Institute for Language, Logic and Information

ON ADAPTIVE
RESOURCE BOUNDED COMPUTATIONS

Harry Buhrman
Edith Spaan
Leen Torenvliet

ITLI Prepublication Series
for Computation and Complexity Theory CT-89-09

University of Amsterdam

%
&
%

Instituut voor Taal, Logica en Informatie
Institute for Language, Logic and Information

Faculteit der Wiskunde en Informatica

Faculteit der Wijsbegeerte
(Department of Mathematics and Computer Science) (Department of Philosophy)
Plantage Muidergracht 24 Nieuwe Doelenstraat 15
1018TV Amsterdam

1012CP Amsterdam

ON ADAPTIVE
RESOURCE BOUNDED COMPUTATIONS

Harry Buhrman
Edith Spaan
Leen Torenvliet
Department of Mathematics and Computer Science
University of Amsterdam

Received November 1689

Abstract

We investigate differences in computational power of logspace bounded adaptive and non-
adaptive oracle machines. Our main results are that for any two sets A and B if A<y B
via a logarithmic space bounded machine then A<, B via a log? space bounded machine.
Under the very strong assumption that NC; # LOG/poly we demonstrate a difference
between the two investigated reductions. We show that there exist recursive sets A and
B such that A<}9°P**B while Agie9*P% B Using the natural limit on the number of
different queries that can be asked by space bounded machines, we obtain a separation
between logarithmic space bounded — and polynomial time bounded Turing reductions.
As an exponential time complete set can be encoded in the constructed set we obtain as a
corollary differences between the corresponding completeness notions on classes containing
exponential time.

1 Introduction

Efficient reducibilities are a central object of study in computational complexity theory.
Since the first use of polynomial time bounded Turing reductions by Cook [6] and the
introduction of polynomial time bounded many-one reductions by Karp [8], considerable
effort has been put in the investigation of properties and the relative strengths of different
reductions. In 1975 an extensive survey of different types of reductions and differences
between these reductions on exponential time bounded classes was given by Ladner, Lynch
and Selman [10]. In 1987 Watanabe [12] building upon earlier work of Berman [2] extended
this work by giving proving also almost all differences between complete sets under the
different reductions on exponential bounded and larger deterministic time classes.

Logspace reductions have long been studied as strengthenings of polynomial-time re-
ductions. It was realized early-on that many NP-complete sets (with respect to many-one
polynomial time reductions) were in fact logspace complete for NP [8,9]. Shortly after the
initial work on the isomorphism conjecture by Berman and Hartmanis [3], Hartmanis [7]
studied the question of the logspace isomorphism of NP-complete sets and achieved many
of the same results as in [3] for logspace reductions.

An important advantage of logspace reductions is that they give rise to the definition
and study of complete sets for smaller complexity classes such as NL, CSL and P. The
properties of such complete sets have consequences for parallel algorithms and the study of
parallel complexity classes. Nonetheless, logspace reductions have been much less studied
than have polynomial-time reductions.

Buhrman et al. showed in [5] that the differences obtained by Watanabe for polyno-
mial time bounded reductions on deterministic exponential time could also be obtained
for nondeterministic exponential time classes. Moreover the constructions presented in
that paper also suffice to demonstrate these differences for logarithmic space bounded
reductions.

They differentiated on logarithmic space bounded reductions especially in nondeter-
ministic space classes. They left open however the question of differentiating between
logarithmic space bounded Turing reductions and logarithmic space bounded truth-table
reductions. The techniques presented in their paper seem inappropriate to attack this
problem. As we show in the present paper these two types of reductions are closely inter-
related. As a rather straightforward application of Savitch’ theorem shows, it is possible
to produce in squared logarithmic space a formula which is true if and only if a given
logarithmic space bounded oracle machine accepts its input. Therefore in any case the
adaptive use of queries cannot give more than a quadratic increase of computational power
over non adaptive use of queries. It is at present unknown whether the quadratic overhead
also presents a lowerbound for the simulation. We can however under the assumption that
NCy # LOG/poly show that <ip9°P* <logspace 404 therefore elimination of the square
would entail NC; = LOG/ poly.

