Institute for Language, Logic and Information

HONEST REDUCTIONS,
COMPLETENESS AND
NONDETERMINISTIC COMPLEXITY CLASSES

Harry Buhrman
Steven Homer
Leen Torenvliet

ITLI Prepublication Series
for Computation and Complexity Theory CT-89-08

(3%

University of Amsterdam

Instituut voor Taal, Logica en Informatie
Institute for Language, Logic and Information

Faculteit der Wiskunde en Informatica Faculteit der Wijsbegeerte
(Department of Mathematics and Computer Science) (Department of Philosophy)
Plantage Muidergracht 24 Nieuwe Doelenstraat 15
1018TV Amsterdam 1012CP Amsterdam

HONEST REDUCTIONS,
COMPLETENESS AND
NONDETERMINISTIC COMPLEXITY CLASSES

Harry Buhrman Steven Homer Leen Torenvliet
Department of Mathematics Computer Science Department ~ Department of Mathematics
and Computer Science Boston University and Computer Science
University of Amsterdam Boston, MA 02215 University of Amsterdam

Steven Homer was supported in part by
National Science Foundation Grants
MIP-8608137 and CCR-8814339
and a Fulbright-Hays Research Fellowship.
Some of this research was done while the
author was a Guest Professor at the
Mathematics Institute of

Received November 1989 Heidelberg University

Abstract

We demonstrate differences between reducibilities and corresponding completeness notions
for nondeterministic time- and space classes. For time classes the studied completeness
notions under polynomial-time bounded (even logarithmic space bounded) reducibilities
turn out to be different for any class containing NE. For space classes the completeness
notions under logspace reducibilities can be separated for any class properly containing
LOGSPACE. Key observation in obtaining the separations is the honesty property of
reductions, which was recently observed to hold for the time classes and can be shown to
hold for space classes. For the case of truth-table reductions we give a new interpretation
of this notion.

1 Introduction

Efficient reducibilities and completeness are two of the central concepts of complexity
theory. Since the first use of polynomial time bounded Turing reductions by Cook [4]
and the introduction of polynomial time bounded many-one reductions by Karp[9], con-
siderable effort has been put in the investigation of properties and the relative strengths
of different reductions and corresponding completeness notions. In 1975 Landner, Lynch
and Selman [11] gave an extensive survey of different types of reductions and differences
between these reductions on E (= U,e wDTIME (2°)). However, they did not present any
conclusions concerning any differences in complete sets for these various reductions. In
particular they left open the question of whether these different reductions yield differ-
ent complete sets. In 1987, Watanabe [13] building upon earlier work of L. Berman 2],
proved almost all possible differences between the polynomial-time completeness notions
on E and larger deterministic time classes.

The question of differentiating between complete sets for nondeterministic time classes
with respect to the various bounded reductions is left as an open problem in Watenabe [13].
In section 3 we solve this problem and prove the separation of complete sets for the
nondeterministic exponential time class NE (= U,ewNTIME (2°)) with respect to the
most important types of polynomial time reductions: many-one, bounded truth table,
truth table and Turing. The results hold for many larger non-deterministic classes as well.
The main new tool here is the work of Ganesan and Homer [5] on the structure of complete
sets for nondeterministic classes and in particular a careful examination of the honesty
of the various reductions. Further, by generalizing the results in [5] we are also able to
separate the corresponding completeness notions arising from logspace reductions.

Logspace reductions have long been studied as strengthenings of polynomial-time re-
ductions. It was realized early-on that many NP-complete sets (with respect to many one
polynomial-time reductions) were in fact log-space complete for NP [9,10]. Shortly after
the initial work on the isomorphism conjecture by Berman and Hartmanis [3], Hartma-
nis [7] studied the question of the logspace isomorphism of NP-complete sets and achieved
many of the same results as in [3] for logspace reductions.

An important advantage of logspace reductions is that they give rise to the definition
and study of complete sets for smaller complexity classes such as NL, CSL and P. The
properties of such complete sets have consequences for parallel algorithms and the study of
parallel complexity classes. Nonetheless, logspace reductions have been much less studied
than have polynomial-time reductions. In Section 4 we consider the problem of differ-
entiating the various completeness notions in nondeterministic space bounded classes for
the different types of logspace reductions. We prove that logspace many-one, disjunctive,
bounded truth-table and truth-table completeness differ on nondeterministic space classes
bigger than logspace. The methods used are similar to those of Watanabe [13], but the
key new idea is an application of the recent theorem of Immerman [8] and (independently)
of Szelepscényi [12] showing closure of these classes under complement.

2 Preliminaries

2.1 Machines and languages

Let 3 = {0,1}. Strings are elements of £*, and are denoted by small letters z,y,u,v,....
For any string z the length of a string is denoted by |z|. Languages are subsets of £*, and
are denoted by capital letters A, B,C, S, For any set S the cardinality of S is denoted
by |S|. For any set A the set AS™ consists of all strings in A of length < n. We fix a
pairing function Azy.<z,y> computable in logarithmic space and polynomial time from
T* x B* to ©*. We will use the following notation:
OE? n: for infinitely many n
OVO n: for all but finitely many n
We assume that the reader is familiar with the standard Turing machine model. An oracle
machine is a multi-tape Turing machine with an input tape, an output tape, worktapes,
and a query tape. Oracle machines have three distinguished states QUERY, YES and
NO, which are explained as follows: at some stage(s) in the computation the machine may
enter the state QUERY and then goes to the state YES or goes to the state NO depending
on the membership of the string currently written on the query tape in a fixed oracle set.
Oracle machines appear in the paper in two flavors: adaptive and non-adaptive. For a
non-adaptive machine queries may not be interdependent, whereas an adaptive machine
may compute a next query depending on the answer to previous queries.
Whenever it is obvious that a universal recognizing or transducing machine exists for
a class of languages (i.e. the class is recursively presentable), we will assume an enumera-
tion of the acceptors and/or transducers and denote this enumeration by M;, Mz, ... and
f1, f2,- ... Examples are:

e The class of polynomial time and/or logarithmic space bounded transducers.
e The class of polynomial time bounded constant-query bounded oracle machines.

We use M4(z) to denote the computation of M on input z relative to oracle A. Let
the set of queries made by M4 during this computation be denoted by Q(M, z, A) if M is
an adaptive machine, and by Q(M, z) if M is a non-adaptive machine. We will sometimes
use the notation M“4(z) = 0 for rejecting, and M A(z) = 1 for accepting computations.

For a Turing machine M, L(M) denotes the set of strings accepted by M. For an oracle
machine M and set A, L(M, A) denotes the set of strings accepted by M relative to oracle
A. These sets are also called the language of M and the language of M 4 respectively.

To obtain model independent results we consider only space classes which are closed
under constant factor space overhead, and time classes which are closed under polynomial
time overhead.

2.2 Truth tables

The pair <<ay,...,a;>,a> is called a truth-table condition of norm k if <ay,...,ar>
is a k-tuple (k > 0) of strings, and o is a k-ary Boolean function [11]. The set {as,...,ak}
is called the associated set of the tt-condition. A function f is a truth-table function if f is
total and f(z) is a truth-table condition for every z in X*. If, for all z, f(z) has norm less
than or equal to k, then f is called a k-truth-table (k — ¢t) function. If a function f is a

k-tt function for some integer (k > 0) then we call f a bounded truth-table (btt) function.
We say that a tt-function f is a disjunctive truth-table (dtt) function if f is a truth-table
condition whose Boolean function is always disjunctive.

