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ABSTRACT

In recent years, many techniques concerning recursive query processing have been
proposed. In search of a unified theory and strategy of recursive query processing, there
have been some attempts to classify existing techniques. In this paper, we present a
new classification called the functional classification of techniques concerning
recursive query processing. The classification differs from Bancilhon and
Ramakrishnan's classification based on external features and Roelants’ classification
based on halting conditions. Our method distinguishes the features of almost
completeness, definiteness and proper finegrainedness, which are viewed as the adequate
criteria for classification. A formalism of functional classification is presented. Based
on the formalism, the composability of the existing techniques concerning recursive

query processing is examined.
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1. Introduction

Horn-clause programs without function symbols, also known as Datalog program, are an
important area of research in the theory of deductive databases. In recent research the
problem of finding efficient evaluation methods for queries expressed as Datalog programs
has been addressed.

In recent years, many methods concerned with recursive query processing have been
proposed. Some of them are:

Naive Evaluation (van Emden and Kowalski [1976])

Semi-naive Evaluation (Bancilhon [1986])

Iterative Query-subquery, Recursive query-subquery (Vieille [1986])
SLD (Kowalski and Keuhner [1971]), SLD-AL (Vieille [1987])
SLD with relation extension (Huang [1986])

Henschen-Naqvi method (Henschen-Naqvi[1984])

Iterative Compilation ( van Emde Boas and van Emde Boas [1986])
Algebraic Optimization ( Hansen [1987], Houtsma et al [1988])
Semantic Optimization (Sagiv [1988] , Jarke [1986])

Static Filtering , Dynamic Filtering (Kifer and Lozinskii [1986])
Aho-Ullman Method (Aho and Ullman [1979])

APEX (Lozinskii [1985])

Existential Optimization (Ramakrishnan et al [1988])

Magic Sets (Bancilhon et al [1986])

Counting, Reverse Counting (Sacca and Zaniolo [1986])
Generalized Magic Sets ( Beeri et al [1987])

Generalized Supplementary Magic Sets ( Beeri and Ramakrishnan [1987])
Generalized Counting ( Sacca and Zaniolo [1986])

Global Optimization (Vieille [1989])

Argument Reduction by Factoring

( Naughton, Ramakrishnan, Sagiv, and Ullman [1989])

As may be clear from the size of the above list the proposed methods concerned with
recursive query processing are so many that one often wonders which strategy would be
efficient in specified cases. Moreover, it remains unknown whether and how these various
techniques and methods could be combined and be compared. Therefore, in recent years,
some classification methods about recursive query processing techniques have been
presented ([Bancilhon and Ramakrishnan 1986], [Roelants 1987]). Based on the
classifications concerning recursive query processing techniques, we expect that the
following goals would be gained more efficiently:

i) To make comparisons among the existing techniques.

ii) To combine one technique with other techniques.

iii) To examine the potential of recursive query processing.

iv) To develop new recursive query processing techniques.

V) To provide a unified theory and strategy concerning recursive query processing.



In this paper, we would like to present a new classification about recursive query
processing techniques, called functional classification, which differs from Bancilhon's
classification based on external features and Roelants' classification based on halting
conditions. The classification distinguishes the features of almost completeness,
definiteness, and proper finegrainedness, which we see as the adequate criteria for
classifications. A formalism of functional classification is presented. Based on the
formalism, the composability of the existing techniques about recursive query processing is
examined.

The organization of this paper is as follows. The section "The Existing Classifications"
provides a general overview of existing classification methods. Their corresponding
advantages and disadvantages are discussed. "Distinctions Between Evaluators and
Optimizers" presents our first step towards the functional classification of recursive query
processing techniques. The "Functional Classification" contains our general method. The
corresponding classification dimensions are proposed. In "Composability among
Evaluators and Optimizers" we examine the problem of composability among the existing
techniques. Finally, in "Final Remarks" we conclude the proposed classification method.

2. Existing Classification
2.1 General Classification

It seems to be necessary to discuss what the adequate criteria for classifications are, before
we examine the existing classifications. In our opinion, the following criteria may be
adequate for the classification about recursive query processing techniques:

i) Almost Completeness: It can classify almost all existing techniques. Of course, an
ideal criterion is completeness. However, it may be too strong to be satisfied. The complete
set of techniques seems to be unattainable, because of the lack of a unified and precise
description about recursive query processing.

ii) Definiteness: It can provide definite classification dimensions. This means that one
technique can be classified into only one class.

iii) Proper Finegrainedness: The classification should be properly fine so that one can
make a comparison between almost every two techniques. More precisely, every two
techniques which are intuitively much different should be classified into different classes.
Meanwhile, we should avoid a too fine classification, since that might result in a class for
each concrete category.

