Institute for Language, Logic and Information

TOWARDS FUNCTIONAL CLASSIFICATION
OF RECURSIVE QUERY PROCESSING

Zhisheng Huang
Sieger van Denneheuvel
Peter van Emde Boas

ITLI Prepublication Series
for Computation and Complexity Theory CT-89-11

University of Amsterdam

%
&l
%

Instituut voor Taal, Logica en Informatie
Institute for Language, Logic and Information

Faculteit der Wiskunde en Informatica Faculteit der Wijsbegeerte
(Department of Mathematics and Computer Science) (Department of Philosophy)
Plantage Muidergracht 24 Nieuwe Doelenstraat 15
1018TV Amsterdam 1012CP Amsterdam

TOWARDS FUNCTIONAL CLASSIFICATION
OF RECURSIVE QUERY PROCESSING

Zhisheng Huang
Sieger van Denneheuvel
Peter van Emde Boas
Department of Mathematics and Computer Science
University of Amsterdam

Received December 1989

Towards Functional Classification of Recursive Query Processing

Zhisheng Huang®, Sieger van Denneheuvel, Peter van Emde Boas

Department of Computer Science, University of Amsterdam

1018TV Amsterdam, The Netherlands

ABSTRACT

In recent years, many techniques concerning recursive query processing have been
proposed. In search of a unified theory and strategy of recursive query processing, there
have been some attempts to classify existing techniques. In this paper, we present a
new classification called the functional classification of techniques concerning
recursive query processing. The classification differs from Bancilhon and
Ramakrishnan's classification based on external features and Roelants’ classification
based on halting conditions. Our method distinguishes the features of almost
completeness, definiteness and proper finegrainedness, which are viewed as the adequate
criteria for classification. A formalism of functional classification is presented. Based
on the formalism, the composability of the existing techniques concerning recursive

query processing is examined.

Keywords. recursive query processing, deductive databases, functional classification

* On leave from Dept. of Computer Science, Zhenjiang Shipbuilding University, China.

1. Introduction

Horn-clause programs without function symbols, also known as Datalog program, are an
important area of research in the theory of deductive databases. In recent research the
problem of finding efficient evaluation methods for queries expressed as Datalog programs
has been addressed.

In recent years, many methods concerned with recursive query processing have been
proposed. Some of them are:

Naive Evaluation (van Emden and Kowalski [1976])

Semi-naive Evaluation (Bancilhon [1986])

Iterative Query-subquery, Recursive query-subquery (Vieille [1986])
SLD (Kowalski and Keuhner [1971]), SLD-AL (Vieille [1987])
SLD with relation extension (Huang [1986])

Henschen-Naqvi method (Henschen-Naqvi[1984])

Iterative Compilation (van Emde Boas and van Emde Boas [1986])
Algebraic Optimization (Hansen [1987], Houtsma et al [1988])
Semantic Optimization (Sagiv [1988] , Jarke [1986])

Static Filtering , Dynamic Filtering (Kifer and Lozinskii [1986])
Aho-Ullman Method (Aho and Ullman [1979])

APEX (Lozinskii [1985])

Existential Optimization (Ramakrishnan et al [1988])

Magic Sets (Bancilhon et al [1986])

Counting, Reverse Counting (Sacca and Zaniolo [1986])
Generalized Magic Sets (Beeri et al [1987])

Generalized Supplementary Magic Sets (Beeri and Ramakrishnan [1987])
Generalized Counting (Sacca and Zaniolo [1986])

Global Optimization (Vieille [1989])

Argument Reduction by Factoring

(Naughton, Ramakrishnan, Sagiv, and Ullman [1989])

As may be clear from the size of the above list the proposed methods concerned with
recursive query processing are so many that one often wonders which strategy would be
efficient in specified cases. Moreover, it remains unknown whether and how these various
techniques and methods could be combined and be compared. Therefore, in recent years,
some classification methods about recursive query processing techniques have been
presented ([Bancilhon and Ramakrishnan 1986], [Roelants 1987]). Based on the
classifications concerning recursive query processing techniques, we expect that the
following goals would be gained more efficiently:

i) To make comparisons among the existing techniques.

ii) To combine one technique with other techniques.

iii) To examine the potential of recursive query processing.

iv) To develop new recursive query processing techniques.

V) To provide a unified theory and strategy concerning recursive query processing.

In this paper, we would like to present a new classification about recursive query
processing techniques, called functional classification, which differs from Bancilhon's
classification based on external features and Roelants' classification based on halting
conditions. The classification distinguishes the features of almost completeness,
definiteness, and proper finegrainedness, which we see as the adequate criteria for
classifications. A formalism of functional classification is presented. Based on the
formalism, the composability of the existing techniques about recursive query processing is
examined.

The organization of this paper is as follows. The section "The Existing Classifications"
provides a general overview of existing classification methods. Their corresponding
advantages and disadvantages are discussed. "Distinctions Between Evaluators and
Optimizers" presents our first step towards the functional classification of recursive query
processing techniques. The "Functional Classification" contains our general method. The
corresponding classification dimensions are proposed. In "Composability among
Evaluators and Optimizers" we examine the problem of composability among the existing
techniques. Finally, in "Final Remarks" we conclude the proposed classification method.