2 Preliminaries

Let ¥ = {0,1}. String are elements of ¥*, and are denoted by small letters z,y,u,v,....
For any string = the length of a string is denoted by |z|. Languages are subsets of £*, and
are denoted by capital letters A, B, C,.... Tally sets are subsets of {0}*. For any set S

the cardinality of S is denoted by |S|. We assume a bijective pairing function computable
in logarithmic space and/or polynomial time—as for example described in (1] (pp. 7,8)—
which makes it possible not only to encode pairs of strings into a single string but also to
encode sequences of varying length into a single string.

We assume that the reader is familiar with the standard Turing machine model. An
oracle machine is a multi-tape Turing machine with an input tape, an output tape, work-
tapes and a query tape. Oracle machines have three distinguished states QUERY, YES
and NO, which are explained as follows. At some stage(s) in the computation the ma-
chine may enter the state QUERY and then enters the state YES or enters the state NO
depending on the membership of the string currently written on the query tape in a fixed
oracle set.

Oracle machines appear in the paper in the two flavors: adaptive and non-adaptive.
For a non-adaptive machine queries may not be interdependent, whereas an adaptive
machine may compute a next query depending on the answer to previous queries. We
assume an enumeration of logspace bounded non-adaptive oracle machines and denote
this enumeration by M, Mz, Without loss of generality we furthermore assume that
M; operates in space bound ¢ x logn. The class of languages {L|3{L = L(M;)} is denoted
LOG. A function f is in the class poly iff for some polynomial p:Vz.|f(z)| < p(|z|).

We use M4(z) to denote the computation of M on input z relative to oracle A. We will
use the notation M4(z) = 0 for rejecting —, and M A(z) = 1 for accepting computations.
For a Turing machine M, L(M) denotes the set of strings accepted by M. For an oracle
machine M and set A, L(M, A) denotes the set of strings accepted by M relative to oracle
A. These sets are also called the language of M and the language of M A respectively.
The pair <<ay,...,a;>,a> is called a truth-table condition of norm k if <ay,...,ax>
is a k-tuple (k > 0) of strings, and a is a k-ary Boolean function [10]. The set {as,...,ax}
is called the associated set of the tt-condition. A function f is a truth-table function if f
is total and f(z) is a truth-table condition for every z in X*.

Let the resource bound b be either polynomial-time (p) or logarithmic-space (logspace)
and A;, A; C T*. We say that:

1. A; is b truth-table reducible (<}.-reducible) to A iff there exists a b-bounded tt-
function f such that a(xa,(a1),.-.,x4;(ak)) = true iff z € A;, where f(z) is
<<ay,...,ap>,a> and xa, is the characteristic function of the set A;. As b-
bounded functions can be computed by b-bounded Turing machines, the truth table
conditions are often modeled by non-adaptive oracle machines.

2. A; is b Turing reducible to Az (<)-reducible) to Az if there exists a b-bounded
deterministic oracle machine such that A; = L(M, A).

3 A Savitch’ theorem for reductions

In this section we show that logspace Turing reductions can be simulated by log2space
truth table reductions. In fact we obtain a more general theorem. We show that S%(n)
space suffices for the computation of a truth table function which evaluates to true on
precisely those arguments that are accepted by an S (n) space oracle machine.

Theorem 1 Let S(n) > logn be a space-constructible function. If Asz,?a“(s("))B then
A<Space(52(n))B
<i for any A and B.