2.3 Reductions, reducibilities and completeness

Let the resource bound b be either polynomial-time or logarithmic space and A;, A2 C ¥*.
We say that:

1. A, is b many-on reducible to Ay (<3,-reducible) iff there exists a function f com-
putable within resource bound b such that z € A, iff f(z) € As.

2. A; is b truth-table reducible (<%-reducible) to A iff there exists a b-bounded tt-
function f such that a(xa,(a1),---,X4,(ak)) = true iff z € A;, where f(z) is
<<ay,...,ap>,a> and xa, is the characteristic function of the set A;. As b-
bounded functions can be computed by b-bounded Turing machines, the truth table
conditions are often modeled by non-adaptive oracle machines. Resource bounded k-
truth-table reductions (<?_,,) and bounded-truth-table reductions (<},,) are defined
similarly using k — ¢t and btt functions.

3. A; is b Turing reducible to Az (<}-reducible) to Ay if there exists a b-bounded
deterministic oracle machine such that A; = L(M, A,).

4. A; is b disjunctive reducible (Sg-reducible) to Ag, if A; <% A, by some dtt-function.
For k > 0, A; is k-disjunctive reducible (55’,_ a) to Az, if A1§2,A2 by some dtt-
function of norm k.

Let <! be any of the above reductions

1. A set A is <b hard for some complexity class C iff for all B€ C, B is <} reducible
to A.

2. A set A is <! complete for some complexity class C iff A is <? hard for C and A € C.

For any complexity class C, a set A is C-immune iff no infinite L € C is a subset of
A.

3 Nondeterministic Time Classes

We first turn our attention to nondeterministic time classes. Our results will apply to any
nondeterministic time class which contains NE = U, wNTIME (2°*). Similar results were
proved for deterministic classes by Watanabe [13]. The nondeterministic classes are not
known to be closed under complement, and so a quite different approach is needed.

The first result exhibits a difference between complete sets with respect to <2, and <%
(and also <!¢9°Pac¢ and Sfio‘”” %) reductions. The new tool that is needed comes from the
work of Ganesan and Homer [5].

First a definition.

Definition 3.1 A function g is said to be exponentially honest if for all x : 219(2)] > ||

The next result appears in theorem 3 in [5]

Theorem 1 Any <P, complete set for NE 1s one-one complete via functions which are
ezponentially honest. That is, if C is <h, -complete for NE then for any B € NE there
is an ezponentially honest, 1-1, polynomially-time computable function f which many-one
reduces B to C.

While the major new contribution of this theorem was the one-one completeness, it is
the exponential honesty which will be crucial here. In order to get our results concerning
logspace reductions we state a slight strengthening of this theorem. First note that K =
{<e,z,1>|the e!* NE machine accepts z in < [steps } is <logspace complete for NE. Given
this, the following theorem has essentially the same proof as the previous theorem and so
its proof will be omitted here.

Theorem 2 Any <!9°Pac¢_complete set for NE is one-one complete via functions which
are exponentially honest.

We can now state our theorem which yields the desired differences between complete
sets. A similar theorem, slightly weaker as it applies only to polynomial-time reductions,
can be found in Ganesan and Homer [5]. The proof presented here is simpler, more
complete and will be generalized to other reducibilities later in this section.

Theorem 3 There is a set B which s <l?”’ 4¢¢_complete for NTIME 2P) put not <P -
—=2-d =m
complete for NTIME (2”"'”) .

Proof: Let K be the <!9sPac_complete set for NE defined above. It is easy to see (cf.
Balc4zar, Diaz, and Gabarré [1]) that K is <!29*Pa¢_complete for NTIME (2”"’”) as well.
The set B will be constructed so that its only elements are of the form <e,z,l,#>,1 =0

ort=1.
B will be complete via the S'zo_g‘;p 4% reduction:

<e,z,l>€ K < [<e,z,1,0> € B|V[<e,z,l,1> € B]

To ensure that B is not <?,-complete we diagonalize against all possible <%, reduc-
tions from Z*to B. Let f; be the i** polynomial-time computable function in some fixed
enumeration of all such functions. We may assume that f; runs in DTIME (n‘). We need
a set of elements on which to diagonalize. To this end we define a sequence of integers
{uplnbyuo=u1 =1, up = 2(um-1)""" 4 1, form > 1.

Let H = {0%},cy. It is easy to verify that H € P. We use the sequence H to
diagonalize against <? reductions

We can now describe the construction of B. The set B is constructed in stages. At
stage k = 1,2, ... we determine all elements in B of length < (uk)®. At stage 1 we put all
strings s, |s| < 1 into B. Now assume we have constructed B through stage n — 1 and
describe stage n > 1.
stage n:

Compute f(0%). Let s be any string of the form <e,z,l,i>,(i € {0,1}) with

(n-1)""! < || < (un)™ Then we put s € B iff s # f,(0*) and <e¢,z,I>€ K.

end of stage n

First note that K <;’*?**B via the reduction defined above. Since for any <e,z,I>
if <e,z,I> € K then at least one of <e,z,l,0>,<e,z,l,1> is put into B (without loss
of generality |<e,z,l,0>| = |<e,z,1,1>|) and if <e,z,!> ¢ K then neither of the two
strings is in B.

CLAIM 3.1 B € NTIME (2P°W)

Proof: Given a string s, s € B iff:
1. s=<e,z,l,i> for somee,z,l€ X* i€ {0,1},
2. <e,z,l>€ K, and
3. s # fr(0%) where u; is the least element in the sequence {un}n with (ug)* > s.

1. can be tested for in linear time. Consider 3. By definition of uj, |s| > (ug—1)*"" and
hence (uk)k < 2klsl. Now since fy € DTIME (n") and H € P, the ui as in 3 can be found

and the condition in 3 checked in (ug)* < 24* < 20(1*") steps. As K € NTIME (2") the
claim follows and in fact B € NTIME (2"2) . X

Thus we have B S'of’p %°¢_complete for NTIME gpoly
2—-d

CLAIM 3.2 B is not <P -complete for NTIME (2""’”).

Proof: Assume B were <2 -complete. Then by theorem 2 there is a polynomial time
computable f, which reduces £*to B and which is exponentially honest.

At stage n of the construction of B we computed f,(0%*). By the exponential honesty
of fp, 2#n(0*) > |o%| = u,, = 2(4-1)""" + 1, and so |fn(0%")| > (un—1)""'. Hence at
stage n we put f,(0%) into B. This contradicts the assumption that f, is a reduction of
3*to B X

This completes the proof of theorem 3 X

A standard padding argument now yields the same result for NE.

Corollary 1 There is a C which is _<_12°_9;”““-complete for NE but not <P -complete for
NE.

Proof: Let B be as in the previous theorem. Then, as noted above, B € NTIME (2"2).
Define C = {10/2I°|z € B}. Then

1. Ce NE
2. BS#"”’““C and hence C is S;o_g;p %€ complete.

3. C is not <P complete for NE. (C<losspace B)

Hence C has the desired properties. X

It follows directly from the corollary that there are <io9pe_complete sets (<5_ ;-

complete sets) for NE which are not <!29°P2¢-complete (<5,-complete) for NE. Fur-
thermore the same proof works to give these same results for any nondeterministic class
containing NE, including the class of recursively enumerable sets.