2. Existing Classification
2.1 General Classification

It seems to be necessary to discuss what the adequate criteria for classifications are, before
we examine the existing classifications. In our opinion, the following criteria may be
adequate for the classification about recursive query processing techniques:

i) Almost Completeness: It can classify almost all existing techniques. Of course, an
ideal criterion is completeness. However, it may be too strong to be satisfied. The complete
set of techniques seems to be unattainable, because of the lack of a unified and precise
description about recursive query processing.

ii) Definiteness: It can provide definite classification dimensions. This means that one
technique can be classified into only one class.

iii) Proper Finegrainedness: The classification should be properly fine so that one can
make a comparison between almost every two techniques. More precisely, every two
techniques which are intuitively much different should be classified into different classes.
Meanwhile, we should avoid a too fine classification, since that might result in a class for
each concrete category.

Generally, the existing techniques can be simply categorized by the following three
classes: Top-down, bottom-up, and mixed. We call the simple classification Naive
Classification. The so-called Bottom-up techniques mean that we construct proof trees from
the leaves up, working towards the root. Top-down techniques work downwards from the
root to the leaves. For those familiar with Prolog, these techniques are sometimes referred
to as "SLD-resolution" or "LUSH-resolution". Least Fixpoint Computation and Naive
Evaluation, are closely related to bottom-up techniques. Mixed techniques are those
techniques that combine one top-down technique with another bottom-up technique.

Naive classification obviously suffers from the disadvantage that it has no proper
finegrainedness, because it is too coarse to make a comparison between every two

techniques. However, there have been some more definite methods to classify existing
recursive rule processing techniques ([Bancilhon and Ramakrishnan 1986], [Roelants 87]
and [Bancilhon and Ramakrishnan 1988]).

2.2 Bancilhon's Classification

In [Bancilhon and Ramakrishnana 1986], Bancilhon and Ramakrishnan present the first
attempt to definitely classify the existing techniques. A more complete description of
Bancilhon's classification is introduced in [Bancilhon and Ramakrishnan 1988]. In
[Bancilhon and Ramakrishnan 1988], a complete description of their understanding of
several main strategies, application domains and general performance based on some
specified examples are given. The proposed performance evaluation criteria for these
algorithms are application domain (i.e. a class of rules for which it applies), performance
(i.e. Time and Space cost), and ease of implementation. Moreover, algorithms concerned
with recursive query processing are classified in top down versus bottom up, compiled
versus interpretive, recursive versus iterative categories.

BANCILHON'S CLASSIFICATION

Technique Classification

Naive Evaluation Bottom-up, Compiled, Iterative
Semi-naive Evaluation Bottom-up, Compiled, Iterative
Iterative Query/Subquery Top-down, Interpreted, Iterative
Recursive Query/Subquery Top-down, Interpreted, Recursive
Henschen-Naqvi Top-down, Compiled, Iterative
Prolog Top-down, Interpreted, Recursive
Aho-Ullman -

Magic Sets -

Static Filtering _

Counting _

Supplementary Sets _

Existential Optimization _

Redundance Elimination (Sagiv) _

Figure 1. Bancilhon's Classification Examples

Notice that on the classification table above we only list some main (i.e. well known)
techniques. Other techniques can be classified into corresponding classes if necessary. The
indication "-" means that the method is difficult to be categorized.

In [Roelants 1987], it is argued that performance comparisons of general algorithms are
useless because they have too many degrees of freedom, the performance comparisons of
specific methods are very hard if we do not have a precise description of the methods and
their implementation, and it is difficult not to favour one method above another by the
choice of the test examples. Also, it is argued that the main problem with this classification
into compiled and interpretive approaches is that the two operations, deduction and search,
cannot always be distinguished clearly. In [Bancilhon and Ramakrishnan 1988],
Bancilhon and Ramakrishnan also point out that some techniques are difficult to be
categorized based on the above classification dimensions alone. Therefore, the
classification based on external features suffers from two disadvantages namely no-almost
completeness and no-definiteness.

2.3 Roelants' Classification

In Roelants [1987], query-answering algorithms that handle recursive rules in logic
databases are classified according to their halting condition. Three classes are proposed:
algorithms halting on solutions, algorithms halting on subqueries and algorithms halting on
both solutions and subqueries. For each class a general algorithm is described. The general
algorithms are compared on three criteria: halting, completeness, and efficiency.

For halting on solutions the general algorithm is naive evaluation. The general
algorithm for halting on subqueries corresponds to the technique of SLD resolution. The
general algorithm for halting on both solutions and subqueries is the mixed technique
which combines top-down with bottom-up techniques. Therefore, as a matter of fact, the
classification based on halting conditions is similar to the naive classification. However, the
former provides a definite description and analysis.

However, the main problem with this classification according to halting conditions is
that some strategies concerned with specified optimizations such as algebraic optimization,
semantic optimization and existential optimization, cannot be easily classified because the
halting conditions have close relationship with completeness, whereas those strategies place
emphasis on transformation of recursive rules instead of evaluation of recursive queries.