Proof: Let A = L(M, B) with M an S(n) space-bounded oracle machine. The number
of different configurations (or instantaneous descriptions (ID’s)) of M on a given input
of length n is bounded by 2¢5(n) We identify these configurations with the numbers
1,2,...,2¢5 (), where 1 denotes the initial configuration. Let ¢; be the string written on
the oracle tape if we start the machine in configuration 5. Note that different configurations
may lead to the same query. Given a computation, we uniquely identify a query asked at
time ¢ with the number of the configuration at the earliest time t' < ¢ such that no queries
are asked in the interval between t' and t. (This will be either the initial configuration
or a configuration immediately following a query.) We construct a recursive procedure
writeform(i, j,t) that works as follows: it writes a formula ¢(z1,2,...,Z3..5(m) on the
oracle tape such that ¢(z1, z2, . .., Zse.s(n)) = true iff Ir < 2! such that queries g;,,...,q;,
are exactly the queries asked in the computation with answers a;,,...,a;,. Define a
function reachable such that reachable(t,7) = true iff configuration j is reachable from
configuration ¢ without asking queries.

procedure writeform (1, 7,1)
if t = 0 then
if reachable(i,) then write (*true’)
else if there exist k, k' such that:
reachable(i, k), state (k) = QUERY,
k' reachable in one step from k and reachable (k' 7) then
if state (k') = YES then write (’z;’)
else write ("—z;’)

end if
else write (’false’)
end if
end if

else for each ID k such that k = 1 or state (k) € {YES,NO} do
if not first time then write (V)
write (°(°)
writeform (i,k,t— 1)
write (A’)
writeform (k,j,t— 1)
write (°)’)

end for
end if
end

Since the number of queries in a computation is bounded by 2¢3(") we can construct
the truth table function as follows : write gy, . ..¢sc..(») On the oracle tape, and write the
conjunction of writeform (1, 5) for each accepting ID j.

for ¢t := 1 to #IDs do
write (query;)
for each accepting ID 1 do
if not first time then write (*V’)
write (°(°)
writeform (1,4, ¢c.S(n))
write (°)’)
end for

The crucial difference between polynomial time bounded Turing reductions and log-
arithmic space bounded Turing reductions appears in the proof above. The number of
possible queries asked of the oracle by a logarithmic space bounded reductor is bounded
by a polynomial (The exponential function of its space bound) whereas the total num-
ber of queries in the tree of possible computations of a polynomial time bounded Turing
reductor is exponential.

We can use this to obtain a real difference between polynomial time bounded Turing
reductions and logarithmic space bounded Turing reductions. In particular we construct
two sets A and B such that there exists a polynomial time bounded Turing reduction from
A to B but by diagonalization against all logarithmic space bounded Turing reductors we
ensure that no logarithmic space bounded Turing reduction from A to B can exist

For input z and oracle A let Q(M,, A, z) be the set of queries made during the com-
putation of M4 on input z. Let Q(Mpy,z) = U5« Q(Mp, A, z).

Theorem 2 There exists sets A and B such that A <5 B but not A 5{,‘3”"’ ac¢ B

Proof: Since a logspace oracle machine M on input z can ask only a polynomial number
of queries there exists a string of length |z| which will not be queried by M for large
enough z . We construct set A and B in stages.
Construction:
Initially A = B = 0 and 5(0) = 0.
stage n:
Let M, be the n** logspace Turing reduction. Let ¢ be the first natural number
such that 2°9(9) < 2¢ and ¢ > b(n — 1). Compute Q(M,,0°). Since M, uses nlog(c)
space there exists a string y of length c such that y & Q(M,, 0°).

1. We code y into B by putting the pair <1,0°> in B iff the i** bit of y = 1.
2. Simulate M,, on input 0° with B as an oracle.

3. Put 0° in A iff M,, rejects.

4. Put y in B iff M,, rejects.

5. b(n) = 209(c) + 1.

end of stage n

CLAIM 2.1 A<% B

Proof: Note that 0° is in A iff y is in B. Now we give an algorithm for the reduction.
On input 0° for some a, query <0,0%>,<1,0%> ...<|a|,0°>. According to the answers
it is possible to recover y (<,0%> € B iff i** bit of y = 1). Next we query y to B and
accept iff y € B. Clearly this algorithm satisfies the claim X

