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Abstract

We present a parallel version of the storage modification machine. This model, called the
Associative Storage Modification Machine (ASMM), has the property that it can recognize in
polynomial time exactly what Turing machines can recognize in polynomial space. The model
therefore belongs to the Second Machine Class, consisting of those parallel machine models that
gsatisfy the parallel computation thesis. The Associative Storage Modification Machine obtains
its computational power from following pointers in the reverse direction.

1 Introduction

The Storage Modification Machine (SMM) is a machine model introduced by Schonhage in 1977 [16].
The model has its predecessor in the Kolmogorov-Uspenskii machine (KUM) [10]. Schénhage advo-
cates his model as a model of extreme flezibility.

The model resembles the Random Access Machine (RAM) [1] as far as it has a stored program
and a potentially infinite memory structure where it stores its data. Whereas the RAM uses an
infinite sequence of storage registers, each capable of storing an arbitrarily large integer, the SMM
operates on a directed graph by creating nodes and (re)directing pointers. The main difference
between the SMM and the KUM is that the KUM operates on undirected instead of directed
graphs.

We can approximately model an SMM by a Pascal program, where the directed graph is described
using a data type representing nodes which is defined as a record of pointers to nodes!:

type pointer = “node;
node record a,b: pointer end;
var head : pointer;

We can say that the value of a node is the tuple of pointers originating from it. In contrast with
Pascal, pointers are not allowed to be nil or undefined; they must always point to some node. The

*also CWI-AP6, Amsterdam
1In Pascal “T means “pointer to T”; a value of this type is the address of an object of type T. Indirection through
a pointer is written as p~, which refers to the object at which p points.



(finite) set of pointer names, in the example {a, b}, is called the alphabet of directions, denoted A.
The pointers in the graph are labeled with the elements of A such that each node in the digraph has,
for each direction § € A, exactly one outgoing 6-pointer. Hence the graph has regular outdegree
|A|. In the Pascal equivalent of an SMM, there is only one variable, head, and thus all data must
be addressed with expressions like head~.b".a".b~.b".a. Similarly, the SMM addresses its storage
with words (strings) over A, like babba. The SMM model doesn’t distinguish a special ”head”
pointer, but rather the node at which the conceptual head points. This node, which can change
dynamically, is called the center, and is the one addressed by the empty word, e. Other nodes are
addressed by following pointers starting from the center.

It has been established that from the perspective of computational complexity theory the SMM (if
equipped with the correct space measure [12,2 1]) is computationally equivalent to the other standard
sequential machine models like the Turing machine and the RAM. This equivalence amounts to the
fact that these models simulate each other with polynomially bounded overhead in time and constant
factor overhead in space, thus satisfying the so-called invariance thesis [17,22].

For most sequential models there have been proposed parallel machine models based on the clas-
sical sequential version. For the Turing machine Savitch [15] has proposed a parallel version based
on parallel recursive branching; a model based on nondeterministic forking on a shared set of tapes
was described by Wiedermann [24], but this model turns out to be polynomially equivalent in time
and space with the standard sequential devices. The richness of parallel models based on the RAM
is even much greater, which makes it hard, if not impossible to refer to a small set of representative
models. There are models based on shared memory and alternative models based on local storage
and message passing. Hybrid combinations occur as well. Within each class there exist more refined
distinctions like the resolution strategy for resolving write conflicts in shared memory models, the
available arithmetic instructions and the mechanism for restricting the number of processors acti-
vated during a computation. Moreover, there exist sequential models which become computationally
equivalent to parallel models due to their power to create and manipulate exponentially large values
in a linear number of steps in the uniform time measure. Also, by exploiting the alternating mode of
computation [5], some standard sequential devices become computationally equivalent to the parallel
machines.

For a more detailed survey of parallel models I refer to [20,22]. For the purpose of the present
paper it suffices to give some impression of the overall landscape of parallel machine models.

It turns out that most parallel models proposed in the literature belong to the so-called Second
Machine Class consisting of machine models which obey the Parallel Computation Thesis. This
thesis expresses that the class of languages recognized in nondeterministic polynomial time on the
parallel device is equal to the class PSPACE of languages recognized in polynomial space on a
sequential device. Conversely all languages in PSPACE are recognized in deterministic polynomial
time on the parallel machine.