Generally, the existing techniques can be simply categorized by the following three
classes: Top-down, bottom-up, and mixed. We call the simple classification Naive
Classification. The so-called Bottom-up techniques mean that we construct proof trees from
the leaves up, working towards the root. Top-down techniques work downwards from the
root to the leaves. For those familiar with Prolog, these techniques are sometimes referred
to as "SLD-resolution" or "LUSH-resolution". Least Fixpoint Computation and Naive
Evaluation, are closely related to bottom-up techniques. Mixed techniques are those
techniques that combine one top-down technique with another bottom-up technique.

Naive classification obviously suffers from the disadvantage that it has no proper
finegrainedness, because it is too coarse to make a comparison between every two



techniques. However, there have been some more definite methods to classify existing
recursive rule processing techniques ([Bancilhon and Ramakrishnan 1986], [Roelants 87]
and [Bancilhon and Ramakrishnan 1988]).

2.2 Bancilhon's Classification

In [Bancilhon and Ramakrishnana 1986], Bancilhon and Ramakrishnan present the first
attempt to definitely classify the existing techniques. A more complete description of
Bancilhon's classification is introduced in [Bancilhon and Ramakrishnan 1988]. In
[Bancilhon and Ramakrishnan 1988], a complete description of their understanding of
several main strategies, application domains and general performance based on some
specified examples are given. The proposed performance evaluation criteria for these
algorithms are application domain (i.e. a class of rules for which it applies), performance
(i.e. Time and Space cost), and ease of implementation. Moreover, algorithms concerned
with recursive query processing are classified in top down versus bottom up, compiled
versus interpretive, recursive versus iterative categories.

BANCILHON'S CLASSIFICATION

Technique Classification

Naive Evaluation Bottom-up, Compiled, Iterative
Semi-naive Evaluation Bottom-up, Compiled, Iterative
Iterative Query/Subquery Top-down, Interpreted, Iterative
Recursive Query/Subquery Top-down, Interpreted, Recursive
Henschen-Naqvi Top-down, Compiled, Iterative
Prolog Top-down, Interpreted, Recursive
Aho-Ullman -

Magic Sets -

Static Filtering _

Counting _

Supplementary Sets _

Existential Optimization _

Redundance Elimination (Sagiv) _

Figure 1. Bancilhon's Classification Examples



Notice that on the classification table above we only list some main (i.e. well known)
techniques. Other techniques can be classified into corresponding classes if necessary. The
indication "-" means that the method is difficult to be categorized.

In [Roelants 1987], it is argued that performance comparisons of general algorithms are
useless because they have too many degrees of freedom, the performance comparisons of
specific methods are very hard if we do not have a precise description of the methods and
their implementation, and it is difficult not to favour one method above another by the
choice of the test examples. Also, it is argued that the main problem with this classification
into compiled and interpretive approaches is that the two operations, deduction and search,
cannot always be distinguished clearly. In [Bancilhon and Ramakrishnan 1988],
Bancilhon and Ramakrishnan also point out that some techniques are difficult to be
categorized based on the above classification dimensions alone. Therefore, the
classification based on external features suffers from two disadvantages namely no-almost
completeness and no-definiteness.

2.3 Roelants' Classification

In Roelants [1987], query-answering algorithms that handle recursive rules in logic
databases are classified according to their halting condition. Three classes are proposed:
algorithms halting on solutions, algorithms halting on subqueries and algorithms halting on
both solutions and subqueries. For each class a general algorithm is described. The general
algorithms are compared on three criteria: halting, completeness, and efficiency.

For halting on solutions the general algorithm is naive evaluation. The general
algorithm for halting on subqueries corresponds to the technique of SLD resolution. The
general algorithm for halting on both solutions and subqueries is the mixed technique
which combines top-down with bottom-up techniques. Therefore, as a matter of fact, the
classification based on halting conditions is similar to the naive classification. However, the
former provides a definite description and analysis.