CLAIM 2.2 A £9°7% B

Proof: Suppose A Sf{fg‘”’ %°¢ B by machine M,,. Then there exists a ¢ such that 0° € A and
M, rejects. (item 3 in the above construction). Since y in this stage of the construction is
not queried by M, the presence or absence in B will not change the computation of My,
furthermore function b ensures that in later stages of the construction this part of B will
remain unchanged. ®

This completes the proof of Theorem 2. X

With a technique similar to [5] we can also separate the corresponding completeness
notions on DTIME (21’°'”)of <P and <P%P**. To do this we encode K (a <lpserace

-complete set for DTIME (2""'”)) in B.
We need a set of elements on which to diagox_lzla,lize. To this end we define a sequence
of integers {up}n by uo=u1 =1, up = 2(4m-1)""" 4 1, form > 1.

Corollary 1 There is a set B which is <% -complete but not <9°P** _complete
Ty T T

for DTIME (2°°).

Proof: We construct a set B in stages, and simultaneously a set W € DTIME (2‘”’”) ,

with the property that W is not Sf}’g’" % reducible to B. If we are now able to show that
B is <I. -complete for DTIME (2"’1"). by giving a <7 reduction from K to B, we have
proved the desired separation result.

In stage n of the construction of B we do the following: We take the nth logspace
Turing reduction and consider all the queries to be made on input 0“* and choose a string
y with length u,,, such that neither y nor any longer strings with y as a prefix are queried.
Since there are exponentially many strings and only a polynomial number of strings can
be queried, such a y exists. Now we code the bits of y in B, by puting <0%*,¢> in B iff
the ¢** bit of y is 1. Furthermore for all z € K that are in the interval we use currently to
diagonalize (i.e. olun—1)""" < g < 0%=") we put the pair <y,z> in Bif 0% < z < oun"
else we put = in B. In this way it is possible for a Turing reduction on input z to first
(if necessary) recover y and then query the oracle B about <y,z> and thus we have a
Turing reduction from K to B. After we did this coding, i.e. putting <0%,¢> in B iff
the it* bit of y is 1, we look at the behavior of the n** logspace Turing reductor. Thus
we compute the answers to the oracle queries and look if this reductor accepts or rejects.
Now we put 0% in W iff the logspace Turing reductor rejects. By doing this we ensure
that W is not logspace Turing reducible to B. From this we may conclude that B is not
logspace Turing complete for DTIME (2”"’”) . Making this idea more precise we have the

following construction:
Initially B=W =0
stage n:
Let M,, be the nt* logspace Turing reduction. Compute Q(My, 0%) this is the set

of all possible queries of M, on input 0%. Let y be the first string (in lexicographic
order) with |y| = u, and for all v € &* yv & Q(M,,0*).

1. Put <0%,i> in B iff the #** bit of y is 1.
2. Put all the pairs <y,z> with 0% <z < 0%" and z € K in B.

3. Put all the <z> with z € K and 0(#-1)""" < z, <0% > in B.

Now we determine whether M,, rejects or accepts on input 0%, by actually com-
puting the answers to the queries made by M, according to the previously added
strings.

4. Finally we put 0% in W iff M,,(0%") rejects.

end of stage n
CLAIM 2.3 B € DTIME (2r%)

Proof: We proof this by giving a deterministic exponential time algorithm for B. All the
elements in B have the following form:

1. <Q%, 1>
2. <y,z>
3. <z> (if z € K)

Since the sequence {u,} is in P, it is easy to determine, on input z, whether z is in
[0(""—1)"—1,0“"> or in [0 ,0%"]. for appropriate n. In case 1 we recover n from uy,,
simulate M,, on input 0% to recover the string y and check that the ith bit of y is 1. In
case 2 we have that |y| = u, so that we can check y by simulation of M,, as above. We
check that |z| < |y|™ and that z € K. Finally in case 3 we check that (u,—1)""! < 2| < up
and that z € K. Clearly all these actions can be performed in exponential time. X

CLAIM 2.4 W € DTIME (2P°'v)

Proof: Since B € DTIME (2”°‘”)it is easy to see that W is also € DTIME (2"""’). X

