most one cylinder T, for each length
|x|. Such class has infinite VC-dimension hence
not learnable under arbitrary distribution [BEHW].
(To see this: For any d consider a set S of cardinal-
ity d. For every subset 8" of S we can find a concept
¢ E€C of d cylinders such that cNS=S") We now
show that C is finitely coverable under M(x). There
are only finitely many cylinders I', such that
MT,)>e/2 for any ¢ we denote such set of
cylinders by S, for a given e. Since each concept in
C contains at most one cylinder I', for each i such
that |x | =i, for a given ¢, we can define an e-cover
of C as follows,

NdD=[2'dD = 2.
X

-11 -

C.={c| for some cEC,=cNS.}.

It can be easily verified that C, is finite and e-covers
C. Therefore C is finitely coverable and by Lemma 4
C is learnable. [

5. Ongoing research

It seems likely, that many simple concepts previ-
ously polynomially un-learnable become polynomi-
ally learnable in our model We have given evidence
for this by several examples. Is logn decision list -
in analogy with logn DNF - polynomially learnable
in our model?. The connection between our
approach of sampling under m and learning via
queries is obvious, but has not been treated here.

6. Average Case Complexity

The general ideas developed below show that the
average complexity of any algorithm whatsoever
under the universal distribution is of the same order
of magnitude as the worst-case complexity. This
holds both for time complexity and for space com-
plexity. To focus our discussion, we use as illustra-
tions the particular case of sorting algorithms, and
the general case of the average case complexity of
NP-complete problems. Technically the proofs are
not complicated once the used concepts are under-
stood.

6.1. Two Examples: Sorting and NP-Completeness

It is well-known, that for some sorting algorithms
the average case analysis under some distributions
on the inputs gives a different running time than the
worst-case running time. For instance, using
Quicksort on a list of n items to be sorted gives
under the Uniform Distribution on the inputs an
average running time of O (nlogn) while the worst-
case running time is 2(n2). The worst-case running
time of Quicksort is typically reached if the list is
already sorted or almost sorted, that is, exactly in
cases where we actually should not have to do much
work at all. Since in practice the lists to be sorted
occurring in computer computations are very likely
to be sorted or almost sorted, programmers imple-
menting systems involving sorting algorithms tend to
resort to fast sorting algorithms of which the prov-
able average run-time is of equal order of magnitude
as the worst-case run-time, even though this average
running time can only be proved to be O(nlog’n)
under the Uniform Distribution as in the case of
Shellsort.

In the case of NP-complete problems the ques-
tion arises whether there are algorithms that solve
instances fast “on the average”, even while there is
little hope to solve them fast in the worst-case. This
depends on the particular NP-complete problem to
be solved and the distribution of the instances.
Obviously, some combinations are easy on the aver-
age, and some combinations are hard on the aver-
age, by tailoring the distribution to the ease or

hardness of the individual instances of the problem.
This raises the question of a significant definition of
a “hard on the average” problem. Levin [Le] has
shown that for the Tiling problem with uniform dis-
tribution of instances there is no polynomial on the
average algorithm, unless every NP-complete prob-
lem with every simple probability distribution has it.
Here it is shown that under the Universal Distribu-
tion all NP-complete problems are hard to compute
on the average unless P = NP (this follows from
Theorem 9). Since for each probability distribution
P(x) we have that m(x)<P(x)/k with P-
probability at least 1 — 1/k, and for each enumer-
able probability distribution P(x) there is a constant
¢ such that P(x) < cm(x) for all x, the same type of
reasoning can show that the average time complexity
is near the worst-case time complexity with large P-
probability provided P is enumerable (in the full
paper). This supports the experience that practical
algorithms implementing solutions to many NP-
complete problems often suffer from an exponen-
tially exploding running time on most instances that
occur, even though this would not be predicted by
the theoretical analysis assuming, say, the Uniform
Distribution.