We next turn to differentiating between complete sets for bounded truth table reduc-
tions. We will prove that, for any k > 1 there is a set which is <k _,;-complete, but not

S'(’ k_l)_tt-complete for NE.
logspace

A similar result holds for <}’?;7%“*~complete sets as well. For simplicity, we present the
proof for the case k = 3.

The general theorem is a direct extension of the proof given here. The central idea
in the proof is again a careful analysis of the honesty of the reductions. However, here
we cannot avoid reductions which are not exponentially honest. Rather, we show that
in exponential time, we can directly compute the result of dishonest queries made by
the reduction as they are so much shorter than the input. Honest queries made by the
reduction are handled as in theorem 3.

Theorem 4 There is a set B which 1s Sg_ g-complete for NTIME (21’0‘”) but not <b_,,-
complete for NTIME (2”""’)

Note that this theorem separates both <?_,, and <}_,,-completeness and <}_, com-
pleteness from <%_ ,-completeness.
Proof: The set B is constructed in stages, in a way similar to that of theorem 3. B will
be made <}_,-complete via the reduction.

<e,z,l>€ K « 3Ji€{0,1,2}:<e,z,l,i>€ B

In order to ensure that B is not <_,,-complete we simultaneously construct a set W which
witnesses the incompleteness of B. We make use of the sequence {u,} from the previous
proof. Recall that ux = 2(ue—1)** 4,

Let M; be the i*" 2-tt reduction in some enumeration of such reductions and let
Q(M;, z) be the set of (at most two) elements queried by M$ (z) during its computa-
tion. M; is assumed to run in time p;(n) = n' and, as M; is a truth-table reduction
Q(M;,) does not depend on S. We can now present the construction of B and W.

Initially B =W = 0.
stage n:

At stage n we determine B(y) for all strings y with (un_1)""! < |y| < (un)™ and we
decide whether or not 0% € W. (At this point in the construction B C S (vn-1)"71)

1. For all y with (up—1)""! < |y| < (un)", put
Yy ¢ Q(Mna Oun) and

yeEBo ¢ 31 e€{0,1,2}(y= <e,z,l,i>) and
<e,z,l>€ K

2. Put 0% € W — M2(0%) =0

end of stage n

Clearly, as |Q(M,,0%)| < 2, <e,z,I>€ K « 3i € {0,1,2}(<e,z,l,i>€ B. So B is
<%_j-hard for NTIME (2""’”) . Moreover since only elements not in Q(M,, 0%") are added
to B at stage n, and only elements of length greater than (un)™ at subsequent stages
MB (o) = M= (o)

We proceed via a series of lemmata to complete the proof.

Lemma 4.1 W € DTIME (2v°'t')

Proof: By the construction W C {0%}. The following algorithm tests if 0"~ € W
1. compute Q(M,,0%).

2. For each y € Q(M,, 0%*), compute if y € B as follows:
if |y| > (un—1)""! then y ¢ B by the construction.
if |y| < (tn—1)""! then find the least k such that |y| < (ur)®;
if y € Q(M,0%) then y ¢ B
else y€ B «» y= <e,z,l,i> for some i € {0,1,2} and <e,z,l>€ K

3. Using the truth table computed by M2(0%") and the information from 2, we can com-
pute the value of M2(0%) . By the construction 0** € W if and only if MB(0*) =o0.

Now 1. takes at most (u,)™ steps. For step 2, given 0% as input, we can in u, steps
determine (up,—1)""! since u, = o(un-1)""" 41 If ly| < (un—1)""1, then finding k least with
(uk)® > |y| can again be done within u, steps. (by the definition of the sequence {un}.)-
We can then compute Q(Mjg,0%) in (ug)® < (un)" steps and test if y € Q(Mj,0%).
If so and if y = <e,z,l,> then computing if <e,z,/> € K deterministically takes
22|<e,a:,l>| < 22(“"_1)" ' < 2Un steps. Hence step 2 can be carried out in time 2% +
(up)™ € 20(un).

Finally step 3 can be done in O ((u,)™) steps. So deciding 0% € W takes 20(un)) steps

and hence W € DTIME (2P°'V). =

Lemma 4.2 B is <§_,-complete for NTIME (2P°’”).

Proof: We have already observed that B is <§_,-hard. So it remains to prove that

B € NTIME (2°°).
Given y, the following algorithm tests if y € B.

1. Find the least n with |y| < (un)™
2. Compute Q(M,, 0%).

3. Ify e Q(M,,0%) then y ¢ B
else
y=<ez,l i> for some 1 € {0,1,2}

yEBH{ and <e,z,l>€ K

Now, for n as in 1, |y| > (un—1)""1, so by definition of the {u,} sequence (u,)" =
(2(“"—1)"‘l + l)n < (2"’| + l)n < 2nlvl+1, Hence, since n < |y|, (un)" < 20(¥*), the value
of n in 1 can be found in < (u,)" steps and 2 can be computed in (u,)" steps. Clearly
then 3 nondeterministically computed in time 2ll as |<e,z,I>| < |y|.

Thus steps 1 and 2 can be carried out deterministically in 20(1vl*) steps and step 3 can

be done in NTIME (27°%), so B € NTIME (20°0). ®

Lemma 4.3 B is not <§_,,-complete for NTIME (2”"'”).

Proof: Assume B were <j_,,-complete. Then by lemma 4.1, W would be 2-tt reducible
to B, say by reduction M,. But by the construction, we have 0% € W if and only if
MB(0¥») = 0, contradicting the assumption that My, is the required reduction. X

X

Via the same padding argument as before one can prove.

Corollary 2 There is a set C which is <§_,-complete for NE, but not <B_,-complete for
NE.

Straightforward modifications of the above method yield a number of extensions of
these results.

e The results are true for logspace reductions rather than polynomial time reductions.

e The above proof can be generalized to give the same results for k-d reductions instead
of 3-d.

e The above proofs work as well for any nondeterministic class with a paddable <, -
complete set which contains NE.

A very similar argument can be used to separate <P, and <§; completeness. The proof
is only sketched.

Theorem 5 There is a set B which is <};-complete for NTIME (2""’"), but not <%,-
complete for NTIME (2P°).

Proof:(Sketch): As before we construct B together with a witness set W. The reduction
making B <},-complete will be:

<e,z,l>€ K o (i < |<e,z,I>| and <e,z,l,i> € K)

At stage n of the construction we treat n as a pair n = <nj,n;> and we try to diagonalize

against the nit tt-reduction M, , but we only do this if My, asks < ngy queries to the oracle.
More formally, stage n of the construction is as follows:

stage n:

1. Let n = <ny,ns> and compute Q(My,,0%).

2. If |Q(My,,0%)| > nz then
for for all y with (un,)™ ! < |y| < (un)", put
yE€ B o y=<e,z,l,0>and <e,z,l,> € K.

3. If |Q(Mpy, 0%)| < ny then
4. put 0% € W < MP (0*) =0 and
5. for all y with (up—1)""! < |y| < (un)™ put

y & Q(My, U and
ye B« { Jily=<e,z,l,i>and i< |<e,z,l>| and
<e,z,l>) €K

end of stage n
Now exactly as in theorem 4, we can prove that W € DTIME (2”"1”) and that B €

NTIME 2”"'”). In step 5 of the construction we have that (u,—1)" ! < |y| so it follows
from the definition of {u,} that if y = <e,z,I> and ¢ < |<e,z,l>| then |<e,z,I>| >
n > ng. So in step 5 we have room to code K into B. Hence B is <}, complete for
NTIME (2°°%).