Next we prove that B is not </29°"** _complete for DTIME (2”"'"), by showing that

W is not Sf,?g’p % B. Suppose W is logspace Turing reducible to B via M,,. Now on input
0% machine MP accepts iff 0% is not in W, a contradiction with the fact that M, is a
<'1‘3”’p 9% reduction from W to B. To complete the proof we show that B is <. -complete

for DTIME (2""’”) by giving a <} reduction from K to B. On input w there are two

possibilities. First z is in the interval [O(“"-l)"_l ,0%» > If this is the case we simply query

B about z and accept if z € B. Second « is in the interval [0%,0%"]. Now we we recover
y by querying B about <0%*,i>(0< 4 < uy,). Next we query B about <y,z> and accept
if <y, z> € B. This completes the proof. X

Standard padding techniques give that the set B can be used for also obtaining a
separation of the completeness notions on DEXT. A similar approach as taken in [5]
yields that the entire construction can be carried out for a complete set in NEXT. A
proof of this will appear in the final paper.

4 Logarithmic adaptivity

We now turn our attention to the relation between logarithmic space bounded Turing
reductions and logarithmic space bounded truth table reductions. It is already known that
limiting the size of the truth table in any way gives a separation from the general truth table
reducibility and therefore a forteriori a separation from Turing reductions [4]. Moreover
since said separations can be proved on S(n) space bounded classes for S(n) > logn this
gives a separation of the corresponding completeness notions.

Since the polynomial size of the set of possible queries asked by a logspace bounded
Turing reductor does not allow for a separation as in Theorem 2 we need rather a strong
assumption to achieve the separation. One of the key observations in the proof below
is that although a logarithmic space bounded truth table reductor may ask all the same
queries of the oracle that are asked by the polynomial size Turing reductor, it has no room
to store these answers, and repetition of queries is not allowed. For a tally set B let B [n
be a string € 0, 1" such that: (B | n); = 1 iff 0 € B(1 < i < n), where (B I n); is the ith
bit of the string (B | n).

Theorem 3 If NC; # LOG / poly then Si:ﬂspace ;é Sgl?yapace‘

Proof: The proof is given by a series of three lemmas and a diagonalization. First we
show that the assumption leads to a set in LOG — NC;.

Lemma 3.1 If NC; # LOG/poly then 3A € LOG such that A& NC;.

Proof: Let B € LOG/poly, B & NC;. Then there exist A € LOG, f € poly such that :
z € B < <z, f(|z|)> € A. Suppose A € NC;. Fix n and look at the |<z, f(n)>|-th
circuit for A with inputs z1,...,Zn,y1-..,Y5(n)- We construct circuit C,, for B with
inputs z1, . . ., Z, as follows : set input y; to true if f(n); = 1, and to false otherwise. Size
(Cr) = q(|z| + £(|])) < g(n + p(n)). Depth (Cn) = c.log(|z| + f(|z]) < c.log(n + p(n))-
Therefore B € NC; which contradicts our assumption. X

This observation can be extended to the construction of a set A in LOG such that the
set consisting of the suffixes of the strings in A is also not in NCj.

Lemma 3.2 If NC; # LOG/poly then 3A € LOG such that Vk,Va € {0, 1}* : {ylay €
A} ¢ NC;.

Proof: By Lemma 3.1, there exists a set B € LOG, B ¢ NC;. Define A := {0™y : |y| =
n,y € B}. Suppose Jk,a € {0,1}* such that {y : ay € A} € NC;. Then {onky: |y =
n,y € B} € NC;. But these circuits can be viewed as circuits for B as well. &

Let A be a set as in Lemma 3.1. For each tally set B, define the tally language Lp as
follows: 0" € Lg iff B | n € A. Then for any tally set B: LBSQ‘-"’" “¢B.

The machine M reducing Lp to B works as follows: On input 0%, M starts simulating
the program for A as if started on B | n. If M needs to read the i*» input bit it asks a
query O° of the oracle B for i < n or proceeds as if it has read a blank.