However, the main problem with this classification according to halting conditions is
that some strategies concerned with specified optimizations such as algebraic optimization,
semantic optimization and existential optimization, cannot be easily classified because the
halting conditions have close relationship with completeness, whereas those strategies place
emphasis on transformation of recursive rules instead of evaluation of recursive queries.



ROELANTS' CLASSIFICATION

Techniques

Classification

Naive Evaluation

Halting on solutions

Semi-naive Evaluation

Halting on solutions

Iterative Query/Subquery Halting on solutions and subqueries
Recursive Query/subquery Halting on solutions and subqueries
Aho-Ullman Halting on solutions

Henschen-Naqvi

Halting on subqueries

Prolog Halting on subqueries

Static Filtering Halting on solutions and subqueries
Magic Sets Halting on solution and subqueries
Counting Halting on subqueries
Supplementary Sets Halting on solution and subqueries
Existential Optimization _

Redundance Elimination(Sagiv) _

Figure 2. Roelants' Classification Examples

3. Distinction Between Evaluator and Optimizer

Based on the analyses of the existing classifications, we conclude that it is frequently
beneficial to draw a distinction between optimization and evaluation of queries, because the
optimization of queries can be expressed in an independent manner, and can be
incorporated in any evaluation method one may want. It seems to be more reasonable to
view the Magic sets technique and its variants as optimization techniques instead of
evaluation techniques. The existing classifications confuse evaluation techniques with
optimization techniques. As a matter of fact, optimization techniques should not be
classified by the same dimensions which are used to classify evaluation techniques.

Intuitively, we have the following distinctions:

Query evaluation: The process of semantically transforming a query Q into a
corresponding set of tuples, based on the program.



Query optimization: The process of transforming a program P into a program P', on
which queries can be evaluated more efficiently.

Query processing = Query evaluation and/or Query optimization.

Therefore, there are two distinct components in a general query processing strategy
namely the Evaluator and the Optimizer:

Evaluator: Query x Program —> Tuples
Optimizer: Query x Program —> Program
Q (Query)
Logical Database
(IDB+EDB)
Optimizer
, o~ Partial
IDB'+EDB'+Q Evaluated
Query
Evaluator
Answer to Q

Figure 3. General Query Processing

However, in order to draw more clearly the distinction between Evaluators and
Optimizers, we formally have the following definitions:

Formally, for a specified Datalog language L, a configuration of a logic database
(CLDB), can be viewed as a four-place tuple, i.e.

CLDB=<IDB,EDB,Q,KF >
where IDB is a set of Horn-definite clauses of L



EDB is a set of facts of L,
Qs a query and
KF, called known facts, is a set of ground atomic formulas of L

Let CLDBs be the set of all configurations of L. An algorithm for query processing of
logic databases can be viewed as a partial function from the set of configurations to itself. A
CLDB is called an initial logic database configuration if its known facts are &.

Definition 3.1 Application Domain of an algorithm F, called AD, is Domain(F). i.e.
F: AD — CLDBs
where AD ¢ CLDBs

Definition 3.2 Answer to a query Q based on a program P (i.e. IDB U EDB),
is defined as :Ans(Q)IP =gf { F | PI=F and 30 (Q9= FV9)}.

The distinctions between evaluators and optimizers mainly depend on whether the
algorithms can obtain all answers to a query. If all answers to corresponding queries can be
obtained, the algorithm would be an evaluator else it would be an optimizer as long as it can
make some transformations of relevant rules or queries. Moreover, an optimizer should be
able to obtain resultant rules which can be efficiently evaluated by any evaluators. The
efficiency of evaluation should be one of the important criteria of optimizers. However, it is
difficult to formalize the efficiency of evaluation without any precise description of
algorithms and their implementations. Therefore, we have the following definitions:

Definition 3.3
F: AD —CLDBs is a Generalized Evaluator if
(VC=<IDB,EDB,Q,KF>e AD)(F(C)=<IDB',EDB',Q',KF'>
= Ans(Q)I{IDBUEDB } cKF')

F: AD —»CLDBs is a Generalized Optimizer if
(VC=<IDB,EDB,Q, KF>e AD)(F(C)=<IDB',EDB',Q',KF'>
= KF'u Ans(Q)I{IDB' LU EDB'}= KF U Ans(Q)I{IDB U EDB}).