Now, let M, be a <},,-reduction, say with norm n;. Then at stage n = <nj,n;> we
will find that |Q(Ma,,,0%)| < ny and so in step 3 of the construction will put 0% € W
Mfl (0%=) = 0, and so 0% will witness the fact that My, does not btt-reduce W to B and

so B is not <},,-complete for NTIME (2”"'"). X

Finally, we want to separate tt-completeness from Turing completeness on NE. While
the underlying ideas are the same, the construction is considerably more complex. The
key is to define the correct Turing reduction within which there is room to diagonalize
against all tt-reductions.

Theorem 6 There is a set B which is <}.-complete but not <};-complete for NTIME (2‘”""’))

Proof: First we define the Turing reduction which we will use to show B <}.-complete.

On any input z, the Turing reduction relative to B asks a series of |2|? queries. Each
query is of the form <z,i> € B ?, where 1 < 2l2* . For convenience we require that all
queries have the same length. We do this by padding each 1 in the pair <z,1> with enough
leading 0’s so that |<z,1>| =]<z,2|z|2+1 — 1>|. So the length of each query <z,i> is
|2| +]2|?. Which queries are asked depends on the answers to the previous query. The first
string queried is < z,1>. If <z,1> € B then <z,2> is queried next, if <z,1> ¢ B then
<z,3> is the next query. More generally, when <z,1> is queried of B a “yes” answer
results in < z,2¢{> being the next query and a “no” answer in < z,2¢+ 1> being the next
query. This process continues on for |z|? many queries. The reduction then halts and
accepts z iff the number of “yes” answers in the |2|? many queries was odd.

A picture of the query tree of this reduction on input 2 is:

)

<z,1>

<z,2> <z,3>

Y, N Y N

4> <z,5> <2,6> <2,7>
<Z’ Z, Z,) depth= |Z|2

Note that the number of nodes in this tree is 2/?°t1 — 1 and the number of leaves is
2l7* | Let TB(z) be this Turing reduction.

The property we will preserve, and which will guarantee <f-completeness of B is that
z € K if and only if TB(2) accepts.

Some terminology will be helpful here in order to simplify the construction. For any
z, let R, be the query tree for the reduction TB(z) described and pictured above, and let
N, be the collection of nodes in R,. Assume we are given a set S C N, with |S| < glz?-1
Then as there are 2/#°~1 pairs of leaves in R;, each of the form <z,2>,<z,2i+ 1>,
there is some such pair neither of which are in S. Let £(S) be the lexicographically least
leaf in N, — S such that p(S), the path from <z,1> to £(S) in R,, has the property
that the number of “yes” edges on p(S) is even. (Note: such an £(S) and p(S) must exist
since both < z,2¢> and <z,2{+ 1> arein S and one of the paths <z,1>...<2,2{> or
<z,1>...<2z,2{+ 1> must contain an even numer of “yes” edges.)

The construction will work as follows. For each z we find a particular set S C N, as
above and corresponding path p(S). We then define B on elements <z,i> so that the
reduction TB(z) follows the path p(S) through R,. Finally we put £(S) € B < z € K.
This wil ensure that

z€ K «— The number of “yes” edges on p(S) is odd
« TB(z) accepts

As in the previous proofs we simultaneously construct B and a witness set W. We
again use the sequence {ur}. However, to diagonalize against the nt? tt-reduction M, we
find a suitable point 0 € {0%} and diagonalize at 0%».

10

It is simplest to define the sequence {v,}, and prove it exists before presenting the
actual construction. Let vg = O and assume v,_; has been defined. Then v, is the
smallest element u; in the sequence {uj} such that

1. > v,_1 and
2. (ug)t < 2lue-0)¢0-1

CLAIM 6.1 A sequence {v,} ezists as defined above.
Proof: By definition of {ur}, ur = our—1)*" 4 1, so

- k

(wp)t = (20w-0" '+1)
< (2(w-1)Ft+1
2k(uk_1)"_l+k

Since the sequence {u;} increases exponmentially, k<<ui_1, and so for k sufficiently
large ok(ue—1)* 71 +k < 9(ur-1)?*"V-1 45 peeded. ®

Initially B = W = . We can now define stage n of the construction. At stage n we
decide whether to put 0’ into W and we define B on all y with (v,—1)""! < |y| < (va)™

stage n:
At this point B C BS(vn-1)""",

1. Put 0% € W « MEB(0") =0.

2. By definition of vy, v, € {uk}, say v, = u;. For all y such that (V1)1 < |y| <
(ut—-l)t_la pUt I
_ <e,x,I>*+1 _
yeBo y—<e,a:,l,2| | 1>
and <e,z,l>€ K
3. For all y such that (u;—1)* < |y| < (va)™, ify = <e,z,l,4> withi < gl<e, 2, I>P+1
then set § = Q(Mn,0"") N N_, 4 |». Compute £(S) and p(S) as defined above.
(Note: we will prove later that p(S) and £(S) exist.) Then put y € B only if either

(a) y € p(S) and y # £(S) and <e,z,l,2i> € p(S) or
(b) y € p(S) and y = £(S) and <e,z,l>€ K

end of stage n

We first prove that K<7.B via the reduction procedure T8 defined above. Given
<e,z,l> ,let y = <e, z,1,21<& % I>P+1 _ 15 and let n be such that (v,_1)" ! < |y| <
(un)™. There are 2 cases. If (va=1)""! < |yl < (us—1)*"! then part 2 applies to y,
and to all strings in the tree B_ e, z,1> In this case, the only possible element of the
computation query tree of TB(<e, z,1>) which is put into B is y itself. So the computation
TB (<e,z,1>) receives “no” answers to all of its queries until it queries y. By part 2 we
have <e, z,l> € K < y € B < the computation of T2(<e, z,!>) receives an odd number
(exactly 1) of “yes” answers «» TB(<e, z,1>) accepts.

11

In the second case (u;—1)*~! < |y| < (vn)™ and part 3 of the construction applies
to y, and to all queries in the tree R e,z,1> Now note that, since M,, runs in time
pa(t) = 17, |S| = |Q(Mp,0%)| < (vn)". By choice of vn, (vn)" < Q(ue-1)?¢"D-1 < olul?,
Putting this toghether gives |S| < 2|”|2‘1, so by the discussion at the beginning of the
proof, the quantities £(S) and p(S) in part 3 are well defined. Then in part 3 we put
elements of p(S) into B or B in such a way that TB(<e,z,1>) follows the path p(S) to
the leaf £(S). And by part 3b we have <e,z,I> € K « {(S) € B « TB(<e,z,1>) has
an odd number of “yes” queries «» TB(<e,z,1>) accepts.

Hence in either case the reduction works and we have K S%B.

We now proceed to finish the proof via a series of three lemmata.

Lemma 6.1 W € DTIME (2POW)

Proof: Since {O""} can easily be seen to be in P, given a string z we can check if z = O*"
for some n. Then given 0° we can determine if 0°* € W by computing MB (0%=) as follows.

1. Compute Q(M,,0%")

2. For each y € Q(M,,0%), we determine if y € B using 3 and 4 below.

3. If |y| < (ut—1)*"! and for some e, z, 1,4 with ¢ < 2I<e,2,I>P+1 — <e z,1,i>, then
we compute if y € B directly using parts 2 and 3 of the construction. To do this we
compute the relevant v,y and uy_; which bound |y| and, if needed, the corresponding
Q(Myy,0%), S, p(S), £(S) and deterministically compute if <e,z,!> € K if part 3b
of the construction applies.