Since A operates in logarithmic space, and the necessary queries of length < n only
involve a counter, it is now clear that M operates in logarithmic space. (The fact that the
simulated machine may leave the input to the right reading blanks for an indeterminate
period does not lead to complications here.)

Next we demonstrate the existence of a tally set B such that Lp£4;?°?*** B. The proof
consists of a “room to diagonalize” lemma and the diagonalization itself.

Lemma 3.3 Vf € logspaceVk,Ya € {0,1}¥: JtallyB: B k=aA LB$_§;’9’P““B via f.

Proof: Suppose 3f,k,a € {0,1}" such that V tally B: B k=a = Lp<iooePec B yia f.
This leads to polynomial size formulas for {y : ay € A}. We argue that it is no loss of
generality to assume these formulas are also on arguments of length < the length of the
input and therefore (cf. [11]){y : ay € A} € NC}, contradicting the properties of A.
Suppose f on input 0% generates the condition ¢ (XB (0b1), x(0%2),..., x(0b°)), which
is of polynomial size since it is generated by a logspace bounded machine. Then for
i=1,...,c:b; < m. Since 0™ € Lp depends only on B | m and the condition is assumed
to hold for any tally set xp(0%) cannot influence the value of the condition if d > m. X

Lemma 3.3 states that for any candidate truth table function f and initial segment of
the tally sets C and D we can find extensions of C and D such that f cannot generate
the truth table reduction from C to D. This can be used to obtain tally sets for which no
function can generate the reduction:

Construct the following tally set C:

stage 0: C:=0;k:=0;

stage s: (Diagonalizing against f,).
3D:D tk=C | k, Lp£i®**** D via f,.
Take some z, |z| > k such that z is counterexample for reduction.
k:= 2=l ¢ .= D=*

Now Lc£429°P**C as required. X

The reader will have noted that the proof of this theorem presents another difference
between logspace and polynomial time bounded reductions. Although it is straightforward
to show that for any tally set B and set A if A<} B then also A<}, B (cf. [1] exc. 4.6.10)
the separation presented above was done with a tally oracle set. The main difference
between polynomial space bounded oracle machines and polynomial time bounded oracle
machines is again that although the logarithmic space bounded machine may ask all
possible questions, it cannot remember the answers long enough to profit from them in
the course of the computation. This is perhaps an important breakpoint in the relation
between time and space bounded computations.

Bibliography

[1] Balcazar J.L., J. Diaz & J. Gabarr6. Structural Complezity I. W. Brauer, G. Rozen-
berg & A. Salomaa (eds.) EATCS Monographs on Theoretical Computer Science 11
(1988) Springer Verlag.

[2] Berman L. On the structure of complete sets. Proc. 17th IEEE conference on Foun-
dations of Computer Science (1976) pp76-80.

[3] Berman, L. & J. Hartmanis. On isomorphisms and density of NP and other complete
sets. SIAM J. on Computing 1 (1977) pp. 305-322.

[4] Buhrman H. & L. Torenvliet. A comparison of reductions on nondeterministic space
Proc. 4th CSN conference (1989) pp89-102.

[5] Buhrman H., S. Homer & L. Torenvliet. Honest reductions, completeness and nonde-
terministic complezity classes. Report CT-89-08, University of Amsterdam, Dept. of
Computer Science.

[6] Cook, S. A. The complezity of theorem-proving procedures. Proc. 3d ACM Symp. on
Theory of Computing, Assoc. for Computing Machinery, New York (1971) pp. 151~
158.

[7] Hartmanis, J. On the logtape isomorphism of complete sets Theoretical Computer
Science 7 (1978) pp. 273-286.

[8] Karp, R.M. Reducibility among combinatorial problems. Complexity of Computer
Computations, R.E. Miller & J.W. Thatcher eds. Plenum N.Y. pp. 85-103.

[9] Jones, N. Space bounded reducibilities among combinatorial problems J. Comp. System
Sci. 11 (1975) pp. 68-85.