6.2. Average Case Complexity under the universal
distribution

Definition. Let 7(x) is the running time of algorithm
A on problem instance x. Define the worst-case time
complexity of A as T(n) = max{¢(x):/(x) =n}. (So
this is independent of the probability distribution of
the problem instances.) Define the average time
complexity of A with respect to a (semi)measure p(x)
on the problem instances as

2 = M) 1)
21(::) = n“(x)

Example (Quicksort). Let us compare the
average time complexity for Quicksort under the
Uniform Distribution P(x) and the one under the
Universal distribution m(x). We need to encode
lists as integers in some standard way.

For Quicksort, with P(x) the Uniform Distri-
bution on the inputs, T (n) = O(nlogn). We
may expect that T7...(n)=Q(nlogn). But
Theorem 9 will tell us much more, namely,
Tverage(n) = 2n)1 Let us give some intuition why

is is the case. The worst-case complexity
T(n) = Q(n?) holds obviously under all distribu-
tions. With the low average time-complexity under
the Uniform Distribution, there can only be
o((logn)2"/n) strings x of length n with
t(x) = Q(n?). Therefore, given n, each such string
can be described by its sequence number in this
small set, and hence for each such x we find
K(x | n) < n — logn + 3loglogn. (Since n is known,
we can find each n — k by coding k self-delimiting
in 2logk bits. The inequality follows by setting
k =logn — loglogn.) Therefore, no really random

Twaverage(n) =

-12-

x’s, with K(x |n)=n, can achieve the worst-case
run time 2(n?). Only strings x which are non-
random, with K(x |n) <n, among which are the
sorted or almost sorted lists, and lists exhibiting
other regularities, can have 2(n?) running time.
Such lists x have relatively low Kolmogoro complex-
ity K(x) since they are regular (can be shortly
described), and therefore m(x) = 27%®) s very high.
Therefore, the contribution of these strings to the
average running time is weighted very heavily. This
intuition can be made precise in a much more gen-
eral form.

Theorem 9. Let A be any algorithm whatso-
ever, provided the running time t(x) is recursive. Let
the inputs to A be distributed according to the univer-
sal distribution m(x). Then the average case time
complexity is of the same order of magnitude as the
corresponding worst-case time complexity.

Proof. We define a probability distribution
P(x) on the inputs that assigns high probability to
the inputs for which the worst-case complexity is
reached, and zero probability for other cases.

Let A be the sorting algorithm involved. Let
T(n) be the worst-case time complexity of A.
Clearly, T'(n) is recursive (for instance by running 4
on all x’s of length n). Define the probability distri-
bution P(x) by:
1 For eachn = 1,2,.., define g, := 3 m(x);
Ix)=n
if I(x)=n and x is lexicographically least
with t(x)=T(n), then P(x):= a,, else
P(x):=0.
It is easy to see that a, is enumerable since
m(x) is enumerable. Therefore, P(x) is enumerable.
We have defined P(x) such that
ZXP(x) < Exm(x) =1, and therefore P(x) is a
semimeasure. Since m(x) dominates all enumerable
semimeasures multiplicatively, for all x we have

P(x) < cpm(x),
for a fixed positive constant cp, independent of x
(but depending on the index of P in the effective
enumeration pi, gy,... of enumerable semimeasures).
Relation between P(x)/c and m(x). The average

case time complexity 77,cr.z(n) With respect to the
m(x) distribution on the inputs is:

2y = M) 1(x)
21y =)

2

Taverage(n) =

=

1 P(x)
cp 1(x)2= na zl(x) = nP(x) T(n)

v

o
—T
= (n),

where

21(x)=nP &)
= -
El(x) = nm(x)

O

If P is p, in the standard effective enumera-
tion pq, fy,... of enumerable semimeasures, then we
can set cp = k2. This gives a interpretation to the
constant of proportionality between the average
complexity and the worst-case complexity under the
Uniform Distribution on the inputs: if the algorithm
to approximate P(x) from below is the kth algo-
rithm in the standard effective enumeration of all
algorithms, then:

Th ersge(n) = k"2 T (n).