Not all parallel models obey the above parallel computation thesis. Some weak models turn out
to be polynomial time equivalent to the sequential models (the parallel Turing machine proposed by
Wiedermann [24] being a typical example). Other models, like the P—-RAM presented by Fortune
and Wyllie [7] deviate from the thesis by recognizing exponentially time bounded languages in poly-
nomial nondeterministic time on the parallel device; some parallel devices even recognize arbitrary
languages in constant time [13]. The second machine class therefore represents a frequently occur-
ring version of the power of uniform unrestricted parallelism rather than the union of all possible
parallel machine models. Second machine class members can be characterized as providing the right
mixture of exponential growth potential together with the proper degree of uniformity. The expo-
nential growth potential is required for the implementation of the transitive closure algorithm on a
directed graph of exponential size (which models the computation graph of some PSPACE-bounded
machine), or the direct solution of the PSPACE-complete problem QBF in polynomial time. The
uniformity is required for performing the simulation of a polynomial-time computation of the non-
deterministic version of the parallel machine in polynomial space. See [22] for more details on the
standard strategies for proving membership in the second machine class.



In this paper we propose (as far as we know for the first time) a parallel version of the storage
modification machine which belongs to the second machine class. To our knowledge few parallel
versions of pointer machines have been investigated in the complexity theory literature. The earliest
reference known to us concerns a parallel version of the Kolmogorov-Uspenskii machine which was
proposed by Barzdin [2,3]. This machine operates like an irregular cellular array of finite state
automata in a graph which is dynamically changed by the individual nodes interacting with their
neighbourhood. A single computation step resembles a parallel rewrite step in a graph grammar
derivation. In this model all nodes are active in every computation step; if their neighborhood
matches the pattern required by the instruction the node will transform its environment. The
Hardware Modification Machine (HMM) introduced by Dymond and Cook [6] behaves in a similar
way. This model indeed has been investigated for its complexity behavior. From Lam and Ruzzo [11]
it follows that the machine is equivalent with constant factor time overheads with a restricted version
of the P—RAM of Fortune and Wyllie. From this result one can observe that the HMM represents
another example of the class of devices which are located beyond the second machine class - its
nondeterministic version accepts NEXPTIME in polynomial time.

The computational power of our ASMM model originates from the possibility of traversing
pointers in their reverse order. By using reverse directions, an ASMM can address, from a given
node z, all the nodes that are associated with z by pointing to z (hence the name?). More than
one node can be reached on a path by traversing pointers in the reverse direction. Note that at this
point it is crucial that we have based ourselves on the SMM rather than the older K UM model; in
an undirected graph traversing pointers in the reverse direction makes no sense.

As in the standard SMM model the finite control accesses the storage structure by means of a
single center node. The power of traversing reversed pointers is used only in two types of instructions:
the new and the set instruction. The first argument of the above two instructions is a path which
now may contain reverse pointers. This path therefore no longer denotes a single node but a set of
nodes (which in fact may be empty). The action described by the instruction now will be performed
for all nodes in this set in parallel. The second argument of the set instruction is required to be a
path consisting of forward pointers only; it therefore always denotes a single node. Therefore the
action performed by the two instructions above is deterministic.

Our model may be considered to be a member of the class of sequential machines which operate
on large objects in unit time and obtain their power of parallelism thereof. Other models of this
character are the vector machines of Pratt and Stockmeyer [14], the MRAM proposed by Hartmanis
and Simon [9] and simplified by Bertoni et al. [4], and also the EDITRAM presented by Stegwee et
al. [18,22].

Following [22] we denote the class of languages accepted in polynomial time by the ASMM
model by ASMM—PTIME. The class of languages accepted in polynomial time by nondeterministic
ASMM devices is denoted by ASMM—NPTIME. The class PSPACE as indicated above, denotes
the class of languages recognized in polynomial space on a Turing machine. The fact that the ASMM
is a true member of the second machine class is now expressed by the equality:

ASMM-PTIME = ASMM—NPTIME = PSPACE

In the proof of this equality we use the well known PSPACE-complete problem:

QUANTIFIED BOOLEAN FORMULAS (QBF) [19] :

QUANTIFIED BOOLEAN FORMULAS:

INSTANCE: A formula of the form Q17 ...Qnzn[P(Z1,...,Zn)];
where each Q; equals V or 3, and where P(zy,...,2Zn)

is a propositional formula in the boolean variables z, ..., z,.