[10] Ladner, R.E., N. Lynch & A.L. Selman. A comparison of polynomial time reducibils-
ties. Theoretical Computer Science 1 (1975) pp. 103-123.

[11] Spira P.M. On time-hardware complezity tradeoffs for Boolean functions. Proceedings
of 4th Hawaii Symposium on System Sciences, Western Periodicals Company, North
Hollywood (1971) pp. 525-527.

[12] Watanabe, O. A comparison of polynomial time completeness notions. Theoretical
Computer Science 54 (1987) pp. 249-265.

1986 The ITLI Prepublication Series

86-01 The Institute of Language, Logic and Information
86-02 Peter van Emde Boas A Semantical Model for Integration and Modularization of Rules
86-03 Johan van Benthem Categorial Grammar and Lambda Calculus
86-04 Reinhard Muskens A Relational Formulation of the Theory of Types
86-05 Kenneth A. Bowen, Dick de Jongh Some Complete Logics for Branched Time, Part I
Well-founded Time, Forward looking Operators
§6§086 7Johan van Benthem Logical Syntax
87-01 Jeroen Groenendijk, Martin Stokhof Type shifting Rules and the Semantics of Interrogatives
87-02 Renate Bartsch Frame Representations and Discourse Representations
87-03 Jan Willem Klop, Roel de Vrijer Unique Normal Forms for Lambda Calculus with Surjective Pairing
87-04 Johan van Benthem Polyadic quantifiers
87-05 Victor Sinchez Valencia Traditional Logicians and de Morgan's Example
87-06 Eleonore Oversteegen Temporal Adverbials in the Two Track Theory of Time
87-07 Johan van Benthem Categorial Grammar and Type Theory
87-08 Renate Bartsch The Construction of Properties under Perspectives
87-09 Herman Hendriks Type Change in Semantics: The Scope of Quantification and Coordination
1988 Logic, Semantics and Philosophy of Language:
LP-88-01 Michiel van Lambalgen Algorithmic Information Theory
LP-88-02 Yde Venema Expressiveness and Completeness of an Interval Tense Logic
LP-88-03 Year Report 1987
LP-88-04 Reinhard Muskens Going partial in Montague Grammar
LP-88-05 Johan van Benthem Logical Constants across Varying Types
LP-88-06 Johan van Benthem Semantic Parallels in Natural Language and Computation
LP-88-07 Renate Bartsch Tenses, Aspects, and their Scopes in Discourse
LP-88-08 Jeroen Groenendijk, Martin Stokhof Context and Information in Dynamic Semantics
LP-88-09 Theo M.V. Janssen . A mathematical model for the CAT framework of Eurotra
LP-88-10 Anneke Kleppe . . A Blissymbolics Translation Program
ML-88-01 Jaap van Oosten Mathematical Logic and Foundations: | jfschitz' Realizabiility
ML-88-02 M.D.G. Swaen The Arithmetical Fragment of Martin Lof's Type Theories with weak X-elimination
ML-88-03 Dick de Jongh, Frank Veltman Provability Logics for Relative Interpretability
ML-88-04 A.S. Troelstra On the Early History of Intuitionistic Logic
ML-88-05 A.S. Troelstra Remarks on Intuitionism and the Philosophy of Mathematics
Computation and Complexity Theory:
CT-88-01 Ming Li, Paul M.B.Vitanyi Two Decades of Applied Kolmogorov Complexity
CT-88-02 Michiel H.M. Smid General Lower Bounds for the Partitioning of Range Trees
CT-88-03 Michiel H.M. Smid, Mark H. Overmars Maintaining Multiple Representations of
Leen Torenvliet, Peter van Emde Boas Dynamic Data Structures
CT-88-04 Dick de Jongh, Lex Hendriks Computations in Fragments of Intuitionistic Propositional Logic
Gerard R. Renardel de Lavalette
CT-88-05 Peter van Emde Boas Machine Models and Simulations (revised version)
CT-88-06 Michiel H.M. Smid A Data Structure for the Union-find Problem having good Single-Operation Complexity
CT-88-07 Johan van Benthem Time, Logic and Computation