Hence we must code this algorithm as compact as
possible to get the most significant lower bound.
That is, the ease with which we can describe (algo-
rithmically) the strings which produce a worst case
running time determines the closeness of the average
time complexity to the worst-case time complexity.
Corollary. The analogue of Theorem 9 for
space complexity holds by about the same proof.

Corollary. For each NP-complete problem, if
the problem instances are distributed according to
m, then the average running time of any algorithm
that solves it is superpolynomial unless P = NP.
(Related considerations occur in [BCGL].)

Acknowledgements.

Chor, Gloria Kissin and John Tromp commented

Benn

on tﬁe manuscript. The latter suggested the need for
Lemma 2. Chor pointed out related results in [BCGL].
The incentive to investigate average case complexity under

the universal distribution was supplied by a %;luestwn of
Mike O’Donnel during a lecture given "by the second
author.

References

[AV] D. An%uin.and. L. Valiant, Fast probabilistic algo-
rithms for tonian circuits and matchings, JCSS,
18(1979), pp. 155-193.

[Al] D. Angluin. Learning Rc%]&ar Sets From Queries
and Counter-examples, Yale TR-464, 1986.

[AL] D. Ang%qum and P.D, Lair k-CNF For-
mulas From Noisy Examples, Yale TR-4 986.
[A2] D. Angluin, On the Complexig of Minimum Infer-
ence of Regular Sets, Inform. and Control, 39(1978), pp.

337-350.
A3] D. Angluin, Inference of Reversible Languages,
TASM 290582) pp. Ta1-765, guag

[ﬁS] D. Angluin and C. Smith, Inductive Inference:
eorby and Methods, Comput. Surveys, 15(1983), pp.
237-269.

BBnCGL] S. Ben-David, B. Chor, O. Goldreich, M. Luby,

the theory of average case complexity, Proc. 21

STOC, 1989, pp. 204-216.

LBII G. Benedek and A. Itai, Learnability b%ﬁcd distri-
utions, Proc. 1st ACM COLT, 1988, pp."80-90.

BR] P. Berman and R. Roos,
6aln§|’.;age in polynomial time, Proc.

Identif_)'sin

Leamin& one-counter
28th FOCS, 1987, pp.

El;lj*’] A. Biermann and J. Feldman. On the synthesis of
te-state machines from samples of their behavior, IEEE
Trans. Comput. C-21(1972), pp. 592-597.

-13-

@EHW A. Blumer, A. Ehrenfeucht, D. Haussler, and M.

armuth, Classifying Learnable Geometric Concepts

With the Vapnik-Chervonenkis Dimension, Proc. 18th

STOC, 1986, pp. 273-282.

BEHW1] A. Blumer, A. Ehrenfeucht, D. Haussler, and
. Warmuth ’s r, Information Processing

Letters, 24(1987), pp. 377-380.

{F] W. Feller, An introduction to probability theory and
its applications, Wiley, 1950.

[G& Gacs, P., Lecture notes on dascriﬁﬁpnal.com lexity
and randomness, Manuscript, Boston University, Boston,
Mass., October 1987 (Unpublished).

Er‘l] Gold, EM., Lan ual%e Identification in the Limit.
ormation and Control, 10(1967), pp. 447-474.

G2] Gold, EM., Complexity of Automaton Identification
3(?2% %ven Data, Information and Control, 37(1978), pp.

[H] ‘D.LHau.ssler, antifyl
earning, Tec

UBSC-CRL-86.25.

%{LW D. Haussler, N. Littlestone, and M. Warmuth,

rithms

ed Mistake Bounds for On-ei.me Learning Algo-
, Proc. 29th FOCS, 1988, pp. 100-109.