ROELANTS' CLASSIFICATION

Techniques

Classification

Naive Evaluation

Halting on solutions

Semi-naive Evaluation

Halting on solutions

Iterative Query/Subquery Halting on solutions and subqueries
Recursive Query/subquery Halting on solutions and subqueries
Aho-Ullman Halting on solutions

Henschen-Naqvi

Halting on subqueries

Prolog Halting on subqueries

Static Filtering Halting on solutions and subqueries
Magic Sets Halting on solution and subqueries
Counting Halting on subqueries
Supplementary Sets Halting on solution and subqueries
Existential Optimization _

Redundance Elimination(Sagiv) _

Figure 2. Roelants' Classification Examples

3. Distinction Between Evaluator and Optimizer

Based on the analyses of the existing classifications, we conclude that it is frequently
beneficial to draw a distinction between optimization and evaluation of queries, because the
optimization of queries can be expressed in an independent manner, and can be
incorporated in any evaluation method one may want. It seems to be more reasonable to
view the Magic sets technique and its variants as optimization techniques instead of
evaluation techniques. The existing classifications confuse evaluation techniques with
optimization techniques. As a matter of fact, optimization techniques should not be
classified by the same dimensions which are used to classify evaluation techniques.

Intuitively, we have the following distinctions:

Query evaluation: The process of semantically transforming a query Q into a
corresponding set of tuples, based on the program.

Query optimization: The process of transforming a program P into a program P', on
which queries can be evaluated more efficiently.

Query processing = Query evaluation and/or Query optimization.

Therefore, there are two distinct components in a general query processing strategy
namely the Evaluator and the Optimizer:

Evaluator: Query x Program —> Tuples
Optimizer: Query x Program —> Program
Q (Query)
Logical Database
(IDB+EDB)
Optimizer
, o~ Partial
IDB'+EDB'+Q Evaluated
Query
Evaluator
Answer to Q

Figure 3. General Query Processing

However, in order to draw more clearly the distinction between Evaluators and
Optimizers, we formally have the following definitions:

Formally, for a specified Datalog language L, a configuration of a logic database
(CLDB), can be viewed as a four-place tuple, i.e.

CLDB=<IDB,EDB,Q,KF >
where IDB is a set of Horn-definite clauses of L

EDB is a set of facts of L,
Qs a query and
KF, called known facts, is a set of ground atomic formulas of L

Let CLDBs be the set of all configurations of L. An algorithm for query processing of
logic databases can be viewed as a partial function from the set of configurations to itself. A
CLDB is called an initial logic database configuration if its known facts are &.

Definition 3.1 Application Domain of an algorithm F, called AD, is Domain(F). i.e.
F: AD — CLDBs
where AD ¢ CLDBs

Definition 3.2 Answer to a query Q based on a program P (i.e. IDB U EDB),
is defined as :Ans(Q)IP =gf { F | PI=F and 30 (Q9= FV9)}.

The distinctions between evaluators and optimizers mainly depend on whether the
algorithms can obtain all answers to a query. If all answers to corresponding queries can be
obtained, the algorithm would be an evaluator else it would be an optimizer as long as it can
make some transformations of relevant rules or queries. Moreover, an optimizer should be
able to obtain resultant rules which can be efficiently evaluated by any evaluators. The
efficiency of evaluation should be one of the important criteria of optimizers. However, it is
difficult to formalize the efficiency of evaluation without any precise description of
algorithms and their implementations. Therefore, we have the following definitions:

Definition 3.3
F: AD —CLDBs is a Generalized Evaluator if
(VC=<IDB,EDB,Q,KF>e AD)(F(C)=<IDB',EDB',Q',KF'>
= Ans(Q)I{IDBUEDB } cKF')

F: AD —»CLDBs is a Generalized Optimizer if
(VC=<IDB,EDB,Q, KF>e AD)(F(C)=<IDB',EDB',Q',KF'>
= KF'u Ans(Q)I{IDB' LU EDB'}= KF U Ans(Q)I{IDB U EDB}).

So far we still have not kept evaluators completely separate from optimizers. From the
definitions above, some evaluators still can be viewed as optimizers., i.e, EVALUATORS
N OPTIMIZERS # . Therefore, sometimes we call the evaluators and the optimizers
which are defined as above the generalized ones. Of course, we can present more restricted
definitions about evaluators and optimizers, by which optimizers and evaluators can be
completely separated except for some trivial functions. The property will be shown in the
next section (See Proposition 5.4).

Definition 3.4
F: AD —-CLDBs is a (pure) evaluator if
(VC=<IDB,EDB,Q,KF>€ AD)(F(C)=<IDB,EDB,Q,KF'>
= Ans(Q)I{IDBUEDB} cKF')

F: AD —-CLDBs is a (pure) optimizer if
(VC=<IDB,EDB,Q, KF >e AD)(F(C)=<IDB',EDB',Q',KF>
= Ans(Q){IDB' U EDB'}= Ans(Q)/{IDB U EDB}).