So far we still have not kept evaluators completely separate from optimizers. From the
definitions above, some evaluators still can be viewed as optimizers., i.e, EVALUATORS
N OPTIMIZERS # . Therefore, sometimes we call the evaluators and the optimizers
which are defined as above the generalized ones. Of course, we can present more restricted
definitions about evaluators and optimizers, by which optimizers and evaluators can be
completely separated except for some trivial functions. The property will be shown in the
next section (See Proposition 5.4).

Definition 3.4
F: AD —-CLDBs is a (pure) evaluator if
(VC=<IDB,EDB,Q,KF>€ AD)(F(C)=<IDB,EDB,Q,KF'>
= Ans(Q)I{IDBUEDB} cKF')

F: AD —-CLDBs is a (pure) optimizer if
(VC=<IDB,EDB,Q, KF >e AD)(F(C)=<IDB',EDB',Q',KF>
= Ans(Q){IDB' U EDB'}= Ans(Q)/{IDB U EDB}).



Although most techniques and methods concerned with recursive query processing are
lacking in the precise description of their algorithms and implementations, based on the
general criterion above, we can still roughly divide most of the proposed techniques and
methods concerned with recursive query processing into two main classes: Evaluators and
Optimizers. Evaluators are : Naive Evaluation, Semi-naive Evaluation, Iterative Query-
subquery, Recursive Query-subquery, SLD, SLD-AL, SLD with relation extensions and
the Henschen-Naqvi method. Optimizers are: Iterative Compilation, Algebraic
Optimization, Semantic Optimization, Static Filtering, Dynamic Filtering, Aho-Ullman
Method, Existential Optimization, Magic Set, Counting, Reverse Counting, Generalized
Magic Sets, Generalized Supplementary Magic Sets, Generalized Counting, Global
Optimization and Argument reduction.

4. Functional Classification
4.1 Classification about Evaluators

In general, the efficient processing of recursive queries is implemented by two main
approaches: firstly elimination of redundant computation by making full use of intermediate
results, and secondly the limitation of necessary computation by transforming relevant rules
and/or queries. (i.e. it should be able to focus on the data actually relevant for queries or
rules). The former, called evaluation efficiency, is implemented in the course of evaluation
of recursive queries whereas the latter, called logical efficiency, is implemented in the
course of optimization of recursive queries by cutting down on the number of potentially
relevant facts. It is usually difficult to implement the optimization of elimination of
redundant computation, based on Least Fixpoint Evaluator in the course of optimization,
since keeping the intermediate results is generally implemented in the course of evaluation
and no strategies about this subject have been proposed so far.

For all evaluators of recursive queries, the following issues must be faced. First,
algorithms must return all the answers to a query, which is called completeness. Secondly,
it must halt after returning all answers, which is called termination. Finally, it must be
evaluation efficient, i.e. it can eliminate all the redundant computations if possible.

As a matter of fact, existing classification methods concerned with algorithms of query
processing, whether Bancilhon's and Ramakrishnan's classification or Roelants'
classification, are methods about evaluators instead of optimizers because all of them place
emphasis upon algorithmical features such as completeness, which have close relationship
with evaluation. These existing classification methods have done well on the classification
of evaluators.

However, anyone who attempts to classify existing strategies must face the largest
difficulty, i.e., the lack of unified and precise descriptions about the existing techniques.
Some techniques are even only roughly described. There are no any details about the
proofs of correctness of those techniques. The difficulty seems to result in the
impossibilities of any precise analysis and almost completeness. But, we argue that the
functional classification is an adequate classification to solve the problem of the lack of
unified and precise descriptions. Because, for any technique, the main goals on which the
techniques focus should at least be described, no matter whether the details about the
techniques are provided or not.

From the functional analysis point of view, the category of top-down vs bottom-up
provides an adequate dimension for the classification, because it corresponds with the two
main inference modes of Datalog, i.e., derivation vs generation. Meanwhile, the application
domain also can be considered as an adequate dimension, because it describes a feature



which generally has a close relationship with the functions of techniques. Therefore, for
evaluators, the classification dimensions are inference mode and application domain.