(1] S.Y. Ito

mars. IEE

A new heuristic for inferring re_Fular gram-
rans. PAMI-3(1981), pp. 191-197

[lJ] D. Johnson, A

orial problems, Ji

roximation algorithms for combina-
KL] M. Kearns and M. Lj, Learm'n&sisn

’?uantifyin the Inductive Bias in Con-
eport, U.C. Santa Cruz,

, 9(1974), pp. 256-276.
the Presence of
cious Errors, Proc. 20th STOC, 1 Pp- 267-280.
[KLPV] M. Kearns, M. Li, L. Pitt, and L.G. Valiant, On
the Learnability of Boolean Formulae. 19th ACM Sym-
posium on Theory of Computing, 1987, pp. 285-295.

E(V] M. Kearns and L. Valiant, Learning Boolean formu-
e or finite automata is as hard as facloring, Proc. 21th
STOC, 1989, pp. 433-444.

[LV1] M. Li and P. Vitau&yii Two decades of Applied Kol-
MOgorov comple:ut*, 3rd IEEE Structure in Complexity
Theory conference, 1988, pp. 80-101.

[LV2] M. Li and P. Vitanyil,Elélducﬁve reasoning and Kol-
IMOgOrov complent* 4th E Structure in Complexity
Theory conference, 1989, pp. 165-185.

le] L.A. Levin, Average case complete problems, SIAM 1J.
mp., 15(1986), pp. 285,286.

[L] N. Littlestone, Learning Qui When Irrelevant
Attributes Abound: A New Linear Threshold Algorithm,
28th IEEE Symposium on the Foundations of Computer
Science, 1987, pp. 68-77.

[Lo] L. Lovasz, On the ratio of optimal integral and frac-
tional covers, Discrete Math, 13(1975), pp. 383-390.

[M] L. Miclet, Regular inferences with a tail-clustering

method. IEEE Trans. Syst. Man Cybern. 10(1980), pp.
737-743. y 4 (1980, PP

g,}]lj B.K. Nalarajang, On Learning Boolean Functions, 19th
OC, 1987, pp. 296-304.

[PV] L. Pitt and L.G. Valiant, Computational Limitations
834 g From Examples, JACM 35(1989), pp. 965-

[PW] L. Pitt and M. Warmuth, Reductions among Predic-

tion Problems: On the difficulty of Predicting automata,

Procéollé‘.gE 3rd Structure in Complexity Conference, 1988,

PP 60-69.

PW] L. Pitt and M. Warmuth, The minimum consistent
FA problem cannot be approximated within any poly-

no| Proc. 21st STOC 1989, pp. 421-432.

ER} R. Rivest, Learning Decision-Lists, Machine Learning,
(1987), pp. 229-246.

[RS] R. Rivest and R. Schapire, Diversity-based inference

of finite automata, 28th IEEE Symposium on the Founda-

tions of Computer Science, 1987, pp. 78-88.

[V(l: L. G. Valiant, A Theori of the Learnable, Comm.

ACM, 27(1984), pp. 1134-1142.

[V]] L. G. Valiant, Learning Disjunctions

ickl

of

Conjunctions, 9th IJCAI 1985, Vol. 1, pp. 560-566, Los
Angeles, CA.

E\(I)Z] L. G. Valiant, Deductive Learning, Phil. Trans. R.
c. Lond. A 312(1984), pp. 441-446.

g]li..] AX. Zvonkin and L.A. Levin, The complexity of
inite ob&ects and development of the conosgts of informa-
tion and randomn means of the theory

i ess by of algo-
rithms, Russ. Math. Serv.”25(1970), pp. 83-124.

7. Appendices
Appendix 1

Proof of Theorem A. First we consider the
standard enumeration of all partial recursive func-
tions ¢y, ¢,,... We change each ¢ into a partial
recursive function y with the same range as ¢ but
with, for each x, the value of y(<x, k>) is defined
only if Y<x, 1>), Y <x, 2>),..,.¢(<x, k—1>) are
defined. (Assign values to arguments in enumeration
order.) We use each y to define a enumerable func-
tion s by approximations s*(x), k =1,2,.., from
below:

s(x) = sup {s*(x): s*(x) =p/q,

- 14-

W<x, k>)=<p,q>,k=12,.}.