Although most techniques and methods concerned with recursive query processing are
lacking in the precise description of their algorithms and implementations, based on the
general criterion above, we can still roughly divide most of the proposed techniques and
methods concerned with recursive query processing into two main classes: Evaluators and
Optimizers. Evaluators are : Naive Evaluation, Semi-naive Evaluation, Iterative Query-
subquery, Recursive Query-subquery, SLD, SLD-AL, SLD with relation extensions and
the Henschen-Naqvi method. Optimizers are: Iterative Compilation, Algebraic
Optimization, Semantic Optimization, Static Filtering, Dynamic Filtering, Aho-Ullman
Method, Existential Optimization, Magic Set, Counting, Reverse Counting, Generalized
Magic Sets, Generalized Supplementary Magic Sets, Generalized Counting, Global
Optimization and Argument reduction.

4. Functional Classification
4.1 Classification about Evaluators

In general, the efficient processing of recursive queries is implemented by two main
approaches: firstly elimination of redundant computation by making full use of intermediate
results, and secondly the limitation of necessary computation by transforming relevant rules
and/or queries. (i.e. it should be able to focus on the data actually relevant for queries or
rules). The former, called evaluation efficiency, is implemented in the course of evaluation
of recursive queries whereas the latter, called logical efficiency, is implemented in the
course of optimization of recursive queries by cutting down on the number of potentially
relevant facts. It is usually difficult to implement the optimization of elimination of
redundant computation, based on Least Fixpoint Evaluator in the course of optimization,
since keeping the intermediate results is generally implemented in the course of evaluation
and no strategies about this subject have been proposed so far.

For all evaluators of recursive queries, the following issues must be faced. First,
algorithms must return all the answers to a query, which is called completeness. Secondly,
it must halt after returning all answers, which is called termination. Finally, it must be
evaluation efficient, i.e. it can eliminate all the redundant computations if possible.

As a matter of fact, existing classification methods concerned with algorithms of query
processing, whether Bancilhon's and Ramakrishnan's classification or Roelants'
classification, are methods about evaluators instead of optimizers because all of them place
emphasis upon algorithmical features such as completeness, which have close relationship
with evaluation. These existing classification methods have done well on the classification
of evaluators.

However, anyone who attempts to classify existing strategies must face the largest
difficulty, i.e., the lack of unified and precise descriptions about the existing techniques.
Some techniques are even only roughly described. There are no any details about the
proofs of correctness of those techniques. The difficulty seems to result in the
impossibilities of any precise analysis and almost completeness. But, we argue that the
functional classification is an adequate classification to solve the problem of the lack of
unified and precise descriptions. Because, for any technique, the main goals on which the
techniques focus should at least be described, no matter whether the details about the
techniques are provided or not.

From the functional analysis point of view, the category of top-down vs bottom-up
provides an adequate dimension for the classification, because it corresponds with the two
main inference modes of Datalog, i.e., derivation vs generation. Meanwhile, the application
domain also can be considered as an adequate dimension, because it describes a feature

which generally has a close relationship with the functions of techniques. Therefore, for
evaluators, the classification dimensions are inference mode and application domain.

CLASSIFICATION ABOUT EVALUATORS

Technique Mode Application Domain
Naive Evaluation Bottom-up General

Semi-naive Evaluation Bottom-up Linear, Acyclic
Iterative Query/Subquery Top-down General

Recursive Query/Subquery | Top-down General
Henschen-Naqvi Top-down Linear

Prolog Top-down NSC

Figure 4. Classification about Evaluators

Note:

General = General evaluable rules.

Linear = Linear recursive rules.

Acyclic = Acyclic data.

NSC = No simple syntactic characterization
4.2. Classification of Optimizers

In order to cut down the number of potential relevant facts and make the evaluation of
recursive queries more efficiently, optimizers should transform corresponding deduction
rules of Datalog programs. According to their redundant computations relevant to queries
or rules, optimization techniques can be classified into techniques based on queries and
techniques based on rules.

Let OPTIMIZERS be the set of all optimizers for recursive query processing, and
EVALUATORS be the set of all evaluators. Formally, we have the following definitions:

Definition 4.1
F : AC — CLDBs is an Optimizer based on Rules iff
F: AC —» CLDBs € OPTIMIZERS A
(V C1=<IDB1,EDBI1, Q1,KF1> € AC) (VC2= <IDB2,EDB2,Q2,KF2> € AC)
[IDB1=IDB2 AEDB1=EDB2 = F(C1)=F(C2)].

F : AC — CLDBs is an Optimizer based on Queries iff

F: AC — CLDBs € OPTIMIZERS A

(V C=<IDB,EDB,Q,KF1> € AC)(3 C' =<IDB,EDB,Q', KF'> € AC)
[F(C) = F(C)].

10

As far as the strategies of transforming rules are concerned, generally, there are three
main approaches: static selection-pushing , semijoin optimization and the projection-
pushing. Sometimes semijoin optimization is called dynamic selection-pushing. So called
selection-pushing optimizations are those in which bound information is passed into the
relevant rules in advance. Projection-pushing optimizations are those in which either
redundant atomic formulas or redundant arguments are reduced. More concrete, we have
the following examples:

« Push the selection statically: Static Filtering (Kifer and Lozinskin [1986]), Aho-Ullman

method (Aho-Ullman [1979]), Algebraic Optimization (Hansen [1987],Houtsma et al

[1988]).

« Push the selection dynamically: Dynamic Filtering (Kifer and Lozinskin [1986]), Magic
Set, Counting (Bancilhon et al [1986]).