QUESTION: does this formula evaluate to true?

2compare with content-addressable associative memory



2 The smm and the asmMv models

Our ASMM model is based on the Storage Modification Machine as introduced by Schonhage in
1970 [16]. The SMM model resembles the RAM model as far as it has a stored program and a
similar flow of control. It has a single storage structure, called a A-structure. Here A denotes a
finite alphabet consisting of at least two symbols. We denote the reverse of a direction a € A as a.
Furthermore, A = {G|a € A} is the set of reverse directions and we let A =AU A.

A A-structure X is a finite directed graph each node of which has k = |A| outgoing edges which
are labeled by the k elements of A. In Schonhage’s formalization, a A-structure is a triple (X, ¢, p),
where X denotes the finite set of nodes, ¢ € X is the center, and p: X x A — X is the pointer
mapping; p(z, @) = y means that the c-pointer from z goes to y.

There exists a map p* from A* to X defined as follows: For the empty string € one has p* (e) = ¢,
and otherwise p*(wa) = the end-point of the pointer labeled a starting in p*(w), as implied by the
recursive definition p*(wa) = p(p*(w), a).

The map p* does not have to be surjective. Nodes which can not be reached by tracing a word w
in A* starting from the center ¢ will turn out to play no subsequent role during the computations of
the SMM. In the ASMM model pointers can be traversed in the opposite direction, and therefore
these nodes no longer can be disregarded as being garbage.

The storage of an SMM or an ASMM is a dynamically changing A-structure, which initially
consists of a single node, the center. The ASMM’s operation is described by a program, which is
a finite sequence of labels and instructions. Labels can be used in control flow statements ; they
should occur exactly once in case the machine is deterministic. Nondeterminism is introduced by
allowing multiple occurrences of the labels referred to in jump or conditional jump instructions. In
the text below we separate labels and instructions by a colon, whereas instructions are ended by
semicolons.

The instruction repertoire of the SMM and the ASMM includes the common instructions (the
X’s are labels and g € {0, 1})

input Ao, A1;
output f;
goto X;
halt;

The tnput instruction reads an input bit S and transfers control to Ag. The other instructions are
straightforward.

Furthermore there exist internal instructions which operate on memory - in this case a A-
structure X. For both types of machines there exist three types of instructions of the latter type.
For the SMM the arguments in these instructions are finite strings over A which are written literally
in the program. For the ASMM the unique argument of new and the first argument of set to are
strings over Z&; the other arguments (second argument of set to and both arguments of the if
instruction) are strings over A. We first describe their meaning for the SMM:

1. new W: creates a new node which will be located at the end of the path traced by W; if
W = ¢ the new node will become the center; otherwise the last pointer on the path labeled W
will be directed towards the new node. All outgoing pointers of the new node will be directed
to the former node p* (W)

2. set W to V: redirects the last pointer on the path labeled by W to the former node p*(V);
if W = € this simply means that p*(V') becomes the new center; otherwise the structure of the
graph is modified.

3. if V=W (ifV # W) then...: the conditional instruction (conditional jump suffices); here
it is tested whether the nodes p*(V) and p*(W) coincide or not.



In the ASMM model the A-structure can be addressed by words (also called paths) over the
alphabet of normal and reverse directions A. Every word W € A* addresses the (possibly empty)
set of all the nodes reachable from the center by following the consecutive directions (reversed if
barred) in W. B

The notion of “addressing” is formalized by the mapping P : A* — 2%, defined by:

Pl = {9
P(Wa) = {plz,a)lz€ P(W)}
P(Wa) = {slp(s,a) € P(W)}.

If V € A*, then P(V) is a singleton set and we will frequently abuse notation by confusing a node
with a path addressing it—e.g. referring to the center ase. A node z is said to be directly addressable
if it is reachable from the center by normal (non-reversed) directions, i.e. 3V € A* : P(V) = {z}.