CLASSIFICATION ABOUT EVALUATORS

Technique Mode Application Domain
Naive Evaluation Bottom-up General

Semi-naive Evaluation Bottom-up Linear, Acyclic
Iterative Query/Subquery Top-down General

Recursive Query/Subquery | Top-down General
Henschen-Naqvi Top-down Linear

Prolog Top-down NSC

Figure 4. Classification about Evaluators

Note:

General = General evaluable rules.

Linear = Linear recursive rules.

Acyclic = Acyclic data.

NSC = No simple syntactic characterization
4.2. Classification of Optimizers

In order to cut down the number of potential relevant facts and make the evaluation of
recursive queries more efficiently, optimizers should transform corresponding deduction
rules of Datalog programs. According to their redundant computations relevant to queries
or rules, optimization techniques can be classified into techniques based on queries and
techniques based on rules.

Let OPTIMIZERS be the set of all optimizers for recursive query processing, and
EVALUATORS be the set of all evaluators. Formally, we have the following definitions:

Definition 4.1
F : AC — CLDBs is an Optimizer based on Rules iff
F: AC —» CLDBs € OPTIMIZERS A
(V C1=<IDB1,EDBI1, Q1,KF1> € AC) (VC2= <IDB2,EDB2,Q2,KF2> € AC)
[IDB1=IDB2 AEDB1=EDB2 = F(C1)=F(C2)].

F : AC — CLDBs is an Optimizer based on Queries iff

F: AC — CLDBs € OPTIMIZERS A

(V C=<IDB,EDB,Q,KF1> € AC)(3 C' =<IDB,EDB,Q', KF'> € AC)
[ F(C) = F(C)].
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As far as the strategies of transforming rules are concerned, generally, there are three
main approaches: static selection-pushing , semijoin optimization and the projection-
pushing. Sometimes semijoin optimization is called dynamic selection-pushing. So called
selection-pushing optimizations are those in which bound information is passed into the
relevant rules in advance. Projection-pushing optimizations are those in which either
redundant atomic formulas or redundant arguments are reduced. More concrete, we have
the following examples:

« Push the selection statically: Static Filtering (Kifer and Lozinskin [1986]), Aho-Ullman

method (Aho-Ullman [1979]), Algebraic Optimization (Hansen [1987],Houtsma et al

[1988]).

« Push the selection dynamically: Dynamic Filtering (Kifer and Lozinskin [1986]), Magic
Set, Counting (Bancilhon et al [1986]).

« Push the project : Existential optimization (Ramakrishnan et al [1988]).

Therefore, for optimizers, the adequate classification dimensions should be focus ( Based
on rules vs Based on query) and strategy ( Selection-pushing, Semijoin, and Projection-
pushing ).

FUNCTIONAL CLASSIFICATION

Techniques Classification

Naive Evaluation (E)Bottom-up , General
Semi-naive Evaluation (E)Bottom-up , Linear

Iterative Query/Subquery (E)Top-down, General

Recursive Query/Subquery (E)Top-down, General
Henschen-Naqvi (E)Top-down, Linear

Prolog (SLD) (E)Top-down , NSC

Aho-Ullman (O)Based on Query,Push Selection
Static Filtering (O)Based on Query,Push Selection
Magic Sets (O)Based on Query, Semijoin
Counting (O)Based on Query, Semijoin
Supplementary Sets (O)Based on Query, Semijoin
Existential Optimization (O)Based on Query,Push Projection
Redundant Elimination(Sagiv) (O)Based on Rules,Push Projection

Figure 5. Functional Classification Examples

NOTE: (E)=EVALUATOR (O)= OPTIMIZER
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5. Composability among Evaluators and Optimizers

In this section, we formally examine the problem of composability among evaluators and
optimizers, by which we expect to achieve a better comprehension on the potential of
composition among the existing techniques. Meanwhile, we expect that we would present a
unified strategy by this approach.

Definition 5.1
For a query processing algorithm F: AD — CLDBs, and for any C=<IDB, EDB, Q,
KF>, suppose that F(C)=<IDB', EDB', Q', KF'>. Let P= EDBUIDB and P'=
EDB'U IDB' then F is said to be:

@) Initial iff KF=0.

(ii) Intensional invariant iff IDB=IDB'.

(ili)  Extensional invariant iff EDB=EDB'.

(iv)  Queryinvariant iff Q=Q'.

W) Known facts invariant iff KF= KF'.

(vi)  Programinvariant iff P=P'.

(vii)  Explicit complete iff Ans(Q)l P ¢ KF'.