« Push the project : Existential optimization (Ramakrishnan et al [1988]).

Therefore, for optimizers, the adequate classification dimensions should be focus (Based
on rules vs Based on query) and strategy (Selection-pushing, Semijoin, and Projection-
pushing).

FUNCTIONAL CLASSIFICATION

Techniques Classification

Naive Evaluation (E)Bottom-up , General
Semi-naive Evaluation (E)Bottom-up , Linear

Iterative Query/Subquery (E)Top-down, General

Recursive Query/Subquery (E)Top-down, General
Henschen-Naqvi (E)Top-down, Linear

Prolog (SLD) (E)Top-down , NSC

Aho-Ullman (O)Based on Query,Push Selection
Static Filtering (O)Based on Query,Push Selection
Magic Sets (O)Based on Query, Semijoin
Counting (O)Based on Query, Semijoin
Supplementary Sets (O)Based on Query, Semijoin
Existential Optimization (O)Based on Query,Push Projection
Redundant Elimination(Sagiv) (O)Based on Rules,Push Projection

Figure 5. Functional Classification Examples

NOTE: (E)=EVALUATOR (O)= OPTIMIZER

11

5. Composability among Evaluators and Optimizers

In this section, we formally examine the problem of composability among evaluators and
optimizers, by which we expect to achieve a better comprehension on the potential of
composition among the existing techniques. Meanwhile, we expect that we would present a
unified strategy by this approach.

Definition 5.1
For a query processing algorithm F: AD — CLDBs, and for any C=<IDB, EDB, Q,
KF>, suppose that F(C)=<IDB', EDB', Q', KF'>. Let P= EDBUIDB and P'=
EDB'U IDB' then F is said to be:

@) Initial iff KF=0.

(ii) Intensional invariant iff IDB=IDB'.

(ili) Extensional invariant iff EDB=EDB'.

(iv) Queryinvariant iff Q=Q'.

W) Known facts invariant iff KF= KF'.

(vi) Programinvariant iff P=P'.

(vii) Explicit complete iff Ans(Q)l P ¢ KF'.

(iix) Implicit complete iff Ans(Q)IP = Ans(Q")IP'.
(ix) Implicit weak complete iff KF UAns(Q)IP = KF' U Ans(Q")IP'.
(x) Trivial iff Ans(Q)IP < KF.

(xi) Identical iff IDB=IDB'A EDB=EDB'

A Q=Q' AKF=KF'.

Let Generalized_optimizers be the set of all generalized optimizers,
Generalized_evaluators be the set of all generalized evaluators, Initial be the set of all
Initial algorithms and Intensional_invariant be the set of all intensional invariant
algorithms. The others are defined analogously. We have the following results:
EVALUATORS = Explicit_complete N Program_invariant N Query_invariant.
OPTIMIZERS = Implicit_complete " Known_facts_invariant.
Generalized_evaluators = Explicit_complete.

Generalized_optimizers = Implicit_complete.

Definition 5.2 (Composition of Algorithm Sets)
For any algorithm set S1, and S2, the composition of the sets S1 and S2, S1eS2, is
defined as follows:
S1e82 = gr { F1° F2 | VF1 € S1 and VF2 € S2 and Range(F1) € Domain(F2)}.
where ° is the composition of functions.

Composition laws for evaluators and optimizers:

12

Proposition 5.1
@ OPTIMIZERS e Identical = OPTIMIZERS
(ii) Identical ¢ OPTIMIZERS = OPTIMIZERS
(iii) EVALUATORSe Identical = EVALUATORS
(iv) Identical e EVALUATORS = EVALUATORS
V) Identical ¢ OPTIMIZERS
(vi) OPTIMIZERSeOPTIMIZER =OPTIMIZERS

Proposition 5.2
< OPTIMIZERS, © > is a monoid.

Proposition 5.3
OPTIMIZERS e Generalized_evaluators = Generalized_evaluators

Proof.

For any F: AC — CLDBs € OPTIMIZERS,

and G: AC'— CLDBs € Generalized_evaluators,
and any C=<IDB,EDB,Q,KF> € AC,

suppose that F(C)=<IDB'EDB', Q',KF'>

and G(F(C))= <IDB",EDB", Q", KF">.

F is an optimizer and G is a Generalized evaluators =
Ans(Q){IDBUEDB} = Ans(Q)/{IDB' U EDB'}

and Ans(Q"){IDB' VEDB'} c KF'=
Ans(Q)I{IDB UEDB} c FK"=

FoG is a Generalized_evaluators.

Therefore, OPTIMIZERS e Generalized_evaluators ¢ Generalized_evaluators.

However, Generalized_evaluators = Identical ¢ Generalized_evaluators ¢
OPTIMIZERSe Generalized_evaluators.

Therefore, OPTIMIZERS e Generalized_evaluators = Generalized_evaluators.

Proposition 5.4
OPTIMIZERS N EVALUATORS = Identical "Trivial.

Proof.

OPTIMIZERS N EVALUATORS ¢

Program_invariant N Query_invariant N Known_facts_invariant N
Explicit_complete c Identical N"Trivial.