4. If (ue—1)!™! < |y| < (vn)" and for some e, z,l,¢ with + < 2l<ez, I>P+1 o —
<e,z,l,i> then we use part 3 to decide if y € B. Compute S = Q(M,,0") N
Nee oz 1> £(S) and p(S). Note that in this case y # £(S) since £(S) & Q(Man,0%").
So 3a applies and we have y € B < y € p(S) and <e, z,1,2i> € p(S).

It is straightforward to check that all of the above can be computed in DTIME (2”"’”)

relative to v, = |0%*|. The key point is that when, in 3 above, <e,z,l{> € K is computed,
we have |<e,z,l>| < |y| < (u-1)*"!. Now <e,z,I> € K can be determined in time

up_p)t1 . . .
22|<e,:c,l>| < 92=1" - gvn, Finally, once all of Q(M,,0"") is determined, we have

0% € W « MB(0") =0. ®

Lemma 6.2 B € NTIME (2P°'t')

Proof: The proof is very similar to that of Lemma 6.1. Given y, we want to compute if
y € B. We do this just as we determined in Lemma 6.1. The added complexity comes
from the fact that here part 3b of the proof may apply. It may be that y = £(S) € p(S)

and so y € B « <e,z,l> € K in this case. This puts B into NTIME (2?"’”). The other
cases for deciding B can all be carried out in DTIME (2""’”) as in Lemma 6.1 X

12

Lemma 6.3 B is not <i,-complete for NTIME (2”""’)

Proof: If B were <%-complete, we would have W<}, B, say via reduction procedure Mp.
But 0?" witnesses that this is not the case. X

X

Corollary 3 There is a set C which is <}.-complete for NE, but not <{;-complete for NE

Proof: Again a simple padding argument works. Let B be as in Theorem 6. Define C =
{x10|”|2|a: € B}. Since B € NTIME (2"2),0’ € NE, B<P,C, and hence C is <¥.-complete
for NE. Now assume C were <-complete for NE. Then W<%,C, where W is the set
defined in the proof of Theorem 6. Let M be a <},-reduction which reduces W to C. Define
a <}, reduction M as follows. If M’ C(z) generates the tt-condition < <y1,yz, ..., Yk >, >,
then M2 (z) generates the condition < <z, 23,...,2r>,a>, where z; = (if yi = z10l=l*
then z else b) and b is a fixed element of B. Clearly M is a Sft-reduction and Mj reduces
W to B, contradicting the proof of theorem 6. X

It is not clear here how to modify the above proof to make BS’;’W %°_complete for

NTIME (2”"‘"). In particular it is not clear how to use only logtape to prove the <p-
completeness of B as was done in the above proof. Watanabe [14] used Kolmogorov

complexity to differentiate between <}, and <} completeness for DEXT. The proof of
theorem 6 would work for DEXT as well and does not appeal to Kolmogorov complexity.

4 Nondeterministic Space Classes

We now turn our attention to nondeterministic space classes. Our results will apply to
any such class properly containing NLOGSPACE = U,ew NSPACE (clogn). The reason
for demanding proper containment of NLOGSPACE is that in the following constructions
we want to diagonalize against <!°9°P%¢¢ reductions. Yet we want

the language resulting from the diagonalization to be complete for some nondetermin-
istic space class. Therefore the results in the sequel will be about classes NSPACE (S(n))
where it is understood that S(n) is some fully space constructible function with the prop-
erty that: limn — oolog(n)/S(n) =0

As in the case of nondeterministic time classes the property needed for differentiating
between reductions is their honesty. Using a lemma with a similar statement as that
in Watanabe [13] and with the observation that nondeterministic space classes above
LOGSPACE are closed under complementation, we get an especially nice form of honesty
for logspace reducibilities on these classes.

As it turns out all logspace reducibilities on these classes have some length increasing
property. As “length increasing” is not an unambiguous term for say Si”_":f %% _reductions,
we will first define precisely what this length increasing property is. A function f will be

[oo]
called length increasing iff V z : |f(z)| > |z|. Now:

Definition 4.1 Let M be a deterministic logarithmic-space bounded oracle machine and
let A be an oracle set such that M witnesses a <9°P%_reduction.

13

1. We say that a function f is generated by M and A iff f maps almost all z € * to
some element of Q(M, A, z).

2. Fm = {f | f is generated by a logarithmic-space bounded oracle machine which
corresponds to some <129°P3° _reduction}.

8. Fbit = {f | f is generated by a logarithmic-space bounded oracle machine which

corresponds to some <j3°P* _reduction}.

4. Ftt ={f | f is generated by a logarithmic-space bounded oracle machine which cor-
responds to some gigg’pa“-reduction}

5. FT = {f | f is generated by a logarithmic-space bounded oracle machine which
corresponds to some Sfl‘fg’p %% _reduction}

6. Let Fr be any of the above classes. A set A has an Fr-subset if there ezists o
function f € Fr, which is total and length increasing, such that for almost all z €
2, f(z) € A

We will show in the next subsection that languages complete in NSPACE (S(n)) under
Sf?g“”’““ reductions have a Fr-subset, and are in that sense complete under an honest

reduction.

4.1 Structure of complete sets in NSPACE

The first theorem we derive on logspace reductions on NSPACE (S(n)) states that for
a complete set in NSPACE (S(n)) there can always be found a set in NSPACE (S(n))
which reduces to the complete set via a length increasing reduction (with Li. defined as
in Definition 4.1). A similar theorem (but for DEXT) can be found in Watanabe [13]. It
is not obvious that a uniform estimate (beneath something like polylogarithmic time) on
the space usage of logarithmic space bounded machines can be given as could be done in
section 3. Therefore we have to treat the case where the simulation threatens to use more
that S(n) space separately.

Theorem 7 Let A be any set in NSPACE (S(n)).

There exists a set Ly € NSPACE(S(n)) C NxX*, such that if L <looepace 4 yig
some polynomial-time Turing reduction M; then for almost all x there exists a y in
Q(M;, A, <i,2>) N A such that |y| > |<i,z>|.

Proof: Let {M;}iciw be an enumeration of logarithmic-space bounded oracle machines.
We define L4 as follows:)

<i,z> € Ly & the simulation of M;‘S|<t’x>'us
< S(|<1,z>])) tape cells and

<i,z> ¢ L(M;, ASI<HZ>1),

€S

CLAIM 7.1 L, € NSPACE (S(n)).

Proof: Since A € NSPACE (S(n)), there exists a nondeterministic S(n)-space bounded
Turing machine M4, which accepts A. Immerman (8] and Szelepcsény [12] showed inde-
pendently that nondeterministic space is closed under complementation. Therefore the

14

complement of A (A) is also in NSPACE (S(n)), and is recognized by a nondeterministic
S (n)-space bounded Turing machine Mz. We are first going to construct a machine that
recognizes L4. Note that <i,2> € Ly iff simulation of M; uses more than S(|<7,z>)
tape cells or <i,z> € L(M;, ASIS%HZ>1), Consider the following machine M :

input <t,z>
mark off S(|<¢,z>|) tape cells.
Simulate M; on input z
if M; queries a then
if |a| > | <1, z>| continue computation of M; in the NO state!
else guess if a is in A or in A and run M4 or My on input a.
if it rejects then REJECT
else if M4 accepts then continue M; in the YES state
else if M accepts then continue M; in the NO state.
ACCEPT iff M; accepts or simulation of M;
uses more then S(|<{,z>|) tape cells.
end.