In order to facilitate the descriptions of the internal instructions, we define a mapping @ : A* —
2%, from a path to the set of nodes from which the last pointer on this path originates, by:

Qe = 9
QWa) = P(W)
Q(Wa) = P(Wa).

The new and set change the A- structure from (X, ¢, p) to (X', ¢, p') as follows:

new W;
Here, W € A* determines where new nodes are inserted. If W = ¢, then a new center c'
is created such that X’ = X U {c'} and p'(c’,8) = ¢ for all § € A. Otherwise, if W = U&
(& is either o or &), then for every node u € Q(W) a new node z, is created such that
X'= XU {zy|u € QW)}, p'(v,a) = zu, V6 € A p'(zu,6) = p(y,a), and ¢’ = ¢. All other
pointers remain unchanged.

set W to V;
Here, W € A* determines which pointers are redirected to the node determined by V € A*. If
W = ¢, then ¢’ = P(V) becomes the new center. Otherwise, if W = U&, then for every node
u € Q(W), p'(u,a) = P(V) and ¢’ = c. In both cases X' is the restriction of X to the nodes
which are reachable from ¢'.

The third internal instruction is the if statement. Since both paths in this instruction consist of
forward pointers only, the meaning of this instruction is equal for the SMM and the ASMM.

The time complezity we use is simply the number of instructions executed. We do not concern
ourselves with the space complezity; see [12,21] for a discussion of the space complexity of the SMM.

3 An illustration of the power of associativity

We demonstrate the power of the ASMM model by showing the capability to manipulate arbitrarily
large sets in constant time.

The model allows the following natural representation of sets. If W is a word over A, and a € A
a direction, then P(W&) is the set of all nodes having their a-pointer directed to the node P(W).
Assume that our alphabet is A = {4, B,C, o, B,7} and that the A, B, and C-pointers from the
center go to three different nodes P(A), P(B) and P(C), none of which is the center. We will now
consider the sets P(A&), P(Bf) and P(C, ) and see how the standard set operators can be applied
to them by using appropriate set to instructions. We have chosen A, B and C to be directions so
that the instructions with which we will implement the set operators cannot affect the addressing
of the nodes P(A), P(B) and P(C). As long as no such interference exists, we can generalize to the
case where A, B and C are not elements of A but words over A.



The instruction set AaB to Bj; has the effect of adding to P(Bj) the set P(Aa), while removing
from P(CB) the nodes which are also in P(4&).

The figure below now shows how the standard set operators, shown as assignment statements
in the boxes, can be implemented in terms of set to instructions. The center € is used to direct
pointers away from A or C.

set Cy to e [ \ set Aay toC ( \ set BBy to ¢
> Cy:=90 j » Cy:=Aa | o C5 := Aa

set BBy |toC

The following program illustrates how in linear time a set P(a) of exponential size can be
constructed (with a singleton alphabet):

new Qa;
set aa to

new a;
set aa to €

Initially only the center exists, so all nodes point to the center. If at some point 2F nodes exist,
all of which point to the center, then after the new instruction, each of these 2* nodes now points
to one of 2% newly created nodes, which again point to the center. Next the set instruction makes
all 25+ nodes point to the center. Hence after k repetitions of these two instructions the size of the
set P(&) has become 2F.

In the next section we will see how these and similar constructions are used to process large
amounts of data in parallel.

4 PSPACE = ASMM—-PTIME = ASMM—-NPTIME
The proof of membership in the Second Machine Class is usually split into two parts:
Lemma 1 PSPACE C ASMM—PTIME

We prove this by sketching an ASMM which solves the PSPACE-complete problem QBF in
polynomial time.

Lemma 2 ASMM-NPTIME C PSPACE

We prove this by showing how to simulate ¢ steps of a nondeterministic ASMM on a Turing
machine using O(t2) space.