Identical N Trivial Identical N Explicit_complete C
OPTIMIZERS N Explicit_complete c
OPTIMIZERS N EVALUATORS.

13

Therefore, OPTIMIZERS N EVALUATORS = Identical "Trivial.
6. Final Remarks

We have proposed a functional classification as an attempt to categorize the existing
techniques about recursive query processing. We benefit from drawing the distinctions
between the evaluators and optimizers, because the composability among the existing
techniques is more formally and precisely examined. We argued that the functional
classification may be the only efficient approach to solve the problem since most techniques
lack a precise and unified description.

However, in this paper, no performance comparisons are given. As Roelants point
out, performance comparisons of general algorithms are useless because they have too
many degrees of freedom. For performance comparisons of specific methods with specific
data, in [Bancilhon and Ramakrishnan 1988], a satisfying description has been provided.
Moreover, we do not discuss the problems of halting, completeness and efficiency of
specified techniques as in [Roelants 1987]. That is because these features have a close
relationship with evaluation, whereas for evaluators, in [Roelants 1987], the problems have
been examined.

An important task for future research is to develop more definitely a unified strategy
and theory about recursive query processing, which even can provide an implementation
strategy for the efficient composition of the existing techniques.

Acknowledgements

The authors would like to thank Gerard R. Renardel de Lavalette and Karen Kwast for
helpful discussions.

14

REFERENCES

[AU79]. Aho,A.and Ullman,J.D., Universality of Data Retrieval Languages, Proc. 6th
ACM Symposium on Principles of Programming languages, 1979, 110-120.
[Ba86]. Bancilhon, F., Naive evaluation of recursively defined relations, in On knowledge
Base Management Systems -- Integrated Database and Al Systems (M. Brodie and

J. Mylopoulos, Eds.), Spring-Verlag, 1986, 165-178.

[BMSUS6]. Bancilhon,F., Maier, D., Sagiv, Y., and Ullman, J. D. Magic Sets and Other
Strange Ways to Implement Logic Programs, Proc. 5th ACM SIGMOD-SIGACT
Symposium on Principles of Database systems, 1986, 1-15.

[BR86]. Bancilhon,F., Ramakrishnan, R., An Amateur's Introduction to Recursive Query
Processing Strategies, Proc. of ACM-Sigmod International Conference on
Management of Data, Washington, May 1986, 16-52.

[BR88]. Bancilhon, F., Ramakrishnan, R. Performance Evaluation of Logic Programs,
in Foundations of Deductive Databases and Logic Programming (J. Minker,Ed.),
Morgan Kaufmann Publishers, Los Altos, CA, 1988, 439-517.

[BR87]. Beeri, C., Ramakrishnan,R. On the Power of Magic, Proc. 6th ACM-SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, 1987, 269-
283.

[Ch81]. Change, C. On the Evaluation of Queries Containing Derived Relations in
Relational Databases, in Advances in Data Base Theory, Vol.1 (H. Gallaire,

J Minker, and J.M. Nicolas,Eds.), Plenum Press, New York, 1981, 235-260.

[Ch86]. Chakravarthy,U.S.,et al. Semantic Query Optimization in Expert Systems and
Database Systems, in Expert Database Systems, Proc. from 1st International
Conference, (Kerschberg,L., Ed.), The Benjamin/cummings Publishing Comany,
INC. 1986, 659-674.

[DES88]. van Denneheuvel, S., van Emde Boas, P., Towards Implementing RL. Preprint
CT-88-10, Institute for Language, Logic and Information, University of
Amsterdam, 1988.

[Em86]. van Emde Boas, P., RL, a Language for Enhanced Rules Bases Database
Processing, Working Document, Rep IBM Research, RJ4869(51299), 1986.

[EE86]. van Emde Boas, H., van Emde Boas, P., Storing and Evaluating Horn-Clause
Rules in a Relational Database, IBM J. Res. Develop. 30(1) , 1986, 80-92.

[EK76]. Emden, M., H., Kowalski, R.A. The Semantics of Predicate Logic as a
Programming Language, J. ACM 23(4), 1976, 733-742.

15

[Ha87]. Hansen, M. R. Algebraic of Optimization of Recursive Database Queries, Proc.
CIPS'87, 1987.

[HN84]. Henschen, L., Naqvi, S. On Compiling Queries in Recurtsive First Order Data
Bases, J. ACM 31,1984, 47-85.

[HKFAKS88]. Houtsma, M. A. W, van Kuijk, H. J. A,, Flokstra, J., Apers, P.M.G.
Kersten, M. L., A logic Query Languages and its Algebraic Optimization for a
Multiprocessor Database Machine, University of Twente, 1988.

[Hu86]. Huang, Z.S. Searching Strategy of Two-level Deductive Database TLDB, J.
ZSI 2, 1986.

[Ja86]. Jarke, M., External Semantic Query Simplification: A Graph-theoretic Approach
and its Implementation in Prolog, in Expert Database Systems, Proc. from 1st
International Conf., (Kerschberg,L., Ed.), The Benjamin/Cummings Publishing
Company,INC., 1986, 675-692.

[KL86]. Kifer, M., Lozinskii, E, Filtering Data Flow in Deductive Databases, Proc.
international Conference on Database Theory, LNCS, No. 243, Spring-verlag,
1986, 186-202.