(iix)  Implicit complete iff Ans(Q)IP = Ans(Q")IP'.
(ix)  Implicit weak complete iff KF UAns(Q)IP = KF' U Ans(Q")IP'.
(x) Trivial iff Ans(Q)IP < KF.

(xi)  Identical iff IDB=IDB'A EDB=EDB'

A Q=Q' AKF=KF'.

Let Generalized_optimizers be the set of all generalized optimizers,
Generalized_evaluators be the set of all generalized evaluators, Initial be the set of all
Initial algorithms and Intensional_invariant be the set of all intensional invariant
algorithms. The others are defined analogously. We have the following results:
EVALUATORS = Explicit_complete N Program_invariant N Query_invariant.
OPTIMIZERS = Implicit_complete " Known_facts_invariant.
Generalized_evaluators = Explicit_complete.

Generalized_optimizers = Implicit_complete.

Definition 5.2 ( Composition of Algorithm Sets)
For any algorithm set S1, and S2, the composition of the sets S1 and S2, S1eS2, is
defined as follows:
S1e82 = gr { F1° F2 | VF1 € S1 and VF2 € S2 and Range(F1) € Domain(F2)}.
where ° is the composition of functions.

Composition laws for evaluators and optimizers:

12



Proposition 5.1
@ OPTIMIZERS e Identical = OPTIMIZERS
(ii) Identical ¢ OPTIMIZERS = OPTIMIZERS
(iii) EVALUATORSe Identical = EVALUATORS
(iv)  Identical e EVALUATORS = EVALUATORS
V) Identical ¢ OPTIMIZERS
(vi)  OPTIMIZERSeOPTIMIZER =OPTIMIZERS

Proposition 5.2
< OPTIMIZERS, © > is a monoid.

Proposition 5.3
OPTIMIZERS e Generalized_evaluators = Generalized_evaluators

Proof.

For any F: AC — CLDBs € OPTIMIZERS,

and G: AC'— CLDBs € Generalized_evaluators,
and any C=<IDB,EDB,Q,KF> € AC,

suppose that F(C)=<IDB'EDB', Q',KF'>

and G(F(C))= <IDB",EDB", Q", KF">.

F is an optimizer and G is a Generalized evaluators =
Ans(Q){IDBUEDB} = Ans(Q)/{IDB' U EDB'}

and Ans(Q"){IDB' VEDB'} c KF'=
Ans(Q)I{IDB UEDB} c FK"=

FoG is a Generalized_evaluators.

Therefore, OPTIMIZERS e Generalized_evaluators ¢ Generalized_evaluators.

However, Generalized_evaluators = Identical ¢ Generalized_evaluators ¢
OPTIMIZERSe Generalized_evaluators.

Therefore, OPTIMIZERS e Generalized_evaluators = Generalized_evaluators.

Proposition 5.4
OPTIMIZERS N EVALUATORS = Identical "Trivial.

Proof.

OPTIMIZERS N EVALUATORS ¢

Program_invariant N Query_invariant N Known_facts_invariant N
Explicit_complete c Identical N"Trivial.

Identical N Trivial  Identical N Explicit_complete C
OPTIMIZERS N Explicit_complete c
OPTIMIZERS N EVALUATORS.

13



Therefore, OPTIMIZERS N EVALUATORS = Identical "Trivial.
6. Final Remarks

We have proposed a functional classification as an attempt to categorize the existing
techniques about recursive query processing. We benefit from drawing the distinctions
between the evaluators and optimizers, because the composability among the existing
techniques is more formally and precisely examined. We argued that the functional
classification may be the only efficient approach to solve the problem since most techniques
lack a precise and unified description.

However, in this paper, no performance comparisons are given. As Roelants point
out, performance comparisons of general algorithms are useless because they have too
many degrees of freedom. For performance comparisons of specific methods with specific
data, in [Bancilhon and Ramakrishnan 1988], a satisfying description has been provided.
Moreover, we do not discuss the problems of halting, completeness and efficiency of
specified techniques as in [Roelants 1987]. That is because these features have a close
relationship with evaluation, whereas for evaluators, in [Roelants 1987], the problems have
been examined.

An important task for future research is to develop more definitely a unified strategy
and theory about recursive query processing, which even can provide an implementation
strategy for the efficient composition of the existing techniques.
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