4.1 QBF € ASMM-TIME(n?)

The ASMM algorithm we present for solving @BF in polynomial time proceeds in 8 stages. Let
X = {zo,..., Tk—1} be the set of variables in the formula of length n, let A = {0,1,z} and let ¢ be
the center. Basically, the algorithm expands the formula by rewriting the quantifiers, one by one,

innermost first, as follows:
Vz;F(z;) => F(0) A F(1),

32 F(z;) = F(0) V F(1).

The resulting, fully expanded formula, can be viewed as a tree. It consists of a complete binary tree
T of depth k, with an instance of the formula body B rooted at each leaf of T'. In each such instance,
the variables are replaced by their truth values assigned to them along the path down to the leaf.
The algorithm does little more than to build and evaluate this tree. We now briefly summarize each
of the 8 stages:

1. Build a list of nodes ¢, zo, Z1, . . ., Tx—1, b linked through the O-pointer. Using the 0, 1-pointers,
build a representation of the formula body as a binary tree B rooted at b. The non-leaf nodes
of B represent the connectives (and, or, not) while the leaves represent instances of variables.

2. Build a complete binary tree T of depth k using the 0, 1-pointers. For a node at depth ¢, its
0O-subtree represents the case z; = 0 and similarly for its 1-subtree.

3. Build 2* copies of B rooted at the leaves of T.

4. For every leaf u of B representing an instance of z;, let the 2k copies of u direct their z-pointer
to either u or ¢ depending on the connective of u’s parent and the value assigned to z;.

5. For every non-leaf u of B, let the 2¥ copies of u direct their z-pointer to either u or ¢ depending
on the connectives of u and its parent.

6. For every z;, let the 2° nodes of T at level © direct their z-pointer to either z; or ¢ depending
on the quantifiers of z; and z;—;.

7. Evaluate all copies of B in parallel.
8. Evaluate T'.

Note that by building a |A|-ary tree of depth, say d, close to the center, |A]¢ pointers become
available to the machine for use as temporary/local pointer variables. For the purpose of traversing
X and B we will use the otherwise unspecified paths v,w € 1 x A* x A\ {z}. We don’t want these
paths to end with an z because an expression like vZ should not address other nodes than those
intended.

The following invariant will hold throughout the execution:

Yve XUB: vz C C(v),

where C(v) is the set of copies of v. For v = z;, these are the 2* nodes at depth ¢ in T

An explanation about the representation of truth values is in order here. A copy u' € C(u) of a
node u € X U B can have its z-pointer directed to either u (u’ is active) or ¢ (u’ is passive). This is
done in a way which facilitates the evaluation of the parent of u. This parent is assigned a default
value according to the table below. Now u' is active iff its value invalidates the default value of its
parent, as shown in the table.

| parent type ” A | \Y% l - l
parent default || 1 | 0 | 1
active value 0|1]1




The representation of the truth value at node u therefore depends on the type of the logical
connective associated to the parent of u in the tree. This holds also for the nodes in the tree T
which are associated to the variables z;. In this tree the copies of the variables have been treated
as logical connectives according to the type of the quantifyer binding this variable.

In the algorithm above stages 1, 2 and 3 are used for building the tree; during stage 4 the
truth values are assigned to all variable occurrences in the copies of B, and in stages 5 and 6 all
intermediate nodes are given their default values. During the final two stages the entire tree is
evaluated.

We next describe each of the above stages in some more detail.

In stage 1 the input is examined and used to construct a linearly sized list and tree representing
the formula. We represent the type of a node u € XUB by directing its z-pointer to one of the special
nodes V, A, -, L. As mentioned before, these four symbols will also be used as paths addressing the
nodes. The leaves of B are of type L and have their 1-pointer directed to the appropriate z;.
Existentially quantified z; have type(z;) = V and universally quantified z; have type(z:) = A. In
order to distinguish the nodes z; from nodes in B, we link a node of type — to its child with the
1-pointer, thus 1 separates X from B. The z; have their 1-pointer directed to c.