It is easy to see that L(M) is in NSPACE (S(n)). Hence the complement of L(M) is
also in NSPACE (S(n)), by some machine M. So <i,z> ¢ L(M) iff <i,z> € L(M) iff
<i,z> € L4. This shows that L4 is in NSPACE (S(n)). ®

CLAIM 7.2 If LASII‘.”"W“A via M, then for all but finitely many z, Q(M, A, <i,z>)N
A>I<t,z>| £ 0.

Proof: Suppose that L ASI;’M’ ““*A and that Mj is a logarithmic-space bounded oracle
machine such that L4 = L(Mj,, A). Let z be a string such that the simulation of M; uses
< 8(|<j,z>|) tape cells. (Since S(n) majorizes LOGSPACE this is true for sufficiently
long z.) Then there exist at least one y in Q(Mj, A, <j,z>) N A such that |y| > |z].
Suppose otherwise. That is, the length of each element of Q(M;, A, <j,z>)N A is

< |o|. Then MAS'SP T2\ (<5 2>) = MA(<j,2>), and <j,z> € L(Mj, ASI<52>) iff
<j,z> € L(M;,A). Thus <j,z> € Ly iff <j,z> ¢ L(M;, A). Which contradicts the
fact that L4 = L(M;, A). K

X

Note that contrary to section 3 we now have not shown that NSPACE ((S(n)) has
complete sets under honest reductions. Just that for every complete set there is some set
reducing Li. to it (in the weak sense above). However we can transform this notion to a
property of complete sets against which we can diagonalize as stated in:

Corollary 4 Every <{9P* _complete set in NSPACE (S(n)), has an FT-subset.

To check if |a| > |<%,z>|, we use a counter keeping track of the number of symbols written on the
oracle tape between two queries

15

Proof: Let A be a <}9°P* _complete set in NSPACE (S(n)). We now construct the
set L4 w.r.t. A in the same way as in theorem 1. Since A is <lpeeraee _complete for
NSPACE(S(n)), we can now apply theorem 7: For almost all z there exists a y; in

Q(M;, A, <i,z>) N A such that |y,| > |z|. We now define the following function g :

o(z) = Yz if y, exists
some element of A otherwise

The function g is total and length increasing because for almost all z € X*, | g(z)| > |=z|,
and g(z) € A. Furthermore g € FT, which proofs the corollary. X

This property of <:?"?** complete sets is easily translated to the other completeness
notions.

Corollary 5 Let A C X*.

1. If A is <\99°P%¢ _complete for NSPACE (S(n)), then A has an Ftt-subset.
2. If A is <[59°P%_complete for NSPACE (S(n)), then A has an Fbtt-subset.
8. If A is <logspace_complete for NSPACE (S(n)), then A has an Fm-subset.

Proof: The proof is similar to the proof of Corollary 4 and is left to the reader. X

On the way to the differentiation between completeness notions we pick up two results
on many-one complete sets.

Corollary 6 No <!99Pact_complete set for NSPACE (S(n)) is LOGSPACE-immune.

Proof: Let C be any <!99°Pec¢_complete set for NSPACE (S(n)). Consider the set L¢
and a many-one reduction from L¢ to C via machine M,. Applying theorem 7 it follows
that for almost all z M, queries a y to C such that |y| > |z| and y € C. So the set
{Q(M,, <i,0">)| n > no} for some ng large enough, is an infinite subset of C. Consider
the following machine M, which accepts this subset:

input z
n = |z|
foralln', ng < n' <ndo
run M, on input <c, o' >
if Q(M., <c,0" >) = z then ACCEPT
end do
REJECT

Since M, is a logarithmic-space bounded oracle machine it is easy to see that M is
also a logarithmic-space bounded machine. Furthermore M accepts only if z € C and
IL(M)]| = Ro. ®

Corollary 7 Every <!29°pace_complete set for NSPACE(S(n)) has infinitely many dis-
joint, infinite subsets {B;}ic, which are in LOGSPACE.

16

Proof: Corollary 6 states that every <logspace_complete set has an infinite subset in
LOGSPACE. Let A be a <!l9°Pa¢_complete set for NSPACE (S(n)) and let Bo be such
an infinite subset. Consider the set Ay = A\Bo. A; is € NSPACE (S(n)) and A4; is
<logspace_complete via the following reduction from A to Ay

input z
if z € By then output a fixed y ¢ A;
else output z

end

Now we can apply corollary 6 again on A;. This process can be repeated infinitely
often and will generate the subsets {B;}icv as promised.X

4.2 Differences between complete sets in NSPACE

To this point we have obtained some useful properties of NSPACE (S(n))-complete sets.
We now turn to differentiating between the various completeness notions for these space
classes. We have shown that every <!29°P3°¢_complete set in NSPACE (S(n)) has an Fm

subset. Hence to construct a S;"fff %c_complete set, which is not <!29°P3°¢_complete, it

is sufficient to construct a set, which is Slzo_g;p %°_complete but has no F'm subsets. For
the construction we make use of a set K5 which is the space analog of the set K used in
section 3 and can easily be seen to be many-one logspace complete for NSPACE (S(n))

(See [6])

Theorem 8 There ezists a <»?**.complete set D in NSPACE (S(n)), which is not
<logspace_complete.

Proof: The construction is essentially the same as the construction of Theorem 3. Again
D will be constructed so that its only elements are of the form <e,z,l,¢>,i € {0,1}.
Then D will also be complete via the logspace reduction:

<e,z,l>€ Kg + [<e,z,1,0>€ D]V [<e,z,l,1> € D]

To ensure that D is not Si;’,gsp““-complete we diagonalize against all possible <logspace_
reductions from Z*to D Now let f; be the i** logspace computable function in some
fixed enumeration of all such functions. As observed above we may not assume that the
computation of f; can be done in space S(n). Therefore we diagonalize not against f, at
stage n of the diagonalization but against fr (n) the projection of the pair n = <1,75>
on its first coordinate. This means that we will encounter f; an infinite number of times
in the diagonalization with ever larger strings as argument. As of a certain length the
simulation will (continue to) succeed within S(n) space. Hence we create for each f; an
infinite sequence of counterexamples to the statement of Corollary 5 which says that the
range of some function must be almost entirely within D if D is to be <logspace complete.

As we diagonalize against a length increasing property the sequence of numbers {by}n,
by = O to use as boundaries can easily be computed by the diagonalization. We initially
set D = 0. Assume we have constructed D through stage n — 1.

17

stage n:
If fr (n) (0%"=1)) can be computed within S(b(n — 1)) tape cells
then let y = f;(0") otherwise y = 0.
For all s of the form <e,z,l,1>, s # y,
put s € D « <e,z,I> € Kg; set b, = max{b(n — 1) + 1,|y[}
end of stage n

CLAIM 8.1 D € NSPACE (S(n))

Proof: On input s = <e,z,l,i> first check that <e,z,I> € Kg. This can be done
in S(|<e,z,1>|)-space. If this test succeeds, the construction can be carried out until
a stage n is reached where b(n) > |s|. Note that since only |s| bits of b(n) have to be
computed, this computation can be carried out in log(|s|) space. Now we can accept the
input iff it is not explicitly put into D by the diagonalization, which can only occur if
b(n) = |s| and fxl(n)(ob("_l)) can be computed in S(b(n — 1)) < S(b(n)) tape cells, and
f,,l(n)(O"("‘l)) = s. These conditions can be checked in S(|s|)-space.X

CLAIM 8.2 D is not <129°P%¢ complete.