The resulting s-enumeration contains all enumerable
functions. Next we use each enumerable function s
to compute a semimeasure p from below. Initially,
set u(x) =0 for all x. If s(1) is undefined then p will
not change any more and it is trivially a semimeas-
ure. Otherwise, for k=12.., if
Q) + s*@) +..+ s¥(k) <1 then set pu(i):=s*(@) for
i=1,2,.., k, else the computation of u is finished.

There are three mutually exclusive ways the
computation of p can go, exhausting all possibilities.
Firstly, s is already a semimeasure and p:=s.
Secondly, for some x and k with x <k the value
s*(x) is undefined. Then the values of p do not
change any more from u@)=s*"'() for
i=12,.,k—1, and p(i))=0 for i =k, even though
the computation of goes on forever. Thirdly, there
is a first k such that s*(1) + s*(2) +...+ s¥(k) > 1, that
is, the new approximation of p violates the condition
of measure. Then the approximation of y is finished
as in the second case. But in this case the algorithm
terminates, and p is even recursive.

Thus, the above procedure yields an effective

enumeration g, py,... of all enumerable semimeas-
ures. Define the function p, as:

ro(x) = 2,, 27" po(x).
It follows that p, is a semimeasure since
SHx=32"T m®<I 27" =1

The function p, is also enumerable, since p,(x) is
enumerable in n and x. (Use the universal partial
recursive function ¢, and the construction above.)
Finally, py dominates each g, since po(x) >27" p,(x).
Therefore, p, is a universal enumerable semimeasure.
Obviously, there are countably infinite universal
enumerable semimeasures. We now fix a reference

universal enumerable semimeasure and denote it by
m(x). O

Appendix 2.

Proof of Theorem B. Since 2-¥® represents
the contribution to Py(x) by a shortest program for
x, 27K@ < P (x) for all x. Since Py(x) is enumerable
by enumerating all programs for x, we have by the
universality of m(x) that there is a fixed constant ¢
such that for all x we have Py(x) < c m(x).

It remains to show that m(x) = 0(2-%¥®). This
is equivalent to showing that for some constant ¢ we
have —logm(x)=>K(x)+c. It suffices to exhibit a
prefix code such that for some other fixed constant
¢/, for each x there is a code word p such that
I(p) < — logm(x) + ¢’, together with a prefix-machine
T such that T(p) = x. Then, Ky(x)<I(p) and hence
by the Invariance Theorem 1 also K(x) <!(p) up to
a fixed additive constant. First we recall a construc-
tion for the Shannon-Fano code.

Claim. If p is a measure on the integers,
S mx)<1, then there is a binary prefix-code
r:N—{0,1}* such that the code words r(1),r(2),...
are in lexicographical order, such that
I(r(x)) < —logpu(x) + 2. This is the Shannon-Fano
code.

Proof. Let [0,1) be the half open unit real
interval. The half open interval [0x, 0x +27/®)
corresponding to the set (cylinder) of reals
I,={0y:y=xz} (x finite and y and z infinite
binary strings) is called a binary interval. We cut off
disjoint, consecutive, adjacent (not necessarily
binary) intervals 1, of length p(n) from the left end
of [0, 1), n = 1,2,.... Let i, be the length of the longest
binary interval contained in 7,. Set r(n) equal to the
binary word corresponding to the first such interval.
It is easy to see that I, is covered by at most four
binary intervals of length i,, from which the claim
follows. OJ

Since m(x) is enumerable, there is a partial
recursive function ¢(t, x) such that ¢(f, x) <m(x) for
all ¢, and lim, _, ,¢(t, x) = m(x). Let y{z, x) =27%, with
k is a positive integer, be the greatest partial recur-
sive lower bound of this form on ¢, x). We can
assume that ¢ enumerates its range without repeti-
tion. Then,