In stage 2 the parallel power of the machine is used to build an exponentially large tree in linear
time. This is achieved by the piece of code below:

new v;
set vz to O
set v to O;
A new vz0;
set vZ0z to v0;
new vZl;
set vZlz to v0;
set v to v0;
if vl =c¢ then goto A

The construction of 2¥ copies of B in stage 3 proceeds analogously. Note that by now all the
leaves of T have their z-pointer directed to b. Traversing B in preorder, we do the following at each
node v:

if vz = goto Aj;

if vz=_1 goto Ay;

new vZ0;

set vZ0z to v0;
A1z if vz =1 goto Ag;

new vZl;

set vilz to vl;
)\22

In stage 4, all the z-pointers in the copies of leaves of B are installed. Let w be a leaf of B
(wz = L) with wl = z; the variable it represents. We show how to install the z-pointers in all
copies C(w) of w. We assume that w has the active value 1. The case for O is analogous. The code
fragment

set v to O;
A : set vOZ to ¢
if v#wl then set vZ0z to v0;
set vZlz to v0;
set v to v0;
if vl =c¢ then goto J;



ends with bZ equal to the set of leaves of T which have 1, the active value, assigned to z;. In
a similar fashion we can traverse the path from b to w, to end up with the active nodes of C(w)
pointing to w and the passive ones pointing to c.

The next two stages, 5 and 6, prepare the evaluation by giving default values to copies of non-
leaves of B and nodes in T'. If the copies of a non-leaf node w € B are by default passive (e.g., when
both w and its parent are of type V), then we can make wZ = @ by the single instruction

set wZ to ¢

Otherwise, if they are by default active, then we can make wz = C(w) by traversing the path
from zo to w with v like in the previous stage. Since this procedure sets vz = C(v) for all v on
the path to w, we must deal with the non-leaves of B in postorder. Note that this stage ends with
vZ = C(v) for all v = z;. This is correct for the z; which are active by default, i.e. those whose type
differs from that of their parent z;_;.

To give all non-leaves of T the correct default value, we must therefore reset the z-pointers from
the passive z; to the center, which is achieved by the following code:

set v to ¢

A:if vz =v0z then set v0Z ito ¢
set v to v0;
if v01 =€ then goto A;

We don’t direct the z-pointer from the center to either A or V hence the root of T will remain
active. Now all that’s left to be done is the evaluation itself. This is done bottom up—by a post-
order traversal of B and then from zx_; back to zo. With the other cases being analogous, we
restrict ourselves to the evaluation of an A-node w € X U B. Let v be its parent. The default value
of w is 1, which is passive if v has type A, or active if v has type V, . The value of w should become
0 if either of its children has value 0, which is active for them. It should now be clear that the code
fragment

if vz = A then goto Aj;
set w0z0z to ¢;
set wlziz to ¢
goto Ag;
A1 : set w0zZ0z to w;
set wlzlz to w;

Az:

evaluates node w. The technique used here is essentially the same as in section 3 for computing
a union. Because of our symmetric representation, it works for both vV and A.

When evaluation is complete, the root of T', r, will have its z-pointer directed to either zo or c.
It need not even be directly addressable in order to turn this into an if then test. We can still check
whether 0% is empty or not by trying to modify a pointer from a directly addressable node, like zo.
We know that p(zo, z) € {A, V}. The instruction

set 0Zzz to ¢

changes p(zo, z) to € iff 0Z is nonempty, which is equivalent to p(r, ) = zo. Recall from stage 6
that this is how p(r,z) was initialized to its default value, O for V and 1 for A. Combining this
information we obtain the value of the formula.

Regarding the time complexity, the most time-consuming stage is number 4, where for each leaf
of B, both X and B are traversed, requiring at most n? steps. Hence the complete algorithm runs
in quadratic time.



4.2 ASMM-NTIME(t) C SPACE(t?)

The simulation which proves this inclusion is relatively straightforward and employs previously
known methods [9,14]. We can write down in polynomial space a trace of the computation con-
taining information on the sequence of instructions executed. Since the machine being simulated is
nondeterministic this trace is guessed. Next it is verified by means of a system of recursive procedures
and some other arrays containing polynomially sized information that this trace indeed represents
an accepting computation. The if, new and set to statements pose the main problems, since their
impact on the A-structure requires repeated recomputations of the current state of the A-structure.
In polynomial space we cannot explicitly store the possibly exponentially large A-structure of the
ASMM-machine, so an implicit representation is called for. This will consist of three arrays, and
three mutually recursive functions. The arrays are

1. instr[s] holds the instruction executed at step 7
2. nodes[i] holds the number of nodes at time ¢
3. center[s] holds the center at time ¢

The simulation starts at time 0 and time ¢ is between step ¢ and step ¢+ 1, 0 < ¢ < t. Each
array is of length ¢, the number of steps to be simulated, and each array element fits in ¢ bits since
the number of nodes can at most double after each step. Every node will have a unique number,
and the resulting ordering of nodes is used for numbering nodes created by a new instruction. More
precisely, a newW ; instruction at step ¢ is simulated as follows:

If W = ¢, then nodes[i] = nodes[t — 1] + 1 and center|i] = nodes[i — 1].