[KK71]. Kowalski,R. A. and D. Kuehner, Linear resolution with selection function,
Artificial Intelligence 2, 1971, 227-260.

[Lo85]. Lozinskii, E. Evaluating Queries in Deductive Databases by Gnerating, Proc. 11th
international Joint conference on Al, 1985, 173-177.

[Mi88]. Minker, J., Perspectives in Deductive Databases , J. Logic Programming, S,
1988, 33-60.

[NRSU89]. J.F. Naughton, R. Ramkrishnan, Y. Sagiv, J.D. Ullman, Argument
Reduction by Factoring, Proc. of the 15th International Conference on Very Large
Databases, 1989, 173-182.

[RBK88]. Ramakrishnan, R., Beeri, C., Krishnamurthy, R. Optimizing Existential
Datalog Queries. Proc. 7th ACM-SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, 1988, 89-102.

[Ro87]. Roelants, D. Recursive Rules in Logic Databases, Research Report, Philips
Research Laboratory, March 1987.

[SZ86]. Sacca, D. and Zaniolo, C. On the Implementation of a Simple Class of Logic
Queries for Databases, Proc. 5th ACM SIGMOD-SIGART Symposium on
Principle of Database Systems, 1986, 16-23.

[Sa88]. Sagiv, Y. Optimizing Datalog Program, in Foundations of Deductive Databases
and Logic Programming (J., Minker, Ed.) , Morgan Kaufmann Publishers Los
Alots, CA, 1988, 627-658.

16

[U189] Ullman, J. D., Principles of database and knowledge-base systems, VolIl: The
new technologies,Computer Science Press, 1989.

[Vi86]. Vieille, L. Recursive Axioms in Deductive Databases: The Query/Subquery
Approach, Proc. First Intl. conference on Expert Database Systems, Charleston,
1986, 179-194.

[Vi87]. Vieille, L. Database-complete Proof Procedure Based on SLD-resolution. Proc. of
the 4th Inter. Conf. on Logic Programming, Melbourne, Australia, May, 1987,
74-103.

[Vi89]. Vieille, L., From QSQ towards QoSaQ: Global Optimization of Recursive
Queries, in Expert Database Systems , Proc. from 2nd Internationl Conference,
(Kerschberg, L., Ed.), The Benjamin/Cummings Publishing Company,
INC.,1989, 743-778.

17

1986 The ITLI Prepublication Series

86-01 The Institute of Language, Logic and Information

86-02 Peter van Emde Boas A Semantical Model for Integration and Modularization of Rules

86-03 Johan van Benthem Categorial Grammar and Lambda Calculus

86-04 Reinhard Muskens A Relational Formulation of the Theory of Types

86-05 Kenneth A. Bowen, Dick de Jongh Some Complete Logics for Branched Time, Part I Well-founded Time,

86-06 Johan van Benthem Logical Syntax Forward looking Operators
87-01 Jeroen Groenendijk, Martin Stokhof Type shifting Rules and the Semantics of Interrogatives

87-02 Renate Bartsch Frame Representations and Discourse Representations

87-03 Jan Willem Klop, Roel de Vrijer Unique Normal Forms for Lambda Calculus with Surjective Pairing

87-04 Johan van Benthem Polyadic quantifiers

87-05 Victor Sdnchez Valencia Traditional Logicians and de Morgan's Example

87-06 Eleonore Oversteegen Temporal Adverbials in the Two Track Theory of Time

87-07 Johan van Benthem Categorial Grammar and Type Theory

87-08 Renate Bartsch The Construction of Properties under Perspectives

87-09 Herman Hendriks . Type Change in Semantics: The Scope of Quantification and Coordination

LP-88-01 Michiel van Lambalgen Lo8ic, Semantics and Philosophy of Language: Algorithmic Information Theory

LP-88-02 Yde Venema Expressiveness and Completeness of an Interval Tense Logic

LP-88-03 Year Report 1987

LP-88-04 Reinhard Muskens Going partial in Montague Grammar

LP-88-05 Johan van Benthem Logical Constants across Varying Types

LP-88-06 Johan van Benthem Semantic Parallels in Natural Language and Computation

LP-88-07 Renate Bartsch Tenses, Aspects, and their Scopes in Discourse

LP-88-08 Jeroen Groenendijk, Martin Stokhof Context and Information in Dynamic Semantics

LP-88-09 Theo M.V. Janssen A mathematical model for the CAT framework of Eurotra

LP-88-10 Anneke Kleppe . . A Blissymbolics Translation Program

ML-88-01 Jaap van Oosten Mathematical Logic and Foundations: | jfschitz' Realizabiility

ML-88-02 M.D.G. Swaen The Arithmetical Fragment of Martin Lo6f's Type Theories with weak Z-elimination

ML-88-03 Dick de Jongh, Frank Veltman Provability Logics for Relative Interpretability

ML-88-04 A.S. Troelstra On the Early History of Intuitionistic Logic

ML-88-05 A.S. Troelstra . Remarks on Intuitionism and the Philosophy of Mathematics

CT-88-01 Ming Li, Paul M.B.Vitanyi Computation and Complexity Theory: Two Decades of Applied Kolmogorov Complexity