S 0 =3 S0 < 3 2mex) <2

(The series 3 y(t, x) can only converge to precisely
2m(x) in case there is a positive integer k such that
m(x) =27%)

Similar to before, we chop off consecutive,
adjacent, disjoint half open intervals 7,, of length
W1, x)/2, in order of computation of (1, x), starting
from the left side of [0, 1). This is possible by the last
displayed equation. It is easy to see that we can
construct a prefix-machine 7 as follows. If T, is the
largest binary interval of I,,, then T(p) = x. Other-
wise, T(p) is undefined (e.g., T doesn’t halt).

By construction of y, for each x there is a
W, x)>m(x)/2. By the construction in the Claim,
each interval 7,, has length y(r, x)/2. Each I-interval
contains a binary interval T, of length at least one
quarter of that of I. Therefore, there is a p with
T(p)=x such that 27/® >m(x)/16. This implies
Kz(x) < —logm(x) + 4. The proof of the theorem is
finished. [J

=15 -

The ITLI Prepublication Series

1986
86-01 The Institute of Language, Logic and Information
86-02 Peter van Emde Boas A Semantical Model for Integration and Modularization of Rules
86-03 Johan van Benthem Categorial Grammar and Lambda Calculus
86-04 Reinhard Muskens A Relational Formulation of the Theory of Types
86-05 Kenneth A. Bowen, Dick de Jongh Some Complete Logics for Branched Time, Part I
Well-founded Time, Forward looking Operators
86-06 Johan van Benthem Logical Syntax
1987
87-01 Jeroen Groenendijk, Martin Stokhof Type shifting Rules and the Semantics of Interrogatives
87-02 Renate Bartsch Frame Representations and Discourse Representations
87-03 Jan Willem Klop, Roel de Vrijer Unique Normal Forms for Lambda Calculus with Surjective Pairing
87-04 Johan van Benthem Polyadic quantifiers
87-05 Victor Sénchez Valencia Traditional Logicians and de Morgan's Example
87-06 Eleonore Oversteegen Temporal Adverbials in the Two Track Theory of Time
87-07 Johan van Benthem Categorial Grammar and Type Theory
87-08 Renate Bartsch The Construction of Properties under Perspectives
87-09 Herman Hendriks Type Change in Semantics: The Scope of Quantification and Coordination
1988 Logic, Semantics and Philosophy of Language:
LP-88-01 Michiel van Lambalgen Algorithmic Information Theory
LP-88-02 Yde Venema Expressiveness and Completeness of an Interval Tense Logic
LP-88-03 Year Report 1987
LP-88-04 Reinhard Muskens Going partial in Montague Grammar
LP-88-05 Johan van Benthem Logical Constants across Varying Types
LP-88-06 Johan van Benthem Semantic Parallels in Natural Language and Computation
LP-88-07 Renate Bartsch Tenses, Aspects, and their Scopes in Discourse
LP-88-08 Jeroen Groenendijk, Martin Stokhof Context and Information in Dynamic Semantics
LP-88-09 Theo M.V. Janssen A mathematical model for the CAT framework of Eurotra
LP-88-10 Anneke Kleppe A Blissymbolics Translation Program
Mathematical Logic and Foundations:
ML-88-01 Jaap van Oosten Lifschitz' Realizabiility
ML-88-02 M.D.G. Swaen The Arithmetical Fragment of Martin L6f's Type Theories with weak Z-elimination
ML-88-03 Dick de Jongh, Frank Veltman Provability Logics for Relative Interpretability
ML-88-04 A.S. Troelstra On the Early History of Intuitionistic Logic
ML-88-05 A.S. Troelstra Remarks on Intuitionism and the Philosophy of Mathematics
Computation and Complexity Theory:
CT-88-01 Ming Li, Paul M.B.Vitanyi Two Decades of Applied Kolmogorov Complexity
CT-88-02 Michiel H.M. Smid General Lower Bounds for the Partitioning of Range Trees