Otherwise, if W = U&, then nodes[i] = nodes[i — 1] + |Q(W)| and center[s] = center[s — 1].
Semantically, if Q(W) = {20 < 71 < ... < =g}, then at time 3, p(z;, a) = nodes[i — 1] + j.

For all other instructions, nodes[i] = nodes[t — 1] and center[i] = center[i — 1], except that
the instruction setetoV; sets center[i] to P(V). In order to compute P(V) and to simulate the if
instruction, we use the following functions:

p(z, @, 1) returns the number of the node p(z, @) at time ¢
P(z, W, 1) returns whether z € P(W) at time ¢

Q(z, W, 1) returns whether z € Q(W) at time s.

These functions satisfy the equations

Q(z,¢6,1) = false
Q(z,Uays) = P(z,U;1)
Q(z,Ua,1) P(z,Ua,1)
P(z,¢,1) (z == center[1])
P(z,Uq,i) = (30<y<nodesls]: P(y,U,%) Aply, a,1) == z)
P(z,U&i) = P(p(z,a,1%),U,1)
p(z,2,0) = 0

which shows that they can be easily computed, apart from the case p(z, a, t) for positive values of
i. The action of p in this case depends on the value of instr[z], the only interesting values of which
are new and set.

Consider first the case instr[i] = newW. If z > nodes[i—1] then (using Q(y, W, 1)) their difference
can be used to find the y in Q(W) which “generated” and now points to z (unless W = ¢, in which
case p(z, @, 1) = center[i — 1]). Now p(z,a,1) = p(y, @, — 1). W = UG and Q(z, W, — 1), then z
has generated p(z, a,1) = nodes[i — 1]+ |{y < z|q(y, W, — 1)}|. Otherwise p(z, a, ) = p(z, @, 7~ 1).

10



Second and last, consider the case instr[i] = setWtoV. If W = Ué& and Q(z, W,7— 1), then
p(z, @, 1) is the unique y satisfying g(y, W, s — 1). Otherwise p(z, a,1) = p(z, o, 2 — 1).

These functions can easily be coded on a Turing Machine using recursion (stackframes). The
recursion depth is bounded by ct, where ¢ is a constant depending only on the maximum path
length of the ASMM program. Each stackframe holds a return address and some node numbers
and counters each of which fits in ¢ bits. Together with the three arrays space O(t?) suffices for the
simulation of ¢ steps of the ASMM.

5 Conclusion

Of all the parallel models which have been shown to belong to the Second Machine Class, the ASMM
is the first to obtain its power from the use of associative addressing, thus making it an interesting
addition to the realm of Second Machine Class devices. It provides another example that a small
modification of a machine model can enforce a substantial increase of computational power. In [4]
it was shown that this increase is provoked by adding multiplicative instructions to the unit-time
standard RAM model. Similarly the EDITRAM model obtains its power by introducing a few edit
operators which are available on most real life text editors anyhow. In the ASMM model it turns
out that traversing pointers in a reverse direction is all we need for obtaining full parallel power. At
the same time, the fact that the storage structure of the ASMM is manipulated by a finite program
which interacts with the A-structure by means of a single center seems to be the main reason why
the machine has not become too powerful. As shown by Lam and Ruzzo [11], a model where the
nodes become independently active finite automata suffices for making the nondeterministic version
more powerful than PSPACE (except for the unlikely case that PSPACE = NEXPTIME). This
situation resembles the relation between the SIMDAG described by Goldschlager [8], where a single
processor broadcasts its instructions to a collection of peripheral processors and the P-RAM model
of Fortune and Wyllie [7] where the local processors are independent.
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