CT-88-02 Michiel H.M. Smid General Lower Bounds for the Partitioning of Range Trees

CT-88-03 Michiel H.M. Smid, Mark H. Overmars Maintaining Multiple Representations of
Leen Torenvliet, Peter van Emde Boas Dynamic Data Structures

CT-88-04 Dick de Jongh, Lex Hendriks Computations in Fragments of Intuitionistic Propositional Logic
Gerard R. Renardel de Lavalette

CT-88-05 Peter van Emde Boas Machine Models and Simulations (revised version)

CT-88-06 Michiel H.M. Smid A Data Structure for the Union-find Problem having good Single-Operation Complexity

CT-88-07 Johan van Benthem Time, Logic and Computation

CT-88-08 Michiel H.M. Smid, Mark H. Overmars Multiple Representations of Dynamic Data Structures

Leen Torenvliet, Peter van Emde Boas
CT-88-09 Theo M.V. Janssen Towards a Universal Parsing Algorithm for Functional Grammar
CT-88-10 Edith Spaan, Leen Torenvliet, Peter van Emde Boas Nondeterminism, Fairness and a Fundamental Analogy
CT-88-11 Sieger van Denneheuvel, Peter van Emde Boas = Towards implementing RL

X-88-01 Marc Jumelet Other prepublications: o Solovay's Completeness Theorem
1989 LP-89-01 Johan van Bentheml08ic, Semantics and Philosophy of Language:The Fine-Structure of Categorial Semantics

LP-89-02 Jeroen Groenendijk, Martin Stokhof =~ Dynamic Predicate Logic, towards a compositional,
non-representational semantics of discourse

LP-89-03 Yde Venema Two-dimensional Modal Logics for Relation Algebras and Temporal Logic of Intervals
LP-89-04 Johan van Benthem Language in Action

LP-89-05 Johan van Benthem Modal Logic as a Theory of Information

LP-89-06 Andreja Prijatelj Intensional Lambek Calculi: Theory and Application

LP-89-07 Heinrich Wansing The Adequacy Problem for Sequential Propositional Logic

LP-89-08 Victor Sinchez Valencia Peirce's Propositional Logic: From Algebra to Graphs

LP-89-09 Zhisheng Huang Dependency of Belief in Distributed Systems

ML-89-01 Dick de Jongh, Albert Visser Mathematical Logic ‘and Foundations: gxplicit Fixed Points for Interpretability Logic
ML-89-02 Roel de Vrijer Extending the Lambda Calculus with Surjective Pairing is conservative

ML-89-03 Dick de Jongh, Franco Montagna Rosser Orderings and Free Variables
ML-89-04 Dick de Jongh, Marc Jumelet, Franco Montagna ~ On the Proof of Solovay's Theorem

ML-89-05 Rineke Verbrugge Z-completeness and Bounded Arithmetic

ML-89-06 Michiel van Lambalgen The Axiomatization of Randomness

ML-89-07 Dirk Roorda Elementary Inductive Definitions in HA: from Strictly Positive towards Monotone
ML-89-08 Dirk Roorda Investigations into Classical Linear Logic

ML-89-09 Alessandra Carbone . Provable Fixed points in 1Ay+Q

CT-89-01 Michiel HM. Smid Computation and Complexity Theory: Dynamic Deferred Data Structures

CT-89-02 Peter van Emde Boas Machine Models and Simulations

CT-89-03 Ming Li, Herman Neuféglise, Leen Torenvliet, Peter van Emde Boas On Space Efficient Simulations

CT-89-04 Harry Buhrman, Leen Torenvliet A Comparison of Reductions on Nondeterministic Space

CT-89-05 Pieter H. Hartel, Michiel H.M. Smid A Parallel Functional Implementation of Range Queries
Leen Torenvliet, Willem G. Vree

CT-89-06 H.W. Lenstra, Jr. Finding Isomorphisms between Finite Fields
CT-89-07 Ming Li, Paul M.B. Vitanyi A Theory of Learning Simple Concepts under Simple Distributions and
Average Case Complexity for the Universal Distribution (Prel. Version)
CT-89-08 Harry Buhrman, Steven Homer Honest Reductions, Completeness and
Leen Torenvliet Nondeterminstic Complexity Classes
CT-89-09 Harry Buhrman, Edith Spaan, Leen Torenvliet On Adaptive Resource Bounded Computations
CT-89-10 Sieger van Denneheuvel The Rule Language RL/1

CT-89-11 Zhisheng Huang, Sieger van Denneheuvel Towards Functional Classification of Recursive Query Processing
Peter van Emde Boas

X-89-01 Marianne Kalsbeek Other Prepublications: Ap Orey Sentence for Predicative Arithmetic
X-89-02 G. Wagemakers New Foundations: a Survey of Quine's Set Theory
X-89-03 A.S. Troelstra Index of the Heyting Nachlass

X-89-04 Jeroen Groenendijk, Martin Stokhof Dynamic Montague Grammar, a first sketch

X-89-05 Maarten de Rijke The Modal Theory of Inequality

X-89-06 Peter van Emde Boas Een Relationele Semantiek voor Conceptueel Modelleren: Het RL-project