CT-88-03 Michiel H.M. Smid, Mark H. Overmars Maintaining Multiple Representations of
Leen Torenvliet, Peter van Emde Boas Dynamic Data Structures

CT-88-04 Dick de Jongh, Lex Hendriks Computations in Fragments of Intuitionistic Propositional Logic
Gerard R. Renardel de Lavalette

CT-88-05 Peter van Emde Boas Machine Models and Simulations (revised version)

CT-88-06 Michiel H.M. Smid A Data Structure for the Union-find Problem having good Single-Operation Complexity

CT-88-07 Johan van Benthem Time, Logic and Computation

CT-88-08 Michiel H.M. Smidi)Mark H. Overmars Multiple Representations of Dynamic Data Structures
Leen Torenvliet, Peter van Emde Boas

CT-88-09 Theo M.V. Janssen Towards a Universal Parsing Algorithm for Functional Grammar

CT-88-10 Edith Spaan, Leen Torenvliet, Peter van Emde Boas Nondeterminism, Faimess and a Fundamental Analogy

CT-88-11 Sieger van Denneheuvel, Peter van Emde Boas Towards implementing RL

Other prepublications:
X-88-01 Marc Jumelet On Solovay's Completeness Theorem
1989 Logic, Semantics and Philosophy of Language:
LP-89-01 Johan van Benthem The Fine-Structure of Categorial Semantics

LP-89-02 Jeroen Groenendijk, Martin Stokhof Dynamic Predicate Logic, towards a compositional,
non-representational semantics of discourse

LP-89-03 Yde Venema Two-dimensional Modal Logics for Relation Algebras and Temporal Logic of Intervals
LP-89-04 Johan van Benthem Language in Action
LP-89-05 Johan van Benthem Modal Logic as a Theory of Information
LP-89-06 Andreja Prijatelj Intensional Lambek Calculi: Theory and Application
Mathematical Logic and Foundations:
ML-89-01 Dick de Jongh, Albert Visser Explicit Fixed Points for Interpretability Logic
ML-89-02 Roel de Vrijer Extending the Lambda Calculus with Surjective Pairing is conservative

ML-89-03 Dick de Jongh, Franco Montagna Rosser Orderings and Free Variables
ML-89-04 Dick de Jongh, Marc Jumelet, Franco Montagna On the Proof of Solovay's Theorem

ML-89-05 Rineke Verbrugge X-completeness and Bounded Arithmetic
ML-89-06 Michiel van Lambalgen The Axiomatization of Randomness
Computation and Complexity Theory:
CT-89-01 Michiel H.M. Smid Dynamic Deferred Data Structures
CT-89-02 Peter van Emde Boas Machine Models and Simulations
CT-89-03 Ming Li, Herman Neuféglise, Leen Torenvliet, Peter van Emde Boas ~ On Space efficient Simulations
CT-89-04 Harry Buhrman, Leen Torenvliet A Comparison of Reductions on Nondeterministic Space

CT-89-05 Pieter H. Hartel, Michiel HM. Smid A Parallel Functional Implementation of Range Queries
Leen Torenvliet, Willem G. Vree

CT-89-06 H.W. Lenstra, Jr. Finding Isomorphisms between Finite Fields

CT-89-07 Ming Li, Paul M.B. Vitanyi A Theory of Leammf Sirn}tgle Concepts under Simple Distributions and
Other prepublications: Average Case Complexity for the Universal Distribution (Prel. Version)

X-89-01 Marianne Kalsbeek An Orey Sentence for Predicative Arithmetic

X-89-02 G. Wagemakers New Foundations: a Survey of Quine's Set Theory

X-89-03 A.S. Troelstra Index of the Heyting Nachlass

X-89-04 Jeroen Groenendijk, Martin Stokhof Dynamic Montague Grammar, a first sketch
X-89-05 Maarten de Rijke The Modal Theory of Inequality