CT-88-08 Michiel H.M. Smid, Mark H. Overmars Multiple Representations of Dynamic Data Structures

Leen Torenvliet, Peter van Emde Boas
CT-88-09 Theo M.V. Janssen Towards a Universal Parsing Algorithm for Functional Grammar
CT-88-10 Edith Spaan, Leen Torenvliet, Peter van Emde Boas Nondeterminism, Faimess and a Fundamental Analogy
CT-88-11 Sieger van Denneheuvel, Peter van Emde Boas Towards implementing RL

X-88-01 Marc Jumelet Other prepublications: oq Solovay's Completeness Theorem

1989 Logic, Semantics and_Philosophy of Laréguage:

LP-89-01 Johan van Benthem The Fine-Structure of Categorial Semantics

LP-89-02 Jeroen Groenendijk, Martin Stokhof Dynamic Predicate Logic, towards a compositional,
non-representational semantics of discourse

LP-89-03 Yde Venema Two-dimensional Modal Logics for Relation Algebras and Temporal Logic of Intervals

LP-89-04 Johan van Benthem Language in Action

LP-89-05 Johan van Benthem Modal Logic as a Theory of Information

LP-89-06 Andreja Prijatelj Intensional Lambek Calculi: Theory and Application

LP-89-07 Heinrich Wansing The Adequacy Problem for Sequential Propositional Logic
Mathematical Logic and Foundations:

ML-89-01 Dick de Jongh, Albert Visser Explicit Fixed Points for Interpretability Logic

ML-89-02 Roel de Vrijer Extending the Lambda Calculus with Surjective Pairing is conservative

ML-89-03 Dick de Jongh, Franco Montagna Rosser Orderings and Free Variables
ML-89-04 Dick de Jongh, Marc Jumelet, Franco Montagna On the Proof of Solovay's Theorem

ML-89-05 Rineke Verbrugge Z-completeness and Bounded Arithmetic

ML-89-06 Michiel van Lambalgen The Axiomatization of Randomness

ML-89-07 Dirk Roorda Elementary Inductive Definitions in HA: from Strictly Positive towards Monotone
ML-89-08 Dirk Roorda . Investigations into Classical Linear Logic

CT-89-01 Michiel HM. Smid Computation and Complexity Theory: Dynamic Deferred Data Structures

CT-89-02 Peter van Emde Boas Machine Models and Simulations

CT-89-03 Ming Li, Herman Neuféglise, Leen Torenvliet, Peter van Emde Boas = On Space efficient Simulations

CT-89-04 Harry Buhrman, Leen Torenvliet A Comparison of Reductions on Nondeterministic Space

CT-89-05 Pieter H. Hartel, Michiel HM. Smid A Parallel Functional Implementation of Range Queries
Leen Torenvliet, Willem G. Vree

CT-89-06 H.W. Lenstra, Jr. Finding Isomorphisms between Finite Fields
CT-89-07 Ming Li, Paul M.B. Vitanyi A Theory of LearmnF Simple Concepts under Simgle Distributions and
Average Case Complexity for the Universal Distribution (Prel. Version)

CT-89-08 Harry Buhrman, Steven Homer Honest Reductions, Completeness and

Leen Torenvliet Nondeterminstic Complexity Classes
CT-89-09 Harry Buhrman, Edith Spaan, Leen Torenvliet ~On Adaptive Resource Bounded Computations
X-89-01 Marianne Kalsbeek Other Prepublications: an Orey Sentence for Predicative Arithmetic
X-89-02 G. Wagemakers New Foundations: a Survey of Quine's Set Theory
X-89-03 A.S. Troelstra Index of the Heyting Nachlass
X-89-04 Jeroen Groenendijk, Martin Stokhof Dynamic Montague Grammar, a first sketch
X-89-05 Maarten de Rijke The Modal Theory of Inequality