Proof: If D were <!29°P3¢¢ complete, then there would be, according to Corollary 5, a
logspace computable function f; such that for almost all z : fi(z) € D. Take n large
enough s.t.:

1. fi(z) can be computed in space S(|z|) for all z with |z| > b(n — 1)
2. fi(z) € D for all |z| with |z| > n and with
3. mi(n) =1.
Now consider stage n and find that f;(Ob("‘l)) & D which gives a contradiction X

X

As a Slzo;‘";p %¢_complete set is also Siofff %¢_complete, we immediately have,

Corollary 8 1. For any integer k > 1, there ezists a S;:f;p %€ _complete set which is
not <logspace_complete for NSPACE (S(n))

2. For any integer k > 1, there exists a S;:_g:f % _complete set which is not <logspace.

complete for NSPACE (S(n))

Using the same technique we can construct a set which is Sfiog"p %¢_complete but not

gf,‘;f"’ %°_complete. We make use of the fact that any btt-reduction can only ask a bounded
number of strings of the oracle set. On the other hand we can make a disjunctive tt-

reduction dependent on a growing number of strings.

Theorem 9 There ezists a Sffg”“e-complete set D in NSPACE (S(n)), which is not

logspace
<htt -complete

18

Proof: Let bin(s) = the binary representation of , and ¢(f,z) = 0™bin({)z where, for
z € 3*, 1 < i < |z| we have |0™bin(s)z| = 2|z|. ;From Kg we define the sets K§ as
K% = {c(i,z)|1 < i < |z| and z € K5 }. For every z in K5, we put at least one element

of K% € D will then be complete via the Sff”p %¢¢_reduction:

<e,z,l>€ Kg « 3i < |z| such that c(i,z) € D

On the other hand we must ensure that, for every length increasing function f in
Fbtt, f(z) is not in D, for almost all z. Initially D is @, and b(0) = O Assume we have
constructed D through stage n — 1. Let M; be the transducer computing f;.
stage n:

If Q(M;, 0%("~1)) can not be computed using less than S(n) tape cells then

b(n) = b(n — 1) + 2, and we put into D any ¢(0, z), where b(n — 1) < 2|z| < b(n) and

z € Kg. If Q(M;,0%"1) can be computed using less than S(n) tape cells then any

string in this set of length > b(n — 1) will not be in D.

b(n) = max{|y||ly € Q(M;, 0*"~1))}. Therefore let 2 be any string in K§ for

b(n —1) < 2|z| < b(n). Put z in D iff z & Q(M;, 0%(n — 1))
end of stage n

CLAIM 9.1 D € NSPACE (S(n)).

Proof: As before, on input s = 0™bin(i)z we first check that z € Ks. Next n can be
computed by simulating stages until b(n) > 2|z| in logarithmic space. Note that while we
are computing this number we are only interested in the length of the longest element in a
set of queries if this set can be generated within space S(m) bounded for m < b(n) < 2|z|.
When we have computed this number we know the index of the function to simulate.

If the associated set of this function cannot be computed within space bounded by
S(b(n — 1)) where b(n — 1) < 2|z|then accept; otherwise reject only if s € Q(M;, 0b(n-1)).
As b(n — 1) < 2|z| this question can be settled in S(b(n — 1)) space so it can certainly
be settled in S(2|z|) space. (Note that we don’t need to store any of the strings in
Q(M;, 0%("~1)), whence this algorithm also works for sublinear space.) X

CLAIM 9.2 D is not Si:f”a“-complete.

Proof: If D were S;’;f’p 4¢¢_complete, then there would be, according to Corollary 5, an
Fbtt subset in D generated by some Fbtt function g;, corresponding to a function f; in
such a way that for all z, g;(z) € Q(M;, z). Now take n (large enough) such that:

1. fi(z) can be computed in NSPACE (S(n)) for all z with |z| > b(n — 1)
2. gi(z) € D for all |z| with |z| > n and
3. 1r1(n) =1.

Now at stage n, g;(0°"~1)) is an element of Q(M;, 0%"~1)) which has length > b(n — 1)
and is therefore not in D which gives a contradiction. X

X

As disjunctive truth table completeness implies truth table completeness this implies.

19

Corollary 9 There ezxists a gi‘,’”"’ ac¢ _complete set which is not Sﬁf’p ¢ _complete

5 Conclusions and Further Work

The question of whether <logspace_complete sets can be separated from Sfl'fg"" %°¢_complete

sets for the nondeterministic space classes remains open. The proof that achieves this
separations for nondeterministic time classes seemingly does not work for this case.

One might also consider more efficient reductions such as those (for example, NC-
reductions) which have been proposed to compare the parallel complexity of problems.
The methods given here might lead to differences between completeness notions for the
various parallel complexity classes.

One area of great interest would be to separate the various polynomial time reductions
on the classes between P and PSPACE, and in particular to do this for NP. Of course,
such results would imply inequalities between these classes and so are not tractable at this
point in time. Even assuming such separations, these results are not currently known.
For example, even assuming P different from NP (or P different from PSPACE) there
is no known difference between <2, and <}. for sets in NP (PSPACE). Furthermore, no
structural properties of sets in these classes is known to imply differences between these
reductions. The techniques discussed here may point the way toward the first examples
of such results.

20

Bibliography

[1] Balcazar J.L., J. Diaz & J. Gabarré. Structural Complezity I. W. Brauer, G. Rozen-
berg & A. Salomaa (eds.) EATCS Monographs on Theoretical Computer Science 11
(1988) Springer Verlag.

[2] Berman L. On the siructure of complete sets. Proc. 17th IEEE conference on Foun-
dations of Computer Science (1976) pp76-80.

[3] Berman, L. & J. Hartmanis. On isomorphisms and density of NP and other complete
sets. SIAM J. on Computing 1 (1977) pp. 305-322.

[4] Cook, S. A. The complezity of theorem-proving procedures. Proc. 3d ACM Symp. on
Theory of Computing, Assoc. for Computing Machinery, New York (1971) pp. 151~
158.

[5] Ganesan, K & S. Homer. Complete problems and strong polynomial reducibilities.
Boston University Technical Report #88-001, January, 1988. Aspects of Computer
Science, Springer Lecture Notes in Computer Science 349 (1989) pp. 240-250.

[6] Hartmanis, J. Feasible Computations and Provable Complezity Properties. NSF re-
gional conference series in applied mathematics (1978).

[7] Hartmanis, J. On the logtape isomorphism of complete sets Theoretical Computer
Science 7 (1978) pp. 273-286.

[8] Immerman, N. Nondeterministic space is closed under complementation. SIAM J. on
Computing 17 (1988) pp. 935-938.

[9] Karp, R.M. Reducibility among combinatorial problems. Complexity of Computer
Computations, R.E. Miller & J.W. Thatcher eds. Plenum N.Y. pp. 85-103.

[10] Jones, N. Space bounded reducibilities among combinatorial problems J. Comp. System
Sci. 11 (1975) pp. 68-85.

[11] Ladner, R.E., N. Lynch & A.L. Selman. A comparison of polynomial time reducibili-
ties. Theoretical Computer Science 1 (1975) pp. 103-123.

[12] Szelepcsényi, R. The method of forcing for nondeterministic automata. Bulletin of
the EATCS 33 (1987) pp. 96-100.

[13] Watanabe, O. A comparison of polynomial time completeness notions. Theoretical
Computer Science 54 (1987) 249-265.

21

[14] Watanabe O. On the Structure of Intractable Complezity Classes, Ph.D. thesis dept.
of Computer Science, Tokyo Institute of Technology 1987.

22

1986 The ITLI Prepublication Series

86-01 The Institute of Language, Logic and Information
86-02 Peter van Emde Boas A Semantical Model for Integration and Modularization of Rules
86-03 Johan van Benthem Categorial Grammar and Lambda Calculus
86-04 Reinhard Muskens A Relational Formulation of the Theory of Types
86-05 Kenneth A. Bowen, Dick de Jongh Some Complete Logics for Branched Time, Part I
Well-founded Time, Forward looking Operators
86-06 Johan van Benthem Logical Syntax
1987
87-01 Jeroen Groenendijk, Martin Stokhof Type shifting Rules and the Semantics of Interrogatives
87-02 Renate Bartsch Frame Representations and Discourse Representations
87-03 Jan Willem Klop, Roel de Vrijer Unique Normal Forms for Lambda Calculus with Surjective Pairing
87-04 Johan van Benthem Polyadic quantifiers
87-05 Victor Sénchez Valencia Traditional Logicians and de Morgan's Example
87-06 Eleonore Oversteegen Temporal Adverbials in the Two Track Theory of Time
87-07 Johan van Benthem Categorial Grammar and Type Theory
87-08 Renate Bartsch The Construction of Properties under Perspectives
87-09 Herman Hendriks Type Change in Semantics: The Scope of Quantification and Coordination
1988 Logic, Semantics and Philosophy of Language:
LP-88-01 Michiel van Lambalgen Algorithmic Information Theory
LP-88-02 Yde Venema Expressiveness and Completeness of an Interval Tense Logic
LP-88-03 Year Report 1987
LP-88-04 Reinhard Muskens Going partial in Montague Grammar
LP-88-05 Johan van Benthem Logical Constants across Varying Types
LP-88-06 Johan van Benthem Semantic Parallels in Natural Language and Computation
LP-88-07 Renate Bartsch Tenses, Aspects, and their Scopes in Discourse
LP-88-08 Jeroen Groenendijk, Martin Stokhof Context and Information in Dynamic Semantics
LP-88-09 Theo M.V. Janssen A mathematical model for the CAT framework of Eurotra
LP-88-10 Anneke Kleppe A Blissymbolics Translation Program
Mathematical Logic and Foundations:
ML-88-01 Jaap van Oosten Lifschitz' Realizabiility
ML-88-02 M.D.G. Swaen The Arithmetical Fragment of Martin L&f's Type Theories with weak X-elimination
ML-88-03 Dick de Jongh, Frank Veltman Provability Logics for Relative Interpretability
ML-88-04 A.S. Troelstra On the Early History of Intuitionistic Logic
ML-88-05 A.S. Troelstra Remarks on Intuitionism and the Philosophy of Mathematics
Computation and Complexity Theory:
CT-88-01 Ming Li, Paul M.B.Vitanyi Two Decades of Applied Kolmogorov Complexity
CT-88-02 Michiel H.M. Smid General Lower Bounds for the Partitioning of Range Trees
CT-88-03 Michiel H.M. Smid, Mark H. Overmars Maintaining Multiple Representations of
Leen Torenvliet, Peter van Emde Boas Dynamic Data Structures
CT-88-04 Dick de Jongh, Lex Hendriks Computations in Fragments of Intuitionistic Propositional Logic
Gerard R. Renardel de Lavalette
CT-88-05 Peter van Emde Boas Machine Models and Simulations (revised version)
CT-88-06 Michiel H.M. Smid A Data Structure for the Union-find Problem having good Single-Operation Complexity
CT-88-07 Johan van Benthem Time, Logic and Computation

CT-88-08 Michiel H.M. Smid, Mark H. Overmars Multiple Representations of Dynamic Data Structures

Leen Torenvliet, Peter van Emde Boas
CT-88-09 Theo M.V. Janssen Towards a Universal Parsing Algorithm for Functional Grammar
CT-88-10 Edith Spaan, Leen Torenvliet, Peter van Emde Boas Nondeterminism, Fairness and a Fundamental Analogy
CT-88-11 Sieger van Denneheuvel, Peter van Emde Boas Towards implementing RL

X-88-01 Marc Jumelet Other prepublications: on Solovay's Completeness Theorem

1989 Logic, Semantics and Philosophy of Language:
LP-89-01 Johan van Benthem The Fine-Structure of Categorial Semantics

LP-89-02 Jeroen Groenendijk, Martin Stokhof Dynamic Predicate Logic, towards a compositional,
non-representational semantics of discourse

LP-89-03 Yde Venema Two-dimensional Modal Logics for Relation Algebras and Temporal Logic of Intervals
LP-89-04 Johan van Benthem Language in Action
LP-89-05 Johan van Benthem Modal Logic as a Theory of Information
LP-89-06 Andreja Prijatelj Intensional Lambek Calculi: Theory and Application
LP-89-07 Heinrich Wansing The Adequacy Problem for Sequential Propositional Logic
Mathematical Logic and Foundations:
ML-89-01 Dick de Jongh, Albert Visser Explicit Fixed Points for Interpretability Logic
ML-89-02 Roel de Vrijer Extending the Lambda Calculus with Surjective Pairing is conservative
ML-89-03 Dick de Jongh, Franco Montagna Rosser Orderings and Free Variables
ML-89-04 Dick de Jongh, Marc Jumelet, Franco Montagna ~ On the Proof of Solovay's Theorem
ML-89-05 Rineke Verbrugge X-completeness and Bounded Arithmetic
ML-89-06 Michiel van Lambalgen The Axiomatization of Randomness
ML-89-07 Dirk Roorda Elementary Inductive Definitions in HA: from Strictly Positive towards Monotone
ML-89-08 Dirk Roorda Investigations into Classical Linear Logic
Computation and Complexity Theory:
CT-89-01 Michiel H.M. Smid Dynamic Deferred Data Structures
CT-89-02 Peter van Emde Boas Machine Models and Simulations
CT-89-03 Ming Li, Herman Neuféglise, Leen Torenvliet, Peter van Emde Boas ~ On Space efficient Simulations
CT-89-04 Harry Buhrman, Leen Torenvliet A Comparison of Reductions on Nondeterministic Space

CT-89-05 Pieter H. Hartel, Michiel HM. Smid A Parallel Functional Implementation of Range Queries
Leen Torenvliet, Willem G. Vree

CT-89-06 H.W. Lenstra, Jr. Finding Isomorphisms between Finite Fields

CT-89-07 Ming Li, Paul M.B. Vitanyi A Theory of Learning Simple Concepts under Simple Distributions and
Average Case Complexity for the Universal Distribution (Prel. Version)

CT-89-08 Harry Buhrman, Steven Homer Honest Reductions, Completeness and

Leen Torenvliet . . Nondeterminstic Complexity Classes

X-89-01 Marianne Kalsbeek Other Prepublications: Ap Orey Sentence for Predicative Arithmetic

X-89-02 G. Wagemakers New Foundations: a Survey of Quine's Set Theory

X-89-03 A.S. Troelstra Index of the Heyting Nachlass

X-89-04 Jeroen Groenendijk, Martin Stokhof Dynamic Mentague Grammar, a first sketch
X-89-05 Maarten de Rijke The Modal Thzory of Incquality

